Science.gov

Sample records for aerobic respiration denitrification

  1. Modeling the influence of varying hydraulic conditions on aerobic respiration and denitrification in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Trauth, N.; Schmidt, C.; Fleckenstein, J. H.

    2013-12-01

    Exchange of water and solutes across the stream-sediment interface is an important control for biogeochemical transformations in the hyporheic zone (HZ) with measurable impacts on nutrient cycling and solute attenuation in fluvial systems. Here we investigate the interplay between turbulent stream flow and HZ flow under various hydraulic conditions applied to two cases: a) three-dimensional generic pool-riffle sequences with different morphological properties, and b) a real mid-stream gravel-bar. Stream flow is simulated by the open source computational fluid dynamics (CFD) software OpenFOAM which provides the hydraulic head distribution at the streambed. It is sequentially coupled to the top of the groundwater model code MIN3P, simulating flow, solute transport, aerobic respiration (AR) and denitrification (DN) in the HZ. Flow in the HZ is directly influenced by the hydraulic head distribution at the streambed surface and the ambient groundwater flow. Three reactive transport scenarios are considered: 1) stream water as the primary source of dissolved oxygen (DO), nitrate (NO3) and dissolved organic carbon (DOC), 2) upwelling groundwater as an additionally source of NO3, and 3) upwelling groundwater as an additional source of DO in various concentrations. Results show an increase in hyporheic exchange flow for increasing stream discharge with a concurrent decrease in residence time. The fraction of circulating stream water through the HZ is in the range of 1x10-5 to 1x10-6 per unit stream length, decreasing with increasing discharge. Ambient groundwater flow in both the up- and downwelling direction diminishes significantly the hyporheic exchange flow and extent. Biogeochemical processes in the HZ are strongly controlled by ambient groundwater flow, even more so than by changes in stream discharge. AR and DN efficiencies of the HZ are significantly reduced by up- and downwelling groundwater and are positively correlated with median residence times. AR occurs in

  2. Aerobic respiration along isopycnals leads to overestimation of the isotope effect of denitrification in the ocean water column

    NASA Astrophysics Data System (ADS)

    Marconi, Dario; Kopf, Sebastian; Rafter, Patrick A.; Sigman, Daniel M.

    2017-01-01

    The nitrogen (N) isotopes provide an integrative geochemical tool for constraining the fixed N budget of the ocean. However, N isotope budgeting requires a robust estimate for the organism-scale nitrogen isotope effect of denitrification, in particular as it occurs in water column denitrification zones (εwcd). Ocean field data interpreted with the Rayleigh model have typically yielded estimates for εwcd of between 20 and 30‰. However, recent findings have raised questions about this value. In particular, culture experiments can produce a substantially lower isotope effect (∼13‰) under conditions mimicking those of ocean suboxic zones. In an effort to better understand prior field estimates of εwcd, we use a geochemical multi-box model to investigate the combined effects of denitrification, aerobic respiration, and isopycnal exchange on the δ15N of nitrate. In the context of this admittedly simplistic model, we consider three isopycnals extending from the Southern Ocean to the Eastern Tropical North Pacific (ETNP). We show that the data from the ETNP suboxic zone can be reproduced with an εwcd of 13‰, given a rate of aerobic respiration consistent with the nutrient data on these isopycnals and a plausible range in the δ15N of the sinking flux being remineralized. We discuss the limitations of our analysis, additional considerations, as well as possible data-based tests for the proposal of a lower εwcd than previously estimated. All else held constant, a lower εwcd would imply a lower global ocean rate of denitrification that is more similar to the estimated rate of N input to the global ocean, providing a major impetus for further investigation.

  3. Influence of Small Scale Permeability Heterogeneity on Aerobic Respiration and Denitrification in the Streambed: A Stochastic Simulation Approach

    NASA Astrophysics Data System (ADS)

    Laube, Gerrit; Fleckenstein, Jan H.; Schmidt, Christian

    2016-04-01

    In streams and rivers, streambed permeability heterogeneity is known to increase hyporheic flux and to decrease hyporheic residence time through preferential flow paths. However, the link between permeability and biogeochemical reactions remains poorly understood. Previous studies have come to contradicting conclusions, likely because of the limited number of heterogeneity scenarios considered. In this study we systematically study the influence of permeability heterogeneity on ripple-induced hyporheic exchange, aerobic respiration and denitrification in the streambed. We simulated and evaluated more than 2000 2D-heterogeneity scenarios by means of Gaussian random fields. The conductivity distributions of those Gaussian fields were transformed to either log-normal or binary distributions with varying variance of hydraulic conductivity in order to investigate both continuous and discrete heterogeneities on a large range of intensities. The results indicate that total aerobic respiration in the domain increases with heterogeneity intensity, expressed as the variance of hydraulic conductivity. In contrast, total denitrification in the domain is minimally influenced by the intensity of heterogeneity, because of the competing effect of increasing solute flux and decreasing reaction time. These results represent the general trends among the entire range of scenarios. The total solute transformation of single realizations revealed strong deviations from these trends whenever special spatial permeability distributions such as clogging layers occurred. The permeability distribution in the uppermost layer of the domain, at the interface between surface water and sediment, was found to strongly influence the extent of deviation from the general trends.

  4. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  5. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  6. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  7. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  8. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  9. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  10. Waiting to inhale: HIF-1 modulates aerobic respiration.

    PubMed

    Boutin, Adam T; Johnson, Randall S

    2007-04-06

    The hypoxia-inducible factor HIF-1 is known to promote anaerobic respiration during low oxygen conditions (hypoxia). In this issue, Fukuda et al. (2007) expand the range of HIF-1's functions by showing that it modulates aerobic respiration as well.

  11. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  12. Teaching Aerobic Cell Respiration Using the 5Es

    ERIC Educational Resources Information Center

    Patro, Edward T.

    2008-01-01

    The 5E teaching model provides a five step method for teaching science. While the sequence of the model is strictly linear, it does provide opportunities for the teacher to "revisit" prior learning before moving on. The 5E method is described as it relates to the teaching of aerobic cell respiration.

  13. The Denitrification Characteristics and Microbial Community in the Cathode of an MFC with Aerobic Denitrification at High Temperatures

    PubMed Central

    Zhao, Jianqiang; Wu, Jinna; Li, Xiaoling; Wang, Sha; Hu, Bo; Ding, Xiaoqian

    2017-01-01

    Microbial fuel cells (MFCs) have attracted much attention due to their ability to generate electricity while treating wastewater. The performance of a double-chamber MFC with simultaneous nitrification and denitrification (SND) in the cathode for treating synthetic high concentration ammonia wastewater was investigated at different dissolved oxygen (DO) concentrations and high temperatures. The results showed that electrode denitrification and traditional heterotrophic denitrification co-existed in the cathode chamber. Electrode denitrification by aerobic denitrification bacterium (ADB) is beneficial for achieving a higher voltage of the MFC at high DO concentrations (3.0–4.2 mg/L), while traditional heterotrophic denitrification is conducive to higher total nitrogen (TN) removal at low DO (0.5–1.0 mg/L) concentrations. Under high DO conditions, the nitrous oxide production and TN removal efficiency were higher with a 50 Ω external resistance than with a 100 Ω resistance, which demonstrated that electrode denitrification by ADB occurred in the cathode of the MFC. Sufficient electrons were inferred to be provided by the electrode to allow ADB survival at low carbon:nitrogen ratios (≤0.3). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) results showed that increasing the DO resulted in a change of the predominant species from thermophilic autotrophic nitrifiers and facultative heterotrophic denitrifiers at low DO concentrations to thermophilic ADB at high DO concentrations. The predominant phylum changed from Firmicutes to Proteobacteria, and the predominant class changed from Bacilli to Alpha, Beta, and Gamma Proteobacteria. PMID:28154554

  14. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    PubMed

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.

  15. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration

    PubMed Central

    Lopez, Christopher A.; Miller, Brittany M.; Rivera-Chávez, Fabian; Velazquez, Eric; Byndloss, Mariana X.; Chávez-Arroyo, Alfredo; Lokken, Kristen L.; Tsolis, Renée M.; Winter, Sebastian E.; Bäumler, Andreas J.

    2016-01-01

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration. PMID:27634526

  16. Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification.

    PubMed

    Joo, Hung-Soo; Hirai, Mitsuyo; Shoda, Makoto

    2006-09-01

    Alcaligenes faecalis strain No. 4, which has heterotrophic nitrification and aerobic denitrification abilities, was used to treat actual piggery wastewater containing high-strength ammonium under aerobic conditions. In a continuous experiment using a solids-free wastewater (SFW) mixed with feces, almost all of the 2000 NH4+ -N mg/L and 12,000 COD mg/L in the wastewater was removed and the ammonium removal rate was approximately 30 mg-N/L/h, which was 5-10 times higher than the rates achieved by other bacteria with the same abilities. The denitrification ratio was more than 65% of removed NH4+ -N, indicating that strain No. 4 exhibited its heterotrophic nitrification and aerobic denitrification abilities in the piggery wastewater.

  17. Effect of NaCl on aerobic denitrification by strain Achromobacter sp. GAD-3.

    PubMed

    Gui, Mengyao; Chen, Qian; Ni, Jinren

    2017-03-01

    This paper presents the effect of NaCl on aerobic denitrification by a novel aerobic denitrifier strain Achromobacter sp. GAD-3. Results indicated that the aerobic denitrification process was inhibited by NaCl concentrations ≥20 g L(-1), leading to lower nitrate removal rates (1.67∼4.0 mg L(-1) h(-1)), higher nitrite accumulation (50.2∼87.4 mg L(-1)), and increasing N2O emission ratios (13∼72 mg L(-1)/mg L(-1)). Poor performance of aerobic denitrification at high salinity was attributed to the suppression of active microbial biomass and electron donating capacity of strain GAD-3. Further studies on the corresponding inhibition of the denitrifying gene expression by higher salinities revealed the significant sensitivity order of nosZ (for N2O reductase) > cnorB (for NO reductase) ≈ nirS (for cytochrome cd(1) nitrite reductase) > napA (for periplasmic nitrate reductase), accompanied with a time-lapse expression between nosZ and cnorB based on reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analysis. The insights into the effect of NaCl on aerobic denitrification are of great significance to upgrade wastewater treatment plants (WWTPs) containing varying levels of salinity.

  18. Large-scale controls on potential respiration and denitrification in riverine floodplains.

    PubMed

    Welti, Nina; Bondar-Kunze, Elisabeth; Singer, Gabriel; Tritthart, Michael; Zechmeister-Boltenstern, Sophie; Hein, Thomas; Pinay, Gilles

    2012-05-01

    Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems.

  19. Large-scale controls on potential respiration and denitrification in riverine floodplains

    PubMed Central

    Welti, Nina; Bondar-Kunze, Elisabeth; Singer, Gabriel; Tritthart, Michael; Zechmeister-Boltenstern, Sophie; Hein, Thomas; Pinay, Gilles

    2012-01-01

    Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems. PMID:23565037

  20. Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13.

    PubMed

    Sun, Yilu; Feng, Liang; Li, Ang; Zhang, Xuening; Yang, Jixian; Ma, Fang

    2017-03-12

    The present study investigated effect of ammonium utilization on aerobic denitrification by Pseudomonas stutzeri T13. Per nitrogen balance calculation, all consumed ammonium was utilized as nitrogen source for cell propagation by assimilation rather than heterotrophic nitrification. Total organic carbon (TOC) and ammonium were necessary substrates to sustain heterotrophic propagation of P. stutzeri T13 at optimum proportion equal to seven. Under aerobic condition, nitrate was utilized as substitute nitrogen source when ammonium was completely exhausted. Biomass production effectively increased with increasing initial ammonium from 0mg/L to 100mg/L. Owing to enlarged biomass, average nitrate reduction rate increased from 7.36mgL(-1)h(-1) to 11.95mgL(-1)h(-1). Such process also successfully reduced nitrite accumulation from 121.8mg/L to 66.16mg/L during aerobic denitrification. As important accessory during aerobic denitrification, ammonium assimilation efficiently doubled total nitrogen (TN) removal from 54.97mg/L (no ammonium provided) to 113.1mg/L (100mg/L ammonium involved).

  1. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4.

    PubMed

    Joo, Hung-Soo; Hirai, Mitsuyo; Shoda, Makoto

    2005-08-01

    Alcaligenes faecalis no. 4 has heterotrophic nitrification and aerobic denitrification abilities. By taking the nitrogen balance under different culture conditions, 40-50% of removed NH4+-N was denitrified and about one-half of removed NH4+-N was converted to intracellular nitrogen. The maximum ammonium removal rate of no. 4 (28.9 mg-N/l/h) and its denitrification rate at high-strength NH4+-N of about 1200 ppm in aerated batch experiments at a C/N ratio of 10 were 5-40 times higher than those of other bacteria with the same ability. Only a few percent of the removed ammonium was converted to nitrite, and the main denitrification process was speculated to be via hydroxylamine which was produced by ammonium oxidation.

  2. Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1.

    PubMed

    Gui, Mengyao; Chen, Qian; Ma, Tao; Zheng, Maosheng; Ni, Jinren

    2017-02-01

    Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L(-1) h(-1)), higher nitrite accumulation (47.3∼99.8 mg L(-1)), and higher N2O emission ratios (5∼283 mg L(-1)/mg L(-1)). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L(-1)) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L(-1)) > Cu(II) (0.5∼5 mg L(-1)) > Ni(II) (2∼10 mg L(-1)) > Zn(II) (25∼50 mg L(-1)). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  3. Nitrogen removal by Providencia rettgeri strain YL with heterotrophic nitrification and aerobic denitrification.

    PubMed

    Ye, Jun; Zhao, Bin; An, Qiang; Huang, Yuan-Sheng

    2016-09-01

    Providencia rettgeri strain YL shows the capability of nitrogen removal under sole aerobic conditions. By using isotope ratio mass spectrometry, (15)N-labelled N2O and N2 were detected in aerobic batch cultures containing [Formula: see text], [Formula: see text] or [Formula: see text]. Strain YL converted [Formula: see text], [Formula: see text] and [Formula: see text] to produce more N2O than N2 in the presence of [Formula: see text]. An (15)N isotope tracing experiment confirmed that the nitrogen removal pathway of strain YL was heterotrophic nitrification-aerobic denitrification. The optimal treatment conditions for nitrogen removal were pH of 8, C/N ratio of 12, temperature of 25°C and shaking speed of 105 rpm. A continuous aerobic bioreactor inoculated with strain YL was developed. With an influent [Formula: see text] concentration of 90-200 mg/L, the [Formula: see text] removal efficiency ranged from 80% to 97% and the total nitrogen removal efficiency ranged from 72% to 95%. The nitrogen balance in the continuous bioreactor revealed that approximately 35-52% of influent [Formula: see text] was denitrified aerobically to form gaseous nitrogen. These findings show that the P. rettgeri strain YL has potential application in wastewater treatment for nitrogen removal under sole aerobic conditions.

  4. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer.

    PubMed

    Critchley, K; Rudolph, D L; Devlin, J F; Schillig, P C

    2014-12-15

    A preliminary trial of a cross-injection system (CIS) was designed to stimulate in situ denitrification in an aquifer servicing an urban community in southern Ontario. It was hypothesized that this remedial strategy could be used to reduce groundwater nitrate in the aquifer such that it could remain in use as a municipal supply until the beneficial effects of local reduced nutrient loadings lead to long-term water quality improvement at the wellfield. The CIS application involved injecting a carbon source (acetate) into the subsurface using an injection-extraction well pair positioned perpendicular to the regional flow direction, up-gradient of the water supply wells, with the objective of stimulating native denitrifying bacteria. The pilot remedial strategy was targeted in a high nitrate flux zone within an aerobic and heterogeneous section of the glacial sand and gravel aquifer. Acetate injections were performed at intervals ranging from daily to bi-daily. The carbon additions led to general declines in dissolved oxygen concentrations; decreases in nitrate concentration were localized in aquifer layers where velocities were estimated to be less than 0.5m/day. NO3-(15)N and NO3-(18)O isotope data indicated the nitrate losses were due to denitrification. Relatively little nitrate was removed from groundwater in the more permeable strata, where velocities were estimated to be on the order of 18 m/day or greater. Overall, about 11 percent of the nitrate mass passing through the treatment zone was removed. This work demonstrates that stimulating in situ denitrification in an aerobic, highly conductive aquifer is challenging but achievable. Further work is needed to increase rates of denitrification in the most permeable units of the aquifer.

  5. Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1.

    PubMed

    Medhi, Kristina; Singhal, Anjali; Chauhan, D K; Thakur, Indu Shekhar

    2017-03-16

    Municipal wastewater contains multiple nitrogen contaminants such as ammonia, nitrate and nitrite. Two heterotrophic nitrifier and aerobic denitrifiers, bacterial isolates ISTOD1 and ISTVD1 were isolated from domestic wastewater. On the basis of removal efficiency of ammonia, nitrate and nitrite under both aerobic and anaerobic conditions, ISTOD1 was selected and identified as Paracoccus denitrificans. Aerobically, NH4(+)-N had maximum specific nitrogen removal rate (Rxi) of 7.6g/gDCW/h and anaerobically, NO3(-)N showed Rxi of 2.5*10(-1)g/g DCW/h. Monod equation described the bioprocess kinetic coefficients, µmax and Ks, obtained by regression. Error functions were calculated to validate the Monod equation experimental data. Aerobic NO3(-)N showed the highest YW of 0.372mg DCW/mg NO3(-)N among the five conditions. ISTOD1 serves as a potential candidate for treating nitrogen rich wastewater using simultaneous nitrification and aerobic denitrification. It can be used in bioaugmentation studies under varied condition.

  6. Internal recycle to improve denitrification in a step feed anoxic/aerobic activated sludge system.

    PubMed

    Boyle, C A; McKenzie, C J; Morgan, S

    2009-01-01

    During periods of low load (weekends and holidays) the Mangere wastewater treatment plant effluent has breached the summer consent conditions for total nitrogen. The purpose of this research was to determine if an internal recycle would improve nitrogen removal in the anoxic/aerobic activated sludge reactors sufficient to meet the summer resource consent standard. The recycle returned nitrate rich mixed liquor from the downstream aerobic zone back to the initial anoxic zone, thus potentially improving denitrification. A full scale trial showed that installation of the internal recycle on each RC would have satisfied the resource consent for total nitrogen in most cases over the three summer resource consent periods since the upgrade. However, further modifications of the internal recycle would be required to ensure that consent conditions were satisfied at all times and to improve the consistency of the results.

  7. Simultaneous Heterotrophic Nitrification and Aerobic Denitrification by Chryseobacterium sp. R31 Isolated from Abattoir Wastewater

    PubMed Central

    Kundu, Pradyut; Pramanik, Arnab; Dasgupta, Arpita; Mukherjee, Somnath; Mukherjee, Joydeep

    2014-01-01

    A heterotrophic carbon utilizing microbe (R31) capable of simultaneous nitrification and denitrification (SND) was isolated from wastewater of an Indian slaughterhouse. From an initial COD value of 583.0 mg/L, 95.54% was removed whilst, from a starting NH4+-N concentration of 55.7 mg/L, 95.87% was removed after 48 h contact. The concentrations of the intermediates hydroxylamine, nitrite, and nitrate were low, thus ensuring nitrogen removal. Aerobic denitrification occurring during ammonium removal by R31 was confirmed by utilization of both nitrate and nitrite as nitrogen substrates. Glucose and succinate were superior while acetate and citrate were poor substrates for nitrogen removal. Molecular phylogenetic identification, supported by chemotaxonomic and physiological properties, assigned R31 as a close relative of Chryseobacterium haifense. The NH4+-N utilization rate and growth of strain R31 were found to be higher at C/N = 10 in comparison to those achieved with C/N ratios of 5 and 20. Monod kinetic coefficients, half saturation concentration (Ks), maximum rate of substrate utilization (k), yield coefficient, (Y) and endogenous decay coefficient (Kd) indicated potential application of R31 in large-scale SND process. This is the first report on concomitant carbon oxidation, nitrification, and denitrification in the genus Chryseobacterium and the associated kinetic coefficients. PMID:24991552

  8. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    PubMed

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  9. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.

  10. Microbial nitrification, denitrification and respiration in the leached cinnamon soil of the upper basin of Miyun Reservoir

    PubMed Central

    Xu, Wen; Cai, Yan-Peng; Yang, Zhi-Feng; Yin, Xin-An; Tan, Qian

    2017-01-01

    Leached cinnamon soil is the main agricultural soil distributed in the North China Plain. In this research, leached cinnamon soil samples were collected in the upper basin of Miyun Reservoir (northeast of Beijing, China). The BaPS method (Barometric Process Separation) was applied to measure nitrification, denitrification and respiration rates. The rates of nitrification, denitrification and respiration were 0–120.35 μg N/kg SDW h, 0–246.86 μg N/kg SDW h and 0.17–225.85 μg C/kg SDW h (Soil Dry Weight, SDW), respectively. The emission rates of CO2 and NxOy through nitrification, denitrification and respiration were 1.00–547.80 and 6.00–4850.65 μmol/h, respectively. The analysis of relationships between nitrification, denitrification and respiration rates indicated that these three microbial processes were interacted, which posed impacts on soil nitrogen availability. As indicated by the results, C:N ratio coupled with content could be taken as the indicators of content, which is usually the predominant form of N available to plants growing in soil. Results showed that content was the highest (i.e., >62.4 mg/kg) when C:N ratio was 5.30–8.40, meanwhile content was 3.71–4.39 mg/kg. Nevertheless, content was the lowest (i.e., <6.40 mg/kg) when C:N ratio was 9.2–12.10, meanwhile content was 3.41–4.35 mg/kg. PMID:28165035

  11. Microbial nitrification, denitrification and respiration in the leached cinnamon soil of the upper basin of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Cai, Yan-Peng; Yang, Zhi-Feng; Yin, Xin-An; Tan, Qian

    2017-02-01

    Leached cinnamon soil is the main agricultural soil distributed in the North China Plain. In this research, leached cinnamon soil samples were collected in the upper basin of Miyun Reservoir (northeast of Beijing, China). The BaPS method (Barometric Process Separation) was applied to measure nitrification, denitrification and respiration rates. The rates of nitrification, denitrification and respiration were 0–120.35 μg N/kg SDW h, 0–246.86 μg N/kg SDW h and 0.17–225.85 μg C/kg SDW h (Soil Dry Weight, SDW), respectively. The emission rates of CO2 and NxOy through nitrification, denitrification and respiration were 1.00–547.80 and 6.00–4850.65 μmol/h, respectively. The analysis of relationships between nitrification, denitrification and respiration rates indicated that these three microbial processes were interacted, which posed impacts on soil nitrogen availability. As indicated by the results, C:N ratio coupled with content could be taken as the indicators of content, which is usually the predominant form of N available to plants growing in soil. Results showed that content was the highest (i.e., >62.4 mg/kg) when C:N ratio was 5.30–8.40, meanwhile content was 3.71–4.39 mg/kg. Nevertheless, content was the lowest (i.e., <6.40 mg/kg) when C:N ratio was 9.2–12.10, meanwhile content was 3.41–4.35 mg/kg.

  12. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  13. Modeling of simultaneous denitrification--anaerobic digestion--organic matter aerobic oxidation and nitrification in an anoxic-anaerobic-aerobic compact filter reactor.

    PubMed

    Moya, Jaime; Huiliñir, César; Peredo, Karol; Aspé, Estrella; Roeckel, Marlene

    2012-08-31

    A mathematical model was developed for a compact anoxic-anaerobic-aerobic filter reactor with liquid recirculation for the treatment of fishing effluents. The model includes denitrification, anaerobic digestion, aerobic carbon oxidation and nitrification steps, as well as an evaluation of the liquid gas mass transfer and pH. The model was calibrated using one experimental condition at a recycling ratio (R)=10, and was validated with R equal to 2 and 0, with an organic concentration of 554±24 mg TOCL(-1), salinity of 24 g L(-1) and hydraulic retention time (HRT) of 2 d. Carbon total removal is higher than 98%, while maximum nitrogen removal is 62% using total nitrification in the aerobic zone, due to a higher quantity of NO(x) produced which were recirculated to the anoxic zone. In the aerobic zone, simultaneous nitrification and denitrification processes occur, because the diffusion limitations cause a low oxygen penetration in the biofilm. In the anoxic-anaerobic zone, denitrification or methanogenesis inhibition by DO (caused by the recycled oxygen) is not observed.

  14. Simultaneous nitrification and denitrification by EPSs in aerobic granular sludge enhanced nitrogen removal of ammonium-nitrogen-rich wastewater.

    PubMed

    Yan, Lilong; Zhang, Shaoliang; Hao, Guoxin; Zhang, Xiaolei; Ren, Yuan; Wen, Yan; Guo, Yihan; Zhang, Ying

    2016-02-01

    In this study, role of extracellular polymeric substances (EPSs) in enhancing nitrogen-removal from ammonium-nitrogen-rich wastewater using aerobic granular sludge (AGS) technology were analyzed. AGS enabled ammonium oxidation and denitrification to occur simultaneously. Air stripping and simultaneous nitrification-denitrification contributed to total-nitrogen removal. Clone-library analysis revealed that close relatives of Nitrosomonas eutropha and heterotrophic denitrifiers were dominant in the AGS, whereas anammox bacteria were not detected. EPSs adsorption of ammonium, nitrite, and nitrate nitrogen results in improved removal of nitrogen in batch experiments.

  15. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  16. [Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain Isolated from Marine Environment].

    PubMed

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin

    2016-02-15

    A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater.

  17. Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Myrold, David D.

    2012-09-01

    The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship between the transformation of Raz and aerobic bacterial respiration in pure culture experiments using two obligate aerobes and two facultative anaerobes, and in colonized surface and shallow (<10 cm) hyporheic sediments using reach-scale experiments. We found that the transformation of Raz to Rru was nearly perfectly (minr2 = 0.986), positively correlated with aerobic microbial respiration in all experiments. These results suggest that Raz can be used as a surrogate to measure respiration in situ and in vivoat different spatial scales, thus providing an alternative to investigate mechanistic controls of solute transport and stream metabolism on nutrient processing. Lastly, a comparison of respiration and mass-transfer rates in streams suggests that field-scale respiration is controlled by the slower of respiration and mass transfer, highlighting the need to understand both biogeochemistry and physics in stream ecosystems.

  18. Bioturbation enhances the aerobic respiration of lake sediments in warming lakes

    PubMed Central

    Krause, Stefan

    2016-01-01

    While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m2 was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. PMID:27484649

  19. Mystery of the Toxic Flea Dip: An Interactive Approach to Teaching Aerobic Cellular Respiration

    ERIC Educational Resources Information Center

    Baines, A. T.; McVey, M.; Rybarczyk, B.; Thompson, J. T.; Wilkins, H. R.

    2004-01-01

    We designed an interrupted case study to teach aerobic cellular respiration to major and nonmajor biology students. The case is based loosely on a real-life incident of rotenone poisoning. It places students in the role of a coroner who must determine the cause of death of the victim. The case is presented to the students in four parts. Each part…

  20. Unraveling characteristics of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in an aerobic granular sequencing batch reactor.

    PubMed

    He, Qiulai; Zhang, Shilu; Zou, Zhuocheng; Zheng, Li-An; Wang, Hongyu

    2016-11-01

    An aerobic granular sequencing batch reactor (SBR) on an aerobic/oxic/anoxic (AOA) mode was operated for 50days with acetate sodium as the sole carbon source for simultaneous carbon, nitrogen and phosphorus removal. Excellent removal efficiencies for chemical oxygen demand (COD) (94.46±3.59%), nitrogen (96.56±3.44% for ammonia nitrogen (NH4(+)-N) and 93.88±6.78% for total inorganic nitrogen (TIN)) and phosphorus (97.71±3.63%) were obtained over operation. Mechanisms for simultaneous nutrients removal were explored and the results indicated that simultaneous nitrification, denitrification and phosphorus removal (SNDPR) under aerobic conditions was mainly responsible for most of nitrogen and phosphorus removal. Identification and quantification of the granular AOA SBR revealed that higher rates of nutrients removal and more potentials were to be exploited by optimizing the operating conditions including time durations for AOA mode and the feeding compositions.

  1. p63 supports aerobic respiration through hexokinase II

    PubMed Central

    Viticchiè, Guiditta; Agostini, Massimiliano; Lena, Anna Maria; Mancini, Mara; Zhou, Huiqing; Zolla, Lello; Dinsdale, David; Saintigny, Gaelle; Melino, Gerry; Candi, Eleonora

    2015-01-01

    Short p63 isoform, ΔNp63, is crucial for epidermis formation, and it plays a pivotal role in controlling the turnover of basal keratinocytes by regulating the expression of a subset of genes involved in cell cycle and cell adhesion programs. The glycolytic enzyme hexokinase 2 (HK2) represents the first step of glucose utilization in cells. The family of HKs has four isoforms that differ mainly in their tissue and subcellular distribution. The preferential mitochondrial localization of HK2 at voltage-dependent anion channels provides access to ATP generated by oxidative phosphorylation and generates an ADP/ATP recycling mechanism to maintain high respiration rates and low electron leak. Here, we report that ΔNp63 depletion in human keratinocytes impairs mitochondrial basal respiration and increases mitochondrial membrane polarization and intracellular reactive oxygen species. We show ΔNp63-dependent regulation of HK2 expression, and we use ChIP, validated by p63-Chip sequencing genomewide profiling analysis, and luciferase assays to demonstrate the presence of one p63-specific responsive element within the 15th intronic region of the HK2 gene, providing evidence of a direct interaction. Our data support the notion of ΔNp63 as a master regulator in epithelial cells of a combined subset of molecular mechanisms, including cellular energy metabolism and respiration. The ΔNp63–HK2 axis is also present in epithelial cancer cells, suggesting that ΔNp63 could participate in cancer metabolic reprogramming. PMID:26324887

  2. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration

    SciTech Connect

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lianming; Dong, Yangyang; Reed, Samantha B.; Chen, Jingrong; Culley, David E.; Kennedy, David W.; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Romine, Margaret F.; Zhou, Jizhong

    2010-06-24

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the wellstudied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  3. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration.

    PubMed

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lin; Dong, Yangyang; Reed, Samantha; Chen, Jingrong; Culley, Dave; Kennedy, David; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M; Romine, Margaret; Zhou, Jizhong

    2010-07-01

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  4. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    PubMed Central

    He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626

  5. The Lomagundi Event Marks Post-Pasteur Point Evolution of Aerobic Respiration: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Kirschvink, J. L.; Nash, C. Z.; Raub, T. M.; Kopp, R. E.; Hilburn, I. A.

    2009-05-01

    All published early Earth carbon cycle models assume that aerobic respiration is as ancient as oxygenic photosynthesis. However, aerobic respiration shuts down at oxygen concentrations below the Pasteur Point, (.01 of the present atmospheric level, PAL). As geochemical processes are unable to produce even local oxygen concentrations above .001 PAL, it follows that aerobic respiration could only have evolved after oxygenic photosynthesis, implying a time gap. The evolution of oxygen reductase-utilizing metabolisms presumably would have occupied this interval. During this time the PS-II-generated free oxygen would have been largely unavailable for remineralization of dissolved organic carbon and so would have profoundly shifted the burial ratio of organic/inorganic carbon. We argue that the sequential geological record of the Makganyene (Snowball?) glaciation (2.3-2.22), the exessively aerobic Hekpoort and coeval paleosols, the Lomagundi-Jatuli carbon isotopic excursion (ending 2.056 Ga), and the deposition of concentrated, sedimentary organic carbon (shungite) mark this period of a profoundly unbalanced global carbon cycle. The Kopp et al. (2005) model for oxyatmoversion agrees with phylogenetic evidence for the radiation of cyanobacteria followed closely by the radiation of gram-negative lineages containing magnetotactic bacteria, which depend upon vertical oxygen gradients. These organisms include delta-Proteobacteria from which the mitochondrial ancestor originated. The Precambrian carbon cycle was rebalanced after a series of biological innovations allowed utilization of the high redox potential of free oxygen. Aerobic respiration in mitochondria required the evolution of a unique family of Fe-Cu oxidases, one of many factors contributing to the >210 Myr delay between the Makganyene deglaciation and the end of the Lomagundi-Jatuli event. We speculate that metalliferious fluids associated with the eruption of the Bushveld complex facilitated evolution of these

  6. Intracellular azo decolorization is coupled with aerobic respiration by a Klebsiella oxytoca strain.

    PubMed

    Yu, Lei; Zhang, Xiao-Yu; Xie, Tian; Hu, Jin-Mei; Wang, Shi; Li, Wen-Wei

    2015-03-01

    Reduction of azo dye methyl red coupled with aerobic respiration by growing cultures of Klebsiella oxytoca GS-4-08 was investigated. In liquid media containing dye and 0.6 % glucose in a mineral salts base, 100 mg l(-1) of the dye are completely removed in 3 h under shaking conditions. The dye cannot be aerobically decolorized by strain GS-4-08 without extra carbon sources, indicating a co-metabolism process. Higher initial dye concentration prolonged the lag phase of the cell growth, but final cell concentrations of each batches reached a same level with range from 6.3 to 7.6 mg l(-1) after the dye adaption period. This strain showed stronger dye tolerance and decolorization ability than many reported strains. Furthermore, a new intracellular oxygen-insensitive azoreductase was isolated from this strain, and the specific activity of enzyme was 0.846 and 0.633 U mg(-1) protein in the presence of NADH and NADPH, respectively. N,N dimethyl-p-phenylenediamine and anthranilic acid were stoichiometrically released from MR dye, indicating the breakage of azo bonds accounts for the intracellular decolorization. Combining the characteristics of azoreductase, the stoichiometry of EMP, and TCA cycle, the electron transfer chain theory of aerobic respiration, and the possible mechanism of aerobic respiration coupled with azo reduction by K. oxytoca GS-4-08 are proposed. This study is expected to provide a sound theoretical basis for the development of the K. oxytoca strain in aerobic process for azo dye containing wastewaters.

  7. Nitrate respiration associated with detrital aggregates in aerobic bottom waters of the abyssal NE Pacific

    NASA Astrophysics Data System (ADS)

    Wolgast, D. M.; Carlucci, A. F.; Bauer, J. E.

    Rates of nitrate utilization in tube core respirometers (TCR) placed over aggregates on the seafloor at an abyssal site (Station M) in the eastern North Pacific Ocean increased at times of high particle flux. In the presence of aggregates, both oxygen and nitrate were used in respiration. The ratio of O 2 : NO 3 concentrations in ambient waters was 3.9, while O 2 : NO 3 utilization rates in TCR overlying and TCR aggregate pore waters were 2.6 and 0.6, respectively. We postulated that denitrification was occurring in microzones of the particle-rich oxygenated (135 μM) waters. To test this, nitrate respiration was measured aboard a ship in oxygen-minimum (˜26 μM) water supplemented with particulate matter collected by a surface net tow. Dissolved oxygen consumption occurred immediately, followed by nitrate utilization while oxygen was still present. Calculations from cell densities indicated 0.6 μM of the original 42 μM of nitrate was assimilated into bacterial biomass during 36 h of incubation, suggesting the major portion of the utilized nitrate was used in respiration. Nitrate utilization rates in the in situ incubation study and those of the shipboard experiment were 3.1 and 2.7 μM d -1, respectively. The results of the present studies suggest nitrate respiration occurs in microzones of aggregates in oxygenated bottom waters at times of high particle flux and causes some loss of fixed nitrogen.

  8. Models of oxic respiration, denitrification and sulfate reduction in zones of coastal upwelling

    NASA Astrophysics Data System (ADS)

    Canfield, D. E.

    2006-12-01

    Coastal upwelling zones support some of the highest rates of primary production in the oceans. The settling and subsequent decomposition of this organic matter promotes oxygen depletion. In the Eastern tropical North and South Pacific and the Arabian Sea, large tracts of anoxic water develop, where intensive N 2 production through denitrification and anammox accounts for about 1/3 of the total loss of fixed nitrogen in the marine realm. It is curious that despite extensive denitrification in these waters, complete nitrate removal and the onset of sulfate reduction is extremely rare. A simple box model is constructed here to reproduce the dynamics of carbon, oxygen and nutrient cycling in coastal upwelling zones. The model is constructed with five boxes, where water is exchanged between the boxes by vertical and horizontal mixing and advection. These primary physical drivers control the dynamics of the system. The model demonstrates that in the absence of nitrogen fixation, the anoxic waters in a coastal upwelling system will not become nitrate free. This is because nitrate is the limiting nutrient controlling primary production, and if nitrate concentration becomes too low, primary production rate drops and this reduces rates of nitrate removal through N 2 production. With nitrogen fixation, however, complete nitrate depletion can occur and sulfate reduction will ensue. This situation is extremely rare in coastal upwelling zones, probably because nitrogen-fixing bacteria do not prosper in the high nutrient, turbid waters as typically in these areas. Finally, it is predicted here that the chemistry of the upwelling system will develop in a similar matter regardless whether N 2 production is dominated by anaerobic ammonium oxidation (anammox) or canonical heterotrophic denitrification.

  9. Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic-aerobic membrane bioreactor (MBR).

    PubMed

    Phan, Hop V; Hai, Faisal I; Kang, Jinguo; Dam, Hoa K; Zhang, Ren; Price, William E; Broeckmann, Andreas; Nghiem, Long D

    2014-08-01

    Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal during wastewater treatment by an integrated anoxic-aerobic MBR was examined. A set of 30 compounds was selected to represent TrOCs that occur ubiquitously in domestic wastewater. The system achieved over 95% total organic carbon (TOC) and over 80% total nitrogen (TN) removal. In addition, 21 of the 30 TrOCs investigated here were removed by over 90%. Low oxidation reduction potential (i.e., anoxic/anaerobic) regimes were conducive to moderate to high (50% to 90%) removal of nine TrOCs. These included four pharmaceuticals and personal care products (primidone, metronidazole, triclosan, and amitriptyline), one steroid hormone (17β-estradiol-17-acetate), one industrial chemical (4-tert-octylphenol) and all three selected UV filters (benzophenone, oxybenzone, and octocrylene). Internal recirculation between the anoxic and aerobic bioreactors was essential for anoxic removal of remaining TrOCs. A major role of the aerobic MBR for TOC, TN, and TrOC removal was observed.

  10. Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature.

    PubMed

    Huang, Xiaofei; Li, Weiguang; Zhang, Duoying; Qin, Wen

    2013-10-01

    Ammonium removal from source water is usually inhibited by insufficient carbon sources and low temperature in Northeastern China. A strain Y16 was isolated from oligotrophic niche and was identified as Acinetobacter sp. Y16. It demonstrated excellent capability for ammonium removal at 2 °C, and simultaneously produced nitrogen gas as the end product. About 66% of ammonium was removed after 36 h of incubation. Only trace accumulation of nitrate was observed during the process. The utilization of nitrite and nitrate as well as the existence of napA gene further proved the aerobic denitrification ability of strain Y16. Sodium acetate was the most favorable carbon source for ammonium oxidation by strain Y16. High rotation speed was beneficial for ammonium oxidation. Furthermore, strain Y16 could efficiently remove ammonium at low C/N ratio and low temperature conditions, which was advantageous for nitrogen removal from source water under cold temperatures.

  11. Heterotrophic nitrification and aerobic denitrification of high-strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4.

    PubMed

    Shoda, Makoto; Ishikawa, Yoichi

    2014-06-01

    Alcaligenes faecalis strain No. 4 which is capable of heterogeneous nitrification and aerobic denitrification, was used to remove high-strength ammonium (approximately 1 g NH4(+)-N/l) from digested sludge, the product of an anaerobic digestion reactor, in which methane was produced from excess municipal sewage sludge. Repeated batch operations were conducted at 20°C and 30°C for 550 h, using a jar fermentor. The removal ratios of high-strength ammonium reached 90-100% within 24 h, and the average ammonium removal rate was 2.9 kg-N/m(3)/day, more than 200 times higher than that in conventional nitrification-denitrification processes. During these operations, the cell density was maintained at 10(8)-10(9) cells of A. faecalis strain No. 4/ml. At 3% NaCl in the digested sludge, strain No. 4 exhibited an ammonium removal rate of 3 kg-N/m(3)/day.

  12. Microbial Cells and Aerobic Respiration from Seafloor to Basement in the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    D'Hondt, S.; Inagaki, F.; Alvarez Zarikian, C. A.; Morono, Y.; Pockalny, R. A.; Sauvage, J.; Spivack, A. J.

    2014-12-01

    The seafloor is broadly divided into two regions (Emerson et al., 1985): one where sedimentary microbial respiration is high and oxygen (O2) penetrates only millimeters to centimeters into the sediment (Revsbech et al., 1980), and another where sedimentary respiration is low and O2 penetrates much deeper (Murray& Grundmanis, 1980; D'Hondt et al., 2011; Røy et al, 2012; Orcutt et al., 2013). Active anaerobic microbial communities persist for hundreds of meters or more in subseafloor sediment of the high-respiration region. In the low-respiration region, the existence of microbial communities is previously unknown throughout most of the sedimentary sequence (Morita & Zobell, 1955; D'Hondt et al., 2009; Røy et al., 2012). Here we show that microbial cells and aerobic respiration persist through the entire sediment sequence (to depths of at least 75 m below seafloor) throughout the vast expanse of the oligotrophic South Pacific Gyre. This sediment and underlying basalt may be continuously exposed to O2 for its entire history (up to 120 myrs at our sites). Redfield stoichiometry of dissolved O2 and nitrate indicates that net sedimentary O2 reduction is coupled to oxidation of marine organic matter. Oxygen and aerobic communities may occur throughout the entire sediment sequence in 15-44% of the Pacific and 9-37% of the global ocean. This result has major implications for the nature and distribution of subseafloor life. It may ultimately affect the chemical evolution of Earth's mantle and subduction-related volcanic systems. References D'Hondt, S., et al., 2009. Proc. Nat. Acad. Sci. U.S.A. 106, 11651-11656, doi:10.1073/pnas.0811793106. D'Hondt, S., et al., 2011. Proc. IODP 329, doi:10.2204/ iodp.proc.329.2011. Emerson, S., et al., 1985. Deep-Sea Research 32, 1-21. Morita, R.Y. & Zobell, C.E., 1955. Deep-Sea Research 3, 66-73.Murray, J.W. & Grundmanis, V., 1980. Science 209, 1527-1530. Orcutt, B.N., et al., 2013. Nature Communications 4, 2539, DOI: 10.1038/ncomms3539

  13. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    SciTech Connect

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl{sub 2}), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl{sub 2} supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl{sub 2} supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl{sub 2} supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl{sub 2} for 15 days along with training. ► Co

  14. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride.

    PubMed

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl₂), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl₂ supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl₂ supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl₂ supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning.

  15. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil

    SciTech Connect

    Hinchee, R.E.; Ong, S.K. )

    1992-10-01

    A in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsaturated zone with air and periodically monitoring the depletion of oxygen (O[sub 2]) and production of carbon dioxide (CO[sub 2]) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O[sub 2]/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O[sub 2] utilization were generally more reliable (especially for alkaline soils) than rates based on CO[sub 2] production, CO[sub 2] produced from microbial respiration was probably converted to carbonate under alkaline conditions. 14 refs., 5 figs., 4 tabs.

  16. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil.

    PubMed

    Hinchee, R E; Ong, S K

    1992-10-01

    An in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsaturated zone with air and periodically monitoring the depletion of oxygen (O2) and production of carbon dioxide (CO2) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O2/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O2 utilization were generally more reliable (especially for alkaline soils) than rates based on CO2 production. CO2 produced from microbial respiration was probably converted to carbonate under alkaline conditions.

  17. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.

    PubMed

    Kawakami, Takuro; Kuroki, Miho; Ishii, Masaharu; Igarashi, Yasuo; Arai, Hiroyuki

    2010-06-01

    Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration. Two of them, the bo(3) oxidase (Cyo) and the cyanide-insensitive oxidase (CIO), are quinol oxidases and the other three, the cbb(3)-1 oxidase (Cbb3-1), the cbb(3)-2 oxidase (Cbb3-2) and the aa(3) oxidase (Aa3), are cytochrome c oxidases. The expression pattern of the genes for these terminal oxidases under various growth conditions was investigated by using lacZ transcriptional fusions and some novel regulatory issues were found. The Aa3 genes were induced under starvation conditions. The Cyo genes were induced by exposure to the nitric oxide-generating reagent S-nitrosoglutathione. The CIO genes were induced by exposure to sodium nitroprusside as well as cyanide. The stationary phase sigma factor RpoS was found to be involved in the expression of the Aa3 and CIO genes. The role of two redox-responsive transcriptional regulators, ANR and RoxSR, was investigated using the anr and roxSR mutant strains. The ANR was involved in the repression of the CIO genes and induction of the Cbb3-2 genes. The other three terminal oxidase genes were not significantly regulated by ANR. On the other hand, all five terminal oxidase genes were shown to be directly or indirectly regulated by RoxSR. The Aa3 genes were repressed but the genes for the other four enzymes were induced by RoxSR. The transcriptome data also showed that some respiration-related genes were regulated by RoxSR, suggesting that this two-component regulatory system plays an important role in the regulation of respiration in P. aeruginosa.

  18. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    PubMed

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater.

  19. Estimating time-variable aerobic respiration in the streambed by combining electrical conductivity and dissolved oxygen time series

    NASA Astrophysics Data System (ADS)

    Vieweg, Michael; Kurz, Marie J.; Trauth, Nico; Fleckenstein, Jan H.; Musolff, Andreas; Schmidt, Christian

    2016-08-01

    Aerobic respiration is an important component of in-stream metabolism. The larger part occurs in the streambed, where it is difficult to directly determine actual respiration rates. Existing methods for determining respiration are based on indirect estimates from whole-stream metabolism or provide time invariant results estimated from oxygen consumption measurements in enclosed chambers that do not account for the influence of hydrological changes. In this study we demonstrate a simple method for determining time-variable hyporheic respiration. We use a windowed cross-correlation approach for deriving time-variable travel times from the naturally changing electrical conductivity signal that is transferred into the sediment. By combining the results with continuous in situ dissolved oxygen measurements, variable oxygen consumption rate coefficients in the streambed are obtained. An empirical temperature relationship is derived and used for standardizing the respiration rate coefficients to isothermal conditions. For demonstrating the method, we compare two independent measurement spots in the streambed, which were located upstream and downstream of an in-stream gravel bar and thus exposed strongly diverse travel times. The derived respiration rate results are in accordance with findings of other stream studies. By comparing the travel time and respiration rate coefficient (i.e., Damköhler number) we estimate the contribution of each to the oxygen consumption in the streambed.

  20. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2014-01-01

    The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.

  1. Correlation of denitrification-accepted fraction of electrons with NAD(P)H fluorescence for Pseudomonas aeruginosa performing simultaneous denitrification and respiration at extremely low dissolved oxygen conditions.

