Science.gov

Sample records for aerobic rod-shaped bacterial

  1. Mineralization of Linear Alkylbenzene Sulfonate by a Four-Member Aerobic Bacterial Consortium

    PubMed Central

    Jiménez, Luis; Breen, Alec; Thomas, Nikki; Federle, Thomas W.; Sayler, Gary S.

    1991-01-01

    A bacterial consortium capable of linear alkylbenzene sulfonate (LAS) mineralization under aerobic conditions was isolated from a chemostat inoculated with activated sludge. The consortium, designated KJB, consisted of four members, all of which were gram-negative, rod-shaped bacteria that grew in pairs and short chains. Three isolates had biochemical properties characteristic of Pseudomonas spp.; the fourth showed characteristics of the Aeromonas spp. Cell suspensions were grown together in minimal medium with [14C]LAS as the only carbon source. After 13 days of incubation, more than 25% of the [14C]LAS was mineralized to 14CO2 by the consortium. Pure bacterial cultures and combinations lacking any one member of the KJB bacterial consortium did not mineralize LAS. Three isolates carried out primary biodegradation of the surfactant, and one did not. This study shows that the four bacteria complemented each other and synergistically mineralized LAS, indicating catabolic cooperation among the four consortium members. PMID:16348496

  2. Elasticity of the Rod-Shaped Gram-Negative Eubacteria

    NASA Astrophysics Data System (ADS)

    Boulbitch, A.; Quinn, B.; Pink, D.

    2000-12-01

    We report a theoretical calculation of the elasticity of the peptidoglycan network, the only stress-bearing part of rod-shaped Gram-negative eubacteria. The peptidoglycan network consists of elastic peptides and inextensible glycan strands, and it has been proposed that the latter form zigzag filaments along the circumference of the cylindrical bacterial shell. The zigzag geometry of the glycan strands gives rise to nonlinear elastic behavior. The four elastic moduli of the peptidoglycan network depend on its stressed state. For a bacterium under physiological conditions the elasticity is proportional to the bacterial turgor pressure. Our results are in good agreement with recent measurements.

  3. Aerobic and anaerobic cecal bacterial flora of commercially processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in the bacterial flora of aerobic and anaerobic cultures of broiler ceca collected from a commercial poultry processing facility were determined. Bacterial isolates from cecal cultures were selected based on the ability of the bacteria to grow in media supplemented with lactate and succ...

  4. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering.

    PubMed

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-05-28

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  5. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    PubMed Central

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-01-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth. PMID:24867385

  6. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  7. FtsZ rings and helices: physical mechanisms for the dynamic alignment of biopolymers in rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Fischer-Friedrich, Elisabeth; Friedrich, Benjamin M.; Gov, Nir S.

    2012-02-01

    In many bacterial species, the protein FtsZ forms a cytoskeletal ring that marks the future division site and scaffolds the division machinery. In rod-shaped bacteria, most frequently membrane-attached FtsZ rings or ring fragments are reported and occasionally helices. By contrast, axial FtsZ clusters have never been reported. In this paper, we investigate theoretically how dynamic FtsZ aggregates align in rod-shaped bacteria. We study systematically different physical mechanisms that affect the alignment of FtsZ polymers using a computational model that relies on autocatalytic aggregation of FtsZ filaments at the membrane. Our study identifies a general tool kit of physical and geometrical mechanisms by which rod-shaped cells align biopolymer aggregates. Our analysis compares the relative impact of each mechanism on the circumferential alignment of FtsZ as observed in rod-shaped bacteria. We determine spontaneous curvature of FtsZ polymers and axial confinement of FtsZ on the membrane as the strongest factors. Including Min oscillations in our model, we find that these stabilize axial and helical clusters on short time scales, but promote the formation of an FtsZ ring at the cell middle at longer times. This effect could provide an explanation to the long standing puzzle of transiently observed oscillating FtsZ helices in Escherichia coli cells prior to cell division.

  8. Morphology-dependent nanocatalysts: rod-shaped oxides.

    PubMed

    Li, Yong; Shen, Wenjie

    2014-03-07

    Nanocatalysts are characterised by the unique nanoscale properties that originate from their highly reduced dimensions. Extensive studies over the past few decades have demonstrated that the size and shape of a catalyst particle on the nanometre scale profoundly affect its reaction performance. In particular, controlling the catalyst particle morphology allows a selective exposure of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms or domains substantially improves catalytic activity, selectivity, and stability. This phenomenon is called morphology-dependent nanocatalysts: catalyst particles with anisotropic morphologies on the nanometre scale greatly affect the reaction performance by selectively exposing the desired facets. In this review, we highlight important progress in morphology-dependent nanocatalysts based on the use of rod-shaped metal oxides with characteristic redox and acid-base features. The correlation between the catalytic properties and the exposed facets verifies the chemical nature of the morphology effect. Moreover, we provide an overview of the interactions between the rod-shaped oxides and the metal nanoparticles in metal-oxide catalyst systems, involving crystal-facet-selective deposition of metal particles onto different crystal facets in the oxide supports. A fundamental understanding of active sites in morphologically tuneable oxides enclosed by the desired reactive facets is expected to direct the development of highly efficient nanocatalysts.

  9. Dynamic features of rod-shaped Au nanoclusters

    NASA Astrophysics Data System (ADS)

    So, Woong Young; Das, Anindita; Wang, Shuxin; Zhao, Shuo; Byun, Hee Young; Lee, Dana; Kumar, Santosh; Jin, Rongchao; Peteanu, Linda A.

    2015-08-01

    Gold nanoclusters hold many potential applications such as biosensing and optics due to their emission characteristics, small size, and non-toxicity. However, their low quantum yields remain problematic for further applications, and their fluorescence mechanism is still unclear. To increase the low quantum yields, various methods have been performed: doping, tuning structures, and changing number of gold atoms. In the past, most characterizations have been performed on spherical shaped nanoclusters; in this paper, several characterizations of various rod-shaped Au nanoclusters specifically on Au25 are shown. It has been determined that the central gold atom in Au25 nano-rod is crucial in fluorescence. Furthermore, single molecule analysis of silver doped Au25 nano-rod revealed that it has more photo-stability than conjugated polymers and quantum dots.

  10. Comparative study of normal and sensitive skin aerobic bacterial populations.

    PubMed

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-12-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API(®) strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder.

  11. Comparative study of normal and sensitive skin aerobic bacterial populations

    PubMed Central

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-01-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API® strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

  12. Preparation and characterization of the rod-shaped stibnite

    SciTech Connect

    Ouni, B.; Zouini, M.; Lakhdar, M. Haj; Larbi, T.; Dimassi, W.; Amlouk, M.

    2015-07-15

    Highlights: • A facile route to synthesize large-scale rod-like Sb{sub 2}S{sub 3} micro-wires was presented. • A deep analysis conjoint between band tails, band gap alteration and electrical model. • The band gap is 1.75 eV which may hold for solar energy conversion. - Abstract: Stibnite (Sb{sub 2}S{sub 3}) micro-wires have been grown on glass substrates by sulfuration of Sb thermal evaporated film in a vacuum sealed tube in presence of sulfur powder at 300 °C for 6 h. X-ray diffraction and Raman spectroscopy techniques indicate that the synthesized micro-wires have an orthorhombic structure. SEM micrographs show rod-shaped micro-wires with a typical length of several tens of micrometers and a diameter of the order of 0.5 μm. The absorption coefficient dependence on the photon energy in the UV–visible range revealed the existence of a direct transition with an energy band gap of about 1.7 eV. Moreover, the band tails and localized states which are related to the level of defects in the material will be presented. These parameters were determined from the exponential absorption profile. All these results have been evaluated and discussed in terms of alteration of band gap edge and electrical measurements.

  13. Rod-shaped nanocrystals elicit neuronal activity in vivo.

    PubMed

    Malvindi, Maria Ada; Carbone, Luigi; Quarta, Alessandra; Tino, Angela; Manna, Liberato; Pellegrino, Teresa; Tortiglione, Claudia

    2008-10-01

    The development of novel nanomaterials has raised great interest in efforts to evaluate their effect on biological systems, ranging from single cells to whole animals. In particular, there exists an open question regarding whether nanoparticles per se can elicit biological responses, which could interfere with the phenomena they are intended to measure. Here it is reported that challenging the small cnidaria Hydra vulgaris in vivo with rod-shaped semiconductor nanoparticles, also known as quantum rods (QRs), results in an unexpected tentacle-writhing behavior, which is Ca(2+) dependent and relies on the presence of tentacle neurons. Due to the absence of surface functionalization of the QRs with specific ligands, and considering that spherical nanoparticles with same composition as the QRs fail to induce any in vivo behavior on the same experimental model, it is suggested that unique shape-tunable electrical properties of the QRs may account for the neuronal stimulation. This model system may represent a widely applicable tool for screening neuronal response to nanoparticles in vivo.

  14. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  15. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  16. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    PubMed Central

    Weissbrodt, David G.; Neu, Thomas R.; Kuhlicke, Ute; Rappaz, Yoan; Holliger, Christof

    2013-01-01

    Aerobic granular sludge (AGS) is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors (SBR) fed with synthetic wastewater, namely a bubble column (BC-SBR) operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR) and Competibacter (GAO-SBR) operated at steady-state. In the BC-SBR, granules formed within 2 weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37–79%) led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80–100%), nitrogen removal (43–83%), and high but unstable dephosphatation (75–100%) were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5%) were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56 ± 10%) that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37 ± 11%). Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant

  17. Rod-shaped hydroxyapatite with mesoporous structure as drug carriers for proteins

    NASA Astrophysics Data System (ADS)

    Zhang, Wandong; Chai, Yamin; Xu, Xianghua; Wang, Yonglan; Cao, Nana

    2014-12-01

    Rod-shaped hydroxyapatite (HAp) with mesoporous structure was synthesized by a hydrothermal method using Pluronic block co-polymer F127 as the template. The rod-shaped HAp was then tested as protein drug carriers by investigating their protein adsorption/release properties. Bovine serum albumin (BSA) and lysozyme (LSZ) were used as the model drugs. Various instrumental methods were used to characterize the structure, morphology, texture and protein drug adsorption/release properties of the samples. The amounts of BSA or LSZ adsorbed onto the rod-shaped HAp and their release profiles were evaluated in a simulated body fluid (SBF). The synthesized rod-shaped HAp had irregular mesostructures with lengths of 75-125 nm and diameters of about 25 nm. The rod-shaped HAp exhibited a higher loading capacity for BSA than for LSZ in the SBF. This adsorption behavior can be explained by the morphology of the rod-shaped HAp, which grew along the c-axis, leading to an a(b)-plane area that is larger than the c-plane area. Consequently, the number of positive charges on the surface of the rod-shaped HAp increased relative to the number of negative charges. The BSA release rate in SBF was slower than that of LSZ which is a result of the HAp surface properties.

  18. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.

    PubMed

    Inskeep, William P; Macur, Richard E; Hamamura, Natsuko; Warelow, Thomas P; Ward, Seamus A; Santini, Joanne M

    2007-04-01

    The arsenic (As) drinking water crisis in south and south-east Asia has stimulated intense study of the microbial processes controlling the redox cycling of As in soil-water systems. Microbial oxidation of arsenite is a critical link in the global As cycle, and phylogenetically diverse arsenite-oxidizing microorganisms have been isolated from various aquatic and soil environments. However, despite progress characterizing the metabolism of As in various pure cultures, no functional gene approaches have been developed to determine the importance and distribution of arsenite-oxidizing genes in soil-water-sediment systems. Here we report for the first time the successful amplification of arsenite oxidase-like genes (aroA/asoA/aoxB) from a variety of soil-sediment and geothermal environments where arsenite is known to be oxidized. Prior to the current work, only 16 aroA/asoA/aoxB-like gene sequences were available in GenBank, most of these being putative assignments from homology searches of whole genomes. Although aroA/asoA/aoxB gene sequences are not highly conserved across disparate phyla, degenerate primers were used successfully to characterize over 160 diverse aroA-like sequences from 10 geographically isolated, arsenic-contaminated sites and from 13 arsenite-oxidizing organisms. The primer sets were also useful for confirming the expression of aroA-like genes in an arsenite-oxidizing organism and in geothermal environments where arsenite is oxidized to arsenate. The phylogenetic and ecological diversity of aroA-like sequences obtained from this study suggests that genes for aerobic arsenite oxidation are widely distributed in the bacterial domain, are widespread in soil-water systems containing As, and play a critical role in the biogeochemical cycling of As.

