Science.gov

Sample records for aerobic radiation response

  1. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  2. Physiological responses during aerobic dance of individuals grouped by aerobic capacity and dance experience.

    PubMed

    Thomsen, D; Ballor, D L

    1991-03-01

    This study examined the effects of aerobic capacity (peak oxygen uptake) and aerobic dance experience on the physiological responses to an aerobic dance routine. The heart rate (HR) and VO2 responses to three levels (intensities) of aerobic dance were measured in 27 women. Experienced aerobic dancers (AD) (mean peak VO2 = 42 ml.kg-1.min-1) were compared to subjects with limited aerobic dance experience of high (HI) (peak VO2 greater than 35 ml.kg-1.min-1) and low (LO) (peak VO2 less than 35 ml.kg-1.min-1) aerobic capacities. The results indicated the LO group exercised at a higher percentage of peak heart rate and peak VO2 at all three dance levels than did either the HI or AD groups (HI = AD). Design of aerobic dance routines must consider the exercise tolerance of the intended audience. In mixed groups, individuals with low aerobic capacities should be shown how and encouraged to modify the activity to reduce the level of exertion. PMID:2028095

  3. Maternal and fetal responses to low-impact aerobic dance.

    PubMed

    McMurray, R G; Katz, V L; Poe, M P; Hackney, A C

    1995-07-01

    The purpose of this study was to compare the physiologic responses to low-impact aerobics using treadmill walking as a control. Ten pregnant women between 21 and 28 weeks of gestation completed 40 minutes of low-impact aerobic dance. The maternal and fetal responses were then compared to 40 minutes of walking at the same heart rate. The aerobics program consisted of a 10-minute warm-up, 20 minutes of high-intensity exercise, and 10 minutes of decreasing intensity. Heart rates were recorded every 5 minutes, and oxygen uptake (VO2) and fetal response (real-time ultrasound) were obtained every 10 minutes. The maternal heart rates were similar during both trials (overall, 133 +/- 6 beat/min). VO2 values during walking were about 4 mL/kg/min greater than during aerobic dance (p < or = 0.003). Minute ventilation (VE) was also greater during walking (28.7 +/- 6.4 versus 24.1 +/- 3.4 L/min, p < or = 0.001). Respiratory exchange ratios and the ventilatory equivalents for oxygen (VE/VO2) were similar for both trials. Aerobic dance caused greater fetal heart rates than walking (p < or = 0.001), differences being as high as 25 beat/min. The fetal rates had returned toward rest within 5 minutes following exercise. Low-impact aerobic dance, compared with walking at similar heart rates, results in a lower maternal metabolic rate and increases the transient stress on the fetus. PMID:7575837

  4. Maternal Responses to Aerobic Exercise in Pregnancy.

    PubMed

    Davenport, Margie H; Skow, Rachel J; Steinback, Craig D

    2016-09-01

    Exercise is one of the most physiologically challenging stressors requiring the coordination of metabolic, respiratory, and cardiovascular responses to meet increased energy requirements of the working muscle. During pregnancy, all women without contraindication are encouraged to exercise as part of a healthy lifestyle. Pregnancy itself is associated with profound physiological adaptations to the maternal cardiovascular, respiratory, and metabolic systems, which serve to support the needs of the growing fetus. Therefore the physiological adaptations to exercise during pregnancy are more pronounced and critically important. This review provides an overview of our current understanding of the physiological adaptations to acute prenatal exercise. PMID:27042798

  5. Cardiovascular response to dynamic aerobic exercise: a mathematical model.

    PubMed

    Magosso, E; Ursino, M

    2002-11-01

    An original mathematical model of the cardiovascular response to dynamic exercise is presented. It includes the pulsating heart, the pulmonary and systemic circulation, a separate description of the vascular bed in active tissues, the local metabolic vasodilation in these tissues and the mechanical effects of muscular contractions on venous return. Moreover, the model provides a description of the ventilatory response to exercise and various neural regulatory mechanisms working on cardiovascular parameters. These mechanisms embrace the so-called central command, the arterial baroreflex and the lung inflation reflex. All parameters in the model have been given in accordance with physiological data from the literature. In this work, the model has been used to simulate the steady-state value of the main cardiorespiratory quantities at different levels of aerobic exercise and the temporal pattern in the transient phase from rest to moderate exercise. Results suggest that, with suitable parameter values the model is able accurately to simulate the cardiorespiratory response in the overall range of aerobic exercise. This response is characterised by a moderate hypertension (10-30%) and by a conspicuous increase in systemic conductance (80-130%), heart rate (64-150%) and cardiac output (100-200%). The transient pattern exhibits three distinct phases (lasting approximately 5s, 15s and 2 min), that reflect the temporal heterogeneity of the mechanisms involved. The model may be useful to improve understanding of exercise physiology and as an educational tool to analyse the complexity of cardiovascular and respiratory regulation. PMID:12507317

  6. Modification of radiation response

    SciTech Connect

    Suit, H.D.

    1984-01-01

    There has been a substantial and intense interest by laboratory and clinical investigators in the development of agents which modify the response of tissue to radiation differentially so as to increase the effect on tumor relative to normal tissue. These have included efforts to increase the response of tumor or to decrease response of normal tissue. The plan of this presentation is to: define radiation response modifiers; consider the impact of response modifiers on dose response curves; comment on problems inherent in assessment of results of clinical trials of response modifiers; and review briefly results of several trials of: sensitizers of hypoxic cells (hyperbaric oxygen, chemical sensitizer), pyrimidine analogs, and protectors.

  7. Active Female Maximal and Anaerobic Threshold Cardiorespiratory Responses to Six Different Water Aerobics Exercises

    ERIC Educational Resources Information Center

    Antunes, Amanda H.; Alberton, Cristine L.; Finatto, Paula; Pinto, Stephanie S.; Cadore, Eduardo L.; Zaffari, Paula; Kruel, Luiz F. M.

    2015-01-01

    Purpose: Maximal tests conducted on land are not suitable for the prescription of aquatic exercises, which makes it difficult to optimize the intensity of water aerobics classes. The aim of the present study was to evaluate the maximal and anaerobic threshold cardiorespiratory responses to 6 water aerobics exercises. Volunteers performed 3 of the…

  8. The effects of cadence, impact, and step on physiological responses to aerobic dance exercise.

    PubMed

    Darby, L A; Browder, K D; Reeves, B D

    1995-09-01

    The physiological responses to aerobic dance exercise of varied impact (high, low), step (less arm movement vs. more arm movement), and cadence (124 vs. 138 beats.min-1) were investigated. Experienced, female aerobic dancers (N = 16) performed activities that combined the levels of impact and step for 3 trials of 8-min each. Dependent variables included heart rate, percentage of maximal heart rate, oxygen consumption, percentage of maximal oxygen consumption, and respiratory exchange ratio. Repeated measures analyses of variance indicated a significant Impact x Step interaction whereby oxygen consumption was greater for the high impact-less arm movement activity (jog), while the low impact-more arm movement activity (power jack) was greater for heart rate. The interaction of aerobic dance characteristics (e.g., impact, arm movement) that may alter physiological responses to aerobic dance exercise should be identified in future aerobic dance routines and studies. PMID:7481084

  9. Change in energy expenditure and physical activity in response to aerobic and resistance exercise programs.

    PubMed

    Drenowatz, Clemens; Grieve, George L; DeMello, Madison M

    2015-01-01

    Exercise is considered an important component of a healthy lifestyle but there remains controversy on effects of exercise on non-exercise physical activity (PA). The present study examined the prospective association of aerobic and resistance exercise with total daily energy expenditure and PA in previously sedentary, young men. Nine men (27.0 ± 3.3 years) completed two 16-week exercise programs (3 exercise sessions per week) of aerobic and resistance exercise separated by a minimum of 6 weeks in random order. Energy expenditure and PA were measured with the SenseWear Mini Armband prior to each intervention as well as during week 1, week 8 and week 16 of the aerobic and resistance exercise program. Body composition was measured via dual x-ray absorptiometry. Body composition did not change in response to either exercise intervention. Total daily energy expenditure on exercise days increased by 443 ± 126 kcal/d and 239 ± 152 kcal/d for aerobic and resistance exercise, respectively (p < 0.01). Non-exercise moderate-to-vigorous PA, however, decreased on aerobic exercise days (-148 ± 161 kcal/d; p = 0.03). There was no change in total daily energy expenditure and PA on non-exercise days with aerobic exercise while resistance exercise was associated with an increase in moderate-to-vigorous PA during non-exercise days (216 ± 178 kcal/d, p = 0.01). Results of the present study suggest a compensatory reduction in PA in response to aerobic exercise. Resistance exercise, on the other hand, appears to facilitate non-exercise PA, particularly on non-exercise days, which may lead to more sustainable adaptations in response to an exercise program. PMID:26702387

  10. Aerobic fitness in women and responses to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett; Mathes, Karen L.; Hoffler, G. Wyckliffe

    1987-01-01

    The role of tolerance to orthostatic stress in the maintenance of high aerobic fitness in women was investigated by examining the responses of heart rate, stroke volume, cardiac output, Heather index of contractility, arterial pressure, peripheral resistance, change in calf circumference, and thoracic impedance of healthy female subjects to lower body negative pressure (LBNP) applied for 5 min at -50 mm Hg or until a subject became presyncopal. The testing protocol involved a stepwise reduction in pressure and consisted of two parts: an LBNP test in supine position followed by a treadmill test to peak aerobic capacity. Women were found to exhibit the same response pattern to LBNP as was previously reported by Convertino et al. (1984) for men. The results do not support the hypothesis that orthostatic tolerance in women is inversely related to aerobic fitness, as demonstrated by a finding that the peak aerobic capacity of subjects who became presyncopal did not differ from the peak of the tolerant subjects, and that hemodynamic responses to LBNPL were not a function of aerobic capacity.

  11. Metabolic and hormonal responses to low-impact aerobic dance during pregnancy.

    PubMed

    McMurray, R G; Hackney, A C; Guion, W K; Katz, V L

    1996-01-01

    This study examined the plasma glucose, free fatty acids (NEFA), lactate, triglyceride, cortisol, and insulin responses of pregnant women (22-28 wk) to a 40-min aerobic dance program and 40-min treadmill walking at similar heart rate intensities. The heart rates during exercise averaged 135 +/- 5 bt.min-1 for both trials. Immediate post-exercise plasma glucose levels were lower than resting levels for both exercise trials (P < 0.05), and remained below resting levels 20 min after exercise. Plasma triglycerides and NEFA were increased immediately post-exercise (P < 0.05), and returned toward rest 20 min after exercise. The NEFA responses at the end of the walking trials were significantly greater than at the end of the aerobic dance trials (P < 0.05). For both trials, immediate post-exercise plasma insulin levels were below resting levels (P < 0.05) and remained attenuated 20 min post-exercise. Plasma cortisol concentrations were unchanged throughout the aerobic dance trial. However, a mean increase of 105 nmol.l-1 immediately post-exercise was evident during the walking trials (P < 0.05). The results suggest that 40 min of walking or aerobic dance reduces blood glucose but does not cause hypoglycemia. Further, the results suggest that 40 min of walking or aerobic dance does not expose the mother to serious metabolic consequences that might adversely affect the fetus. PMID:8775353

  12. Effect of Beetroot Juice Supplementation on Aerobic Response during Swimming

    PubMed Central

    Pinna, Marco; Roberto, Silvana; Milia, Raffaele; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Migliaccio, Gian Mario; Padulo, Johnny; Orlandi, Carmine; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2014-01-01

    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO2), carbon dioxide production (VCO2), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5l/day organic beetroot juice containing about 5.5 mmol of NO3−). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg−1·h−1 during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold. PMID:24481133

  13. Effect of beetroot juice supplementation on aerobic response during swimming.

    PubMed

    Pinna, Marco; Roberto, Silvana; Milia, Raffaele; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Migliaccio, Gian Mario; Padulo, Johnny; Orlandi, Carmine; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2014-01-01

    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO₂), carbon dioxide production (VCO₂), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5 l/day organic beetroot juice containing about 5.5 mmol of NO₃⁻). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg⁻¹1·h⁻¹ during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold. PMID:24481133

  14. Aerobic fitness in women and responses to lower body negative pressure.

    PubMed

    Frey, M A; Mathes, K L; Hoffler, G W

    1987-12-01

    High aerobic fitness may be associated with impaired responsiveness to orthostatic challenge. This could be detrimental to astronauts returning from spaceflight. Thus, we examined the cardiovascular responses of a group of 45 healthy women to graded lower body negative pressure (LBNP) through 5 min at -50 mm Hg or until they become presyncopal. The ages (range = 23-43 years, mean = 30.4) and peak aerobic capacities (range = 23.0-55.3 ml.kg-1.min-1, mean = 37.8) of these subjects paralleled those of the women astronauts. We monitored heart rate, stroke volume, cardiac output, Heather index of contractility, arterial pressure, peripheral resistance, change in calf circumference, and thoracic impedance (ZO)--a measure of fluid in the chest. The women in this study exhibited the same response pattern to LBNP as previously reported for male subjects. VO2peak of the six subjects who became presyncopal was not different from VO2peak of the tolerant subjects. At rest, only systolic and mean arterial pressures were significantly correlated with VO2peak. Percent changes in calf circumference (i.e. fluid accumulation in the legs) at -30 and -40 mm Hg were the only responses to LBNP significantly related to VO2peak. The greater pooling of blood in the legs during LBNP by women with higher aerobic fitness, and lower percent body fat may be related to more muscle tissue and vasculature in the legs of the more fit subjects. These data indicated that orthostatic tolerance is not related to aerobic capacity in women, and orthostatic tolerance need not be a concern to aerobically fit women astronauts. PMID:3426487

  15. EFFECTS OF AEROBIC CONDITIONING ON CARDIOVASCULAR SYMPATHETIC RESPONSE TO AND RECOVERY FROM CHALLENGE

    PubMed Central

    Lindgren, M; Alex, C; Shapiro, PA; McKinley, PS; Brondolo, EN; Myers, MM; Choi, CJ; Lopez-Pintado, S; Sloan, RP

    2013-01-01

    Objective Exercise has widely-documented cardioprotective effects but the mechanisms behind these effects are still poorly understood. Here, we test the hypothesis that aerobic training lowers cardiovascular sympathetic responses to and speeds recovery from challenge. Methods We conducted a randomized controlled trial contrasting aerobic versus strength training on indices of cardiac (pre-ejection period, PEP) and vascular (low-frequency blood pressure variability, LF-BPV) sympathetic responses to and recovery from psychological and orthostatic challenge in 149 young, healthy and sedentary adults. Results Aerobic and strength training did not alter PEP or LF-BPV reactivity to or recovery from challenge. Conclusions These findings, from a large randomized controlled trial using an intent-to-treat design, show that moderate aerobic exercise training has no effect on PEP and LF BPV reactivity to or recovery from psychological or orthostatic challenge. In healthy young adults, the cardioprotective effects of exercise training are unlikely to be mediated by changes in sympathetic activity. PMID:23889039

  16. The marine mammal dive response is exercise modulated to maximize aerobic dive duration.

    PubMed

    Davis, Randall W; Williams, Terrie M

    2012-08-01

    When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR = 1.48SF - 8.87) and bottlenose dolphins (HR = 0.99SF + 2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion. PMID:22585422

  17. Cardiorespiratory and neuromuscular responses during water aerobics exercise performed with and without equipment.

    PubMed

    Pinto, S S; Cadore, E L; Alberton, C L; Silva, E M; Kanitz, A C; Tartaruga, M P; Kruel, L F M

    2011-12-01

    The aim of the study was to compare the cardiorespiratory and neuromuscular responses to water aerobics exercise performed with and without equipment. 15 women performed stationary jogging combined with elbow flexion/extension without equipment, with water-drag forces equipment and with water-floating equipment, at 2 submaximal cadences and at maximal cadence. Heart rate, oxygen uptake and electromyographic signal from biceps brachii, triceps brachii, biceps femoris and rectus femoris were collected during the exercise. The heart rate and oxygen uptake showed significantly higher values during the execution of the water aerobics exercise with either equipment compared to the execution without equipment. In addition, significant difference was found between submaximal cadences. For neuromuscular responses, no significant differences were found between the submaximal cadences for all muscles analyzed; however, significant differences were found between these submaximal cadences and the maximal cadence. Similarly, the results showed no significant differences between the execution of the exercise with or without equipment, except in the muscle activation of triceps brachii and biceps femoris, which was higher when using water-floating and water-drag forces equipment, respectively. In conclusion, the water aerobics exercise presented higher cardiorespiratory responses with equipment and also increased the cadence of execution. Nevertheless, neuromuscular responses were higher only at maximal cadence. PMID:22052026

  18. Genetic Influences on Physiological and Subjective Responses to an Aerobic Exercise Session among Sedentary Adults

    PubMed Central

    Karoly, Hollis C.; Stevens, Courtney J.; Magnan, Renee E.; Harlaar, Nicole; Hutchison, Kent E.; Bryan, Angela D.

    2012-01-01

    Objective. To determine whether genetic variants suggested by the literature to be associated with physiology and fitness phenotypes predicted differential physiological and subjective responses to a bout of aerobic exercise among inactive but otherwise healthy adults. Method. Participants completed a 30-minute submaximal aerobic exercise session. Measures of physiological and subjective responding were taken before, during, and after exercise. 14 single nucleotide polymorphisms (SNPs) that have been previously associated with various exercise phenotypes were tested for associations with physiological and subjective response to exercise phenotypes. Results. We found that two SNPs in the FTO gene (rs8044769 and rs3751812) were related to positive affect change during exercise. Two SNPs in the CREB1 gene (rs2253206 and 2360969) were related to change in temperature during exercise and with maximal oxygen capacity (VO2 max). The SLIT2 SNP rs1379659 and the FAM5C SNP rs1935881 were associated with norepinephrine change during exercise. Finally, the OPRM1 SNP rs1799971 was related to changes in norepinephrine, lactate, and rate of perceived exertion (RPE) during exercise. Conclusion. Genetic factors influence both physiological and subjective responses to exercise. A better understanding of genetic factors underlying physiological and subjective responses to aerobic exercise has implications for development and potential tailoring of exercise interventions. PMID:22899923

  19. Aerobic Fitness and Response Variability in Preadolescent Children Performing a Cognitive Control Task

    PubMed Central

    Wu, Chien-Ting; Pontifex, Matthew B.; Raine, Lauren B.; Chaddock, Laura; Voss, Michelle W.; Kramer, Arthur F.; Hillman, Charles H.

    2010-01-01

    OBJECTIVE To investigate the relationship between aerobic fitness and cognitive variability in preadolescent children. METHOD Forty-eight preadolescent children (25 males, 23 females, mean age = 10.1 years) were grouped into higher- and lower-fit groups according to their performance on a test of aerobic capacity (VO2max). Cognitive function was measured via behavioral responses to a modified flanker task. The distribution in reaction time was calculated within each participant to assess intra-individual variability of performance. Specifically, the standard deviation and coefficient variation of reaction time were used to represent cognitive variability. RESULTS Preadolescent children, regardless of fitness, exhibited longer reaction time, increased response variability, and decreased response accuracy to incongruent compared to congruent trials. Further, higher-fit children were less variable in their response time and more accurate in their responses across conditions of the flanker task, while no group differences were observed for response speed. CONCLUSION These findings suggest that fitness is associated with better cognitive performance during a task that varies cognitive control demands, and extends this area of research to suggest that intra-individual variability may be a useful measure to examine the relationship between fitness and cognition during preadolescence. PMID:21443340

  20. Responses to LBNP in men with varying profiles of strength and aerobic capacity: Implications for flight crews

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Mathes, Karen L.; Lasley, Mary L.; Tomaselli, Clare Marie; Frey, Mary Anne Bassett; Hoffler, G. Wyckliffe

    1993-01-01

    Hemodynamic and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic stress is associated with strength and/or aerobic capacity. Subjects underwent treadmill tests to determine peak oxygen uptake (peak VO2) and isokinetic dynamo meter tests to determine leg strength. Based on predetermined criteria, the subjects were classified into one of four fitness profiles of six subjects each matched for age, height, and weight: (1) low strength/low aerobic fitness; (2) low strength/high aerobic fitness; (3) high strength/low aerobic fitness; and (4) high strength/high aerobic fitness. Following 90 min of 6 degree head-down tilt (HDT), each subject underwent graded LBNP through -50 mmHg or presyncope, with maximal duration 15 min. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences except for catecholamines. Seven subjects, distributed among the four fitness profiles, became presyncopal. Subjects who showed greatest reduction in mean arterial pressure (MAP) during LBNP had greater elevations in vasopressin and lesser increases in heart rate and peripheral resistance. Peak VO2 nor leg strength were correlated with fall in MAP or with syncopal episodes. We conclude that neither aerobic nor strength fitness characteristics are good predictors of responses to LBNP stress.

  1. THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING.

    PubMed

    Zarebska, A; Jastrzebski, Z; Kaczmarczyk, M; Ficek, K; Maciejewska-Karlowska, A; Sawczuk, M; Leońska-Duniec, A; Krol, P; Cieszczyk, P; Zmijewski, P; Eynon, N

    2014-12-01

    The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes' responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices - maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) - before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes. PMID:25435667

  2. THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING

    PubMed Central

    Zarebska, A; Jastrzebski, Z; Kaczmarczyk, M; Ficek, K; Maciejewska-Karlowska, A; Sawczuk, M; Leońska-Duniec, A; Krol, P; Cieszczyk, P; Zmijewski, P

    2014-01-01

    The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes. PMID:25435667

  3. Phosphorylation of the JAK2–STAT5 Pathway in Response to Acute Aerobic Exercise

    PubMed Central

    Consitt, Leslie A.; Wideman, Laurie; Hickey, Matthew S.; Morrison, Ron F.

    2010-01-01

    Growth hormone (GH) is a powerful stimulator of the Janus kinase 2 (JAK2)–signal transducer and activator of transcription 5 (STAT5) pathway. Acute exercise is a known stimulus for GH secretion. Purpose The purpose of this study was to determine the phosphorylation of the JAK2–STAT5 pathway in human skeletal muscle in response to acute aerobic exercise. Methods Eleven young (22.5 ± 0.6, mean ± SE), healthy, aerobically trained males performed 30 min of cycling at 70% V̇O2max. Blood samples were collected at 10- to 15-min intervals and analyzed for human GH, immunofunctional (IF) GH, GH binding protein, and insulin-like growth factor I (IGF-I). Muscle biopsies were taken from the vastus lateralis before exercise, immediately after exercise, as well as, 30 and 60 min postexercise. Muscle samples were analyzed for changes in JAK2 and STAT5 tyrosine phosphorylation, as well as changes in JAK2 and STAT5 protein content. Results Multivariate ANOVA with post hoc comparisons demonstrated that GH and IF GH were significantly elevated immediately after exercise compared with preexercise (P < 0.001). Exercise significantly increased the phosphorylation of JAK2 immediately after exercise (P = 0.004). A trend toward increasing levels of STAT5 phosphorylation was observed immediately after exercise (P = 0.08) and was significantly elevated 30 min after exercise (P = 0.002), compared with preexercise levels. Muscle JAK2 and STAT5 protein content did not change. Conclusion The results demonstrate that the JAK2–STAT5 pathway is activated in response to acute aerobic exercise in human skeletal muscle and suggests that the exercise-induced release of GH may play a role in the activation of this pathway. PMID:18461004

  4. A 4-Week Home-Based Aerobic and Resistance Exercise Program During Radiation Therapy: A Pilot Randomized Clinical Trial

    PubMed Central

    Mustian, Karen M.; Peppone, Luke; Darling, Tom V.; Palesh, Oxana; Heckler, Charles E.; Morrow, Gary R.

    2011-01-01

    During radiation therapy, cancer patients may report cancer-related fatigue (CRF), which impairs aerobic capacity, strength, muscle mass, and, ultimately, quality of life (QOL). The purpose of this pilot clinical trial was to examine the feasibility and initial efficacy of a home-based aerobic and progressive resistance exercise intervention for aerobic capacity, strength, muscle mass, CRF, and QOL. Daily steps walked (DSW), daily minutes of resistance exercise (MRE), and number of resistance exercise days (RED) were assessed to evaluate intervention adherence. Breast and prostate cancer patients (n = 38) beginning radiation therapy were randomized to undergo 4 weeks of exercise or no exercise. Participants in the exercise group demonstrated good adherence to the exercise intervention, with significantly more DSW, MRE, and RED at post intervention and 3 month follow-up than controls. Participants in the exercise intervention exhibited significantly higher QOL and significantly lower CRF post intervention and at 3-month follow-up than controls. Results of this pilot study provide positive preliminary evidence that exercise during radiation may be beneficial for cancer patients. PMID:19831159

  5. Hemodynamic and hormonal responses to lower body negative pressure in men with varying profiles of strength and aerobic power

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Mathes, K. L.; Lasley, M. L.; Tomaselli, C. M.; Frey, M. A.; Hoffler, G. W.

    1993-01-01

    Hemodynamic, cardiac, and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic challenge is associated with interactions between strength and aerobic power. Subjects underwent treadmill tests to determine peak oxygen uptake (VO2max) and isokinetic dynamometer tests to determine knee extensor strength. Based on predetermined criteria, subjects were classified into one of four fitness profiles of six subjects each, matched for age, height, and body mass: (a) low strength/average aerobic fitness, (b) low strength/high aerobic fitness, (c) high strength/average aerobic fitness, and (d) high strength/high aerobic fitness. Following 90 min of 0.11 rad (6 degrees) head-down tilt (HDT), each subject underwent graded LBNP to -6.7 kPa or presyncope, with maximal duration 15 min, while hemodynamic, cardiac, and hormonal responses were measured. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences between high and low strength characteristics. Subjects with high aerobic power exhibited greater (P < 0.05) stroke volume and lower (P < 0.05) heart rate, vascular peripheral resistance, and mean arterial pressure during rest, HDT, and LBNP. Seven subjects, distributed among the four fitness profiles, became presyncopal. These subjects showed greatest reduction in mean arterial pressure during LBNP, had greater elevations in vasopressin, and lesser increases in heart rate and peripheral resistance. Neither VO2max nor leg strength were associated with fall in arterial pressure or with syncopal episodes. We conclude that interactions between aerobic and strength fitness characteristics do not influence responses to LBNP challenge.

  6. The use of ozone, ozone plus UV radiation, and aerobic microorganisms in the purification of some agro-industrial wastewaters.

    PubMed

    Benitez, F Javier; Acero, Juan L; Gonzalez, Teresa; Garcia, Juan

    2002-08-01

    The oxidation of the pollutant organic matter present in wastewaters generated during different stages in the black table-olive industry was investigated by using ozone alone or combined with UV radiation; by using aerobic microorganisms; and finally, by aerobic degradation of the previously ozonated wastewaters. In the ozonation processes, the removal of substrate (COD) and aromatic compounds, the decreases in BOD5 and pH, and the ozone consumed in the reaction were evaluated. A kinetic study was conducted that led to the evaluation of the stoichiometric ratio for the chemical reaction, as well as the rate constants for the substrate reduction and ozone disappearance. In the single aerobic degradation treatment, the evolution of substrate and biomass was monitored during the process, and a kinetic study was performed by applying the Contois model to the experimental data, giving the specific biokinetic constant, the cell yield coefficient, and the rate constant for the microorganism death phase. Finally, a combined process was performed, consisting in the aerobic degradation of pre-ozonated wastewaters, and the effect of such chemical pretreatment on the substrate removal and kinetic parameters of the later biological stage is discussed. PMID:15328694

  7. Dose-Response of Aerobic Exercise on Cognition: A Community-Based, Pilot Randomized Controlled Trial

    PubMed Central

    Morris, Jill K.; Van Sciver, Angela; Greer, Colby S.; Billinger, Sandra A.; Donnelly, Joseph E.; Burns, Jeffrey M.

    2015-01-01

    Epidemiological studies suggest a dose-response relationship exists between physical activity and cognitive outcomes. However, no direct data from randomized trials exists to support these indirect observations. The purpose of this study was to explore the possible relationship of aerobic exercise dose on cognition. Underactive or sedentary participants without cognitive impairment were randomized to one of four groups: no-change control, 75, 150, and 225 minutes per week of moderate-intensity semi-supervised aerobic exercise for 26-weeks in a community setting. Cognitive outcomes were latent residual scores derived from a battery of 16 cognitive tests: Verbal Memory, Visuospatial Processing, Simple Attention, Set Maintenance and Shifting, and Reasoning. Other outcome measures were cardiorespiratory fitness (peak oxygen consumption) and measures of function functional health. In intent-to-treat (ITT) analyses (n = 101), cardiorespiratory fitness increased and perceived disability decreased in a dose-dependent manner across the 4 groups. No other exercise-related effects were observed in ITT analyses. Analyses restricted to individuals who exercised per-protocol (n = 77) demonstrated that Simple Attention improved equivalently across all exercise groups compared to controls and a dose-response relationship was present for Visuospatial Processing. A clear dose-response relationship exists between exercise and cardiorespiratory fitness. Cognitive benefits were apparent at low doses with possible increased benefits in visuospatial function at higher doses but only in those who adhered to the exercise protocol. An individual’s cardiorespiratory fitness response was a better predictor of cognitive gains than exercise dose (i.e., duration) and thus maximizing an individual’s cardiorespiratory fitness may be an important therapeutic target for achieving cognitive benefits. Trial Registration ClinicalTrials.gov NCT01129115 PMID:26158265

  8. DNA injury is acutely enhanced in response to increasing bulks of aerobic physical exercise.

    PubMed

    Lippi, Giuseppe; Buonocore, Ruggero; Tarperi, Cantor; Montagnana, Martina; Festa, Luca; Danese, Elisa; Benati, Marco; Salvagno, Gian Luca; Bonaguri, Chiara; Roggenbuck, Dirk; Schena, Federico

    2016-09-01

    The aim of this study was to evaluate DNA damage in response to increasing bulks of aerobic physical exercise. Fifteen adult and trained athletes performed four sequential trials with increasing running distance (5-, 10-, 21- and 42-km) in different periods of the year. The γ-H2AX foci parameters were analyzed before and 3h after the end of each trial. The values of all γ-H2AX foci parameters were enhanced after the end of each trial, with values gradually increasing from the 5- to the 42-km trial. Interestingly, a minor increase of γ-H2AX foci was still evident after 5- to 10-km running, but a much higher increase occurred when the running distance exceeded 21km. The generation of DNA injury was then magnified by running up to 42-km. The increase of each γ-H2AX foci parameter was then found to be associated with both running distance and average intensity. In multivariate linear regression analysis, the running distance was significantly associated with average intensity and post-run variation in the percentage of cells with γ-H2AX foci. We can hence conclude that aerobic exercise may generate an acute DNA damage in trained athletes, which is highly dependent upon running distance and average intensity. PMID:27374303

  9. PHYSIOLOGICAL RESPONSES AND ENERGETICS OF COMPETITIVE GROUP EXERCISE IN FEMALE AEROBIC GYMNASTS WITH DIFFERENT LEVELs OF PERFORMANCE.

    PubMed

    Aleksandraviciene, Roma; Zaicenkoviene, Kristina; Stasiule, Loreta; Stasiulis, Arvydas

    2015-06-01

    This study investigated the aerobic fitness and physiologic and energetic responses during competitive exercise in aerobic gymnasts. The gymnasts performed a graded treadmill test and competitive group exercises. Energetic response was calculated from oxygen uptake and blood lactate changes. Peak oxygen uptake was similar in International (M = 45.4 ml · kg(-1) · min.(-1), SD = 3.9) and National (M = 44.7 ml · kg(-1) · min.(-1), SD = 3.6) level groups. During their competitive routines, total energy and the fractions of aerobic, anaerobic alactic, and anaerobic lactic energy were 1,847.7 (SD = 293.9) and 1,747.3 (SD = 196.7) J · kg(-1), 53.5% (SD = 3.1) and 60.3% (SD = 6.1), 25.4% (SD = 5.9) and 21.4% (SD = 5.2), and 21.1% (SD = 5.8) and 18.3% (SD = 4.5) in international and national level athletes, respectively (p > .05). The contribution of anaerobic energy was higher in the international level group (p = .03). It is concluded that the aerobic fitness and absolute energetic and physiological responses of athletes during competitive activities were not different between the aerobic gymnasts groups with different levels of performance, but a higher relative contribution of anaerobic energy was observed in the group with a higher performance level. PMID:25938450

  10. Costimulation Endows Immunotherapeutic CD8 T Cells with IL-36 Responsiveness during Aerobic Glycolysis.

    PubMed

    Tsurutani, Naomi; Mittal, Payal; St Rose, Marie-Clare; Ngoi, Soo Mun; Svedova, Julia; Menoret, Antoine; Treadway, Forrest B; Laubenbacher, Reinhard; Suárez-Ramírez, Jenny E; Cauley, Linda S; Adler, Adam J; Vella, Anthony T

    2016-01-01

    CD134- and CD137-primed CD8 T cells mount powerful effector responses upon recall, but even without recall these dual-costimulated T cells respond to signal 3 cytokines such as IL-12. We searched for alternative signal 3 receptor pathways and found the IL-1 family member IL-36R. Although IL-36 alone did not stimulate effector CD8 T cells, in combination with IL-12, or more surprisingly IL-2, it induced striking and rapid TCR-independent IFN-γ synthesis. To understand how signal 3 responses functioned in dual-costimulated T cells we showed that IL-2 induced IL-36R gene expression in a JAK/STAT-dependent manner. These data help delineate a sequential stimulation process where IL-2 conditioning must precede IL-36 for IFN-γ synthesis. Importantly, this responsive state was transient and functioned only in effector T cells capable of aerobic glycolysis. Specifically, as the effector T cells metabolized glucose and consumed O2, they also retained potential to respond through IL-36R. This suggests that T cells use innate receptor pathways such as the IL-36R/axis when programmed for aerobic glycolysis. To explore a function for IL-36R in vivo, we showed that dual costimulation therapy reduced B16 melanoma tumor growth while increasing IL-36R gene expression. In summary, cytokine therapy to eliminate tumors may target effector T cells, even outside of TCR specificity, as long as the effectors are in the correct metabolic state. PMID:26573834

  11. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    PubMed

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-05-01

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically. PMID:24762350

  12. Responses of Trace Elements to Aerobic Maximal Exercise in Elite Sportsmen

    PubMed Central

    OTAĞ, Aynur; HAZAR, Muhsin; OTAĞ, İlhan; Gürkan, Alper Cenk; Okan, İlyas

    2014-01-01

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P<0.05 and P<0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically. PMID:24762350

  13. Effect of a 12-week aerobic training program on perceptual and affective responses in obese women

    PubMed Central

    Freitas, Luís Alberto Garcia; Ferreira, Sandro dos Santos; Freitas, Rosemari Queiroz; Henrique de Souza, Carlos; Garcia, Erick Doner Santos de Abreu; Gregorio da Silva, Sergio

    2015-01-01

    [Purpose] The aim of this study was to observe the effect of self-selected intensity or imposed intensity during aerobic training on perceptual and affective responses in obese women. [Subjects] The study included 26 obese women aged 30–60 years. [Methods] The subjects were randomly divided into two groups, with 13 subjects in each group: self-selected intensity and imposed intensity (10% above ventilatory threshold) groups. All subjects completed an intervention program that lasted 12 weeks, with three exercise sessions a week. The rating of perceived exertion and affective responses (Feeling Scale and Felt Arousal Scale) were monitored in the first, sixth, and twelfth weeks. [Results] Significant differences were observed between groups in heart rate and rating of perceived exertion. The affective responses during exercise were more negative in the imposed intensity group. [Conclusion] Use of a self-selected exercise intensity can promote smaller negative affective responses during exercise and provide a sufficient stimulus for improvement in cardiorespiratory fitness. PMID:26311958

  14. Menstrual cycle phase effects free testosterone responses to prolonged aerobic exercise.

    PubMed

    Lane, A R; O'Leary, C B; Hackney, A C

    2015-09-01

    Research has shown that total testosterone (tT) levels in women increase acutely during a prolonged bout of aerobic exercise. Few studies, however, have considered the impact of the menstrual cycle phase on this response or have looked at the biologically active free testosterone (fT) form responses. Therefore, this study examined the fT concentration response independently and as a percentage (fT%) of tT to prolonged aerobic exercise during phases of the menstrual cycle with low estrogen-progesterone (L-EP; i.e., follicular phase) and high estrogen-progesterone (H-EP; i.e., luteal phase). Ten healthy, recreationally trained, eumennorrheic women (X ± SD: age = 20 ± 2 y, mass = 58.7 ± 8.3 kg, body fat = 22.3 ± 4.9 %, VO(2max) = 50.7 ± 9.0 ml/kg/min) participated in a laboratory based study and completed a 60-minute treadmill run during the L-EP and H-EP menstrual phases at ~70% of VO(2max). Blood was drawn prior to (PRE), immediately after (POST) and following 30 minutes of recovery (30POST) with each 60-minute run. During H-EP, there was a significant increase in fT concentrations from PRE to POST (p < 0.01) while in L-EP fT levels were unchanged; which resulted in fT being significantly higher at H-EP POST versus L-EP POST (p < 0.03). Area-under-the-curve (AUC) responses were calculated, for fT the total AUC was greater in H-EP than L-EP (p < 0.04). There was no significant interaction of fT% between phases and exercise sampling time. There was, however, a main effect for exercise where fT% POST was a greater proportion of tT than at PRE (p < 0.01). In summary, hormonal changes associated with the menstrual cycle impact fT response to a prolonged aerobic exercise bout; specifically, there being higher levels under H-EP conditions. This suggests more biologically active T is available during exercise in this phase. This response may be a function of the higher core temperatures found with H-EP causing greater sex hormone binding protein release of T, or could

  15. Physiological Responses of General vs. Specific Aerobic Endurance Exercises in Soccer

    PubMed Central

    Zouhal, Hassane; LeMoal, Emmeran; Wong, Del P.; BenOunis, Omar; Castagna, Carlo; Duluc, Corentin; Owen, Adam L.; Drust, Barry

    2013-01-01

    Purpose The study aimed to compare the physiological and perceptual responses of two high intensity intermittent aerobic exercises (HIIE), i.e. the 15s/15s exercise and an exercise on the Hoff track (HTE). Methods In this within-subject repeated measures study, seven high-level soccer players (Age: 24.1± 4.5yr; Height: 175± 0.04cm; Body mass: 67.9± 9.0kg;% Body fat: 14.2± 2.4%) performed the two exercises with same total duration (25 minutes) in a randomized order: 1) a 15s/15s protocol at 120% of maximal aerobic speed (MAS), and 2) HTE. Heart rate (HR) and oxygen uptake (VO2) were measured continuously throughout both exercises. The rating of perceived exertion (RPE) was measured 15 min after the end of each exercise. Blood lactate concentration ([La]) was measured at rest before each exercise, between and at the end of each set. Results The mean VO2 during HTE was significantly higher than 15s/15s exercise (39.3±2.3 vs. 36.8±1.9 mL/min/kg, P<0.05. The total O2 consumed was significantly higher (P<0.05) during HTE (66.8±7.6 L) than during the 15s/15s (62.3±8.6 L). Blood lactate [La] after the first set of HTE was significantly higher than the 15s/15s (12.5±2.0 vs. 10.6±2.0 mmol/L, P<0.05). However, RPE provided by players suggested that the 15s/15s was more intense than the HTE (13±1.8 vs. 11.7±1.4, P<0.05). Conclusion Our results demonstrate that VO2 and [La] were higher during HTE than during the 15s/15s when matched with duration. However, HTE was perceived less intense than 15s/15s. Thus, the use of HTE appears as an effective alternative for fitness coaches to develop aerobic endurance in soccer players. PMID:24427481

  16. Method of enhancing radiation response of radiation detection materials

    DOEpatents

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  17. Differentiated ratings of perceived exertion and physiological responses during aerobic dance steps by impact/type of arm movement.

    PubMed

    Schaeffer-Gerschutz, S A; Darby, L A; Browder, K D

    2000-04-01

    Overall ratings of perceived exertion, i.e., undifferentiated RPE, are often used as indicators of exercise intensity during walking, jogging, and cycling; however, conflicting results concerning RPE during aerobic dance exercise have been reported, and the use of differentiated RPE, i.e., local RPE and central RPE, has not been investigated. The purposes of this study were to assess local, central, and over-all RPE, and physiological responses [heart rate (HR); % HRmax; absolute and relative VO2;% VO2 max, ventilation (VE), ventilatory equivalent (VE.VO2(-1); and oxygen pulse] during aerobic dance exercise varied by Arm Movement (Static Arm vs Dynamic Arm) and Impact (High vs Low). Trained women (N = 25; max VO2 = 50.4 +/- 7.5 ml.kg-1.min.-1) completed four aerobic dance steps. No RPE were significantly correlated with heart rate or VO2; however, for all steps all RPE were significantly (r = .40-.62) correlated with VE.VO2(-1) or VE. No interactions were present for RPE or physiological variables, and main effects were noted for Impact and Arm Movement. All RPE were greater for High Impact and for Static Arm Movement. Because VE and VE.VO2(-1) were correlated with Overall RPE for all steps, this may suggest that participants "attended to" perceived changes in respiratory phenomena during aerobic dance exercise. It appears that during combined arm-and-leg aerobic dance exercise the use of Overall RPE is sufficient to assess perceptual sensations associated with the intensity of the exercise. Changes in Overall RPE were proportionate to objective measures of exercise intensity, i.e., HR and VO2; however, it is recommended that both HR and Overall RPE be used to assess fully a participant's objective and subjective responses during aerobic dance exercise. PMID:10833740

  18. Radiation Response of Rhombohedral Oxides

    SciTech Connect

    Devanathan, R.; Weber, W.J.; Mitchell, J.N.; Sickafus, K.E.; Nastasi, M.

    1997-12-31

    The radiation response of three rhombohedral oxides, namely, sapphire ({alpha}-Al{sub 2}O{sub 3}), ilmenite (FeTiO{sub 3}), and geikielite (MgTiO{sub 3}), has been examined by irradiating electron transparent samples with 1 MeV Kr(+) and 1.5 MeV Xe(+)ions. The microstructural changes during irradiation were observed in situ in a high-voltage electron microscope using electron diffraction and microscopy. The irradiation conditions were designed to minimize beam heating and chemical effects due to the implanted ion. Of the three oxides studied, ilmenite is the most susceptible to radiation-induced amorphization while sapphire is the least susceptible. In all three materials, the critical temperature for amorphization was below 300 K indicating good room temperature resistance to amorphization by energetic beams.

  19. Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response

    PubMed Central

    Lall, R; Ganapathy, S; Yang, M; Xiao, S; Xu, T; Su, H; Shadfan, M; Asara, J M; Ha, C S; Ben-Sahra, I; Manning, B D; Little, J B; Yuan, Z-M

    2014-01-01

    Because of insufficient understanding of the molecular effects of low levels of radiation exposure, there is a great uncertainty regarding its health risks. We report here that treatment of normal human cells with low-dose radiation induces a metabolic shift from oxidative phosphorylation to aerobic glycolysis resulting in increased radiation resistance. This metabolic change is highlighted by upregulation of genes encoding glucose transporters and enzymes of glycolysis and the oxidative pentose phosphate pathway, concomitant with downregulation of mitochondrial genes, with corresponding changes in metabolic flux through these pathways. Mechanistically, the metabolic reprogramming depends on HIF1α, which is induced specifically by low-dose irradiation linking the metabolic pathway with cellular radiation dose response. Increased glucose flux and radiation resistance from low-dose irradiation are also observed systemically in mice. This highly sensitive metabolic response to low-dose radiation has important implications in understanding and assessing the health risks of radiation exposure. PMID:24583639

  20. Responses of hematological parameters and aerobic performance of elite men and women swimmers during a 14-week training program.

    PubMed

    Santhiago, Vanessa; da Silva, Adelino S R; Papoti, Marcelo; Gobatto, Claudio A

    2009-07-01

    The main purpose of the present investigation was to verify the responses of hematological parameters in men and women competitive swimmers during a 14-week training program. Twenty-three Olympic and international athletes were evaluated 4 times during the experiment: at the beginning of the endurance training phase (T1), at the end of the endurance training phase (T2), at the end of the quality phases (T3), and at the end of the taper period (T4). On the first day at 8:00 AM, each swimmer had a blood sample taken for the determination of hematological parameters. At 3:00 PM, the athletes had their aerobic performance measured by anaerobic threshold. On the second day at 8:00 AM, the swimmers had their aerobic performance measured by critical velocity. Hematocrit and mean corpuscular volume diminished (p < or = 0.05) from T1 to T2 (men: 5.8 and 7.2%; women: 11.6 and 6.8%), and increased (p < or = 0.05) from T2 to T3 (men: 7.2 and 6.0%; women: 7.4 and 5.2%). These results were related to the plasma volume changes of the athletes. However, these alterations do not seem to affect the swimmers' aerobic performance. For practical applications, time-trial performance is better than aerobic performance (i.e., anaerobic threshold and critical velocity) for monitoring training adaptations. PMID:19528852

  1. Adverse cardiometabolic response to aerobic exercise training: Should this be a concern?

    PubMed Central

    Leifer, Eric S.; Church, Timothy S.; Earnest, Conrad P.; Fleg, Jerome L.; Hakkinen, Keijo; Karavirta, Laura; Kraus, William E.; Mikus, Catherine; Resnick, Benjamin

    2016-01-01

    .36) for SBP. Conclusion Compared to control subjects, exercise subjects were not at an increased risk for meeting the AC thresholds for SBP, FI, TG, or HDL-C and significantly fewer exercise subjects met AC thresholds for FI, and HDL. Exercise subjects also had significantly more favorable mean changes in FI, TG, and HDL-C than control subjects. These findings do not support the concept that aerobic exercise training increases the risk of adverse changes in CV risk factors. and that, with respect to group responses PMID:26258860

  2. Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.

    PubMed

    Shockett, Penny E; Khanal, Januka; Sitaula, Alina; Oglesby, Christopher; Meachum, William A; Castracane, V Daniel; Kraemer, Robert R

    2016-01-01

    Increased plasma cell-free mitochondrial DNA (cf-mDNA), a damage-associated molecular pattern (DAMP) produced by cellular injury, contributes to neutrophil activation/inflammation in trauma patients and arises in cancer and autoimmunity. To further understand relationships between cf-mDNA released by tissue injury, inflammation, and health benefits of exercise, we examined cf-mDNA response to prolonged moderate aerobic exercise. Seven healthy moderately trained young men (age = 22.4 ± 1.2) completed a treadmill exercise trial for 90 min at 60% VO2 max and a resting control trial. Blood was sampled immediately prior to exercise (0 min = baseline), during (+18, +54 min), immediately after (+90 min), and after recovery (R40). Plasma was analyzed for cf-mDNA, IL-6, and lactate. A significant difference in cf-mDNA response was observed between exercise and control trials, with cf-mDNA levels reduced during exercise at +54 and +90 (with or without plasma volume shift correction). Declines in cf-mDNA were accompanied by increased lactate and followed by an increase in IL-6, suggesting a temporal association with muscle stress and inflammatory processes. Our novel finding of cf-mDNA decline with prolonged moderate treadmill exercise provides evidence for increased clearance from or reduced release of cf-mDNA into the blood with prolonged exercise. These studies contrast with previous investigations involving exhaustive short-term treadmill exercise, in which no change in cf-mDNA levels were reported, and contribute to our understanding of differences between exercise- and trauma-induced inflammation. We propose that transient declines in cf-mDNA may induce health benefits, by reducing systemic inflammation. PMID:26755735

  3. Predictors of fat mass changes in response to aerobic exercise training in women.

    PubMed

    Sawyer, Brandon J; Bhammar, Dharini M; Angadi, Siddhartha S; Ryan, Dana M; Ryder, Justin R; Sussman, Elizabeth J; Bertmann, Farryl M W; Gaesser, Glenn A

    2015-02-01

    Aerobic exercise training in women typically results in minimal fat loss, with considerable individual variability. We hypothesized that women with higher baseline body fat would lose more body fat in response to exercise training and that early fat loss would predict final fat loss. Eighty-one sedentary premenopausal women (age: 30.7 ± 7.8 years; height: 164.5 ± 7.4 cm; weight: 68.2 ± 16.4 kg; fat percent: 38.1 ± 8.8) underwent dual-energy x-ray absorptiometry before and after 12 weeks of supervised treadmill walking 3 days per week for 30 minutes at 70% of (Equation is included in full-text article.). Overall, women did not lose body weight or fat mass. However, considerable individual variability was observed for changes in body weight (-11.7 to +4.8 kg) and fat mass (-11.8 to +3.7 kg). Fifty-five women were classified as compensators and, as a group, gained fat mass (25.6 ± 11.1 kg to 26.1 ± 11.3 kg; p < 0.001). The strongest correlates of change in body fat at 12 weeks were change in body weight (r = 0.52) and fat mass (r = 0.48) at 4 weeks. Stepwise regression analysis that included change in body weight and body fat at 4 weeks and submaximal exercise energy expenditure yielded a prediction model that explained 37% of the variance in fat mass change (R = 0.37, p < 0.001). Change in body weight and fat mass at 4 weeks were moderate predictors of fat loss and may potentially be useful for identification of individuals who achieve less than expected weight loss or experience unintended fat gain in response to exercise training. PMID:25353081

  4. Response of the jejunal mucosa of dogs with aerobic and anaerobic bacterial overgrowth to antibiotic therapy.

    PubMed Central

    Batt, R M; McLean, L; Riley, J E

    1988-01-01

    Dogs with naturally occurring aerobic or anaerobic bacterial overgrowth have been examined before and after antibiotic therapy in order to assess reversibility of damage to the jejunal mucosa. Histological changes in peroral jejunal biopsies were relatively minor before and after treatment, but sucrose density gradient centrifugation revealed specific biochemical abnormalities that responded to antibiotic therapy. Aerobic overgrowth was initially associated with a marked loss of the main brush border component of alkaline phosphatase activity; this recovered following treatment, suggesting that aerobic bacteria may cause reversible damage to the hydrophobic region of the brush border membrane. In contrast, anaerobic overgrowth was initially associated with a marked reduction in brush border density, indicative of a considerable fall in the glycoprotein-to-lipid ratio of the membrane. Density increased from 1.17 to 1.21 g/ml after antibiotic therapy, consistent with recovery from this relatively severe damage to the brush border caused by anaerobic bacteria. Reductions in soluble and peroxisomal catalase activities which could compromise mucosal protection against free radicals in dogs with aerobic overgrowth, and a loss of particulate malate dehydrogenase activity indicative of mitochondrial disruption in dogs with anaerobic overgrowth, were also reversed after treatment. These findings indicate that aerobic and anaerobic bacterial overgrowth can result in contrasting but potentially reversible damage to the jejunal mucosa which would not be detected by conventional investigative procedures. PMID:3371716

  5. Diminished forearm vasomotor response to central hypervolemic loading in aerobically fit individuals

    NASA Technical Reports Server (NTRS)

    Shi, X.; Gallagher, K. M.; SMith, S. A.; Bryant, K. H.; Raven, P. B.; Blomqvist, C. G. (Principal Investigator)

    1996-01-01

    The aim of this study was to test the hypothesis that cardiopulmonary baroreflex control of forearm vascular resistance (FVR) during central hypervolemic loading was less sensitive in exercise trained high fit individuals (HF) compared to untrained average fit individuals (AF). Eight AF (age: 24 +/- 1 yr and weight: 78.9 +/- 1.7 kg) and eight HF (22 +/- 1 yr 79.5 +/- 2.4 kg) voluntarily participated in the investigation. Maximal aerobic power (determined on a treadmill), plasma volume and blood volume (Evans blue dilution method) were significantly greater in the HF than AF (60.8 +/- 0.7 vs. 41.2 +/- 1.9 ml.kg-1.min-1, 3.96 +/- 0.17 vs 3.36 +/- 0.08 1, and 6.33 +/- 0.23 vs 5.28 +/- 0.13 1). Baseline heart rate (HR), central venous pressure (CVP), mean arterial pressure (MAP, measured by an intraradial catheter or a Finapres finger cuff), forearm blood flow (FBF, plethysmography), and FVR, calculated from the ratio (MAP-CVP)/FBF, were not different between the HF and the AF. Lower body negative pressure (LBNP, -5, -10, -15, and -20 torr) and passive leg elevation (LE, 50 cm) combined with lower body positive pressure (LBPP, +5, +10, and +20 torr) were utilized to elicit central hypovolemia and hypervolemia, respectively. Range of CVP (from LBNP to LE+LBPP) was similar in the AF (from -3.9 to +1.9 mm Hg) and HF (from -4.0 to +2.2 mm Hg). However, FVR/CVP was significantly less in the HF (-1.8 +/- 0.1 unit.mm Hg-1) than AF (-34 +/- 0.1 unit.mm Hg-1). The FVR decrease in response to increase in CVP was significantly diminished in the HF (-1.46 +/- 0.45 unit.mm Hg-1) compared to the AF (-4.40 +/- 0.97 unit.mm Hg-1), and during LBNP induced unloading the FVR/CVP of the HF (-2.01 +/- 0.49 unit.mm Hg-1) was less (P < 0.08) than the AF (-3.28 +/- 0.69 unit.mm Hg-1). We concluded that the cardiopulmonary baroreceptor mediated FVR reflex response was significantly less sensitive to changes in CVP in individuals who practice exercise training.