    PubMed

    Chen, Fan; Xia, Qing; Ju, Lu-Kwang

    2004-01-01

    In cystic fibrosis airway infection, Pseudomonas aeruginosa forms a microaerobic biofilm and undergoes significant physiological changes. It is important to understand the bacterium's metabolism at microaerobic conditions. In this work, the culture properties and two indicators (the denitrification-accepted e- fraction and an NAD(P)H fluorescence fraction) for the culture's "fractional approach" to a fully anaerobic denitrifying state were examined in continuous cultures with practically zero DO but different aeration rates. With decreasing aeration, specific OUR decreased while specific NAR and NIR increased and kept Y(ATP/S) relatively constant. P. aeruginosa thus appeared to effectively compensate for energy generation at microaerobic conditions with denitrification. At the studied dilution rate of 0.06 h(-1), the maximum specific OUR was 2.8 mmol O2/g cells-h and the Monod constant for DO, in the presence of nitrate, was extremely low (<0.001 mg/L). The cell yield Y(X/S) increased significantly (from 0.24 to 0.34) with increasing aeration, attributed to a roughly opposite trend of Y(ATP/X) (ATP generation required for cell growth). As for the denitrification-accepted e- fraction and the fluorescence fraction, both decreased with increasing aeration as expected. The two fractions, however, were not directly proportional. The fluorescence fraction changed more rapidly than the e- fraction at very low aeration rates, whereas the opposite was true at higher aeration. The results demonstrated the feasibility of using online NAD(P)H fluorescence to monitor sensitive changes of cellular physiology and provided insights to the shift of e- -accepting mechanisms of P. aeruginosa under microaerobic conditions.

  2. Linkages between denitrification and dissolved organicmatter quality, Boulder Creek watershed, Colorado

    USGS Publications Warehouse

    Barnes, Rebecca T.; Smith, Richard L.; Aiken, George R.

    2012-01-01

    Dissolved organic matter (DOM) fuels the majority of in-stream microbial processes, including the removal of nitrate via denitrification. However, little is known about how the chemical composition of DOM influences denitrification rates. Water and sediment samples were collected across an ecosystem gradient, spanning the alpine to plains, in central Colorado to determine whether the chemical composition of DOM was related to denitrification rates. Laboratory bioassays measured denitrification potentials using the acetylene block technique and carbon mineralization via aerobic bioassays, while organic matter characteristics were evaluated using spectroscopic and fractionation methods. Denitrification potentials under ambient and elevated nitrate concentrations were strongly correlated with aerobic respiration rates and the percent mineralized carbon, suggesting that information about the aerobic metabolism of a system can provide valuable insight regarding the ability of the system to additionally reduce nitrate. Multiple linear regressions (MLR) revealed that under elevated nitrate concentrations denitrification potentials were positively related to the presence of protein-like fluorophores and negatively related to more aromatic and oxidized fractions of the DOM pool. Using MLR, the chemical composition of DOM, carbon, and nitrate concentrations explained 70% and 78% of the observed variability in denitrification potential under elevated and ambient nitrate conditions, respectively. Thus, it seems likely that DOM optical properties could help to improve predictions of nitrate removal in the environment. Finally, fluorescence measurements revealed that bacteria used both protein and humic-like organic molecules during denitrification providing further evidence that larger, more aromatic molecules are not necessarily recalcitrant in the environment.

  3. Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp.

    PubMed

    Hawkins, Thomas D; Hagemeyer, Julia C G; Hoadley, Kenneth D; Marsh, Adam G; Warner, Mark E

    2016-01-01

    Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, such as the partitioning of total respiration between the host and symbiont, remains incomplete. Specifically, we know little about how the relationship between host and symbiont respiration varies between different holobionts (host-symbiont combinations). We applied molecular and biochemical techniques to investigate aerobic respiratory capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of Symbiodinium minutum (ITS2-type B1). In naturally symbiotic anemones, host, symbiont, and total holobiont mitochondrial citrate synthase (CS) enzyme activity, but not host mitochondrial copy number, were reliable predictors of holobiont respiration. There was a positive association between symbiont density and host CS specific activity (mg protein(-1)), and a negative correlation between host- and symbiont CS specific activities. Notably, partitioning of total CS activity between host and symbiont in this natural E. pallida population was significantly different to the host/symbiont biomass ratio. In re-infected anemones, we found significant between-holobiont differences in the CS specific activity of the algal symbionts. Furthermore, the relationship between the partitioning of total CS activity and the host/symbiont biomass ratio differed between holobionts. These data have broad implications for our understanding of cnidarian-algal symbiosis. Specifically, the long-held assumption of equivalency between symbiont/host biomass and respiration ratios can result in significant overestimation of symbiont respiration and potentially erroneous conclusions regarding the percentage of carbon translocated to the host. The interspecific variability in symbiont aerobic capacity provides further evidence

  4. Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp.

    PubMed Central

    Hawkins, Thomas D.; Hagemeyer, Julia C. G.; Hoadley, Kenneth D.; Marsh, Adam G.; Warner, Mark E.

    2016-01-01

    Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, such as the partitioning of total respiration between the host and symbiont, remains incomplete. Specifically, we know little about how the relationship between host and symbiont respiration varies between different holobionts (host-symbiont combinations). We applied molecular and biochemical techniques to investigate aerobic respiratory capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of Symbiodinium minutum (ITS2-type B1). In naturally symbiotic anemones, host, symbiont, and total holobiont mitochondrial citrate synthase (CS) enzyme activity, but not host mitochondrial copy number, were reliable predictors of holobiont respiration. There was a positive association between symbiont density and host CS specific activity (mg protein−1), and a negative correlation between host- and symbiont CS specific activities. Notably, partitioning of total CS activity between host and symbiont in this natural E. pallida population was significantly different to the host/symbiont biomass ratio. In re-infected anemones, we found significant between-holobiont differences in the CS specific activity of the algal symbionts. Furthermore, the relationship between the partitioning of total CS activity and the host/symbiont biomass ratio differed between holobionts. These data have broad implications for our understanding of cnidarian-algal symbiosis. Specifically, the long-held assumption of equivalency between symbiont/host biomass and respiration ratios can result in significant overestimation of symbiont respiration and potentially erroneous conclusions regarding the percentage of carbon translocated to the host. The interspecific variability in symbiont aerobic capacity provides further evidence

  5. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology.

    PubMed

    Pedersen, Martin B; Gaudu, Philippe; Lechardeur, Delphine; Petit, Marie-Agnès; Gruss, Alexandra

    2012-01-01

    The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.

  6. Lateral Transfer of the Denitrification Pathway Genes among Thermus thermophilus Strains▿

    PubMed Central

    Alvarez, Laura; Bricio, Carlos; José Gómez, Manuel; Berenguer, José

    2011-01-01

    Nitrate respiration is a common and strain-specific property in Thermus thermophilus encoded by the nitrate respiration conjugative element (NCE) that can be laterally transferred by conjugation. In contrast, nitrite respiration and further denitrification steps are restricted to a few isolates of this species. These later steps of the denitrification pathway are under the regulatory control of an NCE-encoded transcription factor, but nothing is known about their coding sequences or its putative genetic linkage to the NCE. In this study we examine the genetic linkage between nitrate and nitrite respiration through lateral gene transfer (LGT) assays and describe a cluster of genes encoding the nitrite-nitric oxide respiration in T. thermophilus PRQ25. We show that the whole denitrification pathway can be transferred from the denitrificant strain PRQ25 to an aerobic strain, HB27, and that the genes coding for nitrite and nitric oxide respiration are encoded near the NCE. Sequence data from the draft genome of PRQ25 confirmed these results and allowed us to describe the most compact nor-nir cluster known thus far and to demonstrate the expression and activities of the encoded enzymes in the HB27 denitrificant derivatives obtained by LGT. We conclude that this NCE nor-nir supercluster constitutes a whole denitrification island that can be spread by lateral transfer among Thermus thermophilus strains. PMID:21169443

  7. Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains

    PubMed Central

    Harrison, Jesse P.; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L.; Cockell, Charles S.

    2015-01-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division. PMID:26354829

  8. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites.

    PubMed

    Bardon, Clément; Piola, Florence; Bellvert, Floriant; Haichar, Feth el Zahar; Comte, Gilles; Meiffren, Guillaume; Pommier, Thomas; Puijalon, Sara; Tsafack, Noelline; Poly, Franck

    2014-11-01

    Previous studies on the effect of secondary metabolites on the functioning of rhizosphere microbial communities have often focused on aspects of the nitrogen (N) cycle but have overlooked biological denitrification inhibition (BDI), which can affect plant N-nutrition. Here, we investigated the BDI by the compounds of Fallopia spp., an invasive weed shown to be associated with a low potential denitrification of the soil. Fallopia spp. extracts were characterized by chromatographic analysis and were used to test the BDI effects on the metabolic and respiratory activities of denitrifying bacteria, under aerobic and anaerobic (denitrification) conditions. The BDI of Fallopia spp. extracts was tested on a complex soil community by measuring denitrification enzyme activity (DEA), substrate induced respiration (SIR), as well as abundances of denitrifiers and total bacteria. In 15 strains of denitrifying bacteria, extracts led to a greater BDI (92%) than respiration inhibition (50%). Anaerobic metabolic activity reduction was correlated with catechin concentrations and the BDI was dose dependent. In soil, extracts reduced the DEA/SIR ratio without affecting the denitrifiers: total bacteria ratio. We show that secondary metabolite(s) from Fallopia spp. inhibit denitrification. This provides new insight into plant-soil interactions and improves our understanding of a plant's ability to shape microbial soil functioning.

  9. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    PubMed

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

  10. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    PubMed Central

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  11. Involvement of acetaldehyde in seed deterioration of some recalcitrant woody species through the acceleration of aerobic respiration.

    PubMed

    Akimoto, Toshiyuki; Cho, Shinya; Yoshida, Hiroshi; Furuta, Hiroaki; Esashi, Yohji

    2004-02-01

    The rate of acetaldehyde (Ald) evolution in the deterioration of recalcitrant woody seeds was investigated. Four plant species, Ligustrum japonicum, Quercus serrata, Quercus myrsinaefolia and Camellia japonica, were used for the experiments. Similar to orthodox seeds, all of the recalcitrant seeds used contained Ald in addition to methanol and ethanol, although the amount of Ald in Camellia, a typical oil seed, was very small. These volatiles were accumulated in a container in which Ligustrum and Q. serrata seeds were stored for a short period. Moreover, all of the seeds that had been previously exposed to Ald for only 6 d at 3 or 13 degrees C lost their vigor rapidly in proportion to the concentration of Ald. The occasional removal by decompression of Ald accumulated in the container prolonged the life span of Q. serrata seeds from 4 to 6 months. These findings suggest that a short life span of the hydrated recalcitrant seeds may involve Ald synthesis as in the orthodox seeds. However, the action mechanism of Ald in Ligustrum and Quercus seeds in which storage substances were polysaccharides seems to differ slightly from that in orthodox seeds, because their aerobic respiration was significantly stimulated by exposure to exogenously applied Ald. It was, therefore, thought that the rapid deterioration of some recalcitrant seeds in woody species may result from a decline in vigor, not only due to the denaturation of functional proteins by Ald as in the orthodox seeds but also due to the rapid consumption of direct substrates for the Ald-stimulated aerobic respiration and related co-enzymes within seeds. In contrast, in the oil-bearing Camellia seeds, Ald was slightly produced and their aerobic respiration was not enhanced by Ald, although they were very sensitive to Ald. Desiccation storage of Camellia seeds caused the deterioration of their outer part, which was accelerated by exogenously applied Ald, which suggests that in Camellia Ald acts only to denature the

  12. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment.

    PubMed

    Kong, Zhe; Feng, Chuanping; Chen, Nan; Tong, Shuang; Zhang, Baogang; Hao, Chunbo; Chen, Kun

    2014-05-01

    To enhance the denitrification performance of soil infiltration, a soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment was developed, and the SISSAD performance was evaluated using synthetic domestic wastewater in this study. The aerobic respiration and nitrification were mainly taken place in the upper aerobic stage (AES), removed 88.44% COD and 89.99% NH4(+)-N. Moreover, autotrophic denitrification occurred in the bottom anaerobic stage (ANS), using the CO2 produced from AES as inorganic carbon source. Results demonstrated that the SISSAD showed a remarkable performance on COD removal efficiency of 95.09%, 84.86% for NO3(-)-N, 95.25% for NH4(+)-N and 93.15% for TP. This research revealed the developed system exhibits a promising application prospect for domestic wastewater in the future.

  13. A method for on-line measurement of wastewater organic substrate oxidation level during aerobic heterotrophic respiration.

    PubMed

    Rudelle, E A; Vollertsen, J; Hvitved-Jacobsen, T; Nielsen, A H

    2013-01-01

    A method for on-line measurement of the organic carbon oxidation level (OXC) during aerobic heterotrophic respiration in domestic wastewater was developed and tested. The method is based on batch incubation of sewer wastewater in an intermittently aerated respirometric reactor. Between aeration cycles, measured pH, dissolved oxygen (DO) and dissolved carbon dioxide (CO2) were used to calculate electron flow accepted by DO and the resulting production of dissolved inorganic carbon (DIC). The CO2 production was measured using a novel fiber-optic sensor based on luminescence quenching. The method was tested on domestic wastewater with a relatively high pH and alkalinity. From the DO and DIC measurements, it was possible to evaluate substrate oxidation levels with a temporal resolution of less than an hour. Addition of organic substrates during the experiments confirmed the method's applicability. The substrates tested included ethanol (OXC = -2), glucose (OXC = 0) and oxalic acid (OXC = 3).

  14. In situ Spectroscopy Reveals that Microorganisms in Different Phyla Use Different Electron Transfer Biomolecules to Respire Aerobically on Soluble Iron

    PubMed Central

    Blake II, Robert C.; Anthony, Micah D.; Bates, Jordan D.; Hudson, Theresa; Hunter, Kamilya M.; King, Brionna J.; Landry, Bria L.; Lewis, Megan L.; Painter, Richard G.

    2016-01-01

    Absorbance spectra were collected on 12 different live microorganisms, representing six phyla, as they respired aerobically on soluble iron at pH 1.5. A novel integrating cavity absorption meter was employed that permitted accurate absorbance measurements in turbid suspensions that scattered light. Illumination of each microorganism yielded a characteristic spectrum of electrochemically reduced colored prosthetic groups. A total of six different patterns of reduced-minus-oxidized difference spectra were observed. Three different spectra were obtained with members of the Gram-negative eubacteria. Acidithiobacillus, representing Proteobacteria, yielded a spectrum in which cytochromes a and c and a blue copper protein were all prominent. Acidihalobacter, also representing the Proteobacteria, yielded a spectrum in which both cytochrome b and a long-wavelength cytochrome a were clearly visible. Two species of Leptospirillum, representing the Nitrospirae, both yielded spectra that were dominated by a cytochrome with a reduced peak at 579 nm. Sulfobacillus and Alicyclobacillus, representing the Gram-positive Firmicutes, both yielded spectra dominated by a-type cytochromes. Acidimicrobium and Ferrimicrobium, representing the Gram-positive Actinobacteria, also yielded spectra dominated by a-type cytochromes. Acidiplasma and Ferroplasma, representing the Euryarchaeota, both yielded spectra dominated by a ba3-type of cytochrome. Metallosphaera and Sulfolobus, representing the Crenarchaeota, both yielded spectra dominated by the same novel cytochrome as that observed in the Nitrospirae and a new, heretofore unrecognized redox-active prosthetic group with a reduced peak at around 485 nm. These observations are consistent with the hypothesis that individual acidophilic microorganisms that respire aerobically on iron utilize one of at least six different types of electron transfer pathways that are characterized by different redox-active prosthetic groups. In situ absorbance

  15. High Concentrations of H2O2 Make Aerobic Glycolysis Energetically More Favorable for Cellular Respiration

    PubMed Central

    Molavian, Hamid R.; Kohandel, Mohammad; Sivaloganathan, Sivabal

    2016-01-01

    Since the original observation of the Warburg Effect in cancer cells, over 8 decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2) above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP) in response to the production of reactive oxygen species (ROS) H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources). This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production) to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis. PMID:27601999

  16. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2014-01-01

    Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.

  17. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis.

    PubMed

    Gao, Haichun; Wang, Xiaohu; Yang, Zamin K; Chen, Jingrong; Liang, Yili; Chen, Haijiang; Palzkill, Timothy; Zhou, Jizhong

    2010-12-28

    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters.

  18. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Xiaohu; Chen, Jingrong; Liang, Yili; Chen, Haijiang; Palzkill, Timothy; Zhou, Jizhong

    2010-01-01

    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters.

  19. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India.

    PubMed

    Cathrine, Sumathi J; Raghukumar, Chandralata

    2009-01-01

    Denitrification is a microbial process during which nitrate or nitrite is reduced under anaerobic condition to gaseous nitrogen. The Arabian Sea contains one of the major pelagic denitrification zones and in addition to this, denitrification also takes places along the continental shelf. Prokaryotic microorganisms were considered to be the only players in this process. However recent studies have shown that higher microeukaryotes such as fungi can also adapt to anaerobic mode of respiration and reduce nitrate to harmful green house gases such as NO and N2O. In this study we examined the distribution and biomass of fungi in the sediments of the seasonal anoxic region off Goa from two stations. The sampling was carried out in five different periods from October 2005, when dissolved oxygen levels were near zero in bottom waters to March 2006. We isolated mycelial fungi, thraustochytrids and yeasts. Species of Aspergillus and thraustochytrids were dominant. Fungi were isolated under aerobic, as well as anaerobic conditions from different seasons. Four isolates were examined for their denitrification activity. Two cultures obtained from the anoxic sediments showed better growth under anaerobic condition than the other two cultures that were isolated from oxic sediments. Our preliminary results suggest that several species of fungi can grow under oxygen deficient conditions and participate in denitrification processes.

  20. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    PubMed

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes.

  1. Deriving variable travel times and aerobic respiration in the hyporheic zone using electrical conductivity as natural tracer

    NASA Astrophysics Data System (ADS)

    Vieweg, Michael; Fleckenstein, Jan H.; Schmidt, Christian

    2014-05-01

    Determining oxygen consumption (respiration) rates is important for characterizing the ecological functioning of a stream. It is known, that respiration is strongly temperature dependent, but the variability over time and the effects of changing hydrologic conditions are still scarce. Existing respiration measuring methods mostly utilize ex situ respiration chambers, which do not necessarily represent the actual conditions in a riverbed. We present an approach of transient in situ measurements, which utilize changes in the natural stream-EC signal as tracer for the advective transport in the streambed and combine these with precise oxygen measurements. LTC Logger and optode based oxygen logger were installed in the stream and at 45cm depth beside an in-stream gravel bar. Streambed adapted probe rods with a screened section of 2 cm ensuring a minimized flow-through volume hold the loggers which were programmed to 5min interval measuring interval. Diurnal changes in the EC signal are considered to be quasi-conservative and were tracked in the subsurface. A windowed cross correlation approach was utilized to derive a time-resolved advective travel-time. Assuming a one dimensional flow-path from the stream into the sediment, the time-shift in the EC signal is interpreted as the peak travel time of a tracer breakthrough curve. Additionally a moving average filter of variable length was applied to the stream EC signal, to account for dispersion and further maximize the correlation. For obtaining an experimental respiration rate, the physical transport conditions are then applied to the oxygen data, assuming a first order decay. The results show that the natural EC signal is applicable as tracer, as long as the measurements show distinctive fluctuations. The cross correlation revealed transient travel times with a range between 1-7h (mean 4h) at the upstream and 8-18h (mean 11h) at the downstream location of the gravel bar. There are strong indications, that the stream

  2. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  3. Both foliar and residual applications of herbicides that inhibit amino acid biosynthesis induce alternative respiration and aerobic fermentation in pea roots.

    PubMed

    Armendáriz, O; Gil-Monreal, M; Zulet, A; Zabalza, A; Royuela, M

    2016-05-01

    The objective of this work was to ascertain whether there is a general pattern of carbon allocation and utilisation in plants following herbicide supply, independent of the site of application: sprayed on leaves or supplied to nutrient solution. The herbicides studied were the amino acid biosynthesis-inhibiting herbicides (ABIH): glyphosate, an inhibitor of aromatic amino acid biosynthesis, and imazamox, an inhibitor of branched-chain amino acid biosynthesis. All treated plants showed impaired carbon metabolism; carbohydrate accumulation was detected in both leaves and roots of the treated plants. The accumulation in roots was due to lack of use of available sugars as growth was arrested, which elicited soluble carbohydrate accumulation in the leaves due to a decrease in sink strength. Under aerobic conditions, ethanol fermentative metabolism was enhanced in roots of the treated plants. This fermentative response was not related to a change in total respiration rates or cytochrome respiratory capacity, but an increase in alternative oxidase capacity was detected. Pyruvate accumulation was detected after most of the herbicide treatments. These results demonstrate that both ABIH induce the less-efficient, ATP-producing pathways, namely fermentation and alternative respiration, by increasing the key metabolite, pyruvate. The plant response was similar not only for the two ABIH but also after foliar or residual application.

  4. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration.

    PubMed

    Mailloux, Ryan J; Dumouchel, Tyler; Aguer, Céline; deKemp, Rob; Beanlands, Rob; Harper, Mary-Ellen

    2011-07-15

    UCP3 (uncoupling protein-3) mitigates mitochondrial ROS (reactive oxygen species) production, but the mechanisms are poorly understood. Previous studies have also examined UCP3 effects, including decreased ROS production, during metabolic states when fatty acid oxidation is high (e.g. a fasting state). However, the role of UCP3 when carbohydrate oxidation is high (e.g. fed state) has remained largely unexplored. In the present study, we show that mitochondrial-bound HK (hexokinase) II curtails oxidative stress and enhances aerobic metabolism of glucose in the fed state in a UCP3-dependent manner. Genetic knockout or inhibition of UCP3 significantly decreased mitochondrial-bound HKII. Furthermore, UCP3 was required for the HKII-mediated decrease in mitochondrial ROS emission. Intriguingly, the UCP3-mediated modulation of mitochondria-associated HKII was only observed in cells cultured under high-glucose conditions. UCP3 was required to maintain high rates of aerobic metabolism in high-glucose-treated cells and in muscle of fed mice. Deficiency in UCP3 resulted in a metabolic shift that favoured anaerobic glycolytic metabolism, increased glucose uptake and increased sensitivity to oxidative challenge. PET (positron emission tomography) of [18F]fluoro-deoxyglucose uptake confirmed these findings in UCP3-knockout and wild-type mice. Collectively, our findings link the anti-oxidative and metabolic functions of UCP3 through a surprising molecular connection with mitochondrial-bound HKII.

  5. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  6. The contribution of aerobic and anaerobic respiration to intestinal colonization and virulence for Salmonella typhimurium in the chicken.

    PubMed

    Barrow, Paul Andrew; Berchieri, Angelo; Freitas Neto, Oliveiro Caetano de; Lovell, Margaret

    2015-10-01

    The basic mechanism whereby Salmonella serovars colonize the chicken intestine remains poorly understood. Previous studies have indicated that proton-translocating proteins utilizing oxygen as terminal electron acceptor do not appear to be of major importance in the gut of the newly hatched chicken and consequently they would be even less significant during intestinal colonization of more mature chickens where the complex gut microflora would trap most of the oxygen in the lumen. Consequently, alternative electron acceptors may be more significant or, in their absence, substrate-level phosphorylation may also be important to Salmonella serovars in this environment. To investigate this we constructed mutants of Salmonella enterica serovar Typhimurium defective in various aspects of oxidative or substrate-level phosphorylation to assess their role in colonization of the chicken intestine, assessed through faecal shedding, and virulence. Mutations affecting use of oxygen or alternative electron acceptors did not eliminate faecal shedding. By contrast mutations in either pta (phosphotransacetylase) or ackA (acetate kinase) abolished shedding. The pta but not the ackA mutation also abolished systemic virulence for chickens. An additional ldhA (lactate dehydrogenase) mutant also showed poor colonizing ability. We hypothesise that substrate-level phosphorylation may be more important than respiration using oxygen or alternative electron acceptors for colonization of the chicken caeca.

  7. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus.

    PubMed

    Thöny-Meyer, L; Beck, C; Preisig, O; Hennecke, H

    1994-11-01

    The genes for a new type of a haem-copper cytochrome oxidase were cloned from Rhodobacter capsulatus strain 37b4, using the Bradyrhizobium japonicum fixNOQP gene region as a hybridizing probe. Four genes, probably organized in an operon (ccoNOQP), were identified; their products share extensive amino acid sequence similarity with the FixN, O, Q and P proteins that have recently been shown to be the subunits of a cb-type oxidase. CcoN is a b-type cytochrome, CcoO and CcoP are membrane-bound mono- and dihaem c-type cytochromes and CcoQ is a small membrane protein of unknown function. Genes for a similar oxidase are also present in other non-rhizobial bacterial species such as Azotobacter vinelandii, Agrobacterium tumefaciens and Pseudomonas aeruginosa, as revealed by polymerase chain reaction analysis. A ccoN mutant was constructed whose phenotype, in combination with the structural information on the gene products, provides evidence that the CcoNOQP oxidase is a cytochrome c oxidase of the cb type, which supports aerobic respiration in R. capsulatus and which is probably identical to the cbb3-type oxidase that was recently purified from a different strain of the same species. Mutant analysis also showed that this oxidase has no influence on photosynthetic growth and nitrogen-fixation activity.

  8. Cocurrent biological nitrification and denitrification in wastewater treatment

    SciTech Connect

    Spector, M.

    1998-11-01

    Repetitive conditioning of recycle activated sludge (RAS) under strict anaerobic conditions gradually changes the products of ammonia oxidation from nitrite and nitrate to nitrous oxide (N{sub 2}O) and nitrogen (N{sub 2}). Nitrite inhibits oxygen respiration of anaerobically conditioned sludge; biochemical oxygen demand (BOD) is then oxidized by nitrite, which is reduce to N{sub 2}O and N{sub 2}. When anaerobic RAS conditioning is initially imposed on a nitrifying system, Nitrobacter species continue to oxidize nitrite to nitrate and thus reduce the nitrite available to oxidize BOD. However, Nitrobacter in the mixed liquor gradually tend to wash out because the sole source of Nictrobacter energy, the oxidation of nitrite to nitrate, is diminished to the extent that nitrite is reduced. Incorporation of an RAS conditioning zone to the activate-sludge process results in evolution of a nonfilamentous biomass, which affects both cocurrent biological nitrification and denitrification (CBND) and biological phosphorus removal (BPR). The initial feed zone may be either aerobic or anaerobic. A final anoxic denitrification zone is desirable for removal of residual nitrite plus nitrate (NO{sub x}) from aeration effluent. Nitrous oxide, the main reaction product of CBND, promotes both global warming and destruction of the stratospheric ozone layer.

  9. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment.

    PubMed

    Harrison, Alistair; Dubois, Laura G; St John-Williams, Lisa; Moseley, M Arthur; Hardison, Rachael L; Heimlich, Derek R; Stoddard, Alexander; Kerschner, Joseph E; Justice, Sheryl S; Thompson, J Will; Mason, Kevin M

    2016-03-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  10. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment*

    PubMed Central

    Harrison, Alistair; Dubois, Laura G.; St. John-Williams, Lisa; Moseley, M. Arthur; Hardison, Rachael L.; Heimlich, Derek R.; Stoddard, Alexander; Kerschner, Joseph E.; Justice, Sheryl S.; Thompson, J. Will; Mason, Kevin M.

    2016-01-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  11. High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization

    PubMed Central

    Samad, Md Sainur; Bakken, Lars R.; Nadeem, Shahid; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C) mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand) using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O) and N2O/(N2O+N2) product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 μmol N/h/vial) were significantly associated with C mineralization (CO2 μmol/h/vial) measured both under oxic (r2 = 0.62, p = 0.0015) and anoxic (r2 = 0.89, p<0.0001) conditions. PMID:26990862

  12. Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics

    PubMed Central

    Veraart, Annelies J.; de Klein, Jeroen J. M.; Scheffer, Marten

    2011-01-01

    Background Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. Methodology/Principal Findings We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. Conclusions/Significance Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our results illustrate the broader phenomenon that coupling of temperature dependent reactions may in some situations strongly alter overall effects of temperature on ecological processes. PMID:21483809

  13. A PRELIMINARY EXPERIMENT ON DENITRIFICATION OF WASTE LANDFILL LEACHATE

    NASA Astrophysics Data System (ADS)

    Wada, Nariaki; Nakamichi, Tamihiro; Yagi, Masahiro; Matsumoto, Toshihide; Kugimiya, Akikazu; Michioku, Kohji

    A laboratory experiment on denitrification was carried out in order to reduce nitrogen load from municipal landfill leachate. Nitrogen was efficiently removed by feeding sludge of the leachate pond into the tanks, which could activate denitrification bacteria. Although inorganic reducing agent such as iron powder was not able to make the whole water mass anoxic, denitrification took place by supplying organic matters such as methanol, hydrogen feeding agent, etc.. It is considered that small amount of anoxic water film produced on surfaces of container and carriers might contribute to denitrification, although the bulk water is kept aerobic. It is found that organic matters contained in the leachate is so insufficient that nitrification liquid circulation does not work well for denitrification.

  14. Involvement in Denitrification is Beneficial to the Biofilm Lifestyle of Comamonas testosteroni: A Mechanistic Study and Its Environmental Implications.

    PubMed

    Wu, Yichao; Shukal, Sudha; Mukherjee, Manisha; Cao, Bin

    2015-10-06

    Comamonas is one of the most abundant microorganisms in biofilm communities driving wastewater treatment. Little has been known about the role of this group of organisms and their biofilm mode of life. In this study, using Comamonas testosteroni as a model organism, we demonstrated the involvement of Comamonas biofilms in denitrification under bulk aerobic conditions and elucidated the influence of nitrate respiration on its biofilm lifestyle. Our results showed that C. testosteroni could use nitrate as the sole electron acceptor for anaerobic growth. Under bulk aerobic condition, biofilms of C. testosteroni were capable of reducing nitrate, and intriguingly, nitrate reduction significantly enhanced viability of the biofilm-cells and reduced cell detachment from the biofilms. Nitrate respiration was further shown to play an essential role in maintaining high cell viability in the biofilms. RNA-seq analysis, quantitative polymerase chain reaction, and liquid chromatography-mass spectrometry revealed a higher level of bis(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) in cells respiring on nitrate than those grown aerobically (1.3 × 10(-4) fmol/cell vs 7.9 × 10(-6) fmol/cell; P < 0.01). C-di-GMP is one universal signaling molecule that regulates the biofilm mode of life, and a higher c-di-GMP concentration reduces cell detachment from biofilms. Taking these factors together, this study reveals that nitrate reduction occurs in mature biofilms of C. testosteroni under bulk aerobic conditions, and the respiratory reduction of nitrate is beneficial to the biofilm lifestyle by providing more metabolic energy to maintain high viability and a higher level of c-di-GMP to reduce cell detachment.

  15. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri.

    PubMed Central

    Körner, H; Zumft, W G

    1989-01-01

    The onset and cessation of the synthesis of denitrification enzymes of Pseudomonas stutzeri were investigated by using continuous culture and defined dissolved oxygen levels covering the full range of transition from air saturation to complete anaerobiosis. Expression of nitrate reductase, nitrite reductase (cytochrome cd1), and N2O reductase was controlled by discrete oxygen levels and by the nature of the nitrogenous oxide available for respiration. N2O reductase was synthesized constitutively at a low level; for enhanced expression, oxygen concentrations were required to decrease below 5 mg of O2 per liter. The threshold values for synthesis of nitrate reductase and cytochrome cd1 in the presence of nitrate were ca. 5 and ca. 2.5 mg of O2 per liter, respectively. With nitrous oxide as the respiratory substrate, nitrite reductase was again the most sensitive to oxygen concentration; however, thresholds for all denitrification enzymes shifted to lower oxygen levels. Whereas the presence of nitrate resulted in maximum expression and nearly uniform induction of all reductases, nitrite and nitrous oxide stimulated preferably the respective enzyme catalyzing reduction. In the absence of a nitrogenous oxide, anaerobiosis did not induce enzyme synthesis to any significant degree. The accumulation of nitrite seen during both the aerobic-anaerobic and anaerobic-aerobic transition phases was caused by the differences in onset or cessation of synthesis of nitrate and nitrite reductases and an inhibitory effect of nitrate on nitrite reduction. Images PMID:2764573

  16. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment.

    PubMed

    Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu

    2015-01-01

    In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment.

  17. Genetic basis for denitrification in Ensifer meliloti

    PubMed Central

    2014-01-01

    Background Denitrification is defined as the dissimilatory reduction of nitrate or nitrite to nitric oxide (NO), nitrous oxide (N2O), or dinitrogen gas (N2). N2O is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Legume crops might contribute to N2O production by providing nitrogen-rich residues for decomposition or by associating with rhizobia that are able to denitrify under free-living and symbiotic conditions. However, there are limited direct empirical data concerning N2O production by endosymbiotic bacteria associated with legume crops. Analysis of the Ensifer meliloti 1021 genome sequence revealed the presence of the napEFDABC, nirK, norECBQD and nosRZDFYLX denitrification genes. It was recently reported that this bacterium is able to grow using nitrate respiration when cells are incubated with an initial O2 concentration of 2%; however, these cells were unable to use nitrate respiration when initially incubated anoxically. The involvement of the nap, nirK, nor and nos genes in E. meliloti denitrification has not been reported. Results E. meliloti nap, nirK and norC mutant strains exhibited defects in their ability to grow using nitrate as a respiratory substrate. However, E meliloti nosZ was not essential for growth under these conditions. The E. meliloti napA, nirK, norC and nosZ genes encode corresponding nitrate, nitrite, nitric oxide and nitrous oxide reductases, respectively. The NorC component of the E. meliloti nitric oxide reductase has been identified as a c-type cytochrome that is 16 kDa in size. Herein, we also show that maximal expression of the E. meliloti napA, nirK, norC and nosZ genes occurred when cells were initially incubated anoxically with nitrate. Conclusion The E. meliloti napA, nirK, norC and nosZ genes are involved in nitrate respiration and in the expression of denitrification enzymes in this bacterium. Our findings expand the short list of rhizobia for which denitrification gene function has been

  18. Insights into Denitrification in Methylotenera mobilis from Denitrification Pathway and Methanol Metabolism Mutants

    PubMed Central

    Mustakhimov, Ildar; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.

    2013-01-01

    We investigated phenotypes of mutants of Methylotenera mobilis JLW8 with lesions in genes predicted to encode functions of the denitrification pathway, as well as mutants with mutations in methanol dehydrogenase-like structural genes xoxF1 and xoxF2, in order to obtain insights into denitrification and methanol metabolism by this bacterium. By monitoring the accumulation of nitrous oxide, we demonstrate that a periplasmic nitrate reductase, NAD(P)-linked and copper-containing nitrite reductases, and a nitric oxide reductase are involved in the denitrification pathway and that the pathway must be operational in aerobic conditions. However, only the assimilatory branch of the denitrification pathway was essential for growth on methanol in nitrate-supplemented medium. Mutants with mutations in each of the two xoxF genes maintained their ability to grow on methanol, but not the double XoxF mutant, suggesting that XoxF proteins act as methanol dehydrogenase enzymes in M. mobilis JLW8. Reduced levels of nitrous oxide accumulated by the XoxF mutants compared to the wild type suggest that these enzymes must be capable of donating electrons for denitrification. PMID:23475964

  19. Denitrification of groundwater with methane as sole hydrogen donor.

    PubMed

    Eisentraeger, A; Klag, P; Vansbotter, B; Heymann, E; Dott, W

    2001-06-01

    It was examined, whether methane can be used as hydrogen donor for an in situ denitrification of groundwater. It is demonstrated, that groundwater can serve as liquid medium and that the denitrification can occur at 10 degrees C. Efforts to enrich methanotrophic bacteria under anoxic conditions have not been successful. No methane oxidation occurred in the absence of oxygen. For this reason, the denitrification with methane must be performed in a two-stage process with aerobic methanotrophic bacteria producing metabolites, that are used as hydrogen donor by non-methanotrophic bacteria in anoxic areas. This kind of indirect denitrification was proved by quantifying nitrogen and nitrous oxide in enrichment cultures that were not stirred or shaken. Large numbers of non-methanotrophic bacteria being able to denitrify with methanol, acetate or proteins as sole hydrogen donor were enriched besides the methanotrophic bacteria under these conditions.

  20. Cell biology and molecular basis of denitrification.

    PubMed Central

    Zumft, W G

    1997-01-01

    Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary

  1. Wetland Characteristics and Denitrification

    EPA Science Inventory

    This presentation serves as an initial summary of our wetland field work's watershed characteristics hydrologic characteristics, water quality measurements, and denitrification assays. We present our measurement results in the context of wetland type (Estuarine, Freshwater Mars...

  2. Denitrification in Sinorhizobium meliloti.

    PubMed

    Torres, María J; Rubia, María I; Bedmar, Eulogio J; Delgado, María J

    2011-12-01

    Denitrification is the complete reduction of nitrate or nitrite to N2, via the intermediates nitric oxide (NO) and nitrous oxide (N2O), and is coupled to energy conservation and growth under O2-limiting conditions. In Bradyrhizobium japonicum, this process occurs through the action of the napEDABC, nirK, norCBQD and nosRZDFYLX gene products. DNA sequences showing homology with nap, nirK, nor and nos genes have been found in the genome of the symbiotic plasmid pSymA of Sinorhizobium meliloti strain 1021. Whole-genome transcriptomic analyses have demonstrated that S. meliloti denitrification genes are induced under micro-oxic conditions. Furthermore, S. meliloti has also been shown to possess denitrifying activities in both free-living and symbiotic forms. Despite possessing and expressing the complete set of denitrification genes, S. meliloti is considered a partial denitrifier since it does not grow under anaerobic conditions with nitrate or nitrite as terminal electron acceptors. In the present paper, we show that, under micro-oxic conditions, S. meliloti is able to grow by using nitrate or nitrite as respiratory substrates, which indicates that, in contrast with anaerobic denitrifiers, O2 is necessary for denitrification by S. meliloti. Current knowledge of the regulation of S. meliloti denitrification genes is also included.

  3. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR.

    PubMed

    Third, Katie A; Burnett, Natalie; Cord-Ruwisch, Ralf

    2003-09-20

    The potential for PHB (poly-beta-hydroxybutyrate) to serve as the electron donor for effective simultaneous nitrification and denitrification (SND) was investigated in a 2-L sequencing batch reactor (SBR) using a mixed culture and acetate as the organic substrate. During the feast period (i.e., acetate present), heterotrophic respiration activity was high and nitrification was prevented due to the inability of nitrifying bacteria to compete with heterotrophs for oxygen. Once acetate was depleted the oxidation rate of PHB was up to 6 times slower than that of soluble acetate and nitrification could proceed due to the decreased competition for oxygen. The slow nature of PHB degradation meant that it was an effective substrate for SND, as it was oxidised at a similar rate to ammonium and was therefore available for SND throughout the entire aerobic period. The percentage of nitrogen removed via SND increased at lower DO concentrations during the famine period, with up to 78% SND achieved at a DO concentration of 0.5 mg L(-1). However, the increased percentage of SND at a low DO concentration was compromised by a 2-times slower rate of nitrogen removal. A moderate DO concentration of 1 mg L(-1) was optimal for both SND efficiency (61%) and rate (4.4 mmol N x Cmol x(-1) x h(-1)). Electron flux analysis showed that the period of highest SND activity occurred during the first hour of the aerobic famine period, when the specific oxygen uptake rate (SOUR) was highest. It is postulated that a high SOUR due to NH(4) (+) and PHB oxidation decreases oxygen penetration into the floc, creating larger zones for anoxic denitrification. The accumulation of nitrate towards the end of the SND period showed that SND was finally limited by the rate of denitrification. As PHB degradation was found to follow first-order kinetics (df(PHB)/dt = -0.19 x f(PHB)), higher PHB concentrations would be expected to drive SND faster by increasing the availability rate of reducing power and reducing

  4. Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions

    SciTech Connect

    Beller, H R; Letain, T E; Chakicherla, A; Kane, S R; Legler, T C; Coleman, M A

    2006-04-22

    Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately ten percent of the genome) as differentially expressed using Robust Multi-array Average statistical analysis and a 2-fold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated respectively with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur-compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription, quantitative PCR analysis was used to validate these trends.

  5. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa

    PubMed Central

    Arai, Hiroyuki

    2011-01-01

    Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO), and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article. PMID:21833336

  6. p53 aerobics: the major tumor suppressor fuels your workout.

    PubMed

    Kruse, Jan-Philipp; Gu, Wei

    2006-07-01

    In addition to its role as the central regulator of the cellular stress response, p53 can regulate aerobic respiration via the novel transcriptional target SCO2, a critical regulator of the cytochrome c oxidase complex (Matoba et al., 2006). Loss of p53 results in decreased oxygen consumption and aerobic respiration and promotes a switch to glycolysis, thereby reducing endurance during physical exercise.

  7. Identifying functional zones of denitrification in heterogeneous aquifer systems by numerical simulations - a case study

    NASA Astrophysics Data System (ADS)

    Jang, E.; Kalbacher, T.; He, W.; Shao, H.; Schueth, C.; Kolditz, O.

    2014-12-01

    Nitrate contamination in shallow groundwater is still one of the common problems in many countries. Because of its high solubility and anionic nature, nitrate can easily leach through soil and persist in groundwater for decades. High nitrate concentration has been suggested as a major cause of accelerated eutrophication, methemoglobinemia and gastric cancer. There are several factors influencing the fate of nitrate in groundwater system, which is e.g. distribution of N- sources to soil and groundwater, distribution and amount of reactive substances maintaining denitrification, rate of nitrate degradation and its kinetics, and geological characteristics of the aquifer. Nitrate transport and redox transformation processes are closely linked to complex and spatially distributed physical and chemical interaction, therefore it is difficult to predict and quantify in the field and laboratory experiment. Models can play a key role in elucidation of nitrate reduction pathway in groundwater system and in the design and evaluation of field tests to investigate in situ remediation technologies as well. The goal of the current study is to predict groundwater vulnerability to nitrate, to identify functional zones of denitrification in heterogeneous aquifer systems and to describe the uncertainty of the predictions due to scale effects. For this aim, we developed a kinetic model using multi-component mass transport code OpenGeoSys coupling with IPhreeqc module of the geochemical solver PHREEQC. The developed model included sequential aerobic and nitrate-based respiration, multi-Monod kinetics, multi-species biogeochemical reactions, and geological characteristics of the groundwater aquifer. Moreover water-rock interaction such as secondary mineral precipitation was also included in this model. In this presentation, we focused on the general modelling approach and present the simulation results of nitrate transport simulation in a hypothetical aquifer systems based on data from

  8. Denitrification in anaerobic digesters: A review of recent studies

    SciTech Connect

    Akunna, J.C.

    1996-11-01

    Wastewaters from food processing industries (and domestic activities) are usually treated principally for organic carbon removal. But recent standards have generated interests in nitrogen and phosphorus removal. This has led to the addition of nitrification, denitrification and phosphorus removal units in the existing treatment plants, thus increasing the cost of treatment operations. The need to reduce treatment costs has led to research on ways to carry out many treatment processes in a single system. One of these systems consists of anaerobic and aerobic units in series with effluent recycle. In the anaerobic unit, anaerobic digestion and denitrification take place simultaneously producing methane and nitrogen gas while in the aerobic unit, ammonia oxidation to nitrate (nitrification) takes place. This process configuration appears to give lesser problems associated with operations such as the addition of raw wastewater or external organic carbon to ensure complete denitrification. In this paper a review of the results of recent studies are presented, with special emphasis on the factors affecting treatment efficiencies (i.e., denitrification, ammonia production from nitrate, and methane production efficiencies).

  9. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment.

    PubMed

    Wang, Xiaoxia; Wang, Shuying; Zhao, Ji; Dai, Xian; Peng, Yongzhen

    2016-11-01

    Due to the limited nutrient removal from low carbon/nitrogen (⩽4) wastewater, a process combined simultaneous nitrification-endogenous denitrification and phosphorus removal (SNDPR) with post-denitrification (PD) in a SBR was proposed for deep-level nutrient removal without external carbon addition. SNDPR driven by PAOs and GAOs reduced PO4(3-)-P (98.3%) and partial TN (59.0%) at low DO conditions (0.5±0.1mg/L), and post-dentrification achieved further NOX(-) (produced by SNDPR) removal (24.0%) anoxically by utilizing the residual intracellular polymers in GAOs. Combined control of anaerobic/aerobic/anoxic durations and low DO inhibition to aerobic GAOs and NOB conducted partial nitrification-endogenous denitrification (PNED) (66%), which saved 44.3% intracellular polymers to further reduce 64% TN in effluent. After 115-day operation, the average effluent PO4(3-)-P and TN concentrations were 0.4 and 3.9mg/L, respectively, with 92.1% of TN removal. Highly enriched PAOs (36%±2%), GAOs (22%±2%) and AOB (15%±3%) over NOB (3%±1%) facilitated P uptake, PNED and post-denitrification in the SNDPR-PD system.

  10. Emerging complexity in the denitrification regulatory network of Bradyrhizobium japonicum.

    PubMed

    Torres, María J; Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J; Delgado, María J

    2011-01-01

    Bradyrhizobium japonicum is a Gram-negative soil bacterium symbiotically associated with soya bean plants, which is also able to denitrify under free-living and symbiotic conditions. In B. japonicum, the napEDABC, nirK, norCBQD and nosRZDYFLX genes which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide respectively are required for denitrification. Similar to many other denitrifiers, expression of denitrification genes in B. japonicum requires both oxygen limitation and the presence of nitrate or a derived nitrogen oxide. In B. japonicum, a sophisticated regulatory network consisting of two linked regulatory cascades co-ordinates the expression of genes required for microaerobic respiration (the FixLJ/FixK2 cascade) and for nitrogen fixation (the RegSR/NifA cascade). The involvement of the FixLJ/FixK2 regulatory cascade in the microaerobic induction of the denitrification genes is well established. In addition, the FNR (fumarase and nitrate reduction regulator)/CRP(cAMP receptor protein)-type regulator NnrR expands the FixLJ/FixK2 regulatory cascade by an additional control level. A role for NifA is suggested in this process by recent experiments which have shown that it is required for full expression of denitrification genes in B. japonicum. The present review summarizes the current understanding of the regulatory network of denitrification in B. japonicum.

  11. Temperature dependence of denitrification in phototrophic river biofilms.

    PubMed

    Boulêtreau, S; Salvo, E; Lyautey, E; Mastrorillo, S; Garabetian, F

    2012-02-01

    Denitrification is an ecosystem service of nitrogen load regulation along the terrestrial-freshwater-marine continuum. The present study documents the short-term temperature sensitivity of denitrification enzyme activity in phototrophic river biofilms as a typical microbial assemblage of this continuum. Denitrification measurements were performed using the acetylene inhibition method at four incubation temperatures: 1.1, 12.1, 21.2 and 30.9°C. For this range of temperature, N(2)O production could be fitted to an exponential function of incubation temperature, yielding mean (±standard error) activation energy of 1.42 (±0.24) eV and Q(10) of 7.0 (±1.4). This first quantification of denitrification enzyme activity temperature dependence in phototrophic river biofilms compares with previous studies performed in soils and sediments. This demonstrates the high temperature dependence of denitrification as compared to other community-level metabolisms such as respiration or photosynthesis. This result suggests that global warming can unbalance natural community metabolisms in phototrophic river biofilms and affect their biogeochemical budget.

  12. Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading.

    PubMed

    He, Qiulai; Yuan, Zhe; Zhang, Jing; Zhang, Shilu; Zhang, Wei; Zou, Zhuocheng; Wang, Hongyu

    2017-04-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) has raised concerns about the environmental threats to the wastewater treatment systems. Shock loading of 10, 50 and 100 mg/L ZnO NPs was conducted to evaluate impacts on reactor performance, microbial activities and extracellular polymeric substances (EPS) in parent aerobic/oxic/anoxic (A/O/A) granular sequencing batch reactors (SBRs). The results showed that ZnO NPs caused inhibition to nitrogen transformations due to acute toxicity to nitrification and denitrification. However, phosphorus removal remained unaffected by the exposure to ZnO NPs. Besides, ZnO NPs significantly enhanced the oxygen respiration rate and caused acute toxicity to ammonia oxidizing rate (10.40-35.21%), phosphorus release rate (37.79-19.80%), aerobic phosphorus uptake rate (36.95-20.69%) and total phosphorus uptake rate (32.77-16.91%) of aerobic granules. ZnO NPs stimulated the secretion of EPS, especially the content of protein (PN), which could relieve the toxicity of ZnO NPs.