  19. Communal microaerophilic-aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium.

    PubMed

    Chan, Giek Far; Rashid, Noor Aini Abdul; Chua, Lee Suan; Ab llah, Norzarini; Nasiri, Rozita; Ikubar, Mohamed Roslan Mohamad

    2012-02-01

    A novel bacterial consortium, NAR-2 which consists of Citrobacter freundii A1, Enterococcus casseliflavus C1 and Enterobacter cloacae L17 was investigated for biodegradation of Amaranth azo dye under sequential microaerophilic-aerobic condition. The NAR-2 bacterial consortium with E. casseliflavus C1 as the dominant strain enhanced the decolorization process resulting in reduction of Amaranth in 30 min. Further aerobic biodegradation, which was dominated by C. freundii A1 and E. cloacae L17, allowed biotransformation of azo reduction intermediates and mineralization via metabolic pathways including benzoyl-CoA, protocatechuate, salicylate, gentisate, catechol and cinnamic acid. The presence of autoxidation products which could be metabolized to 2-oxopentenoate was elucidated. The biodegradation mechanism of Amaranth by NAR-2 bacterial consortium was predicted to follow the steps of azo reduction, deamination, desulfonation and aromatic ring cleavage. This is for the first time the comprehensive microaerophilic-aerobic biotransformation pathways of Amaranth dye intermediates by bacterial consortium are being proposed.

  20. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters.

    PubMed

    Schultz, Danielle; Gardner, Kira; Oemrawsingh, Sumant S R; Markešević, Nemanja; Olsson, Kevin; Debord, Mark; Bouwmeester, Dirk; Gwinn, Elisabeth

    2013-05-28

    Fluorescent DNA-stabilized silver nanoclusters contain both cationic and neutral silver atoms. The absorbance spectra of compositionally pure solutions follow the trend expected for rod-shaped silver clusters, consistent with the polarized emission measured from individual nanoclusters. The data suggest a rod-like assembly of silver atoms, with silver cations mediating attachment to the bases.

  1. Complete genome sequence of Campylobacter jejuni RM1285 a rod-shaped morphological variant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a spiral-shaped Gram-negative food-borne human pathogen found on poultry products. Strain RM1285 is a rod-shaped variant of this species. The genome of RM1285 was determined to be 1,635,803 bp with a G+C content of 30.5%....

  2. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates

    PubMed Central

    Robrock, Kristin R.; Coelhan, Mehmet; Sedlak, David; Alvarez-Cohen, Lisa

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di- BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation. PMID:19731666

  3. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates.

    PubMed

    Robrock, Kristin R; Coelhan, Mehmet; Sedlak, David L; Alvarez-Cohent, Lisa

    2009-08-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of the related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di-BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta,- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation.

  4. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape.

    PubMed

    Constantino, Maira A; Jabbarzadeh, Mehdi; Fu, Henry C; Bansil, Rama

    2016-11-01

    It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion.

  5. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape

    PubMed Central

    Constantino, Maira A.; Jabbarzadeh, Mehdi; Fu, Henry C.; Bansil, Rama

    2016-01-01

    It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion. PMID:28138539

  6. Swimming motion of rod-shaped magnetotactic bacteria: the effects of shape and growing magnetic moment

    PubMed Central

    Kong, Dali; Lin, Wei; Pan, Yongxin; Zhang, Keke

    2014-01-01

    We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible, we derive a new system of the twelve coupled equations that govern both the motion and orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment in the laboratory frame of reference. It is revealed that the initial pattern of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is also revealed, through comparing mathematical solutions of the twelve coupled equations to the swimming motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria, that the laboratory trajectories of the swimming motion can be approximately reproduced using an appropriate set of the parameters in our theoretical model. PMID:24523716

  7. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities

    SciTech Connect

    Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham; Shakibaie, Mojtaba; Rezaie, Sassan; Shahverdi, Ahmad Reza

    2012-11-15

    Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octyl alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.

  8. Systemic dexamethasone and its effect on normal aerobic bacterial flora of cow.

    PubMed

    Kojouri, Gholam-Ali; Ebrahimi, Azizollah; Nikookhah, Farzaneh

    2007-06-15

    This study was carried out on 17 Holestein, heifers, aged between 1 to 2 years for determining the normal aerobic bacterial flora and their changes after dexamethasone injection. Swab samples were taken from eye, ear, pharynx and vagina before and 5 days after twice dexamethasone treatment. Results indicated that Bacillus cereus and Corynebacterium pseudotuberculosis had higher frequency of isolations than the other bacterial flora in eye, ear and pharynx. Actinomyces pyogenes was isolated with considerable frequency from vagina. Klebsiella pneumoniae was also isolated from pharynx and its frequency was increased significantly after dexamethasone injection (p < 0.05).

  9. Hyper-thermophilic aerobic bacterial ecology for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, T.; Kanazawa, S.; Moriya, T.; Ishikawa, Y.; Hashimoto, H.; Yamashita, M.; Space Agriculture Task Force, J.

    A material recycling is one of core issues in engineering for habitation on extraterrestrial bodies such as Mars A new composting system has been developed in Japan which utilizes some thermophilic bacteria to attain higher temperature than normally expected in the ordinary composting system Dead body of rat was found to be eaten up by the thermophilic bacteria under aerated condition and oxidized to carbon dioxide and few other inorganics within two hours Ecology of these composting bacteria is structured on the intensive symbiotic interactions among various species that participate in various reaction networks in a concert Complexity in the composting bacteria might be based on multiple interaction and interdependency among participating species and organisms Species identification and phylogeny of symbiotic bacteria and understanding of their ecology have been made Those bacterial systems are active and durable under temperature high in a range of 80 to 100 r C Biological combustion release heat and temperature goes up when air is fed through the reaction bed Since microbial activity decreases at exceeding temperature and release of heat decreases as well temperature in the reacting bed itself-regulated in the range Even though it should be verified composting bacteria themselves are presumed to be safe for human agricultural plant and animal species Their activity is restricted only to the condition under elevated temperature Their activities depend greatly on their symbiotic partners and extreme environment created by them The

  10. Developmental hazard assessment with FETAX: Aerobic metabolites in bacterial transformation of naphthalene

    SciTech Connect

    Schultz, T.W.; Dawson, D.A.

    1995-05-01

    The underlying principle of bioremediation is the capability of microorganisms to biodegrade pollutants. When a contaminated site is biotreated, it is usually assumed that the disappearance of the pollutant means a reduction in the toxic effects of the contaminants. However, pollutants can undergo partial biodegradation or biotransformation. Microbial-mediated transformations play a critical role in the toxic effects of pollutants, as any alteration in structure can result in a change in physicochemical properties which influence toxicity. Therefore, a relevant question is; what is the toxicity of accumulative metabolites relative to the parent chemical? One class of chemicals that consistently appears at Superfund hazard waste sites is aromatic hydrocarbons. Studies of the aerobic bacterial metabolism of representative compounds, including benzene, naphthalene, and phenanthrene, have revealed similar oxidative pathways. Bacterial degradation of these aromatic hydrocarbons was initiated by the addition of two molecules of oxygen via a dioxygenase enzyme, with the resulting intermediate being converted to a catechol-like compound. From a biotransformation standpoint, one of the more thoroughly studied aromatic hydrocarbons has been naphthalene. Cerniglia (1984) has identified five major intermediates, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylic acid, gentisic acid and catechol in the aerobic bacterial degradation of naphthalene. In vitro test systems such as the Frog Embryo Teratogenesis Assay - Xenopus (FETAX) provide a time- and resource-effective means for assessing developmental toxicity on a preliminary basis. FETAX is a 96-hr static-renewal system that uses early embryos of the frog Xenopus laevis. The purpose of this investigation was to determine the developmental hazard, using FETAX, of exposure to the model aromatic hydrocarbon, naphthalene, and it`s known major aerobic metabolites from bacterial transformation. 18 refs., 2 tabs.

  11. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  12. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.

    PubMed

    Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David

    2013-02-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition.

  13. Comparative study of the aerobic, heterotrophic bacterial flora of Chesapeake Bay and Tokyo Bay.

    PubMed Central

    Austin, B; Garges, S; Conrad, B; Harding, E E; Colwell, R R; Simidu, U; Taga, N

    1979-01-01

    A comparative study of the bacterial flora of the water of Chesapeake Bay and Tokyo Bay was undertaken to assess similarities and differences between the autochthonous flora of the two geographical sites and to test the hypothesis that, given similarities in environmental parameters, similar bacterial populations will be found, despite extreme geographic distance between locations. A total of 195 aerobic, heterotrophic bacterial strains isolated from Chesapeake Bay and Tokyo Bay water were examined for 115 biochemical, cultural, morphological, nutritional, and physiological characters. The data were analyzed by the methods of numerical taxonomy. From sorted similarity matrices, 77% of the isolates could be grouped into 30 phena and presumptively identified as Acinetobacter-Moraxella, Caulobacter, coryneforms, Pseudomonas, and Vibrio spp. Vibrio and Acinetobacter species were found to be common in the estuarine waters of Chesapeake Bay, whereas Acinetobacter-Moraxella and Caulobacter predominated in Tokyo Bay waters, at the sites sampled in the study. PMID:453838

  14. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health.

  15. Characterisation of the aerobic bacterial flora of boid snakes: application of MALDI-TOF mass spectrometry.

    PubMed

    Plenz, Bastian; Schmidt, Volker; Grosse-Herrenthey, Anke; Krüger, Monika; Pees, Michael

    2015-03-14

    The aim of this study was to identify aerobic bacterial isolates from the respiratory tract of boids with matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). From 47 boid snakes, swabs from the oral cavity, tracheal wash samples and, in cases in which postmortem examination was performed, pulmonary tissue samples were taken. Each snake was classified as having inflammation of the respiratory tract and/or oral cavity, or without evidence of inflammation based on combination of clinical, cytological and histopathological findings. Samples collected from the respiratory tract and oral cavity were inoculated onto routine media and bacteria were cultured aerobically. All morphologically distinct individual colonies obtained were analysed using MALDI-TOF MS. Unidentified isolates detected in more than three snakes were selected for further 16S rDNA PCR and sequencing. Among all examined isolates (n=243), 49 per cent (n=119) could be sufficiently speciated using MALDI-TOF MS. Molecular biology revealed several bacterial species that have not been previously described in reptiles. With an average of 6.3 different isolates from the respiratory tract and/or oral cavity, boids with inflammatory disease harboured significantly more bacterial species than boids without inflammatory disease (average 2.8 isolates).

  16. On the elastic buckling of rod-shaped particles in sheared suspensions

    SciTech Connect

    DeTeresa, S.J. )

    1993-09-01

    The rheology of rod-shaped particle suspensions is of practical importance for the processing of discontinuous fiber composites. A correction of the original work by Forgacs and Mason describing the elastic buckling of rod-shaped particles in sheared suspensions is presented. Although the qualitative relationship among critical buckling conditions and the fiber aspect ratio and elastic modulus is unaltered, the new result for the predicted critical buckling condition shows that the resistance of suspended rods to buckling is more than five times greater than had been believed. Reexamination of experimental results using the corrected solution yielded mixed conclusions concerning the validity of the model. The agreement with results of the original experiments by Forgacs and Mason using Dacron fibers suspended in corn syrup and the new result was found to be excellent and quantitative. The results of experiments with glass fibers suspended in glucose solutions were found to be in poor agreement with predictions. The ability of the proposed result to account for an unusual degradation due to shearing in polystyrene melts of Kevlar 29 fibers was also found to be quantitative and excellent. The Kevlar fibers exhibited permanent bends spaced with a uniform spacing which was predicted by application of the new buckling relationship.

  17. Aerobic bacterial flora of nesting green turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica.

    PubMed

    Santoro, Mario; Hernández, Giovanna; Caballero, Magaly

    2006-12-01

    Bacteriological examination of 70 nesting green turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica was performed to investigate nasal and cloacal aerobic bacteria. A total of 325 bacterial isolates were obtained, including 10 Gram-negative and three Gram-positive genera. Two hundred thirty-nine were Gram-negative and 86 were Gram-positive isolates. Klebsiella pneumoniae was the most common microbe identified in turtle samples: 27/70 (38.5%) in cloacal, and 33/70 (47.1%) in nasal samples. The Enterobacteriaceae family, including Enterobacter agglomerans, E. cloacae, Escherichia coli, Klebsiella oxytoca, K. pneumoniae, and Serratia marcescens, was the largest Gram-negative group of bacteria recovered and comprised 127 of 239 (53.1%) of the Gram-negative isolates. Staphylococcus species was the largest Gram-positive bacteria group, including S. aureus, S. cromogenes, S. epidermis, and S. intermedius, and made up 63 of 86 (73.2%) of the Gram-positive isolates recovered. The results of this study demonstrate that the aerobic bacterial flora of nesting green turtles at Tortuguero National Park is composed of a very wide spectrum of bacteria, including several potential pathogens.