  6. A Model of the Cardiorespiratory Response to Aerobic Exercise in Healthy and Heart Failure Conditions.

    PubMed

    Fresiello, Libera; Meyns, Bart; Di Molfetta, Arianna; Ferrari, Gianfranco

    2016-01-01

    The physiological response to physical exercise is now recognized as an important tool which can aid the diagnosis and treatment of cardiovascular diseases. This is due to the fact that several mechanisms are needed to accommodate a higher cardiac output and a higher oxygen delivery to tissues. The aim of the present work is to provide a fully closed loop cardiorespiratory simulator reproducing the main physiological mechanisms which arise during aerobic exercise. The simulator also provides a representation of the impairments of these mechanisms in heart failure condition and their effect on limiting exercise capacity. The simulator consists of a cardiovascular model including the left and right heart, pulmonary and systemic circulations. This latter is split into exercising and non-exercising regions and is controlled by the baroreflex and metabolic mechanisms. In addition, the simulator includes a respiratory model reproducing the gas exchange in lungs and tissues, the ventilation control and the effects of its mechanics on the cardiovascular system. The simulator was tested and compared to the data in the literature at three different workloads whilst cycling (25, 49 and 73 watts). The results show that the simulator is able to reproduce the response to exercise in terms of: heart rate (from 67 to 134 bpm), cardiac output (from 5.3 to 10.2 l/min), leg blood flow (from 0.7 to 3.0 l/min), peripheral resistance (from 0.9 to 0.5 mmHg/(cm(3)/s)), central arteriovenous oxygen difference (from 4.5 to 10.8 ml/dl) and ventilation (6.1-25.5 l/min). The simulator was further adapted to reproduce the main impairments observed in heart failure condition, such as reduced sensitivity of baroreflex and metabolic controls, lower perfusion to the exercising regions (from 0.6 to 1.4 l/min) and hyperventilation (from 9.2 to 40.2 l/min). The simulator we developed is a useful tool for the description of the basic physiological mechanisms operating during exercise. It can reproduce

  7. A Model of the Cardiorespiratory Response to Aerobic Exercise in Healthy and Heart Failure Conditions

    PubMed Central

    Fresiello, Libera; Meyns, Bart; Di Molfetta, Arianna; Ferrari, Gianfranco

    2016-01-01

    The physiological response to physical exercise is now recognized as an important tool which can aid the diagnosis and treatment of cardiovascular diseases. This is due to the fact that several mechanisms are needed to accommodate a higher cardiac output and a higher oxygen delivery to tissues. The aim of the present work is to provide a fully closed loop cardiorespiratory simulator reproducing the main physiological mechanisms which arise during aerobic exercise. The simulator also provides a representation of the impairments of these mechanisms in heart failure condition and their effect on limiting exercise capacity. The simulator consists of a cardiovascular model including the left and right heart, pulmonary and systemic circulations. This latter is split into exercising and non-exercising regions and is controlled by the baroreflex and metabolic mechanisms. In addition, the simulator includes a respiratory model reproducing the gas exchange in lungs and tissues, the ventilation control and the effects of its mechanics on the cardiovascular system. The simulator was tested and compared to the data in the literature at three different workloads whilst cycling (25, 49 and 73 watts). The results show that the simulator is able to reproduce the response to exercise in terms of: heart rate (from 67 to 134 bpm), cardiac output (from 5.3 to 10.2 l/min), leg blood flow (from 0.7 to 3.0 l/min), peripheral resistance (from 0.9 to 0.5 mmHg/(cm3/s)), central arteriovenous oxygen difference (from 4.5 to 10.8 ml/dl) and ventilation (6.1–25.5 l/min). The simulator was further adapted to reproduce the main impairments observed in heart failure condition, such as reduced sensitivity of baroreflex and metabolic controls, lower perfusion to the exercising regions (from 0.6 to 1.4 l/min) and hyperventilation (from 9.2 to 40.2 l/min). The simulator we developed is a useful tool for the description of the basic physiological mechanisms operating during exercise. It can reproduce

  8. Affective Responses to an Aerobic Dance Class: The Impact of Perceived Performance.

    ERIC Educational Resources Information Center

    Bartholomew, John B.; Miller, Bridget M.

    2002-01-01

    Tested the mastery hypothesis as an explanation for the affective benefits of acute exercise. Undergraduate women from a self-selected aerobic dance class rated their exercise performance following class. Affect questionnaires were completed before and at 5 and 20 minutes after the class. Results showed an overall improvement in affect following…

  9. Aerobic fitness does not modulate protein metabolism in response to increased exercise: a controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: This study examined how a sudden increase in exercise energy expenditure affected whole body protein turnover and nitrogen balance in people of differing aerobic fitness. We hypothesized that whole-body protein turnover would be attenuated, and nitrogen balance would be preserved, in aerobi...

  10. Cellular fibronectin response to supervised moderate aerobic training in patients with type 2 diabetes

    PubMed Central

    Alghadir, Ahmad H.; Gabr, Sami A.; Al-Eisa, Einas

    2016-01-01

    [Purpose] Physical activity is one of the most pivotal targets for the prevention and management of vascular complications, especially endothelial dysfunctions. Cellular fibronectin is an endothelium-derived protein involved in subendothelial matrix assembly. Its plasma levels reflect matrix alterations and vessel wall destruction in patients with type II diabetes. This study investigated the influence of 12 weeks of supervised aerobic training on cellular fibronectin and its relationship with insulin resistance and body weight in type II diabetic subjects. [Subjects and Methods] This study included 50 men with type II diabetes who had a mean age of 48.8 ± 14.6 years and were randomly divided into two groups: an aerobic exercise group (12 weeks, three 50 minutes sessions per week) and control group. To examine changes in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting insulin, fasting blood sugar, and lipid profile, 5 ml of blood was taken from the brachial vein of patients before and 48 hours after completion of the exercise period and after 12 hours of fasting at rest. Data analysis was performed using the SPSS-16 software with the independent and paired t-tests. [Results] A significant decrease was observed in body mass index and body fat percentage in the experimental group. Compared with the control group, the aerobic exercise group showed a significant decrease in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting insulin, fasting blood sugar, and lipid profile after 12 weeks of aerobic exercise. The change in cellular fibronectin showed positive significant correlation with body mass index, diabetic biomarkers, and physical activity level. [Conclusion] The results showed that supervised aerobic exercise as a stimulus can change the levels of cellular fibronectin as matrix metalloproteinase protein a long with improvement of insulin sensitivity and glycosylated hemoglobin in order to prevent

  11. Cellular fibronectin response to supervised moderate aerobic training in patients with type 2 diabetes.

    PubMed

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas

    2016-04-01

    [Purpose] Physical activity is one of the most pivotal targets for the prevention and management of vascular complications, especially endothelial dysfunctions. Cellular fibronectin is an endothelium-derived protein involved in subendothelial matrix assembly. Its plasma levels reflect matrix alterations and vessel wall destruction in patients with type II diabetes. This study investigated the influence of 12 weeks of supervised aerobic training on cellular fibronectin and its relationship with insulin resistance and body weight in type II diabetic subjects. [Subjects and Methods] This study included 50 men with type II diabetes who had a mean age of 48.8 ± 14.6 years and were randomly divided into two groups: an aerobic exercise group (12 weeks, three 50 minutes sessions per week) and control group. To examine changes in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting insulin, fasting blood sugar, and lipid profile, 5 ml of blood was taken from the brachial vein of patients before and 48 hours after completion of the exercise period and after 12 hours of fasting at rest. Data analysis was performed using the SPSS-16 software with the independent and paired t-tests. [Results] A significant decrease was observed in body mass index and body fat percentage in the experimental group. Compared with the control group, the aerobic exercise group showed a significant decrease in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting insulin, fasting blood sugar, and lipid profile after 12 weeks of aerobic exercise. The change in cellular fibronectin showed positive significant correlation with body mass index, diabetic biomarkers, and physical activity level. [Conclusion] The results showed that supervised aerobic exercise as a stimulus can change the levels of cellular fibronectin as matrix metalloproteinase protein a long with improvement of insulin sensitivity and glycosylated hemoglobin in order to prevent

  12. A Pilot Study of Women’s Affective Responses to Common and Uncommon Forms of Aerobic Exercise

    PubMed Central

    Stevens, Courtney J.; Smith, Jane Ellen; Bryan, Angela D.

    2015-01-01

    Objective To test the extent to which participants exposed to an uncommon versus common exercise stimulus would result in more favourable affect at post task. Design Experimental design. Participants, (N = 120) American women aged 18–45 years, were randomly assigned to complete 30-minutes of either the uncommon (HOOP; n = 58) or common (WALK; n = 62) exercise stimulus. Main Outcome Measures Self-reported affect and intentions for future exercise were measured before and after the 30-minute exercise bout. Results Analyses of covariance (ANCOVA) were run to compare post-task affect across the HOOP and WALK conditions. At post-task, participants assigned to HOOP reported more positively valenced affect, higher ratings of positive activated affect, lower ratings of negative deactivated affect, and stronger intentions for future aerobic exercise compared to participants assigned to WALK. Conclusions Participants who completed an uncommon bout of aerobic exercise (HOOP) reported more favourable affect post-exercise, as well as stronger intentions for future exercise, compared to participants who completed a common bout of aerobic exercise (WALK). Future work using a longitudinal design is needed to understand the relationships between familiarity with an exercise stimulus, affective responses to exercise, motivation for future exercise behaviour, and exercise maintenance over time. PMID:26394246

  13. Changes in selected cardiorespiratory responses to exercise and in body composition following a 12-week aerobic dance programme.

    PubMed

    Williams, L D; Morton, A R

    1986-01-01

    Cardiorespiratory and body composition changes were evaluated in 25 sedentary females, aged 18 to 30 years, following 12 weeks of aerobic dance training (3 days a week, 45 min a session). Fifteen subjects, from the same population, comprised a control group: they maintained their normal activity and dietary habits over the course of the study. Analysis of variance of the values for selected cardiorespiratory responses revealed that the aerobic dance programme produced training effects in the experimental group. These training effects were indicated by significant improvements in O2 pulse, VE, heart rate and perceived exertion during submaximal exercise. Significant improvements were also noted in VO2 max, maximal O2 pulse, VE max, maximal heart rate and maximal running time on the treadmill. Additionally, increases in lean body mass and body density, together with decreases in percentage body fat and the sum of four skinfold thicknesses were found to be significant for the experimental group. No significant improvements in any of these variables were found for the control group. It was concluded that this 12-week aerobic dance programme was successful in promoting beneficial changes in cardiorespiratory fitness and body composition. PMID:3586112

  14. Genomic Response to Selection for Predatory Behavior in a Mammalian Model of Adaptive Radiation.

    PubMed

    Konczal, Mateusz; Koteja, Paweł; Orlowska-Feuer, Patrycja; Radwan, Jacek; Sadowska, Edyta T; Babik, Wiesław

    2016-09-01

    If genetic architectures of various quantitative traits are similar, as studies on model organisms suggest, comparable selection pressures should produce similar molecular patterns for various traits. To test this prediction, we used a laboratory model of vertebrate adaptive radiation to investigate the genetic basis of the response to selection for predatory behavior and compare it with evolution of aerobic capacity reported in an earlier work. After 13 generations of selection, the proportion of bank voles (Myodes [=Clethrionomys] glareolus) showing predatory behavior was five times higher in selected lines than in controls. We analyzed the hippocampus and liver transcriptomes and found repeatable changes in allele frequencies and gene expression. Genes with the largest differences between predatory and control lines are associated with hunger, aggression, biological rhythms, and functioning of the nervous system. Evolution of predatory behavior could be meaningfully compared with evolution of high aerobic capacity, because the experiments and analyses were performed in the same methodological framework. The number of genes that changed expression was much smaller in predatory lines, and allele frequencies changed repeatably in predatory but not in aerobic lines. This suggests that more variants of smaller effects underlie variation in aerobic performance, whereas fewer variants of larger effects underlie variation in predatory behavior. Our results thus contradict the view that comparable selection pressures for different quantitative traits produce similar molecular patterns. Therefore, to gain knowledge about molecular-level response to selection for complex traits, we need to investigate not only multiple replicate populations but also multiple quantitative traits. PMID:27401229

  15. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    PubMed

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  16. Anaerobic and aerobic responses of males and females to rope skipping.

    PubMed

    Quirk, J E; Sinning, W E

    1982-01-01

    Six male and six female subjects performed maximal bicycle ergometer work and skipped rope at selected rates. Measures included oxygen uptake (VO2), oxygen debt (VO2 debt), blood lactate, and heart rate (HR). Mean values for males for the maximum test and while skipping at 120, 140, and 160 turns . min-1 were, respectively: VO2-50.2, 38.3, 39.7, and 44.3 ml . kg-1 . min-1; HR-185, 166, 168, and 178 beats . min-1; VO2 debt--5.70, 3.65, 3.50, and 4.04 liter; and lactate--12.7, 7.4, 7.6, and 9.2 mM . 1(-1). For females: VO2--42.8, 39.8, 39.4, and 39.4 ml . kg-1 . min-1; HR--185, 181, 181, and 181 beats . min-1; VO2 debt--4.71, 4.27, 4.22, and 4.15 liter; and lactate--11.5, 11.5, 12.2, and 11.9 mM . l-1. No significant differences were found between treatments for females for any measure. Rope skipping placed high demands on both aerobic (females, 92% VO2max, males, 76-88%) and anaerobic capacities (females, 100-106% lactate values after maximum bicycle exercise; males, 58-72%). In males, who did not reach VO2max during rope skipping, it was verified that the VO2 requirement does not increase with skipping rate over a relatively wide range, but that extremely high rates do require more energy from both aerobic and anaerobic sources. Differences in tolerance of males and females to rope skipping were attributed to the lower aerobic power and higher body fat of females. PMID:7070253

  17. Effects of Ramadan Fasting on Body Composition, Aerobic Performance and Lactate, Heart Rate and Perceptual Responses in Young Soccer Players

    PubMed Central

    Güvenç, Alpay

    2011-01-01

    The purpose of this study was to examine the effects of Ramadan fasting on body composition, aerobic exercise performance and blood lactate, heart rate and perceived exertion in regularly trained young soccer players. Sixteen male soccer players participated in this study. Mean age, stature, body mass and training age of the players were 17.4±1.2 years, 175.4±3.6 cm, 69.6±4.3 kg and 5.1±1.3 years, respectively. During the Ramadan period, all subjects voluntarily chose to follow the fasting guidelines and abstained from eating and drinking from sunrise to sunset. Body composition, hydration status, dietary intake and sleep duration were assessed on four occasions: before Ramadan, at the beginning of Ramadan, at the end of Ramadan and 2 weeks after the end of Ramadan. On each occasion, aerobic exercise performance and blood lactate, heart rate and rating of perceived exertion responses of players were also determined during an incremental running test. Repeated measures of ANOVA revealed that body mass, percentage of body fat, fat-free mass, hydration status, daily sleeping time and daily energy and macronutrient intake of players did not vary significantly throughout the study period (p>0.05). However, players experienced a small but significant decrease in skinfold thicknesses over the course of the study (p<0.05). Although ratings of perceived exertion at submaximal workloads increased during Ramadan (p<0.05), blood lactate and heart rate responses had decreased by the end of Ramadan (p<0.05). In line with these changes, peak running performance and running velocity at anaerobic threshold also improved by the end of Ramadan (p<0.05). Improvements in aerobic exercise performance with time were probably due to the effects of pre-season training program that was performed after the break of the fast (Iftar) during the month of Ramadan. The results of the present study suggest that if regular training regimen, body fluid balance, daily energy intake and sleep

  18. Aerobic Exercise Attenuates an Exaggerated Exercise Blood Pressure Response in Normotensive Young Adult African-American Men

    PubMed Central

    BOND, VERNON; STEPHENS, QUIONA; ADAMS, RICHARD G.; VACCARO, PAUL; DEMEERSMAN, RONALD; WILLIAMS, DEBORAH; OBISESAN, THOMAS O.; FRANKS, B. DON; OKE, LUE M.; COLEMAN, BERNELL; BLAKELY, RAYMOND; MILLIS, RICHARD M.

    2011-01-01

    An exaggerated exercise blood pressure response (EEBPR) may be associated with an increased risk of hypertension. We hypothesized that aerobic exercise training can decrease EEBPR and the risk for hypertension by decreasing arterial resistance. We studied the effects of aerobic training on the submaximal exercise blood pressure (BP) of eight normotensive young adult African-American men with an EEBPR. Subjects were trained on a stationary bicycle at an intensity of 70% peak oxygen uptake (VO2peak) for 30 min, three times per week, for 8 weeks. BP, heart rate, cardiac output (CO), stroke volume (SV) and total peripheral vascular resistance (TPR) were measured at rest and during submaximal exercise at a work intensity of 50% VO2peak. Significance of the training effects were evaluated by comparing the pre- and post-training measures (t-test, p < 0.05). A 15% post-training increase in VO2peak (34.6 ± 1.4 to 40 ± 1.4 ml/kg/min) and a 9.5 ml post-training increase in mean resting stroke volume were found. A 16.2 mmHg decrement in mean systolic BP, an 11.5 mmHg decrement in mean diastolic BP, a 120 dyne/s/cm5 decrement in TPR and a 1.2 l/min increase in CO were detected during the post-training submaximal exercise tests. These results suggest that reductions in TPR may attenuate the EEBPR of normotensive African-American males following an 8-week training regimen of stationary bicycling at 70% VO2peak. Aerobic exercise training may, therefore, reduce the risk of hypertension in normotensive African-American males by the mechanism of a reduction in TPR. Because of the limited number of subjects, the results of this study should be interpreted cautiously pending confirmation by a larger controlled trial. PMID:12361191

  19. Running economy, not aerobic fitness, independently alters thermoregulatory responses during treadmill running

    PubMed Central

    Smoljanić, Jovana; Morris, Nathan B.; Dervis, Sheila

    2014-01-01

    We sought to determine the independent influence of running economy (RE) and aerobic fitness [maximum oxygen consumption (V̇o2max)] on thermoregulatory responses during treadmill running by conducting two studies. In study 1, seven high (HI-FIT: 61 ± 5 ml O2·kg−1·min−1) and seven low (LO-FIT: 45 ± 4 ml O2·kg−1·min−1) V̇o2max males matched for physical characteristics and RE (HI-FIT: 200 ± 21; LO-FIT: 200 ± 18 ml O2·kg−1·km−1) ran for 60 min at 1) 60%V̇o2max and 2) a fixed metabolic heat production (Hprod) of 640 W. In study 2, seven high (HI-ECO: 189 ± 15.3 ml O2·kg−1·km−1) and seven low (LO-ECO: 222 ± 10 ml O2·kg−1·km−1) RE males matched for physical characteristics and V̇o2max (HI-ECO: 60 ± 3; LO-ECO: 61 ± 7 ml O2·kg−1·min−1) ran for 60 min at a fixed 1) speed of 10.5 km/h and 2) Hprod of 640 W. Environmental conditions were 25.4 ± 0.8°C, 37 ± 12% RH. In study 1, at Hprod of 640 W, similar changes in esophageal temperature (ΔTes; HI-FIT: 0.63 ± 0.20; LO-FIT: 0.63 ± 0.22°C; P = 0.986) and whole body sweat losses (WBSL; HI-FIT: 498 ± 66; LO-FIT: 497 ± 149 g; P = 0.984) occurred despite different relative intensities (HI-FIT: 55 ± 6; LO-FIT: 39 ± 2% V̇o2max; P < 0.001). At 60% V̇o2max, ΔTes (P = 0.029) and WBSL (P = 0.003) were greater in HI-FIT (1.14 ± 0.32°C; 858 ± 130 g) compared with LO-FIT (0.73 ± 0.34°C; 609 ± 123 g), as was Hprod (HI-FIT: 12.6 ± 0.9; LO-FIT: 9.4 ± 1.0 W/kg; P < 0.001) and the evaporative heat balance requirement (Ereq; HI-FIT: 691 ± 74; LO-FIT: 523 ± 65 W; P < 0.001). Similar sweating onset ΔTes and thermosensitivities occurred between V̇o2max groups. In study 2, at 10.5 km/h, ΔTes (1.16 ± 0.31 vs. 0.78 ± 0.28°C; P = 0.017) and WBSL (835 ± 73 vs. 667 ± 139 g; P = 0.015) were greater in LO-ECO, as was Hprod (13.5 ± 0.6 vs. 11.3 ± 0.8 W/kg; P < 0.001) and Ereq (741 ± 89 vs. 532 ± 130 W; P = 0.007). At Hprod of 640 W, ΔTes (P = 0.910) and WBSL (P = 0.710) were

  20. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism.

    PubMed

    Lemos, José R; Alves, Cleber R; de Souza, Sílvia B C; Marsiglia, Julia D C; Silva, Michelle S M; Pereira, Alexandre C; Teixeira, Antônio L; Vieira, Erica L M; Krieger, José E; Negrão, Carlos E; Alves, Guilherme B; de Oliveira, Edilamar M; Bolani, Wladimir; Dias, Rodrigo G; Trombetta, Ivani C

    2016-02-01

    Besides neuronal plasticity, the neurotrophin brain-derived neurotrophic factor (BDNF) is also important in vascular function. The BDNF has been associated with angiogenesis through its specific receptor tropomyosin-related kinase B (TrkB). Additionally, Val66Met polymorphism decreases activity-induced BDNF. Since BDNF and TrkB are expressed in vascular endothelial cells and aerobic exercise training can increase serum BDNF, this study aimed to test the hypotheses: 1) Serum BDNF levels modulate peripheral blood flow; 2) The Val66Met BDNF polymorphism impairs exercise training-induced vasodilation. We genotyped 304 healthy male volunteers (Val66Val, n = 221; Val66Met, n = 83) who underwent intense aerobic exercise training on a running track three times/wk for 4 mo. We evaluated pre- and post-exercise training serum BDNF and proBDNF concentration, heart rate (HR), mean blood pressure (MBP), forearm blood flow (FBF), and forearm vascular resistance (FVR). In the pre-exercise training, BDNF, proBDNF, BDNF/proBDNF ratio, FBF, and FVR were similar between genotypes. After exercise training, functional capacity (V̇o2 peak) increased and HR decreased similarly in both groups. Val66Val, but not Val66Met, increased BDNF (interaction, P = 0.04) and BDNF/proBDNF ratio (interaction, P < 0.001). Interestingly, FBF (interaction, P = 0.04) and the FVR (interaction, P = 0.01) responses during handgrip exercise (HG) improved in Val66Val compared with Val66Met, even with similar responses of HR and MBP. There were association between BDNF/proBDNF ratio and FBF (r = 0.64, P < 0.001) and FVR (r = -0.58, P < 0.001) during HG exercise. These results show that peripheral vascular reactivity and serum BDNF responses to exercise training are impaired by the BDNF Val66Met polymorphism and such responsiveness is associated with serum BDNF concentrations in healthy subjects. PMID:26603150

  1. TLD response to non-radiation sources

    SciTech Connect

    Ong, A. )

    1985-10-01

    A study was performed at the San Onofre Nuclear Generating Station (SONGS) to evaluate the response of personnel TLD badges to non-radiation sources commonly encountered at the station. The TLD normally used at SONGS is the four-element Panasonic Model UD802-AS2 shown on the next page. This paper reports that the non-radiation sources employed in the study consisted of two different cleaning agents, sunlight, and electric arc welding.

  2. Radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  3. Exercise Responses to Gravity-Independent Flywheel Aerobic and Resistance Training

    PubMed Central

    Owerkowicz, Tomasz; Cotter, Joshua A.; Haddad, Fadia; Yu, Alvin M.; Camilon, Marinelle L.; Hoang, Theresa; Jimenez, Daniel; Kreitenberg, Arthur; Tesch, Per A.; Caiozzo, Vincent J.; Adams, Gregory R.

    2016-01-01

    Background Although a number of exercise systems have been developed to mitigate the physiological deconditioning that occurs in microgravity, few have the capacity to positively impact multiple physiological systems and still meet the volume/mass requirements needed for missions beyond low earth orbit. The purpose of this study was to test the gravity-independent Multi-Mode Exercise Device (M-MED) for both resistance (RE) and aerobic (AE) training stimuli. Methods Eight men and nine women (mean age 22.0±0.4 years) completed five weeks of training on the M-MED: RE 4×7 squats two days a week, and AE 4×4-min rowing bouts at ~90% VO2max three days a week. Pre- and post-training data collection included an aerobic capacity test, MR imaging, strength testing, and vastus lateralis muscle biopsy. Results VO2max increased 8%, 3RM strength 18%, and quadriceps femoris cross-sectional area (CSA) 10%. Knee extensor strength increased at all isokinetic speeds tested. Subjects also demonstrated improved resistance to fatigue in knee extension. At the cellular and molecular level, the biopsy revealed increases in mixed myofiber CSA (13%), citrate synthase activity (26%), total RNA concentration (24%), IGF-I mRNA (77%), Type IIa Myosin Heavy Chain (MHC) mRNA (8%), and concomitant decrease in Type IIx MHC mRNA (−23%). None of the changes were gender-specific. Discussion Both the functional outcomes and biomarker changes indicate that a very low volume of M-MED exercise results in robust adaptation in the cardiovascular and musculoskeletal systems. The M-MED has the potential to provide a wide range of countermeasure exercises and should be considered for testing in ground-based spaceflight simulation. PMID:26802373

  4. A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning.

    PubMed

    Mang, Cameron S; Snow, Nicholas J; Campbell, Kristin L; Ross, Colin J D; Boyd, Lara A

    2014-12-01

    The objectives of the present study were to evaluate the impact of a single bout of high-intensity aerobic exercise on 1) long-term potentiation (LTP)-like neuroplasticity via response to paired associative stimulation (PAS) and 2) the temporal and spatial components of sequence-specific implicit motor learning. Additionally, relationships between exercise-induced increases in systemic brain-derived neurotrophic factor (BDNF) and response to PAS and motor learning were evaluated. Sixteen young healthy participants completed six experimental sessions, including the following: 1) rest followed by PAS; 2) aerobic exercise followed by PAS; 3) rest followed by practice of a continuous tracking (CT) task and 4) a no-exercise 24-h retention test; and 5) aerobic exercise followed by CT task practice and 6) a no-exercise 24-h retention test. The CT task included an embedded repeated sequence allowing for evaluation of sequence-specific implicit learning. Slope of motor-evoked potential recruitment curves generated with transcranial magnetic stimulation showed larger increases when PAS was preceded by aerobic exercise (59.8% increase) compared with rest (14.2% increase, P = 0.02). Time lag of CT task performance on the repeated sequence improved under the aerobic exercise condition from early (-100.8 ms) to late practice (-75.2 ms, P < 0.001) and was maintained at retention (-79.2 ms, P = 0.004) but did not change under the rest condition (P > 0.16). Systemic BDNF increased on average by 3.4-fold following aerobic exercise (P = 0.003), but the changes did not relate to neurophysiological or behavioral measures (P > 0.42). These results indicate that a single bout of high-intensity aerobic exercise can prime LTP-like neuroplasticity and promote sequence-specific implicit motor learning. PMID:25257866

  5. Lung function and radiation response.

    PubMed

    Hong, A; Dische, S; Saunders, M I; Lockwood, P; Crocombe, K

    1991-12-01

    This study investigated whether impaired respiratory function affected the response to radiotherapy. A prospective study was performed in which lung function, arterial oxygen and haemoglobin concentration were examined, before treatment with radical radiotherapy, in 141 patients with advanced non-small cell lung cancer and head and neck cancer. The findings were considered to reflect the physiological conditions present at the time of radiotherapy and these were related to acute normal tissue reactions and tumour control. Although 53% of the patients showed some impairment of lung function and 47% demonstrated a haemoglobin oxygen saturation below the normal range, oxygen partial pressure was below expected levels in fewer patients (27%) and total arterial oxygen content was below normal in only 12% of patients. No correlation was found between the tests performed and the severity of acute morbidity or with local tumour control. In the patients with carcinoma of the bronchus, there was a trend for incomplete tumour control to be associated with a lower haemoglobin level, but this did not reach statistical significance. In patients selected for curative radiotherapy, lung function would not appear to be an important factor influencing the response of normal tissues or tumour to irradiation. PMID:1663411

  6. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  7. Sex-Related Difference in Muscle Deoxygenation Responses Between Aerobic Capacity-Matched Elderly Men and Women.

    PubMed

    Takagi, Shun; Kime, Ryotaro; Niwayama, Masatsugu; Osada, Takuya; Murase, Norio; Sakamoto, Shizuo; Katsumura, Toshihito

    2016-01-01

    Muscle O2 dynamics during ramp cycling exercise were compared between aerobic capacity-matched elderly men (n=8, age 65±2 years) and women (n=8, age 66±3 years). Muscle O2 saturation (SmO2) and relative change in deoxygenated (Δdeoxy-Hb) and total hemoglobin concentration (Δtotal-Hb) were monitored continuously during exercise in the vastus lateralis (VL) and gastrocnemius medialis (GM) by near infrared spatial resolved spectroscopy. SmO2 was significantly higher during exercise in women than in men in VL, but not in GM. In VL, Δdeoxy-Hb and Δtotal-Hb were significantly higher in men than in women, especially during high intensity exercise. However, no significant difference was observed in Δdeoxy-Hb or Δtotal-Hb in GM. Sex-related differences in muscle deoxygenation response may be heterogeneous among leg muscles in elderly subjects. PMID:26782195

  8. Effect of chronic aerobic exercise on cutaneous microcirculatory flow response to insulin iontophoresis and to ischemia in elderly males.

    PubMed

    Rossi, M; Santoro, G; Ricco, R; Pentimone, F; Carpi, A

    2005-09-01

    The aim of this study was to assess whether chronic aerobic exercise can favourably influence the vascular activity of insulin in elderly subjects. We measured in arbitrary units (A. U.) the cutaneous blood flow basally and in response to iontophoresis of insulin, by the means of a Laser Doppler flowmeter, on the right arm of 10 elderly athletes (10 males, aged 65 +/- 6 years) and of 10 sex- and age-matched sedentary subjects. The cutaneous blood flow response to ischemia was also explored in the right leg of the same subjects by means of the same instrument. No significant differences in cutaneous arm and leg blood flow were observed basally between athletes and sedentary subjects (7.25 +/- 2.65 A. U. versus 6.35 +/- 4.04 A. U. and 9.74 +/- 5.11 A. U. versus 9.41 +/- 6.40 A. U., respectively). Cathodal iontophoresis (six poulses of 0.1 mA each for 20 s, with 40-s interval between stimulations) of regular insulin (0.1 ml Humulin R 100 IU/ml diluted 1/10 with 0.9 % saline) induced a significant increase of cutaneous blood flow in both groups (p < 0.01 in athletes, p < 0.01 in sedentary subjects). However the maximal cutaneous blood flow response to insulin was higher in athletes than in sedentary subjects (24.69 +/- 13.34 A. U. versus 14.33 +/- 7.73 A. U., respectively, p < 0.05) as well as the curve of the net blood flux response to insulin iontophoresis (% change from baseline in response to insulin minus % change from baseline in response to saline iontophoresis) (p < 0.001 ANOVA for repeated measures). After ischemia there was a significant increase of leg cutaneous blood flow in both groups (p < 0.001 in athletes and in sedentary subjects) with higher blood flow response in athletes than in sedentary subjects (38.18 +/- 17.08 A. U. versus 26.01 +/- 6.39 A. U., respectively, p < 0.05). The time reached from the release of ischemia to peak-flow was significantly longer in sedentary subjects than in athletes (43.5 +/- 28.5 s versus 20.0 +/- 9.3 s, p < 0

  9. Neutron responsive self-powered radiation detector

    DOEpatents

    Brown, Donald P.; Cannon, Collins P.

    1978-01-01

    An improved neutron responsive self-powered radiation detector is disclosed in which the neutron absorptive central emitter has a substantially neutron transmissive conductor collector sheath spaced about the emitter and the space between the emitter and collector sheath is evacuated.

  10. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats

    PubMed Central

    Dotzert, Michelle S.; Murray, Michael R.; McDonald, Matthew W.; Olver, T. Dylan; Velenosi, Thomas J.; Hennop, Anzel; Noble, Earl G.; Urquhart, Brad L.; Melling, C. W. James

    2016-01-01

    The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9–15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training. PMID:27197730

  11. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats.

    PubMed

    Dotzert, Michelle S; Murray, Michael R; McDonald, Matthew W; Olver, T Dylan; Velenosi, Thomas J; Hennop, Anzel; Noble, Earl G; Urquhart, Brad L; Melling, C W James

    2016-01-01

    The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9-15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training. PMID:27197730

  12. Radiation, Inflammation, and Immune Responses in Cancer

    PubMed Central

    Multhoff, Gabriele; Radons, Jürgen

    2012-01-01

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR. PMID:22675673

  13. Radiation response of the central nervous system

    SciTech Connect

    Schultheiss, T.E.; Kun, L.E.; Stephens, L.C.

    1995-03-30

    This report reviews the anatomical, pathophysiological, and clinical aspects of radiation injury to the central nervous system (CNS). Despite the lack of pathoGyomonic characteristics for CNS radiation lesions, demyelination and malacia are consistently the dominant morphological features of radiation myelopathy. In addition, cerebral atrophy is commonly observed in patients with neurological deficits related to chemotherapy and radiation, and neurocognitive deficits are associated with diffuse white matter changes. Clinical and experimental dose-response information have been evaluated and summarized into specific recommendations for the spinal cord and brain. The common spinal cord dose limit of 45 Gn in 22 to 25 fractions is conservative and can be relaxed if respecting this limit materially reduces the probability of tumor control. It is suggested that the 5% incidence of radiation myelopathy probably lies between 57 and 61 Gy to the spinal cord in the absence of dose modifying chemotherapy. A clinically detectable length effect for the spinal cord has not been observed. The effects of chemotherapy and altered fractionation are also discussed. Brain necrosis in adults is rarely noted below 60 Gy in conventional fractionation, with imaging and clinical changes being observed generally only above 50 Gy. However, neurocognitive effects are observed at lower doses, especially in children. A more pronounced volume effect is believed to exist in the brain than in the spinal cord. Tumor progression may be hard to distinguish from radiation and chemotherapy effects. Diffuse white matter injury can be attributed to radiation and associated with neurological deficits, but leukoencephalopathy is rarely observed in the absence of chemotherapy. Subjective, objective, management, and analytic (SOMA) parameters related to radiation spinal cord and brain injury have been developed and presented on ordinal scales. 140 refs., 3 figs., 6 tabs.

  14. Targeting chromatin to improve radiation response

    PubMed Central

    Olcina, M M; O'Dell, S

    2015-01-01

    Chromatin, the structure formed by the wrapping of approximately 146 base pairs of DNA around an octamer of histones, has a profound impact on numerous DNA-based processes. Chromatin modifications and chromatin remodellers have recently been implicated in important aspects of the DNA damage response including facilitating the initial sensing of the damage as well as subsequent recruitment of repair factors. Radiation is an effective cancer therapy for a large number of tumours, and there is considerable interest in finding approaches that might further increase the efficacy of radiotherapy. The use of radiation leads to the generation of DNA damage and, therefore, agents that can affect the sensing and repair of DNA damage may have an impact on overall radiation efficacy. The chromatin modifications as well as chromatin modifiers that have been associated with the DNA damage response will be summarized in this review. An emphasis will be placed on those processes that can be pharmacologically manipulated with currently available inhibitors. The rationale for the use of these inhibitors in combination with radiation will also be described. PMID:25513745

  15. Plant response to solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.

    1981-01-01

    Plant reactions and mechanisms of reaction to solar UV radiation are reviewed, along with characteristics of plants which enhance UV tolerance. Wavelength regions to which proteins are particularly sensitive are examined and the possibility of synergistic effects from photoreactions to multiple wavelengths is considered, along with available evidence of nonadditive plant spectral responses to UV radiation. Decreases in atmospheric ozone content are explored in terms of UV wavelengths which would increase with the ozone decreases, particularly for UV-B, which depresses photosynthesis and would increase 1% with a 16% reduction of stratospheric ozone. Higher elevations are projected to display effects of increased UV incident flux first, and global distributions of UV increases due to atmospheric inhomogeneity and water surface clarity are examined. Finally, the response of plant nucleic acids, DNA, chlorophyll to enhanced UV are described, along with repair, avoidance, and optical mechanisms which aid plant survival

  16. Cytokine Responses to Acute Intermittent Aerobic Exercise in Children With Prader-Willi Syndrome and Nonsyndromic Obesity.

    PubMed

    Duran, Andrea T; Gertz, Erik; Judelson, Daniel A; Haqq, Andrea M; Clark, Susan J; Tsang, Kavin W; Rubin, Daniela

    2015-11-01

    Prader-Willi Syndrome (PWS), the best characterized form of syndromic obesity, presents with abnormally high fat mass. In children, obesity presents with low-grade systemic inflammation. This study evaluated if PWS and/or nonsyndromic obesity affected cytokine responses to intermittent aerobic exercise in children. Eleven children with PWS (11 ± 2 y, 45.4 ± 9.5% body fat), 12 children with obesity (OB) (9 ± 1 y, 39.9 ± 6.8% body fat), and 12 lean (LN) children (9 ± 1 y, 17.5 ± 4.6% body fat) participated. Children completed 10 2-min cycling bouts of vigorous intensity, separated by 1-min rest. Blood samples were collected preexercise (PRE), immediately postexercise (IP), and 15, 30, and 60 min into recovery to analyze possible changes in cytokines. In all groups, IL-6 and IL-8 concentrations were greater during recovery compared with PRE. PWS and OB exhibited higher IL-6 area under the curve (AUC) than LN (p < .01 for both). PWS demonstrated higher IL-8 AUC than LN (p < .04). IL-10, TNF-α, and IFN-γ did not change with exercise (p > .05 for all). Results indicate that children with PWS respond with increased Il-6 and IL-8 concentrations to acute exercise similarly to controls. Excess adiposity and epigenetic modifications may explain the greater integrated IL-6 and IL-8 responses in PWS compared with controls. PMID:26181653

  17. Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone

    NASA Astrophysics Data System (ADS)

    Abu Amr, Salem S.; Aziz, Hamidi Abdul; Bashir, Mohammed J. K.

    2014-09-01

    The removal efficiencies for chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and color, as well as ozone consumption (OC) from the Malaysian semi-aerobic landfill stabilized leachate using ozone reactor, were investigated. Central composite design with response surface methodology was applied to evaluate the interaction and relationship between operating variables (i.e., ozone dosage, COD concentration, and reaction time) and to develop the optimum operating condition. Based on statistical analysis, Quadratic models for the four responses (COD, NH3-N, color, and OC) proved to be significant with very low probability values (<0.0001). The obtained optimum conditions were 70 g/m3 ozone, 250 mg/l COD, and 60 min reaction time. The results obtained by the predicted model were 26.7, 7.1, and 92 % removal for COD, NH3-N, and color, respectively, with 9.42 (kgO3/kg COD) OC. The predicted results fitted well with the results of the laboratory experiment.

  18. Quartz gauge response in ion radiation

    NASA Astrophysics Data System (ADS)

    Taylor, P. E.; Gilbert, P. H.; Kernthaler, C.; Lee, L. M.; Smith, E. A.; Reeder, S. T.; Anderson, M. U.

    1996-05-01

    This paper describes recent work to make high quality quartz gauge (temporal and spatial) shock wave measurements in a pulsed ion beam environment. Intense ion beam radiation, nominally 1 MeV protons, was deposited into material samples instrumented with shunted quartz gauges adjacent to the ion deposition zone. Fluence levels were chosen to excite three fundamentally different material response modes (1) strong vapor, (2) combined vapor and melt phase and (3) thermoelastic material response. A unique quartz gauge design was utilized that employed printed circuit board (PCB) technology to facilitate electrical shielding, ruggedness, and fabrication while meeting the essential one dimensional requirements of the characterized Sandia shunted quartz gauge. Shock loading and unloading experiments were conducted to evaluate the piezoelectric response of the coupled quartz gauge/PCB transducer. High fidelity shock wave profiles were recorded at the three ion fluence levels providing dynamic material response data for vapor, melt and solid material phases.

  19. Quartz gauge response in ion radiation

    SciTech Connect

    Taylor, P.E.; Gilbert, P.H.; Kernthaler, C.; Lee, L.M.; Smith, E.A.; Reeder, S.T.; Anderson, M.U.

    1995-12-31

    This paper describes recent work to make high quality quartz gauge (temporal and spatial) shock wave measurements in a pulsed ion beam environment. Intense ion beam radiation, nominally 1 MeV protons, was deposited into material samples instrumented with shunted quartz gauges adjacent to the ion deposition zone. Fluence levels were chosen to excite three fundamentally different material response modes (1) strong vapor, (2) combined vapor and melt phase and (3) thermoelastic material response. A unique quartz gauge design was utilized that employed printed circuit board (PCB) technology to facilitate electrical shielding, ruggedness, and fabrication @e meeting the essential one dimensional requirements of the characterized Sandia shunted quartz gauge. Shock loading and unloading experiments were conducted to evaluate the piezoelectric response of the coupled quartz gauge/PCB transducer. High fidelity shock wave profiles were recorded at the three ion fluence levels providing dynamic material response data for vapor, melt and solid material phases.

  20. THE EFFECT OF CHRONOTYPE ON PSYCHOPHYSIOLOGICAL RESPONSES DURING AEROBIC SELF-PACED EXERCISES.

    PubMed

    Rossi, Alessio; Formenti, Damiano; Vitale, Jacopo A; Calogiuri, Giovanna; Weydahl, Andi

    2015-12-01

    It was hypothesized that an individual's chronotype might influence the response to physical activity at a given time of day. This study aimed to analyze the psychophysiological responses during a walking task at different times of day in individuals with different chronotypes. 46 students (M age=24.8 yr., SD=7.2) filled in the Morningness-Eveningness Questionnaire to determine chronotypes. Heart rate, walking time, and the rating of perceived exertion (RPE) were measured during two self-paced walking sessions: one in the morning (08:30) and one in the afternoon (15:30). A multivariate analysis of variance found a significant interaction between chronotype and time of day. The post hoc analysis showed a significant difference for RPE in the morning session, with evening types reporing a higher RPE compared with the morning types. The chronotype and the time of day when a physical task is undertaken can influence the RPE response, although it might not influence physiological or performance parameters. This has to be taken into account, because it can affect test reliability as well as possibly have a negative influence on the affective responses to a given task. PMID:26682609

  1. Precipitation Response to Regional Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Voulgarakis, A.; Faluvegi, G.; Milly, G.

    2012-01-01

    Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO2) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle.

  2. Influence of fitness on the integrated neuroendocrine response to aerobic exercise until exhaustion.

    PubMed

    de Diego Acosta, A M; García, J C; Fernández-Pastor, V J; Perán, S; Ruiz, M; Guirado, F

    2001-12-01

    A group of trained and sedentary men performed an incremental graded exercise-test to exhaustion in order to assess the organic response of the two main stress-activated systems: the sympathetic nervous system with its endocrine component (the adrenal medulla), and the hypothalamic-pituitary-adrenal (HPA) axis. Maximal plasma concentrations of ACTH, cortisol and endogenous opioids (beta-endorphins) were obtained at the end of the exercise-test in the trained group. Thus ACTH increased from basal value of 21.25 +/- 2.5 pg/ml to 88.78 +/- 11.8 pg/ml at the end of the exercise (p<0.01); cortisol, from 16.56 microg/dl +/- 4.94 microg/dl to 23.80 +/- 4.57 microg/dl in min 15 of the recovery period (p<0.001); and beta-endorphin from 21.80 +/- 8.33 pmol/ml to 64.36 +/- 9.8 pmol/ml in min 3 of the recovery period (p<0.05). Catecholamine levels were increased from initial values at the end of the effort test in both control and trained groups. Control subjects exhibited a higher responsiveness compared to trained and showed superior intrinsic stimulation of the sympathetic nervous system. These results reveal a different response according to fitness in a physical stress situation. PMID:12005034

  3. The electrical response of plants under radiation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Xi, Wenze; Feng, David J. Y.; Choa, Fow-Sen

    2014-05-01

    Plant electricity was discovered about 100 years ago. Until recent two decades, researchers started to notice that the electricity play a key role for plant's communications and defense. Recently, we have demonstrated a wound-generated electrical signal, up to a few hundred mV, can be produced and propagate through the whole plant. As plants defense reactions the wound signal will activate genes and induce subsequent molecular biology responses. In this study, we further investigate the electrical response of plants when they are under nuclear radiation. We discovered nuclear radiation could produce internal voltage gradient in living trees, resulting in measureable voltage and current signals. The results was measured by attaching one of electrodes to a lower branch, close to the roots and attaching the other one to an upper branch. During irradiating, trees were set up at 1-meter far from a NIST-certified 241AmBe neutron source (30 mCi). It will produce a neutron field of about 13 mrem/h, corresponding to an actual absorbed dose of ~ 1 mrad/h by assuming the tissue is primarily water content. Once the radioactive source is pulled up from a shielded container below the tree, the system potential starts to drop and in about 6-7 hours it drops down to -220mV, eventually stabilizing at around -250mV after 10 hours of radiation. We have further observed plant electricity changes caused by x-ray, gamma-ray, and beta-ray radiations. After the sources were removed, the terminal voltage recovered and eventually returned to the original value.

  4. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  5. Comparison of Affect and Cardiorespiratory Training Responses Between Structured Gym Activities and Traditional Aerobic Exercise in Children

    PubMed Central

    WHITE, DAVID A.; ROTHENBERGER, SCOTT D.; HUNT, LAURA A.; GOSS, FREDRIC L.

    2016-01-01

    Physical activities (PA) that are pleasurable are likely to be repeated. Structured gym activities (SGA) are defined as dodging, chasing, and fleeing games. Traditional aerobic exercises (TAE) are defined as treadmill, cycle ergometer, and elliptical exercise. The purpose of this investigation was to compare affect and cardiorespiratory training responses between SGA and TAE in children. Thirty-two participants (9.3±0.2) were randomized to either the SGA or TAE group. Exercise training was seven weeks, with two sessions per week, for 35 minutes per session. Affect was measured by the (+5 (pleasurable) to −5 (displeasurable)) feelings scale. Affect was recorded at the mid-point and end of each exercise session. The 20-meter pacer test was used to assess cardiorespiratory fitness at baseline and post intervention. Affect responses and heart rates were averaged across all exercise sessions. The SGA group scored 2.77±0.2 affect units higher than the TAE group (p < 0.0001). The TAE group significantly increased cardiorespiratory fitness (baseline 47.8±3.8; post 49.1±3.1 ml·kg−1·min−1; p = 0.023) with no change in the SGA group (baseline 46.3±3.5; post 47.2±2.7 ml·kg−1·min−1; p = 0.127). SGA reported more positive affect, suggesting they experienced greater pleasure during the exercise sessions than the TAE participants. SGA activities promote more positive affect, and therefore may increase children’s PA participation. PMID:27182420

  6. The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training

    PubMed Central

    Nielsen, Søren; Åkerström, Thorbjörn; Rinnov, Anders; Yfanti, Christina; Scheele, Camilla; Pedersen, Bente K.; Laye, Matthew J.