  13. The challenge of denitrification

    NASA Astrophysics Data System (ADS)

    Groffman, P. M.

    2015-12-01

    Understanding the nitrogen cycle at ecosystem, landscape, regional and global scales is a great current challenge in environmental science. Large amounts of "missing nitrogen" dominate nitrogen balances at all scales and have complicated efforts to address the effects of excess reactive nitrogen pollution on tropospheric ozone levels, coastal eutrophication and drinking water quality, and to determine "critical loads" for atmospheric nitrogen deposition. Uncertainty about nitrogen balances has led to increased interest in nitrogen gas fluxes as a fate of excess nitrogen. Denitrification, the conversion of reactive nitrogen oxides such as nitrate and nitrite into nitrogen gases, is a challenging process to study in terrestrial ecosystems. This process is difficult to quantify because of problematic measurement techniques, high spatial and temporal variability, and a lack of methods for scaling point measurements to larger areas. A particular challenge is that small areas (hotspots) and brief periods (hot moments) account for a high percentage of nitrogen gas flux activity. However, recent advances have yielded new methods capable of producing well constrained estimates of denitrification at the ecosystem scale, new ideas about the occurrence of hotspots and hot moments at ecosystem and landscape scales, and powerful new tools for extrapolation and validation. Progress on the challenges of denitrification suggest that we are poised for advances more generally across the genomes-to-ecosystems cascade.

  14. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM.

    PubMed

    Shi, Zhuang; Zhang, Yu; Zhou, Jiti; Chen, Mingxiang; Wang, Xiaojun

    2013-11-01

    The bacterium isolated from sea sludge Paracoccus versutus LYM was characterized with the ability of aerobic denitrification. Strain LYM performs perfect activity in aerobically converting over 95% NO3(-)-N (approximate 400mg L(-1)) to gaseous products via nitrite with maximum reduction rate 33 mg NO3(-)-N L(-1) h(-1). Besides characteristic of aerobic denitrification, strain LYM was confirmed in terms of the ability to be heterotrophic nitrification and aerobic denitrification (HNAD) with few accumulations of intermediates. After the nitrogen balance and enzyme assays, the putative nitrogen pathway of HNAD could be NH4(+) → NH2OH → NO2(-)→ NO3(-), then NO3(-) was denitrified to gaseous products via nitrite. N2 was sole denitrification product without any detection of N2O by gas chromatography. Strain LYM could also simultaneously remove ammonium and additional nitrate. Meanwhile, the accumulated nitrite had inhibitory effect on ammonium reduction rate.

  15. Impacts of carbon source addition on denitrification and phosphorus uptake in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2013-01-01

    In this study, simultaneous denitrification and phosphorus (P) removal were investigated in batch tests using nitrified mixed liquor and secondary wastewater influent from a full-scale treatment plant and different levels of acetate and propionate as supplemental carbon sources. Without supplemental carbon source, denitrification occurred at low rate and P release and P uptake was negatively affected (i.e., P removal of only 59.7%). When acetate and propionate were supplied, denitrification and P release occurred simultaneously under anoxic conditions. For acetate and propionate at a C/N stoichiometric ratio of 7.6, P release was negatively affected by denitrification. For acetate, the percent P removal and denitrification were very similar for C/N ratios of 22 (5X stoichiometric) and 59 (10X stoichiometric). For propionate, both percent P removal and denitrification deteriorated for C/N ratios of 22 (5X stoichiometric) and 45 (10X stoichiometric). It was observed that carbon source added in excess to stoichiometric ratio was consumed in the aerobic zone, but P was not taken up. This implies that PAO bacteria may utilize the excess carbon source in the aerobic zone rather than their polyhydroxyalkanoate (PHA) reserves, thereby promoting deterioration of the system.

  16. Nitrate removal in stream ecosystems measured by 15N addition experiments: 2. Denitrification

    SciTech Connect

    Mulholland, Patrick J; Hall, Robert; Sobota, Daniel; Dodds, Walter; Findlay, Stuart; Grimm, Nancy; Hamilton, Stephen; McDowell, William; O'Brien, Jon; Tank, Jennifer; Ashkenas, Linda; Cooper, Lee W; Dahm, Cliff; Gregory, Stanley; Johnson, Sherri; Meyer, Judy; Peterson, Bruce; Poole, Geoff; Valett, H. Maurice; Webster, Jackson; Arango, Clay; Beaulieu, Jake; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Helton, Ashley; Johnson, Laura; Niederlehner, Bobbie; Potter, Jody; Sheibley, Rich; Thomas, Suzanne

    2009-01-01

    We measured denitrification rates using a field {sup 15}N-NO{sub 3}{sup -} tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (S{sub Wden}) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N{sub 2} production rates far exceeded N{sub 2}O production rates in all streams. The fraction of total NO{sub 3}{sup -} removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH{sub 4}{sup +} concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling S{sub Wden} were specific discharge (discharge/width) and NO{sub 3}{sup -} concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (U{sub den}) and NO{sub 3}{sup -} concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although U{sub den} increased with increasing NO{sub 3}{sup -} concentration, the efficiency of NO{sub 3}{sup -} removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO{sub 3}{sup -} load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO{sub 3}{sup -} concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO{sub 3}{sup -} concentration.

  17. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    USGS Publications Warehouse

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  18. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD).

    PubMed

    Ji, Jiantao; Peng, Yongzhen; Wang, Bo; Wang, Shuying

    2017-01-01

    This study proposed a novel strategy for achievement of partial denitrification driven by endogenous carbon sources in an anaerobic/anoxic/aerobic activated sludge system. Results showed that in the steady-stage, the nitrate-to-nitrite transformation ratio (NTR) was kept at around 87% without nitrate in the effluent. During the anaerobic period, exogenous carbon sources was completely taken up, accompanied by the consumption of glycogen and production of polyhydroxyalkanoates (PHAs). During the anoxic period, nitrate was reduced to nitrite by using PHAs as carbon sources, followed by the replenishment of glycogen. Thus, the phenotype of denitrifying GAOs was clearly observed and endogenous partial denitrification (EPD) occurred. Furthermore, results showed the nitrate reduction was prior to the nitrite reduction in the presence of nitrate, which led to the high nitrite accumulation.

  19. Simultaneous denitrification and phosphorus removal by Agrobacterium sp. LAD9 under varying oxygen concentration.

    PubMed

    Ma, Tao; Chen, Qian; Gui, Mengyao; Li, Can; Ni, Jinren

    2016-04-01

    Although efficient aerobic denitrification has received increasing attention, few studies have been made on simultaneous denitrification and phosphorus removal (SDPR) under aerobic condition. In this study, SDPR by an efficient aerobic denitrifier, Agrobacterium sp. LAD9, was firstly demonstrated. High nitrate and phosphorus removal rates of 7.50 and 1.02 mg L(-1) h(-1) were achieved in wide range of O2 concentration from 5.92 to 20.02 mg L(-1). The N2O production would be inhibited as O2 concentration exceeded 11.06 mg L(-1), while the phosphorus removal efficiency would be generally improved with increasing O2 concentration. (15)N mass spectrometry revealed that nitrogen removal accorded with the typical aerobic denitrification pathway, while (31)P nuclear magnetic resonance spectroscopy ((31)P NMR) indicated the fate of phosphorus to cells, extracellular polymeric substances (EPS), and polyphosphate (poly-P) of the denitrifier. EPS acted as a reservoir of phosphorus and the transformation of poly-P was dynamic and depended on initial orthophosphate (ortho-P) content. The aerobic SDPR would greatly simplify the conventional wastewater treatment processes which required separated considerations of nitrogen and phosphorus removal.

  20. Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus

    PubMed Central

    Borrero-de Acuña, José Manuel; Rohde, Manfred; Wissing, Josef; Jänsch, Lothar; Schobert, Max; Molinari, Gabriella; Timmis, Kenneth N.

    2016-01-01

    . The molecular basis for the interaction of these complexes is poorly understood. We employed membrane interactomics and electron microscopy to determine the protein-protein interactions involved. The well-investigated enzyme complexes of denitrification of the pathogenic bacterium Pseudomonas aeruginosa served as a model. Denitrification is one essential step of the universal N cycle and provides the bacterium with an effective alternative to oxygen respiration. This process allows the bacterium to form biofilms, which create low-oxygen habitats and which are a key in the infection mechanism. Our results provide new insights into the molecular basis of respiration, as well as opening a new window into the infection strategies of this pathogen. PMID:26903416

  1. AEROBIC DENITRIFICATION: IMPLICATIONS FOR THE MOM RIVER BASIN

    EPA Science Inventory

    Each year about 1.6 million metric tons of nitrogen, mostly from agriculture, is discharged from the lower Mississippi/Atchafalaya River Basin into the Gulf of Mexico, and each spring this excess nitrogen fuels the formation of a huge hypoxic zone in the Gulf. In the Mississippi...

  2. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    USGS Publications Warehouse

    Tesoriero, A.J.; Liebscher, H.; Cox, S.E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from < 0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive

  3. Denitrification associated with stream periphyton: Chamber estimates from undisrupted communities

    USGS Publications Warehouse

    Duff, J.H.; Triska, F.J.; Oremland, R.S.

    1984-01-01

    Undisrupted periphyton communities from a N-rich (NO3- = 63 ??mol L-1) and pristine (NO3- = 2.9 ??mol L-1) stream were assayed for denitrifying activity (acetylene-blockage technique) in 40-L chambers incubated at in situ temperature and nutrient concentrations. Nitrous oxide formation associated with periphyton from the N-rich stream was immediate and linear (52.1 ??mol N2O m-2 h-1) in the dark, anaerobic chamber (50 kPa C2H2). In the corresponding light, aerobic chamber (50 kPa C2H2), N2O production was inhibited by 82% (9.3 ??mol N2O m-2 h-1). Nitrous oxide formation was not associated with periphyton from the pristine stream incubated in situ, either with or without NO3- amendment. Denitrification estimates made with undisrupted periphyton communities at in situ temperature and nutrient concentrations (40-L chambers) were less variable than estimates made with periphyton 'scrapings' in small flasks (room temperature). The calculated diel periphyton-associated denitrification rate based on a 14-h light-10-h dark day was 651 ??mol N2O m-2 d-1. The data suggest denitrification within periphyton mats may contribute toward removal of NO3- from N-rich fluvial environments.

  4. Denitrification Walls: Successes and Limitations.

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; Barkle, G. F.; Burgess, C. P.; Vojvodic-Vukovic, M.

    2001-05-01

    There is a need to develop practical and inexpensive approaches for removing nitrate from ground water because of its potential adverse effect on receiving aquatic environments. Denitrification walls may be one such approach for removing nitrate from shallow groundwater. In January 1996, we constructed a denitrification wall by digging a trench that intercepted groundwater and mixed the excavated soil with sawdust before the mix was returned to the trench. Sawdust provides a source of energy for denitrifying bacteria, which convert nitrate in groundwater entering the wall to nitrogen gas. For the past 5 years, nitrate concentrations in groundwater entering this wall have ranged from 5 to 16 mg N L-1 but have always been reduced to less than 2 mg N L-1 in the wall indicating nearly complete removal of nitrate from the groundwater. We showed that this nitrate removal could be accounted for by denitrification rates which ranged from 0.6 to 18.1 mg N m-3 h-1. More recently we have encountered problems with denitrification walls constructed into coarsely textured soils (such as sands) where the addition of sawdust decreased hydraulic conductivity. As a consequence groundwater flowed under rather than through the wall. We are attempting to circumvent this problem using coarser grades of carbon amendments. Particulate carbon (such as sawdust) is likely to support lower rates of nitrate removal, but for longer, than soluble carbon sources because solid carbon sources degrade more slowly.

  5. The enzymes associated with denitrification

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  6. Sediment, water column, and open-channel denitrification in rivers measured using membrane-inlet mass spectrometry

    NASA Astrophysics Data System (ADS)

    Reisinger, Alexander J.; Tank, Jennifer L.; Hoellein, Timothy J.; Hall, Robert O.

    2016-05-01

    Riverine biogeochemical processes are understudied relative to headwaters, and reach-scale processes in rivers reflect both the water column and sediment. Denitrification in streams is difficult to measure, and is often assumed to occur only in sediment, but the water column is potentially important in rivers. Dissolved nitrogen (N) gas flux (as dinitrogen (N2)) and open-channel N2 exchange methods avoid many of the artificial conditions and expenses of common denitrification methods like acetylene block and 15N-tracer techniques. We used membrane-inlet mass spectrometry and microcosm incubations to quantify net N2 and oxygen flux from the sediment and water column of five Midwestern rivers spanning a land use gradient. Sediment and water column denitrification ranged from below detection to 1.8 mg N m-2 h-1 and from below detection to 4.9 mg N m-2 h-1, respectively. Water column activity was variable across rivers, accounting for 0-85% of combined microcosm denitrification and 39-85% of combined microcosm respiration. Finally, we estimated reach-scale denitrification at one Midwestern river using a diel, open-channel N2 exchange approach based on reach-scale metabolism methods, providing an integrative estimate of riverine denitrification. Reach-scale denitrification was 8.8 mg N m-2 h-1 (95% credible interval: 7.8-9.7 mg N m-2 h-1), higher than combined sediment and water column microcosm estimates from the same river (4.3 mg N m-2 h-1) and other estimates of reach-scale denitrification from streams. Our denitrification estimates, which span habitats and spatial scales, suggest that rivers can remove N via denitrification at equivalent or higher rates than headwater streams.

  7. Denitrification and availability of carbon and nitrogen in a well-drained pasture soil amended with particulate organic carbon.

    PubMed

    Stevenson, Bryan A; Schipper, Louis A; McGill, Alexandra; Clark, Dave

    2011-01-01

    A well-drained soil in N-fertilized dairy pasture was amended with particulate organic carbon (POC), either sawdust or coarse woody mulch, and sampled every 4 wk for a year to test the hypothesis that the addition of POC would increase denitrification activity by increasing the number of microsites where denitrification occurred. Overall mean denitrifying enzyme activity (DEA), on a gravimetric basis, was 100% greater for the woody mulch treatment and 50% greater for the sawdust treatment compared with controls, indicating the denitrifying potential of the soil was enhanced. Despite differences in DEA, no difference in denitrification rate, as measured by the acetylene block technique, was detected among treatments, with an average annual N loss of ∼22 kg N ha yr Soil water content overall was driving denitrification in this well-drained soil as regression of the natural log of volumetric soil water content (VWC) against denitrification rate was highly significant ( = 0.74, < 0.001). Addition of the amendments, however, had significant effects on the availability of both C and N. An additional 20 to 40 kg N ha was stored in POC-amended treatments as a result of increases in the microbial biomass. Basal respiration, as a measure of available C, was 400% greater than controls in the sawdust treatment and 250% greater than controls in the mulch. Net N mineralization, however, was significantly lower in the sawdust treatment, resulting in significantly lower nitrate N levels than in the control. We attribute the lack of measured response in denitrification rate to the high temporal variability in denitrification and suggest that diffusion of nitrate may ultimately have limited denitrification in the amended treatments. Our data indicate that manipulation of denitrification by addition of POC may be possible, particularly when nitrate levels are high, but quantifying differences in the rate of denitrification is difficult because of the temporal nature of the process

  8. Simultaneous di-oxygenation and denitrification in an internal circulation baffled bioreactor.

    PubMed

    Jiang, Ling; Tang, Yingxia; Sun, Weihua; Yi, Na; Zhang, Yongming; Shi, Hanchang; Rittmann, Bruce E

    2017-03-04

    An internal circulation baffled bioreactor was employed to realize simultaneous di-oxygenation of phthalic acid (PA) and denitrification of nitrate, which require aerobic and anoxic conditions, respectively. Adding a small concentration of succinate as an exogenous electron donor stimulated PA di-oxygenation, which produced readily oxidizable downstream products whose oxidation also enhanced denitrification of nitrate; succinate addition also stimulated denitrification. Depending on the concentration of PA, addition of 0.17 mM succinate increased the PA removal rate by 25 and 42%, while the corresponding nitrate removal rate was increased by 73 and 51%. UV/H2O2 advanced oxidation of PA had the same effects as adding succinate, since succinate is generated by UV/H2O2; this acceleration effect was approximately equivalent to adding 0.17 mM succinate.

  9. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  10. Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria.

    PubMed

    Yang, Anqi; Zhang, Guangming; Yang, Guang; Wang, Hangyao; Meng, Fan; Wang, Hongchen; Peng, Meng

    2017-02-11

    Huge amount of aging biogas slurry is in urgent need to be treated properly. However, due to high NH3-N concentration and low C/N ratio, this aging biogas slurry is refractory for traditional methods. Its denitrification has become a big challenge. In this paper, photosynthetic bacteria (PSB) were employed to handle this problem. The results showed denitrification of aging biogas slurry by PSB treatment was promising. The highest removal efficiency of NH3-N reached 99.75%, much higher than all other treatments. The removal of NH3-N followed pseudo zero order reaction under dark-aerobic condition. The better inoculation rate for NH3-N removal was 30%; and aerobic condition was more beneficial for NH3-N removal than anaerobic condition because of different metabolic pathways.

  11. Denitrification in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Salawitch, R. J.; Gobbi, G. P.; Wofsy, S. C.; Mcelroy, M. B.

    1989-01-01

    Rapid loss of ozone over Antarctica in spring requires that the abundance of gaseous nitric acid be very low. Precipitation of particulate nitric acid has been assumed to occur in association with large ice crystals, requiring significant removal of H2O and temperatures well below the frost point. However, stratospheric clouds exhibit a bimodal size distribution in the Antarctic atmosphere, with most of the nitrate concentrated in particles with radii of 1 micron or greater. It is argued here that the bimodal size distribution sets the stage for efficient denitrification, with nitrate particles either falling on their own or serving as nuclei for the condensation of ice. Denitrification can therefore occur without significant dehydration, and it is unnecessary for temperatures to drop significantly below the frost point.

  12. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8

    PubMed Central

    Kits, K. Dimitri; Campbell, Dustin J.; Rosana, Albert R.; Stein, Lisa Y.

    2015-01-01

    Aerobic methane-oxidizing bacteria (MOB) are a diverse group of microorganisms that are ubiquitous in natural environments. Along with anaerobic MOB and archaea, aerobic methanotrophs are critical for attenuating emission of methane to the atmosphere. Clearly, nitrogen availability in the form of ammonium and nitrite have strong effects on methanotrophic activity and their natural community structures. Previous findings show that nitrite amendment inhibits the activity of some cultivated methanotrophs; however, the physiological pathways that allow some strains to transform nitrite, expression of gene inventories, as well as the electron sources that support this activity remain largely uncharacterized. Here we show that Methylomicrobium album strain BG8 utilizes methane, methanol, formaldehyde, formate, ethane, ethanol, and ammonia to support denitrification activity under hypoxia only in the presence of nitrite. We also demonstrate that transcript abundance of putative denitrification genes, nirS and one of two norB genes, increased in response to nitrite. Furthermore, we found that transcript abundance of pxmA, encoding the alpha subunit of a putative copper-containing monooxygenase, increased in response to both nitrite and hypoxia. Our results suggest that expression of denitrification genes, found widely within genomes of aerobic methanotrophs, allow the coupling of substrate oxidation to the reduction of nitrogen oxide terminal electron acceptors under oxygen limitation. The present study expands current knowledge of the metabolic flexibility of methanotrophs by revealing that a diverse array of electron donors support nitrite reduction to nitrous oxide under hypoxia. PMID:26500622

  13. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    PubMed

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  14. Simultaneous nitrification and denitrification by diverse Diaphorobacter sp.

    PubMed

    Khardenavis, Anshuman A; Kapley, Atya; Purohit, Hemant J

    2007-11-01

    Eight bacterial isolates closely related to Diaphorobacter sp. were isolated from activated biomass surviving on wastewater laden with dyes and nitro-substituted chemicals and were identified by 16S rDNA sequence analysis. The isolates showed sequence similarity of 99-100% to other Diaphorobacter strains such as ZY 2006b, F2, NA5, PCA039, D. nitroreducens KSP4, and KSP3 and 98-99% sequence homology to D. nitroreducens NA10B (type strain JCM 11421). Neighbor-joining tree revealed that all the eight strains formed tight cluster together and also showed close clustering with other Diaphorobacter strains. Isolates demonstrated the ability to perform simultaneous nitrification and denitrification under aerobic conditions. Strains HPC 805, 815, 821, and 856 gave highest chemical oxygen demand removal (85-93%) and ammonia removal (92-96%), which correlated well with higher growth rates of the cultures. Simultaneously, complete removal of nitrate supplied in the medium in presence of ammonium and acetate (electron donor) was observed in addition to aerobic nitrite release from ammonium. Thus, the above strains showed ability to perform partial nitrification followed by further aerobic removal of common intermediate nitrite, which indicated their potential application in treatment systems for treatment of high-nitrogen-containing wastewaters.

  15. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  16. Topographic effects on denitrification in drained agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification is affected by soil moisture, while soil moisture can be affected by topography. Therefore, denitrification can be spatially correlated to topographic gradients. Three prior converted fields on the Delmarva Peninsula were sampled spatially for denitrification enzyme activity. The up...

  17. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  18. Respirator Fact Sheet

    MedlinePlus

    ... it last? That depends on how much filtering capacity the respirator has and the amount of hazard ... and it will vary by each respirator model's capacities. That's why your emergency plan must include some ...

  19. Genome Sequences for Six Rhodanobacter Strains, Isolated from Soils and the Terrestrial Subsurface, with Variable Denitrification Capabilities

    PubMed Central

    Green, Stefan J.; Rishishwar, Lavanya; Prakash, Om; Katz, Lee S.; Mariño-Ramírez, Leonardo; Jordan, I. King; Munk, Christine; Ivanova, Natalia; Mikhailova, Natalia; Watson, David B.; Brown, Steven D.; Palumbo, Anthony V.; Brooks, Scott C.

    2012-01-01

    We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface environments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role of bacteria from the genus Rhodanobacter should be reevaluated. PMID:22843592

  20. Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in Arctic fjord sediments.

    PubMed

    Canion, Andy; Overholt, Will A; Kostka, Joel E; Huettel, Markus; Lavik, Gaute; Kuypers, Marcel M M

    2014-10-01

    The temperature dependency of denitrification and anaerobic ammonium oxidation (anammox) rates from Arctic fjord sediments was investigated in a temperature gradient block incubator for temperatures ranging from -1 to 40°C. Community structure in intact sediments and slurry incubations was determined using Illumina SSU rRNA gene sequencing. The optimal temperature (Topt ) for denitrification was 25-27°C, whereas anammox rates were optimal at 12-17°C. Both denitrification and anammox exhibited temperature responses consistent with a psychrophilic community, but anammox bacteria may be more specialized for psychrophilic activity. Long-term (1-2 months) warming experiments indicated that temperature increases of 5-10°C above in situ had little effect on the microbial community structure or the temperature response of denitrification and anammox. Increases of 25°C shifted denitrification temperature responses to mesophilic with concurrent community shifts, and anammox activity was eliminated above 25°C. Additions of low molecular weight organic substrates (acetate and lactate) caused increases in denitrification rates, corroborating the hypothesis that the supply of organic substrates is a more dominant control of respiration rates than low temperature. These results suggest that climate-related changes in sinking particulate flux will likely alter rates of N removal more rapidly than warming.

  1. Comparison of combined and separated biological aerated filter (BAF) performance for pre-denitrification/nitrification of municipal wastewater.

    PubMed

    Rother, E; Cornel, P; Ante, A; Kleinert, P; Brambach, R

    2002-01-01

    The performance of two systems of semi-industrial up-flow biological aerated filters (BAF) with pre-denitrification followed by nitrification was studied and compared under various operating and loading conditions. The first system consisted of two separate reactors for the denitrification and the nitrification step, whereas in the second system the aerobic nitrification zone was packed on top of the anoxic denitrification zone in one reactor. The second system potentially offers substantial savings in investment costs and space requirements for a large scale treatment plant. Regarding the elimination of carbonaceous pollution and denitrification the systems did not show significant differences. However, nitrification in the combined system suffered from the mixing of different biocenosis by daily backwashing and was reduced to 50-70% of the separated system's performance. Factors such as oxygen concentration, raw water composition and loading rates affected both systems' nitrification rates in similar ways. Since it is impossible to optimise the nitrification and denitrification processes separately, the combined system should only be considered for large scale applications if space is very scarce and if a stable raw water composition can be expected. If strict limit values for nitrate have to be met in the effluent, a combination of pre- and post-denitrification is advantageous and advisable.

  2. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.

    PubMed

    Torregrosa-Crespo, J; Martínez-Espinosa, R M; Esclapez, J; Bautista, V; Pire, C; Camacho, M; Richardson, D J; Bonete, M J

    2016-01-01

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.

  3. Tracking composition of microbial communities for simultaneous nitrification and denitrification in polyurethane foam.

    PubMed

    Chen, Yuan; Wang, Li; Ma, Fang; Yang, Ji-xian; Qiu, Shan

    2014-01-01

    The process of simultaneous nitrification and denitrification (SND) of immobilized microorganisms in polyurethane form is discussed. The effect of different positions within the polyurethane carrier on microbial community response for the SND process is investigated by a combination of denaturing gradient gel electrophoresis profiles of the 16S rRNA gene V3 region and scanning electron microscopy. Results show that polyurethane, which consists of a unique porous structure, is an ideal platform for biofilm stratification of aerobe, anaerobe and facultative microorganisms in regard to the SND process. The community structure diversity response to different positions was distinct. The distributions of various functional microbes, detected from the surface aerobic stratification to the interior anaerobic stratification of polyurethane, were mainly nitrifying and denitrifying bacteria. Meanwhile aerobic denitrifying bacteria such as Paracoccus sp., Agrobacterium rubi and Ochrobactrum sp. were also adhered to the interior and surface of polyurethane. The SND process occurring on polyurethane foam was carried out by two independent processes: nitrogen removal and aerobic denitrification.

  4. Denitrification in Agricultural Soils: Integrated control and Modelling at various scales (DASIM)

    NASA Astrophysics Data System (ADS)

    Müller, Christoph; Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole; Müller, Carsten

    2016-04-01

    The new research unit DASIM brings together the expertise of 11 working groups to study the process of denitrification at unprecedented spatial and temporal resolution. Based on state-of-the art analytical techniques our aim is to develop improved denitrification models ranging from the microscale to the field/plot scale. Denitrification, the process of nitrate reduction allowing microbes to sustain respiration under anaerobic conditions, is the key process returning reactive nitrogen as N2to the atmosphere. Actively denitrifying communities in soil show distinct regulatory phenotypes (DRP) with characteristic controls on the single reaction steps and end-products. It is unresolved whether DRPs are anchored in the taxonomic composition of denitrifier communities and how environmental conditions shape them. Despite being intensively studied for more than 100 years, denitrification rates and emissions of its gaseous products can still not be satisfactorily predicted. While the impact of single environmental parameters is well understood, the complexity of the process itself with its intricate cellular regulation in response to highly variable factors in the soil matrix prevents robust prediction of gaseous emissions. Key parameters in soil are pO2, organic matter content and quality, pH and the microbial community structure, which in turn are affected by the soil structure, chemistry and soil-plant interactions. In the DASIM research unit, we aim at the quantitative prediction of denitrification rates as a function of microscale soil structure, organic matter quality, DRPs and atmospheric boundary conditions via a combination of state-of-the-art experimental and analytical tools (X-ray μCT, 15N tracing, NanoSIMS, microsensors, advanced flux detection, NMR spectroscopy, and molecular methods including next generation sequencing of functional gene transcripts). We actively seek collaboration with researchers working in the field of denitrification.

  5. Biodegradability and denitrification potential of settleable chemical oxygen demand in domestic wastewater.

    PubMed

    Tas, Didem Okutman; Karahan, Ozlem; Insel, Güçlü; Ovez, Süleyman; Orhon, Derin; Spanjers, Henri

    2009-07-01

    The effect of settling on mass balance and biodegradation characteristics of domestic wastewater and on denitrification potential was studied primarily using model calibration and evaluation of oxygen uptake rate profiles. Raw domestic wastewater was settled for a period of 30 minutes and a period of 2 hours to assess the effect of primary settling on wastewater characterization and composition. Mass balances in the system were made to evaluate the effect of primary settling on major parameters. Primary settling of the selected raw wastewater for 2 hours resulted in the removal of 32% chemical oxygen demand (COD), 9% total Kjeldahl nitrogen, 9% total phosphorus, and 47% total suspended solids. Respirometric analysis identified COD removed by settling as a new COD fraction, namely settleable slowly biodegradable COD (X(ss)), characterized by a hydrolysis rate of 1.0 day(-1) and a hydrolysis half-saturation coefficient of 0.08. A model simulation to test the fate and availability of suspended (X(s)) and settleable (X(ss)) COD fractions as carbon sources for denitrification showed that both particulate COD components were effectively removed aerobically at sludge ages higher than 1.5 to 2.0 days. Under anoxic conditions, the biodegradation of both COD fractions was reduced, especially below an anoxic sludge retention time of 3.0 days. Consequently, modeling results revealed that the settleable COD removed by primary settling could represent up to approximately 40% of the total denitrification potential of the system, depending on the specific configuration selected for the nitrogen removal process. This way, the results showed the significant effect of primary settling on denitrification, indicating that the settleable COD fraction could contribute an additional carbon source in systems where the denitrification potential associated with the influent becomes rate-limiting for the denitrification efficiency.

  6. The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum.

    PubMed

    Bedmar, E J; Robles, E F; Delgado, M J

    2005-02-01

    Denitrification is an alternative form of respiration in which bacteria sequentially reduce nitrate or nitrite to nitrogen gas by the intermediates nitric oxide and nitrous oxide when oxygen concentrations are limiting. In Bradyrhizobium japonicum, the N(2)-fixing microsymbiont of soya beans, denitrification depends on the napEDABC, nirK, norCBQD, and nosRZDFYLX gene clusters encoding nitrate-, nitrite-, nitric oxide- and nitrous oxide-reductase respectively. Mutational analysis of the B. japonicum nap genes has demonstrated that the periplasmic nitrate reductase is the only enzyme responsible for nitrate respiration in this bacterium. Regulatory studies using transcriptional lacZ fusions to the nirK, norCBQD and nosRZDFYLX promoter region indicated that microaerobic induction of these promoters is dependent on the fixLJ and fixK(2) genes whose products form the FixLJ-FixK(2) regulatory cascade. Besides FixK(2), another protein, nitrite and nitric oxide respiratory regulator, has been shown to be required for N-oxide regulation of the B. japonicum nirK and norCBQD genes. Thus nitrite and nitric oxide respiratory regulator adds to the FixLJ-FixK(2) cascade an additional control level which integrates the N-oxide signal that is critical for maximal induction of the B. japonicum denitrification genes. However, the identity of the signalling molecule and the sensing mechanism remains unknown.

  7. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions.

  8. Stream denitrification across biomes and its response to anthropogenic nitrate loading

    USGS Publications Warehouse

    Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Findlay, S.E.G.; Gregory, S.V.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Meyer, J.L.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Johnson, L.T.; Niederlehner, B.R.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2008-01-01

    Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks. ??2008 Nature Publishing Group.

  9. Stream denitrification across biomes and its response to anthropogenic nitrate loading.

    PubMed

    Mulholland, Patrick J; Helton, Ashley M; Poole, Geoffrey C; Hall, Robert O; Hamilton, Stephen K; Peterson, Bruce J; Tank, Jennifer L; Ashkenas, Linda R; Cooper, Lee W; Dahm, Clifford N; Dodds, Walter K; Findlay, Stuart E G; Gregory, Stanley V; Grimm, Nancy B; Johnson, Sherri L; McDowell, William H; Meyer, Judy L; Valett, H Maurice; Webster, Jackson R; Arango, Clay P; Beaulieu, Jake J; Bernot, Melody J; Burgin, Amy J; Crenshaw, Chelsea L; Johnson, Laura T; Niederlehner, B R; O'Brien, Jonathan M; Potter, Jody D; Sheibley, Richard W; Sobota, Daniel J; Thomas, Suzanne M

    2008-03-13

    Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.

  10. Natural Denitrification in the Saturated Zone: A Review

    NASA Astrophysics Data System (ADS)

    Korom, Scott F.

    1992-06-01

    Denitrification is increasingly recognized for its ability to eliminate or reduce nitrate concentrations in groundwater. With this awareness comes a desire to predict the rate and extent of denitrification in aquifers. The limiting factor in making predictive models, however, is our limited knowledge of the physical characteristics of this process. This review synthesizes the published literature on natural aquifer denitrification. A background section discusses denitrification requirements and dissimilatory nitrate reduction to ammonium, which occurs in environments similar to those where denitrification occurs, and gives a historical perspective on denitrification. Other sections discuss denitrification with organic carbon serving as the electron donor (heterotrophic denitrification) and with reduced inorganic compounds serving as the electron donor (autotrophic denitrification). The section on heterotrophic denitrification is structured around two tables that summarize natural aquifer denitrification rates reported by laboratory studies and natural aquifer denitrification rates reported by field studies. The section on autotrophic denitrification discusses denitrification with reduced iron and reduced sulfur. Thus far, most studies only consider a single electron donor or donor type, whether heterotrophic or autotrophic. This review demonstrates, however, that multiple electron donors may be present in a given aquifer. Future research efforts are recommended to determine the factors affecting the availability of electron donors and their denitrification rates. Additional research is also suggested on how dissolved oxygen affects denitrification rates and on the factors influencing the partitioning of nitrate reduction products to nitrous oxide, a potential contributor to the destruction of the ozone layer, and to ammonium.

  11. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. [Pseudomonas fluorescens; Serratia marcescens; Alcaligenes faecalis

    SciTech Connect

    Anderson, I.C.; Levine, J.S.

    1986-05-01

    The authors investigated the effect of the partial pressure of oxygen (pO/sub 2/) on the production of NO and N/sub 2/O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO/sub 2/ in the range tested (0.5 to 10%), whereas N/sub 2/O production was inversely proportional to pO/sub 2/. Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N/sub 2/O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of No and N/sub 2/O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N/sub 2/O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sprayed with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N/sub 2/O is produced only when there is sufficient soil moisture to provide the anaerobic microsites necessary for denitrification by either denitrifiers or nitrifiers.

  12. Denitrification in marine shales in northeastern Colorado

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Bruce, B.W.

    1999-01-01

    Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is <1000 m thick. Ground water in the aquifer is contaminated with NO3/-, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3/- and to measure denitrification rates in the shale. Measured values of NO3/-, N2, NH4/+, ??15[NO3/-], ??15N[N2], and ??15N[NH4/+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3/-. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3/- transport (possibly by diffusion) into the shale. The apparent in situ first-order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04-0.4 yr-1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr-1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3/- input to the alluvial aquifer. However, the relatively large potential first-order rate constant for denitrification in the shale indicated that the percentage of NO3/- uptake by the shale could be considerably larger in areas where NO3/- is transported more rapidly into the shale by advection.

  13. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  14. Oscillations of nitric oxide concentration in the perturbed denitrification pathway of Paracoccus denitrificans.

    PubMed Central

    Kucera, I

    1992-01-01

    The metabolism of nitric oxide in Paracoccus denitrificans has been studied using a Clark-type electrode. The uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) and the SH reagent N-ethylmaleimide, both of which released nitric oxide from cells respiring nitrite, were found to be efficient inhibitors of nitric oxide reductase activity. Control experiments with another uncoupler, pentachlorophenol, showed that the inhibitory effect of CCCP was not the result of a decrease in membrane potential. The denitrification pathway in cells with partly inhibited nitric oxide reductase, or in a reconstituted system containing purified nitric reductase and membrane vesicles, exhibited marked sustained oscillations of nitric oxide concentration. The occurrence of the oscillations was strictly dependent on the initial concentration of nitrite. The observed oscillatory kinetics is considered to reflect two regulatory signals destabilizing the denitrification pathway, namely the inhibition of nitric oxide reductase by nitric oxide and/or by nitrite. PMID:1325776

  15. Nitrification and denitrification in high-strength ammonium by Alcaligenes faecalis.

    PubMed

    Joo, Hung-Soo; Hirai, Mitsuyo; Shoda, Makoto

    2005-06-01

    Alcaligenes faecalis sp. No. 4, that has the ability of heterotrophic nitrification and aerobic denitrification in high-strength ammonium at about 1200 mg-N/l, converted about one-half of removed NH4+-N to intracellular nitrogen and nitrified only 3% of the removed NH4+. From the nitrogen balance, 40-50% of removed NH4+-N was estimated to be denitrified. Production of N2 was confirmed by GC-MS and 90% of denitrified products was N2. The maximum ammonium removal rate, 29 mg-N/l h and its denitrification rate in aerated batch experiments, were 5-40 times higher than those of other bacteria with the same ability.

  16. Hydrogenotrophic denitrification of highly saline aquaculture wastewater using hollow fiber membrane bioreactor.

    PubMed

    Visvanathan, C; Phong, D D; Jegatheesan, V

    2008-06-01

    A hydrogenotrophic denitrification system with a hollow fiber membrane was evaluated for treating and recycling synthetic aquaculture wastewater. Hollow fibers ensured bubble-less diffusion of hydrogen and subsequent removal of nitrate from the first bioreactor. The second aerobic reactor was used for biomass filtration and removal of organic matter. Nitrate and organic matter expressed as dissolved organic carbon were 50 mgl(-1) and 20 mgl(-1), respectively, in the inlet. Acclimatization of hydrogenotrophic bacteria to 10, 20 and 30 ppt of salinity was also observed. Optimum hydraulic retention time and denitrification rate corresponding to these salinities were 3, 5 and 6 h and 366.8, 226.2 and 193.2 gm(-3) day(-1), respectively.

  17. Biological denitrification of high concentration nitrate waste

    DOEpatents

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  18. Meiofauna increases bacterial denitrification in marine sediments

    PubMed Central

    Bonaglia, S.; Nascimento, F. J. A; Bartoli, M.; Klawonn, I.; Brüchert, V.

    2014-01-01

    Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1 mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems. PMID:25318852

  19. Distributed Denitrification in a Northeastern Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Anderson, T. R.; Groffman, P. M.; Kaushal, S. S.; Walter, M. T.

    2009-05-01

    Denitrification may be an important sink of anthropogenic nitrogen (N) in eastern US watersheds. Denitrification occurs primarily under anaerobic conditions by heterotrophic microbes, and is therefore expected to be vigorous in wet soils containing high amounts of organic carbon. Actual rates of denitrification, however, have been difficult to quantify, and remain one of the critical unresolved N processes at the landscape scale. We measured denitrification rates in situ along hydrologic flow paths and across gradients of hydroperiodicities, i.e., frequencies and durations of saturated conditions, at Cornell University's Teaching and Research Center in Harford, NY (an active dairy farm). Denitrification rates were measured monthly using the 15N push-pull method from 14 mini-piezometers arrayed along a gradient of hydroperiodicity as indicated by a soil topographic index (STI). Measured rates of denitrification were spatially variable across sites and ranged from undetectable to over 200 µg N/kg soil/day with a mean of 55.9 ± 16.4 µg N/kg soil/day. Mean rates of denitrification increased with STI, which ranged from 10 to 23. This relationship was used to estimate distributed denitrification rates across the landscape and resolve a missing piece of the N budget for the farm. We found that 16% of the farm fell into areas of STI greater than 10. Using the distributed denitrification rates, this area accounts for 15-27% of the missing N balance for the farm (9.7-17.8 Mg N/yr). Improved understanding of the distribution and magnitudes of denitrification in agricultural landscapes has good potential to facilitate new, novel, and better management practices for controlling nitrogen loading to streams and rivers. Indeed, the very areas that appear to have a propensity to harbor denitrification, i.e., areas prone to be wet, are often artificially drained as part of standard agricultural practices which effectively increase N loading to rivers and contributes to downstream

  20. Distributed denitrification in a northeastern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Anderson, T. R.; Groffman, P. M.; Walter, M. T.

    2011-12-01

    Denitrification may be an important sink of anthropogenic nitrogen (N) in eastern US watersheds. Denitrification occurs primarily under anaerobic conditions by heterotrophic microbes, and is therefore expected to be vigorous in wet soils containing large amounts of organic carbon. Actual rates of denitrification, however, have been difficult to quantify, and remain one of the critical unresolved N processes at the landscape scale. We measured denitrification rates in situ along hydrologic flow paths and across gradients of hydroperiodicities, i.e., frequencies and durations of saturated conditions, at Cornell University's Teaching & Research Center in Harford, NY (an active dairy farm). Denitrification rates were measured monthly using the 15N push-pull method from 14 mini-piezometers arrayed along a gradient of hydroperiodicity as indicated by a soil topographic index (STI). Measured rates of denitrification were spatially variable across sites and ranged from undetectable to over 4500 μg N/kg soil/day with a mean of 572 ± 167 μg N/kg soil/day. Mean rates of denitrification increased with STI, which ranged from 8.7 to 23.0 across our mini-piezometer sites. This relationship was used to estimate denitrification rates across the landscape and resolve a missing piece of the N budget for the farm. Only 14% of the farm fell into areas of STI greater than 8.7; however, denitrification in these areas account for more than 60% of the missing N balance for the entire landscape. Improved understanding of the distribution and magnitudes of denitrification in agricultural landscapes has good potential to facilitate new, novel, and better management practices for controlling N loading to streams and rivers. Indeed, the very areas that appear to have a propensity to harbor denitrification, i.e., areas prone to be wet, are often artificially drained as part of standard agricultural practices which reduces the frequency that these areas are likely to be anaerobic and

  1. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    PubMed

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  2. Modeling nitrate removal in a denitrification bed.

    PubMed

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C

    2015-03-15

    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality.

  3. Speech and respiration.

    PubMed

    Conrad, B; Schönle, P

    1979-04-12

    This investigation deals with the temporal aspects of air volume changes during speech. Speech respiration differs fundamentally from resting respiration. In resting respiration the duration and velocity of inspiration (air flow or lung volume change) are in a range similar to that of expiration. In speech respiration the duration of inspiration decreases and its velocity increases; conversely, the duration of expiration increases and the volume of air flow decreases dramatically. The following questions arise: are these two respiration types different entities, or do they represent the end points of a continuum from resting to speech respiration? How does articulation without the generation of speech sound affect breathing? Does (verbalized?) thinking without articulation or speech modify the breathing pattern? The main test battery included four tasks (spontaneous speech, reading, serial speech, arithmetic) performed under three conditions (speaking aloud, articulating subvocally, quiet performance by tryping to exclusively 'think' the tasks). Respiratory movements were measured with a chest pneumograph and evaluated in comparison with a phonogram and the identified spoken text. For quiet performance the resulting respiratory time ratio (relation of duration of inspiration versus expiration) showed a gradual shift in the direction of speech respiration--the least for reading, the most for arithmetic. This change was even more apparent for the subvocal tasks. It is concluded that (a) there is a gradual automatic change from resting to speech respiration and (b) the degree of internal verbalization (activation of motor speech areas) defines the degree of activation of the speech respiratory pattern.

  4. Voluntary use of respirators.

    PubMed

    Feiner, Lynn

    2009-11-01

    Allowing voluntary use of respirators can provide workers with an added level of comfort and relief from nuisance levels of particulates, gases, or vapors. But misuse can result in illness or injury to the worker. Understanding and following OSHA's guidelines on voluntary use of respirators is one of the many ways you help provide a safe workplace and ensure your employees stay healthy.

  5. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    PubMed

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day.

  6. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    PubMed Central

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-01-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment. PMID:27256514

  7. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    NASA Astrophysics Data System (ADS)

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-06-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment.

  8. Chemoautotrophic production and respiration in the hyporheic zone of a sonoran desert stream

    SciTech Connect

    Jones, J.B. Jr.; Holmes, R.M.; Fisher, S.G.; Grimm, N.B.

    1994-12-31

    Chemoautotrophic production and respiration (aerobic and anaerobic) were examined along flowpaths in three subsystems in Sycamore Creek, Arizona. Chemoautotrophic production was highest where surface waters enter parafluvial sediments (64 to 76 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}) and lowest in anoxic bank sediments (14 to 16 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). Aerobic respiration was considerable greater than chemoautotrophy in oxygenated hyporheic and parafluvial zones (2,400 to 4,900 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). In anoxic bank sediments, respiration was also much greater than chemoautotrophy, but was entirely anaerobic (i.e., methane production; 3,500 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). Weighting subsystems by areal extent, the largest proportion of aerobic respiration and chemoautotrophic production occurred in parafluvial sediments (64 to 76%), whereas anoxic bank sediments were most important for anaerobic respiration (94% of total anaerobic respiration). Overall, chemoautotrophic production was only 1.0 to 1.3% of respiration and methane production was only 5% of total sediment respiration.

  9. Barometric process separation: New method for quantifying nitrification, denitrification, and nitrous oxide sources in soils

    SciTech Connect

    Ingwersen, J.; Butterbach-Bahl, K.; Gasche, R.; Papen, H.; Richter, O.

    1999-01-01

    A method, Barometric Process Separation (BaPS), was developed for the quantification of gross nitrification rates and denitrification rates in oxic soil using intact soil cores incubated in an isothermal gas tight system. Gross nitrification rates and denitrification rates are derived from measurements of changes (i) in air pressure within the closed system, which are primarily the result of the activities of nitrification, denitrification, and respiration, and (2) of O{sub 2} and CO{sub 2} concentrations in the system. Besides these biological processes, the contribution of physicochemical dissolution of produced CO{sub 2} in soil water to the pressure changes observed is to be considered. The method allows collection of additional information about the contribution of nitrification and denitrification to N{sub 2}O emission from soil, provided simultaneous measurements of N{sub 2}O emission are performed. Furthermore, BaPS can be used to quantify the percentage of N{sub 2}O lost from nitrification. The advantage of BaPS is that disturbance of the soil system is minimized compared with other methods such as the use of gaseous inhibitors (e.g., acetylene) or application of {sup 15}N compounds to the soil. The authors present the theoretical considerations of BaPS, results for nitrification rates, denitrification rates, and identification of soil N{sub 2}O sources in a well-aerated coniferous forest soil using BaPS. The suitability of BaPS as a method for determination of gross nitrification is demonstrated by validation experiments using the {sup 15}N-pool dilution technique.

  10. The presence of ammonium facilitates nitrite reduction under PHB driven simultaneous nitrification and denitrification.

    PubMed

    Gibbs, B M; Shephard, L R; Third, K A; Cord-Ruwisch, R

    2004-01-01

    For economic and efficient nitrogen removal from wastewater treatment plants via simultaneous nitrification and denitrification the nitrification process should stop at the level of nitrite such that nitrite rather than nitrate becomes the substrate for denitrification. This study aims to contribute to the understanding of the conditions that are necessary to improve nitrite reduction over nitrite oxidation. Laboratory sequencing batch reactors (SBRs) were operated with synthetic wastewater containing acetate as COD and ammonium as the nitrogen source. Computer controlled operation of the reactors allowed reproducible simultaneous nitrification and denitrification (SND). The oxygen supply was kept precisely at a low level of 0.5 mgL(-1) and bacterial PHB was the only electron donor available for denitrification. During SND little nitrite or nitrate accumulated (< 20% total N), indicating that the reducing processes were almost as fast as the production of nitrite and nitrate from nitrification. Nitrite spiking tests were performed to investigate the fate of nitrite under different oxidation (0.1-1.5 mgL(-1) of dissolved oxygen) and reduction conditions. High levels of reducing power were provided by allowing the cells to build up to 2.5 mM of PHB. Nitrite added was preferentially oxidised to nitrate rather than reduced even when dissolved oxygen was low and reducing power (PHB) was excessively high. However, the presence of ammonium enabled significant reduction of nitrite under low oxygen conditions. This is consistent with previous observations in SBR where aerobic nitrite and nitrate reduction occurred only as long as ammonium was present. As soon as ammonium was depleted, the rate of denitrification decreased significantly. The significance of the observed strongly stimulating effect of ammonium on nitrite reduction under SND conditions is discussed and potential consequences for SBR operation are suggested.