  18. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.

    PubMed

    Zhang, Hui; Sekiguchi, Yuji; Hanada, Satoshi; Hugenholtz, Philip; Kim, Hongik; Kamagata, Yoichi; Nakamura, Kazunori

    2003-07-01

    A phylogenetically novel aerobic bacterium was isolated from an anaerobic-aerobic sequential batch reactor operated under enhanced biological phosphorus removal conditions for wastewater treatment. The isolation strategy used targeted slowly growing polyphosphate-accumulating bacteria by combining low-speed centrifugations and prolonged incubation on a low-nutrient medium. The isolate, designated strain T-27T, was a gram-negative, rod-shaped aerobe. Cells often appeared to divide by budding replication. Strain T-27T grew at 25-35 degrees C with an optimum growth temperature of 30 degrees C, whilst no growth was observed below 20 degrees C or above 37 degrees C within 20 days incubation. The pH range for growth was 6.5-9.5, with an optimum at pH 7.0. Strain T-27T was able to utilize a limited range of substrates, such as yeast extract, polypepton, succinate, acetate, gelatin and benzoate. Neisser staining was positive and 4,6-diamidino-2-phenylindole-stained cells displayed a yellow fluorescence, indicative of polyphosphate inclusions. Menaquinone 9 was the major respiratory quinone. The cellular fatty acids of the strain were mainly composed of iso-C15:0, C16:1 and C14:0. The G + C content of the genomic DNA was 66 mol%. Comparative analyses of 16S rRNA gene sequences indicated that strain T-27T belongs to candidate division BD (also called KS-B), a phylum-level lineage in the bacterial domain, to date comprised exclusively of environmental 16S rDNA clone sequences. Here, a new genus and species are proposed, Gemmatimonas aurantiaca (type strain T-27T=JCM 11422T=DSM 14586T) gen. nov., sp. nov., the first cultivated representative of the Gemmatimonadetes phyl. nov. Environmental sequence data indicate that this phylum is widespread in nature and has a phylogenetic breadth (19% 16S rDNA sequence divergence) that is greater than well-known phyla such as the Actinobacteria (18% divergence).

  19. Mathematical modelling of the feed rod shape in floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Plāte, M.; Krauze, A.; Virbulis, J.

    2017-01-01

    A three-dimensional (3D) transient multi-physical model of the feed rod melting in the floating zone (FZ) silicon single-crystal growth process is presented. Coupled temperature, electromagnetic (EM), and melt film simulations are performed for a 4 inch FZ system, and the time evolution of the open melting front is studied. The 3D model uses phase boundaries and parameters from a converged solution of a quasi-stationary axisymmetric (2D) model of the FZ system as initial conditions for the time dependent simulations. A parameter study with different feed rod rotation, crystal pull rates and widths of the inductor main slit is carried out to analyse their influence on the evolution of the asymmetric feed rod shape. The feed rod rotation is shown to have a smoothing effect on the shape of the open melting front.

  20. Molecular dynamics simulations of the rotational and translational diffusion of a Janus rod-shaped nanoparticle

    NASA Astrophysics Data System (ADS)

    Kharazmi, Ali; Priezjev, Nikolai

    2016-11-01

    We investigate the diffusion of a Janus nanoparticle immersed in a dense Lennard-Jones fluid using molecular dynamic simulations. In particular we consider a rod-shaped particle with different surface wettability on each half-side of the particle and analyze the mean square displacement and the translational and rotational velocity autocorrelation functions. It is found that diffusion is enhanced when the wettability contrast is high and the local slip length on the nonwetting side is relatively large. We also examine the time evolution of the orientation tensor and correlate it with the particle displacement. These results are compared with our previously published results on diffusive dynamics of a Janus sphere with two hemispheres of different wettability.

  1. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil.

    PubMed

    Singleton, David R; Richardson, Stephen D; Aitken, Michael D

    2011-11-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.

  2. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

  3. Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic western Pacific Ocean.

    PubMed

    Zheng, Qiang; Liu, Yanting; Steindler, Laura; Jiao, Nianzhi

    2015-04-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) represent a widespread functional bacterial group defined by their obligate aerobic and facultative photoheterotrophic abilities. They are an active part of the marine microbial community as revealed by a large number of previous investigations. Here, we made an in-depth comparison of AAPB community structures in the subsurface water and the upper twilight zone of the western Pacific Ocean using high-throughput sequencing based on the pufM gene. Approximately, 100 000 sequences, grouped into 159 OTUs (94% cut-off value), included 44 and 24 OTUs unique to the subsurface and the upper twilight zone, respectively; 92 OTUs were common to both subsurface and twilight zone, and 3 OTUs were found in all samples. Consistent with previous studies, AAPB belonging to the Gammaproteobacteria were the dominant group in the whole water column, followed by the alphaproteobacterial AAPB. Comparing the relative abundance distribution patterns of different clades, an obvious community-structure separation according to deeper or shallower environment could be observed. Sulfitobacter-like, Loktanella-like, Erythrobacter-like, Dinoroseobacter-like and Gamma-HIMB55-like AAPB preferred the high-light subsurface water, while Methylobacterium-like, 'Citromicrobium'-like, Roseovarius-like and Bradyrhizobium-like AAPB, the dim light environment.

  4. Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor.

    PubMed

    Abraham, T Emilia; Senan, Resmi C; Shaffiqu, T S; Roy, Jegan J; Poulose, T P; Thomas, P P

    2003-01-01

    The degradation of an azo dye mixture by an aerobic bacterial consortium was studied in a rotating biological reactor. Laterite pebbles of particle size 850 microm to 1.44 mm were fixed on gramophone records using an epoxy resin on which the developed consortium was immobilized. Rate of degradation, BOD, biomass determination, enzymes involved, and fish bioassay were studied. The RBC has a high efficiency for dye degradation even at high dye concentrations (100 microg/mL) and high flow rate (36 L/h) at alkaline pH and salinity conditions normally encountered in the textile effluents. Bioassays (LD-50) using Thilapia fish in treated effluent showed that the percentage mortality was zero over a period of 96 h, whereas the mortality was 100% in untreated dye water within 26 h. Fish bioassay confirms that the effluent from RBC can be discharged safely to the environment.

  5. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    NASA Astrophysics Data System (ADS)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  6. The influence of bacterial inoculants on the microbial ecology of aerobic spoilage of barley silage.

    PubMed

    Inglis, G D; Yanke, L J; Kawchuk, L M; McAllister, T A

    1999-01-01

    The aerobic decomposition of barley silage treated with two inoculants (LacA and LacB) containing mixtures of Lactobacillus plantarum and Enterococcus faecium was investigated over a 28-day period. Initially, yeast and bacterial populations were larger in silage inoculated with LacA than in silage treated with LacB or water alone (control). Differences in the succession of yeasts in silage treated with LacA were observed relative to the other two treatments. From silage treatment with LacA, Issatchenkia orientalis was the most prevalent yeast taxon over all of the sample times, and the filamentous fungus Microascus brevicaulis was also frequently isolated at later sample dates (> or = 14 days). In contrast, Saccharomyces exiguus was the most prominent yeast recovered from silage treated with LacB and water alone on days 2 and 4, although it was supplanted by I. orientalis at later sample times. Successional trends of bacteria were similar for all three treatments. Lactobacillus spp. were initially the most prevalent bacteria isolated, followed by Bacillus spp. (primarily Bacillus pumilus). However, the onset of Bacillus spp. prominence was faster in LacA silage, and Klebsiella planticola was frequently recovered at later sample times (> or = 14 days). More filamentous fungi were recovered from LacA silage on media containing carboxylmethylcellulose, pectin, or xylan. The most commonly isolated taxa were Absidia sp., Aspergillus flavus, Aspergillus fumigatus, Byssochlamys nivea, Monascus ruber, Penicillium brevicompactum, Pseudoallescheria boydii, and M. brevicaulis. The results of this study indicated that the two bacterial inoculants incorporated into barley at the time of ensilage affected the microbial ecology of silage decomposition following exposure to air. However, neither of the microbial inoculants effectively delayed aerobic spoilage of barley silage, and the rate of decomposition of silage treated with one of the inoculants (LacA) was actually enhanced.

  7. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories.

  8. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  9. Extending calibration-free force measurements to optically-trapped rod-shaped samples.

    PubMed

    Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela

    2017-02-21

    Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens.

  10. The Active Sites of a Rod-Shaped Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Schuster, Manfred Erwin; Huang, Zhiwei; Xu, Fei; Jin, Shifeng; Chen, Yaxin; Hua, Weiming; Su, Dang Sheng; Tang, Xingfu

    2015-06-26

    The identification of catalytically active sites (CASs) in heterogeneous catalysis is of vital importance to design and develop improved catalysts, but remains a great challenge. The CASs have been identified in the low-temperature selective catalytic reduction of nitrogen oxides by ammonia (SCR) over a hollandite manganese oxide (HMO) catalyst with a rod-shaped morphology and one-dimensional tunnels. Electron microscopy and synchrotron X-ray diffraction determine the surface and crystal structures of the one-dimensional HMO rods closed by {100} side facets and {001} top facets. A combination of X-ray absorption spectra, molecular probes with potassium and nitric oxide, and catalytic tests reveals that the CASs are located on the {100} side facets of the HMO rods rather than on the top facets or in the tunnels, and hence semi-tunnel structural motifs on the {100} facets are evidenced to be the CASs of the SCR reaction. This work paves the way to further investigate the intrinsic mechanisms of SCR reactions.

  11. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    NASA Astrophysics Data System (ADS)

    Mnasri, Najib; Charnay, Clarence; de Ménorval, Louis-Charles; Elaloui, Elimame; Zajac, Jerzy

    2016-11-01

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO3 reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM and TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV-visible spectroscopy. 129Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores.

  12. Extending calibration-free force measurements to optically-trapped rod-shaped samples

    NASA Astrophysics Data System (ADS)

    Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela

    2017-02-01

    Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens.

  13. Extending calibration-free force measurements to optically-trapped rod-shaped samples

    PubMed Central

    Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela

    2017-01-01

    Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens. PMID:28220855

  14. Characterization of methanotrophic bacterial populations in natural and agricultural aerobic soils of the European Russia

    NASA Astrophysics Data System (ADS)

    Kravchenko, Irina; Sukhacheva, Marina; Kizilova, Anna

    2014-05-01

    Atmospheric methane contributes to about 20% of the total radiative forcing by long-lived greenhouse gases, and microbial methane oxidation in upland soils is the only biological sink of methane. Microbial methane oxidation in aerated upland soils is estimated as 15 - 45 Tg yr-1 or 3-9% of the annual sink. Therefore there is need of extensive research to characterize methanotrophic activity in various ecosystems for possible application to reduce atmospheric methane fluxes and to minimize global climate change. The vast majority of known aerobic methanotrophs belongs to the Proteobacteria and placed in the families Methylococcaceae in the Gammaproteobacteria, and Methylocystaceae and Beijerinckiaceae in the Alphaproteobacteria. Known exceptions include the phylum Verrucomicrobia and uncultured methanotrophs such as Candidatus 'Methylomirabilis oxyfera' affiliated with the 'NC10' phylum. Plenty of studies of aerobic methane oxidation and key players of the process have been performed on various types of soils, and it was found that Methylocystis spp and uncultivated methanotrophs are abundant in upland soils. Two of the uncultured groups are upland soil cluster alphaproteobacteria (USCa) and gammaproteobacteria (USCg), as revealed by cultivation-independent surveys of pmoA diversity. Russia is extremely rich in soil types due to its vast territories, and most of these soils have never been investigated from the aspect of methanotrophy. This study addresses methane oxidation activity and diversity of aerobic methanotrophic bacteria in eight types of natural aerobic soils, four of which also had been under agricultural use. Methane fluxes have been measured by in situ static chamber method and methane oxidation rates in soil samples - by radioisotope tracer (14CH4) technique. Changes in methanotroph diversity and abundance were assessed by cloning and Sanger sequencing, and quantitative real-time PCR of pmoA genes. Methanotrophic population of unmanaged soils turned

  15. [Aerobic bacterial flora from the digestive tract of the common vampire bat, Desmodus rotundus (Chiroptera: Phyllostomidae)].