    2014-01-01

    MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establish the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training. Global miRNA (742 miRNAs) measurements were performed as a screening to identify detectable miRNAs in plasma. Using customized qPCR panels we quantified the expression levels of miRNAs detected in the screening procedure (188 miRNAs). We demonstrate a dynamic regulation of circulating miRNA (ci-miRNA) levels following 0 hour (miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, miR-146, miR-652 and miR-151-3p), 1 hour (miR-338-3p, miR-330-3p, miR-223, miR-139-5p and miR-143) and 3 hours (miR-1) after an acute exercise bout (P<0.00032). Where ci-miRNAs were all downregulated immediately after an acute exercise bout (0 hour) the 1 and 3 hour post exercise timepoints were followed by upregulations. In response to chronic training, we identified seven ci-miRNAs with decreased levels in plasma (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, miR-185 and miR-21) and two miRNAs that were present at higher levels after the training period (miR-103 and miR-107) (P<0.00032). In conclusion, acute exercise and chronic endurance training, likely through specific mechanisms unique to each stimulus, robustly modify the miRNA signature of human plasma. PMID:24586268

  7. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  8. Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression.

    PubMed

    Konczal, Mateusz; Babik, Wiesław; Radwan, Jacek; Sadowska, Edyta T; Koteja, Paweł

    2015-06-01

    Experimental evolution combined with genome or transcriptome resequencing (Evolve and Resequence) represents a promising approach for advancing our understanding of the genetic basis of adaptation. Here, we applied this strategy to investigate the effect of selection on a complex trait in lines derived from a natural population of a small mammal. We analyzed the liver and heart transcriptomes of bank voles (Myodes [=Clethrionomys] glareolus) that had been selected for increased aerobic metabolism. The organs were sampled from 13th generation voles; at that point, the voles from four replicate selected lines had 48% higher maximum rates of oxygen consumption than those from four control lines. At the molecular level, the response to selection was primarily observed in gene expression: Over 300 genes were found to be differentially expressed between the selected and control lines and the transcriptome-wide pattern of expression distinguished selected lines from controls. No evidence for selection-driven changes of allele frequencies at coding sites was found: No single nucleotide polymorphism (SNP) changed frequency more than expected under drift alone and frequency changes aggregated over all SNPs did not separate selected and control lines. Nevertheless, among genes which showed highest differentiation in allele frequencies between selected and control lines we identified, using information about gene functions and the biology of the selected phenotype, plausible targets of selection; these genes, together with those identified in expression analysis, have been prioritized for further studies. Because our selection lines were derived from a natural population, the amount and the spectrum of variation available for selection probably closely approximated that typically found in populations of small mammals. Therefore, our results are relevant to the understanding of the molecular basis of complex adaptations occurring in natural vertebrate populations. PMID:25739734

  9. Effect of Aerobic Priming on the Response of Echinochloa crus-pavonis to Anaerobic Stress (Protein Synthesis and Phosphorylation).

    PubMed Central

    Zhang, F.; Lin, J. J.; Fox, T. C.; Mujer, C. V.; Rumpho, M. E.; Kennedy, R. A.

    1994-01-01

    Echinochloa species differ in their ability to germinate and grow in the absence of oxygen. Seeds of Echinochloa crus-pavonis (H.B.K.) Schult do not germinate under anoxia but remain viable for extended periods (at least 30 d) when incubated in an anaerobic environment. E. crus-pavonis can be induced to germinate and grow in an anaerobic environment if the seeds are first subjected to a short (1-18 h) exposure to aerobic conditions (aerobic priming). Changes in polypeptide patterns (constitutive and de novo synthesized) and protein phosphorylation induced by aerobic priming were investigated. In the absence of aerobic priming protein degradation was not evident under anaerobic conditions, although synthesis of a 20-kD polypeptide was induced. During aerobic priming, however, synthesis of 37- and 55-kD polypeptides was induced and persisted upon return of the seeds to anoxia. Furthermore, phosphorylation of two 18-kD polypeptides was observed only in those seeds that were labeled with 32PO4 during the aerobic priming period. Subsequent chasing in an anaerobic environment resulted in a decrease in phosphorylation of these polypeptides. Likewise, phosphorylation of the 18-kD polypeptides was not observed if the seeds were labeled in an anaerobic atmosphere. These results suggest that the regulated induction of the 20-, 37-, and 55- kD polypeptides may be important for anaerobic germination and growth of E. crus-pavonis and that the specific phosphorylation of the 18-kD polypeptides may be a factor in regulating this induction. PMID:12232272

  10. Calcineurin-NFAT Signaling and Neurotrophins Control Transformation of Myosin Heavy Chain Isoforms in Rat Soleus Muscle in Response to Aerobic Treadmill Training

    PubMed Central

    Liu, Wenfeng; Chen, Gan; Li, Fanling; Tang, Changfa; Yin, Dazhong

    2014-01-01

    This study elucidated the role of CaN-NFAT signaling and neurotrophins on the transformation of myosin heavy chain isoforms in the rat soleus muscle fiber following aerobic exercise training. To do so, we examined the content and distribution of myosin heavy chain (MyHC) isoforms in the rat soleus muscle fiber, the activity of CaN and expression of NFATc1 in these fibers, and changes in the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neutrophin-3 (NT-3) in the soleus and striatum following high-and medium-intensity aerobic treadmill training. Specific pathogen-free 2 month old male Sprague-Dawley (SD) rats were randomly divided into three groups: Control group (Con, n = 8), moderate-intensity aerobic exercise group (M-Ex, n = 8) and high-intensity aerobic exercise group (H-Ex, n = 8). We used ATPase staining to identify the muscle fiber type I and II, SDS-PAGE to separate and analyze the isoforms MyHCI, MyHCIIA, MyHCIIB and MyHCIIx, and performed western blots to determine the expression of NFATc1, NGF, BDNF and NT-3. CaN activity was measured using a colorimetric assay. In the soleus muscle, 8 weeks of moderate-intensity exercise can induce transformation of MyHC IIA and MyHC IIB to MyHC IIX and MyHC I (p < 0.01), while high-intensity treadmill exercise can induce transform MyHC IIx to MyHC IIB, MyHC IIA and MyHC I (p < 0.01). In comparison to the control group, CaN activity and NFATcl protein level were significantly increased in both the M-Ex and H-Ex groups (p < 0.05, p < 0.01), with a more pronounced upregulation in the M-Ex group (p < 0.05). Eight weeks of moderate- and high-intensity aerobic exercise induced the expression of NGF, BDNF and NT-3 in the soleus muscle and the striatum (p < 0.01), with the most significant increase in the H-Ex group (p < 0.01). In the rat soleus muscle, (1) CaN–NFATcl signaling contributes to the conversion of MyHC I isoform in response to moderate-intensity exercise; (2) Neurotrophins

  11. Radiometric and Radiation Response of Visible FPAs

    NASA Technical Reports Server (NTRS)

    Hubbs, John

    2007-01-01

    The readout integrated circuit (ROIC) used in these devices was originally developed for use in space based infrared systems operating at deep cryogenic temperatures and was selected because of its proven tolerance to total ionizing radiation? The detectors are a 128 x 128 array of 60 pm x 60 pm pixel elements that have been anti-reflection (AR) coated to improve the response at very short wavelengths. These visible focal plane arrays were operated at -40 C (233 K). Two focal planes were characterized using cobalt-60 radiation to produce ionizing total dose damage in the VFPAs. Both operational and performance data were obtained as functions of total dose. The first device tested showed no appreciable change in responsivity or noise up to 300 krad(Si). However, at the next dose level of 600 krad(Si), the readout was non-operational due to failure in the digital circuitry. The second device was characterized to a total dose of 750 krad(Si) with no observed change in responsivity. An increase dark current was observed in both devices, and in the second device, the dark current caused an increase in noise at low irradiance at 400 krad(Si) and above. The increase in dark current was somewhat un-expected for visible PIN detectors. The median dark current increased more than two orders of magnitude at 300 krad(Si) for the first device and a factor of 350 at 750 krad(Si) for pixels near the edge for the second device. The dark current was found to be a strong function of detector bias, with pixels near the edge of the array showing a greater increase in dark current with bias than those near the center. Since the optical response was not a function of bias, it is hypothesized that the dark current is a surface effect and that the variation in dark current with location is due to a variation in pixel bias, caused by a voltage drop across the pixel common lead. As the total dose increased, the dark current and the voltage drop increased

  12. Atypical radiation response of SCID cells

    NASA Astrophysics Data System (ADS)

    Chawapun, Nisa

    Murine SCID (severe combined immune deficiency) cells are well known for their defect in DNA double-strand break repair and in variable(diversity)joining [V(D)J] recombination due to a mutation in a catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). As a consequence, scid cells are hypersensitive to ionizing radiation. The present study showed that asynchronous populations of scid cells were about two-fold more sensitive than Balb/c with respect to cell killing and the defect in scid cells was corrected by complementation with human chromosome 8. Analysis of the survival of synchronized populations as a function of the cell cycle revealed that while scid cells were hypersensitive in all cell cycle phases compared to wild-type cells, this hypersensitivity is even more pronounced in G1 phase. The hypersensitivity reduced as the cells progressed into S phase suggested that homologous recombination repair plays a role. The results imply that there are at least two pathways for the repair of DSB DNA, consistent with a model previously proposed by others. The scid cells were also more sensitive to UVC light (254 nm) killing as compared to wild type cells by clonogenic survival. Using a host cell reactivation (HCR) assay to study the nucleotide excision repair (NER) which is the major repair pathway for UV-photoproducts, the results showed that NER in scid cells was not as efficient as CB- 17. This suggests that DNA-PK is involved in NER as well as non-homologous end-joining (NHEJ) DSB repair which is responsible for ionizing radiation sensitivity in scid cells. Repair in scid cells was not totally absent as shown by low dose rate sparing of cell killing after exposure to 137Cs γ-rays at dose rate of 0.6 cGy/h, 1.36 cGy/h, 6 cGy/h as compared to high dose rate at 171 cGy/min, although this phenomenon could be explained partly by proliferation. However, for radiation induced transformation, no significant dose rate effect was seen. A plot of transformation

  13. Hepatic and systemic metabolic responses to aerobic and anaerobic intra-abdominal abscesses in a highly reproducible chronic rat model.

    PubMed

    Nakatani, T; Sato, T; Marzella, L; Hirai, F; Trump, B F; Siegel, J H

    1984-01-01

    A single, uniform abscess was formed in 100% of the animals inoculated with a fecal pellet made of sterile rat feces, agar, and a known number and strain of bacteria. The effects of monoclonal Escherichia coli abscess (83 rats) were compared to those of sterile abscess (34 rats) and sham operation (35 rats without abscess). Bacteroides fragilis was added to the sterile pellet to study the effect of an anaerobic monoclonal abscess (16 rats) or of a biclonal abscess containing both aerobes and anaerobes (32 rats). After inoculation, a peritonitis stage with leucopenia, hypoglycemia, body weight loss, and slight fever was followed by the abscess stage with leucocytosis and a slight hyperglycemia. Mild hepatic energy charge deficiency and hepatic lactic acidosis were observed in sterile abscess rats, and slightly enhanced energy charge was seen in monoclonal E. coli abscess rats. The addition of B. fragilis to the sterile pellet, alone or together with E. coli, produced hepatic energy charge deficiency and hepatic lactic acidosis, which were significantly enhanced compared with the monoclonal E. coli abscess rats. The greatest effect was seen in the biclonal E. coli plus B. fragilis abscess, suggesting that anaerobic or combined aerobe and anaerobe abscesses may produce a greater hepatic injury than an aerobic organism abscess alone. This may account for the apparent synergic interaction between aerobic and anaerobic organisms. PMID:6380793

  14. Association of pentraxin 3 with insulin resistance and glucose response following maximal aerobic exercise in obese and normal-mass individuals.

    PubMed

    Slusher, Aaron L; Huang, Chun-Jung

    2016-07-01

    Pentraxin 3 (PTX3), a cardioprotective protein, has recently been shown to be associated with improved insulin resistance (IR) and glucose metabolism. Therefore, the primary purpose of this study was to examine whether or not increased plasma PTX3 following maximal aerobic exercise would differ between obese and normal-mass subjects, and its association with the homeostatic model assessment of insulin resistance (HOMA-IR) and glucose response. Twenty-five untrained obese (n = 13 [6 males and 7 females]) and normal-mass (n = 12 [5 males and 7 females]) subjects performed an acute bout of maximal aerobic exercise to assess maximal oxygen consumption (VO2max). At baseline, plasma PTX3 concentrations are decreased in obese compared with normal-mass subjects and are negatively associated with plasma insulin and HOMA-IR values. In response to maximal exercise, plasma PTX3 responses were similar in obese and normal-mass subjects while the intensity of plasma PTX3 response as indicated by area under the curve analysis (AUCi) was not associated with HOMA-IR or glucose AUCi. However, PTX3 AUCi was positively associated with cardiorespiratory fitness levels (relative VO2max). These findings suggest that PTX3 could serve as a biomarker for both metabolic health, as well as a measurement to monitor the effectiveness of exercise interventions in obesity. PMID:27152505

  15. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  16. Drosophila Melanogaster Show a Threshold Effect in Response to Radiation

    PubMed Central

    Antosh, Michael; Fox, David; Hasselbacher, Thomas; Lanou, Robert; Neretti, Nicola; Cooper, Leon N.

    2014-01-01

    We investigate the biological effects of radiation using adult Drosophila melanogaster as a model organism, focusing on gene expression and lifespan analysis to determine the effect of different radiation doses. Our results support a threshold effect in response to radiation: no effect on lifespan and no permanent effect on gene expression is seen at incident radiation levels below 100 J/kg. We also find that it is more appropriate to compare radiation effects in flies using the absorbed energy rather than incident radiation levels. PMID:25552957

  17. Exercise- and methylcholine-induced sweating responses in older and younger men: effect of heat acclimation and aerobic fitness

    NASA Astrophysics Data System (ADS)

    Inoue, Y.; Havenith, George; Kenney, W. Larry; Loomis, Joseph L.; Buskirk, Elsworth R.

    The purpose of this investigation was to examine the effects of aging and aerobic fitness on exercise- and methylcholine-induced sweating responses during heat acclimation. Five younger [Y group - age: 23+/-1 (SEM) years; maximal oxygen consumption (V.O2max): 47+/-3 ml.kg-1.min-1], four highly fit older (HO group - 63+/-3 years; 48+/-4 ml.kg-1.min-1) and five normally fit older men (NO group - 67+/-3 years; 30+/-1 ml.kg-1.min-1) who were matched for height, body mass and percentage fat, were heat acclimated by daily cycle exercise ( 35% V.O2max for 90 min) in a hot (43°C, 30% RH) environment for 8 days. The heat acclimation regimen increased performance time, lowered final rectal temperature (Tre) and percentage maximal heart rate (%HRmax), improved thermal comfort and decreased sweat sodium concentration similarly in all groups. Although total body sweating rates (M.sw) during acclimation were significantly greater in the Y and HO groups than in the NO group (P<0.01) (because of the lower absolute workload in the NO group), the M.sw did not change in all groups with the acclimation sessions. Neither were local sweating rates (m.sw) on chest, back, forearm and thigh changed in all groups by the acclimation. The HO group presented greater forearm m.sw (30-90 min) values and the Y group had greater back and thigh m.sw (early in exercise) values, compared to the other groups (P<0.001). In a methylcholine injection test on days immediately before and after the acclimation, the order of sweat output per gland (SGO) on chest, back and thigh was Y>HO>NO, and on the forearm Y=HO>NO. No group differences were observed for activated sweat gland density at any site. The SGO at the respective sites increased in the post-acclimation test regardless of group (P<0.01), but on the thigh the magnitude of the increase was lower in the NO (P<0.02) and HO (P=0.07) groups than in the Y group. These findings suggest that heat tolerance and the improvement with acclimation are little

  18. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane

    PubMed Central

    2014-01-01

    Background Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. Results We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Conclusions Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but

  19. Correlation between bone mineral density and serum trace elements in response to supervised aerobic training in older adults

    PubMed Central

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S; Alghadir, Muaz H

    2016-01-01

    Background Life style and physical activity play a pivotal role in prevention and treatment of osteoporosis. The mechanism for better bone metabolism and improvement of physical disorders is not clear yet. Trace minerals such as Ca, Mn, Cu, and Zn are essential precursors for most vital biological process, especially those of bone health. Objective The main target of this study was evaluating the effective role of supervised aerobic exercise for 1 hour/day, 3 days/week for 12 weeks in the functions of trace elements in bone health through measuring bone mineral density (BMD), osteoporosis (T-score), bone markers, and trace element concentrations in healthy subjects aged 30–60 years with age average of 41.2±4.9. Methods A total of 100 healthy subjects (47 males, 53 females; age range 30–60 years) were recruited for this study. Based on dual-energy x-ray absorptiometry (DEXA) scan analysis, the participants were classified into three groups: normal (n=30), osteopenic (n=40), and osteoporotic (n=30). Following, 12 weeks of moderate aerobic exercise, bone-specific alkaline phosphatase (BAP), BMD, T-score, and trace elements such as Ca, Mn, Cu, and Zn were assessed at baseline and post-intervention. Results Significant improvement in serum BAP level, T-score, and BMD were observed in all participants following 12 weeks of moderate exercise. Participants with osteopenia and osteoporosis showed significant increase in serum Ca and Mn, along with decrease in serum Cu and Zn levels following 12 weeks of aerobic training. In control group, the improvements in serum trace elements and body mass index were significantly linked with the enhancement in the levels of BAP, BMD hip, and BMD spine. These results supported the preventive effects of moderate exercise in healthy subjects against osteoporosis. In both sexes, the changes in serum trace elements significantly correlated (P<0.05) with the improvement in BAP, BMD hip, BMD spine, and body mass index in all groups

  20. Vitamin E Analogs as Radiation Response Modifiers.

    PubMed

    Singh, Pankaj K; Krishnan, Sunil

    2015-01-01

    The potentially life-threatening effects of total body ionizing radiation exposure have been known for more than a century. Despite considerable advances in our understanding of the effects of radiation over the past six decades, efforts to identify effective radiation countermeasures for use in case of a radiological/nuclear emergency have been largely unsuccessful. Vitamin E is known to have antioxidant properties capable of scavenging free radicals, which have critical roles in radiation injuries. Tocopherols and tocotrienols, vitamin E analogs together known as tocols, have shown promise as radioprotectors. Although the pivotal mechanisms of action of tocols have long been thought to be their antioxidant properties and free radical scavenging activities, other alternative mechanisms have been proposed to drive their activity as radioprotectors. Here we provide a brief overview of the effects of ionizing radiation, the mechanistic mediators of radiation-induced damage, and the need for radiation countermeasures. We further outline the role for, efficacy of, and mechanisms of action of tocols as radioprotectors, and we compare and contrast their efficacy and mode of action with that of another well-studied chemical radioprotector, amifostine. PMID:26366184

  1. Vitamin E Analogs as Radiation Response Modifiers

    PubMed Central

    Singh, Pankaj K.; Krishnan, Sunil

    2015-01-01

    The potentially life-threatening effects of total body ionizing radiation exposure have been known for more than a century. Despite considerable advances in our understanding of the effects of radiation over the past six decades, efforts to identify effective radiation countermeasures for use in case of a radiological/nuclear emergency have been largely unsuccessful. Vitamin E is known to have antioxidant properties capable of scavenging free radicals, which have critical roles in radiation injuries. Tocopherols and tocotrienols, vitamin E analogs together known as tocols, have shown promise as radioprotectors. Although the pivotal mechanisms of action of tocols have long been thought to be their antioxidant properties and free radical scavenging activities, other alternative mechanisms have been proposed to drive their activity as radioprotectors. Here we provide a brief overview of the effects of ionizing radiation, the mechanistic mediators of radiation-induced damage, and the need for radiation countermeasures. We further outline the role for, efficacy of, and mechanisms of action of tocols as radioprotectors, and we compare and contrast their efficacy and mode of action with that of another well-studied chemical radioprotector, amifostine. PMID:26366184

  2. Malignant glioma - timing of response to radiation therapy

    SciTech Connect

    Gaspar, L.E.; Fisher, B.J.; MacDonald, D.R.; Cairncross, J.G. London Regional Cancer Centre, Ontario ); LeBer, D.V. ); Halperin, E.C.; Schold, S.C. Jr. )

    1993-04-02

    The response of malignant gliomas to radiation was examined retrospectively in 71 patients with newly diagnosed supratentorial malignant gliomas. Questions asked included frequency, timing and clinical significance of response. After surgery, all were treated with whole brain plus boost radiotherapy followed 8 weeks later by chemotherapy. The rate, degree, and timing of response to radiation were determined by comparing postoperative, end of radiation, and prechemotherapy CT scans on each patient. Postoperative residual tumor was evident on 63/71 postoperative scans. Twenty-two of 63 tumors (35%) had a partial or complete response to radiation. Twenty (32%) had responded by the end of radiation; 17 maximally. Six to 8 weeks later, three responding tumors had responded further and two previously stable ones had begun to respond. Only three tumors (5%) responded completely. A greater proportion of anaplastic gliomas than glioblastomas responded to radiation (52% vs. 26%). Protracted or delayed responses were only observed in patients with anaplastic glioma. Patients who responded to radiation did not live significantly longer than non-responders. However, tumor progression prior to chemotherapy was associated with significantly shorter survival. This CT scan-based analysis demonstrates that malignant gliomas are only moderately radioresponsive tumors and also demonstrates that response to radiation, if it is going to occur, is usually evident by the end of treatment. 6 refs., 1 fig., 1 tab.

  3. The glucoregulatory response to high-intensity aerobic exercise following training in rats with insulin-treated type 1 diabetes mellitus.

    PubMed

    McDonald, Matthew W; Murray, Michael R; Grise, Kenneth N; Olver, T Dylan; Dey, Adwitia; Shoemaker, J Kevin; Noble, Earl G; Melling, C W James

    2016-06-01

    An acute bout of exercise elicits a rapid, potentially deleterious, reduction in blood glucose in patients with type 1 diabetes mellitus (T1DM). In the current study, we examined whether a 10-week aerobic training program could alleviate the rapid exercise-associated reduction in blood glucose through changes in the glucoregulatory hormonal response or increased hepatic glycogen storage in an insulin-treated rat model of T1DM. Thirty-two male Sprague-Dawley rats were divided evenly into 4 groups: non-T1DM sedentary (C) (n = 8), non-T1DM exercised (CX) (n = 8), T1DM sedentary (D) (n = 8), and T1DM exercised (DX) (n = 8). Exercise training consisted of treadmill running for 5 days/week (1 h, 27 m/min, 6% grade) for 10 weeks. T1DM was induced by multiple streptozotocin injections (20 mg/kg) followed by implantation of subcutaneous insulin pellets. At week 1, an acute exercise bout led to a significant reduction in blood glucose in DX (p < 0.05), whereas CX exhibited an increase in blood glucose (p < 0.05). During acute exercise, serum epinephrine was increased in both DX and CX (p < 0.05), whereas serum glucagon was increased during recovery only in CX (p < 0.01). Following aerobic training in DX, the exercise-mediated reduction in blood glucose remained; however, serum glucagon increased to the same extent as in CX (p < 0.05). DX exhibited significantly less hepatic glycogen (p < 0.001) despite elevations in glycogenic proteins in the liver (p < 0.05). Elevated serum epinephrine and decreased hepatic adrenergic receptor expression were also evident in DX (p < 0.05). In summary, despite aerobic training in DX, abrupt blood glucose reductions and hepatic glycogen deficiencies were evident. These data suggest that sympathetic overactivity may contribute to deficiencies in hepatic glycogen storage. PMID:27175938

  4. Effect of chlorine, sodium chloride, trisodium phosphate, and ultraviolet radiation on the reduction of Yersinia enterocolitica and mesophilic aerobic bacteria from eggshell surface.

    PubMed

    Favier, G L; Escudero, M E; de Guzman, A M

    2001-10-01

    Eggshell sanitizing practices are necessary to improve microbiological safety of fresh hen eggs and their products. In this work, the effects of 100 mg/liter free chlorine (chl), 3% sodium chloride (NaCl), 1, 5, and 12% trisodium phosphate (TSP) in wash solutions, and UVR (ultraviolet radiation; 4.573 microW/cm2) were studied at different times on uninoculated and Yersinia enterocolitica-inoculated eggs. On uninoculated eggs, the best results were obtained with 100 mg/liter chlorine and UV exposure for >25 min, with reductions of 1.28 and 1.60 log cycles, respectively, compared to the average bacterial count (4.55 log CFU/egg) on the control (untreated eggs). On Y. enterocolitica-inoculated eggs, highest reductions of the average bacterial count (7.35 log CFU/egg) were obtained with 5 and 12% TSP and 100 mg/liter chl. The decrease obtained with 12% TSP (3.74-log reduction) was significantly higher (P < 0.05) than those obtained with the remaining treatments. Y. enterocolitica was more resistant to UVR than the eggshell natural mesophilic aerobic microflora, except when low inoculum (4.39 log CFU/egg) was assayed. Changes in eggshell microstructure were measured by the blue lake staining method. The presence of Yersinia and Salmonella in eggshell natural flora was also investigated. PMID:11601717

  5. Tissue Radiation Response with Maximum Tsallis Entropy

    SciTech Connect

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar

    2010-10-08

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  6. MOSFET and MOS capacitor responses to ionizing radiation

    NASA Technical Reports Server (NTRS)

    Benedetto, J. M.; Boesch, H. E., Jr.

    1984-01-01

    The ionizing radiation responses of metal oxide semiconductor (MOS) field-effect transistors (FETs) and MOS capacitors are compared. It is shown that the radiation-induced threshold voltage shift correlates closely with the shift in the MOS capacitor inversion voltage. The radiation-induced interface-state density of the MOSFETs and MOS capacitors was determined by several techniques. It is shown that the presence of 'slow' states can interfere with the interface-state measurements.

  7. Mouse genetic approaches applied to the normal tissue radiation response

    PubMed Central

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic. PMID:22891164

  8. The Campylobacter jejuni MarR-like transcriptional regulators RrpA and RrpB both influence bacterial responses to oxidative and aerobic stresses

    PubMed Central

    Gundogdu, Ozan; da Silva, Daiani T.; Mohammad, Banaz; Elmi, Abdi; Mills, Dominic C.; Wren, Brendan W.; Dorrell, Nick

    2015-01-01

    The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide) respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2) stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA) expression. However, a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Mutation of either rrpA or rrpB also results in a reduction in the level of katA expression, but this reduction was not observed in the rrpAB double mutant. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2) stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the G mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2) stress responses, enhancing bacterial survival in vivo and in the environment. PMID:26257713

  9. Transcranial Direct Current Stimulation Combined with Aerobic Exercise to Optimize Analgesic Responses in Fibromyalgia: A Randomized Placebo-Controlled Clinical Trial

    PubMed Central

    Mendonca, Mariana E.; Simis, Marcel; Grecco, Luanda C.; Battistella, Linamara R.; Baptista, Abrahão F.; Fregni, Felipe

    2016-01-01

    Fibromyalgia is a chronic pain syndrome that is associated with maladaptive plasticity in neural central circuits. One of the neural circuits that are involved in pain in fibromyalgia is the primary motor cortex. We tested a combination intervention that aimed to modulate the motor system: transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) and aerobic exercise (AE). In this phase II, sham-controlled randomized clinical trial, 45 subjects were assigned to 1 of 3 groups: tDCS + AE, AE only, and tDCS only. The following outcomes were assessed: intensity of pain, level of anxiety, quality of life, mood, pressure pain threshold, and cortical plasticity, as indexed by transcranial magnetic stimulation. There was a significant effect for the group-time interaction for intensity of pain, demonstrating that tDCS/AE was superior to AE [F(13, 364) = 2.25, p = 0.007] and tDCS [F(13, 364) = 2.33, p = 0.0056] alone. Post-hoc adjusted analysis showed a difference between tDCS/AE and tDCS group after the first week of stimulation and after 1 month intervention period (p = 0.02 and p = 0.03, respectively). Further, after treatment there was a significant difference between groups in anxiety and mood levels. The combination treatment effected the greatest response. The three groups had no differences regarding responses in motor cortex plasticity, as assessed by TMS. The combination of tDCS with aerobic exercise is superior compared with each individual intervention (cohen's d effect sizes > 0.55). The combination intervention had a significant effect on pain, anxiety and mood. Based on the similar effects on cortical plasticity outcomes, the combination intervention might have affected other neural circuits, such as those that control the affective-emotional aspects of pain. Trial registration: (www.ClinicalTrials.gov), identifier NTC02358902. PMID:27014012

  10. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  11. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA

    PubMed Central

    Mandin, Pierre; Gottesman, Susan

    2010-01-01

    The alternative sigma factor RpoS responds to multiple stresses and activates a large number of genes that allow bacteria to adapt to changing environments. The accumulation of RpoS is regulated at multiple levels, including the regulation of its translation by small regulatory RNAs (sRNAs). A library of plasmids expressing each of 26 Escherichia coli sRNAs that bind Hfq was created to globally and rapidly analyse regulation of an rpoS–lacZ translational fusion. The approach can be easily applied to any gene of interest. When overexpressed, four sRNAs, including OxyS, previously shown to repress rpoS, were observed to repress the expression of the rpoS–lacZ fusion. Along with DsrA and RprA, two previously defined activators of rpoS translation, a third new sRNA activator, ArcZ, was identified. The expression of arcZ is repressed by the aerobic/anaerobic-sensing ArcA–ArcB two-component system under anaerobic conditions and adds translational regulation to the ArcA–ArcB regulon. ArcZ directly represses, and is repressed by, arcB transcription, providing a negative feedback loop that may affect functioning of the ArcA–ArcB regulon. PMID:20683441

  12. Metabolic phenotyping reveals a lipid mediator response to ionizing radiation.

    PubMed

    Laiakis, Evagelia C; Strassburg, Katrin; Bogumil, Ralf; Lai, Steven; Vreeken, Rob J; Hankemeier, Thomas; Langridge, James; Plumb, Robert S; Fornace, Albert J; Astarita, Giuseppe

    2014-09-01

    Exposure to ionizing radiation has dramatically increased in modern society, raising serious health concerns. The molecular response to ionizing radiation, however, is still not completely understood. Here, we screened mouse serum for metabolic alterations following an acute exposure to γ radiation using a multiplatform mass-spectrometry-based strategy. A global, molecular profiling revealed that mouse serum undergoes a series of significant molecular alterations following radiation exposure. We identified and quantified bioactive metabolites belonging to key biochemical pathways and low-abundance, oxygenated, polyunsaturated fatty acids (PUFAs) in the two groups of animals. Exposure to γ radiation induced a significant increase in the serum levels of ether phosphatidylcholines (PCs) while decreasing the levels of diacyl PCs carrying PUFAs. In exposed mice, levels of pro-inflammatory, oxygenated metabolites of arachidonic acid increased, whereas levels of anti-inflammatory metabolites of omega-3 PUFAs decreased. Our results indicate a specific serum lipidomic biosignature that could be utilized as an indicator of radiation exposure and as novel target for therapeutic intervention. Monitoring such a molecular response to radiation exposure might have implications not only for radiation pathology but also for countermeasures and personalized medicine. PMID:25126707

  13. Modeling Clinical Radiation Responses in the IMRT Era

    NASA Astrophysics Data System (ADS)

    Schwartz, J. L.; Murray, D.; Stewart, R. D.; Phillips, M. H.

    2014-03-01

    The purpose of this review is to highlight the critical issues of radiobiological models, particularly as they apply to clinical radiation therapy. Developing models of radiation responses has a long history that continues to the present time. Many different models have been proposed, but in the field of radiation oncology, the linear-quadratic (LQ) model has had the most impact on the design of treatment protocols. Questions have been raised as to the value of the LQ model given that the biological assumption underlying it has been challenged by molecular analyses of cell and tissue responses to radiation. There are also questions as to use of the LQ model for hypofractionation, especially for high dose treatments using a single fraction. While the LQ model might over-estimate the effects of large radiation dose fractions, there is insufficient information to fully justify the adoption of alternative models. However, there is increasing evidence in the literature that non-targeted and other indirect effects of radiation sometimes produce substantial deviations from LQ-like dose-response curves. As preclinical and clinical hypofractionation studies accumulate, new or refined dose-response models that incorporate high-dose/fraction non-targeted and indirect effects may be required, but for now the LQ model remains a simple, useful tool to guide the design of treatment protocols.

  14. Effect of exercise during pregnancy, graded as a percentage of aerobic capacity: maternal and fetal responses of the rat.

    PubMed

    Piçarro, I C; Barros Neto, T L; De Teves, D C; Silva, A C; Denadai, D S; Tarasantchi, J; Russo, A K

    1991-01-01

    1. A number of variables were studied in pregnant rats that underwent strenuous exercise during pregnancy. They were: total weight gain, daily weight gain, length of pregnancy, number of offspring. Also the weight, the heart weight and fibre/capillary ratio of the newborn male rats and their VO2 max at 90 days were measured. 2. The exercise was graded in accordance to previous aerobic capacity as determined by VO2 max with relative loads of 60% (E60), 70% (E70), 80% (E80) and 90% (E90) of VO2 max being applied to the various groups (N = 6 per group). 3. The total weight gain and daily weight gain was significantly less in the E70, E80 and E90 groups. Weight gain in the anabolic phase (0-14d) was not different, but during the first week the weight gain in the E90 group was significantly less than control group. In the catabolic phase the observations were similar the first week of the anabolic phase. 4. Length of pregnancy, heart weight offspring and VO2 max of 90-day-old male rats were not significantly different. The number of offspring of the E90 group was significantly smaller than the control, E60 and E70 groups. 5. The offspring body weight was less in the E70, E80 and E90 groups than control group and was significantly less in the E90 group compared to the E60 and E70 groups. 6. The fibre/capillary ratio of the offspring was different in the E90 group compared to the control group. 7. These results suggest that the effect of exercise depends on the relative work load applied to the mother and these effects are particularly marked at high work loads. PMID:1685371

  15. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    SciTech Connect

    Bueno, J. Baselmans, J. J. A; Coumou, P. C. J. J.; Zheng, G.; Visser, P. J. de; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.

    2014-11-10

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  16. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    NASA Astrophysics Data System (ADS)

    Bueno, J.; Coumou, P. C. J. J.; Zheng, G.; de Visser, P. J.; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.; Baselmans, J. J. A.

    2014-11-01

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  17. Verifying a nuclear weapon`s response to radiation environments

    SciTech Connect

    Dean, F.F.; Barrett, W.H.

    1998-05-01

    The process described in the paper is being applied as part of the design verification of a replacement component designed for a nuclear weapon currently in the active stockpile. This process is an adaptation of the process successfully used in nuclear weapon development programs. The verification process concentrates on evaluating system response to radiation environments, verifying system performance during and after exposure to radiation environments, and assessing system survivability.

  18. Mechanisms of radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.

  19. Mouse brain responses to charged particle radiation

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Mao, Xiao-Wen; Obenaus, Andre; Pecaut, Michael; Vlkolinsky, Roman; Song, Sheng-Kwei; Spigelman, Igor; Stampanoni, Marco

    CHANGES IN DISEASE LATENCY AND HOMEOSTASIS: 1) APP23 transgenic mice exhibit many of the pathological features of Alzheimer's Disease, and the disease progression is continuous over several months. Electrophysiological measurements have shown that disease-related decreases in synaptic efficacy occur earlier in irradiated APP23 animals. 2) Using vascular polymer cast technology combined with micro-tomographic imaging, microvasculature changes following irradiation have been detected and are consistent with loss of vessels and an increased spacing between them. The time course of vessel changes to control and irradiated animals is being constructed. 3) In order to assess the ability of the brain to respond to external environmental shocks and restore orderly normal function (homeostasis), we apply a controlled septic shock by treating animals with lipopolysaccharide (LPS). We find that in irradiated animals, the patterns of electrophysiological changes associated with reactions to lipopolysaccharide (LPS) are complex and unlike those of either LPS or irradiation alone. They further suggest that the brain continues to remodel for up to 6 months following radiation. This is consistent with the idea that irradiation may potentiate the risks from late secondary insults.

  20. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    PubMed Central

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  1. Microbial influences on the small intestinal response to radiation injury

    PubMed Central

    Packey, Christopher D.; Ciorba, Matthew A.

    2014-01-01

    Purpose of review Injury to the small bowel from ionizing radiation occurs commonly in patients undergoing cancer therapy and less commonly in instances of accidental radiation overexposure. Several lines of evidence now suggest that dynamic interactions between the host’s enteric microbiota and innate immune system are important in modulating the intestinal response to radiation. Here, we will review recent developments in the area of acute radiation enteropathy and examine the current state of knowledge regarding the impact of host–microbial interactions in the process. Recent findings There is promise in the development and testing of new clinical biomarkers including serum citrulline. Toll-like receptor agonists and innate immune system signaling pathways including nuclear factor-kappa B profoundly alter intestinal epithelial cell apoptosis and crypt survival after radiation exposure. Germ-free conditions, probiotics and antibiotics are each identified as modifiers of disease development and course. A human study suggested that luminal microbiota composition may influence the host’s intestinal response to radiation and may change in those developing postradiation diarrhea. Summary New knowledge implies that investigations aimed at deciphering the microbiome–host interactions before and after small bowl radiation injury may eventually allow prediction of disease course and offer opportunities for the development of novel therapeutic or prophylactic strategies. PMID:20040865

  2. Imaging radiation response in tumor and normal tissue

    PubMed Central

    Rafat, Marjan; Ali, Rehan; Graves, Edward E

    2015-01-01

    Although X-ray computed tomography (CT) and magnetic resonance imaging (MRI) are the primary imaging modalities used in the clinic to monitor tumor response to radiation therapy, multi-modal molecular imaging may facilitate improved early and specific evaluation of this process. Fast and accurate imaging that can provide both quantitative and biological information is necessary to monitor treatment and ultimately to develop individualized treatment options for patients. A combination of molecular and anatomic information will allow for deeper insight into the mechanisms of tumor response, which will lead to more effective radiation treatments as well as improved anti-cancer drugs. Much progress has been made in nuclear medicine imaging probes and MRI techniques to achieve increased accuracy and the evaluation of relevant biomarkers of radiation response. This review will emphasize promising molecular imaging techniques that monitor various biological processes following radiotherapy, including metabolism, hypoxia, cell proliferation, and angiogenesis. PMID:26269771

  3. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  4. Radiation Dose-Response Relationships and Risk Assessment

    SciTech Connect

    Strom, Daniel J.

    2005-07-05

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  5. Response of structural materials to radiation environments

    SciTech Connect

    Czajkowski, C.J.

    1997-12-01

    An evaluation of proton and neutron damage to aluminum, stainless steel, nickel alloys, and various aluminum alloys has been performed. The proton studies were conducted at energies of 200 MeV, 800 MeV, and 23.5 GeV. The proton studies consisted of evaluation and characterization of proton-irradiated window/target materials from accelerators and comparison to nonirradiated archival materials. The materials evaluated for the proton irradiations included 99.9999 wt% aluminum, 1100 aluminum, 5052 aluminum, 304 stainless steel, and inconel 718. The neutron damage research centered on 6061 T-6 aluminum which was obtained from a control-rod follower from the Brookhaven National Laboratory`s (BNL) High Flux Beam Reactor (HFBR). This material had received thermal neutron fluence up to {approximately}4 {times} 10{sup 23} n/cm{sup 2}. The possible effects of thermal-to-fast neutron flux ratios are discussed. The increases in tensile strength in the proton-irradiated materials is shown to be the result of atomic displacements. These displacements cause interstitials and vacancies which aggregate into defect clusters which result in radiation hardening of the materials. Production of gas (helium) in the grain boundaries of proton irradiated 99.9999 wt% aluminum is also discussed. The major factor contributing to the mechanical-property changes in the neutron-irradiated 6061 T-6 aluminum is the production of transmutation products formed by interactions of the aluminum with thermal neutrons. The metallurgical and mechanical-property evaluations for the research consisted of electron microscopy (both scanning and transmission), tensile testing, and microhardness testing.

  6. Role of carbohydrate response element-binding protein (ChREBP) in generating an aerobic metabolic phenotype and in breast cancer progression

    PubMed Central

    Airley, R E; McHugh, P; Evans, A R; Harris, B; Winchester, L; Buffa, F M; Al-Tameemi, W; Leek, R; Harris, A L

    2014-01-01

    Background: The lipogenic transcription factor carbohydrate response element-binding protein (ChREBP) may play a key role in malignant progression of breast cancer by allowing metabolic adaptations to take place in response to changes in oxygenation. Methods: Immunohistochemical analysis of ChREBP was carried out in human breast tumour tissue microarrays representative of malignant progression from normal breast through to metastatic cancer. The ChREBP protein and mRNA expressions were then analysed in a series of breast cancers for correlative analysis with common and breast-specific hypoxia signatures, and survival. Results: In invasive ductal carcinoma, ChREBP correlated significantly with mean ‘downregulated' hypoxia scores (r=0.3, P<0.015, n=67) and in two distinct breast progression arrays, ChREBP protein also increased with malignant progression (P<0.001). However, bioinformatic analysis of a large data set (2136 cases) revealed an apparent reversal in the relationship between ChREBP mRNA level and clinical outcome – not only being significantly correlated with increased survival (log rank P<0.001), but also downregulated in malignant tissue compared with adjacent normal tissue. Conclusion: The ChREBP expression may be reflective of an aerobic metabolic phenotype that may conflict with hypoxia-induced signalling but provide a mechanism for growth at the oxygenated edge of the tumours. PMID:24366300

  7. Mutagenesis during plant responses to UVB radiation.

    PubMed

    Holá, M; Vágnerová, R; Angelis, K J

    2015-08-01

    We tested an idea that induced mutagenesis due to unrepaired DNA lesions, here the UV photoproducts, underlies the impact of UVB irradiation on plant phenotype. For this purpose we used protonemal culture of the moss Physcomitrella patens with 50% of apical cells, which mimics actively growing tissue, the most vulnerable stage for the induction of mutations. We measured the UVB mutation rate of various moss lines with defects in DNA repair (pplig4, ppku70, pprad50, ppmre11), and in selected clones resistant to 2-Fluoroadenine, which were mutated in the adenosine phosphotrasferase gene (APT), we analysed induced mutations by sequencing. In parallel we followed DNA break repair and removal of cyclobutane pyrimidine dimers with a half-life τ = 4 h 14 min determined by comet assay combined with UV dimer specific T4 endonuclease V. We show that UVB induces massive, sequence specific, error-prone bypass repair that is responsible for a high mutation rate owing to relatively slow, though error-free, removal of photoproducts by nucleotide excision repair (NER). PMID:25542779

  8. The Effect of Radiation on the Immune Response to Cancers

    PubMed Central

    Park, Bonggoo; Yee, Cassian; Lee, Kyung-Mi

    2014-01-01

    In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment. PMID:24434638

  9. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  10. SEGR response of a radiation-hardened power MOSFET technology

    SciTech Connect

    Wheatley, C.F.; Titus, J.L.; Burton, D.I.; Carley, D.R.

    1996-12-01

    SEGR response curves are presented for eighteen different device types of radiation-hardened power MOSFETs. Comparisons are made to demonstrate the technology`s insensitivity to die size, rated blocking voltage, channel conductivity, and temperature. From this data, SEGR cross-sectional area curves are inferred.

  11. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  12. INFLUENCE OF INORGANIC AND ORGANIC NUTRIENTS ON AEROBIC BIODEGRADATION AND ON THE ADAPTATION RESPONSE OF SUBSURFACE MICROBIAL COMMUNITIES

    EPA Science Inventory

    The influence of inorganic and organic amendments on the mineralization of ethylene dibromide, p-nitrophenol, phenol, and toluene was examined in subsurface soil samples from a pristine aquifer near Lula, Okla. The responses indicate that the metabolic abilities and nutrient requ...

  13. Growth Differentiation Factor-15 (GDF-15) is a potential marker of radiation response and radiation sensitivity.

    PubMed

    Sándor, Nikolett; Schilling-Tóth, Boglárka; Kis, Enikő; Benedek, Anett; Lumniczky, Katalin; Sáfrány, Géza; Hegyesi, Hargita

    2015-11-01

    We have investigated the importance of GDF-15 (secreted cytokine belonging to the TGF-β superfamily) in low and high dose radiation-induced cellular responses. A telomerase immortalized human fibroblast cell line (F11hT) was used in the experiments. A lentiviral system encoding small hairpin RNAs (shRNA) was used to establish GDF-15 silenced cells. Secreted GDF-15 levels were measured in culture medium by ELISA. Cell cycle analysis was performed by flow cytometry. The experiments demonstrated that in irradiated human fibroblasts GDF-15 expression increased with dose starting from 100mGy. Elevated GDF-15 expression was not detected in bystander cells. The potential role of GDF-15 in radiation response was investigated by silencing GDF-15 in immortalized human fibroblasts with five different shRNA encoded in lentiviral vectors. Cell lines with considerably reduced GDF-15 levels presented increased radiation sensitivity, while a cell line with elevated GDF-15 was more radiation resistant than wild type cells. We have investigated how the reduced GDF-15 levels alter the response of several known radiation inducible genes. In F11hT-shGDF-15 cells the basal expression level of CDKN1A was unaltered relative to F11hT cells, while GADD45A and TGF-β1 mRNA levels were slightly higher, and TP53INP1 was considerably reduced. The radiation-induced expression of TP53INP1 was lower in the silenced than in wild type fibroblast cells. Cell cycle analysis indicated that radiation-induced early G2/M arrest was abrogated in GDF-15 silenced cells. Moreover, radiation-induced bystander effect was less pronounced in GDF-15 silenced fibroblasts. In conclusion, the results suggest that GDF-15 works as a radiation inducible radiation resistance increasing factor in normal human fibroblast cells, acts by regulating the radiation-induced transcription of several genes and might serve as a radiation-induced early biomarker in exposed cells. PMID:26520384

  14. Mycobacterium tuberculosis Response Regulators, DevR and NarL, Interact in Vivo and Co-regulate Gene Expression during Aerobic Nitrate Metabolism*

    PubMed Central

    Malhotra, Vandana; Agrawal, Ruchi; Duncan, Tammi R.; Saini, Deepak. K.; Clark-Curtiss, Josephine E.

    2015-01-01

    Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His241 and Asp61 as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and a ΔnarL mutant strain during exponential growth in broth cultures with or without nitrate defined an ∼30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis ΔdevR, ΔdevSΔdosT, and ΔnarL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR∼P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems. PMID:25659431

  15. Mycobacterium tuberculosis response regulators, DevR and NarL, interact in vivo and co-regulate gene expression during aerobic nitrate metabolism.

    PubMed

    Malhotra, Vandana; Agrawal, Ruchi; Duncan, Tammi R; Saini, Deepak K; Clark-Curtiss, Josephine E

    2015-03-27

    Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and a ΔnarL mutant strain during exponential growth in broth cultures with or without nitrate defined an ∼30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis ΔdevR, ΔdevSΔdosT, and ΔnarL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR∼P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems. PMID:25659431

  16. Do we have predictors of therapy responsiveness for a multimodal therapy concept and aerobic training in breast cancer survivors with chronic cancer-related fatigue?

    PubMed

    Kröz, M; Reif, M; Zerm, R; Winter, K; Schad, F; Gutenbrunner, C; Girke, M; Bartsch, C

    2015-09-01

    Cancer-related fatigue (CRF) is a burdensome symptom for breast cancer (BC) patients. In this pilot study, we tested several questionnaires as predictors for treatment responsiveness, along with the implementation of a multimodal therapy concept consisting of sleep, psycho-education, eurythmy, painting therapy and standard aerobic training. At the Community Hospital Havelhöhe and the Hannover Medical School, 31 BC patients suffering from CRF could be evaluated in a 10-week intervention study. CRF was assessed by the Cancer Fatigue Scale (CFS-D). Further questionnaires were the Pittsburgh Sleep Quality Index, the autonomic regulation scale, Self-Regulation Scale (SRS), the Internal Coherence Scale (ICS) and the European Organization of Research and Treatment Health-Related Quality of Life Core Questionnaire scale. We estimated the regression coefficients of all scales on CFS-D by simple and multiple linear regression analyses and compared regression slopes and variances between the different questionnaires on CFS-D at the end of treatment. We found a significant impact of SRS and ICS at baseline on CFS-D at the end of the intervention [absolute standardised multiple regression coefficient values ranging from 0.319 (SRS) to 0.269 (ICS)] but not for the other questionnaires. In conclusion, this study supports the hypothesis that the SRS or ICS measuring adaptive capacities could be more appropriate as outcome predictors than classical questionnaire measures in complex interventions studies. PMID:25602030

  17. Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress

    PubMed Central

    Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666

  18. microRNAs in Cancer Cell Response to Ionizing Radiation

    PubMed Central

    Czochor, Jennifer R.

    2014-01-01

    Abstract Significance: microRNAs (miRNA) have been characterized as master regulators of the genome. As such, miRNAs are responsible for regulating almost every cellular pathway, including the DNA damage response (DDR) after ionizing radiation (IR). IR is a therapeutic tool that is used for the treatment of several types of cancer, yet the mechanism behind radiation response is not fully understood. Recent Advances: It has been demonstrated that IR can alter miRNA expression profiles, varying greatly from one cell type to the next. It is possible that this variation contributes to the range of tumor cell responsiveness that is observed after radiotherapy, especially considering the extensive role for miRNAs in regulating the DDR. In addition, individual miRNAs or miRNA families have been shown to play a multifaceted role in the DDR, regulating multiple members in a single pathway. Critical Issues: In this review, we will discuss the effects of radiation on miRNA expression as well as explore the function of miRNAs in regulating the cellular response to radiation-induced damage. We will discuss the importance of miRNA regulation at each stage of the DDR, including signal transduction, DNA damage sensing, cell cycle checkpoint activation, DNA double-strand break repair, and apoptosis. We will focus on emphasizing the importance of a single miRNA targeting several mediators within a pathway. Future Directions: miRNAs will continue to emerge as critical regulators of the DDR. Understanding the role of miRNAs in the response to IR will provide insights for improving the current standard therapy. Antioxid. Redox Signal. 21, 293–312. PMID:24206455

  19. Ultrasound-stimulated microbubble enhancement of radiation response.

    PubMed

    Czarnota, Gregory J

    2015-06-01

    Cancer therapies result in the killing of cancer cells but remain largely ineffective, with most patients dying of their disease. The methodology described here is a new image-guided cancer treatment under development that relies on physical methods to alter tumour biology. It enhances tumour responses to radiation significantly by synergistically destroying tumour blood vessels using microbubbles. It achieves tumour specificity by confining the ultrasonic fields that stimulate microbubbles to tumour location only. By perturbing tumour vasculature and activating specific genetic pathways in endothelial cells, the technique has been demonstrated to sensitise the targeted tissues to subsequent therapeutic application of radiation, resulting in significantly enhanced cell killing through a ceramide-dependent pathway initiated at the cell membrane. The treatment reviewed here destroys blood vessels, significantly enhancing the anti-vascular effect of radiation and improving tumour cure. The significant enhancement of localised tumour cell kill observed with this method means that radiation-based treatments can be potentially made more potent and lower doses of radiation utilised. The technique has the potential to have a profound impact on the practice of radiation oncology by offering a novel and safe means of reducing normal tissue toxicity while at the same time significantly increasing treatment effectiveness. PMID:25741736

  20. Surface effects on the radiation response of nanoporous Au foams

    SciTech Connect

    Fu, E. G.; Caro, M.; Wang, Y. Q.; Baldwin, K.; Caro, A.; Zepeda-Ruiz, L. A.; Bringa, E.; Nastasi, M.