  11. Nitrogen removal in an upflow sludge blanket (USB) reactor combined by aerobic biofiltration systems.

    PubMed

    Jun, H B; Park, S M; Park, J K; Choi, C O; Lee, J S

    2004-01-01

    A new nitrogen removal process (up-flow sludge blanket and aerobic filter, USB-AF) was proposed and tested with real sewage. In the USB reactor, the larger part of influent organic and nitrogen matters were removed, and ammonia was effectively oxidized in the subsequent aerobic filter. The role of the aerobic filter was to convert ammonia into nitrate, an electron acceptor that could convert soluble organic matters into volatile suspended solid (VSS) in the USB. The accumulated as well as influent VSS in the USB was finally degraded to fermented products that were another good carbon source for denitrification. Total COD, settleable COD and soluble COD in the raw sewage were 325, 80 and 140 mg/l, respectively. Most unsettleable COD as well as some SCOD in the influent was successfully removed in the USB. TCOD removal in the anoxic filter was by denitrification with the recycled nitrate. Low COD input to the aerobic filter could increase nitrification efficiency, reduce the start-up period and save the aeration energy in the USB-AF system. About 95% of ammonia was nitrified in the aerobic filter with no relation to the influent ammonia concentration. Denitrification efficiency of the recycled nitrate in the anoxic filter was about 85, 83, and 72% at recycle ratios of 100, 200, and 300%, respectively. T-N removal efficiency was 70% at recycle ratio of 300%.

  12. Validating soil denitrification models based on laboratory N_{2} and N_{2}O fluxes and underlying processes derived by stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Müller, Carsten; Müller, Christoph; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole

    2016-04-01

    Robust denitrification data suitable to validate soil N2 fluxes in denitrification models are scarce due to methodical limitations and the extreme spatio-temporal heterogeneity of denitrification in soils. Numerical models have become essential tools to predict denitrification at different scales. Model performance could either be tested for total gaseous flux (NO + N2O + N2), individual denitrification products (e.g. N2O and/or NO) or for the effect of denitrification factors (e.g. C-availability, respiration, diffusivity, anaerobic volume, etc.). While there are numerous examples for validating N2O fluxes, there are neither robust field data of N2 fluxes nor sufficiently resolved measurements of control factors used as state variables in the models. To the best of our knowledge there has been only one published validation of modelled soil N2 flux by now, using a laboratory data set to validate an ecosystem model. Hence there is a need for validation data at both, the mesocosm and the field scale including validation of individual denitrification controls. Here we present the concept for collecting model validation data which is be part of the DFG-research unit "Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)" starting this year. We will use novel approaches including analysis of stable isotopes, microbial communities, pores structure and organic matter fractions to provide denitrification data sets comprising as much detail on activity and regulation as possible as a basis to validate existing and calibrate new denitrification models that are applied and/or developed by DASIM subprojects. The basic idea is to simulate "field-like" conditions as far as possible in an automated mesocosm system without plants in order to mimic processes in the soil parts not significantly influenced by the rhizosphere (rhizosphere soils are studied by other DASIM projects). Hence, to allow model testing in a wide range of conditions

  13. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  14. Using soil isotopes as an indicator of denitrification in weetlands

    EPA Science Inventory

    Denitrification is an important ecosystem service provided by wetlands, which results in removal of excess nitrogen that can threaten aquatic systems. Unfortunately, direct measurement of denitrification has traditionally been expensive, time intensive, and difficult. However, ...

  15. Respiration in a changing environment.

    PubMed

    Perry, Steven F; Spinelli Oliveira, Elisabeth

    2010-08-31

    Multidisciplinary respiratory research highlighted in the present symposium uses existing and new models from all Kingdoms in both basic and applied research and bears upon molecular signaling processes that have been present from the beginning of life and have been maintained as an integral part of it. Many of these old mechanisms are still recognizable as ROS and oxygen-dependent pathways that probably were in place even before photosynthesis evolved. These processes are not only recognizable through relatively small molecules such as nucleotides and their derivatives. Also some DNA sequences such as the hypoxia response elements and pas gene family are ancient and have been co-opted in various functions. The products of pas genes, in addition to their function in regulating nuclear response to hypoxia as part of the hypoxia-inducible factor HIF, play key roles in development, phototransduction, and control of circadian rhythmicity. Also RuBisCO, an enzyme best known for incorporating CO(2) into organic substrates in plants also has an ancient oxygenase function, which plays a key role in regulating peroxide balance in cells. As life forms became more complex and aerobic metabolism became dominant in multicellular organisms, the signaling processes also took on new levels of complexity but many ancient elements remained. The way in which they are integrated into remodeling processes involved in tradeoffs between respiration and nutrition or in control of aging in complex organisms is an exciting field for future research.

  16. Stratospheric Polar Freezing Belt Causes Denitrification

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Jensen, E. J.; Toon, O. B.; Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Trajectory cloud model calculations are presented to show that homogeneous freezing of nitric acid hydrates can produce a polar freezing belt in both hemispheres that can cause denitrification. While hydrate cloud microphysical properties are similar over both poles, the shorter persistence of clouds in the Arctic prevents the depth of the denitrified layers from growing beyond a few kilometers. The 1999-2000 Arctic winter is unique in showing a distinct denitrification profile with a depth of approx. 4.5 km that is nearly half as deep as that computed for a typical Antarctic winter.

  17. Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes.

    PubMed

    Liu, Binbin; Mao, Yuejian; Bergaust, Linda; Bakken, Lars R; Frostegård, Asa

    2013-10-01

    Denitrifiers differ in how they handle the transition from oxic to anoxic respiration, with consequences for NO and N2O emissions. To enable stringent comparisons we defined parameters to describe denitrification regulatory phenotype (DRP) based on accumulation of NO2(-) , NO and N2O, oxic/anoxic growth and transcription of functional genes. Eight Thauera strains were divided into two distinct DRP types. Four strains were characterized by a rapid, complete onset (RCO) of all denitrification genes and no detectable nitrite accumulation. The others showed progressive onset (PO) of the different denitrification genes. The PO group accumulated nitrite, and no transcription of nirS (encoding nitrite reductase) was detected until all available nitrate (2 mM) was consumed. Addition of a new portion of nitrate to an actively denitrifying culture of a PO strain (T. terpenica) resulted in a transient halt in nitrite reduction, indicating that the electron flow was redirected to nitrate reductase. All eight strains controlled NO at nano-molar concentrations, possibly reflecting the importance of strict control for survival. Transient N2O accumulation differed by two orders of magnitude between strains, indicating that control of N2O is less essential. No correlation was seen between phylogeny (based on 16S rRNA and functional genes) and DRP.

  18. Suppression of N2O and NO from denitrification by biochar: the role of pH

    NASA Astrophysics Data System (ADS)

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-04-01

    Denitrification reduces NO3- to N2 and returns excess nitrogen to the atmosphere. NO and N2O are gaseous intermediates of denitrification which, once escaped to the atmosphere, have adverse effects on chemistry and radiative forcing in the atmosphere. We studied the effect of biochar on denitrification and its gaseous intermediates in two acidic soils and tried to distinguish between the alkalizing effect of biochars on soil pH, and other, unknown effects of biochar on denitrification. Anoxic soil slurries were incubated with untreated biochars or biochars from which part of the alkalinity had been removed by water- and acid leaching. Soils amended with NaOH and uncharred cacao shell were used as controls. Biochar addition stimulated overall denitrification depending on biochar and soil type. This stimulation was not strictly coupled to pH increase, suggesting that biochar fueled respiration processes by contributing microbially available C. High resolution gas kinetics of NO, N2O and N2 showed that biochar amended soils induced denitrification enzymes earlier and with higher activity, resulting in less NO and N2O accumulation relative to N2 production. The extent to which biochar suppressed NO and N2O was dose-dependent and clearly related to the effective pH increase during incubation. Acid leaching of BC reduced or eliminated its ability to suppress N2O and NO net production. Comparison of BC with NaOH-amended soils showed that the reduction of N2O and NO net production was mainly an effect of increase in soil pH. Even though other factors supporting N2O reductase activity could not be excluded, our results indicate that soil pH increase might be an important driver behind the often-reported suppression of N2O emissions after biochar addition.

  19. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    NASA Astrophysics Data System (ADS)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;p<0.0001) predicted if the groundwater temperature, neutral detergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a

  20. Modeling nitrate removal in a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  1. Nitrite inhibition of denitrification by Pseudomonas fluorescens

    SciTech Connect

    Almeida, J.S.; Julio, S.M.; Reis, M.A.M. |

    1995-05-05

    Using a pure culture of Pseudomonas fluorescens as a model system nitrite inhibition of denitrification was studied. A mineral media with acetate and nitrate as sole electron donor and acceptor, respectively, was used. Results obtained in continuous stirred-tank reactors (CSTR) operated at pH values between 6.6 and 7.8 showed that growth inhibition depended only on the nitrite undissociated fraction concentration (nitrous acid). A mathematical model to describe this dependence is put forward. The maximum nitrous acid concentration compatible with cell growth and denitrification activity was found to be 66 {mu}g N/L. Denitrification activity was partially associated with growth, as described by the Luedeking-Piret equation. However, when the freshly inoculated reactor was operated discontinuously, nitrite accumulation caused growth uncoupling from denitrification activity. The authors suggest that these results can be interpreted considering that (a) nitrous acid acts as a proton uncoupler; and (b) cultures continuously exposed to nitrous acid prevent the uncoupling effect but not the growth inhibition. Examination of the growth dependence on nitrite concentration at pH 7.0 showed that adapted cultures (growth on CSTR) are less sensitive to nitrous acid inhibition than the ones cultivated in batch.

  2. Denitrification in a Sand and Gravel Aquifer

    PubMed Central

    Smith, Richard L.; Duff, John H.

    1988-01-01

    Denitrification was assayed by the acetylene blockage technique in slurried core material obtained from a freshwater sand and gravel aquifer. The aquifer, which has been contaminated with treated sewage for more than 50 years, had a contaminant plume greater than 3.5-km long. Near the contaminant source, groundwater nitrate concentrations were greater than 1 mM, whereas 0.25 km downgradient the central portion of the contaminant plume was anoxic and contained no detectable nitrate. Samples were obtained along the longitudinal axis of the plume (0 to 0.25 km) at several depths from four sites. Denitrification was evident at in situ nitrate concentrations at all sites tested; rates ranged from 2.3 to 260 pmol of N2O produced (g of wet sediment)−1 h−1. Rates were highest nearest the contaminant source and decreased with increasing distance downgradient. Denitrification was the predominant nitrate-reducing activity; no evidence was found for nitrate reduction to ammonium at any site. Denitrifying activity was carbon limited and not nitrate limited, except when the ambient nitrate level was less than the detection limit, in which case, even when amended with high concentrations of glucose and nitrate, the capacity to denitrify on a short-term basis was lacking. These results demonstrate that denitrification can occur in groundwater systems and, thereby, serve as a mechanism for nitrate removal from groundwater. PMID:16347621

  3. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: reactor performance, sludge property, microbial activity and community.

    PubMed

    Quan, Xiangchun; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-02-15

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning.

  4. Experiments in In-Situ Aquifer Denitrification

    NASA Astrophysics Data System (ADS)

    Khan, I. A.; Spalding, R. F.

    2001-05-01

    During the past five years, denitrification experiments have been conducted in sand and gravel aquifers. Successive experiments have provided data showing both pitfalls and successes in designing sustainable injection/extraction systems for ground water denitrification. Testing has evolved from simple one-well to eight-well injection systems, commonly referred as Daisy systems. Aquifer profiles of the performance of denitrification were determined by multilevel sampling in two-foot intervals within the denitrification zone. Continuous and pulsed injection of organic carbon were tested, and in both cases the 40 mg NO3-N L-1 was reduced to below the detection limit (< 0.1 mg NO3-N L-1). Under continuous injection, accumulation of bacterial material in the vicinity of the injection well resulted in injection well clogging within 10 days. Using a dipole tool developed in the Water Sciences Laboratory, periodic cleaning was accomplished by circulating a cleaning solution (5% H2O2 and 0.02% NaOCl) in the injection well and adjacent ground water. Pulse injections, in which the carbon is separated from the nitrate, successfully alleviated the proliferation of bacterial accumulations without adversely affecting the performance of the denitrification process. Given that ethanol favored enhanced bacterial growth and increased the potential for biofouling of the equipment, acetate became the preferred carbon amendment. About 45% of the nitrate was denitrified before interception in the production well during a three-month pulsed injection experiment using the full eight-well Daisy design. Draw down of nondenitrified water from the upper two-thirds of the aquifer supplied nitrate to the production well and thus limited system performance.

  5. Denitrification in San Francisco Bay intertidal sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Umberger, Cindy; Culbertson, Charles W.; Smith, Richard L.

    1984-01-01

    The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO3− + NO2− concentrations (≤26 μM) were below the apparent Km (50 μM) for nitrate. During the rainy season, when ambient NO3− + NO2− concentrations were higher (37 to 89 μM), an accurate estimate of the Km could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N2O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N2O in the presence of C2H2 was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cell suspensions of a marine pseudomonad confirmed that this N2O loss was caused by incomplete blockage of N2O reductase by C2H2 at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 μmol of N2 m−2 h−1 (for undisturbed sediments) to 17 to 280 μmol of N2 m−2 h−1 (for shaken sediment slurries).

  6. Denitrification in San Francisco Bay intertidal sediments

    SciTech Connect

    Oremland, R.S.; Umberger, C.; Culbertson, C.W.; Smith, R.L.

    1984-05-01

    The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO/sub 3//sup -/ + NO/sub 2//sup -/ concentrations (less than or equal to26 ..mu..M) were below the apparent K/sub m/ (50 ..mu..M) for nitrate. During the rainy season, when ambient NO/sub 3//sup -/ + NO/sub 2//sup -/ concentrations were higher (37 to 89 ..mu..M), an accurate estimate of the K/sub m/ could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N/sub 2/O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N/sub 2/O in the presence of C/sub 2/H/sub 2/ was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cells suspensions of a marine pseudomonad confirmed that this N/sub 2/O loss was caused by incomplete blockage of N/sub 2/O reductase by C/sub 2/H/sub 2/ at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 ..mu..mol of N/sub 2/ m/sup -2/ h/sup -1/ (for undisturbed sediments) to 17 to 280 ..mu..mol of N/sub 2/ m/sup -2/ h/sup -1/ (for shaken sediment slurries). 32 references

  7. THE GROWTH AND RESPIRATION OF THE AVENA COLEOPTILE

    PubMed Central

    Bonner, James

    1936-01-01

    1. Transport of the plant growth hormone into the Avena coleoptile as well as the action of the hormone on cell elongation in the coleoptile are shown to depend upon aerobic metabolism. 2. Crystalline auxine, in contrast with impure preparations, affects neither the magnitude nor the respiratory quotient of coleoptile respiration. 3. Increasing age of the coleoptile cell decreases its rate of elongation much more than its rate of respiration. HCN or phenylurethane on the other hand decrease the two processes to the same extent, in spite of the fact that only a small portion of the energy liberated by respiration can be used in the mechanical process of growth. 4. From 2 and 3 it is concluded that processes of a respiratory nature but of relatively small magnitude form one or more integral steps in the chain of reactions by which the plant growth hormone brings about cell elongation. PMID:19872979

  8. THE GROWTH AND RESPIRATION OF THE AVENA COLEOPTILE.

    PubMed

    Bonner, J

    1936-09-20

    1. Transport of the plant growth hormone into the Avena coleoptile as well as the action of the hormone on cell elongation in the coleoptile are shown to depend upon aerobic metabolism. 2. Crystalline auxine, in contrast with impure preparations, affects neither the magnitude nor the respiratory quotient of coleoptile respiration. 3. Increasing age of the coleoptile cell decreases its rate of elongation much more than its rate of respiration. HCN or phenylurethane on the other hand decrease the two processes to the same extent, in spite of the fact that only a small portion of the energy liberated by respiration can be used in the mechanical process of growth. 4. From 2 and 3 it is concluded that processes of a respiratory nature but of relatively small magnitude form one or more integral steps in the chain of reactions by which the plant growth hormone brings about cell elongation.

  9. Modeling partial nitrification and denitrification in a hybrid biofilm reactor: calibration by retention time distribution and respirometric tests.

    PubMed

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2015-09-01

    In this study, partial nitrification coupled with denitrification is modeled in a hybrid biofilm reactor with different hydraulic saturation conditions. The activated sludge model with two-step nitrification is implemented in GPS-X software. Hydrodynamic modeling by retention time distribution analysis and biokinetic measurement by respirometric tests are two significant parts of model calibration. By combining these two parts, partial nitrification in the aerobic part of the column is well simulated with a good agreement between experimental and modeled effluent concentrations of NH4 (+) and NO2 (-). Particularly, fully hydraulic saturation condition contributes to the large hydraulic volume of 1.9 L and high produced NO2 (-) concentration around 40 mg L(-1). However, modeling denitrification still needs to be improved with more calibrated parameters. Furthermore, three alternatives are proposed for the optimization of reactor design and operation.

  10. Denitrification across landscapes and waterscapes--A synthesis

    USGS Publications Warehouse

    Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G.

    2006-01-01

    Denitrification is a critical process regulating the removal of bioavailable nitrogen (N) from natural and human-altered systems. While it has been extensively studied in terrestrial, freshwater, and marine systems, there has been limited communication among denitrification scientists working in these individual systems. Here, we compare rates of denitrification and controlling factors across a range of ecosystem types. We suggest that terrestrial, freshwater, and marine systems in which denitrification occurs can be organized along a continuum ranging from (1) those in which nitrification and denitrification are tightly coupled in space and time to (2) those in which nitrate production and denitrification are relatively decoupled.In aquatic ecosystems, N inputs influence denitrification rates whereas hydrology and geomorphology influence the proportion of N inputs that are denitrified. Relationships between denitrification and water residence time and N load are remarkably similar across lakes, river reaches, estuaries, and continental shelves.Spatially distributed global models of denitrification suggest that continental shelf sediments account for the largest portion (44%) of total global denitrification, followed by terrestrial soils (22%) and oceanic oxygen minimum zones (OMZs; 14%). Freshwater systems (groundwater, lakes, rivers) account for about 20% and estuaries 1% of total global denitrification. Denitrification of land-based N sources is distributed somewhat differently. Within watersheds, the amount of land-based N denitrified is generally highest in terrestrial soils, with progressively smaller amounts denitrified in groundwater, rivers, lakes and reservoirs, and estuaries. A number of regional exceptions to this general trend of decreasing denitrification in a downstream direction exist, including significant denitrification in continental shelves of N from terrestrial sources. Though terrestrial soils and groundwater are responsible for much

  11. Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system; implications for the expression of denitrification in ex situ experiments

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Dörsch, Peter; Bakken, Lars

    2013-04-01

    Denitrification allows microorganisms to sustain respiration under anoxic conditions. The typical niche for denitrification is an environment with fluctuating oxygen concentrations such as soils and borders between anoxic and oxic zones of biofilms and sediments. In such environments, the organisms need adequate regulation of denitrification in response to changing oxygen availability to tackle both oxic and anoxic spells. The regulation of denitrification in soils has environmental implications, since it affects the proportions of N2, N2O and NO emitted to the atmosphere. The expression of denitrification enzymes is regulated by a complex regulatory network involving one or several positive feedback loops via the intermediate nitrogen oxides. Nitric oxide (NO) is known to induce denitrification in model organisms, but the quantitative effect of NO and its concentration dependency has not been assessed for denitrification in soils. NO is chemically unstable in the presence of oxygen due to autoxidation, and the oxidation of NO is accelerated by acetylene (C2H2) which is commonly used as an inhibitor of N2O reductase in denitrification studies. As a first step to a better understanding of NO's role in soil denitrification, we investigated NO oxidation kinetics for a closed "two phase" system (i.e. liquid phase + headspace) typically used for denitrification experiments with soil slurries, with and without acetylene present. Models were developed to adequately predict autoxidation and acetylene-accelerated oxidation. The minimum oxygen concentration in the headspace ([O2]min, mL L-1) for acetylene-accelerated NO oxidation was found to increase linearly with the NO concentration ([NO], mL L-1); [O2]min= 0.192 + [NO]*0.1 (r2=0.978). The models for NO oxidation were then used to assess NO-oxidation rates in denitrification experiments with batches of bacterial cells extracted from soil. The batches were exposed to low initial oxygen concentrations in gas tight serum

  12. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri

    PubMed Central

    McDonald, Michael J.; Galafassi, Silvia; Compagno, Concetta; Piškur, Jure

    2017-01-01

    The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait. PMID:28282411

  13. Nitrous oxide emissions from an aerobic granular sludge system treating low-strength ammonium wastewater.

    PubMed

    Gao, Mingming; Yang, Sen; Wang, Mingyu; Wang, Xin-Hua

    2016-11-01

    Aerobic granular sludge is a promising technology in wastewater treatment process. Its special microorganism structure could make the emissions of greenhouse gas nitrous oxide (N2O) more complicated. This study investigated the N2O emissions from a batch-fed aerobic granular sludge system during nitrification of low-strength synthetic ammonium wastewater. The N2O emission was 2.72 ± 0.52% of the oxidized ammonium during the whole anoxic-oxic sequencing batch reactor (SBR) cycle. Under nitrification batch test with sole ammonium substrate (50 mg N/L), N2O emission factor was 1.82% (N2ON/NH4(+)-Nox) and ammonia-oxidizing bacteria (AOB) was the responsible microorganism. The presence of high ammonium concentration (or high ammonium oxidation rate (AOR)) and accumulation of nitrite would lead to significant N2O emissions. AOB denitrification pathway was speculated to contribute more to the N2O emissions under nitrification conditions. While under simultaneous nitrification and denitrification condition with carbon source of 500 mg COD/L, the N2O emission factor increased to 2.76%. Both AOB and heterotrophic denitrifiers were responsible for N2O emission and heterotrophic denitrification enhances N2O emission. Step feeding of organic carbon source declined N2O emission factor to 1.60%, which underlined the role of storage substance consumption in N2O generation during denitrification.

  14. Impact of Aeration and Heme-Activated Respiration on Lactococcus lactis Gene Expression: Identification of a Heme-Responsive Operon▿ †

    PubMed Central

    Pedersen, Martin Bastian; Garrigues, Christel; Tuphile, Karine; Brun, Célia; Vido, Karin; Bennedsen, Mads; Møllgaard, Henrik; Gaudu, Philippe; Gruss, Alexandra

    2008-01-01

    Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O2 and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis. PMID:18487342

  15. Biological denitrification in a fluidized bed.

    PubMed

    Narjari, N K; Khilar, K C; Mahajan, S P

    1984-12-01

    A fluidized bed biofilm reactor using sand as the carrier particle was employed to study the effects of superficial velocity on the removal of nitrates as well as on the growth of the biofilm. Velocity was found to affect significantly both nitrate removal and biofilm growth. An analysis based on heterogenous catalysis was used to describe the denitrification process. There is good agreement between analysis and experimental measurements for startup and steady-state operating conditions.

  16. Compartment model of aerobic and anaerobic biodegradation in a municipal solid waste landfill.

    PubMed

    Kim, Sang-Yul; Tojo, Yasumasa; Matsuto, Toshihiko

    2007-12-01

    The mathematical formulations in a one-dimensional compartment model of the biodegradation of organic landfill components are described. The model is designed to switch between anaerobic and aerobic conditions, depending on the local oxygen concentration. The model also includes the effect of environmental factors, such as moisture content, pH, and temperature, on reaction rates. The model includes not only biodegradation processes for carbon compounds (acetate, CO2, CH4), but also for nitrogen compounds involved in nitrification and denitrification due to their significance in landfills. Two example runs to simulate anaerobic and aerobic waste were conducted for a single landfill unit cell by changing the organic content and diffusion coefficient.

  17. Saturated Zone Denitrification at California Dairies

    SciTech Connect

    Singleton, M J; Esser, B K; Moran, J E; McNab, W W; Beller, H R

    2006-02-27

    Denitrification can effectively mitigate the problem of high nitrate concentrations in groundwater under dairy operations by reducing nitrate to N{sub 2} gas, at sites where biogeochemical conditions are favorable. We present results from field studies at central California dairies that document the occurrence of saturated-zone denitrification in shallow groundwater using biomolecular indicators, stable isotope compositions of nitrate, and measurements of dissolved excess N{sub 2} gas. Excess N{sub 2} concentrations provide a measure of the extent to which nitrate in groundwater has been partially or completely denitrified. Abundant excess N{sub 2} and young {sup 3}H/{sup 3}He apparent groundwater ages indicate high denitrification rates near manure lagoons where multiple lines of evidence indicate seepage of lagoon water into the groundwater system. Natural tracers of lagoon water include high chloride and dissolved organic carbon concentrations, distinctive trace organic compounds, and high groundwater {delta}{sup 18}O values (relative to other recharge sources). Proximal to the lagoons, NH{sub 4}{sup +} may be present in groundwater, but is strongly adsorbed on to sediment particles. Bubble formation in the lagoons causes the exsolution of other gases (N{sub 2}, Ar, Ne, He, etc.), which partition into the gas phase and strip the lagoon water of its dissolved gas load, providing a unique tracer of lagoon seepage in groundwater.

  18. Global change, nitrification, and denitrification: A review

    NASA Astrophysics Data System (ADS)

    Barnard, Romain; Leadley, Paul W.; Hungate, Bruce A.

    2005-03-01

    We reviewed responses of nitrification, denitrification, and soil N2O efflux to elevated CO2, N availability, and temperature, based on published experimental results. We used meta-analysis to estimate the magnitude of response of soil N2O emissions, nitrifying enzyme activity (NEA), denitrifying enzyme activity (DEA), and net and gross nitrification across experiments. We found no significant overall effect of elevated CO2 on N2O fluxes. DEA and NEA significantly decreased at elevated CO2; however, gross nitrification was not modified by elevated CO2, and net nitrification increased. The negative overall response of DEA to elevated CO2 was associated with decreased soil [NO3-], suggesting that reduced availability of electron acceptors may dominate the responses of denitrification to elevated CO2. N addition significantly increased field and laboratory N2O emissions, together with gross and net nitrification, but the effect of N addition on field N2O efflux was not correlated to the amount of N added. The effects of elevated temperature on DEA, NEA, and net nitrification were not significant: The small number of studies available stress the need for more warming experiments in the field. While N addition had large effects on measurements of nitrification and denitrification, the effects of elevated CO2 were less pronounced and more variable, suggesting that increased N deposition is likely to affect belowground N cycling with a magnitude of change that is much larger than that caused by elevated CO2.

  19. Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.

    PubMed Central

    Rhee, S K; Lee, G M; Yoon, J H; Park, Y H; Bae, H S; Lee, S T

    1997-01-01

    New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications. PMID:9212408

  20. Direct contribution of clams (Ruditapes philippinarum) to benthic fluxes, nitrification, denitrification and nitrous oxide emission in a farmed sediment

    NASA Astrophysics Data System (ADS)

    Welsh, David T.; Nizzoli, Daniele; Fano, Elisa A.; Viaroli, Pierluigi

    2015-03-01

    The influence of the manila clam (Ruditapes philippinarum) on N-cycle processes, and oxygen and nutrient fluxes in a farmed sediment was investigated using a multiple core incubation approach and parallel incubations of individual clams. Clam population/biomass density varied ∼8-fold between cores and all sediment-water column solute (O2. N2, N2O, NH4+, NOX and DIN) fluxes and benthic process (N-regeneration, nitrification and denitrification) rates were strongly and significantly correlated with clam density/biomass. Isolated clams exhibited high rates of respiration, N-excretion, nitrification and denitrification of 2050 ± 70, 395 ± 49, 201 ± 42 and 235 ± 40 nmol individual-1 h-1, respectively. The direct contribution of the clams and their associated microbiota to benthic processes was estimated by multiplying the per individual rates by the number of clams in each incubated core. The clams on average directly accounted for 64-133% of total rates of sediment oxygen demand, N-regeneration, nitrification and denitrification, indicating that they regulated processes primarily through their own metabolic activity and that of bacteria that colonise them. Clams and the farmed sediments were significant sources of the greenhouse gas N2O, but this was primarily due to their high nitrification and denitrification rates, rather than high specific N2O yields, as N2O emissions represented <1% of total N2O + N2 production. The clam-farmed sediments had a high denitrification efficiency of 67 ± 10%, but this ecosystem service came at the environmental cost of increased N-regeneration and N2O emission rates. The measured N2O emissions indicate that bivalve aquaculture may be a significant source of N2O. It is therefore recommended that N2O emissions should be included in the impact assessments of current and future bivalve-farming projects.

  1. Dynamic interplay between microbial denitrification and antibiotic resistance under enhanced anoxic denitrification condition in soil.

    PubMed

    Sun, Mingming; Ye, Mao; Liu, Kuan; Schwab, Arthur P; Liu, Manqiang; Jiao, Jiaguo; Feng, Yanfang; Wan, Jinzhong; Tian, Da; Wu, Jun; Li, Huixin; Hu, Feng; Jiang, Xin

    2017-03-01

    Mixed contamination of nitrate and antibiotics/antibiotic-resistant genes (ARGs) is an emerging environmental risk to farmland soil. This is the first study to explore the role of excessive anthropogenic nitrate input in the anoxic dissipation of soil antibiotic/ARGs. During the initial 10 days of incubation, the presence of soil antibiotics significantly inhibited NO3(-) dissipation, N2O production rate, and denitrifying genes (DNGs) abundance in soil (p < 0.05). Between days 10 and 30, by contrast, enhanced denitrification clearly prompted the decline in antibiotic contents and ARG abundance. Significantly negative correlations were detected between DNGs and ARGs, suggesting that the higher the DNG activity, the more dramatic is the denitrification and the greater are the antibiotic dissipation and ARG abundance. This study provides crucial knowledge for understanding the mutual interaction between soil DNGs and ARGs in the enhanced anoxic denitrification condition.

  2. Subsoil Denitrification experiment at KBS MSU

    NASA Astrophysics Data System (ADS)

    Shcherbak, I.; Robertson, G. P.

    2010-12-01

    Denitrification plays two important roles in the global nitrogen cycle: returning active nitrogen to inert dinitrogen form and producing potent greenhouse gas nitrous oxide as a byproduct. Effects of denitrification in the deeper layers of soil on total soil denitrification are poorly understood. The experiment will be conducted at KBS to gain a better understanding dependency of rate of subsoil denitrification and molar ratio of denitrified N2O to N2 on depth in the profile and management practice applied. Experimental setup consists of 4 soil profiles (2 tilled and 2 no-till) enclosed in stainless steel boxes with open tops providing access to the soil profile for nondestructive measurements of soil temperature, soil moisture, soil atmosphere, and soil water (6 levels of measurements). Water discharged at the bottom of the profile (~2 m) is sampled as well as gas flux from the surface of the soil to the atmosphere. Inert tracer (hexafluoride) is introduced in the profile to estimate the diffusion rates. Profiles are planted to corn fertilized at 11.1 g/m2 with 50% 15N-Ammonium Nitrate to improve accuracy of measurement and calculate a complete nitrogen balance. Preliminary results show high concentrations of nitrous oxide in the subsoil layers (up to 6 ppm) which suggest high potential contribution of subsoil denitrification to total soil flux of nitrous oxide. Simplified setup consists of gas measurements at two depths in the soil profile (7 and 70 cm) and static chamber at the top. It will be installed in duplicates at conventional tillage, no-till, reduced input, organic, and early successional treatments of Long-Term Ecological Research Site at KBS to expand the scope of findings made with more complex system. Further validation and scaling of the results is possible in terms of integrated semi-empirical models. Predictive equations developed in the study will be used together with other parts of SALUS (System Approach to Land Use Sustainability) model. This

  3. Molecular characterization of bacterial respiration of minerals. Final technical report, March 1, 1985--February 29, 1996

    SciTech Connect

    Blake, R. II

    1996-08-01

    The goals of this project were to continue the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron, and to initiate an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. Progress is described.

  4. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286

  5. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  6. Draft Genome Sequence of Pseudomonas hussainii Strain MB3, a Denitrifying Aerobic Bacterium Isolated from the Rhizospheric Region of Mangrove Trees in the Andaman Islands, India.

    PubMed

    Jaiswal, Shubham K; Saxena, Rituja; Mittal, Parul; Gupta, Ankit; Sharma, Vineet K

    2017-02-02

    The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification.

  7. Draft Genome Sequence of Pseudomonas hussainii Strain MB3, a Denitrifying Aerobic Bacterium Isolated from the Rhizospheric Region of Mangrove Trees in the Andaman Islands, India

    PubMed Central

    Jaiswal, Shubham K.; Saxena, Rituja; Mittal, Parul; Gupta, Ankit

    2017-01-01

    ABSTRACT The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification. PMID:28153890

  8. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  9. Denitrification in upland of China: Magnitude and influencing factors

    NASA Astrophysics Data System (ADS)

    Wang, Jinyang; Yan, Xiaoyuan

    2016-12-01

    A better understanding of influencing factors and accurate estimate of soil denitrification is a global concern. Here we present a synthesis of 300 observations of denitrification in Chinese upland soils from 39 field and laboratory studies using the acetylene inhibition technique. The results of a linear mixed model analysis showed that the rates of soil denitrification were significantly affected by crop type, soil organic carbon, soil pH, the measurement period, and the rate of N application. The emission factor (EF) and N2O/(N2O + N2) ratio for soil denitrification were on average 2.11 ± 0.17% and 0.508 ± 0.020, respectively. Our meta-analysis indicated that N fertilization increased soil denitrification by 311% (95% CI: 279-346%) and 112% (95% CI: 66-171%) in the field and laboratory studies, respectively. Substantial interactive effects between soil properties and N fertilization on soil denitrification were found. Although the highest values of both the rate of denitrification and the EF were found in vegetable fields, the size of the stimulating effect of N fertilization on soil denitrification was lower in vegetable fields than in maize and wheat fields. These results suggest that the crop-specific effect is important and that vegetable fields are potential hot spots of denitrification in Chinese uplands. Based on either the EF or the N2O/(N2O + N2) ratio obtained, the estimated amount of total denitrification from the upland soils was an order of magnitude lower than that from budget calculations, suggesting that the acetylene inhibition technique may significantly underestimate denitrification in Chinese upland soils.

  10. CROSS-STREAM COMPARISON OF SUBSTRATE-SPECIFIC DENITRIFICATION POTENTIAL

    SciTech Connect

    Findlay, Stuart; Mulholland, Patrick J; Hamilton, Stephen; Tank, Jennifer; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Grimm, Nancy; McDowell, William; Potter, Jody; Sobota, Daniel

    2011-01-01

    Headwater streams have a demonstrated ability to denitrify a portion of their nitrate (NO(3) (-)) load but there has not been an extensive consideration of where in a stream this process is occurring and how various habitats contribute to total denitrification capability. As part of the Lotic Intersite Nitrogen Experiment II (LINX II) we measured denitrification potential in 65 streams spanning eight regions of the US and draining three land-use types. In each stream, potential denitrification rates were measured in common substrate types found across many streams as well as locations unique to particular streams. Overall, habitats from streams draining urban and agricultural land-uses showed higher potential rates of denitrification than reference streams draining native vegetation. This difference among streams was probably driven by higher ambient nitrate concentrations found in urban or agricultural streams. Within streams, sandy habitats and accumulations of fine benthic organic matter contributed more than half of the total denitrification capacity (mg N removed m(-2) h(-1)). A particular rate of potential denitrification per unit area could be achieved either by high activity per unit organic matter or lower activities associated with larger standing stocks of organic matter. We found that both small patches with high rates (hot spots) or more widespread but less active areas (cool matrix) contributed significantly to whole stream denitrification capacity. Denitrification estimated from scaled-up denitrification enzyme assay (DEA) potentials were not always dramatically higher than in situ rates of denitrification measured as (15)N gas generation following 24-h (15)N-NO(3) tracer additions. In general, headwater streams draining varying land-use types have significant potential to remove nitrate via denitrification and some appear to be functioning near their maximal capacity.

  11. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  12. NifA is required for maximal expression of denitrification genes in Bradyrhizobium japonicum.

    PubMed

    Bueno, Emilio; Mesa, Socorro; Sanchez, Cristina; Bedmar, Eulogio J; Delgado, María J

    2010-02-01

    In Bradyrhizobium japonicum the napEDABC, nirK, norCBQD and nosRZDYFLX genes, which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide, respectively, are required for denitrification. Microaerobic induction of these genes depends on fixLJ and fixK2, whose products form the FixLJ-FixK2 regulatory cascade. In B. japonicum, a second oxygen-responsive regulatory cascade mediated by the nitrogen fixation regulatory protein, NifA, has been described. In this study, we show that disruption of nifA caused a growth defect in B. japonicum cells, when grown under denitrifying conditions, and decreased activity of periplasmic nitrate and nitrite reductase enzymes was also observed. Furthermore, expression of napE-lacZ, nirK-lacZ or norC-lacZ transcriptional fusions, as well as levels of nirK transcripts were significantly reduced in the nifA mutant after incubation under nitrate-respiring conditions. Haem c staining analyses revealed that NifA is required for full synthesis of the NapC and NorC proteins, which are required for denitrification. A B. japonicum rpoN1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor sigma54, was able to grow anaerobically with nitrate as terminal electron acceptor and showed wild-type levels of nitrate and nitrite reductase activities. We propose that the nitrogen fixation regulatory protein, NifA, is involved in the maximal expression of the denitrification genes in B. japonicum. This influence is independent of sigma54.

  13. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    PubMed

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  14. Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1.

    PubMed

    Fennessey, Christine M; Jones, Morris E; Taillefert, Martial; DiChristina, Thomas J

    2010-04-01

    Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. DeltaSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. DeltaSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor.

  15. Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.

    PubMed

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-07-01

    A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed.

  16. Modelling of long-term simultaneous nitrification and denitrification (SNDN) performance of a pilot scale membrane bioreactor.

    PubMed

    Sarioglu, M; Insel, G; Artan, N; Orhon, D

    2008-01-01

    Nutrient removal capability of the MBR process has attracted more attention than organics removal in the past few years. Apart from the conventional schemes for nitrogen removal in MBR process, simultaneous nitrification-denitrification (SNDN) requires the most attention for further research. In order to fully understand the fundemantals and mechanism of SNDN in MBRs, a pilot plant was set up. A mathematical model was adopted for investigation and calibration against the observed values. This paper reports a study focusing on evaluating major mechanisms that govern nitrogen removal from domestic wastewater in membrane bioreactors. Two items need to be emphasized in this evaluation: (i) an MBR is basically regarded as an activated sludge process-a suspended growth bioreactor with total biomass recycle and substantially higher biomass concentration; (ii) in this context an AS model, namely ASM1R modified for endogenous respiration, is used for dynamic modelling and calibration of experimental results. The impact of diffusion through biomass which obviously exerts a significant effect on system performance and denitrification is evaluated with success using the adopted model by means of switch functions that regulate nitrification-denitrification with respect to dissolved oxygen concentration in the bulk liquid.

  17. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications.

    PubMed

    Shao, Ming-Fei; Zhang, Tong; Fang, Herbert Han-Ping

    2010-11-01

    Sulfur-driven autotrophic denitrification refers to the chemolithotrophic process coupling denitrification with the oxidation of reduced inorganic sulfur compounds. Ever since 1904, when Thiobacillus denitrificans was isolated, autotrophic denitrifiers and their uncultured close relatives have been continuously identified from highly diverse ecosystems including hydrothermal vents, deep sea redox transition zones, sediments, soils, inland soda lakes, etc. Currently, 14 valid described species within α-, β-, γ-, and ε-Proteobacteria have been identified as capable of autotrophic denitrification. Autotrophic denitrification is also widely applied in environmental engineering for the removal of sulfide and nitrate from different water environments. This review summarizes recent researches on autotrophic denitrification, highlighting its diversity, metabolic traits, and engineering applications.

  18. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants.

    PubMed

    Schmidt, Ingo; van Spanning, Rob J M; Jetten, Mike S M

    2004-12-01

    The phenotypes of three different Nitrosomonas europaea strains--wild-type, nitrite reductase (NirK)-deficient and nitric oxide reductase (NorB)-deficient strains--were characterized in chemostat cell cultures, and the effect of nitric oxide (NO) on metabolic activities was evaluated. All strains revealed similar aerobic ammonia oxidation activities, but the growth rates and yields of the knock-out mutants were significantly reduced. Dinitrogen (N2) was the main gaseous product of the wild-type, produced via its denitrification activity. The mutants were unable to reduce nitrite to N2, but excreted more hydroxylamine leading to the formation of almost equal amounts of NO, nitrous oxide (N2O) and N2 by chemical auto-oxidation and chemodenitrification of hydroxylamine. Under anoxic conditions Nsm. europaea wild-type gains energy for growth via nitrogen dioxide (NO2)-dependent ammonia oxidation or hydrogen-dependent denitrification using nitrite as electron acceptor. The mutant strains were restricted to NO and/or N2O as electron acceptor and consequently their growth rates and yields were much lower compared with the wild-type. When cells were transferred from anoxic (denitrification) to oxic conditions, the wild-type strain endogenously produced NO and recovered ammonia oxidation within 8 h. In contrast, the mutant strains remained inactive. For recovery of ammonia oxidation activity the NO concentration had to be adjusted to about 10 p.p.m. in the aeration gas.

  19. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate.

    PubMed

    Yang, Qin; Shen, Nan; Lee, Zarraz M-P; Xu, Guangjing; Cao, Yeshi; Kwok, Beehong; Lay, Winson; Liu, Yu; Zhou, Yan

    The combination of simultaneous nitrification-denitrification (SND) with enhanced biological phosphorus removal (EBPR) provides a more efficient and economically viable option for nutrient removal from municipal wastewater compared to conventional two-step nitrification-denitrification. This study analyzed the nutrients (N and P) profiles in a full-scale municipal wastewater reclamation plant (WRP) located in the tropical region, in which more than 90% of nitrogen was removed. Interestingly, average SND efficiency in aerobic zones was found to be up to 50%, whereas phosphorus profile displayed a clear cyclic release and uptake pattern with a phosphorus removal efficiency of up to 76%. The capability of sludge to perform SND and EBPR was further confirmed through a series of batch experiments. Microbial analysis revealed the presence of Accumulibacter and Tetrasphaera phosphate accumulating organisms in the plant, while few glycogen accumulating organisms (GAO) was observed. This study showed the significant occurrence of combined SND and EBPR, known as simultaneous nitrification, denitrification and phosphorus removal (SNDPR), in the studied WRP under warm climate. The possible causes behind the observed SNDPR were also discussed.

  20. Denitrification as a Model Chemical Process

    NASA Astrophysics Data System (ADS)

    Grguric, Gordan

    2002-02-01

    Bacterial denitrification in seawater facilities such as aquaria and mariculture systems is a process particularly well suited for illustrating important concepts in chemistry to undergraduates. Students can gain firsthand experience related to these concepts, for example by (i) analyzing and quantifying chemical reactions based on empirical data, (ii) employing stoichiometry and mass balance to determine the amounts of reactants required and products produced in a chemical reaction, and (iii) using acid-base speciation diagrams and other information to quantify the changes in pH and carbonic acid speciation in an aqueous medium. At the Richard Stockton College of New Jersey, we have utilized actual data from several seawater systems to discuss topics such as stoichiometry, mass and charge balance, and limiting reagents. This paper describes denitrification in closed seawater systems and how the process can be used to enhance undergraduate chemistry education. A number of possible student exercises are described that can be used as practical tools to enhance the students' quantitative understanding of chemical reactions.

  1. Denitrification in USB reactor with granulated biomass.

    PubMed

    Pagácová, P; Galbová, K; Drtil, M; Jonatová, I

    2010-01-01

    Denitrification of low concentrations of NO(3)-N (20 mg L(-1)), with methanol as an organic carbon source (COD:NO(3)-N=6) in laboratory upflow sludge bed reactor (USB), was tested as a possibility for wastewater post-treatment. By gradual increase of volumetric loading (Bv) and hydraulic loading (gamma), anoxic biomass spontaneously granulated out even from flocculate activated sludge and from anaerobic granulated sludge as well. Anaerobic granulated biomass derived from high-rate anaerobic IC reactor was a far better inoculum for anoxic granulation and for denitrification in the USB reactor. The maximum level of Bv and gamma was remarkably higher with the use of anaerobic granulated inoculum, (19-22 kg COD m(-3)d(-1); 3.2-3.7 kg NO(3)-Nm(-3)d(-1); 2.8-3.2m(3)m(-2)h(-1); SVI=15 mL g(-1)) in comparison to inoculum from flocculate activated sludge (4.2-8.1 kg CO Dm(-3)d(-1); 0.7-1.4 kg NO(3)-Nm(-3)d(-1); 0.7-1.15m(3)m(-2)h(-1); SVI=40-95 mL g(-1)).

  2. Tillage Effects on Soil Properties & Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  3. Bioirrigation impacts on sediment respiration and microbial metabolic activity

    NASA Astrophysics Data System (ADS)

    Baranov, V. A.; Lewandowski, J.; Romeijn, P.; Krause, S.

    2015-12-01

    Some bioturbators build tubes in the sediment and pump water through their burrows (ventilation). Oxygen is transferred through the burrow walls in the adjacent sediment (bioirrigation). Bioirrigation is playing a pivotal role in the mediation of biogeochemical processes in lake sediments and has the potential to enhance nutrient cycling. The present study investigates the impact of bioirrigation on lake sediment metabolism, respiration rates and in particular, the biogeochemical impacts of bioirrigation intensity as a function of organism density. We therefore apply the bioreactive Resazurin/Resorufin smart tracer system for quantifying the impact of different densities of Chironomidae (Diptera) larvae (0-2112 larvae/m2) on lake sediment respiration in a microcosm experiment. Tracer decay has been found to be proportional to the amount of the aerobic respiration at the sediment-water interface. Tracer transformation was in good agreement with Chironomidae density (correlation, r=0.9). Tracer transformation rates (and sediment respiration) were found to be correlated to Chironomidae density, with highest transformation rates observed in the microcosms with highest density of 2112 larvae/m2. This relationship was not linear though, with sediment respiration rates at the highest larvae densities declining from the linear trend predicted from lower and intermediate larvae density-respiration relationships. We interpret this effect as a density dependent suppression of the Chironomid's metabolic activity. The observations of this study have implications for eutrophied lakes with high densities of bioirrigators. Despite high density of bioirrigirrigating benthos, mineralization of the organic matter in such habitats would likely be lower than in lakes with intermediate densities of the bioturbators.

  4. Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration

    NASA Astrophysics Data System (ADS)

    Bernhard, Joan M.; Casciotti, Karen L.; McIlvin, Matthew R.; Beaudoin, David J.; Visscher, Pieter T.; Edgcomb, Virginia P.