    PubMed

    Chaverri, Gloriana

    2006-09-01

    This study addresses the composition of microbial flora in the vampire bat (Desmodus rotundus) primarily because all available data are outdated, and because of the economical significance of this bat species. Twenty-one bats were collected and their aerobic bacteria documented separately for stomach and intestine. Bacteria were identified through the Analytical Profile Index (API), and results analyzed with the APILAB software. A total of thirty bacterial species were isolated from sixteen females and five males. The most common species were Escherichia coli and Staphylococcus aureus, although other bacteria, such as Acinetobacterjohnsonii, Enterobacter sakazakii, Staphylococcus chromogenes, S. hyicus and S. xylosus were also common. The number of species found in the stomach and intestine was significantly different, and the intestine presented a higher diversity compared to the stomach. This has previously been found in other mammals and it is attributed to a reduction of acidity. Most of the species found in this study are considered normal components of the digestive tract of mammals, although other bacteria common in the skin of mammals and from aquatic environments were found. Bacteria from the skin may invade the vampire's stomach and/or intestine when the bat has contact with its prey, and may suggest that the vampire's feeding habit facilitates the invasion of other microbes not common in its digestive tract. The fact that bacteria from aquatic environments were also found suggests that D. rotundus, as previously found by other researchers, drinks free water when available, and water may be another source of microbial invasion.

  16. Magnetic engineering of stable rod-shaped stem cell aggregates: circumventing the pitfall of self-bending.

    PubMed

    Du, V; Fayol, D; Reffay, M; Luciani, N; Bacri, J-C; Gay, C; Wilhelm, C

    2015-02-01

    A current challenge for tissue engineering while restoring the function of diseased or damaged tissue is to customize the tissue according to the target area. Scaffold-free approaches usually yield spheroid shapes with the risk of necrosis at the center due to poor nutrient and oxygen diffusion. Here, we used magnetic forces developed at the cellular scale by miniaturized magnets to create rod-shaped aggregates of stem cells that subsequently matured into a tissue-like structure. However, during the maturation process, the tissue-rods spontaneously bent and coiled into sphere-like structures, triggered by the increasing cell-cell adhesion within the initially non-homogeneous tissue. Optimisation of the intra-tissular magnetic forces successfully hindered the transition, in order to produce stable rod-shaped stem cells aggregates.

  17. Efficacy of soaking in 70% isopropyl alcohol on aerobic bacterial decontamination of surgical instruments and gloves for serial mouse laparotomies.

    PubMed

    Keen, Jessica N; Austin, MaryKay; Huang, Li-Shan; Messing, Susan; Wyatt, Jeffrey D

    2010-11-01

    Rodent surgeries in biomedical research facilities are often performed in series. This practice presents many challenges to maintaining aseptic technique between animals. Here, we examined using soaking in 70% isopropyl alcohol for aerobic bacterial decontamination of surgical instruments and gloves used in a series of as many as 10 mouse laparotomy surgeries. These surgeries were performed on mice that were euthanized immediately prior to the procedure. Instruments and gloves were cultured before and after each procedure to determine the presence of aerobic bacterial contamination. To assess the efficacy of the decontamination protocol, culture results were grouped by procedure and then paired (before soak and after soak) for analysis using McNemar test at an α level of 0.05. In addition, by using the Fisher exact test, this modified aseptic method was compared with strict aseptic technique, for which autoclaved instruments and sterile surgical gloves were used for each procedure. In this study, we observed that the modified aseptic technique using 70% isopropyl alcohol soaks pre- vented aerobic bacterial contamination of instruments and gloves for as many as 5 mice.

  18. New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media.

    PubMed

    Rtimi, S; Pulgarin, C; Bensimon, M; Kiwi, J

    2016-08-01

    Binary oxide semiconductors TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 (TiO2-ZrO2-Cu) uniform films were sputtered on polyester (PES). These films were irradiated under low intensity solar simulated light and led to bacterial inactivation in aerobic and anaerobic media as evaluated by CFU-plate counting. But bacterial mineralization was only induced by TiO2-ZrO2-Cu in aerobic media. The highly oxidative radicals generated on the films surface under light were identified by the use of appropriate scavengers. The hole generated on the TiO2-ZrO2 films is shown to be the main specie leading to bacterial inactivation. TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 films release Zr and Ti <1ppb and Cu 4.6ppb/cm(2) as determined by inductively coupled plasma mass spectrometry (ICP-MS) This level is far below the citotoxicity permitted level allowed for mammalian cells suggesting that bacterial disinfection proceeds through an oligodynamic effect. By Fourier transform attenuated infrared spectroscopy (ATR-FTIR) the systematic shift of the predominating νs(CH2) vibrational-rotational peak making up most of the bacterial cell-wall content in C was monitored. Based on this evidence a mechanism suggested leading to CH bond stretching followed by cell lysis and cell death. Bacterial inactivation cycling was observed on TiO2-ZrO2-Cu showing the stability of these films leading to bacterial inactivation.

  19. A facile one-step solvothermal synthesis of graphene/rod-shaped TiO₂ nanocomposite and its improved photocatalytic activity.

    PubMed

    Dong, Pengyu; Wang, Yuhua; Guo, Linna; Liu, Bin; Xin, Shuangyu; Zhang, Jia; Shi, Yurong; Zeng, Wei; Yin, Shu

    2012-08-07

    Graphene sheets were obtained through solvothermal reduction of colloidal dispersion of graphene oxide in benzyl alcohol. The graphene/rod-shaped TiO(2) nanocomposite was synthesized by this novel and facile solvothermal method. During the solvothermal reaction, both the reduction of graphene oxide and the growth of rod-shaped TiO(2) nanocrystals as well as its deposition on graphene occur simultaneously. The photocatalytic activity of graphene/rod-shaped TiO(2) and graphene/spherical TiO(2) nanocomposites was compared. In the photocatalytic degradation of methyl orange (MO), the graphene/rod-shaped TiO(2) nanocomposite with the optimized graphene content of 0.48 wt% shows good stability and exhibits a significant enhancement of photocatalytic activity compared to the bare commercial TiO(2) (P25) and graphene/spherical TiO(2) nanocomposite with the same graphene content. Photocurrent experiments were performed, which demonstrate that the photocurrent of the graphene/rod-shaped TiO(2) nanocomposite electrode is about 1.2 times as high as that of the graphene/spherical TiO(2) nanocomposite electrode. The photocatalytic mechanism of graphene/rod-shaped TiO(2) nanocomposite was also discussed on the basis of the experimental results. This work is anticipated to open a possibility in the integration of graphene and TiO(2) with various morphologies for obtaining high-performance photocatalysts in addressing environmental protection issues.

  20. Effect of azo and ester linkages on rod shaped Schiff base liquid crystals and their photophysical investigations

    NASA Astrophysics Data System (ADS)

    Selvarasu, Chinnaiyan; Kannan, Palaninathan

    2016-12-01

    Two new series of rod shaped Schiff base containing liquid crystal compounds with azo and ester linkages have been synthesized and characterized respectively. The rod like molecules containing cinnamate linkages with four different alkyl spacers (n = 6, 8, 10 and 12) and influence of linking group have been elucidated. Considerable changes in mesomorphic properties were noticed starting from Nematic to Smectic-C on changing of azo and ester linkages along with different terminal alkyl chain lengths. The mesomorphic properties of both series are compared. Photosensitive azobenzene group undergoes photoisomerization under UV light and monitored by UV-Visible spectroscopy.

  1. Visualizing single rod-shaped fission yeast vertically in micro-sized holes on agarose pad made by soft lithography.

    PubMed

    Wang, Li; Tran, Phong T

    2014-01-01

    Fission yeast cells are rod-shaped unicellular organism that is normally imaged horizontally with its long axis parallel to image plane. This orientation, while practical, limits the imaging resolution of biological structures which are oriented perpendicular to the long axis of the cell. We present here a method to prepare agarose pads with micro-sized holes to load single fission yeast cell vertically and image cell with its long axis perpendicular to the image plane. As a demonstration, actomyosin ring contraction is shown with this new imaging device.

  2. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    PubMed

    Faron, Matthew L; Buchan, Blake W; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L; Granato, Paul A; Wilson, Deborah A; Procop, Gary W; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  3. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates

    PubMed Central

    Faron, Matthew L.; Buchan, Blake W.; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L.; Granato, Paul A.; Wilson, Deborah A.; Procop, Gary W.; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A.

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria. PMID:26529504

  4. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan

    PubMed Central

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  5. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    SciTech Connect

    T.C. Onstott

    2005-09-30

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions.

  6. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water.

    PubMed

    Ginige, Maneesha P; Kaksonen, Anna H; Morris, Christina; Shackelton, Mark; Patterson, Bradley M

    2013-09-01

    Managed aquifer recharge offers the opportunity to manage groundwater resources by storing water in aquifers when in surplus and thus increase the amount of groundwater available for abstraction during high demand. The Water Corporation of Western Australia (WA) is undertaking a Groundwater Replenishment Trial to evaluate the effects of recharging aerobic recycled water (secondary treated wastewater subjected to ultrafiltration, reverse osmosis, and ultraviolet disinfection) into the anaerobic Leederville aquifer in Perth, WA. Using culture-independent methods, this study showed the presence of Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, Cytophaga, Flavobacteria, Gammaproteobacteria, and Sphingobacteria, and a decrease in microbial diversity with an increase in depth of aquifer. Assessment of physico-chemical and microbiological properties of groundwater before and after recharge revealed that recharging the aquifer with aerobic recycled water resulted in elevated redox potentials in the aquifer and increased bacterial numbers, but reduced microbial diversity. The increase in bacterial numbers and reduced microbial diversity in groundwater could be a reflection of an increased denitrifier and sulfur-oxidizing populations in the aquifer, as a result of the increased availability of nitrate, oxygen, and residual organic matter. This is consistent with the geochemical data that showed pyrite oxidation and denitrification within the aquifer after recycled water recharge commenced.

  7. Studies on bacterial activities in aerobic and anaerobic waste water purification.

    PubMed

    Adamse, A D; Deinema, M H; Zehnder, A J

    1984-01-01

    Some aspects of the bacteriology of aerobic and anaerobic waste water purification are discussed in view of current opinions and recent developments in the technology of waste water treatment. Various contributions of scientific workers attached to the Department of Microbiology of the Agricultural University, Wageningen, during the past 65 years are summarized. Besides, present investigations are described and research activities in future indicated.

  8. Modelling aerobic biodegradation in vertical flow sand filters: impact of operational considerations on oxygen transfer and bacterial activity.

    PubMed

    Petitjean, A; Forquet, N; Wanko, A; Laurent, J; Molle, P; Mosé, R; Sadowski, A

    2012-05-01

    Oxygen renewal, as a prominent phenomenon for aerobic bacterial activity, deeply impacts Vertical Flow Constructed Wetland (VFCW) treatment efficiency. We introduce a multiphase model able to simulate multi-component transfer in VFCWs. It is based on a two-phase flow module, and a transport module. The flow module can quantify both water and air velocities throughout the filter during operation. The reactive transport module follows dissolved and gaseous oxygen concentrations, and the transport of solutes such as ammonium and readily biodegradable COD (Chemical Oxygen Demand). The consumption of components is governed by Monod-type kinetics. Heterotrophic and autotrophic bacteria, which are responsible for COD and ammonium degradation respectively, are part of the model components. The kinetics are based on the Constructed Wetlands Model 1. The results from the simulation tool were compared with existing experimental data, and two kinds of operation with VFCWs were investigated. The authors show strong interplay between oxygen renewal and bacterial consumption in case of sequential batch feeding with transient flooding of surface. Oxygen renewal is essentially convection mediated in such operation, while convection is not significant in non-flooding operation. Simulated bacterial patterns are impacted by the operation, both quantitatively and spatially. From a modelling point of view, the authors highlight some limitations of the biological model: the description of bacterial lysis processes needs to be enhanced, as well as ammonium adsorption to organic matter.

  9. Formation of Rod Shape Secondary Aggregation of Copper Nanoparticles in Aqueous Solution of Sodium Borohydride with Stabilizing Polymer

    NASA Astrophysics Data System (ADS)

    Harada, Takuya; Fujiwara, Hidemichi

    2007-03-01

    Morphological variations of copper nanoparticles synthesized by the reduction of copper acetate with sodium borohydride in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) have been investigated. The results indicate that the specific rod shape secondary aggregation of copper nanoparticles are formed in the case that the oxygen is dissolved in the reacting solutions. Furthermore, it is also demonstrated that the copper nanorods with the aspect ratio of 2 - 20 and the average short axis length of 5 nm are synthesized in the weak oxidizing ambiance with a medium amount of PVP. The anomalous variations of copper nanoparticles are explained by the alignments of precursor copper ions and their reducing rates, which are modified by the density of resolved oxygen and the amount of PVP.

  10. Incomplete aerobic degradation of the antidiabetic drug Metformin and identification of the bacterial dead-end transformation product Guanylurea.