    2012-11-05

    We report on an experimental and simulation campaign aimed at exploring the radiation response of nanoporous Au (np-Au) foams. We find different defect accumulation behavior by varying radiation dose-rate in ion-irradiated np-Au foams. Stacking fault tetrahedra are formed when np-Au foams are irradiated at high dose-rate, but they do not seem to be formed in np-Au at low dose-rate irradiation. A model is proposed to explain the dose-rate dependent defect accumulation based on these results.

  1. Radiation-induced response of operational amplifiers in low-level transient radiation environments

    SciTech Connect

    Paulos, J.J.; Bishop, R.J.; Turflinger, T.L.

    1987-12-01

    Extensive computer simulations have been performed on CMOS and bipolar operational amplifiers in an attempt to obtain a better understanding of low-level transient radiation response mechanisms. The simulation methodology has been confirmed using flash X-ray data for the amplifiers studied. Variations in circuit response to loading and feedback configuration have been explored, and several generalizations can be made which may provide a useful basis for a specification methodology.

  2. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. PMID:21051843

  3. The Yeast Anaerobic Response Element AR1b Regulates Aerobic Antifungal Drug-dependent Sterol Gene Expression*

    PubMed Central

    Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.

    2013-01-01

    Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365

  4. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine

  5. A Computational Model of Cellular Response to Modulated Radiation Fields

    SciTech Connect

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  6. Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities.

    PubMed

    Swindoll, C M; Aelion, C M; Pfaender, F K

    1988-01-01

    The influence of inorganic and organic amendments on the mineralization of ethylene dibromide, p-nitrophenol, phenol, and toluene was examined in subsurface soil samples from a pristine aquifer near Lula, Okla. The responses indicate that the metabolic abilities and nutrient requirements of groundwater microorganisms vary substantially within an aquifer. In some samples, additions of inorganic nutrients resulted in a more rapid adaptation to the test substrate and a higher rate of metabolism, indicating that metabolism may have been limited by these nutrients. In other samples from the same aquifer layer, inorganic amendments had little or no influence on mineralization. In general, the addition of multiple inorganic nutrients resulted in a greater enhancement of degradation than did the addition of single substances. Additions of alternate carbon sources, such as glucose or amino acids, inhibited the mineralization of the xenobiotic substrates. This inhibition appears to be the result of the preferential utilization of the more easily degradable carbon amendments. PMID:3125792

  7. Dynamic Response of Model Lipid Membranes to Ultrasonic Radiation Force

    PubMed Central

    Prieto, Martin Loynaz; Oralkan, Ömer; Khuri-Yakub, Butrus T.; Maduke, Merritt C.

    2013-01-01

    Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins. PMID:24194863

  8. Surface radiation governs precipitation responses in transient and equilibrium climates

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Moyer, Elisabeth

    2014-05-01

    Changes in radiative forcing are important not only for their impact on the Earth's temperature but also for their impact on the hydrological cycle. We show that model predictions of an amplified hydrological cycle under higher-CO2 conditions are well explained by changes in the surface energy budget: increased latent heat export largely balances increased downwelling longwave radiation, primarily due to increased humidity in a warmer atmosphere (see also Wild and Liepert 2010). We demonstrate that similar fundamental radiative adjustments govern global precipitation evolution across models, using twenty different GCMs in the Coupled Model Intercomparison Project phase 5 (CMIP5), purpose-run simulations with a fully-coupled GCM (CCSM3), and a simple one-column climate model (CliMT) with no cloud feedbacks but full representations of radiation, convection, turbulence, and surface ocean-atmosphere interaction. Physically understandable surface energy balance changes explain precipitation evolution in both equilibrium and transient climates (the well-documented 'fast' and 'slow' responses), in cases with different forcing agents (solar insolation and CO2), and in geo-engineering simulations where reduced shortwave forcing compensates for increased longwave opacity. We show that the enhancement in precipitation after an increase in radiative forcing is primarily due to the radiative effects of increased water vapor, which in turn produces the similarity in precipitation evolution in solar- and CO2-forced climates. We also show that differences in precipitation evolution between GCMs are due largely to differences in model shortwave feedbacks. The results of this study suggest that changes in the Earth's hydrological cycle under climate change can best be monitored and understood with surface measurements of longwave and shortwave fluxes, especially in the tropics and subtropics that account for the majority of the global moisture supply. References Wild, M. and B

  9. Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans.

    PubMed

    Kobayashi, Yasuhiko; Narumi, Issay; Satoh, Katsuya; Funayama, Tomoo; Kikuchi, Masahiro; Kitayama, Shigeru; Watanabe, Hiroshi

    2004-11-01

    Effect of microgravity on recovery of bacterial cells from radiation damage was examined in IML-2, S/MM-4 and S/MM-9 experiments using the extremely radioresistant bacterium Deinococcus radiodurans. The cells were irradiated with gamma rays before the space flight and incubated on board the Space Shuttle. The survival of the wild type cells incubated in space increased compared with the ground controls, suggesting that the recovery of this bacterium from radiation damage was enhanced under the space environment. No difference was observed between the survivals of radiosensitive mutant rec30 cells incubated in space and on the ground. The amount of DNA-repair related RecA protein induced under microgravity was similar to those of ground controls, however, induction of PprA protein, product of a unique radiation-inducible gene (designated pprA) responsible for loss of radiation resistance in repair-deficient mutant, KH311, was enhanced under microgravity compared with ground controls. Recent investigation in vitro showed that PprA preferentially bound to double-stranded DNA carrying strand breaks, inhibited Escherichia coli exonuclease III activity, and stimulated the DNA end-joining reaction catalyzed by DNA ligases. These results suggest that D. radiodurans has a radiation-induced non-homologous end-joining (NHEJ) repair mechanism in which PprA plays a critical role. PMID:15858357

  10. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    PubMed

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  11. Distinctive molecular responses to ultraviolet radiation between keratinocytes and melanocytes.

    PubMed

    Sun, Xiaoyun; Kim, Arianna; Nakatani, Masashi; Shen, Yao; Liu, Liang

    2016-09-01

    Solar ultraviolet radiation (UVR) is the major risk factor for skin carcinogenesis. To gain new insights into the molecular pathways mediating UVR effects in the skin, we performed comprehensive transcriptomic analyses to identify shared and distinctive molecular responses to UVR between human keratinocytes and melanocytes. Keratinocytes and melanocytes were irradiated with varying doses of UVB (10, 20 and 30 mJ/cm(2) ) then analysed by RNA-Seq at different time points post-UVB radiation (4, 24 and 72 h). Under basal conditions, keratinocytes and melanocytes expressed similar number of genes, although they each expressed a distinctive subset of genes pertaining to their specific cellular identity. Upon UVB radiation, keratinocytes displayed a clear pattern of time- and dose-dependent changes in gene expression that was different from melanocytes. The early UVB-responsive gene set (4 h post-UVR) differed significantly from delayed UVB-responsive gene sets (24 and 72 h). We also identified multiple novel UVB signature genes including PRSS23, SERPINH1, LCE3D and CNFN, which were conserved between melanocyte and keratinocyte lines from different individuals. Taken together, our findings elucidated both common and distinctive molecular features between melanocytes and keratinocytes and uncovered novel UVB signature genes that might be utilized to predict UVB photobiological effects on the skin. PMID:27119462

  12. Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial.

    PubMed

    Wagner, Gerd; Herbsleb, Marco; de la Cruz, Feliberto; Schumann, Andy; Brünner, Franziska; Schachtzabel, Claudia; Gussew, Alexander; Puta, Christian; Smesny, Stefan; Gabriel, Holger W; Reichenbach, Jürgen R; Bär, Karl-Jürgen

    2015-10-01

    Interventional studies suggest that changes in physical fitness affect brain function and structure. We studied the influence of high intensity physical exercise on hippocampal volume and metabolism in 17 young healthy male adults during a 6-week exercise program compared with matched controls. We further aimed to relate these changes to hypothesized changes in exercised-induced brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). We show profound improvement of physical fitness in most subjects and a positive correlation between the degree of fitness improvement and increased BDNF levels. We unexpectedly observed an average volume decrease of about 2%, which was restricted to right hippocampal subfields CA2/3, subiculum, and dentate gyrus and which correlated with fitness improvement and increased BDNF levels negatively. This result indicates that mainly those subjects who did not benefit from the exercise program show decreased hippocampal volume, reduced BDNF levels, and increased TNF-α concentrations. While spectroscopy results do not indicate any neuronal loss (unchanged N-acetylaspartate levels) decreased glutamate-glutamine levels were observed in the right anterior hippocampus in the exercise group only. Responder characteristics need to be studied in more detail. Our results point to an important role of the inflammatory response after exercise on changes in hippocampal structure. PMID:26082010

  13. Radiative Forcing and Climate Response: From Paleoclimate to Future Climate

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Cao, L.

    2011-12-01

    The concept of radiative forcing was introduced to allow comparison of climate effects of different greenhouse gases. In the classic view, radiative forcing is applied to the climate system and the climate responds to this forcing, approaching some equilibrium temperature change that is the product of the radiative forcing times the 'climate sensitivity' to radiative forcing. However, this classic view is oversimplified in several respects. Climate forcing and response often cannot be clearly separated. When carbon dioxide is added to the atmosphere, within days, the increased absorption of longwave radiation begins to warm the interior of the troposphere, affecting various tropospheric properties. Especially in the case of aerosols, it has been found that considering rapid tropospheric adjustment gives a better predictor of "equilibrium" climate change than does the classic definition of radiative forcing. Biogeochemistry also provides additional feedbacks on the climate system. It is generally thought that biogeochemistry helps diminish climate sensitivity to a carbon dioxide emission, since carbon dioxide tends to stimulate carbon dioxide uptake by land plants and the ocean. However, there is potential to destabilize carbon locked up in permafrost and at least some possibility to destabilize methane in continental shelf sediments. Furthermore, wetlands may provide a significant methane feedback. These and other possible biogeochemical feedbacks have the potential to greatly increase the sensitivity of the climate system to carbon dioxide emissions. As time scales extend out to millennia, the large ice sheets can begin to play an important role. In addition to affecting atmospheric flows by their sheer bulk, ice sheets tend to reflect a lot of energy to space. If carbon dioxide remains in the atmosphere long enough, there is potential to melt back the large ice sheets, which would add additional warming to the climate system. It is likely that these millennial

  14. Biological predictors of cervical cancer response to radiation therapy.

    PubMed

    Klopp, Ann H; Eifel, Patricia J

    2012-04-01

    The addition of cisplatin-based chemotherapy to standard radiation therapy reduces the risk of recurrence and disease-related death rates from locally advanced cervical cancers by as much as 50%. However, the absolute gains are relatively small for patients with early tumors, many of whom would have been cured with radiation alone, and recurrence rates are still high for patients who have very large or advanced-stage tumors. As a result, there is a pressing need for more accurate predictors of radiocurability. A variety of types of biomarkers have been shown to correlate with cervical cancer response to radiation therapy. These include traditional clinical and morphologic predictors, non-molecular biomarkers, including hypoxia and fluorodeoxyglucose-positron emission tomography (FDG-PET) avidity, as well as molecular biomarkers, which include single-gene markers or array-based multigene predictors. Multi-gene predictors of response remain immature in cervical cancer, but studies thus far have paved the way for future studies to validate these findings. Methods will need to be standardized and markers will need to be validated on homogeneous patient populations and treatment approaches before they can become useful tools for clinical decision making. In addition, new biomarkers will be of major value only if they add to the predictive value of traditional clinical and morphologic predictors. Ultimately, the most useful biomarkers will identify patients who will benefit from specific molecularly targeted agents in addition to radiation therapy or perhaps identify patient who are at low risk for recurrence, for whom the dose of radiation or chemotherapy can be reduced. PMID:22385921

  15. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of authority and responsibilities for radiation... MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a... of the Radiation Safety Officer as required by § 35.24(e), and a signed copy of each Radiation...

  16. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of authority and responsibilities for radiation... MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a... of the Radiation Safety Officer as required by § 35.24(e), and a signed copy of each Radiation...

  17. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of authority and responsibilities for radiation... MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a... of the Radiation Safety Officer as required by § 35.24(e), and a signed copy of each Radiation...

  18. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of authority and responsibilities for radiation... MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a... of the Radiation Safety Officer as required by § 35.24(e), and a signed copy of each Radiation...

  19. Rapid response radiation sensors for homeland security applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-09-01

    The National Security Technologies, LLC, Remote Sensing Laboratory is developing a rapid response radiation detection system for homeland security field applications. The intelligence-driven system is deployed only when non-radiological information about the target is verifiable. The survey area is often limited, so the detection range is small; in most cases covering a distance of 10 meters or less suffices. Definitive response is required in no more than 3 seconds and should minimize false negative alarms, but can err on the side of positive false alarms. The detection system is rapidly reconfigurable in terms of size, shape, and outer appearance; it is a plug-and-play system. Multiple radiation detection components (viz., two or more sodium iodide scintillators) are used to independently "over-determine" the existence of the threat object. Rapid response electronic dose rate meters are also included in the equipment suite. Carefully studied threat signatures are the basis of the decision making. The use of Rad-Detect predictive modeling provides information on the nature of the threat object. Rad-Detect provides accurate dose rate from heavily shielded large sources; for example those lost in Mexico were Category 1 radiation sources (~3,000 Ci of 60Co), the most dangerous of five categories defined by the International Atomic Energy Agency. Taken out of their shielding containers, Category 1 sources can kill anyone who is exposed to them at close range for a few minutes to an hour. Whenever possible sub-second data acquisition will be attempted, and, when deployed, the system will be characterized for false alarm rates. Although the radiation detection materials selected are fast (viz., faster scintillators), their speed is secondary to sensitivity, which is of primary importance. Results from these efforts will be discussed and demonstrated.

  20. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  1. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  2. Material properties from acoustic radiation force step response

    PubMed Central

    Orescanin, Marko; Toohey, Kathleen S.; Insana, Michael F.

    2009-01-01

    An ultrasonic technique for estimating viscoelastic properties of hydrogels, including engineered biological tissues, is being developed. An acoustic radiation force is applied to deform the gel locally while Doppler pulses track the induced movement. The system efficiently couples radiation force to the medium through an embedded scattering sphere. A single-element, spherically-focused, circular piston element transmits a continuous-wave burst to suddenly apply and remove a radiation force to the sphere. Simultaneously, a linear array and spectral Doppler technique are applied to track the position of the sphere over time. The complex shear modulus of the gel was estimated by applying a harmonic oscillator model to measurements of time-varying sphere displacement. Assuming that the stress-strain response of the surrounding gel is linear, this model yields an impulse response function for the gel system that may be used to estimate material properties for other load functions. The method is designed to explore the force-frequency landscape of cell-matrix viscoelasticity. Reported measurements of the shear modulus of gelatin gels at two concentrations are in close agreement with independent rheometer measurements of the same gels. Accurate modulus measurements require that the rate of Doppler-pulse transmission be matched to a priori estimates of gel properties. PMID:19425636

  3. Photoacoustic monitoring of tumor and normal tissue response to radiation

    PubMed Central

    Rich, Laurie J.; Seshadri, Mukund

    2016-01-01

    Hypoxia is a recognized characteristic of tumors that influences efficacy of radiotherapy (RT). Photoacoustic imaging (PAI) is a relatively new imaging technique that exploits the optical characteristics of hemoglobin to provide information on tissue oxygenation. In the present study, PAI based measures of tumor oxygen saturation (%sO2) were compared to oxygen-enhanced magnetic resonance imaging (MRI) measurements of longitudinal relaxation rate (R1 = 1/T1) and ex-vivo histology in patient derived xenograft (PDX) models of head and neck cancer. PAI was utilized to assess early changes (24 h) in %sO2 following RT and chemoRT (CRT) and to assess changes in salivary gland hemodynamics following radiation. A significant increase in tumor %sO2 and R1 was observed following oxygen inhalation. Good spatial correlation was observed between PAI, MRI and histology. An early increase in %sO2 after RT and CRT detected by PAI was associated with significant tumor growth inhibition. Twenty four hours after RT, PAI also detected loss of hemodynamic response to gustatory stimulation in murine salivary gland tissue suggestive of radiation-induced vascular damage. Our observations illustrate the utility of PAI in detecting tumor and normal tissue hemodynamic response to radiation in head and neck cancers. PMID:26883660

  4. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  5. Radiation response of cultured human cells is unaffected by Johrei.

    PubMed

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-06-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest) in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment) for each of 4 doses of X-rays (0, 2, 4 and 8 Gy). Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment. PMID:17549235

  6. Pluripotent stem cells and DNA damage response to ionizing radiations

    PubMed Central

    Mujoo, Kalpana; Butler, E. Brian; Pandita, Raj K.; Hunt, Clayton R.; Pandita, Tej K.

    2016-01-01

    Pluripotent stem cells (PSCs) hold great promise in regenerative medicine, disease modeling, functional genomics, toxicological studies and cell-based therapeutics due to their unique characteristics of self-renewal and pluripotency. Novel methods for generation of pluripotent stem cells and their differentiation to the specialized cell types such as neuronal cells, myocardial cells, hepatocytes, and beta cells of the pancreas and many other cells of the body are constantly being refined. Pluripotent stem cell derived differentiated cells, including neuronal cells or cardiac cells are ideal for stem cell transplantation as autologous or allogeneic cells from healthy donors due to their minimum risks of rejection. DNA damage induced by ionizing radiation (IR), ultraviolet (UV) light, genotoxic stress, and other intrinsic and extrinsic factors trigger a series of biochemical reactions termed as DNA damage response (DDR). In order to maintain genomic stability, and avoid transmission of mutations into progenitors cells, stem cells have robust DNA damage response signaling – a contrast to somatic cells. Stem cell transplantation may over come the late effects related to radiation. This review will particularly focus on differential DNA damage response between stem cells and derived differentiated cells and the possible pathways that determine such differences. PMID:27332952

  7. Pluripotent Stem Cells and DNA Damage Response to Ionizing Radiations.

    PubMed

    Mujoo, Kalpana; Butler, E Brian; Pandita, Raj K; Hunt, Clayton R; Pandita, Tej K

    2016-07-01

    Pluripotent stem cells (PSCs) hold great promise in regenerative medicine, disease modeling, functional genomics, toxicological studies and cell-based therapeutics due to their unique characteristics of self-renewal and pluripotency. Novel methods for generation of pluripotent stem cells and their differentiation to the specialized cell types such as neuronal cells, myocardial cells, hepatocytes and beta cells of the pancreas and many other cells of the body are constantly being refined. Pluripotent stem cell derived differentiated cells, including neuronal cells or cardiac cells, are ideal for stem cell transplantation as autologous or allogeneic cells from healthy donors due to their minimal risk of rejection. Radiation-induced DNA damage, ultraviolet light, genotoxic stress and other intrinsic and extrinsic factors triggers a series of biochemical reactions known as DNA damage response. To maintain genomic stability and avoid transmission of mutations into progenitors cells, stem cells have robust DNA damage response signaling, a contrast to somatic cells. Stem cell transplantation may protect against radiation-induced late effects. In particular, this review focuses on differential DNA damage response between stem cells and derived differentiated cells and the possible pathways that determine such differences. PMID:27332952

  8. New insights into the cellular response to radiation using microbeams

    NASA Astrophysics Data System (ADS)

    Folkard, Melvyn; Prise, Kevin; Schettino, Giuseppe; Shao, Chunlin; Gilchrist, Stuart; Vojnovic, Boris

    2005-04-01

    Micro-irradiation techniques continue to be highly relevant to a number of radiobiological studies, due to their ability to deliver precise doses of radiation to selected individual cells (or sub-cellular targets) in vitro. The Gray cancer institute (GCI) ion microbeam uses a 1 μm diameter bore glass capillary to vertically collimate protons, or helium ions accelerated by a 4 MV Van de Graaff. Using 3He2+ ions, 99% of cells are targeted with an accuracy of ±2 μm, and with a particle counting accuracy >99%. Using automated cell finding and irradiation procedures, up to 10,000 cells per hour can be individually irradiated. Microbeams are now being used to study a number of novel 'non-targeted' responses that do not follow the standard radiation model based on direct DNA damage and are now known to occur when living cells and tissues are irradiated. One such response is the so-called 'bystander effect' where unirradiated cells are damaged through signalling pathways initiated by a nearby irradiated cell. This effect predominates at low doses and profoundly challenges our understanding of environmental radiation risk. Furthermore, we now have evidence that simple molecules (such as nitric oxide) are involved in the signalling process, such that it may be possible to chemically influence the bystander response. If so, then this could eventually lead to improvements in the treatment of cancer by radiotherapy. Other studies have shown that the bystander effect is induced with equal effectiveness if either the nucleus or the cytoplasm of a cell is targeted.

  9. Observed ozone response to variations in solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Smythe, C. M.; Heath, D. F.

    1984-01-01

    During the winter of 1979, the solar ultraviolet irradiance varied with a period of 13.5 days and an amplitude of 1 percent. The zonal mean ozone values in the tropics varied with the solar irradiance, with an amplitude of 0.25 to 0.60 percent. This observation agrees with earlier calculations, although the response may be overestimated. These results imply changes in ozone at an altitude of 48 kilometers of up to 12 percent over an 11-year solar cycle. Interpretation of ozone changes in the upper stratosphere will require measurements of solar ultraviolet radiation at wavelengths near 200 nanometers.

  10. Effects Ala54Thr polymorphism of FABP2 on obesity index and biochemical variable in response to a aerobic exercise training

    PubMed Central

    Han, Tae Kyung

    2013-01-01

    The purpose of the current study was to investigate whether or not the FABP2 gene polymorphism modulated obesity indices, hemodynamic factor, blood lipid factor, and insulin resistance markers through 12-week aerobic exercise training in abdominal obesity group of Korean mid-life women. A total of 243 abdominally obese subjects of Korean mid-life women voluntarily participated in aerobic exercise training program for 12 weeks. Polymerase Chain Reaction with Restriction Fragment Length Polymorphism (PCR-RFLP) assay was used to assess the FABP2 genotype of the participants (117 of AA homozygotes, 100 of AT heterozygotes, 26 of TT homozygotes). Prior to the participation of the exercise training program, baseline obesity indices, hemodynamic factor, blood lipid factor, and insulin resistance markers were measured. All the measurements were replicated following the 12-week aerobic exercise training program, and then the following results were found. After 12-week aerobic exercise training program, wild type (Ala54Ala) and mutant type (Ala54Thr+Thr54Thr) significantly decreased weight (P > .001), BMI (P > .001), %bf (P > .001), waist circumference (P > .001), WHR (P > .001), muscle mass (wild type p < .022; mutant type P > .001), RHR (P > .001), viseceral adipose area (wild type p < .005; mutant type P > .001), subcutaneous area (P > .001), insulin (wild type p < .005; mutant type P > .001) and significantly increased VO2max (P > .001). And wild type significantly decresed NEFA (P > .05), glucose (P > .05), OGTT 120min glucose (P > .05) and significantly increased HDLC (p > .005). Mutant type significantly decreased SBP (P > .001), DBP (P > .01), TC (P > .01), LPL (P > .05), LDL (P > .001), HOMA index (P > .01). The result of the present study represents that regular aerobic exercise training may beneficially prevent obesity index, blood pressure, blood lipids and insulin resistance markers independent of FABP Ala54Thr wild type and mutant type. PMID:25566432

  11. Acute radiation-induced pulmonary damage: a clinical study on the response to fractionated radiation therapy.

    PubMed

    Mah, K; Van Dyk, J; Keane, T; Poon, P Y

    1987-02-01

    Acute radiation-induced pulmonary damage can be a significant cause of morbidity in radiation therapy of the thorax. A prospective, clinical study was conducted to obtain dose-response data on acute pulmonary damage caused by fractionated radiation therapy. The endpoint was a visible increase in lung density within the irradiated volume on a computed tomographic (CT) examination as observed independently by three diagnostic radiologists. Fifty-four patients with various malignancies of the thorax completed the study. CT chest scans were taken before and at preselected times following radiotherapy. To represent different fractionation schedules of equivalent biological effect, the estimated single dose (ED) model, ED = D X N-0.377 X T-0.058 was used in which D was the average lung dose within the high dose region in cGy, N was the number of fractions, and T was the overall treatment time in days. Patients were grouped according to ED and the percent incidence of pulmonary damage for each group was determined. Total average lung doses ranged from 29.8 Gy to 53.6 Gy given in 10 to 30 fractions over a range of 12 to 60 days. Five patient groups with incidence ranging from 30% (ED of 930) to 90% (ED of 1150) were obtained. The resulting dose-response curve predicted a 50% incidence level at an ED value (ED50) of 1000 +/- 40 ED units. This value represents fractionation schedules equivalent to a total average lung dose of 32.9 Gy given in 15 fractions over 19 days. Over the linear portion of the dose-response curve, a 5% increase in ED (or total dose if N and T remain constant), predicts a 12% increase in the incidence of acute radiation-induced pulmonary damage. PMID:3818385

  12. Sound and structural vibration: Radiation, transmission and response

    NASA Astrophysics Data System (ADS)

    Fahy, F.

    The physical process of vibrational interaction between fluids and solid structures, and models and analyses of the behavior of coupled fluid-structure systems are described. The temporal and spatial distributions of wave field variables, the characteristics of waves in beam, plate, and shell structures, the dispersion relationships between wave speed and frequency forms, the natural frequencies and modes of bounded elastic systems, and the functions of outgoing and returning waves are discussed. The mechanics of sound radiation from vibratory surfaces and the use of far-field evaluation of the Rayleigh integral and traveling wave Fourier component synthesis for analysis of sound radiation for planar surfaces are studied. Fluid loading or vibrating structures, the wave impediance or structures and fluids, and the effects of fluid loading on the radiation of plates are investigated. Sound transmission through various plane partitions, flexural wave propagation in a circular cylindrical shell, and the coupling between shell modes and acoustic duct modes are considered. The analysis of the vibrational response of thin-plate and shell structures to incident sound, acoustic-coupling between structures and enclosed volumes of fluid, and analyses of fluid-structure interaction are examined.

  13. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  14. Characterization of a smartphone camera's response to ultraviolet A radiation.

    PubMed

    Igoe, Damien; Parisi, Alfio; Carter, Brad

    2013-01-01

    As part of a wider study into the use of smartphones as solar ultraviolet radiation monitors, this article characterizes the ultraviolet A (UVA; 320-400 nm) response of a consumer complementary metal oxide semiconductor (CMOS)-based smartphone image sensor in a controlled laboratory environment. The CMOS image sensor in the camera possesses inherent sensitivity to UVA, and despite the attenuation due to the lens and neutral density and wavelength-specific bandpass filters, the measured relative UVA irradiances relative to the incident irradiances range from 0.0065% at 380 nm to 0.0051% at 340 nm. In addition, the sensor demonstrates a predictable response to low-intensity discrete UVA stimuli that can be modelled using the ratio of recorded digital values to the incident UVA irradiance for a given automatic exposure time, and resulting in measurement errors that are typically less than 5%. Our results support the idea that smartphones can be used for scientific monitoring of UVA radiation. PMID:22862556

  15. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  16. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  17. Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film.

    PubMed

    Butson, Ethan T; Yu, Peter K N; Butson, Martin J

    2013-11-01

    Measurement of solar ultraviolet (UV) radiation is an important aspect of dosimetry for the improved knowledge of UV exposure and its associated health related issues. EBT2 Gafchromic film has been designed by its manufacturers as an improved tool for ionizing radiation dosimetry. The film is stated as exhibiting a significant reduction in UV response. However, results have shown that when exposed to UV from the 'bottom side' i.e. from the thick laminate side, the film exhibits a sensitivity to solar UV radiation which is both measurable and accurate for UV dosimetry. Films were irradiated in this position to known solar UV exposures and results are quantified showing a reproducibility of measurement to within ±7% (1 SD) when compared to calibrated UV meters. With an exposure of 20 J cm(-2) broad spectrum solar UV, the films net OD change was found to be 0.248 OD ± 0.021 OD when analysing the results using the red channel region of an Epson V700 desktop scanner. This was compared to 0.0294 OD ± 0.0053 OD change with exposure to the same UV exposure from the top side. This means that solar UV dosimetry can be performed using EBT2 Gafchromic film utilizing the underside of the film for dosimetry. The main advantages of this film type for measurement of UV exposure is the visible colour change and thus easy analysis using a desktop scanner as well as its uniformity in response and its robust physical strength for use in outside exposure situations. PMID:24113466

  18. Response of ionization chamber based pocket dosimeter to beta radiation.

    PubMed

    Kumar, Munish; Gupta, Anil; Pradhan, S M; Bakshi, A K; Chougaonkar, M P; Babu, D A R

    2013-12-01

    Quantitative estimate of the response of ionization chamber based pocket dosimeters (DRDs) to various beta sources was performed. It has been established that the ionization chamber based pocket dosimeters do not respond to beta particles having energy (Emax)<1 MeV and same was verified using (147)Pm, (85)Kr and (204)Tl beta sources. However, for beta particles having energy >1 MeV, the DRDs exhibit measureable response and the values are ~8%, ~14% and ~27% per mSv for natural uranium, (90)Sr/(90)Y and (106)Ru/(106)Rh beta sources respectively. As the energy of the beta particles increases, the response also increases. The response of DRDs to beta particles having energy>1 MeV arises due to the fact that the thickness of the chamber walls is less than the maximum range of beta particles. This may also be one of the reasons for disparity between doses measured with passive/legal dosimeters (TLDs) and DRDs in those situations in which radiation workers are exposed to mixed field of gamma photons and beta particles especially at uranium processing plants, nuclear (power and research) reactors, waste management facilities and fuel reprocessing plants etc. The paper provides the reason (technical) for disparity between the doses recorded by TLDs and DRDs in mixed field of photons and beta particles. PMID:23978508

  19. Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation.

    PubMed

    Gridley, D S; Mao, X W; Cao, J D; Bayeta, E J M; Pecaut, M J

    2013-10-01

    This study evaluated liver from C57BL/6 mice irradiated with low-dose/low-dose-rate (LDR) γ-rays (0.01 Gy, 0.03 cGy/h), with and without subsequent exposure to acute 2 Gy gamma or proton radiation. Analyses were performed on day 56 post-exposure. Expression patterns of apoptosis-related genes were strikingly different among irradiated groups compared with 0 Gy (p < 0.05). Two genes were affected in the Gamma group, whereas 10 were modified in the LDR + Gamma group. In Proton and LDR + Proton groups, there were six and 12 affected genes, respectively. Expression of genes in the Gamma (Traf3) and Proton (Bak1, Birc2, Birc3, Mcl1) groups was no longer different from 0 Gy control group when mice were pre-exposed to LDR γ-rays. When each combined regimen was compared with the corresponding group that received acute radiation alone, two genes in the LDR + Gamma group and 17 genes in the LDR + Proton group were modified; greatest effect was on Birc2 and Nol3 (> 5-fold up-regulated by LDR + Protons). Oxygen radical production in livers from the LDR + Proton group was higher in LDR, Gamma, and LDR + Gamma groups (p < 0.05 vs. 0 Gy), but there were no differences in phagocytosis of E. coli. Sections stained with hematoxylin and eosin (H&E) suggested more inflammation, with and without necrosis, in some irradiated groups. The data demonstrate that response to acute radiation is dependent on radiation quality and regimen and that some LDR γ-ray-induced modifications in liver response were still evident nearly 2 months after exposure. PMID:23869974

  20. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Authority and responsibilities for the radiation... MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of...

  1. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Authority and responsibilities for the radiation... MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of...

  2. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Authority and responsibilities for the radiation... MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of...

  3. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Authority and responsibilities for the radiation... MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation protection program requirements of § 20.1101 of...

  4. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  5. Response of air stagnation frequency to anthropogenically enhanced radiative forcing.

    PubMed

    Horton, Daniel E; Harshvardhan; Diffenbaugh, Noah S

    2012-01-01

    Stagnant atmospheric conditions can lead to hazardous air quality by allowing ozone and particulate matter to accumulate and persist in the near-surface environment. By changing atmospheric circulation and precipitation patterns, global warming could alter the meteorological factors that regulate air stagnation frequency. We analyze the response of the National Climatic Data Center (NCDC) Air Stagnation Index (ASI) to anthropogenically enhanced radiative forcing using global climate model projections of late-21(st) century climate change (SRES A1B scenario). Our results indicate that the atmospheric conditions over the highly populated, highly industrialized regions of the eastern United States, Mediterranean Europe, and eastern China are particularly sensitive to global warming, with the occurrence of stagnant conditions projected to increase 12-to-25% relative to late-20(th) century stagnation frequencies (3-18+ days/year). Changes in the position/strength of the polar jet, in the occurrence of light surface winds, and in the number of precipitation-free days all contribute to more frequent late-21(st) century air mass stagnation over these high-population regions. In addition, we find substantial inter-model spread in the simulated response of stagnation conditions over some regions using either native or bias corrected global climate model simulations, suggesting that changes in the atmospheric circulation and/or the distribution of precipitation represent important sources of uncertainty in the response of air quality to global warming. PMID:23284587

  6. A comparison of physiological responses and rating of perceived exertion between high-impact and low-impact aerobic dance sessions.

    PubMed

    Grant, S; Davidson, W; Aitchison, T; Wilson, J

    1998-09-01

    The aim of this study was to compare the exercise intensity and rating of perceived exertion (RPE) of a high-impact (HIP) and a low-impact (LIP) university aerobic dance session. Ten women [mean (SD) age 22.9 (2.6) years] took part in the study. An incremental treadmill test was performed by each subject to determine maximum oxygen consumption (VO2max) and maximum heart rate (HRmax). The measured VO2max [mean (SD)] was 49.0 (7.5) ml x kg(-1) x min(-1). The subjects were randomly assigned to LIP and HIP sessions (i.e. five of the subjects participated in the HIP session first, and the other five participated in the LIP session first). In a laboratory, heart rate, oxygen uptake and RPE were measured throughout each session for each subject. Expired air was collected continuously throughout the sessions using Douglas bags (ten bags over a 30-min period). The sessions consisted of 20 min of aerobic exercise (bags 1-7) followed by 5 min of local muscular endurance exercise (bags 8 and 9) and 5 min of flexibility exercises (bag 10). The mean intensity of the aerobic section of the LIP and HIP sessions was 51.6% and 64.7% VO2max, respectively. Ninety-five percent confidence intervals for the average difference between the HIP and LIP sessions demonstrate that the %VO2max was between 12% and 14% higher for the HIP session. The mean %HRmax for the LIP and HIP sessions was 71.4% and 76.7%, respectively, with the %HRmax in the HIP session being between 5.4% and 7.2% higher on average than that of the LIP session. On average, the RPE for the aerobic section of the HIP session (12.1) was consistently higher than that of the LIP session (11.1). HIP activity has the potential to maintain/improve the aerobic fitness of its participants. According to the literature, the exercise intensity elicited by LIP activity may have a limited training effect for the population utilised in this study, and for some individuals may result in detraining. Conversely, LIP activities may be an

  7. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  8. Arctic stratospheric sulphur injections: radiative forcings and cloud responses

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Gasparini, B.; Miriam, K.; Kravitz, B.; Rasch, P. J.

    2014-12-01

    Observations and climate projections show a high sensitivity of the Arctic climate to the increase in greenhouse gas emissions, known as the polar amplification. This study evaluates the options of counteracting the rising polar temperatures by stratospheric sulphur injections in the Northern Hemisphere high latitudes.10 Mt of sulphur dioxide are emitted in a point emission source setup centred at the 100 hPa pressure level over Svalbard island (80°N,15°E). We perform simulations with the general circulation models ECHAM5, ECHAM6, and GISS ModelE. We study pulsed emission simulations that differ among themselves by the injection starting date (March-September), injection length (1, 30, or 90 day emission period), and the vertical resolution of the model (for ECHAM6). We find injections in April to be the most efficient in terms of the shortwave radiative forcing at the top-of-the atmosphere over the Arctic region. The distribution of sulphate aerosol spreads out beyond the injection region, with a significant share reaching the Southern Hemisphere. Results from ModelE show high latitude injections could counteract the spring and summer temperature increase due to higher atmospheric CO2 concentrations. Preliminary results with a more realistic description of clouds in ECHAM-HAM reveal a complex pattern of responses, most notably: a decrease in Northern Hemisphere cirrus clouds strengthening the effect of stratospheric aerosols in ECHAM5 a decrease in low-level clouds over the Arctic increasing the incoming solar radiation and causing a net positive radiative balance cirrus clouds are resilient to stratospheric sulphur injections in the absence of sulphate warming

  9. Response of radiation monitoring labels to gamma rays and electrons

    NASA Astrophysics Data System (ADS)

    Rahim, F. Abdel; Miller, A.; McLaughlin, W. L.

    Many kinds of coated or impregnated reflecting papers change color or become colored by large radiation doses. Such papers or "labels" do not generally supply dosimetry information, but may give useful inventory information, namely a visual indication of whether or not an industrial product or location has been irradiated to high doses. Among labels available worldwide, a few are suitable for indicating absorbed dose regions of slightly less than 10 4 Gy (< 1 Mrad), and some are intended for monitoring high dose ranges (i.e., sterilization dose levels of > 10 4 Gy or > 1 Mrad), and in some cases even up to very high dose regions (˜10 5 to 10 6 Gy or ˜10 to 100 Mrad). Only one labels which is expected to be commercially available, was studied for lower dose levels, 10 1-10 3 Gy (1-100 krad), namely one based on polymerization of diacetylene. Tests of stability, sensitivity of ambient light, and differences in dose rate and radiation type (gamma rays and electron beams) were made on 15 kinds of labels. The results show that, for many types of indicators, diverse effects may give misleading conclusions unless countermeasures are taken. For example, some of the most commonly used labels, which contain dyes that indicate changes of pH due to release of halogen from halogenated substrates, have limited shelf life and must be protected from extreme environmental conditions. Some also show a marked rate dependence of response. Readings of color reflection optical densities on labels or long paper strips permit somewhat more precise discrimination of dose levels, and may sometimes be useful for monitoring differences in local dose distributions or area monitoring of radiation damage probabilities around particle accelerators or large radionuclide sources.

  10. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    NASA Technical Reports Server (NTRS)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  11. ADAPTIVE RESPONSE AGAINST SPONTANEOUS NEOPLASTIC TRANSFORMATION IN VITRO INDUCED BY IONIZING RADIATION

    EPA Science Inventory

    The following paragraphs outline a project which addresses the area "Understanding biological responses to radiation and endogeneous damage". The proposed research addresses the following key question: (a) "How much do low doses of radiation protect against subsequent low doses ...

  12. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  13. Radiation response and electrical properties of polymer energy storage capacitors: PVF2, Polysulfone, and Mylar

    NASA Technical Reports Server (NTRS)

    Edwards, L. R.

    1981-01-01

    Efforts were made to develop a polymer film capacitor that is tolerant to radiation. The capacitors are to be utilized in a high voltage pulse discharge application. Radiation response data at high dose/dose rate levels are presented for polyvinylidene fluoride (PVF2), polysulfone, and Mylar. The results show that PVF2 is the most radiation tolerant while Mylar is the least tolerant. The data also show that the radiation response is quite dependent on operating electric stress.

  14. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  15. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  16. Managing for Improved Aerobic Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic deterioration or spoilage of silage is the result of aerobic microorganisms metabolizing components of the silage using oxygen. In the almost 40 years over which these silage conferences have been held, we have come to recognize the typical pattern of aerobic microbial development by which s...

  17. Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim; silverman, vered; harnik, nili; Erlich, caryn

    2016-04-01

    Superposed epoch analysis of meteorological reanalysis data is used to demonstrate a significant connection between intraseasonal solar variability and temperatures in the stratosphere. Decreasing solar flux leads to a cooling of the tropical upper stratosphere above 7hPa, while increasing solar flux leads to a warming of the tropical upper stratosphere above 7hPa, after a lag of approximately six to ten days. Late winter (February-March) Arctic stratospheric temperatures also change in response to changing incoming solar flux in a manner consistent with that seen on the 11 year timescale: ten to thirty days after the start of decreasing solar flux, the polar cap warms during the easterly phase of the Quasi-Biennal Oscillation. In contrast, cooling is present after decreasing solar flux during the westerly phase of the Quasi-Biennal Oscillation (though it is less robust than the warming during the easterly phase). The estimated composite mean changes in Northern Hemisphere upper stratospheric (~ 5hPa) polar temperatures exceed 8K, and are potentially a source of intraseasonal predictability for the surface. These changes in polar temperature are consistent with the changes in wave driving entering the stratosphere. Garfinkel, C.I., V. Silverman, N. Harnik, C. Erlich, Y. Riz (2015), Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation, J. Geophys. Res. Atmos., 120, 7648-7660. doi: 10.1002/2015JD023244.

  18. Image responses to x-ray radiation in ICCD camera

    NASA Astrophysics Data System (ADS)

    Ma, Jiming; Duan, Baojun; Song, Yan; Song, Guzhou; Han, Changcai; Zhou, Ming; Du, Jiye; Wang, Qunshu; Zhang, Jianqi

    2013-08-01

    When used in digital radiography, ICCD camera will be inevitably irradiated by x-ray and the output image will degrade. In this research, we separated ICCD camera into two optical-electric parts, CCD camera and MCP image intensifier, and irradiated them respectively on Co-60 gamma ray source and pulsed x-ray source. By changing time association between radiation and the shutter of CCD camera, the state of power supply of MCP image intensifier, significant differences have been observed in output images. A further analysis has revealed the influence of the CCD chip, readout circuit in CCD camera, and the photocathode, microchannel plate and fluorescent screen in MCP image intensifier on image quality of an irradiated ICCD camera. The study demonstrated that compared with other parts, irradiation response of readout circuit is very slight and in most cases negligible. The interaction of x-ray with CCD chip usually behaves as bright spots or rough background in output images, which depends on x-ray doses. As to the MCP image intensifier, photocathode and microchannel plate are the two main steps that degrade output images. When being irradiated by x-ray, microchannel plate in MCP image intensifier tends to contribute a bright background in output images. Background caused by the photocathode looks more bright and fluctuant. Image responses of fluorescent screen in MCP image intensifier in ICCD camera and that of a coupling fiber bundle are also evaluated in this presentation.

  19. The Radiation Dose-Response of the Human Spinal Cord

    SciTech Connect

    Schultheiss, Timothy E.

    2008-08-01

    Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and {alpha}/{beta} ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The {alpha}/{beta} = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of {alpha}/{beta} is smaller than usually quoted, but values this small were found in some studies. Using {alpha}/{beta} = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation.

  20. Persistent Activation of the Innate Immune Response in Adult Drosophila Following Radiation Exposure During Larval Development

    PubMed Central

    Sudmeier, Lisa J.; Samudrala, Sai-Suma; Howard, Steven P.; Ganetzky, Barry

    2015-01-01

    Cranial radiation therapy (CRT) is an effective treatment for pediatric central nervous system malignancies, but survivors often suffer from neurological and neurocognitive side effects that occur many years after radiation exposure. Although the biological mechanisms underlying these deleterious side effects are incompletely understood, radiation exposure triggers an acute inflammatory response that may evolve into chronic inflammation, offering one avenue of investigation. Recently, we developed a Drosophila model of the neurotoxic side effects of radiation exposure. Here we use this model to investigate the role of the innate immune system in response to radiation exposure. We show that the innate immune response and NF-ĸB target gene expression is activated in the adult Drosophila brain following radiation exposure during larval development, and that this response is sustained in adult flies weeks after radiation exposure. We also present preliminary data suggesting that innate immunity is radioprotective during Drosophila development. Together our data suggest that activation of the innate immune response may be beneficial initially for survival following radiation exposure but result in long-term deleterious consequences, with chronic inflammation leading to impaired neuronal function and viability at later stages. This work lays the foundation for future studies of how the innate immune response is triggered by radiation exposure and its role in mediating the biological responses to radiation. These studies may facilitate the development of strategies to reduce the deleterious side effects of CRT. PMID:26333838

  1. Altering the Response to Radiation: Sensitizers and Protectors

    PubMed Central

    Citrin, Deborah E.; Mitchell, James B.

    2014-01-01

    A number of agents are used clinically to enhance the efficacy of radiotherapy today, many of which are cytotoxic chemotherapies. Agents that enhance radiation induced tumor cell killing or protect normal tissues from the deleterious effects of ionizing radiation are collectively termed radiation modifiers. A significant effort in radiobiological research is geared towards describing and testing radiation modifiers with the intent of enhancing the therapeutic effects of radiation while minimizing normal tissue toxicity. In this review, we discuss the characteristics of these agents, the testing required to translate these agents into clinical trials, and highlight some challenges in these efforts. PMID:25499642

  2. ULTRAVIOLET PROTECTIVE PIGMENTS AND DNA DIMER INDUCTION AS RESPONSES TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet (UV) radiation. The most basic effect of UV radiation on biological systems is damage to DNA. In response to UV radiation organisms have ad...

  3. A Raman spectroscopic study of cell response to clinical doses of ionizing radiation.

    PubMed

    Harder, Samantha J; Matthews, Quinn; Isabelle, Martin; Brolo, Alexandre G; Lum, Julian J; Jirasek, Andrew

    2015-01-01

    The drive toward personalized radiation therapy (RT) has created significant interest in determining patient-specific tumor and normal tissue responses to radiation. Raman spectroscopy (RS) is a non-invasive and label-free technique that can detect radiation response through assessment of radiation-induced biochemical changes in tumor cells. In the current study, single-cell RS identified specific radiation-induced responses in four human epithelial tumor cell lines: lung (H460), breast (MCF-7, MDA-MB-231), and prostate (LNCaP), following exposure to clinical doses of radiation (2-10 Gy). At low radiation doses (2 Gy), H460 and MCF-7 cell lines showed an increase in glycogen-related spectral features, and the LNCaP cell line showed a membrane phospholipid-related radiation response. In these cell lines, only spectral information from populations receiving 10 Gy or less was required to identify radiation-related features using principal component analysis (PCA). In contrast, the MDA-MB-231 cell line showed a significant increase in protein relative to nucleic acid and lipid spectral features at doses of 6 Gy or higher, and high-dose information (30, 50 Gy) was required for PCA to identify this biological response. The biochemical nature of the radiation-related changes occurring in cells exposed to clinical doses was found to segregate by status of p53 and radiation sensitivity. Furthermore, the utility of RS to identify a biological response in human tumor cells exposed to therapeutic doses of radiation was found to be governed by the extent of the biochemical changes induced by a radiation response and is therefore cell line specific. The results of this study demonstrate the utility and effectiveness of single-cell RS to identify and measure biological responses in tumor cells exposed to standard radiotherapy doses. PMID:25588147

  4. Molecular responses of radiation-induced liver damage in rats

    PubMed Central

    CHENG, WEI; XIAO, LEI; AINIWAER, AIMUDULA; WANG, YUNLIAN; WU, GE; MAO, RUI; YANG, YING; BAO, YONGXING

    2015-01-01

    The aim of the present study was to investigate the molecular responses involved in radiation-induced liver damage (RILD). Sprague-Dawley rats (6-weeks-old) were irradiated once at a dose of 20 Gy to the right upper quadrant of the abdomen. The rats were then sacrificed 3 days and 1, 2, 4, 8 and 12 weeks after irradiation and rats, which were not exposed to irradiation were used as controls. Weight measurements and blood was obtained from the rats and liver tissues were collected for histological and apoptotic analysis. Immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to measure the expression levels of mRNAs and proteins, respectively. The serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were increased significantly in the RILD rats. Histological investigation revealed the proliferation of collagen and the formation of fibrotic tissue 12 weeks after irradiation. Apoptotic cells were observed predominantly 2 and 4 weeks after irradiation. The immunohistochemistry, RT-qPCR and western blot analysis all revealed the same pattern of changes in the expression levels of the molecules assessed. The expression levels of transforming growth factor-β1 (TGF-β1), nuclear factor (NF)-κB65, mothers against decapentaplegic homolog 3 (Smad3) and Smad7 and connective tissue growth factor were increased during the recovery period following irradiation up to 12 weeks. The expression levels of tumor necrosis factor-α, Smad7 and Smad4 were only increased during the early phase (first 4 weeks) of recovery following irradiation. In the RILD rat model, the molecular responses indicated that the TGF-β1/Smads and NF-κB65 signaling pathways are involved in the mechanism of RILD recovery. PMID:25483171

  5. Radiation response of SiC-based fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira; Snead, L.L.

    1998-03-01

    The radiation response of a base-line carbide composite (SiC/SiC) made with Nicalon{trademark} CG fiber reinforcement was presented for a broad range of dose and irradiation temperatures. Strength loss in this composite and a similar composite made with Tyranno{trademark} fiber was related to shrinkage and a predicted mass loss in the Nicalon CG or Tyranno fibers. In Table 1, measured relative density and length changes ({Delta}p/p{sub o} and {Delta}L/L{sub o}, respectively) for coated and uncoated fibers irradiated at high doses and temperatures (43 dpa-SiC at 1000 C and 80 dpa-SiC at 800 C) are given. Also given are the relative mass loss changes {Delta}m/m{sub o}, calculated from {Delta}p/p{sub o} and {Delta}L/L{sub o} by the expression {Delta}m/m{sub o} = 3 {Delta}L/L{sub o} + {Delta}p/p{sub o}.