    2012-09-01

    Until recently, the process of denitrification (conversion of nitrate or nitrite to gaseous products) was thought to be performed exclusively by prokaryotes and fungi. The finding that foraminifera perform complete denitrification could impact our understanding of nitrate removal in sediments as well as our understanding of eukaryotic respiration, especially if it is widespread. However, details of this process and the subcellular location of these reactions in foraminifera remain uncertain. For example, prokaryotic endobionts, rather than the foraminifer proper, could perform denitrification, as has been shown recently in an allogromiid foraminifer. Here, intracellular nitrate concentrations and isotope ratios (δ15NNO3 and δ18ONO3) were measured to assess the nitrate dynamics in four benthic foraminiferal species (Bolivina argentea, Buliminella tenuata, Fursenkoina cornuta, Nonionella stella) with differing cellular architecture and associations with microbial endobionts, recovered from Santa Barbara Basin, California. Cellular nitrate concentrations were high (12-217 mM) in each species, and intracellular nitrate often had elevated δ15NNO3 and δ18ONO3 values. Experiments including suboxic and anoxic incubations of B. argentea revealed a decrease in intracellular nitrate concentration and an increase in δ15NNO3 and δ18ONO3over time, indicating nitrate respiration and/or denitrification within the foraminifera. Results illustrate that nitrate reduction occurs in a range of foraminiferal species, including some possessing endobionts (including a chloroplast-sequestering species) and others lacking endobionts, implying that microbial associates may not solely be responsible for this process in foraminifera. Furthermore, we show that benthic foraminifera may represent important reservoirs of nitrate storage in sediments, as well as mediators of its removal.

  5. Optimal cultivation of simultaneous ammonium and phosphorus removal aerobic granular sludge in A/O/A sequencing batch reactor and the assessment of functional organisms.

    PubMed

    Zhang, Cuiya; Zhang, Hanmin; Yang, Fenglin

    2014-08-01

    In this study, sequencing batch reactor (SBR) with an anaerobic/aerobic/anoxic operating mode was used to culture granular sludge. Optimal adjustment of cycle duration was achieved by the direction ofpH, oxidation reduction potential and dissolved oxygen parameters. The results showed that the treating efficiency was significantly improved as the cycle was shortened from 450 to 360 min and further to 200 min. Nitrogen and phosphorus removal were nearly quantitative after 50 days operation and maintained stable to the end of the study period. The typical cycle tests revealed that simultaneous denitrification and phosphorus removal occurred when aerobic granules were gradually formed. The nitrite effect tests showed that less than 4.8 mg N/L of the nitrite could enhance superficial specific aerobic phosphate uptake rate (SAPUR) under aerobic condition, indicating that the traditional method to evaluate the capability of total phosphate-accumulating organisms (PAOs) was inaccurate. Additionally, a high level of nitrite was detrimental to PAOs. A novel method was developed to determine the activity of each kind of PAOs and other denitrifying organisms. The results showed that (1) nitrate, besides nitrite, could also enhance SAPUR and (2) aerobic granular sludge could perform denitrification even when phosphate was not supplied under anoxic condition, suggesting that other denitrifying organisms besides denitrifying phosphate-accumulating organisms also contributed to denitrification.

  6. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  7. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  8. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells.

    PubMed

    Grüning, Nana-Maria; Rinnerthaler, Mark; Bluemlein, Katharina; Mülleder, Michael; Wamelink, Mirjam M C; Lehrach, Hans; Jakobs, Cornelis; Breitenbach, Michael; Ralser, Markus

    2011-09-07

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism when respiration is activated. Low PYK activity activated yeast respiration. However, levels of reactive oxygen species (ROS) did not increase, and cells gained resistance to oxidants. This adaptation was attributable to accumulation of the PYK substrate phosphoenolpyruvate (PEP). PEP acted as feedback inhibitor of the glycolytic enzyme triosephosphate isomerase (TPI). TPI inhibition stimulated the pentose phosphate pathway, increased antioxidative metabolism, and prevented ROS accumulation. Thus, a metabolic feedback loop, initiated by PYK, mediated by its substrate and acting on TPI, stimulates redox metabolism in respiring cells. Originating from a single catalytic step, this autonomous reconfiguration of central carbon metabolism prevents oxidative stress upon shifts between fermentation and respiration.

  9. Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine.

    PubMed

    Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar

    2017-05-01

    Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL(-1)h(-1), ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL(-1)h(-1) respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater.

  10. Aerobic Denitrification as an Innovative Method for In-Situ Biological Remediation of Contaminated Subsurface Sites

    DTIC Science & Technology

    1989-01-01

    presumed subsurface conditon; * more rapid mineralization of organics and secondary metabolites ; * decrease in the biochemical oxygen demand and the...additon of nitrate would result in the more rapid mineralization of organic carbon and secondary metabolites . This was illustrated in this study with...and water. The list is far from complete. Many denitrifying species, such as those from the genera Moraxella and Achromobacter , are commonly found in

  11. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments

    NASA Astrophysics Data System (ADS)

    D'Hondt, Steven; Inagaki, Fumio; Zarikian, Carlos Alvarez; Abrams, Lewis J.; Dubois, Nathalie; Engelhardt, Tim; Evans, Helen; Ferdelman, Timothy; Gribsholt, Britta; Harris, Robert N.; Hoppie, Bryce W.; Hyun, Jung-Ho; Kallmeyer, Jens; Kim, Jinwook; Lynch, Jill E.; McKinley, Claire C.; Mitsunobu, Satoshi; Morono, Yuki; Murray, Richard W.; Pockalny, Robert; Sauvage, Justine; Shimono, Takaya; Shiraishi, Fumito; Smith, David C.; Smith-Duque, Christopher E.; Spivack, Arthur J.; Steinsbu, Bjorn Olav; Suzuki, Yohey; Szpak, Michal; Toffin, Laurent; Uramoto, Goichiro; Yamaguchi, Yasuhiko T.; Zhang, Guo-Liang; Zhang, Xiao-Hua; Ziebis, Wiebke

    2015-04-01

    The depth of oxygen penetration into marine sediments differs considerably from one region to another. In areas with high rates of microbial respiration, O2 penetrates only millimetres to centimetres into the sediments, but active anaerobic microbial communities are present in sediments hundreds of metres or more below the sea floor. In areas with low sedimentary respiration, O2 penetrates much deeper but the depth to which microbial communities persist was previously unknown. The sediments underlying the South Pacific Gyre exhibit extremely low areal rates of respiration. Here we show that, in this region, microbial cells and aerobic respiration persist through the entire sediment sequence to depths of at least 75 metres below sea floor. Based on the Redfield stoichiometry of dissolved O2 and nitrate, we suggest that net aerobic respiration in these sediments is coupled to oxidation of marine organic matter. We identify a relationship of O2 penetration depth to sedimentation rate and sediment thickness. Extrapolating this relationship, we suggest that oxygen and aerobic communities may occur throughout the entire sediment sequence in 15-44% of the Pacific and 9-37% of the global sea floor. Subduction of the sediment and basalt from these regions is a source of oxidized material to the mantle.

  12. Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake: The role of rooted aquatic vegetation

    USGS Publications Warehouse

    Kreiling, Rebecca M.; Richardson, W.B.; Cavanaugh, J.C.; Bartsch, L.A.

    2011-01-01

    In-stream nitrogen processing in the Mississippi River has been suggested as one mechanism to reduce coastal eutrophication in the Gulf of Mexico. Aquatic macrophytes in river channels and flood plain lakes have the potential to temporarily remove large quantities of nitrogen through assimilation both by themselves and by the attached epiphyton. In addition, rooted macrophytes act as oxygen pumps, creating aerobic microsites around their roots where coupled nitrification-denitrification can occur. We used in situ 15N-NO3- tracer mesocosm experiments to measure nitrate assimilation rates for macrophytes, epiphyton, and microbial fauna in the sediment in Third Lake, a backwater lake of the upper Mississippi River during June and July 2005. We measured assimilation over a range of nitrate concentrations and estimated a nitrate mass balance for Third Lake. Macrophytes assimilated the most nitrate (29.5 mg N m-2 d-1) followed by sediment microbes (14.4 mg N m-2 d-1) and epiphytes (5.7 mg N m-2d-1. Assimilation accounted for 6.8% in June and 18.6% in July of total nitrate loss in the control chambers. However, denitrification (292.4 mg N m-2 d-1) is estimated to account for the majority (82%) of the nitrate loss. Assimilation and denitrification rates generally increased with increasing nitrate concentration but denitrification rates plateaued at about 5 mg N L-1. This suggests that backwaters have the potential to remove a relatively high amount of nitrate but will likely become saturated if the load becomes too large. ?? 2010 US Government.

  13. Anaerobic Growth of Haloarchaeon Haloferax volcanii by Denitrification Is Controlled by the Transcription Regulator NarO

    PubMed Central

    Hattori, Tatsuya; Shiba, Hiromichi; Ashiki, Ken-ichi; Araki, Takuma; Nagashima, Yoh-kow; Yoshimatsu, Katsuhiko

    2016-01-01

    ABSTRACT The extremely halophilic archaeon Haloferax volcanii grows anaerobically by denitrification. A putative DNA-binding protein, NarO, is encoded upstream of the respiratory nitrate reductase gene of H. volcanii. Disruption of the narO gene resulted in a loss of denitrifying growth of H. volcanii, and the expression of the recombinant NarO recovered the denitrification capacity. A novel CXnCXCX7C motif showing no remarkable similarities with known sequences was conserved in the N terminus of the NarO homologous proteins found in the haloarchaea. Restoration of the denitrifying growth was not achieved by expression of any mutant NarO in which any one of the four conserved cysteines was individually replaced by serine. A promoter assay experiment indicated that the narO gene was usually transcribed, regardless of whether it was cultivated under aerobic or anaerobic conditions. Transcription of the genes encoding the denitrifying enzymes nitrate reductase and nitrite reductase was activated under anaerobic conditions. A putative cis element was identified in the promoter sequence of haloarchaeal denitrifying genes. These results demonstrated a significant effect of NarO, probably due to its oxygen-sensing function, on the transcriptional activation of haloarchaeal denitrifying genes. IMPORTANCE H. volcanii is an extremely halophilic archaeon capable of anaerobic growth by denitrification. The regulatory mechanism of denitrification has been well understood in bacteria but remains unknown in archaea. In this work, we show that the helix-turn-helix (HTH)-type regulator NarO activates transcription of the denitrifying genes of H. volcanii under anaerobic conditions. A novel cysteine-rich motif, which is critical for transcriptional regulation, is present in NarO. A putative cis element was also identified in the promoter sequence of the haloarchaeal denitrifying genes. PMID:26787768

  14. Denitrification in alluvial wetlands in an urban landscape.

    PubMed

    Harrison, Melanie D; Groffman, Peter M; Mayer, Paul M; Kaushal, Sujay S; Newcomer, Tamara A

    2011-01-01

    Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.

  15. Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in a shallow fresh water estuary

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Cornwell, J. C.; Stoecker, D. K.; Owens, M. S.

    2012-01-01

    Summer cyanobacterial blooms caused an elevation in pH (9 to ~10.5) that lasted for weeks in the shallow and tidal-fresh region of the Sassafras River, a tributary of Chesapeake Bay (USA). Elevated pH promoted desorption of sedimentary inorganic phosphorus and facilitated conversion of ammonium (NH4+) to ammonia (NH3). In this study, we investigated pH effects on exchangeable NH4+ desorption, nutrient pore water diffusion and flux rates of NH4+, soluble reactive phosphorus (SRP), nitrate (NO3-), nitrification, denitrification, and oxygen consumption. pH elevation enhanced the desorption of exchangeable NH4+ because of NH3 formation from both pore water and adsorbed NH4+ pools. Progressive penetration of high pH from the overlying water into sediment promoted the release of SRP and total ammonium (NH4+ and NH3) into pore water. At elevated pH, high sediment-water effluxes of SRP and total ammonium were associated with reduction in nitrification, denitrification and oxygen consumption rates. Alkaline pH and the toxicity of NH3 may inhibit nitrification in the thin aerobic zone, simultaneously constraining coupled nitrification-denitrification with limited NO3- supply and high pH penetration into the anaerobic zone. Geochemical feedbacks to pH elevation, such as enhancement of dissolved nutrient effluxes and reduction in N2 loss via denitrification, may be responsible for the persistence of cyanobacterial blooms in shallow water ecosystems.

  16. Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in a shallow fresh water estuary

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Cornwell, J. C.; Stoecker, D. K.; Owens, M. S.

    2012-07-01

    Summer cyanobacterial blooms caused an elevation in pH (9 to ~10.5) that lasted for weeks in the shallow and tidal-fresh region of the Sassafras River, a tributary of Chesapeake Bay (USA). Elevated pH promoted desorption of sedimentary inorganic phosphorus and facilitated conversion of ammonium (NH4+) to ammonia (NH3). In this study, we investigated pH effects on exchangeable NH4+ desorption, pore water diffusion and the flux rates of NH4+, soluble reactive phosphorus (SRP) and nitrate (NO3-), nitrification, denitrification, and oxygen consumption. Elevated pH enhanced desorption of exchangeable NH4+ through NH3 formation from both pore water and adsorbed NH4+ pools. Progressive penetration of high pH from the overlying water into sediment promoted the mobility of SRP and the release of total ammonium (NH4+ and NH3) into the pore water. At elevated pH levels, high sediment-water effluxes of SRP and total ammonium were associated with reduction of nitrification, denitrification and oxygen consumption rates. Alkaline pH and the toxicity of NH3 may inhibit nitrification in the thin aerobic zone, simultaneously constraining coupled nitrification-denitrification with limited NO3- supply and high pH penetration into the anaerobic zone. Geochemical feedbacks to pH elevation, such as enhancement of dissolved nutrient effluxes and reduction in N2 loss via denitrification, may enhance the persistence of cyanobacterial blooms in shallow water ecosystems.

  17. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  18. Comparing Denitrification Rates and Carbon Sources in Commercial Scale Upflow Denitrification Biological Filters in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable leve...

  19. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  20. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  1. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  2. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor.

    PubMed

    Giannis, A; Makripodis, G; Simantiraki, F; Somara, M; Gidarakos, E

    2008-01-01

    Long-term biodegradation of MSW in an aerobic landfill bioreactor was monitored as a function of time during 510 days of operation. Operational characteristics such as air importation, temperature and leachate recirculation were monitored. The oxygen utilization rates and biodegradation of organic matter rates showed that aerobic biodegradation was feasible and appropriate to proceed in aerobic landfill bioreactor. Leachate analyses showed that the aerobic bioreactor could remove above 90% of chemical oxygen demand (COD) and close to 100% of biochemical oxygen demand (BOD5) from leachate. Ammonium (NH4+), nitrate (NO3-) and sulphate (SO4(2-)) concentrations of leachate samples were regularly measured. Results suggest that nitrification and denitrification occurred simultaneously, and the increase in nitrate did not reach the levels predicted stoichiometrically, suggesting that other processes were occurring. Leachate recirculation reduced the concentrations of heavy metals because of the effect of the high pH of the leachate, causing heavy metals to be retained by processes such as sorption on MSW, carbonate precipitation, and hydroxide precipitation. Furthermore, the compost derived from the aerobic biodegradation of the organic matter of MSW may be considered as soil improvement in the agricultural plant production. Bio-essays indicated that the ecotoxicity of leachate from the aerobic bioreactor was not toxic at the end of the experiment. Finally, after 510 days of degradation, waste settlement reached 26% mainly due to the compost of the organic matter.

  3. Respiration in the open ocean.

    PubMed

    del Giorgio, Paul A; Duarte, Carlos M

    2002-11-28

    A key question when trying to understand the global carbon cycle is whether the oceans are net sources or sinks of carbon. This will depend on the production of organic matter relative to the decomposition due to biological respiration. Estimates of respiration are available for the top layers, the mesopelagic layer, and the abyssal waters and sediments of various ocean regions. Although the total open ocean respiration is uncertain, it is probably substantially greater than most current estimates of particulate organic matter production. Nevertheless, whether the biota act as a net source or sink of carbon remains an open question.

  4. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  5. The real limits to marine life: a further critique of the Respiration Index

    NASA Astrophysics Data System (ADS)

    Seibel, B. A.; Childress, J. J.

    2012-11-01

    The recently proposed "Respiration Index" (RI = log[PO2]/[PCO2]) suggests that aerobic metabolism is limited by the ratio of reactants (R, oxygen) and products (P, carbon dioxide) according to the thermodynamics of cellular respiration. Here we demonstrate that, because of the large standard free energy change for organic carbon oxidation (ΔG° = -686 kcal mol-1), carbon dioxide can never reach concentrations that would limit the thermodynamics of this reaction. A PCO2 to PO2 ratio of 10503 would be required to reach equilibrium (equilibrium constant, Keq = 10503), where ΔG = 0. Thus a respiration index of -503 would be the real thermodynamic limit to aerobic life. Such a Respiration Index is never reached either in the cell or in the environment. Moreover cellular respiration and oxygen provision are kinetically controlled such that, within limits, environmental oxygen and CO2 concentrations have little to do with intracellular concentrations. The RI is fundamentally different from the aragonite saturation state, a thermodynamic index used to quantify the potential effect of CO2 on calcification rates, because of its failure to incorporate the equilibrium constant of the reaction. Not only is the RI invalid, its use leads to incorrect and dangerous predictions of the threat of changing oxygen and carbon dioxide to marine life. We provide a physiological model that identifies oxygen thresholds, and allows for synergistic effects of ocean acidification and global warming.

  6. The real limits to marine life: a further critique of the Respiration Index

    NASA Astrophysics Data System (ADS)

    Seibel, B. A.; Childress, J. J.

    2013-05-01

    The recently proposed "Respiration Index" (RI = log PO2/PCO2) suggests that aerobic metabolism is limited by the ratio of reactants (oxygen) to products (carbon dioxide) according to the thermodynamics of cellular respiration. Here, we demonstrate further that, because of the large standard free energy change for organic carbon oxidation (ΔG° = -686 kcal mol-1), carbon dioxide can never reach concentrations that would limit the thermodynamics of this reaction. A PCO2 to PO2 ratio of 10503 would be required to reach equilibrium (equilibrium constant, Keq = 10503), where ΔG = 0. Thus, a Respiration Index of -503 would be the real thermodynamic limit to aerobic life. Such a Respiration Index is never reached, either in the cell or in the environment. Moreover, cellular respiration and oxygen provision are kinetically controlled such that, within limits, environmental oxygen and CO2 concentrations have little to do with intracellular concentrations. The RI is fundamentally different from the aragonite saturation state, a thermodynamic index used to quantify the potential effect of CO2 on calcification rates, because of its failure to incorporate the equilibrium constant of the reaction. Not only is the RI invalid, but its use leads to incorrect and misleading predictions of the threat of changing oxygen and carbon dioxide to marine life. We provide a physiological framework that identifies oxygen thresholds and allows for synergistic effects of ocean acidification and global warming.

  7. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  8. Denitrification and a nitrogen budget of created riparian wetlands.

    PubMed

    Batson, Jacqulyn A; Mander, Ulo; Mitsch, William J

    2012-01-01

    Riparian wetland creation and restoration have been proposed to mediate nitrate-nitrogen (NO-N) pollution from nonpoint agricultural runoff. Denitrification by anaerobic microbial communities in wetland soils is believed to be one of the main sinks for NO-N as it flows through wetlands. Denitrification rates were quantified using an in situ acetylene inhibition technique at 12 locations in three wetland/riverine sites at the Olentangy River Wetland Research Park, Columbus, Ohio for 1 yr. Sites included two created flow-through experimental wetlands and one bottomland forest/river-edge site. Points were spatially distributed at inflows, center, and outflows of the two wetlands to include permanently flooded open water, intermittently flooded transitions, and upland. Annual denitrification rates (median [mean]) were significantly higher ( < 0.001) in permanently flooded zones of the wetlands (266 [415] μg NO-N m h) than in shallower transition zones (58 [37.5] μg NO-N m h). Median wetland transition zone denitrification rates did not differ significantly ( ≥ 0.05) from riverside or upland sites. Denitrification rates peaked in spring; for the months of April through June, median denitrification rates ranged from 240 to 1010 μg NO-N m h in the permanently flooded zones. A N mass balance analysis showed that surface water flux of N was reduced by 57% as water flowed through the wetland, but only about 3.5% of the N inflow was permanently removed through denitrification. Most N was probably lost through groundwater seepage. Comparison with denitrification rates measured previously in these wetlands suggests that these rates have remained steady over the past 4 to 5 yr.

  9. Denitrification in coastal Louisiana: A spatial assessment and research needs

    NASA Astrophysics Data System (ADS)

    Rivera-Monroy, Victor H.; Lenaker, Peter; Twilley, Robert R.; Delaune, Ronald D.; Lindau, Charles W.; Nuttle, William; Habib, Emad; Fulweiler, Robinson W.; Castañeda-Moya, Edward

    2010-04-01

    By transforming fixed nitrogen (N) into nitrogen gas, the biochemical processes that support denitrification provide a function critical to maintaining the integrity of ecosystems subjected to increased loading of N from anthropogenic sources. The Louisiana coastal region receives high nitrate (NO 3-) concentrations (> 100 µM) from the Mississippi-Ohio-Missouri River Basin and is also an area undergoing high rates of wetland loss. Ongoing and anticipated changes in the Louisiana coastal region promise to alter biogeochemical cycles including the net rate of denitrification by ecosystems. Projecting what these changes could mean for coastal water quality and natural resources requires an understanding of the magnitude and patterns of variation in denitrification rates and their connection to estuarine water quality at large temporal and spatial scales under current conditions. We compile and review denitrification rates reported in 32 studies conducted in a variety of habitats across coastal Louisiana during the period 1981- 2008. The acetylene inhibition and 15N flux were the preferred techniques (95%); most of the studies used sediment slurries rather than intact sediment cores. There are no estimates of denitrification rates using the N 2/Ar ratio and isotope pairing techniques, which address some of the problems and limitations of the acetylene inhibition and 15N flux techniques. These studies have shown that sediments from estuaries, lakes, marshes, forested wetlands, and the coastal shelf region are capable of high potential denitrification rates when exposed to high NO 3- concentrations (> 100 µM). Maximum potential denitrification rates in experimental and natural settings can reach values > 2500 µmol m 2 h - 1 . The lack of contemporary studies to understand the interactions among critical nitrogen transformations (e.g., organic matter mineralization, immobilization, aquatic plant assimilation, nitrification, nitrogen fixation, dissimilatory nitrate

  10. Evaluation of the denitrification rate of terraced paddy fields

    NASA Astrophysics Data System (ADS)

    Onishi, Takeo; Nakamura, Kimihito; Horino, Haruhiko; Adachi, Toru; Mitsuno, Toru

    2012-05-01

    SummaryRice is one of the most important staple foods in the world. Lowland paddy fields are well known for functioning as denitrification areas, but few studies have been conducted of paddy fields situated on hill slopes (terraced paddy fields). These terraced paddy fields have a characteristic artificial stepped shape, and this unique shape and periodic ponding from rice production may configure unique hydrological properties that might be different from lowland paddy fields. The shape and hydrological properties may also affect transport of nutrients such as nitrogen. This study is particularly focused on the denitrification rate in terraced paddy fields. To understand the hydrological properties of terraced paddy fields, a detailed water budget including the subsurface flow components was calculated. Combining the water budget components and chemical measurements of surface and subsurface water, a nitrogen budget was calculated. The results showed that about 10% of the total nitrogen input, mainly from fertilizers, was lost, suggesting the occurrence of denitrification in the area. The average denitrification rate of the study site was estimated at about 0.53-0.67 g N m-2 year-1. Spatial variations in the measured groundwater nitrate concentration suggest that denitrification is important in both the plough layer and the sloping area. The denitrification rate in the sloping area was estimated at 0.67-0.78 g N m-2 year-1, which is slightly higher than the estimates of denitrification rate in paddy lots, i.e., 0.56-0.61 g N m-2 year-1. The result indicates the importance of sloping areas for denitrification in terraced paddy fields.

  11. The environmental controls that govern the end product of bacterial nitrate respiration

    SciTech Connect

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; Klotz, Martin G.; Ferdelman, Timothy G.; Hettich, Robert L.; Geelhoed, Jeanine S.; Strous, Marc

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.

  12. The environmental controls that govern the end product of bacterial nitrate respiration

    DOE PAGES

    Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; ...

    2014-08-08

    In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gasmore » or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.« less

  13. Characteristics of Biological Nitrogen Removal in a Multiple Anoxic and Aerobic Biological Nutrient Removal Process

    PubMed Central

    Wang, Huoqing; Guan, Yuntao; Li, Li; Wu, Guangxue

    2015-01-01

    Two sequencing batch reactors, one with the conventional anoxic and aerobic (AO) process and the other with the multiple AO process, were operated to examine characteristics of biological nitrogen removal, especially of the multiple AO process. The long-term operation showed that the total nitrogen removal percentage of the multiple AO reactor was 38.7% higher than that of the AO reactor. In the multiple AO reactor, at the initial SBR cycle stage, due to the occurrence of simultaneous nitrification and denitrification, no nitrite and/or nitrate were accumulated. In the multiple AO reactor, activities of nitrite oxidizing bacteria were inhibited due to the multiple AO operating mode applied, resulting in the partial nitrification. Denitrifiers in the multiple AO reactor mainly utilized internal organic carbon for denitrification, and their activities were lower than those of denitrifiers in the AO reactor utilizing external organic carbon. PMID:26491676

  14. 78 FR 18601 - Respirator Certification Fees; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... HUMAN SERVICES Centers for Disease Control and Prevention Respirator Certification Fees; Public Meeting... stakeholders to present information the impact of an increase on respirator fees on individual respirator... in respirator certification and approval fees on individual respirator manufacturers, the...

  15. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  16. Denitrification likely catalyzed by endobionts in an allogromiid foraminifer

    PubMed Central

    Bernhard, Joan M; Edgcomb, Virginia P; Casciotti, Karen L; McIlvin, Matthew R; Beaudoin, David J

    2012-01-01

    Nitrogen can be a limiting macronutrient for carbon uptake by the marine biosphere. The process of denitrification (conversion of nitrate to gaseous compounds, including N2 (nitrogen gas)) removes bioavailable nitrogen, particularly in marine sediments, making it a key factor in the marine nitrogen budget. Benthic foraminifera reportedly perform complete denitrification, a process previously considered nearly exclusively performed by bacteria and archaea. If the ability to denitrify is widespread among these diverse and abundant protists, a paradigm shift is required for biogeochemistry and marine microbial ecology. However, to date, the mechanisms of foraminiferal denitrification are unclear, and it is possible that the ability to perform complete denitrification is because of the symbiont metabolism in some foraminiferal species. Using sequence analysis and GeneFISH, we show that for a symbiont-bearing foraminifer, the potential for denitrification resides in the endobionts. Results also identify the endobionts as denitrifying pseudomonads and show that the allogromiid accumulates nitrate intracellularly, presumably for use in denitrification. Endobionts have been observed within many foraminiferal species, and in the case of associations with denitrifying bacteria, may provide fitness for survival in anoxic conditions. These associations may have been a driving force for early foraminiferal diversification, which is thought to have occurred in the Neoproterozoic era when anoxia was widespread. PMID:22134648

  17. Linking denitrification and infiltration rates during managed groundwater recharge.

    PubMed

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los

    2011-11-15

    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  18. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation

    NASA Astrophysics Data System (ADS)

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  19. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation.

    PubMed

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  20. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  1. Physiological response to ''pressure-demand'' respirator wear

    SciTech Connect

    Raven, P.B.; Bradley, O.; Rohm-Young, D.; McClure, F.L.; Skaggs, B.

    1982-07-01

    This investigation determined cardiorespiratory responses of subjects with normal lung function and exercise tolerance and compared them with subjects with moderate impairment of lung function and exercise tolerance. The respirator was an air-line full-face mask (MSA-Ultravue) ''pressure-demand'' breathing type equipped with an inspiratory resistance of 85 mmH/sub 2/0 at 85 L/min air flow. This resistance was operable in conjunction with the fixed 25 mmH/sub 2/O inspiratory and expiratory resistance required to pressurize the face piece. Physiologically and subjectively the response of the normal and moderately impaired subjects to respirator wear during rest, 35%, 50% and 80% of their maximal aerobic capacity (VO/sub 2//sub max/) were not different. However, the pressure swings inside the face piece exceeded 24 cm H/sub 2/O and resulted in 50% of the subjects being unable to finish 10 minutes of work at 80% VO/sub 2//sub max/. The greater the ventilatory demand placed upon the respirator due to increasing workload, the more like a ''demand'' system pressure-flow response the ''pressure-demand'' system produced. Hence, the concept of increased protection and reduced inspiratory resistance as a result of pressurizing the facepiece during heavy work is seriously questioned.

  2. Denitrification in cypress swamp within the Atchafalaya River Basin, Louisiana.

    PubMed

    Lindau, C W; Delaune, R D; Scaroni, A E; Nyman, J A

    2008-01-01

    Nitrogen has been implicated as a major cause of hypoxia in shallow water along the Louisiana/Texas, USA coasts. Excess nitrogen (mainly nitrate) from Mississippi and Atchafalaya River drainage basins may drive the onset and duration of hypoxia in the northern Gulf of Mexico. Restoring and enhancing denitrification have been proposed to reduce and control coastal hypoxia and improve water quality in the Mississippi River Basin. Sediments were collected from six baldcypress restoration sites within the Atchafalaya River Basin, Louisiana, USA. The acetylene blockage technique was used to measure background and potential sediment denitrification rates. Denitrification fluxes were measured before nitrate addition (background rates) and after nitrate addition of 100mgNl(-1) (potential denitrification) at three seasonal temperatures. Background denitrification was low across all cypress swamp sites ranging from 0.9 to 8.8, 0.6 to 28.5 and 8.8 to 47.5g N evolved ha(-1)d(-1) at water/sediment column temperatures of 8, 22 and 30 degrees C, respectively. After nitrate addition, temperature had a significant effect on sediment denitrification potential. Maximum rates measured at 8, 22 and 30 degrees C were approximately 250-260, 550 and 970gNha(-1)d(-1), respectively. Most of the added nitrate in water columns, incubated at 8 degrees C, was removed after 65d compared to 32d and 17d at 22 and 30 degrees C, respectively. These results indicate cypress swamps have the potential to assimilate and process elevated levels of floodwater nitrate with denitrification being a major removal mechanism.

  3. Siderophores Are Not Involved in Fe(III) Solubilization during Anaerobic Fe(III) Respiration by Shewanella oneidensis MR-1▿ †

    PubMed Central

    Fennessey, Christine M.; Jones, Morris E.; Taillefert, Martial; DiChristina, Thomas J.

    2010-01-01

    Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. ΔSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. ΔSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor. PMID:20190086

  4. Electrical stimulation to restore respiration.

    PubMed

    Creasey, G; Elefteriades, J; DiMarco, A; Talonen, P; Bijak, M; Girsch, W; Kantor, C

    1996-04-01

    Electrical stimulation has been used for over 25 years to restore breathing to patients with high quadriplegia causing respiratory paralysis and patients with central alveolar hypoventilation. Three groups have developed electrical pacing systems for long-term support of respiration in humans. These systems consist of electrodes implanted on the phrenic nerves, connected by leads to a stimulator implanted under the skin, and powered and controlled from a battery-powered transmitter outside the body. The systems differ principally in the electrode design and stimulation waveform. Approximately 1,000 people worldwide have received one of the three phrenic pacing devices, most with strongly positive results: reduced risk of tracheal problems and chronic infection, the ability to speak and smell more normally, reduced risk of accidental interruption of respiration, greater independence, and reduced costs and time for ventilatory care. For patients with partial lesions of the phrenic nerves, intercostal muscle stimulation may supplement respiration.

  5. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  6. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  7. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  8. Enzyme diversity and mosaic gene organization in denitrification.

    PubMed

    Zumft, W G; Körner, H

    1997-02-01

    Denitrification is a main branch of the global nitrogen cycle. In the past ten years unravelling the underlying biochemistry and genetics has proceeded at an increasing pace. Fungal denitrification has become a new field. The biochemical investigation of denitrification has culminated in the description of the crystal structures of the two types of nitrite reductases. The N2O reductase shares with cytochrome c oxidase the CuA center as a structurally novel metal site. The cytochrome b subunit of NO reductase has a striking conservation of heme-binding transmembrane segments versus the subunit I of cytochrome c oxidase. Another putative denitrification gene product shows structural relation to the subunit III of the oxidase. N2O reductase and NO reductase may be ancestors of energy-conserving enzymes of the heme-copper oxidase superfamily. More than 30 genes for denitrification are located in a > 30-kb cluster in Pseudomonas stutzeri, and comparable gene clusters have been identified in Pseudomonas aeruginosa and Paracoccus denitrificans. Genes necessary for nitrite reduction and NO reduction have a mosaic arrangement with very few conserved locations within these clusters and relative to each other.

  9. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  10. Microbial community structure and denitrification in a wetland mitigation bank.

    PubMed

    Peralta, Ariane L; Matthews, Jeffrey W; Kent, Angela D

    2010-07-01

    Wetland mitigation is implemented to replace ecosystem functions provided by wetlands; however, restoration efforts frequently fail to establish equivalent levels of ecosystem services. Delivery of microbially mediated ecosystem functions, such as denitrification, is influenced by both the structure and activity of the microbial community. The objective of this study was to compare the relationship between soil and vegetation factors and microbial community structure and function in restored and reference wetlands within a mitigation bank. Microbial community composition was assessed using terminal restriction fragment length polymorphism targeting the 16S rRNA gene (total bacteria) and the nosZ gene (denitrifiers). Comparisons of microbial function were based on potential denitrification rates. Bacterial community structures differed significantly between restored and reference wetlands; denitrifier community assemblages were similar among reference sites but highly variable among restored sites throughout the mitigation bank. Potential denitrification was highest in the reference wetland sites. These data demonstrate that wetland restoration efforts in this mitigation bank have not successfully restored denitrification and that differences in potential denitrification rates may be due to distinct microbial assemblages observed in restored and reference (natural) wetlands. Further, we have identified gradients in soil moisture and soil fertility that were associated with differences in microbial community structure. Microbial function was influenced by bacterial community composition and soil fertility. Identifying soil factors that are primary ecological drivers of soil bacterial communities, especially denitrifying populations, can potentially aid the development of predictive models for restoration of biogeochemical transformations and enhance the success of wetland restoration efforts.

  11. Nitrogen removal from the saline sludge liquor by electrochemical denitrification.

    PubMed

    Xie, Z M; Li, X Y; Chan, K Y

    2006-01-01

    Sludge liquor from the sludge dewatering process has a high ammonia content. In the present study, a lab-scale electrochemical (EC) system with a pair of Ti electrode plates was used for treating the sludge centrate liquor of digested wastewater sludge with a NH4(+) - N content of around 500 mg/L. The sludge liquor had a high salinity due to seawater being used for toilet flushing in Hong Kong. The results show that the EC process is highly effective for denitrification of the saline sludge liquor. Complete nitrogen removal could be achieved within 1 hr or so. The rate of EC denitrification increased with the current intensity applied. The best current efficiency for nitrogen removal was obtained for a gap distance between the electrodes at 8 mm. Electro-chlorination was considered to be the major mechanism of EC denitrification. The formation of chlorination by-products (CBPs) appeared to be minimal with the total trihalomethanes (THM) detected at a level of 300 microg/L or lower. The power consumption for EC denitrification was around 23 kWh/kg N. Additional electro-flocculation with a pair of iron needle electrodes could enhance the flocculation and subsequent sedimentation of colloidal organics in the sludge liquor, increasing the organic removal from less than 30% to more than 70%. Therefore, the EC process including both electro-denitrification and electro-flocculation can be developed as the most cost-effective method for treatment of the saline sludge liquor.

  12. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.

    PubMed

    Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo

    2014-01-01

    An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.

  13. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out.

  14. A Function for Representing the Biological Challenge to Respiration Posed by Ocean Acidification and the Geochemical Consequences Inferred

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Brewer, P. G.

    2008-12-01

    Increasing levels of dissolved total CO2 in the ocean from the invasion of fossil fuel CO2 via the atmosphere are widely believed to pose challenges to marine life on several fronts. This is most often expressed as a concern from the resulting lower pH, and the impact of this on calcification in marine organisms (coral reefs, calcareous phytoplankton etc.). These concerns are real, but calcification is by no means the only process affected, nor is the fossil fuel CO2 signal the only geochemical driver of the rapidly emerging deep-sea biological stress. Physical climate change is reducing deep-sea ventilation rates, and thereby leading to increasing oxygen deficits and concomitant increased respiratory CO2. We seek to understand the combined effects of the downward penetration of the fossil fuel signal, and the emergence of the depleted O2/increased respiratory CO2 signal at depth. As a first step, we seek to provide a simple function to capture the changing oceanic state. The most basic thermodynamic equation for the functioning of marine animals can be written as Corg + O2 → CO2 , and this results in the simple Gibbs free energy equation: ΔG° = - RT * ln [fCO2]/[Corg]*[fO2], in which the ratio of pO2 to pCO2 emerges as the dominant factor. From this we construct a simple Respiration Index: RI = log10 (pO2/pCO2), which is linear in energy and map this function for key oceanic regions illustrating the expansion of oceanic dead zones. The formal thermodynamic limit for aerobic life is RI = 0; in practice field data shows that at RI ~ 0.7 microbes turn to electron acceptors other than O2, and denitrification begins to occur. This likely represents the lowest limit for the long-term functioning of higher animals, and the zone RI = 0.7 to 1 appears to present challenges to basic functioning of many marine species. In addition, there are large regions of the ocean where denitrification already occurs, and these zones will expand greatly in size as the combined

  15. Nitrogen removal in a SBR operated with and without pre-denitrification: effect of the carbon:nitrogen ratio and the cycle time.

    PubMed

    Mees, Juliana Bortoli Rodrigues; Gomes, Simone Damasceno; Hasan, Salah Din Mahmud; Gomes, Benedito Martins; Boas, Márcio Antonio Vilas

    2014-01-01

    The effects of cycle time (CT) (8, 12 and 16h) and C/N ratio (3, 6 and 9) on nitrogen removal efficiencies in a bench top sequencing batch reactor treating slaughterhouse wastewater were investigated under different operating conditions: in condition 1, the reaction comprises an aerobic/anoxic phase and in condition II, the reaction comprises anoxic I/aerobic/anoxic II phases (with pre-denitrification). The greatest percentages of nitrogen removal were obtained in the CT range from 12 to 16 h and C/N ratios from 3 to 6, with mean efficiency values of 80.76% and 85.57% in condition I and 90.99% and 91.09% in condition II. Although condition II gave a higher removal of total inorganic nitrogen (NH4+ - N + NO2- - N + NO3- - N) than condition I, only condition I showed statistically significant and predictive regression for all the steps of nitrogen removal.

  16. Assessment of the denitrification process in alluvial wetlands at floodplain scale using the SWAT model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As alluvial plains support intensive agricultural activities, they often suffer from groundwater nitrate pollution. Denitrification is recognized as an important process in nitrate pollution control in riparian zones. In shallow aquifer zones influenced by recharged surface water, denitrification ...

  17. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.

    PubMed

    Wu, Ming L; Ettwig, Katharina F; Jetten, Mike S M; Strous, Marc; Keltjens, Jan T; van Niftrik, Laura

    2011-01-01

    Biological methane oxidation proceeds either through aerobic or anaerobic pathways. The newly discovered bacterium Candidatus 'Methylomirabilis oxyfera' challenges this dichotomy. This bacterium performs anaerobic methane oxidation coupled to denitrification, but does so in a peculiar way. Instead of scavenging oxygen from the environment, like the aerobic methanotrophs, or driving methane oxidation by reverse methanogenesis, like the methanogenic archaea in sulfate-reducing systems, it produces its own supply of oxygen by metabolizing nitrite via nitric oxide into oxygen and dinitrogen gas. The intracellularly produced oxygen is then used for the oxidation of methane by the classical aerobic methane oxidation pathway involving methane mono-oxygenase. The present mini-review summarizes the current knowledge about this process and the micro-organism responsible for it.

  18. Determining the nitrogen and oxygen isotope effects of microbial denitrification

    NASA Astrophysics Data System (ADS)

    Philp, C.; Martin, T. S.; Casciotti, K. L.

    2013-12-01

    The nitrogen cycle describes how nitrogen, a critical nutrient for life, moves throughout the ground, oceans, and atmosphere. An essential component of the nitrogen cycle is denitrification, in which bioavailable nitrogen is transformed into nitrous oxide and nitrogen gas and can no longer be harnessed by most organisms. We can further understand the importance of this nitrogen cycle process by examining the N and O isotope effects of microbial denitrification. We have cultured four denitrifying bacteria: P. stutzeri, P. putida, P. aureofaciens, and P. aeruginosa. After providing them with an initial amount of nitrite we tracked the rate at which each type of bacteria consumed the nitrite through a time series experiment. We then measured the N and O isotope ratios of the nitrite at each time point using a gas-source isotope ratio mass spectrometer. The subsequent isotope effects calculated using the Rayleigh equation provide an important tool for modeling denitrification in the environment.

  19. Oxygen Respiration rates of benthic foraminifera measured under laboratory conditions using oxygen microelectrodes

    NASA Astrophysics Data System (ADS)

    Geslin, Emmanuelle; Risgaard-Petersen, N.; Langlet, D.; Metzger, E.; Jorissen, F.

    2010-05-01

    Oxygen respiration rates of benthic foraminifera are not well documented because of the difficulties to measure them. However, the determination of the respiration rates of benthic foraminifera is important in order: 1) to compare the metabolic rates of different species, of various size, and with different microhabitats in the sediment; 2) to estimate the contribution of benthic foraminifera in the aerobic mineralization of organic matter. Benthic foraminifera from 4 different natural environments were used: three species from the intertidal rocky shore of Yeu island, two species from the muddy Bay of Aiguillon, two species from the Bay of Biscay and eleven species from the Rhône prodelta (France). Living foraminifera were placed in a small tube, in which oxygen gradients were determined using oxygen microelectrodes. Respiration rates were calculated on the basis of the oxygen fluxes measured in the vivinity of the foraminiferal specimens. Foraminiferal biovolumes were estimated on the basis of the overall shape of the various species (for example, Ammonia is assimilated to a half sphere) and the width of the shell walls. The results show a wide range of respiration rates according to the species (around 90 to 5300 pmol. cell-1.day-1) and a clear correlation with the biovolume of the foraminifera. No clear relationship between respiration rates and microhabitat is observed. A comparison with previously published data shows that our estimations are generally lower for the small size species. For example, the respiration rate estimations published recently by Nomaki et al. (Journal of Foraminiferal Research, 37, 281-286, 2007) show a range of 900 to 10 000 pmol. cell-1.day-1. The total contribution of benthic foraminifera in the aerobic mineralization of organic matter is estimated for the studied areas. The first results suggest a minor role of benthic foraminifera in this process, which strongly contrasts with their strong contribution to anaerobic mineralisation

  20. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  1. Feasibility of nitrification/denitrification in a sequencing batch biofilm reactor with liquid circulation applied to post-treatment.

    PubMed

    Andrade do Canto, Catarina Simone; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Zaiat, Marcelo; Foresti, Eugênio

    2008-02-01

    An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.

  2. [Using a two-stage SBR process for removal of organics and nitrification-denitrification via nitrite].

    PubMed

    Zeng, Wei; Peng, Yongzhen; Wang, Shuying; Zhang, Naidong

    2002-03-01

    High efficiency removal of organics and nitrogen by using a two-stage SBR process was introduced in this paper. Most of organics was removed in the first stage SBR reactor(SBR1) under the aerobic condition. Subsequently the second stage SBR reactor(SBR2) firstly operated under the aerabic condition for simultaneous nitrification and removal of a small amount of residual organics. Nitrification was controlled to the nitrite-type nitrification. Then denitrification happened in SBR2 under the anoxic condition. The petrochemical industry wastewater was used as external carbon sources in the denitrification. The experimental results indicated that in a two-stage SBR system, two kinds of biomass with the different function existed in the different reactors, which was beneficial to improve the treatment efficiency. The effluent COD reduced again because SBR2 removed COD which was left in SBR1 effluent. It resisted the disturbance of the high organic loading to nitrification. Consequently, as compared to a single SBR process, a two-stage SBR not only improved the treatment efficiency, but also saved the energy cost.

  3. Remediation of nitrate-contaminated wastewater using denitrification biofilters with straws of ornamental flowers added as carbon source.

    PubMed

    Chang, Junjun; Ma, Luyao; Zhou, Yuanyang; Zhang, Shenghua; Wang, Weilu

    Straws of four ornamental flowers (carnation, rose, lily, and violet) were added into denitrification biofilters using gravel as matrix through vertically installed perforated polyvinylchloride pipes to provide organic carbon for the treatment of nitrate-contaminated wastewater operating in batch mode. Removal efficiencies of nitrate and phosphate, as well as temporal variations of nitrogen and carbon during batches 10 and 19, were investigated and assessed. Nitrate removal was efficiently enhanced by the addition of flower straws, but decreased gradually as the organic substances were consumed. Phosphate removal was also improved, although this very limited. High nitrate removal rates were achieved during the initial 12 h in the two batches each lasting for 3 days, along with the depletion of influent dissolved oxygen due to aerobic degradation of the organic compounds. NO2(-)-N of 0.01-2.83 mg/L and NH4(+)-N of 0.02-1.69 mg/L were formed and both positively correlated to the nitrate reduced. Inorganic carbon (IC) concentrations increased during the batches and varied conversely with the nitrate contents, and could be indicative of nitrate removal due to the highly significant positive correlation between NO3(-)-N removed and IC concentration (r(2) = 0.881, p < 0.0001). It is feasible and economical to use the denitrification biofilter to treat nitrate-contaminated wastewater, although further optimization of carbon source addition is still required.

  4. [Rapid Start-up of Simultaneous Nitrification and Denitrification Coupled Phosphorus Removal Process and Its Performing Characteristics].

    PubMed

    Leng, Lu; Xin, Xin; Lu, Hang; Tang, Ya-nan; Wan, Li-hua; Guo, Jun-yuan; Cheng, Qing-feng

    2015-11-01

    In this study, simultaneous nitrification and denitrification (SND) coupled Phosphorus removal process through gradually decreasing DO concentration was investigated by treating wastewater with a low COD/TN ratio (C/N = 3 : 1-4: 1) in a sequencing batch reactor (SBR) inoculated with aerobic granular sludge (AGS). Successful SND coupled Phosphorus phenomenon occurred after 20d at the DO concentration of 0.50-1.0 mg x L(-1). In the following 40 days, the average removal rates of COD, NH4(+) -N, TN and TP were 84.84% , 93.51%, 77.06% and 85.69%, and the NO3(-) -N and NO2(-) -N average accumulations in the effluent were only 4.01 mg x L(-1) and 3.17 mg x L(-1), respectively. The AGS had complete forms and good settling performances, and the sludge volume index (SVI) was about 55.22 mL x g(-1) at the end of starting-up stage. The results of different nitrogen sources showed that the removal rate of TN was in the order of NH4(+) -N > NO2(-) -N > NO3(-) -N, and the removal rate of TP was in the order of NO3(-) -N > NO2(-) -N > NH4(+) -N. The nitrogen and phosphorus removal of wastewater were mainly realized by simultaneous nitrification and denitrification and denitrifying phosphorus removal, respectively.