    PubMed

    Trautwein, Christoph; Kümmerer, Klaus

    2011-10-01

    Active pharmaceutical ingredients as well as personal care products are detected in increasing prevalence in different environmental compartments such as surface water, groundwater and soil. Still little is known about the environmental fate of these substances. The type II antidiabetic drug Metformin has already been detected in different surface waters worldwide, but concentrations were significantly lower than the corresponding predicted environmental concentration (PEC). In human and mammal metabolism so far no metabolites of Metformin have been identified, so the expected environmental concentrations should be very high. To assess the aerobic biodegradability of Metformin and the possible formation of degradation products, three Organisation of Economic Cooperation and Development (OECD) test series were performed in the present study. In the Closed Bottle test (OECD 301 D), a screening test that simulates the conditions of an environmental surface water compartment, Metformin was classified as not readily biodegradable (no biodegradation). In the Manometric Respiratory test (OEDC 301 F) working with high bacterial density, Metformin was biodegraded in one of three test bottles to 48.7% and in the toxicity control bottle to 57.5%. In the Zahn-Wellens test (OECD 302 B) using activated sludge, Metformin was biodegraded in both test vessels to an extent of 51.3% and 49.9%, respectively. Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass spectrometry (HPLC-MS(n)) showed in the tests vessels were biodegradation was observed full elimination of Metformin and revealed Guanylurea (Amidinourea, Dicyandiamidine) as single and stable aerobic bacterial degradation product. In another Manometric Respiratory test Guanylurea showed no more transformation. Photodegradation of Guanylurea was also negative. A first screening in one of the greatest sewage treatment plant in southern Germany found Metformin with high concentrations

  11. AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics.

    PubMed

    Duarte, Márcia; Jauregui, Ruy; Vilchez-Vargas, Ramiro; Junca, Howard; Pieper, Dietmar H

    2014-01-01

    Understanding prokaryotic transformation of recalcitrant pollutants and the in-situ metabolic nets require the integration of massive amounts of biological data. Decades of biochemical studies together with novel next-generation sequencing data have exponentially increased information on aerobic aromatic degradation pathways. However, the majority of protein sequences in public databases have not been experimentally characterized and homology-based methods are still the most routinely used approach to assign protein function, allowing the propagation of misannotations. AromaDeg is a web-based resource targeting aerobic degradation of aromatics that comprises recently updated (September 2013) and manually curated databases constructed based on a phylogenomic approach. Grounded in phylogenetic analyses of protein sequences of key catabolic protein families and of proteins of documented function, AromaDeg allows query and data mining of novel genomic, metagenomic or metatranscriptomic data sets. Essentially, each query sequence that match a given protein family of AromaDeg is associated to a specific cluster of a given phylogenetic tree and further function annotation and/or substrate specificity may be inferred from the neighboring cluster members with experimentally validated function. This allows a detailed characterization of individual protein superfamilies as well as high-throughput functional classifications. Thus, AromaDeg addresses the deficiencies of homology-based protein function prediction, combining phylogenetic tree construction and integration of experimental data to obtain more accurate annotations of new biological data related to aerobic aromatic biodegradation pathways. We pursue in future the expansion of AromaDeg to other enzyme families involved in aromatic degradation and its regular update. Database URL: http://aromadeg.siona.helmholtz-hzi.de

  12. AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics

    PubMed Central

    Duarte, Márcia; Jauregui, Ruy; Vilchez-Vargas, Ramiro; Junca, Howard; Pieper, Dietmar H.

    2014-01-01

    Understanding prokaryotic transformation of recalcitrant pollutants and the in-situ metabolic nets require the integration of massive amounts of biological data. Decades of biochemical studies together with novel next-generation sequencing data have exponentially increased information on aerobic aromatic degradation pathways. However, the majority of protein sequences in public databases have not been experimentally characterized and homology-based methods are still the most routinely used approach to assign protein function, allowing the propagation of misannotations. AromaDeg is a web-based resource targeting aerobic degradation of aromatics that comprises recently updated (September 2013) and manually curated databases constructed based on a phylogenomic approach. Grounded in phylogenetic analyses of protein sequences of key catabolic protein families and of proteins of documented function, AromaDeg allows query and data mining of novel genomic, metagenomic or metatranscriptomic data sets. Essentially, each query sequence that match a given protein family of AromaDeg is associated to a specific cluster of a given phylogenetic tree and further function annotation and/or substrate specificity may be inferred from the neighboring cluster members with experimentally validated function. This allows a detailed characterization of individual protein superfamilies as well as high-throughput functional classifications. Thus, AromaDeg addresses the deficiencies of homology-based protein function prediction, combining phylogenetic tree construction and integration of experimental data to obtain more accurate annotations of new biological data related to aerobic aromatic biodegradation pathways. We pursue in future the expansion of AromaDeg to other enzyme families involved in aromatic degradation and its regular update. Database URL: http://aromadeg.siona.helmholtz-hzi.de PMID:25468931

  13. Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors.

    PubMed

    Rodríguez-Freire, Lucía; Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2012-02-01

    Arsenic is a carcinogenic compound widely distributed in the groundwater around the world. The fate of arsenic in groundwater depends on the activity of microorganisms either by oxidizing arsenite (As(III)), or by reducing arsenate (As(V)). Because of the higher toxicity and mobility of As(III) compared to As(V), microbial-catalyzed oxidation of As(III) to As(V) can lower the environmental impact of arsenic. Although aerobic As(III)-oxidizing bacteria are well known, anoxic oxidation of As(III) with nitrate as electron acceptor has also been shown to occur. In this study, three As(III)-oxidizing bacterial strains, Azoarcus sp. strain EC1-pb1, Azoarcus sp. strain EC3-pb1 and Diaphorobacter sp. strain MC-pb1, have been characterized. Each strain was tested for its ability to oxidize As(III) with four different electron acceptors, nitrate, nitrite, chlorate and oxygen. Complete As(III) oxidation was achieved with both nitrate and oxygen, demonstrating the novel ability of these bacterial strains to oxidize As(III) in either anoxic or aerobic conditions. Nitrate was only reduced to nitrite. Different electron donors were used to study their suitability in supporting nitrate reduction. Hydrogen and acetate were readily utilized by all the cultures. The flexibility of these As(III)-oxidizing bacteria to use oxygen and nitrate to oxidize As(III) as well as organic and inorganic substrates as alternative electron donors explains their presence in non-arsenic-contaminated environments. The findings suggest that at least some As(III)-oxidizing bacteria are flexible with respect to electron-acceptors and electron-donors and that they are potentially widespread in low arsenic concentration environments.

  14. Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste.

    PubMed

    Chandra, R; Raj, A; Purohit, H J; Kapley, A

    2007-03-01

    Eight aerobic bacterial strains were isolated from pulp paper mill effluent sludge. Out of eight through nutrient enrichment technique three potential aerobic bacterial strains ITRC S(6), ITRC S(7) and ITRC S(8) were found capable to effectively degrade the kraft lignin (KL), a major byproduct of the chemical pulping process and main contributor to the colour and toxicity of effluent. Further, these potential strains (ITRC S(6), ITRC S(7) and ITRC S(8)) were biochemically characterised as Gram variable small rod, Gram negative rod and Gram positive rod respectively. Subsequently, 16S rRNA sequencing showed 95% base sequence homology and it was identified as Paenibacillus sp. (AY952466), Aneurinibacillus aneurinilyticus (AY856831), Bacillus sp. (AY952465) for ITRC S(6), IITRC S(7) and ITRC S(8), respectively. In batch decolourization experiments Bacillus sp. ITRC S(8) reduced the colour of lignin amended mineral salt medium, pH 7.6 by 65% after 6th d, at 30 degrees C, A. aneurinilyticus ITRC S(7) by 56% and Paenibacillus ITRC S(6) 43%. Under these conditions the three strains degraded the KL by 37%, 33% and 30%, respectively while the mixed culture of these three bacteria reduced colour by 69%, lignin by 40% and total substrate by 50% under same conditions. Biodegradation of the KL was not affected by low (<0.2 mg l(-1)) dissolved oxygen content; thus oxygen inhibition is more likely to be a metabolism-dependent event. Initially with 48 h incubation the decolourization was slow with decreased pH. Further incubation there was rapid decolourization with slight increase in pH at 6d compared with initial pH by increasing culture optical density. The lignin analysis from medium with HPLC indicated complete degradation rather than biotransformation with complete loss of absorbance peak at 280 nm.

  15. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    PubMed Central

    He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai

    2016-01-01

    Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10) and temperatures (20–37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation. PMID:27669304

  16. Preparation and characterization of gold nanoparticles and nanowires loaded into rod-shaped silica by a one-step procedure

    NASA Astrophysics Data System (ADS)

    Mnasri, Najib; Nyalosaso, Jeff L.; Kachbouri, Sana; Zajac, Jerzy; Elaloui, Elimame; Charnay, Clarence

    2017-01-01

    Rod-shaped mesoporous silica nanoparticles (RMSN) with built-in gold nanoparticles or thin gold nanowires in the pore channels were in situ synthesized via a one-step procedure. The insertion of a hydrophobic gold precursor into the mesopores of RMSN was reached through a micellar solubilization mechanism and gold nanoparticles were achieved through a thermal reduction. The resulting RMSN and Au-RMSN samples were characterized by using X-ray diffraction, transmission and scanning microscopies (TEM and SEM), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption and solid-state Nuclear Magnetic Resonance (NMR). The interaction of Au precursor (a carbene complex) with the thiol group at the silica surface was identified and found to play a crucial role in the dispersion of the uniform metal nanoparticles at the internal surface of RMSN. Moreover, TEM micrographs revealed the absence of large gold particles outside the mesopore network. The shape of Au nanoparticles and their loading amount in the mesoporous silica could be easily tuned by altering the concentration of gold precursor.

  17. Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles.

    PubMed

    Jalali, Jihen; Magdich, Salwa; Jarboui, Raja; Loungou, Mouna; Ammar, Emna

    2016-05-05

    Aerobic microorganisms able to grow on phosphogypsum (PG), characterized by heavy metals accumulation and high acidity were investigated by enrichment cultures. The PG was used at different concentrations, varying from 20 to 200 g/L in the enrichment culture medium supplemented with compost and Tamarix roots. This treatment reduced COD and heavy metals PG concentration. An efficient isolated fungus, identified by molecular approach as Trichoderma asperellum, was able to grow on PG as the sole carbon and energy sources at the different experimented concentrations, and to increase the culture media pH of the different PG concentrations used to 8.13. This fact would be the result of alkaline compound released during the fungus PG solubilization. Besides, the heavy metals and COD removal exceeded 52% after 7 days culture. At 200 g/LPG concentration, the experimented strain was able to reduce COD by 52.32% and metals concentrations by 73% for zinc, 63.75% for iron and 50% for cadmium. This exhibited the T. asperellum efficiency for heavy metals accumulation and for phosphogypsum bioremediation.

  18. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C.

    PubMed

    Liang, Rongrong; Yu, Xiaoqiao; Wang, Renhuan; Luo, Xin; Mao, Yanwei; Zhu, Lixian; Zhang, Yimin

    2012-06-01

    This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration.

  19. Aerobic Bacterial Community of American Cockroach Periplaneta americana,a Step toward Finding Suitable Paratransgenesis Candidates

    PubMed Central

    Akbari, Sanaz; Oshaghi, Mohammad Ali; Hashemi-Aghdam, Saedeh Sadat; Hajikhani, Sara; Oshaghi, Ghazaleh; Shirazi, Mohammad Hasan

    2015-01-01

    Background: Cockroaches mechanically spread pathogenic agents, however, little is known about their gut microbiota. Identification of midgut microbial community helps targeting novel biological control strategies such as paratransgenesis. Here the bacterial microbiota of Periplaneta americana midgut, were identified and evaluated for finding proper paratransgenesis candidate. Methods: Midgut of specimens were dissected and cultivated in different media. The bacterial isolates were then identified using the phenotypic and 16S-rRNA sequencing methods. Results: The analytical profile index (API) kit showed presence of 11 bacterial species including: Escherichia coli, Shigella flexineri, Citrobacter freundii, E. vulneris, Enterobacter cloacae, Yersinia pseudotuberculosis, Y. intermedia, Leclericia adecarboxylata, Klebsiella oxytoca, K. planticola, and Rahnella aquatilis in the cockroach midguts. The first three species are potentially symbiotic whereas others are transient. The conventional plating method revealed presence of only four isolates of Salmonella, E. coli, and Proteus which in three cases mismatched with API and 16S-rRNA genotyping. The API correctly identified the four isolates as Shigella flexneri, Citrobacter freundii, and E. coli (n= 2). 16S-rRNA sequence analysis confirmed the API results; however the C. freundii sequence was identical with C. murliniae indicating lack of genetic variation in the gene between these two closely related species. Conclusion: A low number of potentially symbiotic bacteria were found in the American cockroach midguts. Among them Enterobacter cloacae is a potential candidate for paratransgenesis approach whereas other bacteria are pathogens and are not useful for the approach. Data analysis showed that identification levels increase from the conventional to API and to genotyping respectively. PMID:26114142

  20. The p-nitroaniline test to asses the bacterial microbiota of raw ground meat aerobically stored.

    PubMed

    López Tomás, L A; Ordóñez, J A; de Fernando, G García

    2006-02-01

    The previously developed p-nitroaniline test for assessing the microbial load of meat surfaces has been now adapted to determine the microbial quality of raw ground meat. A good correlation (r=0.91) between bacterial count determined by the pour plate method and the p-nitroaniline test was obtained. The sensitivity of the new method was of the order of magnitude of 10(4)cfu/g. This method allows the assay of ground meat in approximately 2.5h, it does not require expensive equipment and the results can be interpreted both spectrophotometrically and visually. Additionally, it has been proven that the method is useful in estimating the microbial quality of raw meat irrespective of the species of Gram-negative psychrotrophic bacteria prevailing in the meat during refrigerated storage.