  6. Unraveling the drivers of the storm time radiation belt response

    NASA Astrophysics Data System (ADS)

    Kilpua, E. K. J.; Hietala, H.; Turner, D. L.; Koskinen, H. E. J.; Pulkkinen, T. I.; Rodriguez, J. V.; Reeves, G. D.; Claudepierre, S. G.; Spence, H. E.

    2015-05-01

    We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

  7. Is the Adaptive Response an Efficient Protection Against the Detrimental Effects of Space Radiation

    NASA Astrophysics Data System (ADS)

    Mortazavi, S. M. Javad; Cameron, J. R.; Niroomand-rad, A.

    2003-07-01

    exposure to high-energy neutrons, protons and HZE particles during a deep space mission, needs an efficient protection against the detrimental effects of space radiation. Recent findings concerning the induction of adaptive response by neutrons and high cumulative doses of gamma radiation in human cells have opened a new horizon for possible implications of adaptive response in radiation protection and esp ecially in protection against detrimental effects of high levels of radiation during a long-term space journey. We demonstrated significant adaptive response in humans after exposure to high levels of natural radiation. Individuals whose cumulative radiation doses were up to 950 mSv, showed a significant adaptive response after exposure to 1.5 Gy gamma radiation. These doses are much lower than those received by astronauts during a sixmonth space mission. Screening the adaptive response of candidates for long-term space missions will help scientists identify individuals who not only show low radiation susceptibility but also demonstrate a high magnitude of radioadaptive response. In selected individuals, chronic exposure to elevated levels of space radiation during a long-term mission can considerably decrease their radiation susceptibility and protect them against the unpredictable exposure to relatively high radiation levels due to solar activity. Keywords: Space radiation, adaptive response, chromosome aberrations. Introduction In recent decades, humans successfully experienced relatively long time space missions. No doubt, in the near future deep space journeys as long as a few years will be inevitable. Despite current advances, there are still some great problems that limit the duration of such long-term space missions. Radiation risk due to exposure to high levels of cosmic rays and the effects of microgravity are clearly the most important problems that need to be solved before a long-term

  8. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Authority and responsibilities for the radiation protection program. 35.24 Section 35.24 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the...

  9. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of authority and responsibilities for radiation protection programs. 35.2024 Section 35.2024 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a) A licensee shall retain a record...

  10. Transcriptional profile of immediate response to ionizing radiation exposure.

    PubMed

    Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H; Estrada, Rosendo; Eaton, John W; Patibandla, Phani K; Waigel, Sabine J; Li, Dazhuo; Kirtley, John K; Sethu, Palaniappan; Keynton, Robert S

    2016-03-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375. PMID:26981369

  11. Transcriptional profile of immediate response to ionizing radiation exposure

    PubMed Central

    Rouchka, Eric C.; Flight, Robert M.; Fasciotto, Brigitte H.; Estrada, Rosendo; Eaton, John W.; Patibandla, Phani K.; Waigel, Sabine J.; Li, Dazhuo; Kirtley, John K.; Sethu, Palaniappan; Keynton, Robert S.

    2015-01-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose–course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375. PMID:26981369

  12. Bone marrow-derived stem cells and radiation response.

    PubMed

    Greenberger, Joel S; Epperly, Michael

    2009-04-01

    The recovery of tissues and organs from ionizing irradiation is critically dependent on the repopulation of resident stem cells, defined as the subset of cells with capacity for both self-renewal and differentiation. Stem cells of both hematopoietic and epithelial origin reside in defined areas of the cellular microenvironment (recently defined as the stem cell "niche"). Experiments using serial repopulation assays in serial generations of total body irradiated mice receiving transplanted marrow and in continuous bone marrow cultures both identified specific microanatomic sites that comprise the bone marrow stem cell niche. Supportive cells of the hematopoietic microenvironment not only contribute to stem cell repopulation capacity but also to the maintenance of their quiescent or nonproliferative state, which allows the most primitive hematopoietic stem cells to stay in a noncycling state protected from both direct ionizing radiation-induced cell-cycle phase-specific killing and indirect cytokine and free radical mediated killing. Recent evidence has defined both cell contact and humoral mechanisms of protection of hematopoietic stem cells by stromal cells. There is also recent evidence for multilineage differentiation capacity of cells of the hematopoietic microenvironment termed bone marrow stromal cells (mesenchymal stem cells). Both hematopoietic stem cells and mesenchymal stem cell populations have been shown to be involved in the repair of ionizing irradiation damage of distant epithelial as well as other hematopoietic sites through their capacity to migrate through the circulation. The radiobiology of these 2 bone marrow stem cell populations is the subject of intense investigation. This review defines the status of research in the areas of stem cell quiescence, niche contact, and migratory responses to ionizing irradiation. PMID:19249651

  13. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber.

    PubMed

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Lee, Seung Ho; Han, Won-Taek

    2016-02-22

    We have investigated gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber. Radiation-induced attenuation (RIA) of the optical fiber was measured under intermittent gamma-ray irradiations with dose rate of ~10 kGy/h. No radiation hardening effect on the RIA by the gamma-ray pre-dose was found when the exposed fiber was bleached for long periods of time (27~47 days) at room-temperature. Photo-bleaching scheme upon 980 nm LD pumping has proven to be an effective deterrent to the RIA, particularly by suppressing the incipient RIA due to room-temperature unstable self-trapped hole defects (STHs). Large temperature dependence of the RIA of the optical fiber together with the photo-bleaching effect are worthy of note for reinforcing its radiation hard characteristics. PMID:26907044

  14. Responses to the low-level-radiation controversy

    SciTech Connect

    Bond, V.P.

    1981-10-07

    Some data sets dealing with the hazards of low-level radiation are discussed. It is concluded that none of these reports, individually or collectively, changes appreciably or even significantly the evaluations of possible low-level radiation effects that have been made by several authoritative national and international groups. (ACR)

  15. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  16. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers

    SciTech Connect

    Horton, Janet K.; Blitzblau, Rachel C.; Yoo, Sua; Geradts, Joseph; Chang, Zheng; Baker, Jay A.; Georgiade, Gregory S.; Chen, Wei; Siamakpour-Reihani, Sharareh; Wang, Chunhao; Broadwater, Gloria; Groth, Jeff; Palta, Manisha; Dewhirst, Mark; Barry, William T.; Duffy, Eileen A.; and others

    2015-07-15

    Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative, estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should

  18. Coupled Deterministic/Monte Carlo Simulation of Radiation Transport and Detector Response

    SciTech Connect

    Gesh, Christopher J.; Meriwether, George H.; Pagh, Richard T.; Smith, Leon E.

    2005-09-01

    The analysis of radiation sensor systems used to detect and identify nuclear and radiological weapons materials requires detailed radiation transport calculations. Two basic steps are required to solve radiation detection scenario analysis (RDSA) problems. First, the radiation field produced by the source must be calculated. Second, the response that the radiation field produces in a detector must be determined. RDSA problems are characterized by complex geometries, the presence of shielding materials, and large amounts of scattering (or absorption/re-emission). In this paper, we will discuss the use of the Attila code [2] for RDSA.

  19. [Radiation thermometry based on calibration of spectral responsivity].

    PubMed

    Xin, Cheng-Yun; Cheng, Xiao-Fang; Zhang, Zhong-Zheng

    2012-10-01

    Abstract True surface temperatures can be determined by measurements of radiation emitted by the object. The non-spectral parameter in the radiation measurement equation is the function of the relative position between the target and the lens, so calibration of space position is necessary for temperature measurement, when emissivity and temperature are measured simultaneously. In the present paper, the non-spectral parameter was included into the undetermined coefficients of emissivity modeled by finite series, which will not affect the solution of true surface temperature. Therefore, radiation thermometry can be accomplished without calibration of space position and normalization of measurement data. And not the true spectral emissivity but the trend of it can be measured. Two special examples were investigated, respectively. The results indicate that when the effective wavelength of each channel is different, multi-wavelength radiation thermometry equations have the unique solution, while the number of the multiband ones may be zero, one, two or even three. PMID:23285877

  20. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli.

    PubMed Central

    Iuchi, S; Lin, E C

    1992-01-01

    In Escherichia coli, the expression of a group of operons involved in aerobic metabolism is regulated by a two-component signal transduction system in which the arcB gene specifies the membrane sensor protein and the arcA gene specifies the cytoplasmic regulator protein. ArcB is a large protein belonging to a subclass of sensors that have both a transmitter domain (on the N-terminal side) and a receiver domain (on the C-terminal side). In this study, we explored the essential structural features of ArcB by using mutant analysis. The conserved His-292 in the transmitter domain is indispensable, indicating that this residue is the autophosphorylation site, as shown for other homologous sensor proteins. Compression of the range of respiratory control resulting from deletion of the receiver domain and the importance of the conserved Asp-533 and Asp-576 therein suggest that the domain has a kinetic regulatory role in ArcB. There is no evidence that the receiver domain enhances the specificity of signal transduction by ArcB. The defective phenotype of all arcB mutants was corrected by the presence of the wild-type gene. We also showed that the expression of the gene itself is not under respiratory regulation. Images PMID:1597416

  1. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses

    PubMed Central

    Nam, Seon Young; Yang, Kwang Hee; Kim, Cha Soon; Lee, In Kyung; Kim, Ji Young

    2015-01-01

    Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro. PMID:26317642

  2. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses.

    PubMed

    Joo, Hae Mi; Kang, Su Jin; Nam, Seon Young; Yang, Kwang Hee; Kim, Cha Soon; Lee, In Kyung; Kim, Ji Young

    2015-01-01

    Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro. PMID:26317642

  3. Unlocking the Combination: Potentiation of Radiation-Induced Antitumor Responses with Immunotherapy

    PubMed Central

    Wattenberg, Max M.; Fahim, Ahmed; Ahmed, Mansoor M.; Hodge, James W.

    2014-01-01

    There is increasing evidence of the potential for radiation therapy to generate antitumor immune responses. The mechanisms of this immune-activating potential include actions on tumor cells such as immunogenic cell death and phenotypic change. Radiation modulates tumor cell surface expression of cell death receptors, tumor-associated antigens and adhesion molecules. This process of immunomodulation sensitizes tumor cells to immune-mediated killing. Radiation also affects immune compartments, including antigen-presenting cells, cytotoxic T lymphocytes and humoral immunity, leading to specific antitumor immune responses. Recognizing the importance of immunity as a potentiator of response to radiation leads to rational augmentation of antitumor immunity by combining radiation and immunotherapy. Targeted immunotherapy manipulates the immune system in a way that best synergizes with radiation. This article discusses the ability of radiation monotherapy to induce antitumor immunity, with a focus on the effect of radiation on antigen-presenting cells and cytotoxic T lymphocytes. We define two important responses generated by tumor cells, immunogenic cell death and immunomodulation, both of which are radiation dose-dependent. In conclusion, we describe the translation of several combination therapies from the preclinical to the clinical setting and identify opportunities for further exploration. PMID:24960415

  4. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  5. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  6. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  7. Functional Genomics Screening Utilizing Mutant Mouse Embryonic Stem Cells Identifies Novel Radiation-Response Genes

    PubMed Central

    Loesch, Kimberly; Galaviz, Stacy; Hamoui, Zaher; Clanton, Ryan; Akabani, Gamal; Deveau, Michael; DeJesus, Michael; Ioerger, Thomas; Sacchettini, James C.; Wallis, Deeann

    2015-01-01

    Elucidating the genetic determinants of radiation response is crucial to optimizing and individualizing radiotherapy for cancer patients. In order to identify genes that are involved in enhanced sensitivity or resistance to radiation, a library of stable mutant murine embryonic stem cells (ESCs), each with a defined mutation, was screened for cell viability and gene expression in response to radiation exposure. We focused on a cancer-relevant subset of over 500 mutant ESC lines. We identified 13 genes; 7 genes that have been previously implicated in radiation response and 6 other genes that have never been implicated in radiation response. After screening, proteomic analysis showed enrichment for genes involved in cellular component disassembly (e.g. Dstn and Pex14) and regulation of growth (e.g. Adnp2, Epc1, and Ing4). Overall, the best targets with the highest potential for sensitizing cancer cells to radiation were Dstn and Map2k6, and the best targets for enhancing resistance to radiation were Iqgap and Vcan. Hence, we provide compelling evidence that screening mutant ESCs is a powerful approach to identify genes that alter radiation response. Ultimately, this knowledge can be used to define genetic variants or therapeutic targets that will enhance clinical therapy. PMID:25853515

  8. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute [gamma]-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures.

  9. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  10. Climate response to imposed solar radiation reductions in high latitudes

    NASA Astrophysics Data System (ADS)

    MacCracken, M. C.; Shin, H.-J.; Caldeira, K.; Ban-Weiss, G. A.

    2012-07-01

    Increasing concentrations of greenhouse gases are the primary contributor to the 0.8 °C increase in the global average temperature since the late 19th century, shortening cold seasons and lengthening warm seasons. The warming is amplified in polar regions, causing retreat of sea ice, snow cover, permafrost, mountain glaciers, and ice sheets, while also modifying mid-latitude weather, amplifying global sea level rise, and initiating high-latitude carbon feedbacks. Model simulations in which we reduced solar insolation over high latitudes not only cooled those regions, but also drew energy from lower latitudes, exerting a cooling influence over much of the hemisphere in which the reduction was imposed. Our simulations, which used the National Center for Atmospheric Research's CAM3.1 atmospheric model coupled to a slab ocean, indicated that, on a normalized basis, high-latitude reductions in absorbed solar radiation have a significantly larger cooling influence than equivalent solar reductions spread evenly over the Earth. This amplified influence occurred because high-latitude surface cooling preferentially increased sea ice fraction and, therefore, surface albedo, leading to a larger deficit in the radiation budget at the top of the atmosphere than from an equivalent global reduction in solar radiation. Reductions in incoming solar radiation in one polar region (either north or south) resulted in increased poleward energy transport during that hemisphere's cold season and shifted the Inter-Tropical Convergence Zone (ITCZ) away from that pole, whereas equivalent reductions in both polar regions tended to leave the ITCZ approximately in place. Together, these results suggest that, until emissions reductions are sufficient to limit the warming influence of greenhouse gas concentrations, polar reductions in solar radiation, if they can be efficiently and effectively implemented, might, because of fewer undesirable side effects than for global solar radiation reductions

  11. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    NASA Astrophysics Data System (ADS)

    Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-11-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.

  12. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    NASA Astrophysics Data System (ADS)

    Zou, Shiyang; Song, Peng; Guo, Liang; Pei, Wenbing

    2013-09-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.

  13. Factors modifying the response of large animals to low-intensity radiation exposure

    NASA Technical Reports Server (NTRS)

    Page, N. P.; Still, E. T.

    1972-01-01

    In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.

  14. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    SciTech Connect

    Gayduchenko, I. E-mail: gefedorov@mail.ru; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G. E-mail: gefedorov@mail.ru; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-11-21

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.

  15. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    SciTech Connect

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

  16. Tunable Radiation Response in Hybrid Organic-Inorganic Gate Dielectrics for Low-Voltage Graphene Electronics.

    PubMed

    Arnold, Heather N; Cress, Cory D; McMorrow, Julian J; Schmucker, Scott W; Sangwan, Vinod K; Jaber-Ansari, Laila; Kumar, Rajan; Puntambekar, Kanan P; Luck, Kyle A; Marks, Tobin J; Hersam, Mark C

    2016-03-01

    Solution-processed semiconductor and dielectric materials are attractive for future lightweight, low-voltage, flexible electronics, but their response to ionizing radiation environments is not well understood. Here, we investigate the radiation response of graphene field-effect transistors employing multilayer, solution-processed zirconia self-assembled nanodielectrics (Zr-SANDs) with ZrOx as a control. Total ionizing dose (TID) testing is carried out in situ using a vacuum ultraviolet source to a total radiant exposure (RE) of 23.1 μJ/cm(2). The data reveal competing charge density accumulation within and between the individual dielectric layers. Additional measurements of a modified Zr-SAND show that varying individual layer thicknesses within the gate dielectric tuned the TID response. This study thus establishes that the radiation response of graphene electronics can be tailored to achieve a desired radiation sensitivity by incorporating hybrid organic-inorganic gate dielectrics. PMID:26882215

  17. A Molecular Profile of the Endothelial Cell Response to Ionizing Radiation.

    PubMed

    Himburg, Heather A; Sasine, Joshua; Yan, Xiao; Kan, Jenny; Dressman, Holly; Chute, John P

    2016-08-01

    Ionizing radiation exposure can cause acute radiation sickness (ARS) by damaging the hematopoietic compartment. Radiation damages quiescent hematopoietic stem cells (HSCs) and proliferating hematopoietic cells, resulting in neutropenia, thrombocytopenia and increased risk for long-term hematopoietic dysfunction and myelodysplasia. While some aspects of the hematopoietic response to radiation injury are intrinsic to hematopoietic cells, the recovery of the HSC pool and overall hematopoiesis is also dependent on signals from bone marrow endothelial cells (BM ECs) within the HSC vascular niche. The precise mechanisms through which BM ECs regulate HSC regeneration remain unclear. Characterization of the altered EC gene expression that occurs in response to radiation could provide a roadmap to the discovery of EC-derived mechanisms that regulate hematopoietic regeneration. Here, we show that 5 Gy total-body irradiation substantially alters the expression of numerous genes in BM ECs within 24 h and this molecular response largely resolves by day 14 postirradiation. Several unique and nonannotated genes, which encode secreted proteins were upregulated and downregulated in ECs in response to radiation. These results highlight the complexity of the molecular response of BM ECs to ionizing radiation and identify several candidate mechanisms that should be prioritized for functional analysis in models of hematopoietic injury and regeneration. PMID:27387861

  18. Blueberry fruit response to postharvest application of ultraviolet radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (Vaccinium corymbosum, cvs. Collins, Bluecrop) were exposed to UV-C radiation treatments from 0 to 4 kJ/m2 prior to 7 days storage at 5 C plus 2 days at 20 C, 90% RH. Weight loss and firmness were not affected by light treatment. Decay incidence from ripe rot (Collectotrichum acutatum,...

  19. MARKERS OF THE LOW-DOSE RADIATION RESPONSE

    EPA Science Inventory

    Ionizing radiation has a unique ability to induce damage simultaneously at multiple sites within a spatially restricted region of DNA. The resulting double-strand DNA breaks (DSBs) present a major threat to the integrity and stability of the genome. Our understanding of the ori...

  20. Study of the circadian rhythm in radiation response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma-Radiation is often used for the treatment of solid tumors. It induces DNA double-stranded breaks that lead to cell cycle arrest or apoptosis of tumor cells. However, such treatment could also damage normal host tissues that need cell proliferation for function. We have reported previously that...

  1. Chromatin decondensed by acetylation shows an elevated radiation response

    SciTech Connect

    Nackerdien, Z.; Michie, J.; Boehm, L.

    1989-02-01

    V-79 Chinese hamster lung fibroblasts exposed to 5 mM n-sodium butyrate were irradiated with 60Co gamma rays and cell survival was determined by the cell colony assay. In a separate set of experiments the acetylated chromatin obtained from these cells was irradiated and the change of molecular weight of the DNA was evaluated by alkaline sucrose density centrifugation. At a survival level of 10(-2) to 10(-4) cells exposed to butyrate were found to be 1.3-1.4 times more radiosensitive than control cells. Exposure of isolated chromatin to 100 Gy of 60Co gamma irradiation generated 0.9 +/- 0.03 single-strand breaks (ssb) per 10 Gy per 10(8) Da and 2.0 +/- 0.3 ssb/10 Gy/10(8) Da for control and acetylated chromatin, respectively. The elevated radiation sensitivity of chromatin relaxed by acetylation is in good agreement with previous results on chromatin expanded by histone H1 depletion. Packing and accessibility of DNA in chromatin appear to be major factors which influence the radiation sensitivity. The intrinsic radiation sensitivity of chromatin in various packing states is discussed in light of the variation of radiation sensitivity of whole cells in the cell cycle which incorporates repair.

  2. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  3. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Aggarwal, Bharti; Singh, Arvind; Kumar, A. Vinod; Topkar, Anita

    2016-05-01

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  4. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    SciTech Connect

    Berrington de Gonzalez, Amy; Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P.

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  5. Material Response of One-Dimensional, Steady-State Transpiration Cooling in Radiative and Convective Environments

    NASA Technical Reports Server (NTRS)

    Kubota, Hirotoshi

    1975-01-01

    A simplified analytical solution for thermal response of a transpiration-cooled porous heat-shield material in an intense radiative-convective heating environment is presented. Essential features of this approach are "two-flux method" for radiative transfer process and "two-temperature" assumption for solid and gas temperatures. Incident radiative-convective heatings are specified as boundary conditions. Sample results are shown using porous silica with CO2 transpiration and some parameters quantitatively show the effect on this transpiration cooling system. Summarized maps for mass injection rate, porosity and blowing correction factor for radiation are obtained in order to realize such a cooling system.

  6. Development, Verification and Validation of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.

    2016-01-01

    With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.

  7. Enhanced response of the Salmonella mutagenicity test to ionizing radiations

    SciTech Connect

    Roos, H.; Thomas, W.H.; Kellerer, A.M.

    1985-10-01

    Gamma-ray-induced reversions in the Ames Salmonella tester strain TA2638 have been studied for their dependence on a number of experimental parameters. It is shown that exposure to ionizing radiations soon after plating is not the procedure that yields results which correspond to those obtained in the standard utilization of the test with chemical mutagens. The ability to detect mutants is improved by irradiation 6 hr after the beginning of the incubation of the plated bacteria. This procedure has the double advantage of a markedly increased ratio of radiation-induced to spontaneous revertants and of resulting in substantial insensitivity to fluctuations in the number of bacteria initially plated. The reversion-doubling dose so obtained is 1.3 Gy; i.e., it is sufficiently small to disregard inactivation of the bacteria.

  8. Atomic veterans and their families: responses to radiation exposure.

    PubMed

    Murphy, B C; Ellis, P; Greenberg, S

    1990-07-01

    In-depth interviews with seven atomic veterans and their families indicated powerful psychological effects on all family members from exposure to low-level ionizing radiation. Four themes emerged: the invalidation of their experiences by government and other authority figures; family concerns about genetic effects on future generations; family members' desire to protect each other from fears of physical consequences; and desire to leave a record of their experiences to help prevent future suffering. PMID:2382693

  9. Atomic veterans and their families: Responses to radiation exposure

    SciTech Connect

    Murphy, B.C.; Ellis, P.; Greenberg, S. )

    1990-07-01

    In-depth interviews with seven atomic veterans and their families indicated powerful psychological effects on all family members from exposure to low-level ionizing radiation. Four themes emerged: the invalidation of their experiences by government and other authority figures; family concerns about genetic effects on future generations; family members' desire to protect each other from fears of physical consequences; and desire to leave a record of their experiences to help prevent future suffering.

  10. Response-driven Imaging Biomarkers for Predicting Radiation Necrosis of the Brain

    PubMed Central

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H.; Chenevert, Thomas; Lawrence, Theodore S.; Ten Haken, Randall K.; Tsien, Christina I.; Cao, Yue

    2014-01-01

    Purpose Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy. Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Methods and Materials Twenty-nine patients with glioblastoma received six weeks of intensity modulated radiation therapy (RT) and concurrent temozolamide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Results Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p=0.05 and p=0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose-volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Conclusions Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid in predicting delayed radiation necrosis, which could provide guidance in dose-escalation trials. PMID:24778364

  11. Effect of dexamethasone on the cytotoxic and enzymatic response of cultured endothelial cells to radiation

    SciTech Connect

    Lam, T.T.; Rubin, D.B.; Drab, E.A.

    1985-08-01

    Experiments were conducted to determine (1) whether glucocorticoids directly protected endothelial cells (EC) from radiation and (2) if angiotensin converting enzyme (ACE) activity, known to be increased by glucocorticoid, played a role in the EC response to radiation. Confluent monolayers of EC cultured from bovine aorta EC were treated with dexamethasone (10/sup -6/ M); after irradiation (5.0 Gy, /sup 60/Co ..gamma..) ACE and lactate dehydrogenase (LDH) activities, DNA and protein contents, and nuclei number were measured. Combined dexamethasone treatment and radiation increased cellular ACE activity at a time when neither agent alone had an effect (24-hr dexamethasone exposure before 5 Gy and assayed 24 hr after 5 Gy). This interaction between radiation and dexamethasone treatment suggests that the glucocorticoid modifies the cell's response to injury. Although this interaction does not ameliorate radiation cytotoxicity, maintenance of ACE levels in injured vessels by hormones may have physiological significance in the hemodynamics of irradiated tissues.

  12. Bystander effects, genomic instability, adaptive response, and cancer risk assessment for radiation and chemical exposures

    SciTech Connect

    Preston, R. Julian . E-mail: preston.julian@epa.gov

    2005-09-01

    There is an increased interest in utilizing mechanistic data in support of the cancer risk assessment process for ionizing radiation and environmental chemical exposures. In this regard, the use of biologically based dose-response models is particularly advocated. The aim is to provide an enhanced basis for describing the nature of the dose-response curve for induced tumors at low levels of exposure. Cellular responses that might influence the nature of the dose-response curve at low exposures are understandably receiving attention. These responses (bystander effects, genomic instability, and adaptive responses) have been studied most extensively for radiation exposures. The former two could result in an enhancement of the tumor response at low doses and the latter could lead to a reduced response compared to that predicted by a linear extrapolation from high dose responses. Bystander responses, whereby cells other than those directly traversed by radiation tracks are damaged, can alter the concept of target cell population per unit dose. Similarly, induced genomic instability can alter the concept of total response to an exposure. There appears to be a role for oxidative damage and cellular signaling in the etiology of these cellular responses. The adaptive response appears to be inducible at very low doses of radiation or of some chemicals and reduces the cellular response to a larger challenge dose. It is currently unclear how these cellular toxic responses might be involved in tumor formation, if indeed they are. In addition, it is not known how widespread they are as regards inducing agents. Thus, their impact on low dose cancer risk remains to be established.

  13. Vascular response to radiation injury in the rat lung.

    PubMed

    Peterson, L M; Evans, M L; Graham, M M; Eary, J F; Dahlen, D D

    1992-02-01

    Changes in relative left-to-right lung blood flow ratios were followed as an index of vascular radiation injury in left-hemithorax-irradiated Sprague-Dawley rats. Single doses of 11 to 21 Gy gamma radiation resulted in a dose-dependent decrease in relative blood flow to the irradiated lung from 3 to 5 weeks after exposure during the development of pneumonitis. Blood flow returned to near normal by 5 weeks after lower doses (11-13.5 Gy). After a single dose of 15 Gy the left-to-right blood flow ratio recovered to 75% of normal at 12 weeks and leveled off. Following 18 Gy irradiation a second period of reduced flow began 16 weeks after exposure. After 21 Gy irradiation flow to the irradiated side remained low for 1 year after exposure. Rats that received a single dose of 18 Gy to the left hemithorax were also treated with one or two of the following drugs: captopril, cyproheptadine, dexamethasone, diethylcarbamazine, penicillamine, or theophylline. Dexamethasone was most effective at preventing the decrease in blood flow to the irradiated lung when treatment was continued through the pneumonitis period and dose was not tapered until 8 weeks after radiation exposure. All other drugs and drug combinations were, for the most part, virtually ineffective after the pneumonitis period. There was a relatively poor correlation with earlier vascular permeability surface area product studies. This suggests that endothelial damage, as well as damage to other cell types, contributes to the development of post-irradiation fibrosis in the lung. PMID:1734443

  14. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  15. Alpha particle response study of polycrstalline diamond radiation detector

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Topkar, Anita

    2016-05-01

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  16. Linear response theory for annealing of radiation damage in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Litovchenko, Vitaly

    1988-01-01

    A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.

  17. Synchrotron radiation in the study of the variation of dose response in thermoluminescence dosimeters with radiation energy.

    PubMed

    Kron, T; Smith, A; Hyodo, K

    1996-12-01

    Thermoluminescence dosimetry (TLD) is a versatile technique with many applications for dosimetry of ionising radiation. However, in the range of kilovoltage x-rays which is widely used for diagnostic and therapeutic medical applications, problems arise from the differing dose response of most TL dosimeters with the radiation energy. The dose response of various TL detector types was investigated in mono-energetic x-ray beams of 26.8, 33.2, 40, 80.4 and 99.6keV from a synchrotron radiation source at the National Laboratory for High Energy Physics in Japan. This response was studied as a function of TL material (LiF:Mg,Ti, LiF:Mg,Cu,P and Al2O3), the detector geometry and size, and their thermal history. Due to the asymmetric diffraction from a Si crystal employed to produce monoenergetic photons there was more than 50% dose inhomogeneity in some of radiation fields used. Therefore, the different TL dosimeter types were rotated around and the results related to the reading of a set of "standard" LiF:Mg,Ti ribbons which were included in all experiments as reference detectors. No significant influence of the detector shape (physical size, thickness) on the dose response with energy could be found. However, the pre-irradiation thermal history influences the dose response with radiation energy: a fast cool down of LiF:Mg,Ti after a high temperature anneal will increase the sensitivity by more than a factor of two. The relatively new TLD material LiF:Mg,Cu,P (GR-200, obtained from Solid Dosimeter & Detector Laboratories, Beijing) was found to be approximately 100 times more sensitive than the standard LiF:Mg,Ti. In addition it proved to be more tissue equivalent for photon radiation between 27keV and 40keV. The performance of LiF:Mg,Cu,P makes it a very interesting TL material deserving further evaluation for applications in diagnostic and therapeutic x-rays. PMID:9060209

  18. The atmospheric radiation response to solar-particle-events.

    PubMed

    O'Brien, K; Sauer, H H

    2003-01-01

    High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude. PMID:14727666

  19. Modulation of Radiation Response by the Tetrahydrobiopterin Pathway

    PubMed Central

    Pathak, Rupak; Cheema, Amrita K.; Boca, Simina M.; Krager, Kimberly J.; Hauer-Jensen, Martin; Aykin-Burns, Nukhet

    2015-01-01

    Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the “omics” technologies during the past decade has enabled integration of “data from traditional radiobiology research”, with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure. PMID:26785338

  20. Acute Immune-Inflammatory Responses to a Single Bout of Aerobic Exercise in Smokers; The Effect of Smoking History and Status

    PubMed Central

    Kastelein, Tegan Emma; Duffield, Rob; Marino, Frank E.

    2015-01-01

    This study examined the acute immune and inflammatory responses to exercise in smokers compared to non-smokers, and further, the effect of smoking history on these immune-inflammatory responses. Fifty-four recreationally active males who were either smokers (SM; n = 27) or non-smokers (NS; n = 27) were allocated into either young (YSM, YNS) or middle-aged groups (MSM, MNS) based on smoking status. Participants were matched for fitness and smoking habits and following familiarization and baseline testing, undertook an exercise protocol that involved 40 min of cycle ergometry at 50% of VO2peak. Venous blood was obtained pre- and post- (0 min, 1, and 4 h) exercise to measure circulating leukocytes and inflammatory markers interleukin (IL)-6, IL-1β, IL-1ra, and monocyte chemoattractant protein-1 (MCP-1). Compared to MNS, MSM showed elevated basal concentrations of MCP-1, which were increased with a longer smoking history (P < 0.05). In response to exercise, YSM demonstrated an amplified IL-6 response from immediately- to 1 h-post compared to YNS. Furthermore, IL-1ra in YSM was elevated above that of YNS across all time points (P < 0.05). The MSM group had higher IL-1β at baseline when compared to YSM, although IL-1ra was greater for YSM at baseline (P < 0.05). Finally, the post-exercise leukocyte response was greater in MSM compared to YSM and non-smokers (P < 0.05). In conclusion, smoker’s exhibit elevated MCP-1 and IL-1β that seem to be evident with a longer smoking history (~15 years). Furthermore, the differences in exercise-induced inflammatory responses noted in YSM may be indicative tobacco smoke exposure priming circulating leukocytes to amplify inflammatory responses. PMID:26779179

  1. Acute Immune-Inflammatory Responses to a Single Bout of Aerobic Exercise in Smokers; The Effect of Smoking History and Status.

    PubMed

    Kastelein, Tegan Emma; Duffield, Rob; Marino, Frank E

    2015-01-01

    This study examined the acute immune and inflammatory responses to exercise in smokers compared to non-smokers, and further, the effect of smoking history on these immune-inflammatory responses. Fifty-four recreationally active males who were either smokers (SM; n = 27) or non-smokers (NS; n = 27) were allocated into either young (YSM, YNS) or middle-aged groups (MSM, MNS) based on smoking status. Participants were matched for fitness and smoking habits and following familiarization and baseline testing, undertook an exercise protocol that involved 40 min of cycle ergometry at 50% of VO2peak. Venous blood was obtained pre- and post- (0 min, 1, and 4 h) exercise to measure circulating leukocytes and inflammatory markers interleukin (IL)-6, IL-1β, IL-1ra, and monocyte chemoattractant protein-1 (MCP-1). Compared to MNS, MSM showed elevated basal concentrations of MCP-1, which were increased with a longer smoking history (P < 0.05). In response to exercise, YSM demonstrated an amplified IL-6 response from immediately- to 1 h-post compared to YNS. Furthermore, IL-1ra in YSM was elevated above that of YNS across all time points (P < 0.05). The MSM group had higher IL-1β at baseline when compared to YSM, although IL-1ra was greater for YSM at baseline (P < 0.05). Finally, the post-exercise leukocyte response was greater in MSM compared to YSM and non-smokers (P < 0.05). In conclusion, smoker's exhibit elevated MCP-1 and IL-1β that seem to be evident with a longer smoking history (~15 years). Furthermore, the differences in exercise-induced inflammatory responses noted in YSM may be indicative tobacco smoke exposure priming circulating leukocytes to amplify inflammatory responses. PMID:26779179

  2. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy

    SciTech Connect

    Koritzinsky, Marianne

    2015-10-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed to advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers.

  3. Response-driven imaging biomarkers for predicting radiation necrosis of the brain

    NASA Astrophysics Data System (ADS)

    Nazem Zadeh, Mohammad-Reza; Chapman, Christopher H.; Chenevert, Thomas; Lawrence, Theodore S.; Ten Haken, Randall K.; Tsien, Christina I.; Cao, Yue

    2014-05-01

    Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy (RT). Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Twenty-nine patients with glioblastoma received six weeks of intensity modulated RT and concurrent temozolomide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p = 0.05 and p = 0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose-volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid the prediction of delayed radiation necrosis, which could provide guidance in dose-escalation trials.

  4. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy.

    PubMed

    Koritzinsky, Marianne

    2015-10-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed to advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers. PMID:26383681

  5. Radiation-induced bystander effect and adaptive response in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  6. Radiation Induced Non-targeted Response: Mechanism and Potential Clinical Implications

    PubMed Central

    Hei, Tom K.; Zhou, Hongning; Chai, Yunfei; Ponnaiya, Brian; Ivanov, Vladimir N.

    2012-01-01

    Generations of students in radiation biology have been taught that heritable biological effects require direct damage to DNA. Radiation-induced non-targeted/bystander effects represent a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the biological consequences of exposure to low doses of radiation. Although radiation induced bystander effects have been well documented in a variety of biological systems, including 3D human tissue samples and whole organisms, the mechanism is not known. There is recent evidence that the NF-κB-dependent gene expression of interleukin 8, interleukin 6, cyclooxygenase-2, tumor necrosis factor and interleukin 33 in directly irradiated cells produced the cytokines and prostaglandin E2 with autocrine/paracrine functions, which further activated signaling pathways and induced NF-κB-dependent gene expression in bystander cells. The observations that heritable DNA alterations can be propagated to cells many generations after radiation exposure and that bystander cells exhibit genomic instability in ways similar to directly hit cells indicate that the low dose radiation response is a complex interplay of various modulating factors. The potential implication of the non-targeted response in radiation induced secondary cancer is discussed. A better understanding of the mechanism of the non-targeted effects will be invaluable to assess its clinical relevance and ways in which the bystander phenomenon can be manipulated to increase therapeutic gain in radiotherapy. PMID:21143185

  7. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation.

    PubMed

    Sannino, Anna; Sarti, Maurizio; Reddy, Siddharth B; Prihoda, Thomas J; Vijayalaxmi; Scarfì, Maria Rosaria

    2009-06-01

    The incidence of micronuclei was evaluated to assess the induction of an adaptive response to non-ionizing radiofrequency (RF) radiation in peripheral blood lymphocytes collected from five different human volunteers. After stimulation with phytohemagglutinin for 24 h, the cells were exposed to an adaptive dose of 900 MHz RF radiation used for mobile communications (at a peak specific absorption rate of 10 W/kg) for 20 h and then challenged with a single genotoxic dose of mitomycin C (100 ng/ml) at 48 h. Lymphocytes were collected at 72 h to examine the frequency of micronuclei in cytokinesis-blocked binucleated cells. Cells collected from four donors exhibited the induction of adaptive response (i.e., responders). Lymphocytes that were pre-exposed to 900 MHz RF radiation had a significantly decreased incidence of micronuclei induced by the challenge dose of mitomycin C compared to those that were not pre-exposed to 900 MHz RF radiation. These preliminary results suggested that the adaptive response can be induced in cells exposed to non-ionizing radiation. A similar phenomenon has been reported in cells as well as in animals exposed to ionizing radiation in several earlier studies. However, induction of adaptive response was not observed in the remaining donor (i.e., non-responder). The incidence of micronuclei induced by the challenge dose of mitomycin C was not significantly different between the cells that were pre-exposed and unexposed to 900 MHz RF radiation. Thus the overall data indicated the existence of heterogeneity in the induction of an adaptive response between individuals exposed to RF radiation and showed that the less time-consuming micronucleus assay can be used to determine whether an individual is a responder or non-responder. PMID:19580480

  8. Response of intracerebral human glioblastoma xenografts to multifraction radiation exposures

    SciTech Connect

    Ozawa, Tomoko; Faddegon, Bruce A.; Hu, Lily J.; Bollen, Andrew W.; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: ddeen@itsa.ucsf.edu

    2006-09-01

    Purpose: We investigated the effects of fractionated radiation treatments on the life spans of athymic rats bearing intracerebral brain tumors. Methods and Materials: U-251 MG or U-87 MG human glioblastoma cells were implanted into the brains of athymic rats, and the resulting tumors were irradiated once daily with various doses of ionizing radiation for 5 consecutive days or for 10 days with a 2-day break after Day 5. Results: Five daily doses of 1 and 1.5 Gy, and 10 doses of 0.75 and 1 Gy, cured some U-251 MG tumors. However, five daily doses of 0.5 Gy increased the survival time of animals bearing U-251 MG tumors 5 days without curing any animals of their tumors. Ten doses of 0.3 Gy given over 2 weeks extended the lifespan of the host animals 9 days without curing any animals. For U-87 MG tumors, 5 daily doses of 3 Gy produced an increased lifespan of 8 days without curing any animals, and 10 doses of 1 Gy prolonged lifespan 5.5 days without curing any animals. The differences in extension of life span between the 5- and 10-fraction protocols were minor for either tumor type. Conclusion: The finding that the U-251 MG tumors are more sensitive than U-87 MG tumors, despite the fact that U-251 MG tumors contain many more hypoxic cells than U-87 MG tumors, suggests the intrinsic cellular radiosensitivities of these cell lines are more important than hypoxia in determining their in vivo radiosensitivities.

  9. A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.

    PubMed

    Hathout, Leith; Patel, Vishal; Wen, Patrick

    2016-09-01

    Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model. PMID:27572745

  10. Augmentation of radiation response with the vascular targeting agent ZD6126

    SciTech Connect

    Hoang Tien; Armstrong, Eric; Eickhoff, Jens C.; Harari, Paul M. . E-mail: harari@humonc.wisc.edu

    2006-04-01

    Purpose: To examine the antivascular and antitumor activity of the vascular targeting agent ZD6126 in combination with radiation in lung and head-and-neck (H and N) cancer models. The overall hypothesis was that simultaneous targeting of tumor cells (radiation) and tumor vasculature (ZD6126) might enhance tumor cell killing. Methods and Materials: A series of in vitro studies using human umbilical vein endothelial cells (HUVEC) and in vivo studies in athymic mice bearing human lung (H226) and H and N (squamous cell carcinoma [SCC]1, SCC6) tumor xenografts treated with ZD6126 and/or radiation were performed. Results: ZD6126 inhibited the capillary-like network formation in HUVEC. Treatment of HUVEC with ZD6126 resulted in cell cycle arrest in G2/M, with decrease of cells in S phase and proliferation inhibition in a dose-dependent manner. ZD6126 augmented the cell-killing effect of radiation and radiation-induced apoptosis in HUVEC. The combination of ZD6126 and radiation further decreased tumor vascularization in an in vivo Matrigel angiogenesis assay. In tumor xenografts, ZD6126 enhanced the antitumor activity of radiation, resulting in tumor growth delay. Conclusions: These preclinical studies suggest that ZD6126 can augment the radiation response of proliferating endothelial H and N and lung cancer cells. These results complement recent reports suggesting the potential value of combining radiation with vascular targeting/antiangiogenic agents.

  11. Development and Verification of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.

    2016-01-01

    With the recent development of multi-dimensional thermal protection system (TPS) material response codes, the capability to account for surface-to-surface radiation exchange in complex geometries is critical. This paper presents recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute geometric view factors for radiation problems involving multiple surfaces. Verification of the code's radiation capabilities and results of a code-to-code comparison are presented. Finally, a demonstration case of a two-dimensional ablating cavity with enclosure radiation accounting for a changing geometry is shown.

  12. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    NASA Astrophysics Data System (ADS)

    Harder, Samantha J.; Isabelle, Martin; Devorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-02-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.

  13. Response of two-phase droplets to intense electromagnetic radiation.

    PubMed

    Spann, J F; Maloney, D J; Lawson, W F; Casleton, K H

    1993-04-20

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 microm) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid. PMID:20820360

  14. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  15. Initial radiative perturbations and their responses in the Adem thermodynamic model

    SciTech Connect

    Garduno, R.; Adem, J.

    1994-09-01

    Recent computations are carried out with the Adem thermodynamic model to determine the initial radiative perturbations due to the following forcing: atmospheric CO[sub 2] doubling and [+-]1% solar constant increase. The initial radiative perturbation is the increase of the net radiation at the tropopause, or the top of the modeled atmospheric layer, and is computed as the difference between the top net radiation with the forcing before the climate reacts (before the temperatures change and without any feedback) and without the forcing. In each case, the corresponding surface temperature response to the forcing, namely, the equilibrium temperature increase due to the radiative perturbation, is also computed. The feedback parameter, which is independent of the forcing, is defined as the ratio of these two results. These numerical experiments are alternatively made with and without climate feedbacks. The feedback parameter agrees with those of Tricot (1986).

  16. Response of a forest ecotone to ionizing radiation. Final report

    SciTech Connect

    Murphy, P.G.; Sharitz, R.R.

    1986-05-01

    Compositional and structural characteristics of three forest types, including aspen dominated, maple-birch dominated, and an intervening ecotone (midecotone), were studied before and after irradiation in northern Wisconsin. The cumulative exposure resulting from 3300 hours of point-source gamma irradiation was estimated to be 55 kR at 10 m. In all three areas, the density of seedlings at 10 m was greatly reduced within a year following the 1972 radiation event. In the maple-birch area, seedlings were virtually absent at 10 m until 1982 and 1983 when their numbers were comparable to preirradiation levels, and 1984 when they were more than twice as abundant. In the aspen and midecotone areas, 1984 seedling densities at 10 m were only 42 and 17%, respectively, of the preirradiation levels. Similar but less pronounced seedling trends were observed at 20 m but not beyond that distance. Woody plants of tree stature were eliminated at 10 m in all three areas within two years of irradiation but by 1979 (maple-birch area) and 1982 (midecotone area) this size class was once again represented. By 1984 only the aspen area lacked plants at least 2.5 cm in dbh. In 1984, 12 years subsequent to irradiation, total leaf litter production was 109 and 97% of 1971 preirradiation levels at 10 m in aspen and midecotone areas, respectively. But at 10 m in the maple-birch area, it was only 58% of the preirradiation level.

  17. Cell Cycle Regulation and Apoptotic Responses of the Embryonic Chick Retina by Ionizing Radiation

    PubMed Central

    Layer, Paul G.; Frohns, Florian

    2016-01-01

    Ionizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA) showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system. PMID:27163610

  18. Long-Term Dose Response of Trabecular Bone in Mice to Proton Radiation

    PubMed Central

    Bandstra, Eric R.; Pecaut, Michael J.; Anderson, Erica R.; Willey, Jeffrey S.; De Carlo, Francesco; Stock, Stuart R.; Gridley, Daila S.; Nelson, Gregory A.; Levine, Howard G.; Bateman, Ted A.

    2015-01-01

    Astronauts on exploratory missions will experience a complex environment, including microgravity and radiation. While the deleterious effects of unloading on bone are well established, fewer studies have focused on the effects of radiation. We previously demonstrated that 2 Gy of ionizing radiation has deleterious effects on trabecular bone in mice 4 months after exposure. The present study investigated the skeletal response after total doses of proton radiation that astronauts may be exposed to during a solar particle event. We exposed mice to 0.5, 1 or 2 Gy of whole-body proton radiation and killed them humanely 117 days later. Tibiae and femora were analyzed using microcomputed tomography, mechanical testing, mineral composition and quantitative histomorphometry. Relative to control mice, mice exposed to 2 Gy had significant differences in trabecular bone volume fraction (−20%), trabecular separation (+11%), and trabecular volumetric bone mineral density (−19%). Exposure to 1 Gy radiation induced a nonsignificant trend in trabecular bone volume fraction (−13%), while exposure to 0.5 Gy resulted in no differences. No response was detected in cortical bone. Further analysis of the 1-Gy mice using synchrotron microCT revealed a significantly lower trabecular bone volume fraction (−13%) than in control mice. Trabecular bone loss 4 months after exposure to 1 Gy highlights the importance of further examination of how space radiation affects bone. PMID:18494551

  19. Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response.

    PubMed

    White, Derek A; Zhang, Zhang; Li, Li; Gerberich, Jeni; Stojadinovic, Strahinja; Peschke, Peter; Mason, Ralph P

    2016-09-28

    Oxygen-Enhanced Magnetic Resonance Imaging (OE-MRI) techniques were evaluated as potential non-invasive predictive biomarkers of radiation response. Semi quantitative blood-oxygen level dependent (BOLD) and tissue oxygen level dependent (TOLD) contrast, and quantitative responses of relaxation rates (ΔR1 and ΔR2*) to an oxygen breathing challenge during hypofractionated radiotherapy were applied. OE-MRI was performed on subcutaneous Dunning R3327-AT1 rat prostate tumors (n=25) at 4.7 T prior to each irradiation (2F × 15 Gy) to the gross tumor volume. Response to radiation, while inhaling air or oxygen, was assessed by tumor growth delay measured up to four times the initial irradiated tumor volume (VQT). Radiation-induced hypoxia changes were confirmed using a double hypoxia marker assay. Inhaling oxygen during hypofractionated radiotherapy significantly improved radiation response. A correlation was observed between the difference in the 2nd and 1st ΔR1 (ΔΔR1) and VQT for air breathing rats. The TOLD response before the 2nd fraction showed a moderate correlation with VQT for oxygen breathing rats. The correlations indicate useful prognostic factors to predict tumor response to hypofractionation and could readily be applied for patient stratification and personalized radiotherapy treatment planning. PMID:27267808

  20. Dose-response analyses among atomic bomb survivors exposed to low-level radiation

    SciTech Connect

    Kato, H.; Schull, W.J.; Awa, A.; Akiyama, M.; Otake, M.

    1987-05-01

    An analysis of the dose response within the low-dose range (as here defined, doses of less than 50 cGy (50 rad) was conducted among A-bomb survivors in the ABCC-RERF cohort in an attempt to detect the phenomenon of radiation hormesis, if it is present. These studies include as endpoints cancer mortality, cancer incidence, the frequency of cells with chromosomal aberrations, the phytohemagglutinin response of peripheral lymphocytes and the frequency of mental retardation among survivors exposed in utero. In general, the dose response for these indices of radiation damage varied among comparison groups within the low-dose range, but failed to suggest the existence of radiation hormesis.

  1. {sub p}53-Dependent Adaptive Responses in Human Cells Exposed to Space Radiations

    SciTech Connect

    Takahashi, Akihisa; Su Xiaoming; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-11-15

    Purpose: It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Methods and Materials: Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. Results: In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. Conclusion: These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low.

  2. MVP and vaults: a role in the radiation response.

    PubMed

    Lara, Pedro C; Pruschy, Martin; Zimmermann, Martina; Henríquez-Hernández, Luis Alberto

    2011-01-01

    Vaults are evolutionary highly conserved ribonucleoproteins particles with a hollow barrel-like structure. The main component of vaults represents the 110 kDa major vault protein (MVP), whereas two minor vaults proteins comprise the 193 kDa vault poly(ADP-ribose) polymerase (vPARP) and the 240 kDa telomerase-associated protein-1 (TEP-1). Additionally, at least one small and untranslated RNA is found as a constitutive component. MVP seems to play an important role in the development of multidrug resistance. This particle has also been implicated in the regulation of several cellular processes including transport mechanisms, signal transmission and immune responses. Vaults are considered a prognostic marker for different cancer types. The level of MVP expression predicts the clinical outcome after chemotherapy in different tumour types. Recently, new roles have been assigned to MVP and vaults including the association with the insulin-like growth factor-1, hypoxia-inducible factor-1alpha, and the two major DNA double-strand break repair machineries: non-homologous endjoining and homologous recombination. Furthermore, MVP has been proposed as a useful prognostic factor associated with radiotherapy resistance. Here, we review these novel actions of vaults and discuss a putative role of MVP and vaults in the response to radiotherapy. PMID:22040803

  3. Transient quantum coherent response to a partially coherent radiation field

    SciTech Connect

    Sadeq, Zaheen S.; Brumer, Paul

    2014-02-21

    The response of an arbitrary closed quantum system to a partially coherent electric field is investigated, with a focus on the transient coherences in the system. As a model we examine, both perturbatively and numerically, the coherences induced in a three level V system. Both rapid turn-on and pulsed turn-on effects are investigated. The effect of a long and incoherent pulse is also considered, demonstrating that during the pulse the system shows a coherent response which reduces after the pulse is over. Both the pulsed scenario and the thermally broadened CW case approach a mixed state in the long time limit, with rates dictated by the adjacent level spacings and the coherence time of the light, and via a mechanism that is distinctly different from traditional decoherence. These two excitation scenarios are also explored for a minimal “toy” model of the electronic levels in pigment protein complex PC645 by both a collisionally broadened CW laser and by a noisy pulse, where unexpectedly long transient coherence times are observed and explained. The significance of environmentally induced decoherence is noted.