  5. Aerobic granulation with brewery wastewater in a sequencing batch reactor.

    PubMed

    Wang, Shu-Guang; Liu, Xian-Wei; Gong, Wen-Xin; Gao, Bao-Yu; Zhang, Dong-Hua; Yu, Han-Qing

    2007-08-01

    Aerobic granular sludge was cultivated in a sequencing batch reactor fed with brewery wastewater. After nine-week operation, stable granules with sizes of 2-7 mm were obtained. With the granulation, the SVI value decreased from 87.5 to 32 mL/g. The granular sludge had an excellent settling ability with the settling velocity over 91 m/h. Aerobic granular sludge exhibited good performance in the organics and nitrogen removal from brewery wastewater. After granulation, high and stable removal efficiencies of 88.7% COD(t), 88.9% NH(4)(+)-N were achieved at the volumetric exchange ratio of 50% and cycle duration of 6h. The average COD(t) and COD(s) of the effluent were 212 and 134 mg/L, respectively, and the average effluent ammonium concentration was less than 14.4 mg/L. Nitrogen was removed due to nitrification and simultaneous denitrification in the inner core of granules.

  6. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency.

  7. Impact of chloride on denitrification potential in roadside wetlands.

    PubMed

    Lancaster, Nakita A; Bushey, Joseph T; Tobias, Craig R; Song, Bongkeun; Vadas, Timothy M

    2016-05-01

    Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl(-) concentrations from 0 to 5000 mg L(-1) for 96 h. Denitrification rates were measured by the isotope pairing technique using (15)N-NO3(-), while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p < 0.05) inhibited denitrification in forested wetlands at a Cl(-) dosage of 2500 or 5000 mg L(-1), but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl(-). The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl(-) were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl(-). The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl(-) use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on N removal

  8. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  9. Effect of atrazine on potential denitrification in aquifer sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Jagucki, M.L.; McMahon, P.B.

    1994-01-01

    Agriculturaf use of fertilizers and herbicides has often resulted in nitrate and atrazine contamination of the shallow aquifers that underlay cultivated fields. In several cases, the concentrations of atrazine and nitrate dissolved in ground water are positively correlated (Spalding ef al., 1979; Chen and Druliner, 1987; Spalding et al., 1989). Because simultaneous application of nitrate fertilizers and the herbicide, atrazine, is common, the co-occurrence of these contaminants in ground water is not entirely unexpected. However, the possibility also exists that this co-occurrence may ret&t interactions of atrazine with nitrate in the subsurface environment. R&ton and Cervelh (1980), McElhannon ei al. (1984) and Mills (1984) have reported that atrazine inhibits denitrification in‘soil’lf this i‘s indeed the case, atrazine contamination may contribute to nitrate preservation and accumulation in anaerobic aquifers by inhibiting denitrification, the principal mechanism for nitrate removal in anaerobic systems. Huwever, the effect of atrazine on the rate of denit~ficat~on in soils remains controversial, because atrazine has been reported variously to enhance denitrification (Cervelli and Ralston, 1983) or to have no effect on denitrification in soils (Bollag and Henninger, 1976; Yeomans and Bremner, IQ85, 1987). Moreover, the effect of dissolved atrazine concentrations on the rate of denitrification in aquifer sediments has not been reported. Our purpose was to determine the elects of dissolved atrazine concentrations on potential rates ofdenitri~~t~on in aquifer sediments from two different agricultural areas to evaluate the hypothesis that, by inhibiting denitrification, atrazine contributes to nitrate preservation in anaerobic aquifer systems.

  10. Methods for measuring denitrification: Diverse approaches to a difficult problem

    USGS Publications Warehouse

    Groffman, Peter M; Altabet, Mary A.; Böhlke, J.K.; Butterbach-Bahl, Klaus; David, Mary B.; Firestone, Mary K.; Giblin, Anne E.; Kana, Todd M.; Nielsen , Lars Peter; Voytek, Mary A.

    2006-01-01

    Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3−) and nitrite (NO2−), to the gases nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) 15N tracers, (3) direct N2 quantification, (4) N2:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.

  11. Soil Respiration - A Geochemist's Perspective

    NASA Astrophysics Data System (ADS)

    Van Cappellen, P.

    2015-12-01

    Soil biogeochemistry is largely driven by the decomposition of plant-derived organic matter by soil microorganisms. In addition to its effects on water quality and soil fertility, the decomposition of organic matter couples soil processes to climate, via the production and emission of greenhouse gases. In this presentation, I will review a number of key factors controlling the rate of decomposition of soil organic matter. In particular, I will discuss the importance of the spatial and temporal variations in redox conditions as drivers of soil respiration. The discussion will highlight the limitations of current soil respiration models based on partitioning soil organic matter in a finite number of pools of different degradability. In order to predict the sensitivity of soil respiration to anthropogenic pressures - including climate warming - it is crucial to relate the apparent degradability of soil organic matter to the geochemical and hydrological dynamics of the soil environment. Overall, there remains much scope for geochemists to help develop more robust, process-based, representations of soil respiration in global carbon models and climate predictions.

  12. The Swi3 protein plays a unique role in regulating respiration in eukaryotes

    PubMed Central

    Lal, Sneha; Alam, Md Maksudul; Hooda, Jagmohan; Shah, Ajit; Cao, Thai M.; Xuan, Zhenyu; Zhang, Li

    2016-01-01

    Recent experimental evidence increasingly shows that the dysregulation of cellular bioenergetics is associated with a wide array of common human diseases, including cancer, neurological diseases and diabetes. Respiration provides a vital source of cellular energy for most eukaryotic cells, particularly high energy demanding cells. However, the understanding of how respiration is globally regulated is very limited. Interestingly, recent evidence suggests that Swi3 is an important regulator of respiration genes in yeast. In this report, we performed an array of biochemical and genetic experiments and computational analysis to directly evaluate the function of Swi3 and its human homologues in regulating respiration. First, we showed, by computational analysis and measurements of oxygen consumption and promoter activities, that Swi3, not Swi2, regulates genes encoding functions involved in respiration and oxygen consumption. Biochemical analysis showed that the levels of mitochondrial respiratory chain complexes were substantially increased in Δswi3 cells, compared with the parent cells. Additionally, our data showed that Swi3 strongly affects haem/oxygen-dependent activation of respiration gene promoters whereas Swi2 affects only the basal, haem-independent activities of these promoters. We found that increased expression of aerobic expression genes is correlated with increased oxygen consumption and growth rates in Δswi3 cells in air. Furthermore, using computational analysis and RNAi knockdown, we showed that the mammalian Swi3 BAF155 and BAF170 regulate respiration in HeLa cells. Together, these experimental and computational data demonstrated that Swi3 and its mammalian homologues are key regulators in regulating respiration. PMID:27190130

  13. Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process.

    PubMed

    Lu, Yong-Ze; Wang, Hou-Feng; Kotsopoulos, Thomas A; Zeng, Raymond J

    2016-05-01

    In this study, a novel process for phosphorus (P) recovery without excess sludge production from granular sludge in simultaneous nitrification-denitrification and P removal (SNDPR) system is presented. Aerobic microbial granules were successfully cultivated in an alternating aerobic-anaerobic sequencing batch reactor (SBR) for removing P and nitrogen (N). Dense and stable granular sludge was created, and the SBR system showed good performance in terms of P and N removal. The removal efficiency was approximately 65.22 % for N, and P was completely removed under stable operating conditions. Afterward, new operating conditions were applied in order to enhance P recovering without excess sludge production. The initial SBR system was equipped with a batch reactor and a non-woven cloth filter, and 1.37 g of CH3COONa·3H2O was added to the batch reactor after mixing it with 1 L of sludge derived from the SBR reactor to enhance P release in the liquid fraction, this comprises the new system configuration. Under the new operating conditions, 93.19 % of the P contained in wastewater was released in the liquid fraction as concentrated orthophosphate from part of granular sludge. This amount of P could be efficiently recovered in the form of struvite. Meanwhile, a deterioration of the denitrification efficiency was observed and the granules were disintegrated into smaller particles. The biomass concentration in the system increased firstly and then maintained at 4.0 ± 0.15 gVSS/L afterward. These results indicate that this P recovery operating (PRO) mode is a promising method to recover P in a SNDPR system with granular sludge. In addition, new insights into the granule transformation when confronted with high chemical oxygen demand (COD) load were provided.

  14. Observations of denitrification and dehydration in the winter polar stratospheres

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kelly, K. K.; Kawa, S. R.; Tuck, A. F.; Loewenstein, M.

    1990-01-01

    It is argued that denitrification of the Arctic stratosphere can be explained by the selective growth and sedimentation of aerosol particles rich in nitric acid. Because reactive nitrogen species moderate the destruction of ozone by chlorine-catalyzed reactions by sequestering chlorine in reservoir species such as ClONO2, the possibility of the removal of reactive nitrogen without dehydration should be allowed for in attempts to model ozone depletion in the Arctic. Indeed, denitrification along with elevated concentrations of reactive chlorine observed in 1989 indicate that the Arctic was chemically primed for ozone destruction without an extended period of temperatures below the frost point, as is characteristic of the Antarctic.

  15. Transcription of genes coding for metabolic key functions in Nitrosomonas europaea during aerobic and anaerobic growth.

    PubMed

    Beyer, Sonja; Gilch, Stefan; Meyer, Ortwin; Schmidt, Ingo

    2009-01-01

    Nitrosomonas europaea can grow under conditions of chemolithoautotrophic aerobic (oxygen as oxidant) as well as anaerobic [nitrogen dioxide (NO(2)) as oxidant] nitrification or chemoorganotrophic anaerobic pyruvate-dependent denitrification. In this study, the adaptation of the transcription (mRNA synthesis/concentration) of N. europaea to aerobic and anaerobic growth conditions was evaluated and the transcription of genes coding for metabolic key functions was analyzed: nitrogen and energy metabolism (amoA, hao, rh1, nirK, norB, nsc, aceE, ldhA, ppc, gltA, odhA, coxA), carbon dioxide fixation (cbbL), gluconeogenesis (ppsA), cell growth (ftsZ), and oxidative stress (sodB). During aerobic ammonia oxidation the specific activities of ammonia oxidation, nitrite reduction, and the growth rates correlated with the transcription level of the corresponding genes amoA/hao, nirK/norB/nsc, and cbbL/ftsZ. In anaerobically ammonia-oxidizing cells of N. europaea, the cellular mRNA concentrations of amoA, hao, rh1,coxA, cbbL, ftsZ, and sodB were reduced compared with aerobically nitrifying cells, but the mRNA levels of nirK, norB, and nsc were significantly increased. During anaerobic pyruvate-dependent denitrification, the mRNA abundance of nirK, norB, nsc, aceE, gltA, and odhA was increased, while the concentrations of amoA,hao, rh1, coxAcbbL, ftsZ, and sodB were significantly reduced. Temperature, pH value, and NH(4)(+), O(2), NO, and NO(2) concentrations had comparatively small effects on the transcription of the studied genes.

  16. The role of mitochondrial respiration in physiological and evolutionary adaptation.

    PubMed

    Das, Jayatri

    2006-09-01

    Aerobic mitochondria serve as the power sources of eukaryotes by producing ATP through oxidative phosphorylation (OXPHOS). The enzymes involved in OXPHOS are multisubunit complexes encoded by both nuclear and mitochondrial DNA. Thus, regulation of respiration is necessarily a highly coordinated process that must organize production, assembly and function of mitochondria to meet an organism's energetic needs. Here I review the role of OXPHOS in metabolic adaptation and diversification of higher animals. On a physiological timescale, endocrine-initiated signaling pathways allow organisms to modulate respiratory enzyme concentration and function under changing environmental conditions. On an evolutionary timescale, mitochondrial enzymes are targets of natural selection, balancing cytonuclear coevolutionary constraints against physiological innovation. By synthesizing our knowledge of biochemistry, physiology and evolution of respiratory regulation, I propose that we can now explore questions at the interface of these fields, from molecular translation of environmental cues to selection on mitochondrial haplotype variation.

  17. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    PubMed

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.

  18. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    PubMed Central

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate-induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH-control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils. PMID:24249526

  19. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process.

    PubMed

    Kong, Qiang; Wang, Zhi-Bin; Niu, Peng-Fei; Miao, Ming-Sheng

    2016-06-01

    This study evaluates greenhouse gas emission and the microbial community dynamics during simultaneous nitrification and denitrification (SND) process. Based on CO2 equivalents, the SND reactor released 4.28g of greenhouse gases each cycle. 2.91% of the incoming nitrogen load was emitted as N2O. The CO2 and N2O emissions mainly occurred in the aerobic stage and CH4 emissions were consistently near zero. Extracellular polymeric substance (EPS) contents in activated sludge increased during start-up the SND process. High-throughput sequencing showed increases in bacterial species richness, leading to changes in EPS content and composition observed using 3D-EEM fluorescence spectra. For denitrifying bacteria, the relative abundance of Pseudomonas significantly increased during the SND process, while Paracoccus decreased significantly. For phosphorus-accumulating bacteria, the relative abundance of Rhodocyclaceae also significantly increased. The relative abundance of other functional microbes, such as Nitrosomonadaceae (ammonia oxidizer), Nitrospirales (nitrite oxidizer) and Planctomyces (anammox) decreased significantly during the SND process.

  20. Denitrification in Alluvial Wetlands in an Urban Landscape

    EPA Science Inventory

    Riparian wetlands have been shown to be particularly effective “sinks” for nitrate-N (NO3-), minimizing the downstream export of nitrogen (N) to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested...

  1. N₂O accumulation from denitrification under different temperatures.

    PubMed

    Poh, Leong Soon; Jiang, Xie; Zhang, Zhongbo; Liu, Yu; Ng, Wun Jern; Zhou, Yan

    2015-11-01

    The effects of temperature on nitrous oxide (N2O) accumulation during denitrification and denitritation were investigated. Batch experiments were performed to measure N2O accumulation at 25 and 35 °C. More N2O accumulation was observed during denitritation at the higher temperature as compared with full denitrification and low temperature tests. The highest nitrite concentration tested in this study (25 mg/L NO2 (-)N and pH 8.0) did not show inhibitory effect on N2O reduction. It was found that the major cause of more N2O accumulation during denitrification at higher temperature was due to higher N2O production rate and lower N2O solubility. Specific nitrate, nitrite, and N2O reduction rates increased 62, 61, and 41 %, respectively, when temperature rose from 25 to 35 °C. The decrease of N2O solubility in mixed liquor at 35 °C (when compared to 25 °C) resulted in faster diffusing rate of N2O from liquid to gas phase. It was also more difficult for gas phase N2O to be re-dissolved. The diffused N2O was then accumulated in the headspace, which was not available for denitrification by denitrifiers. The results of this study suggest higher temperature may worsen N2O emission from wastewater treatment plants (WWTPs).

  2. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order of...

  3. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin, and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order o...

  4. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  5. Sediment nitrification and denitrification rates in a Lake Superior estuary

    EPA Science Inventory

    Microbially-mediated nitrogen (N) cycling in aquatic sediments has been recognized as an ecosystem service due to mitigation of N-transport to receiving waters. In 2011 and 2012, we compared nitrification (NIT), unamended (DeNIT) and amended (DEA) denitrification rates among spat...

  6. Denitrification Rates in a Lake Superior Coastal Wetland

    EPA Science Inventory

    In recent years, nitrogen has increased substantially in the Nation’s aquatic ecosystems mainly due to the increased use of fertilizers and land use practices. Denitrification is a process that can potentially mitigate this increased influx of fixed nitrate. Coastal wetlands are ...

  7. Nitrous oxide emission from denitrification in stream and river networks

    EPA Science Inventory

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification which converts N to N2O and dinitrog...

  8. Denitrification in Wood Chip Bioreactors at Different Water Flows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage in agricultural watersheds exports a large quantity of nitrate-nitrogen (NO3-N) and concentrations frequently exceed 10 mg L-1. A laboratory column study was conducted to investigate the ability of a wood chip biofilter to promote denitrification under mean water flow rates of 2....

  9. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria

    PubMed Central

    Hards, Kiel; Vilchèze, Catherine; Hartman, Travis; Berney, Michael

    2014-01-01

    Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3-type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis. PMID:25346874

  10. Gene expression profiling of Corynebacterium glutamicum during Anaerobic nitrate respiration: induction of the SOS response for cell survival.

    PubMed

    Nishimura, Taku; Teramoto, Haruhiko; Inui, Masayuki; Yukawa, Hideaki

    2011-03-01

    The gene expression profile of Corynebacterium glutamicum under anaerobic nitrate respiration revealed marked differences in the expression levels of a number of genes involved in a variety of cellular functions, including carbon metabolism and respiratory electron transport chain, compared to the profile under aerobic conditions using DNA microarrays. Many SOS genes were upregulated by the shift from aerobic to anaerobic nitrate respiration. An elongated cell morphology, similar to that induced by the DivS-mediated suppression of cell division upon cell exposure to the DNA-damaging reagent mitomycin C, was observed in cells subjected to anaerobic nitrate respiration. None of these transcriptional and morphological differences were observed in a recA mutant strain lacking a functional RecA regulator of the SOS response. The recA mutant cells additionally showed significantly reduced viability compared to wild-type cells similarly grown under anaerobic nitrate respiration. These results suggest a role for the RecA-mediated SOS response in the ability of cells to survive any DNA damage that may result from anaerobic nitrate respiration in C. glutamicum.

  11. Elucidation of denitrification mechanism in karstic Ryukyu limestone aquifer

    NASA Astrophysics Data System (ADS)

    Hijikawa, K.

    2014-12-01

    Nitrate (NO3-) concentrations in public water supplies have risen above acceptable levels in many areas of the world including Japan, largely as a result of contamination by human and animal waste and overuse of fertilizers. A previous study has characterized nitrate concentrations in groundwater in this area is a higher than the upper value (44mgL-1) of environmental quality criteria on one hands. On the other hand, there exists points where the concentration of nitric acid is not detected, which suggests the possibility of denitrification. During early 2000, a new analytical procedure for nitrate isotopic measurement, termed the "denitrifier method", was established. With the development of the nitrate isotope tracer method, much research has been reported detailing sources of groundwater nitrate and denitrification mechanisms. This study presents a pilot case study (in the southern part of Okinawa Main Island, Japan, where Ryukyu limestone is extensively distributed) using the combined stable isotope ratios of major elements (C, N and S) as net recorders of the biogeochemical reactions with the aim of elucidation of denitrification mechanism in Ryukyu limestone aquifer. As a result, significant decreases in nitrate concentrations due to denitrification were observed in groundwater at some locations, which induced increases in isotope ratios up to 59.7‰ for δ15NNO3. These points of groundwater were located above the cutoff wall of the underground dam and near the fault. It is considered that the residence time of the groundwater is longer than the other points at these denitrification points, and that reduction condition tends to be formed in the groundwater. However, the rapid rise of the groundwater level due to rainfall is likely to occur in the Ryukyu limestone aquifer, where the ground water was found to have changed dynamically from the reduction condition to the oxidation condition which a denitrification (has not occured)does not occur. Moreover, the

  12. Influence of biochar on soil pore structure and denitrification

    NASA Astrophysics Data System (ADS)

    Maenhout, Peter; Sleutel, Steven; Ameloot, Nele; De Neve, Stefaan

    2014-05-01

    Incorporation of biochar into soils has frequently been found to reduce soil emission of the greenhouse gas N2O, formed as an intermediate during microbial denitrification. The exact mechanism that regulates N2O emission reduction after biochar incorporation is still unknown and diverse hypotheses on either chemical, physical or biological controls over soil denitrification exist. The porous structure of biochar may directly and indirectly influence the soil pore structure upon its incorporation. Firstly biochar may increase soil aeration and thereby reduce denitrification which requires an anaerobic atmosphere to continue. In order to investigate this hypothesis we incorporated 4 biochar types in a sandy loam soil and collected undisturbed soil cores after 8 months of field incorporation. We then crushed half of the soil cores and replaced them. We followed N2O emissions from undisturbed and disturbed biochar amended soil cores by GC headspace analysis. From the disturbed soil cores no emission reduction was expected because soil pore structure was severely disrupted. However, both disturbed and undisturbed soil cores showed emission reductions when compared to the soil cores without biochar amendment. This allowed us to reject the hypothesis that biochar would affect soil denitrification through increased soil aeration. We moved to investigate a second hypothesis, viz. 'Through the retention of water in its finer pores, biochar could create local anaerobic 'denitrification hot spots' in soils. It could be hypothesized that the final further reduction of N2O into N2 is stimulated. We tested this hypothesis by comparing N2+N2O (acetylene inhibition) and N2O emissions from undisturbed soil cores with or without biochar amended, at 70 and 90 % WFPS. At 70% WFPS we expected higher N2 emissions in biochar amended soils compared to the unamended control cores, through the action of anaerobic hot spots in biochar. In contrast, at 90% WFPS anaerobicity would be general in

  13. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.

    PubMed

    van Maris, A J; Bakker, B M; Brandt, M; Boorsma, A; Teixeira de Mattos, M J; Grivell, L A; Pronk, J T; Blom, J

    2001-07-01

    The tendency of Saccharomyces cerevisiae to favor alcoholic fermentation over respiration is a complication in aerobic, biomass-directed applications of this yeast. Overproduction of Hap4p, a positive transcriptional regulator of genes involved in respiratory metabolism, has been reported to positively affect the balance between respiration and fermentation in aerobic glucose-grown batch cultures. In this study, the effects of HAP4 overexpression have been quantified in the prototrophic S. cerevisiae strain CEN.PK 113-7D under a variety of growth conditions. In aerobic glucose-limited chemostat cultures, overexpression of HAP4 increased the specific growth rate at which aerobic fermentation set in by about 10% relative to the isogenic wild-type. Upon relief of glucose-limited conditions, the HAP4-overexpressing strain produced slightly less ethanol than the wild-type strain. The effect of Hap4p overproduction was most drastic in aerobic, glucose-grown chemostat cultures in which ammonium was limiting. In such cultures, the biomass yield on glucose was double that of the wild-type.

  14. Anaerobic growth of a "strict aerobe" (Bacillus subtilis).

    PubMed

    Nakano, M M; Zuber, P

    1998-01-01

    There was a long-held belief that the gram-positive soil bacterium Bacillus subtilis is a strict aerobe. But recent studies have shown that B. subtilis will grow anaerobically, either by using nitrate or nitrite as a terminal electron acceptor, or by fermentation. How B. subtilis alters its metabolic activity according to the availability of oxygen and alternative electron acceptors is but one focus of study. A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, occupies an early stage in the regulatory pathway governing anaerobic respiration. One of the essential roles of ResD and ResE in anaerobic gene regulation is induction of fnr transcription upon oxygen limitation. FNR is a transcriptional activator for anaerobically induced genes, including those for respiratory nitrate reductase, narGHJI.B. subtilis has two distinct nitrate reductases, one for the assimilation of nitrate nitrogen and the other for nitrate respiration. In contrast, one nitrite reductase functions both in nitrite nitrogen assimilation and nitrite respiration. Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate.

  15. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    PubMed

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  16. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth

    PubMed Central

    Forte, Elena; Borisov, Vitaliy B.; Falabella, Micol; Colaço, Henrique G.; Tinajero-Trejo, Mariana; Poole, Robert K.; Vicente, João B.; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed. PMID:27030302

  17. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth.

    PubMed

    Forte, Elena; Borisov, Vitaliy B; Falabella, Micol; Colaço, Henrique G; Tinajero-Trejo, Mariana; Poole, Robert K; Vicente, João B; Sarti, Paolo; Giuffrè, Alessandro

    2016-03-31

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed.

  18. [Research advances in forest soil respiration].

    PubMed

    Luan, Junwei; Xiang, Chenghua; Luo, Zongshi; Gong, Yuanbo

    2006-12-01

    Among the methods of measuring forest soil respiration, infrared CO2 analysis is the optimal one so far. Comparing with empirical model, the process-based model in simulating the production and transportation of soil CO2 has the advantage of considering the biological and physical processes of soil respiration. Generally, soil respiration is positively correlated with soil temperature and moisture, but there are still many uncertainties about the relationships between soil respiration and forest management activities such as firing, cutting, and fertilization. The relationships of soil respiration with vegetation type and soil microbial biomass, as well as the spatial heterogeneity of soil respiration, are the hotspots in recent researches. Some issues and future development in forest soil respiration research were discussed in this paper.

  19. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  20. Denitrification in anaerobic lagoons used to treat swine wastewater.

    PubMed

    Hunt, P G; Matheny, T A; Ro, K S; Vanotti, M B; Ducey, T F

    2010-01-01

    Anaerobic lagoons are commonly used for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple, their physical, chemical, and biological processes are very complex. This study of anaerobic lagoons had two objectives: (i) to quantify denitrification enzyme activity (DEA) and (ii) to evaluate the influence of lagoon characteristics on the DEA. The DEA was measured by the acetylene inhibition method. Wastewater samples and physical and chemical measurements were taken from the wastewater column of nine anaerobic swine lagoons from May 2006 to May 2009. These lagoons were typical for anaerobic swine lagoons in the Carolinas relative to their size, operation, and chemical and physical characteristics. Their mean value for DEA was 87 mg N2O-N m(-3) d(-1). In a lagoon with 2-m depth, this rate of DEA would be compatible with 1.74 kg N ha(-1) d(-1) When nonlimiting nitrate was added, the highest DEA was compatible with 4.38 kg N ha(-1) d(-1) loss. Using stepwise regression for this treatment, the lagoon characteristics (i.e., soluble organic carbon, total nitrogen, temperature, and NO3-N) provided a final step model R2 of 0.69. Nitrous oxide from incomplete denitrification was not a significant part of the system nitrogen balance. Although alternate pathways of denitrification may exist within or beneath the wastewater column, this paper documents the lack of sufficient denitrification enzyme activity within the wastewater column of these anaerobic lagoons to support large N2 gas losses via classical nitrification and denitrification.

  1. Denitrification gene expression in clay-soil bacterial community

    NASA Astrophysics Data System (ADS)

    Pastorelli, R.; Landi, S.

    2009-04-01

    Our contribution in the Italian research project SOILSINK was focused on microbial denitrification gene expression in Mediterranean agricultural soils. In ecosystems with high inputs of nitrogen, such as agricultural soils, denitrification causes a net loss of nitrogen since nitrate is reduced to gaseous forms, which are released into the atmosphere. Moreover, incomplete denitrification can lead to emission of nitrous oxide, a potent greenhouse gas which contributes to global warming and destruction of ozone layer. A critical role in denitrification is played by microorganisms and the ability to denitrify is widespread among a variety of phylogenetically unrelated organisms. Data reported here are referred to wheat cultivation in a clay-rich soil under different environmental impact management (Agugliano, AN, Italy). We analysed the RNA directly extracted from soil to provide information on in situ activities of specific populations. The expression of genes coding for two nitrate reductases (narG and napA), two nitrite reductases (nirS and nirK), two nitric oxide reductases (cnorB and qnorB) and nitrous oxide reductase (nosZ) was analyzed by reverse transcription (RT)-nested PCR. Only napA, nirS, nirK, qnorB and nosZ were detected and fragments sequenced showed high similarity with the corresponding gene sequences deposited in GenBank database. These results suggest the suitability of the method for the qualitative detection of denitrifying bacteria in environmental samples and they offered us the possibility to perform the denaturing gradient gel electrophoresis (DGGE) analyzes for denitrification genes.. Earlier conclusions showed nirK gene is more widely distributed in soil environment than nirS gene. The results concerning the nosZ expression indicated that microbial activity was clearly present only in no-tilled and no-fertilized soils.

  2. O 2 reduction and denitrification rates in shallow aquifers

    USGS Publications Warehouse

    Tesoriero, A.J.; Puckett, L.J.

    2011-01-01

    O 2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero-and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O 2 reduction rates varied widely within and between sites, with zero-order rates ranging from <3 ??mol L -1 yr -1 to more than 140 ??mol L -1 yr -1 and first-order rates ranging from 0.02 to 0.27 yr -1. Moderate denitrification rates (10-100 ??mol N L -1 yr -1; 0.06-0.30 yr -1) were observed in most areas with O 2 concentrations below 60 mol L -1, while higher rates (>100 mol N L -1 yr -1; >0.36 yr -1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from <20 yr to >80 yr. The availability of electron donors is indicated as the primary factor affecting O 2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O 2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O 2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation. copyright 2011 by the American Geophysical Union.

  3. O2 reduction and denitrification rates in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Tesoriero, Anthony J.; Puckett, Larry J.

    2011-12-01

    O2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero- and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O2 reduction rates varied widely within and between sites, with zero-order rates ranging from <3 μmol L-1 yr-1 to more than 140 μmol L-1 yr-1 and first-order rates ranging from 0.02 to 0.27 yr-1. Moderate denitrification rates (10-100 μmol N L-1 yr-1; 0.06-0.30 yr-1) were observed in most areas with O2 concentrations below 60 μmol L-1, while higher rates (>100 μmol N L-1 yr-1; >0.36 yr-1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from <20 yr to >80 yr. The availability of electron donors is indicated as the primary factor affecting O2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation.

  4. Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1.

    PubMed

    Watanabe, Masayuki; van der Veen, Stijn; Nakajima, Hadjime; Abee, Tjakko

    2012-01-01

    Lactobacillus plantarum is a facultatively anaerobic bacterium that can perform respiration under aerobic conditions in the presence of haem, with vitamin K2 acting as a source of menaquinone. We investigated growth performance and oxidative stress resistance of Lb. plantarum WCFS1 cultures grown in de Man, Rogosa and Sharpe (MRS) medium without and with added manganese under fermentative, aerobic, aerobic with haem, and respiratory conditions. Previous studies showed that Lb. plantarum WCFS1 lacks a superoxide dismutase and requires high levels of manganese for optimum fermentative and aerobic growth. In this study, respiratory growth with added manganese resulted in significantly higher cell densities compared to the other growth conditions, while without manganese added, similar but lower cell densities were reached. Notably, cells derived from the respiratory cultures showed the highest hydrogen peroxide resistance in all conditions tested, although similar activity levels of haem-dependent catalase were detected in cells grown under aerobic conditions with haem. These results indicate that oxidative stress resistance of Lb. plantarum is affected by respiratory growth, growth phase, haem and manganese. As levels of haem and manganese can differ considerably in the raw materials used in fermentation processes, including those of milk, meat and vegetables, the insight gained here may provide tools to increase the performance and robustness of starter bacteria.

  5. Quality and Quantity of Leachate in Aerobic Pilot-Scale Landfills

    NASA Astrophysics Data System (ADS)

    Bilgili, Memmet Sinan; Demir, Ahmet; Özkaya, Bestamin

    2006-08-01

    In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl-), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3 --N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl- concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 - concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.

  6. Microbial community analysis of an aerobic nitrifying-denitrifying MBR treating ABS resin wastewater.

    PubMed

    Chang, Chia-Yuan; Tanong, Kulchaya; Xu, Jia; Shon, Hokyong

    2011-05-01

    A two-stage aerobic membrane bioreactor (MBR) system for treating acrylonitrile butadiene styrene (ABS) resin wastewater was carried out in this study to evaluate the system performance on nitrification. The results showed that nitrification of the aerobic MBR system was significant and the highest TKN removal of approximately 90% was obtained at hydraulic retention time (HRT) 18 h. In addition, the result of nitrogen mass balance revealed that the percentage of TN removal due to denitrification was in the range of 8.7-19.8%. Microbial community analysis based on 16s rDNA molecular approach indicated that the dominant ammonia oxidizing bacteria (AOB) group in the system was a β-class ammonia oxidizer which was identified as uncultured sludge bacterium (AF234732). A heterotrophic aerobic denitrifier identified as Thauera mechernichensis was found in the system. The results indicated that a sole aerobic MBR system for simultaneous removals of carbon and nitrogen can be designed and operated for neglect with an anaerobic unit.

  7. Wetting increases respiration loss from the Arctic tundra

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Lipson, David; Barott, Katie; Tha Paw U, Kyaw; Oberbauer, Steven; Olivas, Paulo; Hastings, Steven; Hinzman, Larry; Oechel, Walter

    2010-05-01

    Numerous studies (Billings et al. 1982; Peterson et al. 1984; Oberbauer et al. 1991; Funk et al., 1994; Oechel et al., 1998) have demonstrated that decreasing soil moisture and increasing soil oxygen increase respiration loss in the Arctic tundra. Warming and drying of tundra soils due to climate change are assumed to increase greenhouse gas emissions and the potential for strong positive feedbacks on the climate of the Arctic. However, here we show that an increase in the water table can lead to the same result, increasing respiration. In the largest scale water table manipulation experiment ever performed in the Arctic tundra, we showed that increasing the water table to 7.5 cm above the surface caused the ecosystem to more than half its net C uptake (9 gCm-2season-1) compared to the 23 gCm-2season-1 of a control site where water table was about 2 cm below the surface. Standing water saturated the moss layer, increased the heat conduction into the soil, and lead to higher soil temperature, deeper thaw and, surprisingly, to higher respiration rates in the most anaerobic area of the manipulation experiment. Probably, the increase in thaw depth increased substrate availability and freed sufficient Fe(III) to act as an electron acceptor in place of oxygen for respiration and CO2 production in these anaerobic soils (Zehnder and Stumm 1988, Kappler et al. 2004, Lipson et al. in review). In contrast to the general assumption that aerobic peat soils release more CO2 than soils under anaerobic conditions (Billing et al., 1982; Funk et al., 1994; Bridgham et al., 1998), here we show that this is not always the case. That the increase in the water table can result in increased respiration, even under nearly fully anaerobic conditions, through previously underestimated pathways, highlights yet another unexpected positive feedback on climate change of carbon exchange in the Arctic. That anaerobic conditions do not necessarily prevent CO2 loss in permafrost areas has major

  8. Nitrous oxide emissions and denitrification rates: A blueprint for smart management and remediation of agricultural landscapes.

    NASA Astrophysics Data System (ADS)

    Tomasek, A.; Hondzo, M.; Kozarek, J. L.

    2015-12-01

    Anthropogenic activities have greatly altered the global nitrogen cycle, especially in the agriculturally dominated Midwest, with severe consequences on human and aquatic health. Complete microbial denitrification can be viewed as a nitrogen sink, converting soluble nitrate into inert nitrogen gas. This research aims to quantify and correlate the driving parameters in microbial denitrification and explore the relationship to the abundance of denitrifying genes and the microbial communities at these sites. Denitrifying genes for each step in the denitrification process have been quantified. Data from a field site in Southern Minnesota has been collected throughout the season for two years enabling investigation into the temporal variability of denitrification. Data was collected at two cross-sections across the channel to determine the effect of bank location and moisture content on denitrification. Data were collected in an experimental basin in the summer of 2015 to determine the effect of flooding and benthic organic matter content and quality on microbial denitrification and nitrous oxide production. Four sediment types were investigated in three different flood regimes. After each raising or lowering of the water level, soil cores were taken to determine soil characteristics, the potential denitrification using the denitrification enzyme activity method, nitrous oxide production using a static core method, and the denitrifying gene abundance. Chambers were also deployed over each soil amendment in each flood regime to determine the nitrous oxide production over time. Results from these studies will convey a more complete explanation of denitrification and nitrous oxide production under varying environmental conditions. By determining the driving parameters for microbial denitrification, denitrification hot spots and hot moments can be created and enhanced. One potential consequence of increased denitrification is the possibility of incomplete denitrification

  9. A two-stage SBR process for removal of organic substrate and nitrogen via nitrite-type nitrification-denitrification.

    PubMed

    Zeng, Wei; Peng, Yongzhen; Wang, Shuying

    2004-01-01

    A two-stage SBR process (TSSBR) was applied for the treatment of wastewater with high strength COD and nitrogen. Most of organic substrate was removed in the first stage SBR reactor (SBR1) under the aerobic condition. Subsequently the second stage SBR reactor (SBR2) firstly was operated under the aerobic condition for simultaneous nitrite-type nitrification and removal of a small amount of residual organic substrate. Nitrification was controlled to the nitrite-type nitrification. Then denitrification in which the wastewater was used as external carbon sources occurred in SBR2 under the anoxic condition. The experimental results indicated that two kinds of biomass with the different function were cultured in a TSSBR system, which was beneficial to increase the proportion of Nitrosomonas in the microorganism of SBR2. It avoided the inhibition of the high organic loading to nitrification and C/N was not the limiting factor affecting the nitrogen removal efficiency. The rate of COD degradation and nitrification was improved, 8 kg COD/kg MLSS/d and 0.25 kg NH4+-N/kg MLSS/d, respectively. The final effluent COD concentration further reduced because the organic substrate that was left in SBR1 effluent was removed in SBR2. Consequently, when compared to a single SBR process, a two-stage SBR (TSSBR) not only improved the treatment efficiency, but also saved the operational cost.

  10. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.

    PubMed

    Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

    2013-01-01

    This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber.

  11. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  12. Denitrification capacity and greenhouse gas emissions of soils in channelized and restored reaches along an Alpine river corridor

    NASA Astrophysics Data System (ADS)

    Shrestha, Juna; Niklaus, Pascal; Samaritani, Emanuela; Frossard, Emmanuel; Tockner, Klement; Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water and air quality, the biogeochemical functions of channelized and restored river reaches have to be quantified. The objective of this study was to compare denitrification potential and greenhouse gas emissions of functional processing zones (FPZ) in a channelized and a recently restored reach of the alpine river Thur in north-eastern Switzerland. The study was part of the project cluster RECORD of the ETH domain, Switzerland, which was initiated to increase the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The denitrification potential represents an important aspect of the soil filter function related to water quality. Besides, it also contributes to the emission of greenhouse gases. Extensively used pasture growing on a sandy loam is the characteristic FPZ of the channelized section. The restored section encompasses five FPZ: (i) bare gravel bars sparsely colonized by plants, (ii) gravel bars densely colonized by grass (mainly canary reed grass with up to 80 cm sandy deposits), (iii) mixed forest dominated by ash and maple, (iv) riparian forest dominated by willow (Salix alba), (v) older overbank sediments stabilized during restoration with young willows separating the forests from the river-gravel bar system (willow bush). The FPZ were sampled in January, April, August and October 2009. In addition, in June and July 2009 two flood events were monitored in the restored section with more frequent samplings. At each date, topsoil samples were collected in each FPZ (four replicates per samples) and analyzed for denitrifier enzyme activity (DEA). In addition, gas samples were taken in-situ using the closed chamber technique to measure soil respiration as well as N2O and CH4 fluxes. In all FPZ, the denitrification potential was mainly governed by soil moisture. It was highest in the willow forest exhibiting low spatial variability. The DEA in pasture, grass zone

  13. Isotopologue fractionation during N(2)O production by fungal denitrification.

    PubMed

    Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H

    2008-12-01

    Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for

  14. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    NASA Astrophysics Data System (ADS)

    Chen, Timothy; Shi, Linda Z.; Zhu, Qingyuan; Chandsawangbhuwana, Charlie; Berns, Michael W.

    2011-04-01

    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC6(3) is an effective way to study sperm motility and energetics.

  15. Estimating streambed travel times and respiration rates based on temperature and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2015-12-01

    Oxygen consumption is a common proxy for aerobic respiration and novel in situ measurement techniques with high spatial resolution enable an accurate determination of the oxygen distribution in the streambed. The oxygen concentration at a certain location in the streambed depends on the input concentration, the respiration rate, temperature, and the travel time of the infiltrating flowpath. While oxygen concentrations and temperature can directly be measured, respiration rate and travel time must be estimated from the data. We investigated the interplay of these factors using a 6 month long, 5-min resolution dataset collected in a 3rdorder gravel-bed stream. Our objective was twofold, to determine transient rates of hyporheic respiration and to estimate travel times in the streambed based solely on oxygen and temperature measurements. Our results show that temperature and travel time explains ~70% of the variation in oxygen concentration in the streambed. Independent travel times were obtained using natural variations in the electrical conductivity (EC) of the stream water as tracer (µ=4.1 h; σ=2.3 h). By combining these travel times with the oxygen consumption, we calculated a first order respiration rate (µ=9.7 d-1; σ=6.1 d-1). Variations in the calculated respiration rate are largely explained by variations in streambed temperature. An empirical relationship between our respiration rate and temperature agrees with the theoretical Boltzmann-Arrhenius equation. With this relationship, a temperature-based respiration rate can be estimated and used to re-estimate subsurface travel times. The resulting travel times distinctively resemble the EC-derived travel times (R20.47; Nash-Sutcliffe coefficient 0.32). Both calculations of travel time are correlated to stream water levels and increase during discharge events, enhancing the oxygen consumption for these periods. No other physical factors besides temperature were significantly correlated with the respiration

  16. Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream

    NASA Astrophysics Data System (ADS)

    Roley, Sarah S.; Tank, Jennifer L.; Williams, Maureen A.

    2012-09-01

    Stream ecotones, specifically the lateral floodplain and subsurface hyporheic zone, can be important sites for nitrogen (N) removal via denitrification, but their role in streams with constructed floodplains has not been examined. We studied denitrification in the hyporheic zone and floodplains of an agriculturally influenced headwater stream in Indiana, USA, that had floodplains added as part of a "two-stage ditch" restoration project. To examine the potential for N removal in the hyporheic zone, we seasonally measured denitrification rates and nitrate concentrations by depth into the stream sediments. We found that nitrate concentration and denitrification rates declined with depth into the hyporheic zone, but denitrification was still measureable to a depth of at least 20 cm. We also measured denitrification rates on the restored floodplains over the course of a flood (pre, during, and post-inundation), and also compared denitrification rates between vegetated and non-vegetated areas of the floodplain. We found that floodplain denitrification rates increased over the course of a floodplain inundation event, and that the presence of surface water increased denitrification rates when vegetation was present. Stream ecotones in midwestern, agriculturally influenced streams have substantial potential for N removal via denitrification, particularly when they are hydrologically connected with high-nitrate surface water.

  17. Denitrification in Aquifer Soil and Nearshore Marine Sediments Influenced by Groundwater Nitrate

    PubMed Central

    Slater, Jennifer M.; Capone, Douglas G.

    1987-01-01

    We estimated rates of denitrification at various depths in sediments known to be affected by submarine discharge of groundwater, and also in the parent aquifer. Surface denitrification was only measured in the autumn; at 40-cm depth, where groundwater-imported nitrate has been measured, denitrification occurred consistently throughout the year, at rates from 0.14 to 2.8 ng-atom of N g−1 day−1. Denitrification consistently occurred below the zone of sulfate reduction and was sometimes comparable to it in magnitude. Denitrification occurred deep (14 to 40 cm) in the sediments along 30 km of shoreline, with highest rates occurring where groundwater input was greatest. Denitrification rates decreased with distance offshore, as does groundwater influx. Added glucose greatly stimulated denitrification at depth, but added nitrate did not. High rates of denitrification were measured in the aquifer (17 ng-atom of N g−1 day−1), and added nitrate did stimulate denitrification there. The denitrification measured was enough to remove 46% of the nitrate decrease observed between 40- and 14-cm depth in the sediment. PMID:16347361

  18. Validation of Respirator Filter Efficacy

    DTIC Science & Technology

    2007-11-02

    A 1980’ s unpublished ECBC report presented calculations of the required degree of filtration needed to protect a respirator wearer from a given...tested against three bioaerosols ranging in size from 0.69 – 0.88 µm aerodynamic diameter (Mycobacterium abscessus , staphylococcus epidermidis , and 10...and penetration beginning with 99.97% @ 0.3 µm for 10 cm/ s face velocity, a fiber diameter of 0.9 µm, a 0.07 solidity, a 0.3 mm media thickness, and

  19. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change.

  20. The nitrogen isotope effect of benthic remineralization-nitrification-denitrification coupling in an estuarine environment

    NASA Astrophysics Data System (ADS)

    Alkhatib, M.; Lehmann, M. F.; del Giorgio, P. A.

    2012-05-01

    The nitrogen (N) stable isotopic composition of pore water nitrate and total dissolved N (TDN) was measured in sediments of the St. Lawrence Estuary and the Gulf of St. Lawrence. The study area is characterized by gradients in organic matter reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. N isotope effects on the water column associated with the benthic exchange of nitrate (ϵapp) and TDN (ϵsed) during benthic nitrification-denitrification coupling were investigated. The sediments were a major sink for nitrate and a source of reduced dissolved N (RDN = DON + NH4+). We observed that both the pore water nitrate and RDN pools were enriched in 15N relative to the water column, with increasing δ15N downcore in the sediments. As in other marine environments, the biological nitrate isotope fractionation of net fixed N loss was barely expressed at the scale of sediment-water exchange, with ϵapp values <3‰. The strongest under-expression (i.e. lowest ϵapp) of the biological N isotope fractionation was observed at the most oxygenated sites with the least reactive organic matter, indicating that, through their control on the depth of the denitrification zone, bottom water oxygen concentrations and the organic matter reactivity can modulate ϵapp. For the first time, actual measurements of δ15N of pore water RDN were included in the calculations of ϵsed. We argue that large fractions of the sea-floor-derived DON are reactive and, hence, involved in the development of the δ15N of dissolved inorganic N (DIN) in the water column. In the St. Lawrence sediments, the combined benthic N transformations yield a flux of 15N-enriched RDN that can significantly elevate ϵsed above ϵapp. Calculated ϵsed values were within the range of 4.6 ± 2‰ and were related to organic matter reactivity and oxygen penetration depth in the sediments. &varepsilon

  1. The nitrogen isotope effect of benthic remineralization-nitrification-denitrification coupling in an estuarine environment

    NASA Astrophysics Data System (ADS)

    Alkhatib, M.; Lehmann, M. F.; Del Giorgio, P. A.

    2011-12-01

    The nitrogen (N) stable isotopic composition of pore water nitrate and total dissolved N (TDN) was measured in sediments of the St. Lawrence Estuary and the Gulf of St. Lawrence. The study area is characterized by gradients in organic matter reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. Benthic N isotope exchange, as well as the nitrate and TDN isotope effects of benthic nitrification-denitrification coupling on the water column, ϵapp and ϵsed, respectively, were investigated. The sediments were a major sink for nitrate and a source of reduced dissolved N (RDN = DON + NH4+). We observed that both the pore water nitrate and RDN pools were enriched in 15N relative to the water column, with increasing δ15N downcore in the sediments. As in other marine environments, the biological nitrate isotope fractionation of net nitrate elimination was barely expressed at the scale of sediment-water-exchange, with ϵapp values <3‰. The strongest under-expression of the biological N isotope fractionation was observed at the most oxygenated sites with the least reactive organic matter, indicating that, through their control on the depth of the denitrification zone, bottom water oxygen concentrations and the organic matter reactivity can modulate ϵapp. For the first time, actual measurements of δ15N of pore water RDN were included in the calculations of ϵsed. We argue that large fractions of the sea-floor-derived DON are reactive and, hence, involved in the development of the δ15N of dissolved inorganic N (DIN) in the water column. In the St. Lawrence sediments, the combined benthic N transformations yield a flux of 15N-enriched RDN that can significantly enhance ϵsed. Calculated ϵsed values were within the range of 4.6 ± 2‰, and were related to organic matter reactivity and oxygen penetration depth in the sediments. ϵsed reflects the δ15N of the N2

  2. Heterotrophic denitrification plays an important role in N₂O production from nitritation reactors treating anaerobic sludge digestion liquor.

    PubMed

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2014-10-01

    Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge digestion liquor have been reported to be substantially higher than those from reactors receiving synthetic digestion liquor. This study aims to identify the causes for the difference, and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4(+)-N oxidized, respectively. Heterotrophic denitrification supported by the organic carbon present in the real digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged (at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should be maintained at approximately 1 mg/L to minimise N2O emission.

  3. Respirators: Supervisors Self-Study #43442

    SciTech Connect

    Chochoms, Michael

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  4. Monitoring induced denitrification in an artificial aquifer recharge system.