  1. Characterization of a Planctomycetal Organelle: a Novel Bacterial Microcompartment for the Aerobic Degradation of Plant Saccharides

    PubMed Central

    Erbilgin, Onur; McDonald, Kent L.

    2014-01-01

    Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae. PMID:24487526

  2. Aerobic degradation of ibuprofen in batch and continuous reactors by an indigenous bacterial community.

    PubMed

    Fortunato, María Susana; Fuentes Abril, Nancy Piedad; Martinefski, Manuela; Trípodi, Valeria; Papalia, Mariana; Rádice, Marcela; Gutkind, Gabriel; Gallego, Alfredo; Korol, Sonia Edith

    2016-10-01

    Water from six points from the Riachuelo-Matanza basin was analyzed in order to assess ibuprofen biodegradability. In four of them biodegradation of ibuprofen was proved and degrading bacterial communities were isolated. Biodegradation in each point could not be correlated with sewage pollution. The indigenous bacterial community isolated from the point localized in the La Noria Bridge showed the highest degradative capacity and was selected to perform batch and continuous degradation assays. The partial 16S rRNA gene sequence showed that the community consisted of Comamonas aquatica and Bacillus sp. In batch assays the community was capable of degrading 100 mg L(-1) of ibuprofen in 33 h, with a specific growth rate (μ) of 0.21 h(-1). The removal of the compound, as determined by High performance liquid chromatography (HPLC), exceeded 99% of the initial concentration, with a 92.3% removal of Chemical Oxygen Demand (COD). In a down-flow fixed-bed continuous reactor, the community shows a removal efficiency of 95.9% of ibuprofen and 92.3% of COD for an average inlet concentration of 110.4 mg. The reactor was kept in operation for 70 days. The maximal removal rate for the compound was 17.4 g m(-3) d(-1). Scanning electron microscopy was employed to observe biofilm development in the reactor. The ability of the isolated indigenous community can be exploited to improve the treatment of wastewaters containing ibuprofen.

  3. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: A two-dimensional study

    NASA Astrophysics Data System (ADS)

    Yi, Xin; Gao, Huajian

    2014-06-01

    A fundamental understanding of cell-nanomaterial interaction is essential for biomedical diagnostics, therapeutics, and nanotoxicity. Here, we perform a theoretical analysis to investigate the phase diagram and morphological evolution of an elastic rod-shaped nanoparticle wrapped by a lipid membrane in two dimensions. We show that there exist five possible wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the shape and size of the particle, adhesion energy, membrane tension, and bending rigidity ratio between the particle and membrane. While symmetric morphologies are observed in the early and late stages of wrapping, in between a soft rod-shaped nanoparticle undergoes a dramatic symmetry breaking morphological change while stiff and rigid nanoparticles experience a sharp reorientation. These results are of interest to the study of a range of phenomena including viral budding, exocytosis, as well as endocytosis or phagocytosis of elastic particles into cells.

  4. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    NASA Astrophysics Data System (ADS)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core-shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  5. Aerobic Degradation of Dinitrotoluenes and Pathway for Bacterial Degradation of 2,6-Dinitrotoluene

    PubMed Central

    Nishino, Shirley F.; Paoli, George C.; Spain, Jim C.

    2000-01-01

    An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2,4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol. PMID:10788393

  6. Risk factors for aerobic bacterial conjunctival flora in preoperative cataract patients.

    PubMed

    Hoshi, S; Hashida, M; Urabe, K

    2016-11-01

    PurposeTo investigate the relationship between the background of preoperative cataract patients and bacterial conjunctival flora.MethodsA total of 990 cataract patients who had completed preoperative examinations in 2007 and 2008 were included. Patients using topical antibiotics at the preoperative examination or having a history of intraocular surgery were excluded. Conjunctival cultures had been preoperatively obtained. Patient characteristics were investigated via medical records. Risk factors for conjunctival flora of seven typical bacteria were analyzed by univariate and multivariate analyses.ResultsThe detection rate of alpha-hemolytic streptococci and Enterococcus faecalis increased with age (P=0.044 and P=0.002, respectively). The detection rate of Gram-negative bacilli was higher among patients with oral steroid use or lacrimal duct obstruction (P=0.038 and P=0.002, respectively). The detection rate of Corynebacterium species was higher among older patients and men, and lower among patients with glaucoma eye drop use (P<0.001, P=0.012 and P=0.001, respectively). The detection rate of methicillin-susceptible coagulase-negative Staphylococci was higher among men and lower among patients with a surgical history in other departments (P=0.003 and P=0.046, respectively). The detection rate of methicillin-resistant coagulase-negative Staphylococci (MR-CNS) was higher among patients with oral steroid use, a visit history to ophthalmic facilities, or a surgical history in other departments (P=0.002, P=0.037 and P<0.001, respectively).ConclusionsElderly patients, men, patients with lacrimal duct obstruction or immunosuppressed patients are more likely to be colonized by pathogens that cause postoperative endophthalmitis. Moreover, MR-CNS colonization was associated with healthcare-associated infection.

  7. Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments.

    PubMed

    Suihko, Maija-Liisa; Alakomi, Hanna-Leena; Gorbushina, Anna; Fortune, Irene; Marquardt, Jürgen; Saarela, Maria

    2007-09-01

    Twenty samples were taken from the inner or outer surfaces of stone monuments of six historic Scottish buildings and ruins. Biofilms developing on mineral substrates were analysed by in situ scanning electron microscopy and cultivation. Various methods were used to characterize the isolates including automated ribotyping, RAPD and sequencing of the 16S rRNA gene for bacteria, and stereomicroscopy and sequencing of the Internal Transcribed Spacers (ITS) for fungi. Most samples contained microbes between 10(5) and 10(7)cfug(-1) substrate. Actinobacteria belonging to the genus Streptomyces (17 samples/5 monuments) or Arthrobacter (12/3) and Pseudomonas (9/3) were frequently detected. Most streptomycetes were in terms of their 16S rRNA gene sequence most closely related to S. microflavus (10/3) or to the undescribed species S. "vulgaris" (8/3). Indoor and outdoor biofilms exhibited significant differences in their microbiota, as shown by both microscopy and isolation studies. Pigmented coccoid Arthrobacter species were typical for the outdoor samples, whereas Pseudomonas species were common in the indoor samples. Based on the low phylogenetic relationship to a known species (type strain), potential novel pigmented bacterial species belonging to the genera Arthrobacter, Brevundimonas, Cryseobacterium, Deinococcus and Dyadobacter were detected from the outdoor samples and to Pseudomonas from the indoor samples. Hyaline fungal species of Acremonium (10/4) mainly occurred in indoor samples, whereas pigmented species of Cladosporium (8/3), Penicillium (6/3) and Phialophora (6/2) were found outdoors. Using in situ microscopy diatom algae were also detected.

  8. Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content.

    PubMed

    Li, Yanbing; Nishino, Naoki

    2013-09-01

    The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.

  9. Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

    PubMed Central

    Li, Yanbing; Nishino, Naoki

    2013-01-01

    The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages

  10. Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor.

    PubMed

    Ruiz-Arias, Alfredo; Juárez-Ramírez, Cleotilde; de los Cobos-Vasconcelos, Daniel; Ruiz-Ordaz, Nora; Salmerón-Alcocer, Angélica; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio

    2010-11-01

    A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (eta ( COD )) and 4-ABS (eta ( ABS )) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a-c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.

  11. Cloacal aerobic bacterial flora and absence of viruses in free-living slow worms (Anguis fragilis), grass snakes (Natrix natrix) and European Adders (Vipera berus) from Germany.

    PubMed

    Schmidt, Volker; Mock, Ronja; Burgkhardt, Eileen; Junghanns, Anja; Ortlieb, Falk; Szabo, Istvan; Marschang, Rachel; Blindow, Irmgard; Krautwald-Junghanns, Maria-Elisabeth

    2014-12-01

    Disease problems caused by viral or bacterial pathogens are common in reptiles kept in captivity. There is no information available on the incidence of viral pathogens or the physiological cloacal bacterial flora of common free-living reptiles in Germany. Therefore, 56 free-living reptiles including 23 European adders (Vipera berus), 12 grass snakes (Natrix natrix) and 21 slow worms (Anguis fragilis) were investigated on the island Hiddensee in northeastern Germany. Pharyngeal and cloacal swabs were taken immediately after capture. Bacteriological examination was performed from the cloacal swabs to study the aerobic cloacal flora. Molecular biological examination included amplification of DNA or RNA from adeno-, rana- and ferlaviruses as well as culturing on Russell's viper heart cells for virus isolation. Salmonella spp. were isolated from European adders but not from the other reptiles examined. The minimal inhibitory concentration was determined from the isolated Salmonella spp. However, some potentially human pathogenic bacteria, such as Proteus vulgaris, Aeromonas hydrophila, Klebsiella pneumoniae and Escherichia coli were isolated. Viruses were not detected in any of the examined reptiles. To the authors' best knowledge, the present study is the first survey of viral pathogens in free-living snakes and slow worms in Germany and the first survey of cloacal aerobic bacterial flora of slow worms.

  12. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics.

    PubMed

    Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  13. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    PubMed Central

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s−1) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s−1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  14. Anaerobic and aerobic degradation of cyanophycin by the denitrifying bacterium Pseudomonas alcaligenes strain DIP1 and role of three other coisolates in a mixed bacterial consortium.

    PubMed

    Sallam, Ahmed; Steinbüchel, Alexander

    2008-06-01

    Four bacterial strains were isolated from a cyanophycin granule polypeptide (CGP)-degrading anaerobic consortium, identified by 16S rRNA gene sequencing, and assigned to species of the genera Pseudomonas, Enterococcus, Clostridium, and Paenibacillus. The consortium member responsible for CGP degradation was assigned as Pseudomonas alcaligenes strain DIP1. The growth of and CGP degradation by strain DIP1 under anaerobic conditions were enhanced but not dependent on the presence of nitrate as an electron acceptor. CGP was hydrolyzed to its constituting beta-Asp-Arg dipeptides, which were then completely utilized within 25 and 4 days under anaerobic and aerobic conditions, respectively. The end products of CGP degradation by strain DIP1 were alanine, succinate, and ornithine as determined by high-performance liquid chromatography analysis. The facultative anaerobic Enterococcus casseliflavus strain ELS3 and the strictly anaerobic Clostridium sulfidogenes strain SGB2 were coisolates and utilized the beta-linked isodipeptides from the common pool available to the mixed consortium, while the fourth isolate, Paenibacillus odorifer strain PNF4, did not play a direct role in the biodegradation of CGP. Several syntrophic interactions affecting CGP degradation, such as substrate utilization, the reduction of electron acceptors, and aeration, were elucidated. This study demonstrates the first investigation of CGP degradation under both anaerobic and aerobic conditions by one bacterial strain, with regard to the physiological role of other bacteria in a mixed consortium.

  15. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  16. Aerobic bacterial flora of the vagina and prepuce of California sea lions (Zalophus californianus) and investigation of associations with urogenital carcinoma.

    PubMed

    Johnson, Shawn; Lowenstine, Linda; Gulland, Frances; Jang, Spencer; Imai, Denise; Almy, Frederic; Delong, Robert; Gardner, Ian

    2006-04-16

    To investigate the association between genital bacterial infection and urogenital carcinoma in California sea lions (Zalophus californianus), vaginal and preputial swabs for bacterial isolation were taken from 148 free-ranging and 51 stranded California sea lions including 16 animals with urogenital carcinoma. Cytological examination of vaginal or preputial smears showed a majority (65.5%, 57/87) of animals examined had mild or no inflammation. Aerobic bacteria were isolated from 116 (78.4%) wild sea lions and 100% of stranded animals. A total of 403 isolates were identified representing 51 unique bacterial species. The median number of isolates per animal increased with age in the wild group, but there was no difference in the number of isolates per animal between wild and stranded adults. The most common bacteria isolated from the wild sea lions were Psychrobacter phenylpyruvicus (39 isolates), non-hemolytic Streptococcus (35 isolates), Corynebacterium spp. (30 isolates), and Escherichia coli (20 isolates). More bacterial species were isolated from stranded animals than wild animals (33 versus 26) and there was significantly less growth of P. phenylpyruvicus, Corynebacterium spp., and Moraxella-like spp. in the stranded animals. Beta-hemolytic Streptococcus was the only bacterium significantly associated with urogenital carcinomas in California sea lions, but only in females.