  4. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    SciTech Connect

    Appelt, Ane L.; Ploen, John; Vogelius, Ivan R.; Bentzen, Soren M.; Jakobsen, Anders

    2013-01-01

    Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D{sub 50,i}, and the normalized dose-response gradient, {gamma}{sub 50,i}. Results: A highly significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D{sub 50,TRG1} = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), {gamma}{sub 50,TRG1} = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D{sub 50,TRG1} and {sub 2} = 72.1 Gy (CI 65.3-94.0 Gy), {gamma}{sub 50,TRG1} and {sub 2} = 0.770 (CI 0.338-1.201). Tumor size and N category both had a significant effect on the dose-response relationships. Conclusions: This study demonstrated a significant dose-response relationship for tumor regression after preoperative CRT for locally advanced rectal cancer for tumor dose levels in the range of 50.4-70 Gy, which is higher than the dose range usually considered.

  5. Seismic response of arch dams considering infinite radiation damping and joint opening effects

    NASA Astrophysics Data System (ADS)

    Liu, Xinjia; Xu, Yanjie; Wang, Guanglun; Zhang, Chuhan

    2002-06-01

    Effects of two important factors on earthquake response of high arch dams are considered and combined into one program. These factors are: effects of radiation damping of the infinite canyon and local non-linearity of the contraction joint opening between the dam monoliths. For modeling of rock canyon, the discrete parameters are obtained based on a curve fitting, thus allowing the nonlinear dam system to be solved in the time domain. The earthquake uniform free-field input at the dam-canyon interface is used. An engineering example is given to demonstrate the significant effects of the radiation damping on the structure response.

  6. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  7. Radiation response of the monkey kidney following contralateral nephrectomy

    SciTech Connect

    Robbins, M.E.C.; Stephens, L.C.; Gray, K.N.

    1994-09-30

    The long-term functional and morphologic responses of the hypertrophied monkey kidney after unilateral nephrectomy to fractionated irradiation were assessed. The right kidney of 13 adult female rhesus monkeys was removed. Twelve weeks after unilateral nephrectomy (UN) the remaining kidney received fractionated doses of {gamma}-rays ranging from 35.2 Gy/16 fractions (F) up to 44 Gy/20 F. Glomerular filtration rate, effective renal plasma flow, blood urea nitrogen, serum creatinine, and hematocrit values were measured up to 107 weeks postirradiation (PI). The monkeys were killed and the remaining kidneys were removed 107 weeks PI or earlier when end-stage renal failure was exhibited. Glomeruli were scored for the presence/absence of several pathologic features including increased intercapillary eosinophilic material (ICE), ecstatic capillaries, and thrombi. The relative proportion of renal cortex occupied by glomeruli, interstitium, normal tubules or abnormal tubules was determined using a Chalkley point grid. These quantal dose response data were analyzed using a logistic regression model. Irradiation of the remaining kidney in UN monkeys resulted in a dose-dependent reduction in renal function and anemia. Glomerular dysfunction preceded tubular dysfunction. Animals receiving 44 Gy all manifested progressive clinical renal failure. Conversely, those receiving {le} 39.6 Gy showed stable, albeit impaired, renal function for the duration of the observation period of 107 weeks. Morphologically, the incidence of ICE, ecstatic glomerular capillaries, thrombi, and periglomerular fibrosis was significantly dose-related (p < 0.005). A significant (p < 0.001) dose-related increase in the relative proportion of renal cortex occupied by abnormal tubules was indicative of tubular injury. A highly significant (p < 0.001) dose-dependent increase in the proportion of abnormal to normal tubules was also seen. 27 refs., 4 figs., 2 tabs.

  8. Supplementary low-intensity aerobic training improves aerobic capacity and does not affect psychomotor performance in professional female ballet dancers.

    PubMed

    Smol, Ewelina; Fredyk, Artur

    2012-03-01

    We investigated whether 6-week low-intensity aerobic training program used as a supplement to regular dance practice might improve both the aerobic capacity and psychomotor performance in female ballet dancers. To assess their maximal oxygen uptake (VO2max) and anaerobic threshold (AT), the dancers performed a standard graded bicycle ergometer exercise test until volitional exhaustion prior to and after the supplementary training. At both these occasions, the psychomotor performance (assessed as multiple choice reaction time) and number of correct responses to audio-visual stimuli was assessed at rest and immediately after cessation of maximal intensity exercise. The supplementary low-intensity exercise training increased VO2max and markedly shifted AT toward higher absolute workload. Immediately after completion of the graded exercise to volitional exhaustion, the ballerinas' psychomotor performance remained at the pre-exercise (resting) level. Neither the resting nor the maximal multiple choice reaction time and accuracy of responses were affected by the supplementary aerobic training. The results of this study indicate that addition of low-intensity aerobic training to regular dance practice increases aerobic capacity of ballerinas with no loss of speed and accuracy of their psychomotor reaction. PMID:23485962

  9. Supplementary Low-Intensity Aerobic Training Improves Aerobic Capacity and Does Not Affect Psychomotor Performance in Professional Female Ballet Dancers

    PubMed Central

    Smol, Ewelina; Fredyk, Artur

    2012-01-01

    We investigated whether 6-week low-intensity aerobic training program used as a supplement to regular dance practice might improve both the aerobic capacity and psychomotor performance in female ballet dancers. To assess their maximal oxygen uptake (VO2max) and anaerobic threshold (AT), the dancers performed a standard graded bicycle ergometer exercise test until volitional exhaustion prior to and after the supplementary training. At both these occasions, the psychomotor performance (assessed as multiple choice reaction time) and number of correct responses to audio-visual stimuli was assessed at rest and immediately after cessation of maximal intensity exercise. The supplementary low-intensity exercise training increased VO2max and markedly shifted AT toward higher absolute workload. Immediately after completion of the graded exercise to volitional exhaustion, the ballerinas’ psychomotor performance remained at the pre-exercise (resting) level. Neither the resting nor the maximal multiple choice reaction time and accuracy of responses were affected by the supplementary aerobic training. The results of this study indicate that addition of low-intensity aerobic training to regular dance practice increases aerobic capacity of ballerinas with no loss of speed and accuracy of their psychomotor reaction. PMID:23485962

  10. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses

    PubMed Central

    2014-01-01

    Background Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Results Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Conclusions Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are

  11. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells

    PubMed Central

    Rieger, Kerri E.; Chu, Gilbert

    2004-01-01

    To understand the human response to DNA damage, we used microarrays to measure transcriptional responses of 10 000 genes to ionizing radiation (IR) and ultraviolet radiation (UV). To identify bona fide responses, we used cell lines from 15 individuals and a rigorous statistical method, Significance Analysis of Microarrays (SAM). By exploring how sample number affects SAM, we rendered a portrait of the human damage response with a degree of accuracy unmatched by previous studies. By showing how SAM can be used to estimate the total number of responsive genes, we discovered that 24% of all genes respond to IR and 32% respond to UV, although most responses were less than 2-fold. Many genes were involved in known damage-response pathways for cell cycling and proliferation, apoptosis, DNA repair or the stress response. However, the majority of genes were involved in unexpected pathways, with functions in signal transduction, RNA binding and editing, protein synthesis and degradation, energy metabolism, metabolism of macromolecular precursors, cell structure and adhesion, vesicle transport, or lysosomal metabolism. Although these functions were not previously associated with the damage response in mammals, many were conserved in yeast. These insights reveal new directions for studying the human response to DNA damage. PMID:15356296

  12. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    SciTech Connect

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  13. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  14. Response of the alanine/ESR dosimeter to radiation from an Ir-192 HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Anton, M.; Hackel, T.; Zink, K.; von Voigts-Rhetz, P.; Selbach, H.-J.

    2015-01-01

    The response of the alanine dosimeter to radiation from an Ir-192 source with respect to the absorbed dose to water, relative to Co-60 radiation, was determined experimentally as well as by Monte Carlo simulations. The experimental and Monte Carlo results for the response agree well within the limits of uncertainty. The relative response decreases with an increasing distance between the measurement volume and the source from approximately 98% at a 1 cm distance to 96% at 5 cm. The present data are more accurate, but agree well with data published by Schaeken et al (2011 Phys. Med. Biol. 56 6625-34). The decrease of the relative response with an increasing distance that had already been observed by these authors is confirmed. In the appendix, the properties of the alanine dosimeter with respect to volume and sensitivity corrections are investigated. The inhomogeneous distribution of the detection probability that was taken into account for the analysis was determined experimentally.

  15. The absence of an early calcium response to heavy-ion radiation in Mammalian cells.

    PubMed

    Du, Guanghua; Fischer, Bernd E; Voss, Kay-O; Becker, Gudrun; Taucher-Scholz, Gisela; Kraft, Gerhard; Thiel, Gerhard

    2008-09-01

    Intracellular calcium is an important second messenger that regulates many cell functions. Recent studies have shown that calcium ions can also regulate the cellular responses to ionizing radiation. However, previous data are restricted to cells treated with low-LET radiations (X rays, gamma rays and beta particles). In this work, we investigated the calcium levels in cells exposed to heavy-ion radiation of high LET. The experiments were performed at the single ion hit facility of the GSI heavy-ion microprobe. Using a built-in online calcium imaging system, the intracellular calcium concentrations were examined in HeLa cells and human foreskin fibroblast AG1522-D cells before and after irradiation with 4.8 MeV/nucleon carbon or argon ions. Although the experiment was sensitive enough to detect the calcium response to other known stimuli, no response to heavy-ion radiation was found in these two cell types. We also found that heavy-ion radiation has no impact on calcium oscillation induced by hypoxia stress in fibroblast cells. PMID:18763861

  16. The many interactions between the innate immune system and the response to radiation.

    PubMed

    Candéias, Serge M; Testard, Isabelle

    2015-11-28

    The role of the immune system in the protection of the organism against biological aggressions is long established and well-studied. A new role emerged more recently in the protection from - and the response to - physical trauma such as exposure to ionizing radiation. A pre-existing inflammation, induced by administration of an inflammatory cytokine or of a Toll-like receptor agonist, is indeed able to mitigate the toxic effects of acute radiation exposure. Conversely, it appears that the innate immune system can be activated during the course of the cellular response to radiation. Activation of different sensors and pattern recognition receptors by intra-cellular molecules such as HMGB1 or DNA released in the extra-cellular milieu or in the cytosol by irradiated cells induces the production of inflammatory and anti-viral cytokines. In addition, in human monocytes and macrophages, the expression of inflammatory cytokine genes can be directly induced by p53- and ATM-dependent mechanisms. This last finding establishes a direct link between radiation-induced DNA damage response and radiation-induced inflammation. PMID:25681669

  17. Radiation and annealing response of WWER 440 beltline welding seams

    NASA Astrophysics Data System (ADS)

    Viehrig, Hans-Werner; Houska, Mario; Altstadt, Eberhard

    2015-01-01

    The focus of this paper is on the irradiation response and the effect of thermal annealing in weld materials extracted from decommissioned WWER 440 reactor pressure vessels of the nuclear power plant Greifswald. The characterisation is based on the measurement of the hardness, the yield stress, the Master Curve reference temperature, T0, and the Charpy-V transition temperature through the thickness of multi-layer beltline welding seams in the irradiated and the thermally annealed condition. Additionally, the weld bead structure was characterised by light microscopic studies. We observed a large variation in the through thickness T0 values in the irradiated as well as in thermally annealed condition. The T0 values measured with the T-S-oriented Charpy size SE(B) specimens cut from different thickness locations of the multilayer welding seams strongly depend on the intrinsic weld bead structure along the crack tip. The Master Curve, T0, and Charpy-V, TT47J, based ductile-to-brittle transition temperature progressions through the thickness of the multi-layer welding seam do not correspond to the forecast according to the Russian code. In general, the fracture toughness values at cleavage failure, KJc, measured on SE(B) specimens from the irradiated and large-scale thermally annealed beltline welding seams follow the Master Curve description, but more than the expected number lie outside the curves for 2% and 98% fracture probability. In this case the test standard ASTM E1921 indicates the investigated multi-layer weld metal as not uniform. The multi modal Master Curve based approach describes the temperature dependence of the specimen size adjusted KJc-1T values well. Thermal annealing at 475 °C for 152 h results in the expected decrease of the hardness and tensile strength and the shift of Master Curve and Charpy-V based ductile-to-brittle transition temperatures to lower values.

  18. Simulations of hybrid system varying solar radiation and microturbine response time

    NASA Astrophysics Data System (ADS)

    Fernández Ribaya, Yolanda; Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge

    2015-07-01

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  19. Simulations of hybrid system varying solar radiation and microturbine response time

    SciTech Connect

    Fernández Ribaya, Yolanda Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge

    2015-07-15

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  20. Role of Interleukin-6 in the Radiation Response of Liver Tumors

    SciTech Connect

    Chen, Miao-Fen; Hsieh, Ching-Chuan; Chen, Wen-Cheng; Lai, Chia-Hsuan

    2012-12-01

    Purpose: To investigate the role of interleukin (IL)-6 in biological sequelae and tumor regrowth after irradiation for hepatic malignancy, which are critical for the clinical radiation response of liver tumors. Methods and Materials: The Hepa 1-6 murine hepatocellular cancer cell line was used to examine the radiation response by clonogenic assays and tumor growth delay in vivo. After irradiation in a single dose of 6 Gy in vitro or 15 Gy in vivo, biological changes including cell death and tumor regrowth were examined by experimental manipulation of IL-6 signaling. The effects of blocking IL-6 were assessed by cells preincubated in the presence of IL-6-neutralizing antibody for 24 hours or stably transfected with IL-6-silencing vectors. The correlations among tumor responses, IL-6 levels, and myeloid-derived suppressor cells (MDSC) recruitment were examined using animal experiments. Results: Interleukin-6 expression was positively linked to irradiation and radiation resistance, as demonstrated by in vitro and in vivo experiments. Interleukin-6-silencing vectors induced more tumor inhibition and DNA damage after irradiation. When subjects were irradiated with a sublethal dose, the regrowth of irradiated tumors significantly correlated with IL-6 levels and MDSC recruitment in vivo. Furthermore, blocking of IL-6 could overcome irradiation-induced MDSC recruitment and tumor regrowth after treatment. Conclusion: These data demonstrate that IL-6 is important in determining the radiation response of liver tumor cells. Irradiation-induced IL-6 and the subsequent recruitment of MDSC could be responsible for tumor regrowth. Therefore, treatment with concurrent IL-6 inhibition could be a potential therapeutic strategy for increasing the radiation response of tumors.

  1. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  2. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  3. Is Low-Impact Aerobic Dance an Effective Cardiovascular Workout?

    ERIC Educational Resources Information Center

    Williford, Henry N.; And Others

    1989-01-01

    Presents results of an investigation comparing energy cost and cardiovascular responses of aerobic dance routines performed at different intensity levels in varying amounts of energy expenditure. For low-impact dance to meet minimum guidelines suggested by the American College of Sports Medicine, it should be performed at high intensity. (SM)

  4. Effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds

    NASA Astrophysics Data System (ADS)

    Li, Xiaofan; Li, Tingting; Lou, Lingyun

    2014-12-01

    The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study. Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard to pre-summer heavy rainfall around the summer solstice and tropical rainfall around the winter solstice are conducted and their five-day averages over the model domain are analyzed. In the presence of radiative effects of ice clouds, doubled carbon dioxide changes pre-summer rainfall from the decrease associated with the enhanced atmospheric cooling to the increase associated with the enhanced infrared cooling as a result of the exclusion of radiative effects of water clouds. Doubled carbon dioxide leads to the reduction in tropical rainfall, caused by the removal of radiative effects of water clouds through the suppressed infrared cooling. In the absence of radiative effects of ice clouds, doubled carbon dioxide changes pre-summer rainfall from the increase associated with the strengthened atmospheric warming to the decrease associated with the weakened release of latent heat caused by the elimination of radiative effects of water clouds. The exclusion of radiative effects of water clouds increases tropical rainfall through the strengthened infrared cooling, which is insensitive to the change in carbon dioxide.

  5. Physiological and morphological responses induced by α-particle radiation on Arabidopsis thaliana embryos.

    PubMed

    Ren, J; Liu, L; Jin, X L; Fu, S L; Ding, Z C

    2014-01-01

    Alpha (α)-particle radiation has been thoroughly studied in the occupational and residential environments, but biological mechanisms induced by α-particle radiation on plants are not clearly understood. In this study, radiation effects were examined using different total doses (1, 10, 100 Gy, respectively) of 241Am, α-particle on Arabidopsis embryos. No significant difference in the germination percentage was observed between the 3 levels of doses and the control. Germination speed and root length were increased by treatment with the 1-Gy dose of a-particles, and decreased by treatment with 10- and 100-Gy doses. Moreover, the bending degree of roots increased with radiation dose, and the roots showed an "S" shape when treated with the 100-Gy dose. Root bending under the 100-Gy dose was inhibited by scavengers of reactive oxygen species (ROS). Root gravitropism and root length may respond to the consistency of ROS induced by irradiation. Further analysis of the physiological effects revealed that an increase in a-particle radiation intensity enhanced the activity of catalase and the content of malondialdehyde, but superoxide dismutase activity was reduced by treatment with 100-Gy radiation of a-particles, suggesting that the high linear energy transfer of a-particles may cause a relatively high level of membrane lipid preoxidation and high accumulation of ROS. ROS showed both physiological and morphological responses following exposure to α-particle radiation in Arabidopsis embryos. PMID:25501166

  6. Response Modeling of Lightweight Charring Ablators and Thermal Radiation Testing Results

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.; Rarick, Douglas A.; Collins, Timothy J.

    2003-01-01

    Under NASA's In-Space Propulsion/Aerocapture Program, ARA conducted arc-jet and thermal-radiation ablation test series in 2003 for advanced development, characterization, and response modeling of SRAM-20, SRAM-17, SRAM-14, and PhenCarb-20 ablators. Testing was focused on the future Titan Explorer mission. Convective heating rates (CW) were as high as 153 W/sq cm in the IHF and radiation rates were 100 W/sq cm in the Solar Tower Facility. The ablators showed good performance in the radiation environment without spallation, which was initially a concern, but they also showed higher in-depth temperatures when compared to analytical predictions based on arc-jet thermal-ablation response models. More testing in 2003 is planned in both of these facility to generate a sufficient data base for Titan TPS engineering.

  7. Genetic Background Modulates lncRNA-Coordinated Tissue Response to Low Dose Ionizing Radiation

    DOE PAGESBeta

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.; Costes, Sylvain V.; Snijders, Antoine M.; Mao, Jian-Hua

    2015-01-01

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  8. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    PubMed

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. PMID:26851726

  9. Apoptosis and Ki-67 as predictive factors for response to radiation therapy in feline nasal lymphomas.

    PubMed

    Fu, Dah-Renn; Kato, Daiki; Endo, Yoshifumi; Kadosawa, Tsuyoshi

    2016-08-01

    Nasal lymphoma is the most common nasal tumor in cats and is generally a solitary and radiosensitive tumor. We retrospectively evaluated the response to radiation and survival time in relation to apoptosis and Ki-67 indices in feline nasal lymphomas treated with radiation therapy. The apoptotic and Ki-67 indices were evaluated with TUNEL and immunohistochemical staining in 30 biopsy tissues that were taken before any treatment. These two indices were compared, and differences between different treatment response groups were analyzed. The correlation between the median survival times (MST) and the indices was estimated using the Kaplan Meier method, and statistical differences between survival curves were analyzed using a log-rank method. With regard to apoptotic index, a statistical difference was observed between the samples taken from cats with complete response and stable disease (1.22% vs. 0.45%; P=0.045). The Ki-67 index in cats with both complete response and partial response was significantly higher than in cats with stable disease (44.4% and 39.6% vs. 16.3%; P<0.001 and P=0.008, respectively). The cats with a high level of apoptosis (>0.9%) nasal lymphoma were not significantly prolonged MSTs (P=0.202), however, high Ki-67-positive (>40%) cats experienced a statistically significant relationship with longer survival time (P=0.015). Our results indicate that spontaneous apoptotic and Ki-67 indices are strong predictors for response to radiation therapy in feline nasal lymphomas. PMID:27086717

  10. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    SciTech Connect

    Schindler, Matthew K. Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-03-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals.

  11. GROWTH RESPONSE OF SYMBODINIUM SPP. TO COMBINED TEMPERATURE AND UV RADIATION

    EPA Science Inventory

    Rogers, J.E. and D. Marcovich. In press. Growth Response of a Coral Symbiont, Symbiodinium sp., to Combined Temperature and UV Radiation Exposure (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 June 2004, Savann...

  12. BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    EPA Science Inventory

    There is an increased interest in utilizing mechanistic data in support of the cancer risk assessment process for ionizing radiation and environmental chemical exposures. In this regard the use of biologically based dose-response models is particularly advocated. The aim is to pr...

  13. Regulation of early and delayed radiation responses in rat small intestine by capsaicin-sensitive nerves

    SciTech Connect

    Wang Junru; Zheng Huaien; Kulkarni, Ashwini; Ou Xuemei; Hauer-Jensen, Martin . E-mail: mhjensen@life.uams.edu

    2006-04-01

    Purpose: Mast cells protect against the early manifestations of intestinal radiation toxicity, but promote chronic intestinal wall fibrosis. Intestinal sensory nerves are closely associated with mast cells, both anatomically and functionally, and serve an important role in the regulation of mucosal homeostasis. This study examined the effect of sensory nerve ablation on the intestinal radiation response in an established rat model. Methods and Materials: Rats underwent sensory nerve ablation with capsaicin or sham ablation. Two weeks later, a localized segment of ileum was X-irradiated or sham irradiated. Structural, cellular, and molecular changes were examined 2 weeks (early injury) and 26 weeks (chronic injury) after irradiation. The mast cell dependence of the effect of sensory nerve ablation on intestinal radiation injury was assessed using c-kit mutant (Ws/Ws) mast cell-deficient rats. Results: Capsaicin treatment caused a baseline reduction in mucosal mast cell density, crypt cell proliferation, and expression of substance P and calcitonin gene-related peptide, two neuropeptides released by sensory neurons. Sensory nerve ablation strikingly exacerbated early intestinal radiation toxicity (loss of mucosal surface area, inflammation, intestinal wall thickening), but attenuated the development of chronic intestinal radiation fibrosis (collagen I accumulation and transforming growth factor {beta} immunoreactivity). In mast cell-deficient rats, capsaicin treatment exacerbated postradiation epithelial injury (loss of mucosal surface area), but none of the other aspects of radiation injury were affected by capsaicin treatment. Conclusions: Ablation of capsaicin-sensitive enteric neurons exacerbates early intestinal radiation toxicity, but attenuates development of chronic fibroproliferative changes. The effect of capsaicin treatment on the intestinal radiation response is partly mast cell dependent.

  14. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    SciTech Connect

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  15. Growth and applicability of radiation-responsive silica nanowires

    NASA Astrophysics Data System (ADS)

    Bettge, Martin

    Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three

  16. "Aerobic" Writing: A Writing Practice Model.

    ERIC Educational Resources Information Center

    Crisp, Sally Chandler

    "Aerobic writing" is a writing center strategy designed to keep students in writing "shape." Like aerobic exercise, aerobic writing is sustained for a certain length of time and done on a regular basis at prescribed time intervals. The program requires students to write at least two times a week for approximately an hour each time. Students write,…

  17. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  18. Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage radiation energies.

    PubMed

    Chiu-Tsao, Sou-Tung; Ho, Yunsil; Shankar, Ravi; Wang, Lin; Harrison, Louis B

    2005-11-01

    The purpose of this paper is to evaluate the energy dependence of the response of two new high sensitivity models of radiochromic films EBT and XR-QA. We determined the dose response curves of these films for four different radiation sources, namely, 6 MV photon beams (6 MVX), Ir-192, I-125, and Pd-103. The first type (EBT) is designed for intensity modulated radiation therapy (IMRT) dosimetry, and the second type (XR-QA) is designed for kilovoltage dosimetry. All films were scanned using red (665 nm) and green (520 nm) light sources in a charge-coupled device-based densitometer. The dose response curves [net optical density (NOD) versus dose] were plotted and compared for different radiation energies and light sources. Contrary to the early GAFCHROMIC film types (such as models XR, HS, MD55-2, and HD810), the net optical densities of both EBT and XR-QA were higher with a green (520 nm) than those with a red (665 nm) light source due to the different absorption spectrum of the new radiochromic emulsion. Both film types yield measurable optical densities for doses below 2 Gy. EBT film response is nearly independent of radiation energy, within the uncertainty of measurement. The NOD values of EBT film at 1 and 2 Gy are 0.13 and 0.25 for green, and 0.1 and 0.17 for red, respectively. In contrast, the XR-QA film sensitivity varies with radiation energy. The doses required to produce NOD of 0.5 are 6.9, 5.4, 0.7, and 0.9 Gy with green light and 19, 13, 1.7, and 1.5 Gy with red light, for 6 MVX, Ir-192, I -125, and Pd-103, respectively. EBT film was found to have minimal photon energy dependence of response for the energies tested and is suitable for dosimetry of radiation with a wide energy spectrum, including primary and scattered radiation. XR-QA film is promising for kilovoltage sources with a narrow energy spectra. The new high sensitivity radiochromic films are promising tools in radiation dosimetry. PMID:16370422

  19. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    SciTech Connect

    Schwartz, J.L.

    1993-06-01

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that radiation sensitivity differences in squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent tumor cell radiosensitivity differences or in the success or failure of radiotherapy for squamous cell carcinomas.

  20. Altered radiation responses of breast cancer cells resistant to hormonal therapy

    PubMed Central

    Luzhna, Lidiya; Lykkesfeldt, Anne E.; Kovalchuk, Olga

    2015-01-01

    Endocrine therapy agents (the selective estrogen receptor (ER) modulators such as tamoxifen or the selective ER down-regulators such as ICI 182,780) are key treatment regimens for hormone receptor-positive breast cancers. While these drugs are very effective in controlling ER-positive breast cancer, many tumors that initially respond well to treatment often acquire drug resistance, which is a major clinical problem. In clinical practice, hormonal therapy agents are commonly used in combination or sequence with radiation therapy. Tamoxifen treatment and radiotherapy improve both local tumor control and patient survival. However, tamoxifen treatment may render cancer cells less responsive to radiation therapy. Only a handful of data exist on the effects of radiation on cells resistant to hormonal therapy agents. These scarce data show that cells that were resistant to tamoxifen were also resistant to radiation. Yet, the existence and mechanisms of cross-resistance to endocrine therapy and radiation therapy need to be established. Here, we for the first time examined and compared radiation responses of MCF-7 breast adenocarcinoma cells (MCF-7/S0.5) and two antiestrogen resistant cell lines derived from MCF-7/S0.5: the tamoxifen resistant MCF-7/TAMR-1 and ICI 182,780 resistant MCF-7/182R-6 cell lines. Specifically, we analyzed the radiation-induced changes in the expression of genes involved in DNA damage, apoptosis, and cell cycle regulation. We found that the tamoxifen-resistant cell line in contrast to the parental and ICI 182,780-resistant cell lines displayed a significantly less radiation-induced decrease in the expression of genes involved in DNA repair. Furthermore, we show that MCF-7/TAMR-1 and MCF-7/182R-6 cells were less susceptible to radiation-induced apoptosis as compared to the parental line. These data indicate that tamoxifen-resistant breast cancer cells have a reduced sensitivity to radiation treatment. The current study may therefore serve as a

  1. In silico nanodosimetry: new insights into nontargeted biological responses to radiation.

    PubMed

    Kuncic, Zdenka; Byrne, Hilary L; McNamara, Aimee L; Guatelli, Susanna; Domanova, Westa; Incerti, Sébastien

    2012-01-01

    The long-held view that radiation-induced biological damage must be initiated in the cell nucleus, either on or near DNA itself, is being confronted by mounting evidence to suggest otherwise. While the efficacy of cell death may be determined by radiation damage to nuclear DNA, a plethora of less deterministic biological responses has been observed when DNA is not targeted. These so-called nontargeted responses cannot be understood in the framework of DNA-centric radiobiological models; what is needed are new physically motivated models that address the damage-sensing signalling pathways triggered by the production of reactive free radicals. To this end, we have conducted a series of in silico experiments aimed at elucidating the underlying physical processes responsible for nontargeted biological responses to radiation. Our simulation studies implement new results on very low-energy electromagnetic interactions in liquid water (applicable down to nanoscales) and we also consider a realistic simulation of extranuclear microbeam irradiation of a cell. Our results support the idea that organelles with important functional roles, such as mitochondria and lysosomes, as well as membranes, are viable targets for ionizations and excitations, and their chemical composition and density are critical to determining the free radical yield and ensuing biological responses. PMID:22701142

  2. Near-linear response of mean monsoon strength to a broad range of radiative forcings.

    PubMed

    Boos, William R; Storelvmo, Trude

    2016-02-01

    Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a "tipping point." Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation's ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo. PMID:26811462

  3. In Silico Nanodosimetry: New Insights into Nontargeted Biological Responses to Radiation

    PubMed Central

    Kuncic, Zdenka; Byrne, Hilary L.; McNamara, Aimee L.; Guatelli, Susanna; Domanova, Westa; Incerti, Sébastien

    2012-01-01

    The long-held view that radiation-induced biological damage must be initiated in the cell nucleus, either on or near DNA itself, is being confronted by mounting evidence to suggest otherwise. While the efficacy of cell death may be determined by radiation damage to nuclear DNA, a plethora of less deterministic biological responses has been observed when DNA is not targeted. These so-called nontargeted responses cannot be understood in the framework of DNA-centric radiobiological models; what is needed are new physically motivated models that address the damage-sensing signalling pathways triggered by the production of reactive free radicals. To this end, we have conducted a series of in silico experiments aimed at elucidating the underlying physical processes responsible for nontargeted biological responses to radiation. Our simulation studies implement new results on very low-energy electromagnetic interactions in liquid water (applicable down to nanoscales) and we also consider a realistic simulation of extranuclear microbeam irradiation of a cell. Our results support the idea that organelles with important functional roles, such as mitochondria and lysosomes, as well as membranes, are viable targets for ionizations and excitations, and their chemical composition and density are critical to determining the free radical yield and ensuing biological responses. PMID:22701142

  4. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos.

    PubMed

    Choi, V W Y; Ng, C Y P; Kong, M K Y; Cheng, S H; Yu, K N

    2013-03-01

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ~4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. PMID:23296313

  5. Modeling Hematopoiesis and Responses to Radiation Countermeasures in a Bone Marrow-on-a-Chip.

    PubMed

    Torisawa, Yu-Suke; Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Mammoto, Akiko; Watters, Alexander L; Bahinski, Anthony; Ingber, Donald E

    2016-05-01

    Studies on hematopoiesis currently rely on animal models because in vitro culture methods do not accurately recapitulate complex bone marrow physiology. We recently described a bone marrow-on-a-chip microfluidic device that enables the culture of living hematopoietic bone marrow and mimics radiation toxicity in vitro. In the present study, we used this microdevice to demonstrate continuous blood cell production in vitro and model bone marrow responses to potential radiation countermeasure drugs. The device maintained mouse hematopoietic stem and progenitor cells in normal proportions for at least 2 weeks in culture. Increases in the number of leukocytes and red blood cells into the microfluidic circulation also could be detected over time, and addition of erythropoietin induced a significant increase in erythrocyte production. Exposure of the bone marrow chip to gamma radiation resulted in reduction of leukocyte production, and treatment of the chips with two potential therapeutics, granulocyte-colony stimulating factor or bactericidal/permeability-increasing protein (BPI), induced significant increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow. In contrast, BPI was not found to have any effect when analyzed using static marrow cultures, even though it has been previously shown to accelerate recovery from radiation-induced toxicity in vivo. These findings demonstrate the potential value of the bone marrow-on-a-chip for modeling blood cell production, monitoring responses to hematopoiesis-modulating drugs, and testing radiation countermeasures in vitro. PMID:26993746

  6. Functional Proteomics Analysis to Study ATM Dependent Signaling in Response to Ionizing Radiation

    PubMed Central

    Timofeeva, Olga; Zhang, Lihua; Kirilyuk, Alexander; Zandkarimi, Fereshteh; Kaur, Prabhjit; Ressom, Habtom W.; Jung, Mira; Dritschilo, Anatoly

    2013-01-01

    Ataxia telangiectasia (AT) is a human genetic disease characterized by radiation sensitivity, impaired neuronal development and predisposition to cancer. Using a genetically defined model cell system consisting of cells expressing a kinase dead or a kinase proficient ATM gene product, we previously reported systemic alterations in major metabolic pathways that translate at the gene expression, protein and small molecule metabolite levels. Here, we report ionizing radiation induced stress response signaling arising from perturbations in the ATM gene, by employing a functional proteomics approach. Functional pathway analysis shows robust translational and post-translational responses under ATM proficient conditions, which include enrichment of proteins in the Ephrin receptor and axonal guidance signaling pathways. These molecular networks offer a hypothesis generating function for further investigations of cellular stress responses. PMID:23642045

  7. Cyclic nucleotide responses and radiation-induced mitotic delay in Physarum polycephalum

    SciTech Connect

    Daniel, J.W.; Oleinick, N.L.

    1984-02-01

    The response of the plasmodial levels of cyclic AMP and cyclic GMP in Physarum polycephalum to several putative phosphodiesterase inhibitors and to ionizing radiation has been measured. Isobutylmethylxanthine (2 mM) induces a rapid transient threefold elevation of cyclic AMP alone, with maximum response in about 10 min and return to the base line in about 30 min. Theophylline (2 mM) induces a rapid, sustained twofold elevation of cyclic GMP only. Caffeine (2mM) and Ro-20-1724 (18 ..mu..M) both elicit a rapid transient rise in cyclic AMP, resembling the isobutylmethylxanthine response, and a slow transient elevation of the cyclic GMP level. Of particular interest is the rapid threefold transient elevation of the cyclic AMP, but not of the cyclic GMP, level by ..gamma.. radiation.

  8. Response of dosemeters in the radiation field generated by a TW-class laser system.

    PubMed

    Olšovcová, V; Klír, D; Krása, J; Krůs, M; Velyhan, A; Zelenka, Z; Rus, B

    2014-10-01

    State-of-the-art laser systems are able to generate ionising radiation of significantly high energies by focusing ultra-short and intense pulses onto targets. Thus, measures ensuring the radiation protection of both working personnel and the general public are required. However, commercially available dosemeters are primarily designed for measurement in continuous fields. Therefore, it is important to explore their response to very short pulses. In this study, the responses of dosemeters in a radiation field generated by iodine high-power and Ti:Sapphire laser systems are examined in proton and electron acceleration experiments. Within these experiments, electron bunches of femtosecond pulse duration and 100-MeV energy and proton bunches with sub-nanosecond pulse duration and energy of several megaelectronvolts were generated in single-shot regimes. Responses of typical detectors (TLD, films and electronic personal dosemeter) were analysed and compared. Further, a first attempt was carried out to characterise the radiation field generated by TW-class laser systems. PMID:24563524

  9. Impact of Mixing State on Anthropogenic Aerosol Radiative Forcing and Associated Climate Response

    NASA Astrophysics Data System (ADS)

    Avramov, A.; Shin, H. J.; Wang, C.

    2014-12-01

    Atmospheric aerosols affect Earth's radiation balance directly by scattering and absorbing solar radiation and, indirectly, by changing the microphysical structure, lifetime and spatial extent of clouds. The aerosol mixing state to a large extent determines not only their optical properties (direct effect) but also their ability to serve as cloud condensation nuclei or ice nuclei (indirect effect). Results from previous research have highlighted the importance of the aerosol mixing assumptions in radiative forcing estimates in model simulations. Here we take a step further to analyze the differences in associated climate responses, using a multimodal, size- and mixing-dependent aerosol model (MARC) incorporated within the Community Earth System Model (CESM). The new model allows for a detailed representation of aerosol-radiation and aerosol-cloud interactions by including an improved treatment of aerosol mixing state and composition. First, we estimate and compare the magnitudes of direct and indirect forcing of anthropogenic aerosols under different mixing assumptions. We then carry out several century-long fully-coupled climate simulations designed to isolate the climate responses to direct and indirect forcings under the same aerosol mixing assumptions. In our analysis, we specifically focus on the following three climate response components: 1) cloud distribution and coverage; 2) precipitation amount and distribution; and 3) changes in circulation patterns.

  10. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    SciTech Connect

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-02-21

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  11. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-02-01

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO2 substrates, we confirm recent theoretical predictions of T2 temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  12. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants.

    PubMed

    Mitani-Sano, Makiko; Tezuka, Takafumi

    2013-11-01

    Effects of near-UV radiation on the growth and physiological activity of cucumber plants were investigated morphologically, physiologically and biochemically using 3-week-old seedlings grown under polyvinyl chloride films featuring transmission either above 290 nm or above 400 nm in growth chambers. The hypocotyl length and leaf area of cucumber seedlings were reduced but the thickness of leaves was enhanced by near-UV radiation, due to increased upper/lower epidermis thickness, palisade parenchyma thickness and volume of palisade parenchyma cells. Photosynthetic and respiratory activities were also promoted by near-UV radiation, associated with general enhancement of physiological/biochemical responses. Particularly, metabolic activities in the photosynthetic system of chloroplasts and the respiratory system of mitochondria were analyzed under the conditions of visible light with and without near-UV radiation. For example, the activities of NAD(P)-dependent enzymes such as glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in chloroplasts and isocitrate dehydrogenase (ICDH) in mitochondria were elevated, along with levels of pyridine nucleotides (nicotinamide coenzymes) [NAD(H) and NADP(H)] and activity of NAD kinase (NADP forming enzyme). Taken together, these data suggest that promotion of cucumber plant growth by near-UV radiation involves activation of carbon and nitrogen metabolism in plants. The findings of this research showed that near-UV radiation reaching the Earth's surface is a beneficial factor for plant growth. PMID:24013482

  13. Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Yun-Dong, Chen; Soares, C. G.; Miller, A.; Van Dyk, G.; Lewis, D. F.

    1991-04-01

    A new radiation-sensitive imaging material, called GafChromic™ Dosimetry Media, offers advances in high-dose radiation dosimetry and high-resolution radiography for gamma radiation and electrons. The potential uses in radiation processing, radiation sterilization of medical devices, population control of insects by irradiation, food irradiation, blood irradiation for organ-transplant immuno-suppression, clinical radiography, and industrial radiography have led to the present sensitometric study over the breadth of the wide dynamic range of this new routine detector and imaging material, namely, absorbed doses from 10 Gy to 5 × 10 4 Gy. The thin-coated film is colorless before irradiation, and registers a deep-blue image upon irradiation, with two absorption bands at about 650 nm (major band) and 600 nm (minor band). The response to electrons, in terms of increase in absorbance per unit absorbed dose, is the same as that to gamma radiation within the estimated uncertainty of the measurements (± 5%, 95% confidence level). The spatial resolving power is > 1200 lines/mm. After the first 24 hours, the image is stable over many months (within ± 5% in absorbance), however, the system should be irradiated and analyzed at approximately the temperatures used during calibration, because of temperature dependence during irradiation and readout, and temperatures greater than 55°C should be avoided.

  14. Identification of gene-based responses in human blood cells exposed to alpha particle radiation

    PubMed Central

    2014-01-01

    Background The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if similar gene expression profiles are obtained after exposures involving α-particles. Methods Peripheral blood mononuclear cells (PBMCs) were used to identify sensitive and robust gene-based biomarkers of α-particle radiation exposure. Cells were isolated from healthy individuals and were irradiated at doses ranging from 0-1.5 Gy. Microarray technology was employed to identify transcripts that were differentially expressed relative to unirradiated cells 24 hours post-exposure. Statistical analysis identified modulated genes at each of the individual doses. Results Twenty-nine genes were common to all doses with expression levels ranging from 2-10 fold relative to control treatment group. This subset of genes was further assessed in independent complete white blood cell (WBC) populations exposed to either α-particles or X-rays using quantitative real-time PCR. This 29 gene panel was responsive in the α-particle exposed WBCs and was shown to exhibit differential fold-changes compared to X-irradiated cells, though no α-particle specific transcripts were identified. Conclusion Current gene panels for photon radiation may also be applicable for use in α-particle radiation biodosimetry. PMID:25017500

  15. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    SciTech Connect

    Blattmann, Claudia; Oertel, Susanne; Ehemann, Volker

    2010-09-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.

  16. SOD2-mediated Adaptive Responses Induced by Low Dose Ionizing Radiation via TNF Signaling and Amifostine

    PubMed Central

    Murley, J.S.; Baker, K.L.; Miller, R.C.; Darga, T.E.; Weichselbaum, R.R.; Grdina, D.J.

    2011-01-01

    Manganese superoxide dismutase (SOD2)-mediated adaptive processes that protect against radiation-induced micronuclei formation can be induced in cells following a 2 Gy exposure by previously exposing them to either low dose ionizing radiation (10 cGy) or WR1065 (40 µM), the active thiol form of amifostine. While both adaptive processes culminate with elevated levels of SOD2 enzymatic activities, the underlying pathways differ in complexity, with the tumor necrosis factor α (TNFα) signaling pathway implicated in the low dose radiation-induced response, but not in the thiol-induced pathway. The goal of this study was the characterization of the effects of TNFα receptors1 and 2 (TNFR1, 2) on the adaptive responses induced by low dose irradiation or thiol exposures using micronuclei formation as an endpoint. BFS-1 wild type (WT) cells with functional TNFR1 and 2 were exposed 24 h prior to a 2 Gy dose of ionizing radiation to either 10 cGy or a 40 µM dose of WR1065. BFS2C-SH02 cells defective in TNFR1 and BFS2C-SH22 cells defective in both TNFR1 and 2, generated from BFS2C-SH02 cells by transfection with a murine TNFR2 targeting vector and confirmed to be TNFR2 defective by quantitative PCR, were also exposed under similar conditions for comparison. A 10 cGy dose of radiation induced a significant elevation of SOD2 activity in BFS-1 (P < 0.001) and BFS2C-SH02 (P = 0.005) but not BFS2C-SH22 cells (P = 0.433) as compared to their respective untreated controls. In contrast, WR1065 significantly induced elevations in SOD2 activity in all three cell lines (P = 0.001; P = 0.007; P = 0.020; respectively). A significant reduction in the frequency of radiation-induced micronuclei was observed in each cell line when exposure to a 2 Gy challenge dose of radiation occurred during the period of maximal elevation in SOD2 activity. However, this adaptive effect was completely inhibited if the cells were transfected 24 h prior to low dose radiation or thiol exposure with SOD2 si

  17. Oxidative Stress and Autophagy Responses of Osteocytes Exposed to Spaceflight-like Radiation.

    NASA Technical Reports Server (NTRS)

    Tahimic, Candice; Rael, Victoria E.; Globus, Ruth K.

    2015-01-01

    Weightlessness and radiation, two of the unique elements of the space environment, causes a profound decrement in bone mass that mimics aging. This bone loss is thought to result from increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. Our current understanding of the signaling factors and mechanisms underlying bone loss is incomplete. However, it is known that oxidative stress, characterized by the excess production of free radicals, is elevated during radiation exposure. The goals of this study is to examine the response of osteocytes to spaceflight-like radiation and to identify signaling processes that may be targeted to mitigate bone loss in scenarios of space exploration, earth-based radiotherapy and accidental radiation exposure. We hypothesize that (1) oxidative stress, as induced by radiation, decreases osteocyte survival and increases pro-osteoclastogenic signals and that (2) autophagy is one of the key cellular defenses against oxidative stress. Autophagy is the process by which cellular components including organelles and proteins are broken down and recycled. To test our hypothesis, we exposed the osteocyte-like cell line, MLO-Y4, to 0.5, 1, and 2 Gy of simulated space radiation (Iron-56 radiation at 600 MeV/n) and assessed cell numbers, cell growth-associated molecules as well as markers of autophagy and oxidative stress at various time points post-irradiation. We observed a reduction in cell numbers in the groups exposed to 1 and 2 Gy of Iron-56 radiation. Collectively, flow cytometry and gene expression analysis revealed that radiation caused a shift in cell cycle distribution consistent with growth arrest. Compared to sham-treatment, 2 Gy of Iron-56 increased FoxO3, SOD1, and RANKL gene expression yet unexpectedly decreased LC3B-II protein levels at 4 and 24 hours post-IR. Taken together, these findings suggest that simulated space radiation invoke

  18. Dual functions of autophagy in the response of breast tumor cells to radiation

    PubMed Central

    Bristol, Molly L.; Di, Xu; Beckman, Matthew J.; Wilson, Eden N.; Henderson, Scott C.; Maiti, Aparna; Fan, Zhen; Gewirtz, David A.

    2012-01-01

    In MCF-7 breast tumor cells, ionizing radiation promoted autophagy that was cytoprotective; pharmacological or genetic interference with autophagy induced by radiation resulted in growth suppression and/or cell killing (primarily by apoptosis). The hormonally active form of vitamin D, 1,25D3, also promoted autophagy in irradiated MCF-7 cells, sensitized the cells to radiation and suppressed the proliferative recovery that occurs after radiation alone. 1,25D3 enhanced radiosensitivity and promoted autophagy in MCF-7 cells that overexpress Her-2/neu as well as in p53 mutant Hs578t breast tumor cells. In contrast, 1,25D3 failed to alter radiosensitivity or promote autophagy in the BT474 breast tumor cell line with low-level expression of the vitamin D receptor. Enhancement of MCF-7 cell sensitivity to radiation by 1,25D3 was not attenuated by a genetic block to autophagy due largely to the promotion of apoptosis via the collateral suppression of protective autophagy. However, MCF-7 cells were protected from the combination of 1,25D3 with radiation using a concentration of chloroquine that produced minimal sensitization to radiation alone. The current studies are consistent with the premise that while autophagy mediates a cytoprotective function in irradiated breast tumor cells, promotion of autophagy can also confer radiosensitivity by vitamin D (1,25D3). As both cytoprotective and cytotoxic autophagy can apparently be expressed in the same experimental system in response to radiation, this type of model could be utilized to distinguish biochemical, molecular and/or functional differences in these dual functions of autophagy. PMID:22498493

  19. TP53inp1 Gene Is Implicated in Early Radiation Response in Human Fibroblast Cells.

    PubMed

    Sándor, Nikolett; Schilling-Tóth, Boglárka; Kis, Enikő; Fodor, Lili; Mucsányi, Fruzsina; Sáfrány, Géza; Hegyesi, Hargita

    2015-01-01

    Tumor protein 53-induced nuclear protein-1 (TP53inp1) is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT) cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP) cells was compared to cells transfected with non-targeting (NT) shRNA. Radiation-induced senescence was measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B) immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR) induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts. PMID:26512655

  20. Late radiation responses in man: Current evaluation from results from Hiroshima and Nagasaki

    NASA Astrophysics Data System (ADS)

    Schull, William J.

    Among the late effects of exposure to the atomic bombings of Hiroshima and Nagasaki, none looms larger than radiation related malignancies. Indeed, the late effects of A-bomb radiation on mortality appear to be limited to an increase in malignant tumors. At present, it can be shown that cancers of the breast, colon, esophagus, lungs, stomach, thyroid, and urinary tract as well as leukemia and multiple myeloma increase in frequency with an increase in exposure. No significant relationship to radiation can as yet be established for malignant lymphoma, nor cancers of the rectum, pancreas or uterus. Radiation induced malignancies other than leukemia seem to develop proportionally to the natural cancer rate for the attained age. For specific age-at-death intervals, both relative and absolute risks tend to be higher for those of younger age at the time of bombing. Other late effects include radiation-related lenticular opacities, disturbances of growth among those survivors still growing at the time of exposure, and mental retardation and small head sizes among the in utero exposed. Chromosomal abnormalities too are more frequently encountered in the peripheral leucocytes of survivors, and this increase is functionally related to their exposure. Some uncertainty continues to surround both the quantity and quality of the radiation released by these two nuclear devices, particularly the Hiroshima bomb. A recent reassessment suggests that the gamma radiation estimates which have been used in the past may be too low at some distances and the neutron radiation estimates too high at all distances; moreover, the energies of the neutrons released now appear ``softer'' than previously conjectured. These uncertainties not sufficiently large, however, to compromise the reality of the increased frequency of malignancy, but make estimates of the dose response, particularly in terms of gamma and neutron exposures, tentative.

  1. Long-Term Clinical Responses of Neoadjuvant Dendritic Cell Infusions and Radiation in Soft Tissue Sarcoma

    PubMed Central

    Raj, Shailaja; Bui, Marilyn M.; Springett, Gregory; Conley, Anthony; Lavilla-Alonso, Sergio; Zhao, Xiuhua; Chen, Dungsa; Haysek, Randy; Gonzalez, Ricardo; Letson, G. Douglas; Finkelstein, Steven Eric; Chiappori, Alberto A.; Gabrilovitch, Dmitry I.; Antonia, Scott J.

    2015-01-01

    Purpose. Patients with large >5 cm, high-grade resectable soft tissue sarcomas (STS) have the highest risk of distant metastases. Previously we have shown that dendritic cell (DC) based vaccines show consistent immune responses. Methods. This was a Phase I single institution study of neoadjuvant radiation with DC injections on 18 newly diagnosed high-risk STS patients. Neoadjuvant treatment consisted of 50 Gy of external beam radiation (EBRT), given in 25 fractions delivered five days/week, combined with four intratumoral injections of DCs followed by complete resection. The primary endpoint was to establish the immunological response to neoadjuvant therapy and obtain data on its clinical safety and outcomes. Results. There were no unexpected toxicities or serious adverse events. Twelve out of 18 (67%) patients were alive, of which an encouraging 11/18 (61%) were alive with no systemic recurrence over a period of 2–8 years. Favorable immunological responses correlated with clinical responses in some cases. Conclusions. This study provides clinical support to using dendritic cell injections along with radiation in sarcomas, which when used optimally in combination can help clinical outcomes in soft tissue sarcoma. Study registration number is NCT00365872. PMID:26880867

  2. PTOSL response of commercial Al2O3:C detectors to ultraviolet radiation.

    PubMed

    Gronchi, Claudia C; Caldas, Linda V E

    2013-04-01

    The photo-transferred optically stimulated luminescence (PTOSL) technique using Al2O3:C detectors has been suggested as a good option for ultraviolet (UV) radiation dosimetry. The objective of this work was to study the PTOSL response of Al2O3:C InLight detectors and the OSL microStar reader of Landauer. The parameters such as radiation pre-dose, optical treatment time and UV illumination time were determined. The detectors presented a satisfactory stimulus of PTOSL signals when they were subjected to a preconditioning procedure with gamma radiation (1 Gy pre-dose), 30 min of optical treatment (to empty the shallow traps) and 30 min of UV illumination from an artificial source. PMID:22887115

  3. Cell proliferation kinetics and radiation response in 9L tumor spheroids

    SciTech Connect

    Sweigert, S.E.