    NASA Astrophysics Data System (ADS)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicenç del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ2H and δ18O of water. Dissolved nitrate isotopic composition (δ15NNO3 from +9 to +21 o and δ18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme

  5. Numerical Modeling of Natural and Enhanced Denitrification Processes in Aquifers

    NASA Astrophysics Data System (ADS)

    Kinzelbach, Wolfgang; SchäFer, Wolfgang; Herzer, JöRg

    1991-06-01

    Nitrate modeling in the groundwater environment must incorporate microbial denitrification as the major process of nitrate elimination. A multispecies transport model is presented which describes the interaction of oxygen, nitrate, organic carbon, and bacteria. Three phases (mobile pore water, biophase, and aquifer material) are taken into account. The model is applied to a natural aquifer situation as well as to an in situ remediation case where nitrate is employed as an oxidant. In the natural aquifer it is shown that the release of organic carbon from the matrix is the controlling factor for denitrification. In the remediation case, on the other hand, the data suggest that diffusion limitation of the nutrient supply to the biophase controls bacterial growth.

  6. A new device to select carriers for biomass immobilization and application in an aerobic/anaerobic fixed-bed sequencing batch biofilm reactor for nitrogen removal.

    PubMed

    Sarti, A; Lamon, A W; Ono, A; Foresti, E

    2016-12-01

    This study proposes a new approach to selecting a biofilm carrier for immobilization using dissolved oxygen (DO) microsensors to measure the thickness of aerobic and anaerobic layers in biofilm. The biofilm carriers tested were polyurethane foam, mineral coal (MC), basaltic gravel, and low-density polyethylene. Development of layers in the biofilm carrier surface was evaluated using a flow cell device, and DO profiles were conducted to determine the size of the layers (aerobic and anaerobic). MC was the biofilm carrier selected due to allowing the development of larger aerobic and anaerobic layers in the biofilm (896 and 1,058 μm, respectively). This ability is supposed to improve simultaneous nitrogen removal by nitrification and denitrification biological processes. Thus, as a biofilm carrier, MC was used in a fixed-bed sequencing batch biofilm reactor (FB-SBBR) for treatment of wastewater with a high ammonia concentration (100-400 mgNH4(+)-N L(-1)). The FB-SBBR (15.0 L) was filled with matrices of the carrier and operated under alternating aeration and non-aeration periods of 6 h each. At a mean nitrogen loading rate of 0.55 ± 0.10 kgNH4(+)-N m(-3) d(-1), the reactor attained a mean nitrification efficiency of 95 ± 9% with nitrite as the main product (aerobic period). Mean denitrification efficiency during the anoxic period was 72 ± 13%.

  7. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.

  8. An evaluation of respirator maintenance requirements.

    PubMed

    Brosseau, L M; Traubel, K

    1997-03-01

    A telephone survey was developed as part of a pilot study to evaluate the inspection, cleaning, maintenance, and storage aspects of respirator protection programs (RPP). Regulations and consensus standards such as those published by the Occupational Safety and Health Administration in the Code of Federal Regulations (CFR) or the American National Standards Institute (ANSI) require or recommend that RPP contain elements that ensure that the respirators provide proper protection. A great deal of research has been done to evaluate the effectiveness of new respirators; however, little research has been conducted to evaluate how respirators behave over time in real industrial settings Respirator inspection, cleaning, maintenance, and storage are significant factors in determining how well a respirator continues to perform. The telephone survey was developed by reviewing the requirements and recommendations of CFR 1910.134 and ANSI Z88.2-1980. Approximately 30 companies were selected based on their use of negative air-purifying respirators. Most of the companies represented the hardgoods manufacturing or service industries. Although the majority of companies were meeting requirements, responses indicated that the following improvements in RPP were necessary: (1) inspection of all respirator parts should be carried out before and after each use, (2) replacement parts should be made readily available on site, (3) regular cleaning should be performed, and (4) more hands-on practice with respirators and their maintenance should be incorporated into training sessions.

  9. Respirator selection for clandestine methamphetamine laboratory investigation.

    PubMed

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed.

  10. Measuring nitrification, denitrification, and related biomarkers in terrestrial geothermal ecosystems.

    PubMed

    Dodsworth, Jeremy A; Hungate, Bruce; de la Torre, José R; Jiang, Hongchen; Hedlund, Brian P

    2011-01-01

    Research on the nitrogen biogeochemical cycle in terrestrial geothermal ecosystems has recently been energized by the discovery of thermophilic ammonia-oxidizing archaea (AOA). This chapter describes methods that have been used for measuring nitrification and denitrification in hot spring environments, including isotope pool dilution and tracer approaches, and the acetylene block approach. The chapter also summarizes qualitative and quantitative methods for measurement of functional and phylogenetic biomarkers of thermophiles potentially involved in these processes.

  11. Patch-scale controls on denitrification in stream bed sediments

    NASA Astrophysics Data System (ADS)

    Voytek, M. A.; Harvey, J. W.; Smith, L. K.; Smith, R. L.; Bohlke, J. K.

    2001-12-01

    Denitrification is usually considered one of the most important processes controlling nitrogen loads in streams and rivers because it has the capability of permanently removing fixed nitrogen. Denitrification requires an electron donor, i.e. DOC and nitrate which is often abundant in agriculturally impacted systems. However, it is inhibited by oxygen and therefore occurs primarily in sediments where the supply and delivery of these substrates might be more limited. The goal of this study was to assess the interaction of chemical, biological and physical controls on in-stream denitrification. The influence of stream velocities, sediment grain size, carbon content and reactivity, hyporheic exchange, benthic algal coverage and microbial community distribution and activity were evaluated on sediments collected from two small streams located in the Upper Illinois River watershed, where elevated loads of nitrogen species are commonly observed. In general, sediment microbial community structure and activity reflected the observed differences in channel characteristics. Denitrifiers tended to be more abundant and active in sediment with coarser grain size distributions and greater periphyton coverage. Coarser grain size distributions were associated with deeper penetration of surface water nitrate into the sediments and periphyton coverage appeared to be correlated with higher sediment carbon concentrations and a higher C/N ratios, indicating a greater availability of labile carbon. Conversely, finer grained sediment with little or no periphyton exhibited poorly developed and less active denitrifying communities at depth. This study suggests that in-situ denitrification rates are controlled by a balance of physical mechanisms of substrate delivery and biologically controlled processes that alter porewater concentrations of essential and inhibitory substrates, which are controlled in turn by both physical and biological properties of the sediment.

  12. Nitrous oxide emission from denitrification in stream and river networks

    USGS Publications Warehouse

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3-. We suggest that increased stream NO3- loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  13. Nitrous oxide emission from denitrification in stream and river networks

    PubMed Central

    Beaulieu, Jake J.; Tank, Jennifer L.; Hamilton, Stephen K.; Wollheim, Wilfred M.; Hall, Robert O.; Mulholland, Patrick J.; Peterson, Bruce J.; Ashkenas, Linda R.; Cooper, Lee W.; Dahm, Clifford N.; Dodds, Walter K.; Grimm, Nancy B.; Johnson, Sherri L.; McDowell, William H.; Poole, Geoffrey C.; Valett, H. Maurice; Arango, Clay P.; Bernot, Melody J.; Burgin, Amy J.; Crenshaw, Chelsea L.; Helton, Ashley M.; Johnson, Laura T.; O'Brien, Jonathan M.; Potter, Jody D.; Sheibley, Richard W.; Sobota, Daniel J.; Thomas, Suzanne M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3−) concentrations, but that <1% of denitrified N is converted to N2O. Unlike some previous studies, we found no relationship between the N2O yield and stream water NO3−. We suggest that increased stream NO3− loading stimulates denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y−1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change. PMID:21173258

  14. Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria.

    PubMed

    Wang, Wei; Jiang, Hongyan; Zhu, Guangquan; Song, Xueying; Liu, Xingyu; Qiao, Ya

    2016-03-01

    To improve the denitrification characteristics of anaerobic denitrifying bacteria and obviate the disadvantage of use of explosive hydrogen gas, tourmaline, a polar mineral, was added to the hydrogenotrophic denitrification system in this study. Microbial reduction of nitrate in the presence of tourmaline was evaluated to assess the promotion effect of tourmaline on nitrate biodegradation. The experiment results demonstrated that tourmaline speeded up the cultivation process of bacteria from 65 to 36 days. After domestication of the bacteria, nitrate (50 mg NO3 (-)-N L(-1)) was completely removed within 3 days in the combined tourmaline-bacteria system, and the generated nitrite was also removed within 8 days. The reduction rate in this system is higher relative to that in the bacteria system alone. Efficient removal of nitrate by tourmaline-supported anaerobic bacteria (without external hydrogen input) indicated that tourmaline might act as the sole hydrogen donor to sustain autotrophic denitrification. Besides the production of hydrogen, the promoted activity of anaerobic denitrifying bacteria might be caused by the change of water properties, e.g., the pH of aqueous solutions was altered to about 8.0 and the oxidation-reduction potential decreased by 62 % in the tourmaline system. The distinctive effects of tourmaline on bacteria were related to its electric properties.

  15. Confirmation of co-denitrification in grazed grassland

    PubMed Central

    Selbie, Diana R.; Lanigan, Gary J.; Laughlin, Ronald J.; Di, Hong J.; Moir, James L.; Cameron, Keith C.; Clough, Tim J.; Watson, Catherine J.; Grant, James; Somers, Cathal; Richards, Karl G.

    2015-01-01

    Pasture-based livestock systems are often associated with losses of reactive forms of nitrogen (N) to the environment. Research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions are still poorly characterized, both in terms of the processes involved and their magnitude, due to financial and methodological constraints. Relatively few studies have focused on quantifying N2 losses in vivo and fewer still have examined the relative contribution of the different N2 emission processes, particularly in grazed pastures. We used a combination of a high 15N isotopic enrichment of applied N with a high precision of determination of 15N isotopic enrichment by isotope-ratio mass spectrometry to measure N2 emissions in the field. We report that 55.8 g N m−2 (95%, CI 38 to 77 g m−2) was emitted as N2 by the process of co-denitrification in pastoral soils over 123 days following urine deposition (100 g N m−2), compared to only 1.1 g N m−2 (0.4 to 2.8 g m−2) from denitrification. This study provides strong evidence for co-denitrification as a major N2 production pathway, which has significant implications for understanding the N budgets of pastoral ecosystems. PMID:26615911

  16. Pressurized hydrogenotrophic denitrification reactor for small water systems.

    PubMed

    Epsztein, Razi; Beliavski, Michael; Tarre, Sheldon; Green, Michal

    2017-03-15

    The implementation of hydrogenotrophic denitrification is limited due to safety concerns, poor H2 utilization and low solubility of H2 gas with the resulting low transfer rate. The current paper presents the main research work conducted on a pressurized hydrogenotrophic reactor for denitrification that was recently developed. The reactor is based on a new concept suggesting that a gas-liquid equilibrium is achieved in the closed headspace of denitrifying reactor, further produced N2 gas is carried out by the effluent and gas purging is not required. The feasibility of the proposed reactor was shown for two effluent concentrations of 10 and 1 mg NO3(-)-N/L. Hydrogen gas utilization efficiencies of 92.8% and 96.9% were measured for the two effluent concentrations, respectively. Reactor modeling predicted high denitrification rates above 4 g NO3(-)-N/(Lreactor·d) at reasonable operational conditions. Hydrogen utilization efficiency was improved up to almost 100% by combining the pressurized reactor with a following open-to-atmosphere polishing unit. Also, the potential of the reactor to remove ClO4(-) was shown.

  17. Simulation of three-phase fluidized bioreactors for denitrification

    SciTech Connect

    Hamza, A.V.; Dolan, J.F.; Wong, E.W.

    1981-03-01

    Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO/sub 3//sup -//K/sub s/ + NO/sub 3//sup -/) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m/sup 3/-min (% biomass) and a K/sub s/ of 163 g/m/sup 3/ for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued.

  18. Integrating pretreatment and denitrification in constructed wetland systems.

    PubMed

    Gonzalo, O G; Ruiz, I; Soto, M

    2017-02-08

    The aim of this work was to study the operational characteristics and the efficiency of a compact constructed wetland system for municipal wastewater treatment that integrates denitrification in the pre-treatment unit. The proposed system was simulated by two units in series with effluent recirculation, the first one being an anoxic digester, conceived as a hydrolytic up flow sludge bed for solids hydrolysis and denitrification, and the second one a sand column that simulated the operation of a vertical flow constructed wetland. The hybrid system consisted of two small columns of 4 and 10.2cm in diameter (anoxic digester and vertical flow unit, respectively). The unplanted system was operated successively with synthetic and real municipal wastewater over a period of 136days. Hydraulic loading rate ranged from 212 to 318mm/day and surface loading rate from 122 to 145g/m(2)·day of chemical oxygen demand and 10-15g/m(2)·day of total nitrogen for the overall system. The overall system reached removals of 91% to 99% for total suspended solids, chemical oxygen demand and biochemical oxygen demand whilst total nitrogen removal ranged from 43% to 61%. In addition to suspended solids removal (up to 78%), the anoxic digester provided high denitrification rates (3-12gN/m(2)·day) whilst the vertical flow unit provided high nitrification rates (8-15gN/m(2)·day). Organic matter was mainly removed in the anoxic digester (63-82% chemical oxygen demand) and used for denitrification. Final effluent concentration was lower for ammonia (7.4±2.4mgN/L on average) than for nitrate (19.8±4.4mgN/L), denitrification appearing as the limiting step in nitrogen removal in the system. CH4 or N2O emissions were not detected in any of the units of the system indicating very low greenhouse gas emissions.

  19. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  20. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis.

    PubMed

    Yoon, Sang Sun; Hennigan, Robert F; Hilliard, George M; Ochsner, Urs A; Parvatiyar, Kislay; Kamani, Moneesha C; Allen, Holly L; DeKievit, Teresa R; Gardner, Paul R; Schwab, Ute; Rowe, John J; Iglewski, Barbara H; McDermott, Timothy R; Mason, Ronald P; Wozniak, Daniel J; Hancock, Robert E W; Parsek, Matthew R; Noah, Terry L; Boucher, Richard C; Hassett, Daniel J

    2002-10-01

    Recent data indicate that cystic fibrosis (CF) airway mucus is anaerobic. This suggests that Pseudomonas aeruginosa infection in CF reflects biofilm formation and persistence in an anaerobic environment. P. aeruginosa formed robust anaerobic biofilms, the viability of which requires rhl quorum sensing and nitric oxide (NO) reductase to modulate or prevent accumulation of toxic NO, a byproduct of anaerobic respiration. Proteomic analyses identified an outer membrane protein, OprF, that was upregulated approximately 40-fold under anaerobic versus aerobic conditions. Further, OprF exists in CF mucus, and CF patients raise antisera to OprF. An oprF mutant formed poor anaerobic biofilms, due, in part, to defects in anaerobic respiration. Thus, future investigations of CF pathogenesis and therapy should include a better understanding of anaerobic metabolism and biofilm development by P. aeruginosa.

  1. Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis.

    PubMed

    Faber, Franziska; Thiennimitr, Parameth; Spiga, Luisella; Byndloss, Mariana X; Litvak, Yael; Lawhon, Sara; Andrews-Polymenis, Helene L; Winter, Sebastian E; Bäumler, Andreas J

    2017-01-01

    Intestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen. S. Typhimurium used both aerobic and anaerobic respiration to consume 1,2-propanediol and expand in the murine large intestine. 1,2-propanediol-utilization did not confer a benefit in germ-free mice, but the pdu genes conferred a fitness advantage upon S. Typhimurium in mice mono-associated with Bacteroides fragilis or Bacteroides thetaiotaomicron. Collectively, our data suggest that intestinal inflammation enables S. Typhimurium to sidestep nutritional competition by respiring a microbiota-derived fermentation product.

  2. Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis

    PubMed Central

    Faber, Franziska; Spiga, Luisella; Byndloss, Mariana X.; Andrews-Polymenis, Helene L.; Winter, Sebastian E.; Bäumler, Andreas J.

    2017-01-01

    Intestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen. S. Typhimurium used both aerobic and anaerobic respiration to consume 1,2-propanediol and expand in the murine large intestine. 1,2-propanediol-utilization did not confer a benefit in germ-free mice, but the pdu genes conferred a fitness advantage upon S. Typhimurium in mice mono-associated with Bacteroides fragilis or Bacteroides thetaiotaomicron. Collectively, our data suggest that intestinal inflammation enables S. Typhimurium to sidestep nutritional competition by respiring a microbiota-derived fermentation product. PMID:28056091

  3. Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    PubMed

    Zhu, Jiangfeng; Sánchez, Ailen; Bennett, George N; San, Ka-Yiu

    2011-11-01

    Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approach based on genetic regulation may better serve this purpose. With excess oxygen supply to the culture, we efficiently manipulated Escherichia coli cell respiration by adding different amount of coenzyme Q1 to strains lacking the ubiCA genes, which encode two critical enzymes for ubiquinone synthesis. As a proof-of-concept, the metabolic effect of the ubiCA gene knockout and coenzyme Q1 supplementation were characterized, and the metabolic profiles of the experimental strains showed clear correlations with coenzyme Q1 concentrations. Further proof-of-principle experiments were performed to illustrate that the approach can be used to optimize cell respiration for the production of chemicals of interest such as ethanol. This study showed that controlled respiration through genetic manipulation can be exploited to allow much larger operating windows for reduced product formation even under fully aerobic conditions.

  4. A model of metabolic changes in respiration-deficient human cells.

    PubMed

    Bollmann, F Mathias

    2007-09-01

    Cells lacking aerobic metabolism because of damaged mtDNA accumulate in many postmitotic tissues in the course aging. Although being only a small fraction of cells, they might play a major role in oxidative stress affecting the whole body. However, it remains unclear how such cells, which are under normal circumstances dependent on aerobic metabolism, are able to survive for decades in vivo. Here a new model is presented that proposes a coexistence of anaerobic glycolysis and a partly reversed TCA cycle. Succinate plays a key role in the changed metabolic pathways because it has to be exported by the cell. This hypothesis supports the view that some respiration-deficient cells are able to survive permanently within the body and contribute to human aging.

  5. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.

    PubMed

    Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

    2014-08-29

    The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.

  6. Aerobic biological treatment of leachates from municipal solid waste landfill.

    PubMed

    Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M

    2004-01-01

    The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).

  7. Effects of substrate induced respiration on the stability of bottom ash in landfill cover environment.

    PubMed

    Ilyas, A; Lovat, E; Persson, K M

    2014-12-01

    The municipal solid waste incineration bottom ash is being increasingly used to construct landfill covers in Sweden. In post-closure, owing to increased cover infiltration, the percolating water can add external organic matter to bottom ash. The addition and subsequent degradation of this external organic matter can affect metal mobility through complexation and change in redox conditions. However, the impacts of such external organic matter addition on bottom ash stability have not been fully evaluated yet. Therefore, the objective of this study was to evaluate the impact of external organic matter on bottom ash respiration and metal leaching. The samples of weathered bottom ash were mixed with oven dried and digested wastewater sludge (1%-5% by weight). The aerobic respiration activity (AT4), as well as the leaching of metals, was tested with the help of respiration and batch leaching tests. The respiration and heavy metal leaching increased linearly with the external organic matter addition. Based on the results, it was concluded that the external organic matter addition would negatively affect the quality of landfill cover drainage.

  8. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration.

    PubMed

    Yoon, Mi Young; Lee, Kang-Mu; Park, Yongjin; Yoon, Sang Sun

    2011-01-18

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.

  9. Expedited CO2 respiration in people with Miltenberger erythrocyte phenotype GP.Mur.

    PubMed

    Hsu, Kate; Kuo, Mei-Shin; Yao, Ching-Che; Lee, Ting-Ying; Chen, Yi-Chun; Cheng, Han-Chih; Lin, Chia-Hao; Yu, Tzung-Han; Lin, Hui-Ju

    2015-05-22

    In Southeast Asia, Miltenberger antigen subtype III (Mi.III; GP.Mur) is considered one of the most important red blood cell antigens in the field of transfusion medicine. Mi.III functions to promote erythrocyte band 3 expression and band 3-related HCO3(-) transport, with implications in blood CO2 metabolism. Could Mi.III affect physiologic CO2 respiration in its carriers? Here, we conducted a human trial to study the impacts of Mi.III expression in respiration. We recruited 188 healthy, adult subjects for blood typing, band 3 measurements, and respiratory tests before and after exercise. The 3-minute step exercise test forced the demand for CO2 dissipation to rise. We found that immediately following exercise, Mi.III + subjects exhaled CO2 at greater rates than Miltenberger-negative subjects. Respiration rates were also higher for Mi.III + subjects immediately after exercise. Blood gas tests further revealed distinct blood CO2 responses post-exercise between Mi.III and non-Mi.III. In contrast, from measurements of heart rates, blood O2 saturation and lactate, Mi.III phenotype was found to be independent of one's aerobic and anaerobic capacities. Thus, Mi.III expression supported physiologic CO2 respiration. Conceivably, Mi.III + people may have advantages in performing physically enduring activities.

  10. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    USGS Publications Warehouse

    Heffernan, J.B.; Albertin, A.R.; Fork, M.L.; Katz, B.G.; Cohen, M.J.

    2011-01-01

    Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationship between O2 and ??15NNO 3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N: 18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32% of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source ??15NNO 3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. ?? Author(s) 2011.

  11. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Heffernan, J. B.; Albertin, A. R.; Fork, M. L.; Katz, B. G.; Cohen, M. J.

    2011-10-01

    Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationship between O2 and δ15NNO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N : 18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32% of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15NNO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs.

  12. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Heffernan, J. B.; Albertin, A. R.; Fork, M. L.; Katz, B. G.; Cohen, M. J.

    2012-05-01

    Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationships between O2 and δ15NNO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15NNO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs.

  13. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions

    NASA Astrophysics Data System (ADS)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ15NNO3), carbon in dissolved inorganic carbon (δ13CDIC), and sulfur in sulfate (δ34SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ13CDIC (from - 7.7‰ to - 12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was - 4.7‰), suggesting the contribution of C of trisodium citrate (δ13C = - 12.4‰). No SO42 - and δ34SSO4 changes were observed. In the AD experiment, clear fractionation of δ13CDIC during DIC consumption (εC = - 7.8‰) and δ34SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN = - 12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  14. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ(15)NNO3), carbon in dissolved inorganic carbon (δ(13)CDIC), and sulfur in sulfate (δ(34)SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ(13)CDIC (from -7.7‰ to -12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was -4.7‰), suggesting the contribution of C of trisodium citrate (δ(13)C=-12.4‰). No SO4(2-) and δ(34)SSO4 changes were observed. In the AD experiment, clear fractionation of δ(13)CDIC during DIC consumption (εC=-7.8‰) and δ(34)SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN=-12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  15. Importance of Stream Denitrification in the Nitrogen Mass Balance of a Midwestern Agricultural Region

    NASA Astrophysics Data System (ADS)

    David, M. B.; Royer, T. V.; Opdyke, M. R.; Tank, J. L.

    2005-05-01

    Agricultural regions of the Midwestern US have large N fluxes as a result of inputs from fertilizer and biological fixation, and outputs through rivers and grain harvest. These inputs and outputs are not balanced, however, and denitrification has been suggested to be an important loss mechanism. We examined the role of in-stream denitrification in the N mass balance of Illinois, a predominantly agricultural region. Nitrate concentrations in streams were often >10 mg nitrate-N L-1, suggesting denitrification was not N-limited throughout most of the year. Denitrification rates were measured at many headwater stream sites throughout the year, in both sediments and primary producer habitat, under different geomorphic conditions. Although in-stream denitrification rates were generally high, hydraulic retention time limited the importance of denitrification in terms of export on an annual basis. Geomorphology was important in explaining rates, but extensive channelization has eliminated most in-stream structures, which could have more effectively reduced stream export of N. Therefore, stream denitrification was only minor sink for N and most nitrate in these headwater sites was exported downstream. In the overall mass balance of N, reservoir and in-field denitrification are thought to be much more important than in-stream denitrification.

  16. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  17. Respirators: APR Issuer Self Study 33461

    SciTech Connect

    Chochoms, Michael

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  18. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  19. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  20. Photosynthesis and Respiration in a Jar.

    ERIC Educational Resources Information Center

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  1. Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water.

    PubMed

    Guo, Liyun; Chen, Qiankun; Fang, Fei; Hu, Zhixin; Wu, Jun; Miao, Aijun; Xiao, Lin; Chen, Xiaofeng; Yang, Liuyan

    2013-08-01

    The aim of this work was to evaluate the utilization potential of a newly isolated indigenous aerobic denitrifier, Pseudomonas stutzeri strain T1, for nitrogen removal from the eutrophic Lake Taihu in China. The strain was capable of conducting heterotrophic nitrification-aerobic denitrification and had both excellent nitrate and ammonium removal without nitrite build-up. The characteristics of P. stutzeri strain T1 were studied under different cultural conditions. Furthermore, under the optimized cultivation conditions, strain T1 was added into the water samples from Lake Taihu, the ammonium and nitrate removal rates of the strain reached to 60% and 75%, respectively. Via adding this strain, the water qualities of the sample ameliorated from Grade V to Grade II. Thus, the strain T1 should be an useful biological tool to remediate eutrophic lakes and do not meet acclimation problems.

  2. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  3. Improving respiration measurements with gas exchange analyzers.

    PubMed

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO2 differential (ΔCO2) increased two-fold with no change in apparent Rd, when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO2. Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers.

  4. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  5. Denitrification of nitrate and nitrite by 'Candidatus Accumulibacter phosphatis' clade IC.

    PubMed

    Saad, Sondos A; Welles, Laurens; Abbas, Ben; Lopez-Vazquez, Carlos M; van Loosdrecht, Mark C M; Brdjanovic, Damir

    2016-11-15

    Phosphate accumulating organisms (PAO) are assumed to use nitrate as external electron acceptor, allowing an efficient integration of simultaneous nitrogen and phosphate removal with minimal organic carbon (COD) requirements. However, contradicting findings appear in literature regarding the denitrification capacities of PAO due to the lack of clade specific highly enriched PAO cultures. Whereas some studies suggest that only PAO clade I may be capable of using nitrate as external electron acceptor for anoxic P-uptake, other studies indicate that PAO clade II may be responsible for anoxic P-removal. In the present study, a highly enriched PAO clade IC culture (>99% according to FISH) was cultivated in an SBR operated under Anaerobic/Oxic conditions and subsequently exposed to Anaerobic/Anoxic/Oxic conditions using nitrate as electron acceptor. Before and after acclimatization to the presence of nitrate, the aerobic and anoxic (nitrate and nitrite) activities of the PAO I culture were assessed through the execution of batch tests using either acetate or propionate as electron donor. In the presence of nitrate, significant P-uptake by PAO I was not observed before or after acclimatization. Using nitrite as electron acceptor, limited nitrite removal rates were observed before acclimatization with lower rates in the acetate fed reactor without P-uptake and slightly higher in the propionate fed reactor with a marginal anoxic P-uptake. Only after acclimatization to nitrate, simultaneous P and nitrite removal was observed. This study suggests that PAO clade IC is not capable of using nitrate as external electron acceptor for anoxic P-removal. The elucidation of the metabolic capacities for individual PAO clades helps in better understanding and optimization of the relation between microbial ecology and process performance in enhanced biological phosphate removal processes.

  6. Simultaneous nitrification-denitrification and clarification in a pseudoliquified activated sludge system.

    PubMed

    Nakhla, George F; Lugowski, Andrew; Sverdlikov, Anatoly; Scherbina, Gennadij; Babcock, Ken

    2005-01-01

    This paper describes results from a pilot study of a novel wastewater treatment technology, which incorporates nutrient removal and solids separation to a single step. The pseudoliquified activated sludge process pilot system was tested on grit removal effluent at flowrates of 29.4 to 54.7 m3/d, three different solid residence times (SRT) (15, 37, and 57 days), and over a temperature range of 12 to 28 degrees C. Despite wide fluctuations in the influent characteristics, the system performed reliably and consistently with respect to organics and total suspended solids (TSS) removals, achieving biochemical oxygen demand (BOD) and TSS reductions of > 96% and approximately 90%, respectively, with BOD5 and TSS concentrations as low as 3 mg/L. Although the system achieved average effluent ammonia concentrations of 2.7 to 3.2 mg/L, nitrification efficiency appeared to be hampered at low temperatures (< 15 degrees C). The system achieved tertiary effluent quality with denitrification efficiencies of 90 and 91% total nitrogen removal efficiency at a total hydraulic retention time of 4.8 hours and an SRT of 12 to 17 days. With ferric chloride addition, effluent phosphorous concentrations of 0.5 to 0.8 mg/L were achieved. Furthermore, because of operation at high biomass concentrations and relatively long biological SRTs, sludge yields were over 50% below typical values for activated sludge plants. The process was modeled using activated sludge model No. 2, as a two-stage system comprised an aerobic activated sludge system followed by an anoxic system. Model predictions for soluble BOD, ammonia, nitrates, and orthophosphates agreed well with experimental data.

  7. The effect of gender and respirator brand on the association of respirator fit with facial dimensions.

    PubMed

    Oestenstad, R Kent; Elliott, Leshan J; Beasley, T Mark

    2007-12-01

    This study examined the association of facial dimensions with respirator fit considering the effect of gender and respirator brand. Forty-one subjects (20 white females and 21 white males) participated in the study. Each subject was measured for 12 facial dimensions using anthropometric sliding and spreading calipers and a steel measuring tape. Three quantitative fit tests were conducted with the same subject wearing one size of three different brands of half-mask respirators resulting in a total of nine fit tests. Linear mixed model analysis was used to model respirator fit as a function of gender and respirator brand while controlling for facial dimensions. Results indicated that the gender by respirator brand interaction was not statistically significant (p = 0.794), and there was no significant difference in respirator fit between males and females (p = 0.356). There was a significant difference in respirator fit among respirator brands (p < 0.001). Because correlations between facial dimensions and respirator fit differed across gender and respirator brand, six separate linear mixed models were fit to assess which facial dimensions most strongly relate to respirator fit using a "one variable at a step" backward elimination procedure. None of the 12 facial dimensions were significantly associated with respirator fit in all six models. However, bigonial breadth and menton-nasion length were significantly associated with respirator fit in five of the six models, and biectoorbitale breadth, bizygomatic breadth, and lip width were significantly associated with respirator fit in four of the six models. Although this study resulted in significant findings related to the correlation of respirator fit with menton-nasion length and lip width (the dimensions currently used to define the half-mask respirator test panel), other facial dimensions were also shown to be significantly associated with respirator fit. Based on these findings and findings from previous studies

  8. Influence of aeration modes on leachate characteristic of landfills that adopt the aerobic-anaerobic landfill method.

    PubMed

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Chai, Xiaoli; Hao, Yongxia

    2014-01-01

    As far as the optimal design, operation, and field application of the Aerobic-Anaerobic Landfill Method (AALM) are concerned, it is very important to understand how aeration modes (different combinations of aeration depth and air injection rate) affect the biodegradation of organic carbon and the transformation of nitrogen in landfill solid waste. Pilot-scale lysimeter experiments were carried out under different aeration modes to obtain detailed information regarding the influence of aeration modes on leachate characteristics. Results from these lysimeter experiments revealed that aeration at the bottom layer was the most effective for decomposition of organic carbon when compared with aeration at the surface or middle layers. Moreover, the air injection rate led to different nitrogen transformation patterns, unlike the lesser influence it has on organic carbon decomposition. Effective simultaneous nitrification and denitrification were observed for the aeration mode with a higher air injection rate (=1.0 L/min). On the other hand, the phenomenon of sequenced nitrification and denitrification could be observed when a low air injection rate (=0.5L/min.) was employed. Finally, it is concluded that, for AALM, air injection with a higher air injection rate at the deepest layer near the leachate collection pipe tends to accelerate the stabilization of landfill waste as defined in terms of the enhancement of denitrification as well as organic carbon decomposition.

  9. Clinical pulmonary function and industrial respirator wear

    SciTech Connect

    Raven, P.B.; Moss, R.F.; Page, K.; Garmon, R.; Skaggs, B.

    1981-12-01

    This investigation was the initial step in determining a clinical pulmonary test which could be used to evaluate workers as to their suitability to industrial respirator wear. Sixty subjects, 12 superior, 37 normal, and 11 moderately impaired with respect to lung function tests were evaluated with a battery of clinical pulmonary tests while wearing an industrial respirator. The respirator was a full-face mask (MSA-Ultravue) demand breathing type equipped with an inspiratory resistance of 85mm H/sub 2/O at 85 L/min air flow and an expiratory resistance of 25mm H/sub 2/O at 85 L/min air flow. Comparisons of these tests were made between the three groups of subjects both with and without a respirator. It appears that those lung tests which measure the flow characteristics of the lung especially those that are effort dependant are more susceptible to change as a result of respirator wear. Hence, the respirator affects the person with superior lung function to a greater degree than the moderately impaired person. It was suggested that the clinical test of 15 second maximum voluntary ventilations (MVV./sub 25/) may be the test of choice for determining worker capability in wearing an industrial respirator.

  10. Nitrous oxide emission from denitrification in stream and river networks

    SciTech Connect

    Beaulieu, Jake; Tank, Jennifer; Hamilton, Stephen; Wollheim, Wilfred; Hall, Robert; Mulholland, Patrick J; Peterson, Bruce; Ashkenas, Linda; Cooper, Lee W; Dahm, Cliff; Dodds, Walter; Grimm, Nancy; Johnson, Sherri; McDowell, William; Poole, Geoffrey C.; Valett, H. Maurice; Arango, Clay; Bernot, Melody; Burgin, Amy; Crenshaw, Chelsea; Helton, Ashley; Johnson, Laura; O'Brien, Jon; Potter, Jody; Sheibley, Rich; Sobota, Daniel; Thomas, Suzanne

    2011-01-01

    Nitrous oxide (N{sub 2}O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N{sub 2}O via microbial denitrification that converts N to N{sub 2}O and dinitrogen (N{sub 2}). The fraction of denitrified N that escapes as N{sub 2}O rather than N{sub 2} (i.e., the N{sub 2}O yield) is an important determinant of how much N{sub 2}O is produced by river networks, but little is known about the N{sub 2}O yield in flowing waters. Here, we present the results of whole-stream {sup 15}N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N{sub 2}O at rates that increase with stream water nitrate (NO{sub 3}{sup -}) concentrations, but that <1% of denitrified N is converted to N{sub 2}O. Unlike some previous studies, we found no relationship between the N{sub 2}O yield and stream water NO{sub 3}{sup -}. We suggest that increased stream NO{sub 3}{sup -} loading stimulates denitrification and concomitant N{sub 2}O production, but does not increase the N{sub 2}O yield. In our study, most streams were sources of N{sub 2}O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg {center_dot} y{sup -1} of anthropogenic N inputs to N{sub 2}O in river networks, equivalent to 10% of the global anthropogenic N{sub 2}O emission rate. This estimate of stream and river N{sub 2}O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  11. The occurrence of denitrification in extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Hochstein, L. I.

    1986-01-01

    The ability of Halobacterium vallismortis, Halobacterium mediterranei and Halobacterium marismortui (Ginzburg strain) to grow anaerobically and denitrify was determined. Each organism grew anaerobically only in the presence of nitrate. H. marismortui produced nitrite and dinitrogen from nitrate during exponential growth. However, as the culture entered stationary phase, dinitrogen production ceased and nitrous oxide was detected. H. vallismortis produced nitrous oxide and dinitrogen during exponential growth, with dinitrogen production ceasing at the onset of stationary phase. H. mediterranei produced dinitrogen during exponential growth and did not produce nitrous oxide. These results confirm the occurrence of denitrification in the halobacteria.

  12. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    PubMed

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  13. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  14. Denitrification at pH 4 by a soil-derived Rhodanobacter-dominated community.

    PubMed

    van den Heuvel, R N; van der Biezen, E; Jetten, M S M; Hefting, M M; Kartal, B

    2010-12-01

    Soil denitrification is a major source of nitrous oxide emission that causes ozone depletion and global warming. Low soil pH influences the relative amount of N₂O produced and consumed by denitrification. Furthermore, denitrification is strongly inhibited in pure cultures of denitrifying microorganisms below pH 5. Soils, however, have been shown to denitrify at pH values as low as pH 3. Here we used a continuous bioreactor to investigate the possibility of significant denitrification at low pH under controlled conditions with soil microorganisms and naturally available electron donors. Significant NO₃⁻ and N₂O reduction were observed for 3 months without the addition of any external electron donor. Batch incubations with the enriched biomass showed that low pH as well as low electron donor availability promoted the relative abundance of N₂O as denitrification end-product. Molecular analysis of the enriched biomass revealed that a Rhodanobacter-like bacterium dominated the community in 16S rRNA gene libraries as well as in FISH microscopy during the highest denitrification activity in the reactor. We conclude that denitrification at pH 4 with natural electron donors is possible and that a Rhodanobacter species may be one of the microorganisms involved in acidic denitrification in soils.

  15. Nitrate removal and denitrification affected by soil characteristics in nitrate treatment wetlands.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan; Chang, Yih-Feng; Shih, Kai-Chung

    2007-03-01

    Several small-scale surface flow constructed wetlands unplanted and planted (monoculture) with various macrophytes (Phragmites australis, Typha orientalis, Pennisetum purpureum, Ipomoea aquatica, and Pistia stratiotes) were established to continuously receive nitrate-contaminated groundwater. Soil characteristics and their effects on nitrate removal and soil denitrification were investigated. The results showed that planted wetland cells exhibited significantly higher (P < 0.05) nitrate removal efficiencies (70-99%) and soil denitrification rates (3.78-15.02 microg N2O-N/g dry soil/h) than an unplanted covered wetland cell (1%, 0.11 microg N2O-N/g/h). However, the unplanted uncovered wetland cell showed a nitrate removal efficiency (55%) lower than but a soil denitrification rate (9.12 microg N2O-N/g/h) comparable to the planted cells. The nitrate removal rate correlated closely and positively with the soil denitrification rate for the planted cells, indicating that soil denitrification is an important process for removing nitrate in constructed wetlands. The results of nitrogen budget revealed that around 68.9-90.7% of the overall nitrogen removal could be attributed to the total denitrification. The soil denitrification rate was found to correlate significantly (P < 0.01) with the extractable organic carbon, organic matter, and in situ-measured redox potential of wetland soil, which accordingly were concluded as suitable indicators of soil denitrification rate and nitrate removal rate in nitrate treatment wetlands.

  16. Significance of dredging on sediment denitrification in Meiliang Bay, China: A year long simulation study

    USGS Publications Warehouse

    Zhong, Jicheng; Fan, Chengxin; Zhang, Lu; Edward, Hall; Ding, Shiming; Li, Bao; Liu, Guofeng

    2010-01-01

    An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30 cm of sediment can significantly affect physico-chemical characteristics of sediments. Less degradation of organic matter in the dredged sediments was found during the experiment. Denitrification rates in the sediments were estimated by the acetylene blockage technique, and ranged from 21.6 to 102.7 nmol N2/(g dry weight (dw) x hr) for the undredged sediment and from 6.9 to 26.9 nmol N2/(g dw x hr) for dredged sediments. The denitrification rates in the undredged sediments were markedly higher (p < 0.05) than those in the dredged sediments throughout the incubation, with the exception of February 2006. The importance of various environmental factors on denitrification was assessed, which indicated that denitrification was regulated by temperature. Nitrate was probably the key factor limiting denitrification in both undredged and dredged sediments. Organic carbon played some role in determining the denitrification rates in the dredged sediments, but not in the undredged sediments. Sediment dredging influenced the mineralization of organic matter and denitrification in the sediment; and therefore changed the pattern of inherent cycling of nitrogen.

  17. Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification is known as an important pathway for nitrate loss in agroecosystems. It is important to estimate denitrification fluxes to close field and watershed N mass balances, determine greenhouse gas emissions (N2O), and help constrain estimates of other major N fluxes (e.g., nitrate leaching...

  18. Denitrification in the Upper Mississippi River: Rates, controls, and contribution to nitrate flux

    USGS Publications Warehouse

    Richardson, W.B.; Strauss, E.A.; Bartsch, L.A.; Monroe, E.M.; Cavanaugh, J.C.; Vingum, L.; Soballe, D.M.

    2004-01-01

    We evaluated patterns of denitrification and factors effecting denitrification in the upper Mississippi River. Measurements were taken over 2 years, during which river discharge ranged from record flooding to base flow conditions. Over the period of study, average denitrification enzyme activity was highest in backwater lakes and lowest in the main channel. Throughout the study reach, highest denitrification enzyme activity occurred during fall and lowest occurred in winter. Rates during spring floods (2001) were only slightly higher than during the preceding winter. Mean unamended denitrification rates ranged from 0.02 (fall 2001 in backwaters) to 0.40 ??g N??cm -2??h-1 (spring 2001 in backwaters). Laboratory experiments showed that denitrification rates increased significantly with addition of NO3- regardless of sediment C content, while rates increased little with addition of labile C (glucose). Denitrification in this reach of the upper Mississippi River appears to be NO3- limited throughout the growing season and the delivery of NO 3- is strongly controlled by river discharge and hydrologie connectivity across the floodplain. We estimate that denitrification removes 6939 t N??year-1 or 6.9% of the total annual NO 3- input to the reach. Hydrologic connectivity and resultant NO3- delivery to high-C sediments is a critical determinant of reach-scale processing of N in this floodplain system.

  19. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    PubMed

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  20. Hydraulic properties of four-year old woodchips from a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds for optimum nitrate remov...

  1. Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lakes can be important sites for removal of reactive nitrogen (N) through denitrification, but spatial heterogeneity in denitrification rates can be high, and our understanding of factors controlling the capacity of lakes to remove excess N is incomplete. In oligotrophic Lake Superior, a century-lon...

  2. Denitrification and N20 emissions from Carolina Bays receiving poultry runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On the southeastern Coastal Plain, there are depressional wetlands known as Carolina Bays that may receive runoff from agricultural land. Little is known about denitrification and gas emission within these isolated wetlands. Three forested Carolina Bays were selected to observe denitrification enzym...

  3. Respiration in Neonate Sea Turtles

    PubMed Central

    Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2007-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species’ resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults. PMID:17258487

  4. Light respiration by subtropical seaweeds.

    PubMed

    Carvalho, Matheus C; Eyre, Bradley D

    2017-03-20

    Here we report the first-ever measurements of light CO2 respiration rate (CRR) by seaweeds. We measured the influence of temperature (15 to 25°C) and light (irradiance from 60 to 670 μmol · m(-2) · s(-1) ) on the light CCR of two subtropical seaweed species, and measured the CRR of seven different seaweed species under the same light (150 μmol · m(-2) · s(-1) ) and temperature (25°C). There was little effect of irradiance on light CRR, but there was an effect of temperature. Across the seven species light CRR was similar to OCR (oxygen consumption rate in the dark), with the exception of a single species. The outlier species was a coralline alga, and the higher light CRR was probably driven by calcification. CRR could be estimated from OCR, as well as carbon photosynthetic rates from oxygen photosynthetic rates, which suggests that previous studies have probably provided good estimations of gross photosynthesis for seaweeds. This article is protected by copyright. All rights reserved.

  5. Respiration during sleep in kyphoscoliosis.

    PubMed Central

    Sawicka, E H; Branthwaite, M A

    1987-01-01

    Eleven subjects with non-paralytic and 10 with paralytic kyphoscoliosis and nine normal control subjects were studied during sleep. The Cobb angle of those with kyphoscoliosis varied from 60 degrees to 140 degrees (median 100 degrees) and the vital capacity varied from 17% to 56% (median 28%) of the value predicted on the basis of span. Recordings made during sleep included expired carbon dioxide tension at the nose, gas flow at the mouth, arterial oxygen saturation, chest wall movement, and the electroencephalogram, electro-oculogram, and electrocardiogram. In three subjects transcutaneous carbon dioxide tension was measured simultaneously. Patients with kyphoscoliosis hypoventilated during sleep, particularly in rapid eye movement sleep, resulting in a rise in end tidal and transcutaneous carbon dioxide tension, and a reduction in oxygen saturation to a degree not observed in normal subjects. Reduced chest wall movement was the major cause of these episodes, which were more frequent and occupied a greater proportion of sleep time in those with kyphoscoliosis than in normal subjects. Serious cardiac arrhythmias were rarely associated. It is concluded that disturbances of respiration during sleep occur in patients with kyphoscoliosis and that these may be important in the pathogenesis of cardiorespiratory failure. PMID:3424256

  6. [Potential of nitrification and denitrification in water purification system with hydroponic bio-filter method].

    PubMed

    Li, Xian-ing; Lu, Xi-wu; Song, Hai-liang; Osamu, Nishimura; Yuhei, Inamori

    2005-03-01

    The potential of nitrification and denitrification of sediment and the density of ammonium-oxidizing bacteria and nitrite-oxidizing bacteria in sediment in water quality purifying system with hydroponic bio-filter method (HBFM) were measured. The variation of nitrification and denitrification potential of the sediment along the stream way was quantitatively studied. The results show that among the sediments from front, middle and retral part of the stream way, the sediment from middle part reached a maximum nitrification potential . nitrification potential of 4.76 x 10(-6) g/(g x h), while the sediment from front part reached a maximum denitrification potential of 8 .1 x 10(-7) g/(g x h). The distribution of nitrification potential accords with the ammonium-oxidizing bacteria density. The key for improving nitrogen removal efficiency of HBFM system consists in changing nitrification & denitrification region distributing and accordingly enhances denitrification process.

  7. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  8. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  9. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  10. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  11. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.

  12. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean.

    PubMed

    Garvin, Jessica; Buick, Roger; Anbar, Ariel D; Arnold, Gail L; Kaufman, Alan J

    2009-02-20

    The nitrogen cycle provides essential nutrients to the biosphere, but its antiquity in modern form is unclear. In a drill core though homogeneous organic-rich shale in the 2.5-billion-year-old Mount McRae Shale, Australia, nitrogen isotope values vary from +1.0 to +7.5 per mil (per thousand) and back to +2.5 per thousand over approximately 30 meters. These changes evidently record a transient departure from a largely anaerobic to an aerobic nitrogen cycle complete with nitrification and denitrification. Complementary molybdenum abundance and sulfur isotopic values suggest that nitrification occurred in response to a small increase in surface-ocean oxygenation. These data imply that nitrifying and denitrifying microbes had already evolved by the late Archean and were present before oxygen first began to accumulate in the atmosphere.

  13. Denitrification of high nitrate concentration wastewater using alternative carbon sources.

    PubMed

    Fernández-Nava, Y; Marañón, E; Soons, J; Castrillón, L

    2010-01-15

    The use of different organic carbon sources in the denitrification of wastewater containing 2500 mg nitrates/L in a SBR was studied. Three alternative sources of carbon were tested: wastewater from a sweet factory, a residue from a soft drinks factory and a residue from a dairy plant. The first two are sugar-rich, whereas the third presents a high content in lactic acid. Maximum specific denitrification rates of between 42 and 48 mg NO(3)-N/g VSS h were obtained. The effluents were nitrate-free and very low COD concentrations were obtained in 4-6h reaction time, especially with the sugar-rich carbon sources. The values of the denitrifier net yield coefficient were higher than when using methanol (0.93-1.75 g VSS(formed)/g NO(x)-N(reduced)). The lowest value was obtained using the lactic acid-rich residue. The optimum COD/N ratios varied between 4.6 for the lactic acid-rich carbon source and 5.5-6.5 for the sugar-rich carbon sources.