  17. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.

    PubMed

    Ruka, Dianne R; Sangwan, Parveen; Garvey, Christopher J; Simon, George P; Dean, Katherine M

    2015-08-18

    Poly-3-hydroxybutyrate (PHB) and bacterial cellulose (BC) are both natural polymeric materials that have the potential to replace traditional, nonrenewable polymers. In particular, the nanofibrillar form of bacterial cellulose makes it an effective reinforcement for PHB. Neat PHB, bacterial cellulose, and a composite of PHB/BC produced with 10 wt % cellulose were composted under accelerated aerobic test conditions, with biodegradability measured by the carbon dioxide evolution method, in conjunction with spectroscopic and diffraction methods to assess crystallinity changes during the biodegradation process. The PHB/BC composite biodegraded at a greater rate and extent than that of PHB alone, reaching 80% degradation after 30 days, whereas PHB did not reach this level of degradation until close to 50 days of composting. The relative crystallinity of PHB and PHB in the PHB/BC composite was found to increase in the initial weeks of degradation, with degradation occurring primarily in the amorphous region of the material and some recrystallization of the amorphous PHB. Small angle X-ray scattering indicates that the change in PHB crystallinity is accompanied by a change in morphology of semicrystalline lamellae. The increased rate of biodegradability suggests that these materials could be applicable to single-use applications and could rapidly biodegrade in compost on disposal.

  18. Thermal management, beam control, and packaging designs for high power diode laser arrays and pump cavity designs for diode laser array pumped rod shaped lasers

    NASA Astrophysics Data System (ADS)

    Chung, Te-Yuan

    Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.

  19. A Facile One-Step Solvothermal Synthesis and Electrical Properties of Reduced Graphene Oxide/Rod-Shaped Potassium Tungsten Bronze Nanocomposite.

    PubMed

    Liu, Bin; Yin, Shu; Wang, Yuhua; Guo, Chongshen; Wu, Xiaoyong; Dong, Qiang; Kobayashi, Makoto; Kakihana, Masato; Sato, Tsugio

    2015-09-01

    Reduced graphene oxide (rGO)/rod-shaped potassium tungsten bronze nanocomposites with the different ratio were successfully synthesized by solvothermal reaction and followed by the reduction in H2(5 vol.%)/N2 atmosphere at 550 degrees C. The coupled samples showed excellent shielding ability of NIR light as well as certain visible lights transparency. The synergistic effects could be observed in the composites, i.e., when 15 wt% and 20 wt% of rGO which was fabricated by chemical reduction of graphene oxide, were composed into K(x)WO3, the composite showed the higher electrical conductivity than those of rGO and potassium tungsten bronze.

  20. Crystalline characterization and photodecomposition properties of rod-shaped Na2Ti6O13 powder prepared by molten salt process.

    PubMed

    Ku, Hye-Kyung; Oh, Hyo-Jin; Noh, Kyung-Jong; Jung, Sang-Chul; Park, Kyeong-Soon; Lee, Won-Jae; Kim, Sun-Jae

    2011-08-01

    To prepare one-dimensional nanostructured Na2Ti6O13 powder, the starting materials of TiO2, NaCl and Na2CO3 were mixed and then heat-treated at 1000 degrees C for 2 hrs in air under molten state of NaCl. Changes in shape and phase, photo absorbance and photocatalytic ability of TiO2 particle were observed controlling added amount of Na2CO3 under constant weight ratio of TiO2 to NaCl using SEM, X-ray diffractometer, Raman spectroscopy, and UV-Vis spectroscopy. The TiO2 particle was changed into rod-shape Na2Ti6O13 with the addition of Na2CO3, showing increase in optical energy band-gap of the powder as well as gradual decrease of the photo-decomposition ability.

  1. Comparative assessment of bacterial inoculation and propionic acid treatment of aerobic stability and microbial populations of ensiled high-moisture ear corn.

    PubMed

    Sebastian, S; Phillip, L E; Fellner, V; Idziak, E S

    1996-02-01

    High-moisture ear corn (HMEC) was untreated, treated with propionic acid (PA), or inoculated with a mixture of Lactobacillus plantarum and Enterococcus faecium and allowed to ensile in laboratory silos for 0, 7, 21, 42, 138, or 202 d. The silages were evaluated for fermentation quality, microbial populations, and aerobic stability. In all treatments, silage pH declined rapidly within 7 d, but the rate of decline seemed greatest with the inoculum. The lactic acid content of inoculated HMEC was higher (P < .05) than that of control of PA-treated HMEC. Regardless of treatment, the population of lactic acid bacteria (LAB) increased (P < .1) up to 7 to 21 d of fermentation then declined; LAB counts decreased (P < .05) up to 42 d in control and PA-treated silage but continued to decline until 138 d for inoculated silage. Yeast and mold counts tended to decrease up to 42 d of ensiling then decreased (P < .05) as fermentation progressed. Between 138 and 202 d of ensiling, the control silage showed a marked increase (P < .10) in pH and yeast and mold populations, providing evidence of secondary fermentation; PA treatment and bacterial inoculation prevented secondary fermentation. Inoculation tended to reduce estimates of sample temperature for silage stored for 138 d and exposed to air, but not for the corresponding silage stored for 202 d. Treatment with PA prevented the loss (P > .05) of acetic acid and the rise (P > .05) in pH during air exposure of the 138-d silage; both control and PA-treated silage showed an increase (P < .05) in yeast and mold populations, but the increments were 38% and 23%, respectively. Compared with PA, the relative efficacy of inoculation in improving aerobic spoilage of HMEC depended on the period of silo storage and the criterion used to assess aerobic stability.

  2. Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobic cultivation.

    PubMed

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M; Weightman, Andrew J; Mahenthiralingam, Eshwar

    2011-07-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by "JW") was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.

  3. Culture-Independent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation ▿ †

    PubMed Central

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M.; Weightman, Andrew J.; Mahenthiralingam, Eshwar

    2011-01-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386

  4. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass.

    PubMed

    Adesogan, A T; Krueger, N; Salawu, M B; Dean, D B; Staples, C R

    2004-10-01

    This study determined the effectiveness of an inoculant (BB), molasses, or a mixture of either BB and molasses (BBM) or BB and fibrolytic enzymes (BBE) for improving the fermentation and aerobic stability of bermudagrass. A 6-wk regrowth of Tifton 85 bermudagrass was conserved in quadruplicate mini silos alone or after treatment application. The inoculant contained a mixture of P. pentosaceus 12455, 1 x10(5) cfu/g of fresh forage, L. buchneri 40788, 4 x10(5) cfu/g of fresh forage, and beta-glucanase, alpha-amylase, and xylanase; BBE contained similar bacteria and enzymes as BB, but greater enzyme activities. Chemical composition was quantified after 2, 4, 7, 30, and 60 d of ensiling. Microbial composition and aerobic stability were measured after 60 d of ensiling, at which point the pH of additive-treated silages was consistently lower and DM recovery was higher than in untreated silages. The BB, BBM, and molasses-treated silages had less ammonia N than untreated silages, and BB, BBM, and BBE-treated silages had less residual water-soluble carbohydrates than untreated silages. All silages had high acetic acid (47.5 g/kg DM) and low lactic acid (1.7 g/kg DM) concentrations. However, untreated and BBE-treated silages had more butyric acid and ammonia N, suggesting that a clostridial fermentation had occurred. These butyric forages were more aerobically stable (27 d) but less desirable for feeding than those ensiled with BB or molasses, which were stable for 6.9 d. In conclusion, BB and molasses treatments improved the digestibility and fermentation of bermudagrass and produced higher quality silages that were stable for 6.9 d. Mixing BB with molasses or the inoculant tested was not more beneficial than BB or molasses alone.

  5. Phylogenetic analysis of the bacterial community in a full scale autothermal thermophilic aerobic digester (ATAD) treating mixed domestic wastewater sludge for land spread.

    PubMed

    Piterina, Anna V; Bartlett, John; Pembroke, J Tony

    2012-05-15

    The bacterial community associated with a full scale autothermal thermophilic aerobic digester (ATAD) treating sludge, originating from domestic wastewater and destined for land spread, was analysed using a number of molecular approaches optimised specifically for this high temperature environment. 16S rDNA genes were amplified directly from sludge with universally conserved and Bacteria-specific rDNA gene primers and a clone library constructed that corresponded to the late thermophilic stage (t = 23 h) of the ATAD process. Sequence analyses revealed various 16S rDNA gene sequence types reflective of high bacterial community diversity. Members of the bacterial community included α- and β-Proteobacteria, Actinobacteria with High G + C content and Gram-Positive bacteria with a prevalence of the Firmicutes (Low G + C) division (class Clostridia and Bacillus). Most of the ATAD clones showed affiliation with bacterial species previously isolated or detected in other elevated temperature environments, at alkaline pH, or in cellulose rich environments. Several phylotypes associated with Fe(III)- and Mn(IV)-reducing anaerobes were also detected. The presence of anaerobes was of interest in such large scale systems where sub-optimal aeration and mixing is often the norm while the presence of large amounts of capnophiles suggest the possibility of limited convection and entrapment of CO(2) within the sludge matrix during digestion. Comparative analysis with organism identified in other ATAD systems revealed significant differences based on optimised techniques. The abundance of thermophilic, alkalophilic and cellulose-degrading phylotypes suggests that these organisms are responsible for maintaining the elevated temperature at the later stages of the ATAD process.

  6. Fate of Escherichia coli O26 in corn silage experimentally contaminated at ensiling, at silo opening, or after aerobic exposure, and protective effect of various bacterial inoculants.

    PubMed

    Dunière, Lysiane; Gleizal, Audrey; Chaucheyras-Durand, Frédérique; Chevallier, Isabelle; Thévenot-Sergentet, Delphine

    2011-12-01

    Shiga toxin-producing Escherichia coli (STEC) strains are responsible for human illness. Ruminants are recognized as a major reservoir of STEC, and animal feeds, such as silages, have been pointed out as a possible vehicle for the spread of STEC. The present study aimed to monitor the fate of pathogenic E. coli O26 strains in corn material experimentally inoculated (10⁵ CFU/g) during ensiling, just after silo opening, and after several days of aerobic exposure. The addition of 3 bacterial inoculants, Propionibacterium sp., Lactobacillus buchneri, and Leuconostoc mesenteroides (10⁶ CFU/g), was evaluated for their abilities to control these pathogens. The results showed that E. coli O26 could not survive in corn silage 5 days postensiling, and the 3 inoculants tested did not modify the fate of pathogen survival during ensiling. In the case of direct contamination at silo opening, E. coli O26 could be totally eradicated from corn silage previously inoculated with Leuconostoc mesenteroides. The combination of proper ensiling techniques and the utilization of selected bacterial inoculants appears to represent a good strategy to guarantee nutritional qualities of cattle feed while at the same time limiting the entry of pathogenic E. coli into the epidemiological cycle to improve the microbial safety of the food chain.

  7. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    PubMed

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

  8. Fate of Escherichia coli O26 in Corn Silage Experimentally Contaminated at Ensiling, at Silo Opening, or after Aerobic Exposure, and Protective Effect of Various Bacterial Inoculants▿

    PubMed Central

    Dunière, Lysiane; Gleizal, Audrey; Chaucheyras-Durand, Frédérique; Chevallier, Isabelle; Thévenot-Sergentet, Delphine

    2011-01-01

    Shiga toxin-producing Escherichia coli (STEC) strains are responsible for human illness. Ruminants are recognized as a major reservoir of STEC, and animal feeds, such as silages, have been pointed out as a possible vehicle for the spread of STEC. The present study aimed to monitor the fate of pathogenic E. coli O26 strains in corn material experimentally inoculated (105 CFU/g) during ensiling, just after silo opening, and after several days of aerobic exposure. The addition of 3 bacterial inoculants, Propionibacterium sp., Lactobacillus buchneri, and Leuconostoc mesenteroides (106 CFU/g), was evaluated for their abilities to control these pathogens. The results showed that E. coli O26 could not survive in corn silage 5 days postensiling, and the 3 inoculants tested did not modify the fate of pathogen survival during ensiling. In the case of direct contamination at silo opening, E. coli O26 could be totally eradicated from corn silage previously inoculated with Leuconostoc mesenteroides. The combination of proper ensiling techniques and the utilization of selected bacterial inoculants appears to represent a good strategy to guarantee nutritional qualities of cattle feed while at the same time limiting the entry of pathogenic E. coli into the epidemiological cycle to improve the microbial safety of the food chain. PMID:21984243

  9. Aerobic bacterial oral flora of garter snakes: development of normal flora and pathogenic potential for snakes and humans.