    1984-05-01

    Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 ..mu..m to over 900 ..mu..m in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables.

  4. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization.

    PubMed

    Maier, Patrick; Hartmann, Linda; Wenz, Frederik; Herskind, Carsten

    2016-01-01

    During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization. PMID:26784176

  5. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization

    PubMed Central

    Maier, Patrick; Hartmann, Linda; Wenz, Frederik; Herskind, Carsten

    2016-01-01

    During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization. PMID:26784176

  6. Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation.

    PubMed

    Pinto, Ana T; Pinto, Marta L; Velho, Sérgia; Pinto, Marta T; Cardoso, Ana P; Figueira, Rita; Monteiro, Armanda; Marques, Margarida; Seruca, Raquel; Barbosa, Mário A; Mareel, Marc; Oliveira, Maria J; Rocha, Sónia

    2016-01-01

    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay

  7. Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation

    PubMed Central

    Pinto, Ana T.; Pinto, Marta L.; Velho, Sérgia; Pinto, Marta T.; Cardoso, Ana P.; Figueira, Rita; Monteiro, Armanda; Marques, Margarida; Seruca, Raquel; Barbosa, Mário A.; Mareel, Marc; Oliveira, Maria J.; Rocha, Sónia

    2016-01-01

    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients’ treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane

  8. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  9. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    SciTech Connect

    Fuentes, D; Castillo, R; Castillo, E; Guerrero, T

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to

  10. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits

    PubMed Central

    Mang, Cameron S.; Brown, Katlyn E.; Neva, Jason L.; Snow, Nicholas J.; Campbell, Kristin L.; Boyd, Lara A.

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to “prime” M1 plasticity for enhanced motor skill learning in applied settings. PMID:27127659

  11. Enhancement of ionizing radiation response by histamine in vitro and in vivo in human breast cancer.

    PubMed

    Martinel Lamas, Diego J; Cortina, Jorge E; Ventura, Clara; Sterle, Helena A; Valli, Eduardo; Balestrasse, Karina B; Blanco, Horacio; Cremaschi, Graciela A; Rivera, Elena S; Medina, Vanina A

    2015-01-01

    The radioprotective potential of histamine on healthy tissue has been previously demonstrated. The aims of this work were to investigate the combinatorial effect of histamine or its receptor ligands and gamma radiation in vitro on the radiobiological response of 2 breast cancer cell lines (MDA-MB-231 and MCF-7), to explore the potential molecular mechanisms of the radiosensitizing action and to evaluate the histamine-induced radiosensitization in vivo in a triple negative breast cancer model. Results indicate that histamine significantly increased the radiosensitivity of MDA-MB-231 and MCF-7 cells. This effect was mimicked by the H1R agonist 2-(3-(trifluoromethyl)phenyl)histamine and the H4R agonists (Clobenpropit and VUF8430) in MDA-MB-231 and MCF-7 cells, respectively. Histamine and its agonists enhanced radiation-induced oxidative DNA damage, DNA double-strand breaks, apoptosis and senescence. These effects were associated with increased production of reactive oxygen species, which correlated with the inhibition of catalase, glutathione peroxidase and superoxide dismutase activities in MDA-MB-231 cells. Histamine was able also to potentiate in vivo the anti-tumoral effect of radiation, increasing the exponential tumor doubling time. We conclude that histamine increased radiation response of breast cancer cells, suggesting that it could be used as a potential adjuvant to enhance the efficacy of radiotherapy. PMID:25482934

  12. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    PubMed Central

    Harder, Samantha J.; Isabelle, Martin; DeVorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-01-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts. PMID:26883914

  13. Identification and transcriptional profiling of differentially expressed genes associated with response to UVA radiation in Drosophila melanogaster (Diptera: Drosophilidae).

    PubMed

    Zhou, Li-Jun; Zhu, Zhi-Hui; Liu, Zhen-Xing; Ma, Wei-Hua; Desneux, Nicolas; Lei, Chao-Liang

    2013-10-01

    Ultraviolet A (UVA) radiation, the major component of solar ultraviolet (UV) radiation reaching the earth's surface, leads to negative effects in insects, such as oxidative stress, photoreceptor damage, and cell death. To better understand the molecular mechanisms of insect response to UVA radiation, suppression subtractive hybridization (SSH) and real-time quantitative polymerase chain reaction approaches were combined to reveal differential transcript expression in Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). In this study, two subtractive cDNA libraries were constructed and sequenced, obtaining 131 high-quality unique expressed sequence tags (ESTs) that were up- or downregulated in D. melanogaster exposed to UVA radiation for 0.5 h. Of the 131 ESTs, 102 unique ESTs were differentially expressed and classified into 10 functional categories. The results showed that UVA radiation induces expression of genes related to stress and defense response and metabolism. Potential transcription factor binding motifs upstream of these genes are associated with multiple signaling pathways that may help the insect cope with the stress of UVA radiation. To our knowledge, this is the first analysis of insect response to UVA radiation at the transcriptional level. Our results reveal that UVA radiation influences the expression profiles of stress-responsive genes and provide further insights into the mechanisms of adaptive response to UVA radiation stress. PMID:24331622

  14. Aerobic exercise augments muscle transcriptome profile of resistance exercise.

    PubMed

    Lundberg, Tommy R; Fernandez-Gonzalo, Rodrigo; Tesch, Per A; Rullman, Eric; Gustafsson, Thomas

    2016-06-01

    Recent reports suggest that aerobic exercise may boost the hypertrophic response to short-term resistance training. This study explored the effects of an acute aerobic exercise bout on the transcriptional response to subsequent resistance exercise. Ten moderately trained men performed ∼45 min cycling on one leg followed by 4 × 7 maximal knee extensions for each leg, 15 min later. Thus, one limb performed aerobic and resistance exercise (AE + RE) while the opposing leg did resistance exercise only (RE). Biopsies were obtained from the vastus lateralis muscle of each leg 3 h after the resistance exercise bout. Using DNA microarray, we analyzed differences [≥1.5-fold, false discovery rate (FDR) ≤10%] in gene expression profiles for the two modes of exercise. There were 176 genes up (127)- or downregulated (49) by AE + RE compared with RE. Among the most significant differentially expressed genes were established markers for muscle growth and oxidative capacity, novel cytokines, transcription factors, and micro-RNAs (miRNAs). The most enriched functional categories were those linked to carbohydrate metabolism and transcriptional regulation. Upstream analysis revealed that vascular endothelial growth factor, cAMP-response element-binding protein, Tet methylcytosine dioxygenase, and mammalian target of rapamycin were regulators highly activated by AE + RE, whereas JnK, NF-κβ, MAPK, and several miRNAs were inhibited. Thus, aerobic exercise alters the skeletal muscle transcriptional signature of resistance exercise to initiate important gene programs promoting both myofiber growth and improved oxidative capacity. These results provide novel insight into human muscle adaptations to diverse exercise modes and offer the very first genomic basis explaining how aerobic exercise may augment, rather than compromise, muscle growth induced by resistance exercise. PMID:27101291

  15. A Role for Lsm1p in Response to Ultraviolet-Radiation Damage in Saccharomyces cerevisiae

    PubMed Central

    Spicakova, Tatiana; McCann, Kelly; Brown, J. Martin

    2008-01-01

    A genome-wide screen in Saccharomyces cerevisiae identified LSM1 as a new gene affecting sensitivity to ultraviolet (UV) radiation. Lsm1p is a member of a cytoplasmic complex composed of Lsm1p–7p that interacts with the yeast mRNA degradation machinery. To investigate the potential role of Lsm1p in response to UV radiation, we constructed double mutant strains in which LSM1 was deleted in combination with a representative gene from each of three known yeast DNA repair pathways. Our results show that lsm1Δ increases the UV-radiation sensitivity of the rad1Δ and rad51Δ mutants, but not the rad18Δ mutant, placing LSM1 within the post-replication repair/damage tolerance pathway (PRR). When combined with other deletions affecting PRR, lsm1Δ increases the UV-radiation sensitivity of the rev3Δ, rad30Δ and pol30-K164R mutants but not rad5Δ. Furthermore, the UV-radiation sensitivity phenotype of lsm1Δ is partially rescued by mutations in genes involved in 3′ to 5′ mRNA degradation, and mutations predicted to function in RNA interactions confer the most UV-radiation sensitivity. Together, these results suggest that Lsm1p may confer protection against UV-radiation damage by protecting the 3′ ends of mRNAs from exosome-dependent 3′ to 5′ degradation as part of a novel RAD5-mediated, PCNA-K164 ubiquitylation-independent subpathway of PRR. PMID:19024647

  16. Breast tumor response to ultrasound mediated excitation of microbubbles and radiation therapy in vivo

    PubMed Central

    Lai, Priscilla; Tarapacki, Christine; Tran, William T.; El Kaffas, Ahmed; Lee, Justin; Hupple, Clinton; Iradji, Sarah; Giles, Anoja; Al-Mahrouki, Azza; Czarnota, Gregory J.

    2016-01-01

    Acoustically stimulated microbubbles have been demonstrated to perturb endothelial cells of the vasculature resulting in biological effects. In the present study, vascular and tumor response to ultrasound-stimulated microbubble and radiation treatment was investigated in vivo to identify effects on the blood vessel endothelium. Mice bearing breast cancer tumors (MDA-MB-231) were exposed to ultrasound after intravenous injection of microbubbles at different concentrations, and radiation at different doses (0, 2, and 8 Gy). Mice were sacrificed 12 and 24 hours after treatment for histopathological analysis. Tumor growth delay was assessed for up to 28 days after treatment. The results demonstrated additive antitumor and antivascular effects when ultrasound stimulated microbubbles were combined with radiation. Results indicated tumor cell apoptosis, vascular leakage, a decrease in tumor vasculature, a delay in tumor growth and an overall tumor disruption. When coupled with radiation, ultrasound-stimulated microbubbles elicited synergistic anti-tumor and antivascular effects by acting as a radioenhancing agent in breast tumor blood vessels. The present study demonstrates ultrasound driven microbubbles as a novel form of targeted antiangiogenic therapy in a breast cancer xenograft model that can potentiate additive effects to radiation in vivo. PMID:27226983

  17. Response of five tropical plant species to natural solar ultraviolet-B radiation

    SciTech Connect

    Searles, P.S.; Caldwell, M.M. ); Winter, K. )

    1994-06-01

    The tropical latitudes currently receive high solar ultraviolet-B radiation (UV-B, 280-320 nm) even without ozone depletion. Thus, the influence of natural, present-day UV-B irradiance was examined for three native rainforest tree species and two economically important species on Barro Colorado Island, Panama (9[degrees] N). Solar UV-B radiation conditions were obtained using a UV-B excluding plastic film or a near-ambient UV-B transmitting film over potted plants in a small clearing. Significant differences were often exhibited as increased foliar UV-B absorbing compounds, increased leaf mass pre area, and reduced leaf blade length for plants receiving solar UV-B radiation. Plant height was typically reduced under solar UV-B, but some variation among species in response was seen. Biomass and photosystem II function were generally unaffected. The results provide evidence that tropical vegetation responds to the present level of Solar UV-B radiation. This suggests even a small increase in UV-B radiation with ozone depletion may have biological implications.

  18. Differential response to ablative ionizing radiation in genetically distinct non-small cell lung cancer cells.

    PubMed

    Oweida, Ayman; Sharifi, Zeinab; Halabi, Hani; Xu, Yaoxian; Sabri, Siham; Abdulkarim, Bassam

    2016-04-01

    Stereotactic ablative radiotherapy (SABR) has emerged as a highly promising treatment for medically inoperable early-stage non-small cell lung cancer patients. Treatment outcomes after SABR have been excellent compared to conventional fractionated radiotherapy (CFRT). However, the biological determinants of the response to ablative doses of radiation remain poorly characterized. Furthermore, there's little data on the cellular and molecular response of genetically distinct NSCLC subtypes to radiation. We assessed the response of 3 genetically distinct lung adenocarcinoma cell lines to ablative and fractionated ionizing radiation (AIR and FIR). We studied clonogenic survival, cell proliferation, migration, invasion, apoptosis and senescence. We also investigated the effect of AIR and FIR on the expression of pro-invasive proteins, epithelial-to-mesenchymal transition (EMT), extracellular signal-regulated kinases (ERK1/2) and the transmembrane receptor cMET. Our findings reveal that AIR significantly reduced cell proliferation and clonogenic survival compared to FIR in A549 cells only. This differential response was not observed in HCC827 or H1975 cells. AIR significantly enhanced the invasiveness of A549 cells, but not HCC827 or H1975 cells compared to FIR. Molecular analysis of pathways involved in cell proliferation and invasion revealed that AIR significantly reduced phosphorylation of ERK1/2 and upregulated cMET expression in A549 cells. Our results show a differential proliferative and invasive response to AIR that is dependent on genetic subtype and independent of intrinsic radioresistance. Further examination of these findings in a larger panel of NSCLC cell lines and in pre-clinical models is warranted for identification of biomarkers of tumor response to AIR. PMID:27096542

  19. The response of heat-shield materials to intense laser radiation

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.

    1978-01-01

    Experimental results for the response of ATJ graphite, Carbitex 100, and carbon phenolic to intense continuous-wave laser radiation are presented. Both penetration and mass-loss test techniques are used and compared. The results are also compared with a simple ablation theory applicable to laser irradiation. Reasons for the disparity between experiment and theory, and applicability of the results to other heating situations, such as planetary entry, are discussed.

  20. Plant Responses to Increased UV-B Radiation: A Research Project

    NASA Technical Reports Server (NTRS)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains

  1. A dynamic model for the p53 stress response networks under ion radiation.

    PubMed

    Qi, J-P; Shao, S-H; Li, D-D; Zhou, G-P

    2007-07-01

    P53 controls the cell cycle arrest and cell apoptosis through interaction with the downstream genes and their signal pathways. To stimulate the investigation into the complicated responses of p53 under the circumstance of ion radiation (IR) in the cellular level, a dynamic model for the p53 stress response networks is proposed. The model can be successfully used to simulate the dynamic processes of generating the double-strand breaks (DSBs) and their repairing, ataxia telangiectasia mutated (ATM) activation, as well as the oscillations occurring in the p53-MDM2 feedback loop. PMID:17072789

  2. Examining the Responses of Radiation Use Efficiency to C02: A New Approach

    NASA Technical Reports Server (NTRS)

    Monje, Oscar

    2013-01-01

    Radiation use efficiency (RUE) has been a key parameter for developing simpler models of crop growth and yield. A great deal of effort has gone into measuring RUE in the field and in verifying its validity for predicting crop growth. However, a lack of data on responses of RUE to elevated C02 has resulted in the use of empirical relations that may lead to overestimates of crop yield to C02 enrichment. A new approach relating RUE to canopy quantum yield is presented that offers a more theoretical basis for estimating RUE responses to elevated C02.

  3. In Vivo Optical Imaging of Tumor and Microvascular Response to Ionizing Radiation

    PubMed Central

    Maeda, Azusa; Leung, Michael K. K.; Conroy, Leigh; Chen, Yonghong; Bu, Jiachuan; Lindsay, Patricia E.; Mintzberg, Shani; Virtanen, Carl; Tsao, Julissa; Winegarden, Neil A.; Wang, Yanchun; Morikawa, Lily; Vitkin, I. Alex; Jaffray, David A.; Hill, Richard P.; DaCosta, Ralph S.

    2012-01-01

    Radiotherapy is a widely used cancer treatment. However, understanding how ionizing radiation affects tumor cells and their vasculature, particularly at cellular, subcellular, genetic, and protein levels, has been limited by an inability to visualize the response of these interdependent components within solid tumors over time and in vivo. Here we describe a new preclinical experimental platform combining intravital multimodal optical microscopy for cellular-level longitudinal imaging, a small animal x-ray microirradiator for reproducible spatially-localized millimeter-scale irradiations, and laser-capture microdissection of ex vivo tissues for transcriptomic profiling. Using this platform, we have developed new methods that exploit the power of optically-enabled microscopic imaging techniques to reveal the important role of the tumor microvasculature in radiation response of tumors. Furthermore, we demonstrate the potential of this preclinical platform to study quantitatively - with cellular and sub-cellular details - the spatio-temporal dynamics of the biological response of solid tumors to ionizing radiation in vivo. PMID:22927920

  4. Dose- and time-response for breast cancer risk after radiation therapy for benign breast disease.

    PubMed Central

    Mattsson, A.; Rudén, B. I.; Palmgren, J.; Rutqvist, L. E.

    1995-01-01

    Exposure of the breast to ionising radiation increases the risk of breast cancer, especially among young women. However, some issues remain controversial, for instance the shape of the dose-response curve and the expression of time-related excess. The main purpose of this report was to examine the dose-response curves for radiation-induced breast cancer formulated according to radiobiological target theories. Another purpose was to analyse the time-related excess of breast cancer risk after exposure when dose and age at first exposure were held constant. Breast cancer incidence was analysed in a cohort of 3090 women diagnosed with benign breast disease during 1925-61 (median age 37 years). Of these, 1216 were treated with radiation therapy. The dose range was 0-50 Gy (mean 5.8 Gy). The incidence rate as function of dose was analysed using a linear-quadratic Poisson regression model. Cell-killing effects and other modifying effects were incorporated through additional log-linear terms. Additive and multiplicative models were compared in estimating the time-related excess. The analysis, which was based on 278 breast cancer cases, showed a linear dose-response relationship at low to medium dose levels with a cell-killing effect of 5% Gy-1 (95% confidence interval 2-9%). For a given absorbed dose and age at first exposure the time-related excess was proportional to the background rates with a suggestion that the excess remains throughout life. PMID:7547222

  5. Evolutionary Influences of Plastic Behavioral Responses Upon Environmental Challenges in an Adaptive Radiation.

    PubMed

    Foster, Susan A; Wund, Matthew A; Baker, John A

    2015-09-01

    At the end of the 19th century, the suggestion was made by several scientists, including J. M. Baldwin, that behavioral responses to environmental change could both rescue populations from extinction (Baldwin Effect) and influence the course of subsequent evolution. Here we provide the historical and theoretical background for this argument and offer evidence of the importance of these ideas for understanding how animals (and other organisms that exhibit behavior) will respond to the rapid environmental changes caused by human activity. We offer examples from long-term research on the evolution of behavioral and other phenotypes in the adaptive radiation of the threespine stickleback fish (Gasterosteus aculeatus), a radiation in which it is possible to infer ancestral patterns of behavioral plasticity relative to the post-glacial freshwater radiation in northwestern North America, and to use patterns of parallelism and contemporary evolution to understand adaptive causes of responses to environmental modification. Our work offers insights into the complexity of cognitive responses to environmental change, and into the importance of examining multiple aspects of the phenotype simultaneously, if we are to understand how behavioral shifts contribute to the persistence of populations and to subsequent evolution. We conclude by discussing the origins of apparent novelties induced by environmental shifts, and the importance of accounting for geographic variation within species if we are to accurately anticipate the effects of anthropogenic environmental modification on the persistence and evolution of animals. PMID:26163679

  6. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  7. Involvement of cyclic-nucleotide response element-binding family members in the radiation response of Ramos B lymphoma cells

    PubMed Central

    DI NISIO, CHIARA; SANCILIO, SILVIA; DI GIACOMO, VIVIANA; RAPINO, MONICA; SANCILLO, LAURA; GENOVESI, DOMENICO; DI SIENA, ALESSANDRO; RANA, ROSA ALBA; CATALDI, AMELIA; DI PIETRO, ROBERTA

    2016-01-01

    The aim of the present study was to investigate the role of Cyclic-nucleotide Response Element-Binding (CREB) family members and related nuclear transcription factors in the radiation response of human B lymphoma cell lines (Daudi and Ramos). Unlike the more radiosensitive Daudi cells, Ramos cells demonstrated only a moderate increase in early apoptosis after 3–5 Gy irradiation doses, which was detected with Annexin V/PI staining. Moreover, a significant and dose-dependent G2/M phase accumulation was observed in the same cell line at 24 h after both ionizing radiation (IR) doses. Western blot analysis showed an early increase in CREB protein expression that was still present at 3 h and more evident after 3 Gy IR in Ramos cells, along with the dose-dependent upregulation of p53 and NF-κB. These findings were consistent with real-time RT-PCR analysis that showed an early- and dose-dependent upregulation of NFKB1, IKBKB and XIAP gene expression. Unexpectedly, pre-treatment with SN50 did not increase cell death, but cell viability. Taken together, these findings let us hypothesise that the early induction and activation of NF-κB1 in Ramos cells could mediate necrotic cell death and be linked to other molecules belonging to CREB family and involved in the cell cycle regulation. PMID:26573110

  8. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  9. Near-linear response of mean monsoon strength to a broad range of radiative forcings

    PubMed Central

    Boos, William R.; Storelvmo, Trude

    2016-01-01

    Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a “tipping point.” Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation’s ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo. PMID:26811462

  10. Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2009-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  11. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    SciTech Connect

    Niu, Nina N.; Niemierko, Andrzej; Larvie, Mykol; Curtin, Hugh; Loeffler, Jay S.; McKenna, Michael J.; Shih, Helen A.

    2014-05-01

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change was classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be

  12. Response of Two Plant Species to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.; Peterson, David (Technical Monitor)

    1996-01-01

    The depleted stratospheric ozone layer has been directly linked to increased levels of ultraviolet radiation at the earth's surface. It is important to understand what effect this will have on plants. We tested the hypothesis that in response to increased UV-B radiation (280-320 man), soybean (Glycine max Merrill) and alfalfa (Mercado Saliva L.) would produce higher concentrations of flavonoids than plants screened from UV-B. Soybean and alfalfa plants were grown successively in a growth chamber that provided UV-B radiation intensities 45% above summer field levels. A wooden frame was used to suspend mylar-D film over one group of plants and mono-acetate film over another group. Mylar is opaque in the 280-316 nm range, and acetate absorbs most radiation from 280-290 nm and then reduces intensities in the 290-320 nm range by roughly 15%. Leaf chlorophyll concentration was determined with a Minolta SPAD-502 chlorophyll meter; the BRAD meter was calibrated with N,N- extractions. Flavonoids were extracted with an acidified methanol/water solution. Soybean grown under the acetate treatment showed 26% smaller internodal lengths and higher concentrations of flavonoids compared to plants grown under mylar. Significant results for alfalfa included 22% greater leaf flavonoid concentration under acetate, 14% greater leaf chlorophyll concentration under mylar, and 32% greater above-ground biomass under mylar. We found that increased UV-B radiation leads to increased production of UV-B absorbing compounds (i.e. flavonoids) in soybean and alfalfa leaves. This suggests that a protective mechanism in these plants is triggered by UV-B. In response, flavonoids are produced that absorb UV-B, and consequently decrease potentially damaging effects to the plants. In addition, we hypothesize that this flavonoid protection mechanism saturates at certain UV-B intensities.

  13. Energetic response of Chlorella vulgaris to alpha radiation and PCB stress

    SciTech Connect

    Schaffer, S.A.

    1982-01-01

    This research project has evaluated the bioenergetic response of the green alga Chlorella vulgaris following acute exposure to either the physical stress of radiation or the chemical stress of PCBs. After exposure, changes in survival or growth, adenylate pools (ATP, ADP, and AMP), CO/sub 2/ fixation and oxygen evolution and uptake were measured. By employing anaerobic conditions, or the electron transport inhibitor DCMU or dark conditions separately and in specific combinations, this study evaluated the response of three separate algal ATP producing mechanisms (respiration, total and cyclic photophosphorylation) to alpha radiation or PCB. The use of the adenylate energy charge ratio as an indicator of stress was also evaluated. The results of the radiation experiments indicated that alpha particle exposure between 25 to 275 rads caused a one-hour latent demand for ATP due to radioinduced DNA repair. In order to compensate for this ATP demand, nonessential utilization of ATP was decreased by slowing the rate of carbon fixation. The results also suggest that use of radiation as a tool to study algal physiology. The data obtained from the PCB experiments again showed each phosphorylation mechanism to be insensitive to 10, 100 and 200 ppm Aroclor 1254 exposures. Data suggest, however, that PCBs caused an increased photosynthetic rate, and total adenylate pool with decreased growth. The use of the adenylate energy charge ratio as a stress indicator was assessed. Because this ratio did not fluctuate at doses of radiation or PCBs that caused reduced survival and growth rates, this study concluded that for Chlorella the adenylate energy charge ration was a poor indicator of sublethal stress.

  14. Application of Low Dose Radiation Adaptive Response to Control Aging-Related Disease

    SciTech Connect

    Doss, Mohan

    2013-11-01

    Oxidative damage has been implicated in the pathogenesis of most aging-related diseases including neurodegenerative diseases. Antioxidant supplementation has been found to be ineffective in reducing such diseases, but increased endogenous production of antioxidants from the adaptive response due to physical and cognitive exercises (which increase oxidative metabolism and oxidative stress) has been effective in reducing some of the diseases. Low dose radiation (LDR), which increases oxidative stress and results in adaptive response of increased antioxidants, may provide an alternative method of controlling the aging-related diseases. We have studied the effect of LDR on the induction of adaptive response in rat brains and the effectiveness of the LDR in reducing the oxidative damage caused by subsequent high dose radiation. We have also investigated the effect of LDR on apomorphine-induced rotations in the 6-hydroxydopamine (6-OHDA) unilaterally-lesioned rat model of Parkinson?s disease (PD). LDR was observed to initiate an adaptive response in the brain, and reduce the oxidative damage from subsequent high dose radiation exposure, confirming the effectiveness of LDR adaptive response in reducing the oxidative damage from the free radicals due to high dose radiation. LDR resulted in a slight improvement in Tyrosine hydroxylase expression on the lesioned side of substantia nigra (indicative of its protective effect on the dopaminergic neurons), and reduced the behavioral symptoms in the 6-OHDA rat model of PD. Translation of this concept to humans, if found to be applicable, may be a possible approach for controlling the progression of PD and other neurodegenerative diseases. Since any translation of the concept to humans would be hindered by the currently prevalent carcinogenic concerns regarding LDR based on the linear no-threshold (LNT) model, we have also studied the justifications for the use of the LNT model. One of the shortcomings of the LNT model is that it

  15. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Marianne B. Sowa; Wilfried Goetz; Janet E. Baulch; Dinah N. Pyles; Jaroslaw Dziegielewski; Susannah Yovino; Andrew R. Snyder; Sonia M. de Toledo; Edouard I. Azzam; William F. Morgan

    2008-06-30

    Purpose: To investigate radiation induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response. Materials and Methods: We use medium transfer and targeted irradiation to examine radiation induced bystander effects in primary human fibroblast (AG1522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10 to 100 cGy. Results: The results show no evidence of a low-LET radiation induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor do we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 MeV α-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation. Conclusions: From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  16. Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium.

    PubMed

    Natarajan, Mohan; Aravindan, Natarajan; Sprague, Eugene A; Mohan, Sumathy

    2016-08-01

    Hemodynamic shear stress is defined as the physical force exerted by the continuous flow of blood in the vascular system. Endothelial cells, which line the inner layer of blood vessels, sense this physiological force through mechanotransduction signaling and adapt to maintain structural and functional homeostasis. Hemodynamic flow, shear stress and mechanotransduction signaling are, therefore, an integral part of endothelial pathophysiology. Although this is a well-established concept in the cardiovascular field, it is largely dismissed in studies aimed at understanding radiation injury to the endothelium and subsequent cardiovascular complications. We and others have reported on the differential response of the endothelium when the cells are under hemodynamic flow shear compared with static culture. Further, we have demonstrated significant differences in the gene expression of static versus shear-stressed irradiated cells in four key pathways, reinforcing the importance of shear stress in understanding radiation injury of the endothelium. This article further emphasizes the influence of hemodynamic shear stress and the associated mechanotransduction signaling on physiological functioning of the vascular endothelium and underscores its significance in understanding radiation injury to the vasculature and associated cardiac complications. Studies of radiation effect on endothelial biology and its implication on cardiotoxicity and vascular complications thus far have failed to highlight the significance of these factors. Factoring in these integral parts of the endothelium will enhance our understanding of the contribution of the endothelium to radiation biology. Without such information, the current approaches to studying radiation-induced injury to the endothelium and its consequences in health and disease are limited. PMID:27387860

  17. HIF-1α regulates the response of primary sarcomas to radiation therapy through a cell autonomous mechanism

    PubMed Central

    Zhang, Minsi; Qiu, Qiong; Li, Zhizhong; Sachdeva, Mohit; Min, Hooney; Cardona, Diana M.; DeLaney, Thomas F.; Han, Tracy; Ma, Yan; Luo, Lixia; Ilkayeva, Olga R.; Lui, Ki; Nichols, Amanda G.; Newgard, Christopher B.; Kastan, Michael B.; Rathmell, Jeffrey C.; Dewhirst, Mark W.; Kirsch, David G.

    2016-01-01

    Hypoxia is a major cause of radiation resistance, which may predispose to local recurrence after radiation therapy (RT). While hypoxia increases tumor cell survival after RT because there is less oxygen to oxidize damaged DNA, whether signaling pathways triggered by hypoxia contribute to radiation resistance is poorly understood. For example, intratumoral hypoxia can increase hypoxia inducible factor 1 alpha (HIF-1α), which may regulate pathways that contribute to radiation sensitization or radiation resistance. To clarify the role of HIF-1α in regulating tumor response to radiation therapy, we generated a novel genetically engineered mouse model of soft tissue sarcoma with an intact or deleted HIF-1α. Deletion of HIF-1α sensitized primary sarcomas to RT in vivo. Moreover, cell lines derived from primary sarcomas lacking HIF-1α, or in which HIF-1α was knocked down, had decreased clonogenic survival in vitro, demonstrating that HIF-1α can promote radiation resistance in a cell autonomous manner. In HIF-1α intact and deleted sarcoma cells, radiation-induced reactive oxygen species (ROS), DNA damage repair, and activation of autophagy were similar. However, sarcoma cells lacking HIF-1α had impaired mitochondrial biogenesis and metabolic response after radiation which might contribute to radiation resistance. These results show that HIF-1α promotes radiation resistance in a cell autonomous manner. PMID:25973951

  18. Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    PubMed Central

    Medina-Sánchez, Juan Manuel; Delgado-Molina, José Antonio; Bratbak, Gunnar; Bullejos, Francisco José; Villar-Argaiz, Manuel; Carrillo, Presentación

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days) acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change. PMID:23593178

  19. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation

    SciTech Connect

    Barnes, P.W.; Flint, S.D.; Caldwell, M.M. )

    1990-10-01

    Recent evidence of a general, global decline of stratospheric ozone has heightened concern about possible ecological consequences of increases in solar ultraviolet-B (UV-B, 280-320 nm) radiation resulting from ozone depletion. The influence of UV-B radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade and internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots.

  20. Ionizing Radiation-Induced Responses in Human Cells with Differing TP53 Status

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Wang, Ying W.; Murray, David

    2013-01-01

    Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS), autophagy, and endopolyploidy (e.g., multinucleation). Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell “death” are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21WAF1 tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome) and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents. PMID:24232458

  1. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  2. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  3. The Transient Circulation Response to Radiative Forcings and Sea Surface Warming

    SciTech Connect

    Staten, Paul; Reichler, Thomas; Lu, Jian

    2014-08-27

    Tropospheric circulation shifts have strong potential to impact surface climate. But the magnitude of these shifts in a changing climate, and the attending regional hydrological changes, are difficult to project. Part of this difficulty arises from our lack of understanding of the physical mechanisms behind the circulation shifts themselves. In order to better delineate circulation shifts and their respective causes, we decompose the circulation response into (1) the "direct" response to radiative forcings themselves, and (2) the "indirect" response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations, stratospheric ozone concentrations, and sea surface temperatures, we document the direct and indirect transient responses of the zonal mean general circulation, and investigate the roles of previously proposed mechanisms in shifting the midlatitude jet. We find that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward shifting jet, although we see some evidence for increasing equatorward wave reflection over the southern hemisphere in response to sea surface warming. Mechanisms for the northern hemisphere jet shift are less clear.

  4. Separate and combined responses to water deficit and UV-B radiation.

    PubMed

    Bandurska, Hanna; Niedziela, Justyna; Chadzinikolau, Tamara

    2013-12-01

    Crops and other plants in natural conditions are routinely affected by several stresses acting simultaneously or in sequence. In areas affected by drought, plants may also be exposed to enhanced UV-B radiation (280-315nm). Each of these stress factors differently affects cellular metabolism. A common consequence of plant exposure to the separate action of water deficit and UV-B radiation is the enhanced generation of reactive oxygen species (ROS) causing damage to proteins, lipids, carbohydrates and DNA. Despite this destructive activity, ROS also act as signalling molecules in cellular processes responsible for defence responses. Plants have evolved many physiological and biochemical mechanisms that avoid or tolerate the effects of stress factors. Water deficit avoidance leads to stomatal closure, stimulation of root growth, and accumulation of free proline and other osmolytes. Secondary metabolites (flavonols, flavones and anthocyanins) that accumulate in epidermal cells effectively screen UV-B irradiation and reduce its penetration to mesophyll tissue. The coordinated increased activity of the enzymatic antioxidant defence system such as up-regulation of superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase and glutathione reductase is an important mechanism of tolerance to water deficit and UV-B radiation. The accumulation of low molecular antioxidants (proline, glycine betaine, ascorbate and glutathione) can also contribute to tolerance to water deficit. Polyamines, tocopherol, carotenoids, alkaloids, flavonoids and other secondary metabolites participate in the removal of ROS under conditions of increased UV-B radiation. The combination of water deficit and UV-B radiation induces responses that can be antagonistic, additive or synergistic in comparison with the action of single stresses. UV-B radiation may enhance resistance to water deficit and vice versa. Hydrogen peroxide, nitric oxide (NO), abscisic acid (ABA), jasmonic acid, ethylene

  5. Space experiment "Cellular Responses to Radiation in Space (CELLRAD)": Hardware and biological system tests

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F.; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CELLRAD, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CELLRAD in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  6. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.

    PubMed

    Hellweg, Christine E; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  7. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses.

    PubMed

    Tomita, Masanori; Maeda, Munetoshi

    2015-03-01

    Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. PMID:25361549

  8. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses

    PubMed Central

    Tomita, Masanori; Maeda, Munetoshi

    2015-01-01

    Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. PMID:25361549

  9. Radiation microbeams as spatial and temporal probes of subcellular and tissue response

    PubMed Central

    Schettino, Giuseppe; Al-Rashid, Shahnaz T.; Prise, Kevin M.

    2010-01-01

    Understanding the effects of ionising radiations are key to determining their optimal use in therapy and assessing risks from exposure. The development of microbeams where radiations can be delivered in a highly temporal and spatially constrained manner has been a major advance. Several different types of radiation microbeams have been developed using X-rays, charged particles and electrons. For charged particles, beams can be targeted with sub-micron accuracy into biological samples and the lowest possible dose of a single particle track can be delivered with high reproducibility. Microbeams have provided powerful tools for understanding the kinetics of DNA damage and formation under conditions of physiological relevance and have significant advantages over other approaches for producing localised DNA damage, such as variable wavelength laser beam approaches. Recent studies have extended their use to probing for radiosensitive sites outside the cell nucleus, and testing for mechanisms underpinning bystander responses where irradiated and non-irradiated cells communicate with each other. Ongoing developments include the ability to locally target regions of 3-D tissue models and ultimately to target localised regions in vivo. With future advances in radiation delivery and imaging microbeams will continue to be applied in a range of biological studies. PMID:20079877

  10. The Internet's role in a biodosimetric response to a radiation mass casualty event.

    PubMed

    Sugarman, S L; Livingston, G K; Stricklin, D L; Abbott, M G; Wilkins, R C; Romm, H; Oestreicher, U; Yoshida, M A; Miura, T; Moquet, J E; Di Giorgio, M; Ferrarotto, C; Gross, G A; Christiansen, M E; Hart, C L; Christensen, D M

    2014-05-01

    Response to a large-scale radiological incident could require timely medical interventions to minimize radiation casualties. Proper medical care requires knowing the victim's radiation dose. When physical dosimetry is absent, radiation-specific chromosome aberration analysis can serve to estimate the absorbed dose in order to assist physicians in the medical management of radiation injuries. A mock exercise scenario was presented to six participating biodosimetry laboratories as one individual acutely exposed to Co under conditions suggesting whole-body exposure. The individual was not wearing a dosimeter and within 2-3 h of the incident began vomiting. The individual also had other medical symptoms indicating likelihood of a significant dose. Physicians managing the patient requested a dose estimate in order to develop a treatment plan. Participating laboratories in North and South America, Europe, and Asia were asked to evaluate more than 800 electronic images of metaphase cells from the patient to determine the dicentric yield and calculate a dose estimate with 95% confidence limits. All participants were blind to the physical dose until after submitting their estimates based on the dicentric chromosome assay (DCA). The exercise was successful since the mean biological dose estimate was 1.89 Gy whereas the actual physical dose was 2 Gy. This is well within the requirements for guidance of medical management. The exercise demonstrated that the most labor-intensive step in the entire process (visual evaluation of images) can be accelerated by taking advantage of world-wide expertise available on the Internet. PMID:24667387

  11. Bystander and Adaptive Responses in Tissue Models exposed to Low Radiation Doses

    SciTech Connect

    Kevin M. Prise

    2007-01-02

    The overall goal is characterization of 3D tissue models that can be used for investigation of the mechanisms underlying radiation-induced bystander effect at low doses (20 cGy or less) of low LET ionizing radiation, using a unique focused soft X-ray microprobe that had been upgraded to provide a range of focused soft X-ray energies, some sufficient to penetrate 3D models (Ref DE-FG02-01ER63236). The proposed studies will include an examination of whether the passage of a single electron track can trigger bystander responses in the 3D tissue models and, if so, whether the response is altered by increased or decreased levels of oxidative stress. Our existing multi-photon/confocal in-depth microscopy techniques will be used to develop assays for damage induced within intact 3D tissue models. The working hypothesis is that organization of cells into tissues, particularly involving more than one cell type, alters expression of the radiation-induced bystander effect compared to that seen in isolated single cell types in monolayer.

  12. Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G. K.

    2015-11-01

    Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3-2.5 MeV electron fluxes show an increase, whereas 2.5-14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such "energy-dependent" responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux dropouts during storm main phases do not correlate well with the flux buildup during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provides a viable candidate for the energy-dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

  13. Effects of α-Particle Radiation on MicroRNA Responses in Human Cell-Lines

    PubMed Central

    Chauhan, Vinita; Howland, Matthew; Wilkins, Ruth

    2012-01-01

    A variety of alpha (α)-particle emitters are found ubiquitously in the environment, in commercial/therapeutic prod-ucts and are a potential threat in the form of a radiological dispersal device. Our understanding of the biological mechanisms and long-term health effects resulting from α-particle exposure is limited. Exposure to radiation induces modulations of gene networks, possibly through microRNAs (miRNAs), which could be targets for studying biological effects. In this study, changes in miRNA expression patterns after 0.5 Gy, 1.0 Gy and 1.5 Gy of α-particle radiation at a low dose-rate of exposure in three human cell-lines (A549, THP-1 and HFL) were investigated. The screening of 1,145 miRNAs across three human cell-lines resulted in unique, cell-specific responses with no overlap in miRNA expression observed in the three cell-lines. Prediction analysis suggests these α-particle induced miRNA mapped to target genes related to ribosomal assembly, lung carcinoma development, cell communication and keratin sulfate biosynthesis. Taken together, these results suggest that exposure to α-particle radiation results in cell-type specific responses in gene network regulatory processes. PMID:22481983

  14. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    SciTech Connect

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E.; Moreno Barbosa, F.

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  15. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    NASA Astrophysics Data System (ADS)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, F.; Moreno Barbosa, E.

    2014-11-01

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  16. Glioblastoma stem cells: radiobiological response to ionising radiations of different qualities.

    PubMed

    Pecchia, I; Dini, V; Ricci-Vitiani, L; Biffoni, M; Balduzzi, M; Fratini, E; Belli, M; Campa, A; Esposito, G; Cirrone, G; Romano, F; Stancampiano, C; Pelacchi, F; Pallini, R; Tabocchini, M A

    2015-09-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumour, with very poor prognosis. The high recurrence rate and failure of conventional treatments are expected to be related to the presence of radio-resistant cancer stem cells (CSCs) inside the tumour mass. CSCs can both self-renew and differentiate into the heterogeneous lineages of cancer cells. Recent evidence showed a higher effectiveness of C-ions and protons in inactivating CSCs, suggesting a potential advantage of Hadrontherapy compared with conventional radiotherapy for GBM treatment. To investigate the mechanisms involved in the molecular and cellular responses of CSCs to ionising radiations, two GBM stem cell (GSC) lines, named lines 1 and 83, which were derived from patients with different clinical outcomes and having different metabolic profiles (as shown by NMR spectroscopy), were irradiated with (137)Cs photons and with protons or C-ions of 62 MeV u(-1) in the dose range of 5-40 Gy. The biological effects investigated were: cell death, cell cycle progression, and DNA damage induction and repair. Preliminary results show a different response to ionising radiation between the two GSC lines for the different end points investigated. Further experiments are in progress to consolidate the data and to get more insights on the influence of radiation quality. PMID:25969527

  17. Study of Ocean Response to Periodic and Constant Volcanic Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Dogar, M.; Stenchikov, G. L.

    2013-12-01

    It is known that volcanic radiative impacts could produce long-term perturbations of the ocean heat content. In this study we systematically compare the effect of periodic volcanic forcing with an equivalent time-average radiative cooling. One could expect that a sporadic strong cooling should initiate more vigorous vertical mixing of the upper ocean layer and therefore cools the ocean more effectively than a uniform radiative forcing. However, the long-term simulations show that on average the ocean heat content responses to periodic and constant forcings are almost identical. To better understand this controversy we conducted two sets of parallel simulations, the first one with uniform volcanic forcing and the second one with periodic volcanic forcing with 10 and 50 years repeating cycle using Geophysical Fluid Dynamics Laboratory Coupled Model CM2.1. We found that average perturbations of surface temperature, precipitation, ocean heat content, and sea level rise in both sets of simulations are similar but responses of Atlantic Meridional Overturning Circulation are significantly different, which explains the differences in the relaxation processes. These findings could be important for ocean initialization in long-tern climate studies and for geoengineering applications.

  18. Comparing intraspecific responses of 12 winter wheat cultivars to different doses of ultraviolet-B radiation.

    PubMed

    Lv, Zhiwei; Zhang, Xiusheng; Liu, Like; Guo, Yan; Fan, Yinglun; Yang, Xiaoyan; Li, Yuxia; Zhang, Wenhui

    2013-02-01

    In this study, intraspecific responses of 12 winter wheat cultivars to different doses of ultraviolet-B radiation (UV-B) were analyzed and compared. The results showed that the low UV-B dose of 3.24kJm(-2)d(-1) generally inhibited the plant height, but promoted the dry weight and photochemical reflectance index (PRI). The high UV-B dose of 5.40kJm(-2)d(-1) inhibited most of the indexes, especially plant height and fresh weight. Under the treatments of two UV-B doses, the response indexes (RIs) of plant height, dry weight, fresh weight, carotenoid, and anthocyanin were all significantly correlated with the cumulative stress response index (CSRI). The RIs of carotenoid and anthocyanin exhibited higher correlations with dry weight and fresh weight, indicating that these indexes were vital to UV-B tolerance. By comparing the correlations of the seven indexes between two doses of UV-B radiation, the responses of 12 cultivars' plant height and dry weight to different doses of UV-B were very significant (P<0.01). Thus, when comparing the UV-B tolerance of different winter wheat seedlings, no matter using high dose or low dose UV-B, the index of plant height should be concerned first and dry weight could be used secondarily. Among 12 winter wheat cultivars, Nongda 6081 exhibited significant resistance to two doses of UV-B radiation while others were variable. Differences in the accumulation of UV-absorbing compounds induced by UV-B in leaves may be the main and direct reason for the intraspecific differences between resistant and sensitive cultivars. PMID:23280246

  19. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    PubMed

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology. PMID:23320633

  20. Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms

    NASA Astrophysics Data System (ADS)

    McAdams, K. L.; Reeves, G. D.

    The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.

  1. An imaging-based tumour growth and treatment response model: investigating the effect of tumour oxygenation on radiation therapy response

    NASA Astrophysics Data System (ADS)

    Titz, Benjamin; Jeraj, Robert

    2008-09-01

    A multiscale tumour simulation model employing cell-line-specific biological parameters and functional information derived from pre-therapy PET/CT imaging data was developed to investigate effects of different oxygenation levels on the response to radiation therapy. For each tumour voxel, stochastic simulations were performed to model cellular growth and therapeutic response. Model parameters were fitted to published preclinical experiments of head and neck squamous cell carcinoma (HNSCC). Using the obtained parameters, the model was applied to a human HNSCC case to investigate effects of different uniform and non-uniform oxygenation levels and results were compared for treatment efficacy. Simulations of the preclinical studies showed excellent agreement with published data and underlined the model's ability to quantitatively reproduce tumour behaviour within experimental uncertainties. When using a simplified transformation to derive non-uniform oxygenation levels from molecular imaging data, simulations of the clinical case showed heterogeneous tumour response and variability in radioresistance with decreasing oxygen levels. Once clinically validated, this model could be used to transform patient-specific data into voxel-based biological objectives for treatment planning and to investigate biologically optimized dose prescriptions.

  2. Adaptive response to gamma radiation in mammalian cells proficient and deficient in components of nucleotide excision repair.

    PubMed

    Hafer, Kurt; Iwamoto, Keisuke S; Iwamoto, Keisuke K; Scuric, Zorica; Schiestl, Robert H

    2007-08-01

    Cells preconditioned with low doses of low-linear energy transfer (LET) ionizing radiation become more resistant to later challenges of radiation. The mechanism(s) by which cells adaptively respond to radiation remains unclear, although it has been suggested that DNA repair induced by low doses of radiation increases cellular radioresistance. Recent gene expression profiles have consistently indicated that proteins involved in the nucleotide excision repair pathway are up-regulated after exposure to ionizing radiation. Here we test the role of the nucleotide excision repair pathway for adaptive response to gamma radiation in vitro. Wild-type CHO cells exhibited both greater survival and fewer HPRT mutations when preconditioned with a low dose of gamma rays before exposure to a later challenging dose. Cells mutated for ERCC1, ERCC3, ERCC4 or ERCC5 did not express either adaptive response to radiation; cells mutated for ERCC2 expressed a survival adaptive response but no mutation adaptive response. These results suggest that some components of the nucleotide excision repair pathway are required for phenotypic low-dose induction of resistance to gamma radiation in mammalian cells. PMID:17638404

  3. Investigating Undergraduate Students' Science Literacy: Responses Related to Radiation and DNA

    NASA Astrophysics Data System (ADS)

    Impey, C.; Buxner, S.; Nieberding, M.; Romine, J.

    2015-11-01

    This study is part of a larger one investigating undergraduate students' science literacy. Over the past 25 years we have been investigating undergraduate students' basic science knowledge as well as beliefs and attitudes towards science and technology. Data has been collected from almost 12,000 students, mostly freshman and sophomore students and mostly non-STEM majors. This paper presents findings of two open ended questions that probe students' understanding of radiation and DNA. Each open ended question was coded using a scheme developed from existing literature and emergent themes. Analyses revealed that STEM students are better able to correctly describe radiation and had fewer misconceptions. Many students mentioned chemical characteristics and functions of DNA although a substantial number of students reported common misconceptions or trivial responses. Our results add to our existing work to help us understand how to better support students' learning in our undergraduate courses.

  4. Radiation-induced changes in the dielectric response of poly(vinylidene fluoride) type polymers

    NASA Astrophysics Data System (ADS)

    Hilczer, B.; Smogor, H.; Goslar, J.; Warchol, S.

    2003-01-01

    High and dispersive dielectric response, characteristic of the relaxor state, was observed in ferroelectric P(VDF/TrFE)(50/50) copolymers irradiated with 1.0 MeV and 1.5 MeV electrons. Relaxor-like behaviour of the copolymer is a result of overlapping of the dielectric anomaly characteristic of the glass transition and that related to the Curie point, which is shifted downwards by electron irradiation. The results of ESR, IR and NIR Raman spectroscopy studies of the radiation damage to P(VDF/TrFE)(50/50) show that radiation-induced irreversible transformation of the ferroelectric copolymer to the relaxor state is related to the existence of polar clusters, consisting of a variety of short range coherence of trans-conformation, stabilized by random fields of C=C and conjugated C=C bonds.

  5. Infrared response measurements on radiation-damaged Si/Li/ detectors.

    NASA Technical Reports Server (NTRS)

    Sher, A. H.; Liu, Y. M.; Keery, W. J.

    1972-01-01

    The improved infrared response (IRR) technique has been used to qualitatively compare radiation effects on Si(Li) detectors with energy levels reported for silicon in the literature. Measurements have been made on five commercial silicon detectors and one fabricated in-house, both before and after irradiation with fast neutrons, 1.9-MeV protons, and 1.6-MeV electrons. Effects dependent upon the extent of radiation damage have been observed. It seems likely that the photo-EMF, or photo-voltage, effect is the basic mechanism for the observation of IRR in p-i-n diodes with a wide i-region. Experimental characteristics of the IRR measurement are in agreement with those of the photovoltage effect.

  6. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    SciTech Connect

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  7. Single-Grain Optical Dating Properties of JSC Mars-1: Preliminary Measurements of Radiation Dose Response and Sensitivity Change

    NASA Astrophysics Data System (ADS)

    Lepper, K.