  14. Examining thiosulfate-driven autotrophic denitrification through respirometry.

    PubMed

    Mora, Mabel; Guisasola, Albert; Gamisans, Xavier; Gabriel, David

    2014-10-01

    Anoxic respirometry was applied to characterize a sulfide-oxidizing nitrate-reducing (SO-NR) culture obtained from an anoxic biogas desulfurizing biotrickling filter treating high loads of H2S. Immobilized biomass extracted from the biotrickling filter was grown in a suspended culture with thiosulfate as electron donor to obtain the biomass growth yield and the S2O3(2)(-)/NO3(-) consumed ratio. Afterward, respirometry was applied to describe thiosulfate oxidation under anoxic conditions. A pure culture of Thiobacillus denitrificans was also used as a control culture in order to validate the procedure proposed in this work to characterize the SO-NR biomass. Respirometric profiles obtained with this microbial culture showed that nitrite was formed as intermediate during nitrate reduction and revealed that no competitive inhibition appeared when both electron acceptors were present in the medium. Although final bioreaction products depended on the initial S2O3(2)(-)/NO3(-) ratio, such ratio did not affect thiosulfate oxidation or denitrification rates. Moreover, respirometric profiles showed that the specific nitrite uptake rate depended on the biomass characteristics being that of a SO-NR mixed culture (39.8mgNg(-1) VSSh(-1)) higher than that obtained from a pure culture of T. denitrificans (19.7mgNg(-1) VSSh(-1)). For the first time, the stoichiometry of the two-step denitrification mechanism with thiosulfate oxidation and biomass growth associated was solved for both reactions.

  15. Long term performance of the Waterloo denitrification barrier

    SciTech Connect

    Robertson, W.D.; Cherry, J.A.

    1997-12-31

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO{sup -}{sub 3}-N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff.

  16. Removal of Nitrate by Photocatalytic Denitrification Using Nonlinear Optical Material.

    PubMed

    Liu, Guoshuai; You, Shijie; Ma, Ming; Huang, Hong; Ren, Nanqi

    2016-10-18

    Removal of nitrate from water has been receiving growing attention in water treatment. In this study, we report the photocatalytic denitrification (PCDN) by nonlinear optical (NLO) material, i.e. lithium niobate (LiNbO3). The hydrothermally synthesized LiNbO3 powder could achieve efficient denitrification in water, evidenced by 98.4% nitrate removal and 95.8% nitrogen selectivity at reaction time of 120 min and pH-neutral condition. Based on the first-order kinetics of PCDN, the kinetic constant for LiNbO3 is almost three times as that of conventional TiO2 (P25) under the same conditions. As suggested by the hole scavenger experiments, the LiNbO3 should proceed with photocatalytic reduction of nitrate through direct heterogeneous interaction with electrons at the conduction band of LiNbO3. This may represent a different mechanism from P25, where nitrate is mainly reduced by CO2(•-) radicals generated by the holes at the valence band. The unique second harmonic generation (SHG) effects of NLO materials enable them to produce more electrons and minimize the electron-hole recombination, which improves the efficiency and stability of the PCDN process. The current study provides a proof-of-concept demonstration of NLO photocatalytic material for more effective nitrate removal in water treatment.

  17. Citric acid application for denitrification process support in biofilm reactor.

    PubMed

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Dabrowska, Dorota; Ciesielski, Slawomir; Thornton, Arthur; Struk-Sokołowska, Joanna

    2017-03-01

    The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L(-1) h(-1) and 17.81 mgN L(-1) h(-1), respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L(-1) h(-1) and 24.38 mgN L(-1) h(-1)). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCODre(-1) (0.22 ± 0.09 mgTSS mgNre(-1)). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%).

  18. Simultaneous nitrification-denitrification in slow sand filters.

    PubMed

    Nakhla, George; Farooq, Shaukat

    2003-01-31

    While the ability of slow sand filters to remove total suspended solids (SS), turbidity, and organics from wastewaters is well known, this study has demonstrated that they can also achieve simultaneous nitrification-denitrification, producing effluent total Kjedahl nitrogen (TKN) and total nitrogen (TN) concentrations as low as 0.6 and 1.5mg/l, respectively, utilizing particulate and slowly biodegradable COD in the process. The impact of filtration rates in the range of 0.15-0.38m/h, filter depth of 0.5-1.5m, and sand size 0.3-0.5mm on nitrogen removal processes at temperatures of 10-39 degrees C was assessed. Nitrification efficiency, denitrification efficiency, and total nitrogen removal efficiency correlated well with filtration rate and sand size only, with all three parameters inversely proportional to the square root of the aforementioned two process variables. Nitrification exhibited the most sensitivity to filtration rate and sand size. The filters produced effluent with turbidities of 0.1-0.5 NTU, SS concentrations of 3-6mg/l in the fine sand and 6-9mg/l in the coarse sand. Effluent BOD(5) and COD concentrations were mostly in the 0.8-2.6 and 15-34mg/l range, respectively.

  19. Autotrophic denitrification using hydrogen generated from metallic iron corrosion.

    PubMed

    Sunger, Neha; Bose, Purnendu

    2009-09-01

    Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m(-3) d(-1) and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L(-1) (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m(-3) d(-1) and HRT of 15.6 days produced effluent with nitrate concentration of approximately 0.025 mg N L(-1) (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.

  20. Analysis of denitrification process in the groundwater of floodplains using a modelling approach

    NASA Astrophysics Data System (ADS)

    Bernard-Jannin, Léonard; Brito, David; Sun, Xiaoling; Teissier, Samuel; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2016-04-01

    Nitrate contamination of freshwater systems is a global concern. In alluvial floodplains, highly vulnerable to nitrate pollution due to widespread agricultural activities, riparian areas have been proven to be efficient in nitrate removal through denitrification. However, denitrification presents complex spatio-temporal patterns and is controlled by many factors. Hence, modelling can provide useful knowledge about this biogeochemical process, by helping to identify key factors involved in denitrification process and its spatio-temporal variability. In this study, a modelling approach combining i) a distributed hydrodynamic model, coupling surface and subsurface flow (MOHID Land), with ii) a simplified denitrification calculation module including dissolved organic carbon (DOC borned by the river) and particulate organic carbon (POC present in soil) have been applied to a monitored meander area of the Garonne river (6.6 km²). The dataset include hydrological data and nitrates concentrations collected in a network of 25 piezometers during 12 monthly campaigns allowing the set up and the validation of the model application. The average denitrification rate was estimated to 28 kg N/ha/yr representing 38% of the lateral nitrate input from the agricultural area. Denitrification was the highest in the low elevation riparian area in relation with inundated soils releasing topsoil organic carbon fueling denitrification. In addition high denitrification rates were simulated in downstream part of the meander in relation with the high nitrates flux coming from the agricultural area. Geomorphological settings and groundwater flows in the area play a major role in controlling denitrification in floodplain area. Flood events lead to high denitrification periods by increasing topsoil layer POC availability with higher water level in the aquifer. However, the role of DOC borne by the river seems restricted. The model can be applied to estimate nitrate removal capacity of riparian

  1. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect

    Wei Yanjie; Ji Min; Li Ruying; Qin Feifei

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  2. Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates

    SciTech Connect

    Zeng Yang; Guardia, Amaury de; Daumoin, Mylene; Benoist, Jean-Claude

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Ammonia emissions varied depending on the nature of wastes and the treatment conditions. Black-Right-Pointing-Pointer Nitrogen losses resulted from ammonia emissions and nitrification-denitrification. Black-Right-Pointing-Pointer Ammonification can be estimated from biodegradable carbon and carbon/nitrogen ratio. Black-Right-Pointing-Pointer Ammonification was the main process contributing to N losses. Black-Right-Pointing-Pointer Nitrification rate was negatively correlated to stripping rate of ammonia nitrogen. - Abstract: The transformation and transfer of nitrogen during the aerobic treatment of seven wastes were studied in ventilated air-tight 10-L reactors at 35 Degree-Sign C. Studied wastes included distinct types of organic wastes and their digestates. Ammonia emissions varied depending on the kind of waste and treatment conditions. These emissions accounted for 2-43% of the initial nitrogen. Total nitrogen losses, which resulted mainly from ammonia emissions and nitrification-denitrification, accounted for 1-76% of the initial nitrogen. Ammonification was the main process responsible for nitrogen losses. An equation which allows estimating the ammonification flow of each type of waste according to its biodegradable carbon and carbon/nitrogen ratio was proposed. As a consequence of the lower contribution of storage and leachate rates, stripping and nitrification rates of ammonia nitrogen were negatively correlated. This observation suggests the possibility of promotingnitrification in order to reduce ammonia emissions.

  3. Biodegradation of three- and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions

    SciTech Connect

    McNally, D.L.; Mihelcic, J.R.; Lueking, D.R.

    1998-09-01

    PAHs are thought to be particularly persistent in environments where anaerobic conditions exist. This study presents evidence for the biodegradation of three- and four-ringed PAHs (anthracene, phenanthrene, and pyrene) under strict anaerobic, denitrifying conditions. Three pseudomonad strains, isolated from contrasting environments, were used in this study. All three strains were known PAH degraders and denitrifiers. Degradation proceeded to nondetectable levels in 12--80 h for anthracene, 12--44 h for phenanthrene, and 24--72 h for pyrene. The rates of anaerobic degradation were typically slower than under aerobic conditions in almost all cases, except for strain SAG-R which had similar removal rates for all three and four-ring PAHs. Denitrification activity was verified by monitoring nitrate utilization and nitrous oxide production. Although none of the pseudomonads were adapted to the denitrifying conditions, only the pseudomonad isolated from a noncontaminated site consistently exhibited an adaptation period which approximated 12 h. This study supports growing evidence that the degradation of aromatic hydrocarbons coupled to denitrification may be an important factor affecting the fate of these compounds in natural and engineered systems.

  4. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  5. Molecular characterization of bacterial respiration on minerals. Final technical report, August 4, 1994--August 3, 1996

    SciTech Connect

    Blake, R. II

    1996-12-31

    The scope of work outlined in the original proposal contained two specific aims. Highlights of the results obtained and published on each specific aim during the grant period in question are summarized. The first aim continued the identification, separation, and characterization of the cellular components necessary for aerobic respiration on iron. An electrochemical apparatus for the large scale cultivation of chemolithotrophic bacteria that respire aerobically on ferrous ions was perfected. The kinetic properties of an acid-stable iron:rusticyanin oxidoreductase from T. ferrooxidans were determined. The overall tertiary structure of rusticyanin in solution was elucidated from a combination of homonuclear proton and heteronuclear {sup 15}N-edited NMR spectra. An artificial gene for rusticyanin was designed, synthesized, and successfully expressed in E. coli. The X-ray crystallographic structure of rusticyanin was solved to a resolution of 1.9 {angstrom} by multiwavelength anomalous dispersion (MAD) phasing. The second aim initiated an investigation of the molecular principles whereby these bacteria recognize and adhere to their insoluble inorganic substrates. The electrophoretic mobility of T. ferrooxidans with and without its insoluble substrates was determined by laser Doppler velocimetry under physiological conditions. The adherence of T. ferrooxidans to the surface of pyrite was observed directly in a video-enhanced light microscope.

  6. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum.

    PubMed

    Takeno, Seiki; Ohnishi, Junko; Komatsu, Tomoha; Masaki, Tatsuya; Sen, Kikuo; Ikeda, Masato

    2007-07-01

    Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O(2)), while no visible colonies were formed in the absence of O(2). However, in the presence of nitrate (NO3-), the organism exhibited limited growth anaerobically with production of nitrite (NO2-), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using L-lysine- and L-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.

  7. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    SciTech Connect

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-12-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m{sup 3}/min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 {micro}g/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented.

  8. Organohalide respiration: microbes breathing chlorinated molecules

    PubMed Central

    Leys, David; Adrian, Lorenz; Smidt, Hauke

    2013-01-01

    Bacterial respiration has taken advantage of almost every redox couple present in the environment. The reduction of organohalide compounds to release the reduced halide ion drives energy production in organohalide respiring bacteria. This process is centred around the reductive dehalogenases, an iron–sulfur and corrinoid containing family of enzymes. These enzymes, transcriptional regulators and the bacteria themselves have potential to contribute to future bioremediation solutions that address the pollution of the environment by halogenated organic compounds. PMID:23479746

  9. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87

    PubMed Central

    Ianniello, Rocco G.; Matera, Attilio; Genovese, Francesco; Parente, Eugenio; Ricciardi, Annamaria

    2016-01-01

    Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB). Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase), antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation) batch cultivations with different dissolved oxygen (DO) concentrations. The expression of pox (pyruvate oxidase) and cydABCD operon (cytochrome bd oxidase complex) was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO). Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei. PMID:27812097

  10. Telephone communications with several commercial respirators.

    PubMed

    Johnson, A T; Scott, W H; Coyne, K M; Koh, F C; Rebar, J E

    2001-01-01

    Previous work showed that telephone communications while wearing military respirators degraded both word comprehension and recognition speed. In addition, electronic amplification of the speech diaphragm signal had shown no advantage to the extra hardware. This experiment was performed to test effects of different configurations of commercially available respirators on telephone communications accuracy and speed. Twelve pairs of subjects were separated into different rooms and communicated by telephone. Modified rhyme-test words were presented by computer to the speaker, who transmitted the word by telephone to the listener. During the first replication, subjects were given no instruction about telephone communications procedure. During the second replication subjects followed a communications protocol that instructed them when to move the telephone handset from their ears to their mouths. Results showed that the protocol uniformly improved communications accuracy without incurring any extra time penalty. Word comprehension was still twice as fast without a respirator as with a respirator. Accuracy with the protocol nearly equaled the no respirator control value for most respirators tested.

  11. Mitochondrial respiration without ubiquinone biosynthesis

    PubMed Central

    Wang, Ying; Hekimi, Siegfried

    2013-01-01

    Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic effects of UQ deficiency and to assess potential therapeutic agents for the treatment of UQ deficiencies. We found that Mclk1 knockout cells are viable in the total absence of UQ. The UQ biosynthetic precursor DMQ9 accumulates in these cells and can sustain mitochondrial respiration, albeit inefficiently. We demonstrated that efficient rescue of the respiratory deficiency in UQ-deficient cells by UQ analogues is side chain length dependent, and that classical UQ analogues with alkyl side chains such as idebenone and decylUQ are inefficient in comparison with analogues with isoprenoid side chains. Furthermore, Vitamin K2, which has an isoprenoid side chain, and has been proposed to be a mitochondrial electron carrier, had no efficacy on UQ-deficient mouse cells. In our model with liver-specific loss of Mclk1, a large depletion of UQ in hepatocytes caused only a mild impairment of respiratory chain function and no gross abnormalities. In conjunction with previous findings, this surprisingly small effect of UQ depletion indicates a nonlinear dependence of mitochondrial respiratory capacity on UQ content. With this model, we also showed that diet-derived UQ10 is able to functionally rescue the electron transport deficit due to severe endogenous UQ deficiency in the liver, an organ capable of absorbing exogenous UQ. PMID:23847050

  12. Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in Proteus mirabilis.

    PubMed

    Alteri, Christopher J; Himpsl, Stephanie D; Engstrom, Michael D; Mobley, Harry L T

    2012-10-30

    Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify the link between energy pathways and swarming differentiation by examining the behavior of defined central metabolism mutants. Mutations in the tricarboxylic acid (TCA) cycle (fumC and sdhB mutants) caused altered patterns of swarming periodicity, suggesting an aerobic pathway. Surprisingly, the wild-type strain swarmed on agar containing sodium azide, which poisons aerobic respiration; the fumC TCA cycle mutant, however, was unable to swarm on azide. To identify other contributing energy pathways, we screened transposon mutants for loss of swarming on sodium azide and found insertions in the following genes that involved fumarate metabolism or respiration: hybB, encoding hydrogenase; fumC, encoding fumarase; argH, encoding argininosuccinate lyase (generates fumarate); and a quinone hydroxylase gene. These findings validated the screen and suggested involvement of anaerobic electron transport chain components. Abnormal swarming periodicity of fumC and sdhB mutants was associated with the excretion of reduced acidic fermentation end products. Bacteria lacking SdhB were rescued to wild-type pH and periodicity by providing fumarate, independent of carbon source but dependent on oxygen, while fumC mutants were rescued by glycerol, independent of fumarate only under anaerobic conditions. These findings link multicellular swarming patterns with fumarate metabolism and membrane electron transport using a previously unappreciated configuration of both aerobic and anaerobic respiratory chain components. Bacterial locomotion and the existence of microbes were the first scientific

  13. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  14. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  15. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  16. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  17. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  18. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  19. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  20. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it...

  1. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  2. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  3. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  4. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  5. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  6. [Removal efficiency of nitrogen in aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Wang, Hao-Yun; Song, Ni; Wang, Zhen-Yu

    2011-01-01

    In order to adjust the dissolved oxygen in the traditional subsurface flow constructed wetlands (SFCWs) and increase the purification efficiency of sewage water, the traditional SFCWs were divided into different sections with enhanced functions. Different kinds of aerobic/anaerobic SFCWs were designed to study the influence of ratio and location of aerobic/anaerobic, artificial aeration and other factors on the nitrogen in effluent. The purification efficiency of the water in this study was compared with that in traditional SFCWs. The results showed that the removal efficiencies of NH4(+)-N and TN in traditional SFCWs were 18.4% and 40.6% but 99.7% and 50.7% in aerobic/anaerobic/aerobic SFCWs with aeration (O-A-O SFCWs with aeration) treatment. Aeration in the front and in the rear, and anaerobic treatment in the middle was used in this treatment. Removal efficiency of NH4(+)-N in O-A-O SFCWs with aeration treatment was 100%, while that of O-A-O SFCWs without aeration was about 50%. The removal efficiencies of NH4(+) -N in new SFCWs with aeration in the front and in the rear were increased by 82.81% and 17.91% but 73.16% in the middle. It shows that aeration can significantly improve the removal efficiency of nitrogen, especially NH4(+)-N. Aeration in the front and back can greatly improve the removal efficiency NH4(+)-N and TN. But aeration resulting to oxygen-rich environment is not conducive to the denitrification, which will be an important factor of limiting the TN removal efficiency.

  7. Denitrification mitigates N flux through the stream-floodplain complex of a desert city.

    PubMed

    Roach, W John; Grimm, Nancy B

    2011-10-01

    The Indian Bend Wash (IBW) flood-control project relies on a greenbelt to carry floods through Scottsdale, Arizona, USA. The greenbelt is characterized by a chain of shallow artificial lakes in a larger floodplain of irrigated turf, which has been protected from encroaching urban development. As such, this urban stream-floodplain complex can be divided into three subsystems: artificial lakes, channelized stream segments, and floodplain. We conducted experiments to evaluate which, if any, of these subsystems were important sites of denitrification, and to explore factors controlling denitrification rates. Denitrification enzyme activity (DEA) bioassays were conducted on sediments from eight lake and six stream segments as well as soil samples from eight floodplain transects. Mass-specific potential denitrification rates were significantly higher in lakes than in streams or floodplains. Nutrient limitation bioassays revealed that nitrate (NO3-) limited denitrification in lake sediments, a surprising finding given that NO3(-)-rich groundwater additions frequently raised lake NO3(-) concentration above 1 mg N/L. Experiments on intact lake cores suggested that denitrification was limited by the rate NO3(-) diffused into sediments, rather than its availability in overlying water. Floodplain denitrification was limited by water content, not NO3(-) or C, and irrigation of soils stimulated denitrification. We constructed a N budget for the IBW stream-floodplain complex based on our experimental results. We found that both lakes and floodplains removed large quantities of N, with denitrification removing 261 and 133 kg N ha(-1) yr(-1) from lake sediments and floodplain soils, respectively, indicating that lakes are hotspots for denitrification. Nevertheless, because floodplain area was >4.5 times that of lakes, floodplain soils removed nearly 2.5 times as much N as lake sediments. Given the desert's low annual precipitation, a finding that floodplain soils are active sites

  8. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils

    PubMed Central

    Bakken, Lars R.; Bergaust, Linda; Liu, Binbin; Frostegård, Åsa

    2012-01-01

    Denitrifying prokaryotes use NOx as terminal electron acceptors in response to oxygen depletion. The process emits a mixture of NO, N2O and N2, depending on the relative activity of the enzymes catalysing the stepwise reduction of NO3− to N2O and finally to N2. Cultured denitrifying prokaryotes show characteristic transient accumulation of NO2−, NO and N2O during transition from oxic to anoxic respiration, when tested under standardized conditions, but this character appears unrelated to phylogeny. Thus, although the denitrifying community of soils may differ in their propensity to emit N2O, it may be difficult to predict such characteristics by analysis of the community composition. A common feature of strains tested in our laboratory is that the relative amounts of N2O produced (N2O/(N2+N2O) product ratio) is correlated with acidity, apparently owing to interference with the assembly of the enzyme N2O reductase. The same phenomenon was demonstrated for soils and microbial communities extracted from soils. Liming could be a way to reduce N2O emissions, but needs verification by field experiments. More sophisticated ways to reduce emissions may emerge in the future as we learn more about the regulation of denitrification at the cellular level. PMID:22451108

  9. Impact of oxygen on the coexistence of nitrification, denitrification, and sulfate reduction in oxygen-based membrane aerated biofilm.

    PubMed

    Liu, Hong; Tan, Shuying; Sheng, Zhiya; Yu, Tong; Liu, Yang

    2015-03-01

    Membrane aerated biofilms (MABs) are subject to "counter diffusion" of oxygen and substrates. In a membrane aerated biofilm reactor, gases (e.g., oxygen) diffuse through the membrane into the MAB, and liquid substrates pass from the bulk liquid into the MAB. This behavior can result in a unique biofilm structure in terms of microbial composition, distribution, and community activity in the MAB. Previous studies have shown simultaneous aerobic oxidation, nitrification, and denitrification within a single MAB. Using molecular techniques, we investigated the growth of sulfate-reducing bacteria (SRB) in the oxygen-based MAB attached to a flat sheet membrane. Denaturing gradient gel electrophoresis of the amplified 16S rRNA gene fragments and functional gene fragments specific for ammonia-oxidizing bacteria (amoA), denitrifying bacteria (nirK), and SRB (dsrB) demonstrated the coexistence of nitrifiers, denitrifiers, and SRB communities within a single MAB. The functional diversities of SRB and denitrifiers decreased with an increase in the oxygen concentration in the bulk water of the reactor.

  10. A Microbial Model of Nitrous Oxide Production That Differentiates Nitrification and Denitrification Production Across Spatial and Temporal Scales.

    NASA Astrophysics Data System (ADS)

    Bouskill, N.; Riley, W. J.; Cheng, Y.; Tang, J.

    2014-12-01

    N2O fluxes from soil to the atmosphere are mainly attributable to the activity of two microbial functional guilds: aerobic autotrophic nitrifiers and anaerobic heterotrophic denitrifying bacteria. The controls on N2O production from these guilds are generally known and include species interactions and a range of environmental factors (e.g., oxygen concentrations, organic matter stoichiometry, substrate availability, mineralization rates). Here we attempt to parse out the conditions controlling N2O production using a trait-based microbial model that predicts N2O production by representing the physiology and ecology of nitrifiers and denitrifiers, and the N2O consumption pathways of heterotrophic bacteria. Following successful application of the standalone microbial model to predict nitrification and denitrification rates and associated N2O fluxes, we ran the model with output from the Community Land Model (CLM4.5) to examine N2O production across spatial and temporal scales, during rainfall events and under global change scenarios (e.g., increased temperature and nitrogen deposition). We discuss our output with respect to what is understood about the complexity of belowground ecosystems and how our approach can help constrain the global N2O budget.

  11. Pilot-scale nitrogen removal from leachate by ex situ nitrification and in situ denitrification in a landfill bioreactor.

    PubMed

    Sun, Faqian; Sun, Bin; Li, Qian; Deng, Xiaoya; Hu, Jian; Wu, Weixiang

    2014-04-01

    A combined process consisting of ex situ nitrification and in situ denitrification in landfill refuse was studied in pilot scale for nitrogen removal from municipal landfill leachate. The results showed that above 80% of partial nitrification ratio and an average COD loading rate of 1.50 kg m(-3) d(-1) were steadily maintained under DO concentrations of 1.0-1.7 mg L(-1) in the aerobic reactor. Quantitative PCR results indicated that nitrite-oxidizing bacteria being sensitive to DO fluctuations lead to partial nitrification when free ammonia inhibition was weak. Nitrified landfill leachate could be denitrified in the landfill bioreactor with maximum total oxidizing nitrogen removal rate of 67.2 g N t(-1) TSwaste d(-1). Clone and sequencing analysis of denitrifying bacterial nirS gene inferred that heterotrophic denitrifier Azoarcus tolulyticu was the primary nitrogen converter in the landfill bioreactor. The obtained results will provide valuable information for optimizing the design and operation of a landfill bioreactor.

  12. Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts.

    PubMed

    Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung

    2013-01-01

    Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution.

  13. Denitrification as a Source of NO Emissions using Isotope Techniques

    NASA Astrophysics Data System (ADS)

    Cardenas, Laura; Loick, Nadine; Abalos, Diego; Dixon, Liz; Vallejo, Antonio; Watson, Catherine; McGeough, Karen; Well, Reinhard; Matthews, Peter

    2015-04-01

    Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N2O) which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification. Depending on the environmental conditions such as substrate availability, pH and water filled pore space (WFPS) N2O emissions have been attributed to both processes, whereas NO emissions are thought to predominantly derive from nitrification. This is due to the fact that the environmental factors which promote denitrifying conditions also restrict gaseous diffusivity causing consumption of the highly reactive NO. Recent findings however challenge this assumption indicating that denitrification can be a significant source of NO. Attributing gaseous emissions to specific soil processes is still difficult; however, advanced isotopic methods show great potential. Labelling methods rely on the use of 15N enriched substrates, whereas isotopomer analyses rely on differences in the utilisation of heavy vs light N and O isotopes at natural abundance. The present study analysed the effect of different enrichment levels on gaseous emissions using the gas-flow-soil-core technique (Cardenas et al 2003). This system provides continuous measurements of NO, N2O as well as N2 fluxes by exchanging the normal atmosphere with a mixture of He:O2 (80:20). This was combined with 15N labelled isotopic techniques and isotopomer measurements to determine the source and processes responsible for the measured N-emissions. Nutrient solutions were applied containing KNO3 with 15N at natural abundance, 5 atom% and 20 atom% enrichment at a rate of 75 kg N ha-1 together with glucose at a rate of 400 kg C ha-1. Results showed that at the higher level of enrichment gaseous emissions were affected by showing an increase in emissions of NO and N2O. Additionally, under denitrifying conditions (high WFPS and NO3- availability) denitrification played a key role in NO emissions

  14. Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration.

    PubMed

    Husain, Maroof; Bourret, Travis J; McCollister, Bruce D; Jones-Carson, Jessica; Laughlin, James; Vázquez-Torres, Andrés

    2008-03-21

    Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNgamma-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO(-)) and hydrogen peroxide (H(2)O(2)). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H(2)O(2). NADH antagonizes the hydroxyl radical (OH(.)) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.

  15. Denitrification of soil nitrogen in coastal and inland salt marshes with different flooding frequencies

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Wang, Xin; Jia, Jia; Zhang, Guangliang; Wang, Yuying; Zhang, Shuai

    2017-02-01

    Denitrification is an important process for removing nitrogen in wetlands, and it is influenced by many environmental factors. However, little information is available on the relationship between hydrologic conditions and denitrification. In this study three typical sampling sites with different flooding frequencies, including short-term flooding wetlands (STFW), seasonal-flooding wetlands (SFW) and tidal flooding wetlands (TFW) were chosen as the study sites in the Yellow River Delta. In contrast, five typical sampling sites with different flooding frequencies, including 100-year floodplain (H), 10-year floodplain (T), 5-year floodplain (F), 1-year floodplain (O) and permanently flooded floodplain (B) were chosen as the study sites in Xianghai wetlands. This study reflected that the denitrification rates decreased with depth along soil profiles in both inland and coastal salt marsh soils. Flooding periods, soil depth and their interaction showed significant effects on the denitrification processes. Generally, higher flooding frequencies will cause higher denitrification rates in salt marshes. Moreover, the denitrification rates were significantly positively correlated with soil moisture content in both wetlands. Additionally, the denitrification rates were significantly positively correlated with organic matter and NO3-_N content while negatively correlated with soil pH and salinity in inland salt marshes. Therefore, the changes in soil properties (e.g. SOM, TN, pH and salinity) can become an important way to control NO3- levels in inland salt marshes.

  16. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification.

    PubMed

    Pan, Yuting; Ni, Bing-Jie; Yuan, Zhiguo

    2013-10-01

    Competition for electrons among different steps of denitrification has previously been shown to occur, and to play an important role in the accumulation and emission of N2O in wastewater treatment. However, this electron competition is not recognized in the current denitrification models, limiting their ability to predict N2O accumulation during denitrification. In this work, a new denitrification model is developed for wastewater treatment processes. It describes electron competition among the four steps of denitrification, through modeling the carbon oxidation and nitrogen reduction processes separately, in contrast to the existing models that directly couple these two types of processes. Electron carriers are introduced to link carbon oxidation, which donates electrons to carriers, and nitrogen oxides reduction, which receives electrons from these carriers. The relative ability of each denitrification step to compete for electrons is modeled through the use of different affinity constants with reduced carriers. Model calibration and validation results demonstrate that the developed model is able to reasonably describe the nitrate, nitrite, and N2O reduction rates of a methanol-utilizing denitrifying culture under various carbon and nitrogen oxides supplying conditions. The model proposed, while subject to further validation, is expected to enhance our ability to predict N2O accumulation in denitrification.

  17. Sulfide-Inhibition of Mitochondrial Respiration at Very Low Oxygen Concentrations

    PubMed Central

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-01-01

    Our aim was to study the capacity of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the capacity of the pathway metabolizing and eliminating sulfide, which is linked to the mitochondrial respiratory chain and therefore operates under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide’s inhibition of cellular respiration would be dependent of the oxygen concentration in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5 – 1 × 106 cells in 2 ml of continuously stirred respiration medium at 37°C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73 ± 0.05 μM, 3.1 ± 0.2 μM, and 6.2 ± 0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3; 3.5] and 11.7 [6.2;21.2] min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6[15.5;28.1] min (coupled) and 35.9[27.4;59.2] min (uncoupled), as well as 42.4 [27.5;42.4] min (coupled) and 51.5 [46.4;51.7] min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results suggest that elimination of sulfide in these cells is limited by oxygen availability when approaching the anoxic condition. This

  18. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  19. Denitrification as the dominant nitrogen loss process in the Arabian Sea.

    PubMed

    Ward, B B; Devol, A H; Rich, J J; Chang, B X; Bulow, S E; Naik, Hema; Pratihary, Anil; Jayakumar, A

    2009-09-03

    Primary production in over half of the world's oceans is limited by fixed nitrogen availability. The main loss term from the fixed nitrogen inventory is the production of dinitrogen gas (N(2)) by heterotrophic denitrification or the more recently discovered autotrophic process, anaerobic ammonia oxidation (anammox). Oceanic oxygen minimum zones (OMZ) are responsible for about 35% of oceanic N(2) production and up to half of that occurs in the Arabian Sea. Although denitrification was long thought to be the only loss term, it has recently been argued that anammox alone is responsible for fixed nitrogen loss in the OMZs. Here we measure denitrification and anammox rates and quantify the abundance of denitrifying and anammox bacteria in the OMZ regions of the Eastern Tropical South Pacific and the Arabian Sea. We find that denitrification rather than anammox dominates the N(2) loss term in the Arabian Sea, the largest and most intense OMZ in the world ocean. In seven of eight experiments in the Arabian Sea denitrification is responsible for 87-99% of the total N(2) production. The dominance of denitrification is reproducible using two independent isotope incubation methods. In contrast, anammox is dominant in the Eastern Tropical South Pacific OMZ, as detected using one of the isotope incubation methods, as previously reported. The abundance of denitrifying bacteria always exceeded that of anammox bacteria by up to 7- and 19-fold in the Eastern Tropical South Pacific and Arabian Sea, respectively. Geographic and temporal variability in carbon supply may be responsible for the different contributions of denitrification and anammox in these two OMZs. The large contribution of denitrification to N(2) loss in the Arabian Sea indicates the global significance of denitrification to the oceanic nitrogen budget.

  20. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    PubMed

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater.

  1. Eddies reduce denitrification and compress habitats in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Smith, Shafer; Lévy, Marina; Pauluis, Olivier

    2016-09-01

    The combination of high biological production and weak oceanic ventilation in regions, such as the northern Indian Ocean and the eastern Pacific and Atlantic, cause large-scale oxygen minimum zones (OMZs) that profoundly affect marine habitats and alter key biogeochemical cycles. Here we investigate the effects of eddies on the Arabian Sea OMZ—the world's thickest—using a suite of regional model simulations with increasing horizontal resolution. We find that isopycnal eddy transport of oxygen to the OMZ region limits the extent of suboxia so reducing denitrification, increasing the supply of nitrate to the surface, and thereby enhancing biological production. That same enhanced production generates more organic matter in the water column, amplifying oxygen consumption below the euphotic zone, thus increasing the extent of hypoxia. Eddy-driven ventilation likely plays a similar role in other low-oxygen regions and thus may be crucial in shaping marine habitats and modulating the large-scale marine nitrogen cycle.

  2. Combined nitrification/denitrification in a membrane reactor.

    PubMed

    Walter, B; Haase, C; Räbiger, N

    2005-08-01

    An ever stricter legislation regulating wastewater leads to an increasing demand for biological treatment plants which are able to selectively eliminate nitrogen from wastewaters with a high influent concentration, even when operating in partial influent mode. A membrane-tube-module (MSM) reactor (Membran-Schlauch-Modul-Reaktor) was constructed and realized in the IUV at the University of Bremen. The present approach makes use of all the various layers of the whole biofilm, enabling nitrification and denitrification processes to run simultaneously in one and the same biofilm under optimized conditions. The biological degradation capacity of the system was first successfully tested with synthetic wastewater, and subsequently in a real application with effluents from a recycling of animal carcasses plant and from a coke-oven plant. A mathematical model was devised which describes this biofilm system. The resulting equations were solved by means of the simulation software AQUASIM.

  3. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons.

    PubMed

    Ducey, Thomas F; Shriner, Anthony D; Hunt, Patrick G

    2011-01-01

    Although anaerobic lagoons are used globally for livestock waste treatment, their detailed microbial cycling ofN is only beginning to become understood. Within this cycling, nitrification can be performed by organisms that produce the enzyme ammonia monooxygenase. For denitrification, the reduction of nitrite to nitric oxide can be catalyzed by two forms of nitrite reductases, and N,O can be reduced by nitrous oxide reductase encoded by the gene nosZ The objectives of this investigation were to (i) quantify the abundance of the amoA, nirK, nirS, and nosZ genes; (ii) evaluate the influence of environmental conditions on their abundances; and (iii) evaluate their abundance relative to denitrification enzyme activity (DEA). Samples were analyzed via real-time quantitative polymerase chain reaction and collected from eight typical, commercial anaerobic, swine wastewater lagoons located in the Carolinas. The four genes assayed in this study were present in all eight lagoons. Their abundances relative to total bacterial populations were 0.04% (amoA), 1.33% (nirS), 5.29% (nirK), and 0.27% (nosZ). When compared with lagoon chemical characteristics, amoA and nirK correlated with several measured variables. Neither nirS nor nosZ correlated with any measured environmental variables. Although no gene measured in this study correlated with actual or potential DEA, nosZ copy numbers did correlate with the disparity between actual and potential DEA. Phylogenetic analysis ofnosZdid not reveal any correlations to DEA rates. As with other investigations, analyses of these genes provide useful insight while revealing the underlying greater complexity of N cycling within swine waste lagoons.

  4. Sediment nitrification and denitrification rates in a Lake ...

    EPA Pesticide Factsheets

    Microbially-mediated nitrogen (N) cycling in aquatic sediments has been recognized as an ecosystem service due to mitigation of N-transport to receiving waters. In 2011 and 2012, we compared nitrification (NIT), unamended (DeNIT) and amended (DEA) denitrification rates among spatial and depths zones and in relation to site physicochemical characteristics in the St. Louis River Estuary (SLRE) of western Lake Superior. Among vegetated habitats in 2011, NIT rates were highest in deep (>2 m) waters (249 mgN m-2 d-1) and in the upper estuary (>126). DeNIT rates were highest in deep waters and the harbor (2,111 and 274, respectively). DEA rates were similar among habitats. In 2012, we observed highest NIT (223 and 287) and DeNIT (77 and 64) rates in the harbor and from deep waters, respectively. Highest rates for NIT, DeNIT, and DEA were in July, May, and June, respectively. Individual site characteristics were weakly related to N-cycling rates, but water and sediment N-concentrations were identified as significant predictors in multiple linear regression models. NO3- was most limiting to sediment denitrification rates. The SLRE acted as a net source of NO3- to the water column, but had the potential to act as a sink. Average N2O production in 2011 was half that of 2012, with production during DEA (23-54%) being higher than DeNIT (0-41%). SLRE N-cycling rates were spatially and temporally variable, but our results give an indication of how alterations of water depth a

  5. Predicting the denitrification capacity of sandy aquifers from shorter-term incubation experiments and sediment properties

    NASA Astrophysics Data System (ADS)

    Eschenbach, W.; Well, R.

    2013-02-01

    Knowledge about the spatial variability of denitrification rates and the lifetime of denitrification in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, regression models were derived to estimate the measured cumulative denitrification of aquifer sediments after one year of incubation from initial denitrification rates and several sediment parameters, namely total sulphur, total organic carbon, extractable sulphate, extractable dissolved organic carbon, hot water soluble organic carbon and potassium permanganate labile organic carbon. For this purpose, we incubated aquifer material from two sandy Pleistocene aquifers in Northern Germany under anaerobic conditions in the laboratory using the 15N tracer technique. The measured amount of denitrification ranged from 0.19 to 56.2 mg N kg-1 yr-1. The laboratory incubations exhibited high differences between non-sulphidic and sulphidic aquifer material in both aquifers with respect to all investigated sediment parameters. Denitrification rates and the estimated lifetime of denitrification were higher in the sulphidic samples. For these samples, the cumulative denitrification measured during one year of incubation (Dcum(365)) exhibited distinct linear regressions with the stock of reduced compounds in the investigated aquifer samples. Dcum(365) was predictable from sediment variables within a range of uncertainty of 0.5 to 2 (calculated Dcum(365)/measured Dcum(365)) for aquifer material with a Dcum(365) > 20 mg N kg-1 yr-1. Predictions were poor for samples with lower Dcum(365), such as samples from the NO3- bearing groundwater zone, which includes the non-sulphidic samples, from the upper part of both aquifers where denitrification is not sufficient to protect groundwater from anthropogenic NO3- input. Calculation of Dcum(365) from initial denitrification rates was only successful for samples from the NO3--bearing zone, whereas a lag-phase of denitrification in samples

  6. Respiration and Reproductive Effort in Xanthium canadense

    PubMed Central

    KINUGASA, TOSHIHIKO; HIKOSAKA, KOUKI; HIROSE, TADAKI

    2005-01-01

    • Background and Aims The proportion of resources devoted to reproduction in the plant is called the reproductive effort (RE), which is most commonly expressed as the proportion of reproductive biomass to total plant biomass production (REW). Reproductive yield is the outcome of photosynthates allocated to reproductive structures minus subsequent respiratory consumption for construction and maintenance of reproductive structures. Thus, REW can differ from RE in terms of photosynthates allocated to reproductive structures (REP). • Methods Dry mass growth and respiration of vegetative and reproductive organs were measured in Xanthium canadense and the amount of photosynthates and its partitioning to dry mass growth and respiratory consumption were determined. Differences between REW and REP were analysed in terms of growth and maintenance respiration. • Key Results The fraction of allocated photosynthates that was consumed by respiration was smaller in the reproductive organ than in the vegetative organs. Consequently, REP was smaller than REW. The smaller respiratory consumption in the reproductive organ resulted from its shorter period of existence and a seasonal decline in temperature, as well as a slower rate of maintenance respiration, although the fraction of photosynthates consumed by growth respiration was larger than in the vegetative organs. • Conclusions Reproductive effort in terms of photosynthates (REP) was smaller than that in terms of biomass (REW). This difference resulted from respiratory consumption for maintenance, which was far smaller in the reproductive organ than in vegetative organs. PMID:15837721

  7. Soil respiration partition and its components in the total agro-ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth; Mary, Bruno

    2013-04-01

    Close to 15% of the Earth's terrestrial surface is used for cropland. In the context of global warming, and acknowledged by the Kyoto Protocol, agricultural soils could be a significant sink for atmospheric CO2. Understanding the factors influencing carbon fluxes of agricultural soils is essential for implementing efficient mitigation practices. Most of the soil respiration modeling studies was carried out in forest ecosystems, but only a few was carried out in agricultural ecosystems. In the study, we evaluated simple formalisms to model soil respiration using wheat data from four contrasting geographical mi-latitude regions. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. Different biotic and abiotic descriptors were used to model daily soil respiration and its heterotrophic and autotrophic components: soil temperature, soil relative humidity, Gross Primary Productivity (GPP), shoot biomass, crop height, with different formalisms. It was interesting to conclude that using biotic descriptors did not improve the performances of the model. In fact, a combination of abiotic descriptors (soil humidity and soil temperature) allowed significant model formalism to model soil respiration. The simple soil respiration model was used to calculate the heterotrophic and autotrophic source contributions to

  8. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  9. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  10. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  11. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  12. BOREAS TE-2 Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. BOREAS TE-2 Continuous Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration measured continuously (about once per hour) in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. BOREAS TE-2 Foliage Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Hall, Forrest G. (Editor); Lavigne, Michael; Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of foliar respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. Use of aerobic granules for treating synthetic high-strength ammonium wastewaters.

    PubMed

    Yu, Xiaonan; Wan, Chunli; Lei, Zhongfang; Liu, Xiang; Zhang, Yi; Tay, Joo Hwa; Lee, Duu-Jong

    2014-08-01

    In this work, two identical sequencing batch reactors (SBRs) with mature aerobic granules were utilized to treat synthetic high-strength ammonium wastewaters with chemical oxygen demand (COD)/total nitrogen (TN) ratios of 3.9-6.9. The contributions of various mechanisms to the removal of ammonium were determined. Ammonium levels of 600-2000 mg-N l-1 had little adverse effect on the COD removal rate (91.6%-95.3%) with an influent COD of 4490-9860 mg l-1. The TN removal rate was slightly reduced from 71.3% to 59.6% as the influent ammonium concentration was increased from 600 to 2000 mg-N l-1. Experimental results indicated that aerobic granules removed 94.5% of COD and 59.6% of TN in the treatment of synthetic high-strength wastewater (9860 mg-COD l-1 and 2000 mg NH+4-Nl-1) during a 12 h cycle. Granular adsorption, air stripping and conversion by nitrification/denitrification were responsible for removing 9%, 15% and 76%, respectively, of the total removed NHf -N. Dissolved oxygen (DO) was a useful process indicator of the biological reactions in the treatment of high-level ammonium wastewaters.

  17. Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus.

    PubMed

    Hernández, Noemi; Escudero, José A; San Millán, Álvaro; González-Zorn, Bruno; Lobo, Jorge M; Verdú, José R; Suárez, Mónica

    2015-04-01

    Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle's gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. The main functions associated with the bacteria found in the gut of T. lusitanicus would likely include nitrogen fixation, denitrification, detoxification, and diverse defensive roles against pathogens.

  18. Excess cell mass as an internal carbon source for biological denitrification.

    PubMed

    Biradar, Prashant M; Roy, S B; D'Souza, S F; Pandit, A B

    2010-03-01

    Aim of the present work was to examine whether the SCOD (soluble chemical oxygen demand) released after the physical disruption of excess activated sludge can be used as an alternative carbon source for biological denitrification. In the first stage of research, we investigated the potential use of energy efficient hydrodynamic cavitation (HC) technique for the disruption of activated sludge. In a comparative study between ultrasonic cavitation (UC) and HC, it was observed that UC needs five times more energy than that of HC to release the same amount of SCOD. In the second stage of the experimental study, SCOD was successfully used as an alternative carbon source (alternative to sodium acetate) for biological denitrification. The critical weight ratio (SCOD/NO(3)-N) of seven ensured 100% removal of nitrate. Nitrate removal kinetics indicated that denitrification with SCOD as a carbon source gives higher specific denitrification rate (by approximately 200%) as compared to conventional carbon source (sodium acetate).

  19. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification.

    PubMed

    Ma, Bin; Peng, Yongzhen; Wei, Yan; Li, Baikun; Bao, Peng; Wang, Yayi

    2015-03-01

    Using internal carbon source contained in waste activated sludge (WAS) is beneficial for nitrogen removal from wastewater with low carbon/nitrogen ratio, but it is usually limited by sludge disintegration. This study presented a novel strategy based on free nitrous acid (FNA) pretreatment to intensify the release of organic matters from WAS for enhanced denitrification. During FNA pretreatment, soluble chemical oxygen demand (SCOD) production kept increasing when FNA increased from 0 to 2.04 mg HNO2-N/L. Compared with untreated WAS, the internal carbon source production increased by 50% in a simultaneous fermentation and denitrification reactor fed with WAS pretreated by FNA for 24 h at 2.04 mg HNO2-N/L. This also increased denitrification efficiency by 76% and sludge reduction by 87.5%. More importantly, greenhouse gas nitrous oxide production in denitrification was alleviated since more electrons could be provided by FNA pretreated WAS.

  20. Denitrification Rates in the Low-Oxygen Waters of the Stratified Baltic Proper

    PubMed Central

    Rönner, Ulf; Sörensson, Fred

    1985-01-01

    Denitrification activity was shown in the deep, low-oxygen waters of the Baltic proper by both in vitro and in situ methods. The vertical distribution of NO3− in the water column showed nitrate consumption and NO2− and N2O maxima in the deep waters when O2 was below 0.2 ml liter−1, which is suggestive evidence for denitrification. Direct in situ evidence for denitrification was obtained by finding an N2 saturation of up to 108% in the deep waters. When these waters were incubated with 15NO3−, 15N2 was produced. Quantification of the denitrification rate done by the addition of C2H2 to water samples from the active depths showed a rate of about 0.10 μmol liter−1 day−1. PMID:16346913

  1. Low elevation inland habitats of the Willamette River floodplain support enhanced denitrification

    EPA Science Inventory

    Floodplain nitrate removal via denitrification in sediment provides an important ecosystem service that may be a valuable sink for nitrate pollution. At this time, much floodplain restoration is taking place with little consideration for in-situ nutrient processing, necessitating...

  2. Behavior of solid carbon sources for biological denitrification in groundwater remediation.

    PubMed

    Zhang, Jianmei; Feng, Chuanping; Hong, Siqi; Hao, Huiling; Yang, Yingnan

    2012-01-01

    The present study was conducted to compare the behavior of wheat straw, sawdust and biodegradable plastic (BP) as potential carbon sources for denitrification in groundwater remediation. The results showed that a greater amount of nitrogen compounds were released from wheat straw and sawdust than from BP in leaching experiments. In batch experiments, BP showed higher nitrate removal efficiency and longer service life than wheat straw and sawdust, which illustrated that BP is the most appropriate carbon source for stimulation of denitrification activity. In column experiments, BP was able to support complete denitrification at influent nitrate concentrations of 50, 60, 70, 80, and 90 mg NO(3)(-)-N/L, showing corresponding denitrification rates of 0.12, 0.14, 0.17, 0.19, and 0.22 mg NO(3)(-)-N.L(-1).d(-1).g(-1), respectively. These findings indicate that BP is applicable for use as a carbon source for nitrate-polluted groundwater remediation.

  3. Relationship Between Watershed Land Use and