    2003-03-01

    A preliminary evaluation of radiation dose response and measurement induced sensitivity change, two fundamental optical dating properties, of single sand-sized grains extracted from the JSC Mars-1 simulant.

  8. Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation

    NASA Technical Reports Server (NTRS)

    Shirazi-Fard, Yasaman; Zaragoza, Josergio; Schreurs, Ann-Sofie; Truong, Tiffany; Tahimic, Candice; Alwood, Joshua S.; Castillo, Alesha B.; Globus, R. K.

    2016-01-01

    Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading

  9. Radiation response of drug-resistant variants of a human breast cancer cell line

    SciTech Connect

    Lehnert, S.; Greene, D.; Batist, G. )

    1989-06-01

    The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells.

  10. Radiation-quality dependent cellular response in mutation induction in normal human cells.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Uchihori, Yukio; Kitamura, Hisashi; Liu, Cui Hua

    2009-09-01

    We studied cellular responses in normal human fibroblasts induced with low-dose (rate) or low-fluence irradiations of different radiation types, such as gamma rays, neutrons and high linear energy transfer (LET) heavy ions. The cells were pretreated with low-dose (rate) or low-fluence irradiations (approximately 1 mGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before irradiations with an X-ray challenging dose (1.5 Gy). Helium (LET = 2.3 keV/microm), carbon (LET = 13.3 keV/microm) and iron (LET = 200 keV/microm) ions were produced by the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No difference in cell-killing effect, measured by a colony forming assay, was observed among the pretreatment with different radiation types. In mutation induction, which was detected in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus to measure 6-thioguanine resistant clones, there was no difference in mutation frequency induced by the X-ray challenging dose between unpretreated and gamma-ray pretreated cells. In the case of the pretreatment of heavy ions, X-ray-induced mutation was around 1.8 times higher in helium-ion pretreated and 4.0 times higher in carbon-ion pretreated cells than in unpretreated cells (X-ray challenging dose alone). However, the mutation frequency in cells pretreated with iron ions was the same level as either unpretreated or gamma-ray pretreated cells. In contrast, it was reduced at 0.15 times in cells pretreated with neutrons when compared to unpretreated cells. The results show that cellular responses caused by the influence of hprt mutation induced in cells pretreated with low-dose-rate or low-fluence irradiations of different radiation types were radiation-quality dependent manner. PMID:19680011

  11. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    SciTech Connect

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2010-02-12

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 Wm{sup -2}, and temperature decreased by {approx}0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental U.S. the total outgoing radiation increased by 2.3 Wm{sup -2}, and land surface temperature decreased by {approx}0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO{sub 2} offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be {approx} 57 Gt CO{sub 2}. A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO{sub 2} offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  12. Human responses to the threat of or exposure to ionizing radiation at Three Mile Island, Pennsylvania, and Goiania, Brazil.

    PubMed

    Collins, Daniel L

    2002-02-01

    The psychological stressors and their aftereffects associated with the Three Mile Island accident, the Goiania, Brazil, cesium-137 accident, and the Abadia, Brazil, storage location are summarized and compared. Cross-cultural comparisons of human responses to ionizing radiation are rare. A multidisciplinary methodological approach to examining the psychological responses to ionizing radiation is even more rare. The psychological, behavioral, neuroendocrine, and cardiovascular results are summarized for Three Mile Island, Goiania, and Abadia. PMID:11873499

  13. Gene Expression Profile Analysis as a Prognostic Indicator of Normal Tissue Response to Simulated Space Radiations

    NASA Technical Reports Server (NTRS)

    Story, Michael; Stivers, David N.

    2004-01-01

    This project was funded as a pilot project to determine the feasibility of using gene expression profiles to characterize the response of human cells to exposure to particulate radiations such as those encountered in the spaceflight environment. We proposed to use microarray technology to examine the gene expression patterns of a bank of well-characterized human fibroblast cell cultures. These fibroblast cultures were derived from breast or head and neck cancer patients who exhibited normal, minimal, or severe normal tissue reactions following low LET radiation exposure via radiotherapy. Furthermore, determination of SF2 values from fibroblasts cultured from these individuals were predictive of risk for severe late reactions. We hypothesized that by determining the expression of thousands of genes we could identify gene expression patterns that reflect how normal tissues respond to high Z and energy (HZE) particles, that is, that there are molecular signatures for HZE exposures. We also hypothesized that individuals who are intrinsically radiosensitive may elicit a unique response. Because this was funded as a pilot project we focused our initial studies on logistics and appropriate experimental design, and then to test our hypothesis that there is a unique molecular response to specific particles, in this case C and Fe, for primary human skin fibroblasts.

  14. Ionizing Radiation-Induced Responses: Where Free Radical Chemistry Meets Redox Biology and Medicine

    PubMed Central

    Hauer-Jensen, Martin

    2014-01-01

    Abstract The biological effects of ionizing radiation (IR) from environmental, medical, and man-made sources, as well as from space exploration are of broad health concern. During the last 40 years it has become evident that, in addition to short-lived free radical-mediated events initiated within microseconds of exposure and generally thought to dissipate within milliseconds, IR-induced production of reactive oxygen and nitrogen species as well as changes in redox signaling linked to disruption of metabolic processes persist long after radiation exposure. Furthermore, persistent IR-induced increases in the metabolic production of reactive oxygen and nitrogen species appear to significantly contribute to the delayed effects of IR exposure, including induction of adaptive responses at low doses as well as carcinogenesis, fibrosis, inflammation, genomic instability, and acceleration of the onset of degenerative tissue injury processes associated with aging. The ability to identify the specific metabolic mechanisms and dose–response relationships that contribute to adaptive responses as well as persistent IR-induced injury processes holds great promise for identifying novel strategies to mitigate the deleterious effects of IR exposure as well as for gathering mechanistic information critical for risk assessment. This Forum contains original and review articles authored by experts in the field of radiobiology focusing on novel mechanisms involving redox biology and metabolism that significantly contribute to the persistent biological effects seen following IR exposure. Antioxid. Redox Signal. 20, 1407–1409. PMID:24354361

  15. Monte Carlo calculation of the energy response characteristics of a RadFET radiation detector

    NASA Astrophysics Data System (ADS)

    Belicev, P.; Spasic Jokic, V.; Mayer, S.; Milosevic, M.; Ilic, R.; Pesic, M.

    2010-07-01

    The Metal -Oxide Semiconductor Field-Effect-Transistor (MOSFET, RadFET) is frequently used as a sensor of ionizing radiation in nuclear-medicine, diagnostic-radiology, radiotherapy quality-assurance and in the nuclear and space industries. We focused our investigations on calculating the energy response of a p-type RadFET to low-energy photons in range from 12 keV to 2 MeV and on understanding the influence of uncertainties in the composition and geometry of the device in calculating the energy response function. All results were normalized to unit air kerma incident on the RadFET for incident photon energy of 1.1 MeV. The calculations of the energy response characteristics of a RadFET radiation detector were performed via Monte Carlo simulations using the MCNPX code and for a limited number of incident photon energies the FOTELP code was also used for the sake of comparison. The geometry of the RadFET was modeled as a simple stack of appropriate materials. Our goal was to obtain results with statistical uncertainties better than 1% (fulfilled in MCNPX calculations for all incident energies which resulted in simulations with 1 - 2×109 histories.

  16. The influence of SV40 immortalization of human fibroblasts on p53-dependent radiation responses

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The simian virus 40 large tumor antigen (SV40 Tag) has been ascribed many functions critical to viral propagation, including binding to the mammalian tumor suppressor p53. Recent studies have demonstrated that SV40-transformed murine cells have functional p53. The status of p53 in SV40-immortalized human cells, however, has not been characterized. We have found that in response to ionizing radiation, p53-dependent p21 transactivation activity is present, albeit reduced, in SV40-immortalized cells and that this activity can be further reduced with either dominant negative p53 expression or higher SV40 Tag expression. Furthermore, overexpression of p53 in SV40-immortalized ataxia-telangiectasia (A-T) cells restores p53-dependent p21 induction to typical A-T levels. All SV40-immortalized cell lines exhibited an absence of G1 arrest. Moreover, all SV40-immortalized cell lines exhibited increased apoptosis relative to primary cells in response to ionizing radiation, suggesting that SV40 immortalization results in a unique phenotype with regard to DNA damage responses. Copyright 1999 Academic Press.

  17. Humoral immune response of mice injected with tocopherol after exposure to X-radiation

    SciTech Connect

    Roy, R.M.; Petrella, M.

    1987-01-01

    Serum haemagglutination (HA) titers have been determined for irradiated and non-irradiated mice responding to injection of two different concentrations of sheep red blood cells (SRBC) 24 to 48 hours after irradiation and immediate intraperitoneal injection of 2.5 mg DL alpha-tocopherol, the emulsifying vehicle, or saline. Mice maintained on tocopherol-deficient diets for 8 weeks post-weaning and those on regular diets exhibited increased IgG titers during peak response when injected with vitamin E. This partially alleviated the radiation-depression of the primary immune response induced by the smaller SRBC injection. This stimulatory effect was most significant in mice maintained on vitamin E-deficient diets. The HA titers of irradiated and non-irradiated mice maintained on normal rations were determined following a 10-fold increase in the SRBC inoculation. Antibody titer was greater following injection of the higher concentration of SRBC but post-irradiation injection of tocopherol immediately or 24 hours after irradiation did not enhance immune response. At the higher SRBC concentration maximum observed HA titers decreased with increasing dose of radiation; however, tocopherol had no significant dose-reducing effect. Tocopherol toxicity as manifested by depressed HA titers was observed occasionally in non-irradiated mice challenged with the higher concentration of SRBC.

  18. Immune responses of a wall lizard to whole-body exposure to radiofrequency electromagnetic radiation.

    PubMed

    Mina, Despoina; Sagonas, Kostas; Fragopoulou, Adamantia F; Pafilis, Panayiotis; Skouroliakou, Aikaterini; Margaritis, Lukas H; Tsitsilonis, Ourania E; Valakos, Efstratios D

    2016-03-01

    Purpose During the last three decades, the number of devices that emit non-ionizing electromagnetic radiation (EMR) at the wireless communication spectrum has rapidly increased and possible effects on living organisms have become a major concern. The purpose of this study was to investigate the effects of radiofrequency EMR emitted by a widely used wireless communication device, namely the Digital Enhanced Communication Telephony (DECT) base, on the immune responses of the Aegean wall lizard (Podarcis erhardii). Materials and methods Adult male lizards were exposed 24 h/day for 8 weeks to 1880-1900 MHz DECT base radiation at average electric field intensity of 3.2 V/m. Immune reactivity was assessed using the phytohemagglutinin (PHA) skin swelling and mixed lymphocyte reaction (MLR) tests. Results Our results revealed a noticeable suppression (approximately 45%) of inflammatory responses in EMR-exposed lizards compared to sham-exposed animals. T cell-mediated responses were marginally affected. Conclusion Daily radiofrequency EMR exposure seems to affect, at least partially, the immunocompetence of the Aegean wall lizard. PMID:26853383

  19. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis.

    PubMed

    Sishc, Brock J; Nelson, Christopher B; McKenna, Miles J; Battaglia, Christine L R; Herndon, Andrea; Idate, Rupa; Liber, Howard L; Bailey, Susan M

    2015-01-01

    Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the

  20. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis

    PubMed Central

    Sishc, Brock J.; Nelson, Christopher B.; McKenna, Miles J.; Battaglia, Christine L. R.; Herndon, Andrea; Idate, Rupa; Liber, Howard L.; Bailey, Susan M.

    2015-01-01

    Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the

  1. Near-LTE linear response calculations with a collisional-radiative model for He-like Al ions

    SciTech Connect

    More, R.M.; Kato, T.

    1998-01-06

    We investigate the non-equilibrium atomic kinetics using a collisional-radiative (CR) model modified to include line absorption. Steady-state emission is calculated for He-like aluminum ions immersed in a specified radiation field having fixed deviations from a Planck spectrum. The net emission is interpreted in terms of NLTE population changes. The calculation provides an NLTE response matrix, and in agreement with a general relation of non-equilibrium thermodynamics, the response matrix is symmetric. We compute the response matrix for 1% and 50% changes in the photon temperature and find linear response over a surprisingly large range.

  2. Near-LTE linear response calculations with a collisional-radiative model for He-like Al ions. Revision 1

    SciTech Connect

    More, R.; Kato, T.

    1998-04-06

    We investigate non-equilibrium atomic kinetics using a collisional- radiative model modified to include line absorption. Steady-state emission is calculated for He-like aluminum immersed in a specified radiation field having fixed deviations from a Planck spectrum. The calculated net emission is presented as a NLTE response matrix. In agreement with a rigorous general rule of non-equilibrium thermodynamics, the linear response is symmetric. We compute the response matrix for 1% and {+-} 50% changes in the photon temperature and find linear response over a surprisingly large range.

  3. Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group

    PubMed Central

    Zotta, Teresa; Ricciardi, Annamaria; Ianniello, Rocco G.; Parente, Eugenio; Reale, Anna; Rossi, Franca; Iacumin, Lucilla; Comi, Giuseppe; Coppola, Raffaele

    2014-01-01

    One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS), in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM). Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM) and most tolerated pyrogallol (50 mM), while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions) and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications. PMID:24918811

  4. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. PMID:26874310

  5. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Golaz, J.-C.; Mauzerall, D. L.

    2015-11-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80 % by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm day-1. However, when using a version of CM3 with reduced present-day aerosol radiative forcing (-1.0 W m-2), the global temperature increase for RCP8.5 is about 0.5 K, with similar magnitude decreases in other climate response parameters as well. Regionally and locally, climate impacts can be much larger than the global mean, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm day-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in

  6. Optimization of radiation treatment of ginger ( Zingiber officinale) rhizomes using response surface methodology

    NASA Astrophysics Data System (ADS)

    Nketsia-Tabiri, Josephine

    1998-06-01

    The effects of pre-irradiation storage time (7-21 days), radiation dose (0-75 Gy) and post-irradiation storage time (2-20 weeks) on sprouting, wrinkling and weight loss of ginger was investigated using a central composite rotatable design. Predictive models developed for all three responses were highly significant. Weight loss and wrinkling decreased as pre-irradiation storage time increased. Dose and post-irradiation storage time had significant interactive effects on weight loss and sprouting. Processing conditions for achieving minimal sprouting resulted in maximum weight loss and wrinkling.

  7. Innate immune sensors stimulate inflammatory and immunosuppressive responses to UVB radiation.

    PubMed

    Gallo, Richard L; Bernard, Jamie J

    2014-06-01

    Almost 40 years from when it was first reported that UVB radiation exposure would modulate immune signaling, the photoimmunology field is still trying to understand the mechanisms by which UVB initiates inflammatory responses and modulates immune recognition. This commentary focuses on the ability of Toll-like receptors (TLRs), specifically TLR4 (Ahmad et al., 2014) and ligands such as damage-associated molecular patterns (DAMPs) released from injured cells to stimulate innate immune signaling and inflammatory cytokine production following UVB irradiation. PMID:24825061

  8. Photon irradiation response of photonic crystal fibres and flat fibres at radiation therapy doses.

    PubMed

    Hashim, S; Ibrahim, S A; Che Omar, S S; Alajerami, Y S M; Saripan, M I; Noor, N M; Ung, N M; Mahdiraji, G A; Bradley, D A; Alzimami, K

    2014-08-01

    Radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF) are still much less investigated in thermoluminescense dosimetry (TLD). We have reported the TL response of PCF and FF subjected to 6 MV photon irradiation. The proposed dosimeter shows good linearity at doses ranging from 1 to 4 Gy. The small size of these detectors points to its use as a dosimeter at megavoltage energies, where better tissue-equivalence and the Bragg-Gray cavity theory prevails. PMID:24858954

  9. Response of different regional online coupled models to aerosol-radiation interactions

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Balzarini, Alessandra; Brunner, Dominik; Baró, Rocio; Curci, Gabriele; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Jorba, Oriol; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2016-04-01

    The importance of aerosol-meteorology interactions and their representation in online coupled regional atmospheric chemistry-meteorology models was investigated in COST Action ES1004 (EuMetChem, http://eumetchem.info/). Case study results from different models (COSMO-Muscat, COSMO-ART, and different configurations of WRF-Chem), which were applied for Europe as a coordinated exercise for the year 2010, are analyzed with respect to inter-model variability and the response of the different models to direct and indirect aerosol-radiation interactions. The main focus was on two episodes - the Russian heat wave and wildfires episode in July/August 2010 and a period in October 2010 with enhanced cloud cover and rain and including an of Saharan dust transport to Europe. Looking at physical plausibility the decrease in downward solar radiation and daytime temperature due to the direct aerosol effect is robust for all model configurations. The same holds for the pronounced decrease in cloud water content and increase in solar radiation for cloudy conditions and very low aerosol concentrations that was found for WRF-Chem when aerosol cloud interactions were considered. However, when the differences were tested for statistical significance no significant differences in mean solar radiation and mean temperature between the baseline case and the simulations including the direct and indirect effect from simulated aerosol concentrations were found over Europe for the October episode. Also for the fire episode differences between mean temperature and radiation from the simulations with and without the direct aerosol effect were not significant for the major part of the modelling domain. Only for the region with high fire emissions in Russia, the differences in mean solar radiation and temperature due to the direct effect were found to be significant during the second half of the fire episode - however only for a significance level of 0.1. The few observational data indicate that

  10. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  11. Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells.

    PubMed

    Park, Hyung Sun; You, Ga Eun; Yang, Kwang Hee; Kim, Ji Young; An, Sungkwan; Song, Jie-Young; Lee, Su-Jae; Lim, Young-Khi; Nam, Seon Young

    2015-12-01

    Despite many studies of the effect of ionizing radiation, biological mechanisms of action might differ greatly depend on dose, dose rate, and cell type. This study was performed to explore the effects of low- and high-dose radiation in human immune cell lines. We examined cell sensitivity after irradiation with 0.05, 0.1, or 2Gy in two normal cell lines and three tumor cell lines. Low-dose radiation of 0.05 and 0.1Gy had no effect on cell survival in any tested cell line, with the exception of IM-9 cells, whose viability was transiently increased. However, IM-9 and C1R-sB7 cells were very sensitive to high-dose radiation-induced cell death, whereas Jurkat and JM1 cells showed moderate sensitivity, and THP-1 cells were completely resistant. This radiosensitivity was correlated with basal AKT activation, which is induced by phosphorylation. In radiosensitive IM-9 cells, priming with chronic low-dose irradiation blocked cell death induced by high-dose radiation challenge via inhibition of caspase activation and PARP cleavage. AKT phosphorylation was not altered in IM-9 cells, but ERK phosphorylation was greatly elevated immediately after chronic low-dose irradiation. Taken together, our results suggest that the different responses of normal and tumor cells to low-dose and high-dose radiation depend on AKT activation, which is regulated by protein phosphatase 2 (PP2A). In radiosensitive normal cells lacking basal AKT activity, chronic low-dose radiation increases activation of the ERK pathway, which plays an important role in the adaptive response to radiation, providing a very important insight into understanding the effects of ionizing radiation on health. PMID:26362471

  12. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  13. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  14. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  15. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  16. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Butler, D. J.; Stevenson, A. W.; Wright, T. E.; Harty, P. D.; Lehmann, J.; Livingstone, J.; Crosbie, J. C.

    2015-11-01

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response.

  17. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation.

    PubMed

    Butler, D J; Stevenson, A W; Wright, T E; Harty, P D; Lehmann, J; Livingstone, J; Crosbie, J C

    2015-11-21

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response. PMID:26510214

  18. Inactivation of thrombomodulin by ionizing radiation in a cell-free system: possible implications for radiation responses in vascular endothelium.

    PubMed

    Ross, Christopher C; MacLeod, Stewart L; Plaxco, Jason R; Froude, Jeffrey W; Fink, Louis M; Wang, Junru; Stites, Wesley E; Hauer-Jensen, Martin

    2008-04-01

    Normal tissue radiation injury is associated with loss of vascular thromboresistance, notably because of deficient levels of endothelial thrombomodulin (TM). TM is located on the luminal surface of most endothelial cells and has critical anticoagulant and anti-inflammatory functions. Chemical oxidation of a specific methionine residue (Met388) at the thrombin-binding site in TM reduces its main functional activity, i.e., the ability to activate protein C. We examined whether exposure to ionizing radiation affects TM in a similar manner. Full-length recombinant human TM, a construct of epidermal growth factor-like domains 4-6, which are involved in protein C activation, and a synthetic peptide containing the methionine of interest were exposed to gamma radiation in a cell-free system, i.e., a system not confounded by TM turnover or ectodomain shedding. The influence of radiation on functional activity was assessed with the protein C activation assay; formation of a TM-thrombin complex was assessed with surface plasmon resonance (Biacore), and oxidation of Met388 was assessed by HPLC and confirmed by mass spectroscopy. Exposure to radiation caused a dose-dependent reduction in protein C activation, impaired TM-thrombin complex formation, and oxidation of Met388. These results demonstrate that ionizing radiation adversely affects the TM molecule. Our findings may have relevance to normal tissue toxicity in clinical radiation therapy as well as to the development of radiation syndromes in the non-therapeutic radiation exposure setting. PMID:18363428

  19. Differential Molecular Stress Responses to Low Compared to High Doses of Ionizing Radiation in Normal Human Fibroblasts

    PubMed Central

    Velegzhaninov, Ilya O.; Shadrin, Dmitry M.; Pylina, Yana I.; Ermakova, Anastasia V.; Shostal, Olga A.; Belykh, Elena S.; Kaneva, Anna V.; Ermakova, Olga V.

    2015-01-01

    Understanding the mechanisms producing low dose ionizing radiation specific biological effects represents one of the major challenges of radiation biology. Although experimental evidence does suggest that various molecular stress response pathways may be involved in the production of low dose effects, much of the detail of those mechanisms remains elusive. We hypothesized that the regulation of various stress response pathways upon irradiation may differ from one another in complex dose-response manners, causing the specific and subtle low dose radiation effects. In the present study, the transcription level of 22 genes involved in stress responses were analyzed using RT-qPCR in normal human fibroblasts exposed to a range of gamma-doses from 1 to 200 cGy. Using the alkali comet assay, we also measured the level of DNA damages in dose-response and time-course experiments. We found non-linear dose responses for the repair of DNA damage after exposure to gamma-radiation. Alterations in gene expression were also not linear with dose for several of the genes examined and did not follow a single pattern. Rather, several patterns could be seen. Our results suggest a complex interplay of various stress response pathways triggered by low radiation doses, with various low dose thresholds for different genes. PMID:26675169

  20. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    SciTech Connect

    Colvin, Jeffrey; Shestakov, Aleksei; Stolken, James; Vignes, Ryan

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  1. Energy Dependent Responses of Relativistic Electron Fluxes in the Outer Radiation Belt to Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Xie, L.

    2015-12-01

    Geomagnetic storms can either increase 4 or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3-2.5 MeV electrons fluxes show increase, whereas 2.5-14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such 'energy dependent' behavior of electrons preferably occurs during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves and these 'energy dependent' events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux drop-outs during storm main phases do not correlate well with the flux build-up during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provide a viable candidate for the energy dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

  2. Effects of UVA radiation on an established immune response in humans and sunscreen efficacy.

    PubMed

    Moyal, Dominique D; Fourtanier, Anny M

    2002-01-01

    It is well established that ultraviolet radiation has immunomodulatory effects which may be involved in skin cancer. Recent studies have shown that UVA radiation (320-400 nm) as well as UVB (290-320 nm) is immunosuppressive. This means that sunscreens which mainly absorb UVB (protection against erythema) may be less effective in preventing UVR-induced immunosuppression than broad-spectrum products. We have studied the effects of UVA exposure on the human delayed-type hypersensitivity response (DTH) and compared the efficacy of sunscreens having different levels of UVA protection under both solar-simulated radiation (SSR) chronic exposures or acute exposure and outdoor real-life solar exposure conditions. DTH was assessed using recall antigens. Our studies clearly demonstrate the role of UVA in the induction of photoimmunosuppression together with the need for sunscreen products providing efficient photoprotection throughout the entire UV spectrum. These data suggest that sun protection factor may not be sufficient to predict the ability of sunscreens for protection from UV-induced immune suppression. Determining the level of UVA protection is particularly necessary, because UVA seems to have a relatively low contribution to erythema but is highly involved in immunosuppression. PMID:12444956

  3. Transient and Post-irradiation Response of Optoelectronic Devices to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Haider, F. A. A.; Chee, F. P.

    2015-01-01

    Space and ground level electronic equipment with semiconductor devices are subjected to the deleterious effects by radiation. This paper is attempted to present the transient and post-irradiation response of optoelectronic devices to gamma (γ) rays utilizing cobalt-60. In situ measurements were made on the devices under test (DUTs) up to a total dose of 60 krad followed by a post-irradiation not in-flux test for eight hours. Current transfer ratio (CTR) with is the vital merit of the optoelectronic system is found to decrease remarkably with the absorbed dose. This degradation is induced by the interaction of the energetic photons from gamma rays via two main mechanisms. The dominant effect is the mechanism by ionization while the secondary is by displacement. This radiation effect is found to arouse either a permanent or temporarily damage in the DUTs depending on their current drives and also the Total Ionizing Dose (TID) absorbed. The TID effects by gamma rays are cumulative and gradually take place throughout the lifecycle of the devices exposed to radiation. The full damage cascade phenomenon in the DUTs is calculated via the simulation.

  4. The Response of Radiation Portal Monitors to Medical Radionuclides at Border Crossings

    SciTech Connect

    Kouzes, Richard T.; Siciliano, Edward R.

    2006-05-01

    Radio-pharmaceuticals are found at detectable levels in about one in 2600 Americans. Such individuals are thus commonly found at border crossings where equipment exists for radiation detection, and the resulting alarms must be handled by cognizant officials. A total of approximately 14.4 million medical procedures using radionuclides were performed in the U.S. during 2001. Of this total number of procedures during 2001, approximately 14.2 million were diagnostic procedures and 0.2 million were therapeutic procedures. Although there were over 45 different commercially-available products used in over 75 different types of procedures, 17 isotopes comprise the complete set of active ingredients in the commercially available radiopharmaceuticals in the U.S. Of these, 12 are customarily administered to outpatients, and 9 of these produce energetic photons. At 91.5%, the isotope 99mTc is the one most likely administered by an overwhelming margin. This paper reports on various impacts of radiopharmaceuticals observed at border crossings. Calculations were performed to simulate the photon response of portal radiation monitors to these types of sources. It is shown that at any time, about one in 2600 Americans carries a detectable radiation burden. (PIET-43741-TM-326)

  5. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose. PMID:19430218

  6. Modeling hematopoietic system response caused by chronic exposure to ionizing radiation

    PubMed Central

    Akushevich, Igor V.; Veremeyeva, Galina A.; Dimov, Georgy P.; Ukraintseva, Svetlana V.; Arbeev, Konstantin G.; Akleyev, Alexander V.; Yashin, Anatoly I.

    2013-01-01

    A new model of the hematopoietic system response in humans chronically exposed to ionizing radiation describes the dynamics of the hematopoietic stem cell compartment as well as the dynamics of each of the four blood cell types (lymphocytes, neutrophiles, erythrocytes, and platelets). The required model parameters were estimated based on available results of human and experimental animal studies. They include the steady-state number of hematopoietic stem cells and peripheral blood cell lines in an unexposed organism, amplification parameters for each blood line, parameters describing proliferation and apoptosis, parameters of feedback functions regulating the steady-state numbers, and characteristics of radiosensitivity related to cell death and non-lethal cell damage. The model predictions were tested using data on hematological measurements (e.g., blood counts) performed in 1950–1956 in the Techa River residents chronically exposed to ionizing radiation since 1949. The suggested model of hematopoiesis is capable of describing experimental findings in the Techa River Cohort, including: i) slopes of the dose-effect curves reflecting the inhibition of hematopoiesis due to chronic ionizing radiation, ii) delay in effect of chronic exposure and accumulated character of the effect, and iii) dose-rate patterns for different cytopenic states (e.g., leukopenia, thrombocytopenia). PMID:21259022

  7. Intensity Thresholds for Aerobic Exercise–Induced Hypoalgesia

    PubMed Central

    Naugle, Kelly M.; Naugle, Keith E.; Fillingim, Roger B.; Samuels, Brian; Riley, Joseph L.

    2014-01-01

    Despite many studies investigating exercise-induced hypoalgesia, there is limited understanding of the optimal intensity of aerobic exercise in producing hypoalgesic effects across different types of pain stimuli. Given that not all individuals are willing or capable of engaging in high intensity aerobic exercise, whether moderate intensity aerobic exercise is associated with a hypoalgesic response and whether this response generalizes to multiple pain induction techniques needs to be substantiated. Purpose This study’s purpose is to test for differences in the magnitude of pressure and heat pain modulation induced by moderate (MAE) and vigorous (VAE) intensity aerobic exercise. Methods Twelve healthy young males and 15 females completed one training session and three testing sessions consisting of 25 minutes of either 1) stationary cycling at 70% heart rate reserve (HRR), 2) stationary cycling at 50% HRR, or 3) quiet rest (control). Pain testing was conducted on both forearms prior to and immediately following each condition and included the following tests: pressure pain thresholds (PPT), suprathreshold pressure pain test, static continuous heat test, and repetitive pulse heat pain test. Repeated measures ANOVAs were conducted on each pain measure. Results VAE and MAE reduced pain ratings during static continuous heat stimuli and repetitive heat pulse stimuli, with VAE producing larger effects. VAE also increased PPTs, while neither exercise influenced suprathreshold pressure pain ratings. Conclusion These results suggest that MAE is capable of producing a hypoalgesic effect using continuous and repetitive pulse heat stimuli. However, a dose-response effect was evident as VAE produced larger effects than MAE. PMID:24002342

  8. Genome Wide Evaluation of Normal Human Tissue in Response to Controlled, In vivo Low-Dose Low LET Ionizing Radiation Exposure: Pathways and Mechanisms Final Report, September 2013

    SciTech Connect

    Rocke, David M.

    2013-09-09

    During course of this project, we have worked in several areas relevant to low-dose ionizing radiation. Using gene expression to measure biological response, we have examined the response of human skin exposed in-vivo to radation, human skin exposed ex-vivo to radiation, and a human-skin model exposed to radiation. We have learned a great deal about the biological response of human skin to low-dose ionizing radiation.

  9. Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report

    SciTech Connect

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

    2014-12-01

    This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  10. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  11. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  12. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    DOE PAGESBeta

    Fournier, K. B.; Brown, Jr., C. G.; Yeoman, M. F.; Fisher, J. H.; Seiler, S. W.; Hinshelwood, D.; Compton, S.; Holdener, F. R.; Kemp, G. E.; Newlander, C. D.; et al

    2016-08-10

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the NIF’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight.more » We discuss the measured accuracy of sample responses, as well as planned modifications to the XTRRA cassette.« less

  13. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S. D.

    1994-01-01

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research were covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.

  14. Characterizing the radiation response of Cherenkov glass detectors with isotopic sources

    SciTech Connect

    Hayward, J P; Hobbs, C. L.; Bell, Zane W; Boatner, Lynn A; Johnson, Rose E; Ramey, Joanne Oxendine; Jellison Jr, Gerald Earle; Lillard, Cole R; Ramey, Lucas A

    2012-01-01

    Abstract Cherenkov detectors are widely used for particle identification and threshold detectors in high-energy physics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we set the groundwork to evaluate large Cherenkov glass detectors for sensitivity to MeV photons through first understanding the measured response of small Cherenkov glass detectors to isotopic gamma-ray sources. Counting and pulse height measurements are acquired with reflected glass Cherenkov detectors read out with a photomultiplier tube. Simulation was used to inform our understanding of the measured results. This simulation included radioactive source decay, radiation interaction, Cherenkov light generation, optical ray tracing, and photoelectron production. Implications for the use of Cherenkov glass detectors to measure low energy gammaray response are discussed.

  15. Response of an implantable MOSFET dosimeter to 192Ir HDR radiation.

    PubMed

    Fagerstrom, Jessica M; Micka, John A; DeWerd, Larry A

    2008-12-01

    New in vivo dosimetry methods would be useful for clinical HDR brachytherapy. An implantable MOSFET Dose Verification System designed by Sicel Technologies, Inc. was examined for use with 192Ir HDR applications. This investigation demonstrated that varying the dose rate from 22 to 84 cGy/min did not change detector response. The detectors exhibited a higher sensitivity to 192Ir energies than 60Co energies. A nonlinear accumulated dose effect was characterized by three third-order polynomials fit to data from detectors placed at three different distances from the source. The detectors were found to have minimal rotational angular dependence. A strong longitudinal angular dependence was found when the detector's copper coil and electronics assembly were aligned between the MOSFETs and incident radiation. This orientation showed a 16% decrease in response relative to other orientations tested. PMID:19175130

  16. {sup 18}-F-Fluorodeoxyglucose-Positron Emission Tomography Evaluation of Early Metabolic Response During Radiation Therapy for Cervical Cancer

    SciTech Connect

    Schwarz, Julie K.; Lin, Lillie L.; Siegel, Barry A.; Miller, Tom R.; Grigsby, Perry W.

    2008-12-01

    Purpose: To document changes in cervical tumor {sup 18}-F-fluorodeoxyglocose (FDG) uptake during radiation therapy and to correlate those changes with post-treatment tumor response and survival outcome. Methods and Materials: A total of 36 patients with Stage Ib1 to IIIb cervical cancer were enrolled in an institutional protocol examining the use of fluorodeoxyglucose-positron emission tomography (FDG-PET) for brachytherapy treatment planning. As part of this study, FDG-PET or PET/computed tomograpy (CT) images were obtained before, during, and after the completion of radiation therapy. Tumor metabolic responses were assessed qualitatively and semi-quantitatively by measurement of the maximal standardized uptake value (SUV{sub max}). Results: Post-treatment FDG-PET images were obtained for 36 patients in this study. Of the patients, 29 patients had a complete metabolic response on the post-treatment PET, 4 had a partial metabolic response, and 3 had new sites of FDG uptake. Six patients had a complete metabolic response observed during radiation therapy, 26 had a partial metabolic response and 4 had stable or increased tumor metabolic activity. For patients with complete metabolic response during radiation therapy, median time to complete response was 29.5 days (range, 18-43 days). The mean cervical tumor SUV{sub max} decreased from 11.2 (SD, 6.3; range, 2.1-38.0) pretreatment to 2.4 (SD, 2.7; range, 0-8.8) mid treatment, and 0.5 (SD, 1.7; range, 0-8.3) post-treatment. Conclusions: During radiation therapy for cervical cancer, FDG-PET can be used to monitor treatment response. Complete metabolic response during radiation therapy was observed for a subset of patients. Recommendations regarding the optimal timing of FDG-PET during treatment for cervical cancer will require further systematic study.

  17. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  18. The Impact of Induction Chemotherapy and the Associated Tumor Response on Subsequent Radiation-Related Changes in Lung Function and Tumor Response

    SciTech Connect

    Mao Jingfang; Kocak, Zafer; Zhou Sumin; Garst, Jennifer; Evans, Elizabeth S.; Zhang Junan; Larrier, Nicole A.; Hollis, Donna R.; Folz, Rodney J.; Marks, Lawrence B. . E-mail: lawrence.marks@duke.edu

    2007-04-01

    Purpose: To assess the impact of induction chemotherapy, and associated tumor shrinkage, on the subsequent radiation-related changes in pulmonary function and tumor response. Methods and Materials: As part of a prospective institutional review board-approved study, 91 evaluable patients treated definitively with thoracic radiation therapy (RT) for unresectable lung cancer were analyzed. The rates of RT-associated pulmonary toxicity and tumor response were compared in the patients with and without pre-RT chemotherapy. In the patients receiving induction chemotherapy, the rates of RT-associated pulmonary toxicity and tumor response were compared in the patients with and without a response (modified Response Evaluation Criteria in Solid Tumor criteria) to the pre-RT chemotherapy. Comparisons of the rates of improvements in pulmonary function tests (PFTs) post-RT, dyspnea requiring steroids, and percent declines in PFTs post-RT were compared in patient subgroups using Fisher's exact test, analysis of variance, and linear or logistic regression. Results: The use of pre-RT chemotherapy appears to increase the rate of radiation-induced pneumonitis (p = 0.009-0.07), but has no consistent impact on changes in PFTs. The degree of induction chemotherapy-associated tumor shrinkage is not associated with the rate of subsequent RT-associated pulmonary toxicity. The degree of tumor response to chemotherapy is not related to the degree of tumor response to RT. Conclusions: Additional study is needed to better clarify the impact of chemotherapy on radiation-associated disfunction.

  19. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  20. Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation

    SciTech Connect

    Zou, Ying; Zhang, Ningzhe; Ellerby, Lisa M.; Davalos, Albert R.; Zeng, Xianmin; Campisi, Judith; Desprez, Pierre-Yves

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer hESCs and their progeny, NSCs and neurons, were exposed to ionizing radiation. Black-Right-Pointing-Pointer Upon irradiation, most hESCs died within 5-7 h. Black-Right-Pointing-Pointer Surviving NSCs underwent senescence and displayed features of astrocytes. Black-Right-Pointing-Pointer Surviving NSCs did not display the secretory phenotype expressed by pure astrocytes. Black-Right-Pointing-Pointer This study is to better understand the stress-responses of hESCs and their progeny. -- Abstract: Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5-7 h. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation.

  1. Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming

    NASA Astrophysics Data System (ADS)

    Tsushima, Yoko; Ringer, Mark A.; Koshiro, Tsuyoshi; Kawai, Hideaki; Roehrig, Romain; Cole, Jason; Watanabe, Masahiro; Yokohata, Tokuta; Bodas-Salcedo, Alejandro; Williams, Keith D.; Webb, Mark J.

    2016-05-01

    Future responses of cloud regimes are analyzed for five CMIP5 models forced with observed SSTs and subject to a patterned SST perturbation. Correlations between cloud properties in the control climate and changes in the warmer climate are investigated for each of a set of cloud regimes defined using a clustering methodology. The only significant (negative) correlation found is in the in-regime net cloud radiative effect for the stratocumulus regime. All models overestimate the in-regime albedo of the stratocumulus regime. Reasons for this bias and its relevance to the future response are investigated. A detailed evaluation of the models' daily-mean contributions to the albedo from stratocumulus clouds with different cloud cover fractions reveals that all models systematically underestimate the relative occurrence of overcast cases but overestimate those of broken clouds. In the warmer climate the relative occurrence of overcast cases tends to decrease while that of broken clouds increases. This suggests a decrease in the climatological in-regime albedo with increasing temperature (a positive feedback); this is opposite to the feedback suggested by the analysis of the bulk in-regime albedo. Furthermore we find that the inter-model difference in the sign of the in-cloud albedo feedback is consistent with the difference in sign of the in-cloud liquid water path response, and there is a strong positive correlation between the in-regime liquid water path in the control climate and its response to warming. We therefore conclude that further breakdown of the in-regime properties into cloud cover and in-cloud properties is necessary to better understand the behavior of the stratocumulus regime. Since cloud water is a physical property and is independent of a model's radiative assumptions, it could potentially provide a useful emergent constraint on cloud feedback.

  2. Energy response of glass bead TLDs irradiated with radiation therapy beams

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Jordan, T. J.; Hussein, M.; Bradley, D. A.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.

    2014-11-01

    Glass beads are a novel TL dosimeter in radiotherapy. An important characteristic of TL dosimeters is their energy response, especially when intended for use in radiotherapy applications over a wide range of energies (typically from X-rays generated at 80 kVp up to 25 MV photon and MeV electron beams). In this paper, the energy response of glass beads (Mill Hill, Japan) is investigated for their TL response to kV X-rays from an orthovoltage radiotherapy unit and also for MV photon and MeV electron beams from a medical linear accelerator. The experimental findings show that for photon and electron beams, the TL response of this particular glass bead, normalised to unity for 6 MV X-rays (TPR20/10=0.670), decreases to 0.96±0.02 for 15 MV X-rays (TPR20/10=0.761) and to 0.95±0.01 for 20 MeV electron beams (R50,D=8.35 cm). This compares favourably with other TLD materials such as LiF and also alanine dosimeters that are readout with an EPR system. For kV X-rays, the response increases to 4.52±0.05 for 80 kV X-rays (HVL=2.4 mm Al) which approaches 3 times that of LiF TLDs and 5 times that of alanine. In conclusion, the particular glass beads, when used as a dosimeter material, show a relatively small energy dependence over the megavoltage range of clinically relevant radiation qualities, being clearly advantageous for accurate dosimetry. Conversely, the energy response is significant for photon beam energies covering the kV range. In both circumstances, in dosimetric evaluations the energy response needs to be taken into account.

  3. The evolutionary response of plants to increased UV-B radiation: Field studies with Arabidopsis thaliana

    SciTech Connect

    Trumbull, V.L.; Paige, K.N.

    1995-09-01

    The response of a species to any environmental change is determined by both phenotypic and evolutionary adjustments. To date, the majority of research concerning the response of terrestrial plants to increased UV-B radiation has focused on phenotypic adjustments. Recently we have initiated field studies aimed at assessing genetic variation for UV-B sensitivity within a natural population of Arabidopsis thaliana. This population consists of at least eight discrete genotypes that have been confirmed by RAPD analysis. We used an incomplete block design to assess the impact of UV-B (ambient and ambient + 6 kJ) and PAR (low and high) on these genotypes. The high UV-B treatment caused a significant reduction in fruit number and plant height while the high PAR treatment caused a significant increase in these variables. In addition, there was a marginally significant (p=0.1) UV-B x PAR x maternal line interaction for fruit number, indicating that genetic variation for UV-B sensitivity within this population depends on the PAR environment. The combination of high UV-B and high PAR caused a change in fruit number (relative to the ambient UV-B/high PAR treatment) ranging from an increase of 24% to a decrease of 47%. This range was much smaller in the low PAR treatment. These results indicate the potential for increased UV-B radiation to act as an agent of natural selection within this population.

  4. Short-term responses of unicellular planktonic eukaryotes to increases in temperature and UVB radiation

    PubMed Central

    2012-01-01

    Background Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. Results We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 μm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. Conclusions This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs. PMID:22966751

  5. Response of bacteriophage T7 biological dosimeter to dehydration and extraterrestrial solar UV radiation

    NASA Astrophysics Data System (ADS)

    Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.

    2007-02-01

    The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  6. Shipwreck rates reveal Caribbean tropical cyclone response to past radiative forcing.

    PubMed

    Trouet, Valerie; Harley, Grant L; Domínguez-Delmás, Marta

    2016-03-22

    Assessing the impact of future climate change on North Atlantic tropical cyclone (TC) activity is of crucial societal importance, but the limited quantity and quality of observational records interferes with the skill of future TC projections. In particular, North Atlantic TC response to radiative forcing is poorly understood and creates the dominant source of uncertainty for twenty-first-century projections. Here, we study TC variability in the Caribbean during the Maunder Minimum (MM; 1645-1715 CE), a period defined by the most severe reduction in solar irradiance in documented history (1610-present). For this purpose, we combine a documentary time series of Spanish shipwrecks in the Caribbean (1495-1825 CE) with a tree-growth suppression chronology from the Florida Keys (1707-2009 CE). We find a 75% reduction in decadal-scale Caribbean TC activity during the MM, which suggests modulation of the influence of reduced solar irradiance by the cumulative effect of cool North Atlantic sea surface temperatures, El Niño-like conditions, and a negative phase of the North Atlantic Oscillation. Our results emphasize the need to enhance our understanding of the response of these oceanic and atmospheric circulation patterns to radiative forcing and climate change to improve the skill of future TC projections. PMID:26951648

  7. Shipwreck rates reveal Caribbean tropical cyclone response to past radiative forcing

    NASA Astrophysics Data System (ADS)

    Trouet, Valerie; Harley, Grant L.; Domínguez-Delmás, Marta

    2016-03-01

    Assessing the impact of future climate change on North Atlantic tropical cyclone (TC) activity is of crucial societal importance, but the limited quantity and quality of observational records interferes with the skill of future TC projections. In particular, North Atlantic TC response to radiative forcing is poorly understood and creates the dominant source of uncertainty for twenty-first-century projections. Here, we study TC variability in the Caribbean during the Maunder Minimum (MM; 1645-1715 CE), a period defined by the most severe reduction in solar irradiance in documented history (1610-present). For this purpose, we combine a documentary time series of Spanish shipwrecks in the Caribbean (1495-1825 CE) with a tree-growth suppression chronology from the Florida Keys (1707-2009 CE). We find a 75% reduction in decadal-scale Caribbean TC activity during the MM, which suggests modulation of the influence of reduced solar irradiance by the cumulative effect of cool North Atlantic sea surface temperatures, El Niño-like conditions, and a negative phase of the North Atlantic Oscillation. Our results emphasize the need to enhance our understanding of the response of these oceanic and atmospheric circulation patterns to radiative forcing and climate change to improve the skill of future TC projections.

  8. Radiation response of industrial materials: Dose-rate and morphology implications

    NASA Astrophysics Data System (ADS)

    Berejka, Anthony J.

    2007-08-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.

  9. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant

    PubMed Central

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Okuda, Kengo; Svendsen, Erik Robert; Kunugita, Naoki

    2015-01-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no deaths or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious diseases. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered. PMID:25413928

  10. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Okuda, Kengo; Svendsen, Erik Robert; Kunugita, Naoki

    2015-05-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no deaths or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious diseases. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered. PMID:25413928

  11. The radiative response of the lower troposphere to moisture intrusions into the Arctic

    NASA Astrophysics Data System (ADS)

    Johansson, Erik; Devasthale, Abhay; Tjernström, Michael; Ekman, Annica M. L.; L'Ecuyer, Tristan

    2016-04-01

    Water vapour (WV) transport into the Arctic occurs on daily to seasonal time scales and affects the Arctic atmosphere and surface energy balance in a number of ways. Extreme transport events, hereafter referred to as WV intrusions (WVI), account for a significant fraction of the total transport of water vapour into the Arctic. Considering their overall impact on the total moisture transport, WVIs are expected to strongly influence the radiative properties of the lower troposphere. Being a potent greenhouse gas, WV has a warming effect on the surface via its longwave forcing. As a result, WVIs have potential to warm the sea-ice surface and depending on their strength and degree of persistence, precondition accelerated melting of sea ice in subsequent months following the intrusion WVIs also affect the prevalent thermodynamical characteristics of the lowermost troposphere such as the presence of temperature and humidity inversions. They can further modulate cloud formation processes by changing the local thermodynamics. Characterizing the response of the lower troposphere to WVIs is therefore important, mainly to improve our understanding of the processes, affecting, air-sea-ice interactions. In this context, the aim of the present study is to provide observationally based insights into how the lower troposphere radiatively responds to WVIs, defined as events that exceed 90-percentile value of the poleward meridional moisture flux across 70° N. Using the combined lidar and radar (CloudSat+CALIPSO) data from the A-Train constellation of satellites from 2006 through 2010 together with data from AMSR-E, AIRS and MODIS, we examine the dominant circulation patterns that favour WVI and the surface response to WVI. We further quantify changes in cloudiness and cloud radiative effects during WVI.

  12. Cyclic-radiation response of murine fibrosarcoma cells grown as pulmonary nodules

    SciTech Connect

    Grdina, D.J.; Hunter, N.

    1982-10-01

    The radiation age response of murine fibrosarcoma (FSa) cells grown as pulmonary nudules in C/sub 3/Hf/Kam mice was determined. FSa cells were irradiated in vivo either with 10 Gy as 14 day-old lung tumors (i.e., artifical micrometastases) following cell separation and synchronization by centrifugal elutriation. Flow microfluorometry (FMF) was used to determine cell-cycle parameters and the relative synchrony of the separated populations, as well as the percent contamination of normal diploid cells in each of the tumor cells populations. Tumor populations containing up to 90% G/sub 1/-, 60% S-, and 75% G/sub 2/+M-phase tumor cells were obtained. Cell clonogenicity, determined using a lung colony assay, ranged from 0.7 to 6% for control FSa cells from the various elutriator fractions. The radiation sensitivity of these separated cell populations varied by a factor of 6, regardless of whether the cells were irradiated as artifical micro or macro-metastases. In each experiment, tumor population most enriched in S-phase cells exhibited the greatest radiation sensitivity. To confirm that these populations were highly enriched in S-phase cells and to demonstrate that they were more radiosensitive than FSa cells in other parts of the cell cycle, the elutriated tumor population were exposed to either suicide labeling by high specific activity tritated thymidine or hydroxyurea. The resultant age response curves were qualitatively similar to those obtained following irradiation and reflected the S-phase sensitivity of FSa cells to these agents.

  13. Cyclic-radiation response of murine fibrosarcoma cells grown as pulmonary nodules

    SciTech Connect

    Grdina, D.J.; Hunter, N.

    1982-10-01

    The radiation age response of murine fibrosarcoma (FSa) cells grown as pulmonary nodules in C/sub 3/Hf/Kam mice was determined. FSa cells were irradiated in vivo either with 10 Gy as 14 day-old lung tumors (i.e., artificial macrometastases) prior to cell separation or with 5 Gy as single cells trapped in the lungs of recipient mice (i.e., artificial micrometastases) following cell separation and synchronization by centrifugal elutriation. Flow microfluorometry (FMF) was used to determine cell-cycle parameters and the relative synchrony of the separated populations, as well as the percent contamination of normal diploid cells in each of the tumor cell populations. Tumor populations containing up to 90% G/sub 1/, 60% S-, and 75% G/sub 2/+M-phase tumor cells were obtained. Cell clonogenicity, determined using a lung colony assay, ranged from 0.7 to 6% for control FSa cells from the various elutriator fractions. The radiation sensitivity of these separated cell populations varied by a factor of 6, regardless of whether the cells were irradiated as artificial micro or macro-metastases. In each experiment, tumor populations most enriched in s-phase cells exhibited the greatest radiation sensitivity. To confirm that these populations were highly enriched in S-phase cells and to demonstrate that they were more radiosensitive than FSa cells in other parts of the cell cycle, the elutriated tumor populations were exposed to either suicide labeling by high specific activity tritiated thymidine or hydroxyurea. The resultant age response curves were qualitatively similar to those obtained following irradiation and reflected the S-phase sensitivity of FSa cells to these agents.

  14. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    SciTech Connect

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certa