    PubMed

    Goldstein, E J; Agyare, E O; Vagvolgyi, A E; Halpern, M

    1981-05-01

    Garter snakes that are used for scientific laboratory studies or kept as exotic pets often become ill and die early in captivity. They may also act as reservoirs of potential human pathogens or transmit infection to man. A total of 126 strains of aerobic and facultative bacteria, most potential human and snake pathogens, were isolated from 82 garter snake oropharyngeal cultures. Coagulase-negative Staphylococcus species were the most common species isolated. Acinetobacter calcoaceticus var. anitratus, Hafnia alvei, Arizona hinshawii, Salmonella species, Shigella species, Klebsiella oxytoca, and Pseudomonas aeruginosa were among the potential pathogens isolated. The spectrum of bacteria with potential for causing oral and pulmonary infections in garter snakes is greater than has been previously appreciated. Garter snakes should also be considered reservoirs of human pathogens, and appropriate precautions should be taken by laboratory personnel and pet owners.

  10. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress.

    PubMed

    Feng, Jinsong; Lamour, Guillaume; Xue, Rui; Mirvakliki, Mehr Negar; Hatzikiriakos, Savvas G; Xu, Jie; Li, Hongbin; Wang, Shuo; Lu, Xiaonan

    2016-12-05

    Campylobacter jejuni is a microaerophilic pathogen and leading cause of human gastroenteritis. The presence of C. jejuni encased in biofilms found in meat and poultry processing facilities may be the major strategy for its survival and dissemination in aerobic environment. In this study, Staphylococcus aureus, Salmonella enterica, or Pseudomonas aeruginosa was mixed with C. jejuni F38011 as a culture to form dual-species biofilms. After 4days' exposure to aerobic stress, no viable C. jejuni cells could be detected from mono-species C. jejuni biofilm. In contrast, at least 4.7logCFU/cm(2) of viable C. jejuni cells existed in some dual-species biofilms. To elucidate the mechanism of protection mode, chemical, physical and morphological features of biofilms were characterized. Dual-species biofilms contained a higher level of extracellular polymeric substances with a more diversified chemical composition, especially for polysaccharides and proteins, than mono-species C. jejuni biofilm. Structure of dual-species biofilms was more compact and their surface was >8 times smoother than mono-species C. jejuni biofilm, as indicated by atomic force microscopy. Under desiccation stress, water content of dual-species biofilms decreased slowly and remained at higher levels for a longer time than mono-species C. jejuni biofilm. The surface of all biofilms was hydrophilic, but total surface energy of dual-species biofilms (ranging from 52.5 to 56.2mJ/m(2)) was lower than that of mono-species C. jejuni biofilm, leading to more resistance to wetting by polar liquids. This knowledge can aid in developing intervention strategies to decrease the survival and dispersal of C. jejuni into foods or environment.

  11. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment.

    PubMed

    Harrison, Alistair; Dubois, Laura G; St John-Williams, Lisa; Moseley, M Arthur; Hardison, Rachael L; Heimlich, Derek R; Stoddard, Alexander; Kerschner, Joseph E; Justice, Sheryl S; Thompson, J Will; Mason, Kevin M

    2016-03-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  12. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment*

    PubMed Central

    Harrison, Alistair; Dubois, Laura G.; St. John-Williams, Lisa; Moseley, M. Arthur; Hardison, Rachael L.; Heimlich, Derek R.; Stoddard, Alexander; Kerschner, Joseph E.; Justice, Sheryl S.; Thompson, J. Will; Mason, Kevin M.

    2016-01-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  13. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG5 of Alcaligenes faecalis.

    PubMed

    Santal, Anita Rani; Singh, N P; Saharan, Baljeet Singh

    2011-10-15

    Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 ± 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 °C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG(5).

  14. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    PubMed

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater.

  15. Detection of Bacterial and Yeast Species with the Bactec 9120 Automated System with Routine Use of Aerobic, Anaerobic, and Fungal Media▿

    PubMed Central

    Chiarini, Alfredo; Palmeri, Angelo; Amato, Teresa; Immordino, Rita; Distefano, Salvatore; Giammanco, Anna

    2008-01-01

    During the period 2006 and 2007, all blood cultures required by four units at high infective risk and most of those required by other units of the University Hospital of Palermo, Palermo, Italy were performed using a Bactec 9120 automated blood culture system with a complete set of Plus Aerobic/F, Plus Anaerobic/F, and Mycosis IC/F bottles. The aim of the study was to enable the authors to gain firsthand experience of the culture potentialities of the three different media, to obtain information regarding the overall and specific recovery of bacteria and yeasts from blood cultures in the hospital, and to reach a decision as to whether and when to utilize anaerobic and fungal bottles. Although very few bloodstream infections (1.8%) were associated with obligate anaerobes, the traditional routine use of anaerobic bottles was confirmed because of their usefulness, not only in the detection of anaerobes, but also in that of gram-positive cocci and fermentative gram-negative bacilli. In this study, Mycosis IC/F bottles detected 77.4% of all the yeast isolates, 87.0% of yeasts belonging to the species Candida albicans, and 45.7% of nonfermentative gram-negative bacilli resistant to chloramphenicol and tobramycin. In order to improve the diagnosis of fungemia in high-risk patients, the additional routine use of fungal bottles was suggested when, as occurred in the intensive-care unit and in the hematology unit of the University Hospital of Palermo, high percentages of bloodstream infections are associated with yeasts, and/or antibiotic-resistant bacteria and/or multiple bacterial isolates capable of inhibiting yeast growth in aerobic bottles. PMID:18923011

  16. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs).

  17. Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries.

    PubMed

    Liu, Qiannan; Hu, Zhe; Chen, Mingzhe; Gu, Qinfen; Dou, Yuhai; Sun, Ziqi; Chou, Shulei; Dou, Shi Xue

    2017-02-01

    The tunnel-structured Na0.44MnO2 is considered as a promising cathode material for sodium-ion batteries because of its unique three-dimensional crystal structure. Multiangular rod-shaped Na0.44MnO2 have been first synthesized via a reverse microemulsion method and investigated as high-rate and long-life cathode materials for Na-ion batteries. The microstructure and composition of prepared Na0.44MnO2 is highly related to the sintering temperature. This structure with suitable size increases the contact area between the material and the electrolyte and guarantees fast sodium-ion diffusion. The rods prepared at 850 °C maintain specific capacity of 72.8 mA h g(-1) and capacity retention of 99.6% after 2000 cycles at a high current density of 1000 mA g(-1). The as-designed multiangular Na0.44MnO2 provides new insight into the development of tunnel-type electrode materials and their application in rechargeable sodium-ion batteries.

  18. Analytical performance issues: comparison of ATP bioluminescence and aerobic bacterial count for evaluating surface cleanliness in an Italian hospital.

    PubMed

    Amodio, Emanuele; Cannova, Lucia; Villafrate, Maria Rosaria; Merendino, Anna Maria; Aprea, Luigi; Calamusa, Giuseppe

    2014-01-01

    Contaminated hospital surfaces have been demonstrated to be an important environmental reservoir of microorganisms that can increase the risk of nosocomial infection in exposed patients. As a consequence, cleaning and disinfecting hospital environments play an important role among strategies for preventing healthcare-associated colonization and infections. The aim of the present study was to evaluate whether adenosine triphosphate (ATP) presence, measured by bioluminescence methods, can predict microbiological contamination of hospital surfaces. The study was carried out between September and December 2012 at the University Hospital "P. Giaccone" of Palermo. A total of 193 randomly selected surfaces (tables, lockers, furnishings) were sampled and analyzed in order to assess ATP levels (expressed as relative light units or RLU) and aerobic colony count (ACC) or presence of S. aureus. ACC had median values of 1.85 cfu/cm(2)(interquartile range = 4.16) whereas ATP median was 44.6 RLU/cm(2)(interquartile range = 92.3). Overall, 85 (44.0%) surfaces exceeded the established microbial benchmark: 73 (37.8%) exceeded the 2.5 cfu/cm(2)ACC standard, 5 (2.6%) surfaces were positive for S. aureus and 7 (3.6%) showed both the presence of S. aureus and an ACC of more than 2.5 cfu/cm(2). ACC and bioluminescence showed significant differences in the different surface sites (p < 0.001). A significant correlation was found between ACC and RLU values (p-value < 0.001; R(2)= 0.29) and increasing RLU values were significantly associated with a higher risk of failing the benchmark (p < 0.001). Our data suggest that bioluminescence could help in measuring hygienic quality of hospital surfaces using a quick and sensitive test that can be an useful proxy of microbial contamination; however, further analysis will be necessary to assess the cost-efficacy of this methodology before requiring incorporation in hospital procedures.

  19. Prevalence and Characteristics of Surgical Site Infections Caused by Gram-negative Rod-shaped Bacteria from the Family Enterobacteriacae and Gram-positive Cocci from the Genus Staphylococcus in Patients who Underwent Surgical Procedures on Selected Surgical Wards.

    PubMed

    Tomaszewska-Kowalska, Małgorzata; Kołomecki, Krzysztof; Wieloch-Torzecka, Maria

    2016-10-01

    Surgical site infections on surgical wards are the most common cause of postoperative complications. Prevalence of surgical site infections depends on the surgical specialization. Analysis of the causes of surgical site infections allows to conclude that microorganisms from the patient's own microbiota - Gram-negative rod-shaped bacteria from the family Enterobacteriacae and from the patient's skin microbiota - Gram-positive cocci - Staphylococcus are the most common agents inducing surgical site infections. The aim of the study was to assess prevalence and characteristics of surgical site infections caused by Gram-negative rod-shaped bacteria from the family Eneterobacteriacae and Gram-positive cocci from the genus Staphylococcus in patients who underwent surgical procedures at the Regional Specialist Hospital named after M. Copernika in Łódź on selected surgical wards.

  20. Bacterial Transport Experiments in Fractured Crystalline Bedrock

    USGS Publications Warehouse

    Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.

    2003-01-01

    The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.

  1. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  2. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    PubMed Central

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-01-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0–50 mg L−1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L−1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L−1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L−1) from the effluent. PMID:27877796

  3. Synthesis, crystal structures, and optical/electronic properties of sphere-rod shape amphiphiles based on a [60]fullerene-oligofluorene conjugate.

    PubMed

    Teng, Fu-Ai; Cao, Yan; Qi, Yuan-Jiang; Huang, Mingjun; Han, Zhe-Wen; Cheng, Stephen Z D; Zhang, Wen-Bin; Li, Hui

    2013-06-01

    A series of sphere-rod shape amphiphiles, in which a [60]fullerene (C60) sphere was connected to the center of an oligofluorene (OF) rod through a rigid linkage (OF-C60), were designed and synthesized. Alkyl chains of various lengths were attached onto the OFs on both sides of the C60 spheres. These compounds, denoted as alkyl-OF-C60, were fully characterized by (1)H NMR, (13)C NMR, and FTIR spectroscopy and by MALDI-TOF mass spectrometry. The morphologies and structures of their crystals were elucidated by wide-angle X-ray diffraction (WAXD) and by electron diffraction in transmission electron microscopy (TEM). Butyl-OF-C60 forms a monoclinic unit cell (a=1.86, b=3.96, c=2.24 nm; α=γ=90°, β=68°; space group P2), octyl-OF-C60 also forms a monoclinic unit cell (a=2.21, b=4.06, c=1.81 nm; α=γ=90°, β=75.5°; space group C2m), and dodecanyl-OF-C60 forms a triclinic structure (a=1.82, b=4.35, c=2.26 nm; α=93.1°, β=94.5°, γ=92.7°; space group P1). The inequivalent spheres and rods were found to pack into an alternating layered structure of C60 and OF in the crystals, thus resembling a "double-cable" structure. UV/Vis absorption spectroscopy revealed an electron perturbation between the two individual chromophores (C60 and OF) in their ground states. Fluorescence spectroscopy exhibited complete fluorescence quenching of their solutions in toluene, thus suggesting an effective energy transfer from OF to C60. Cyclic voltammetry indicated that the energy-level profiles of C60 and OF remained essentially unchanged. This work has broad implications in terms of understanding the self-assembly and molecular packing of conjugated materials in crystals and has potential applications in organic field-effect transistors and bulk heterojunction solar cells.

  4. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  5. Self-limiting adsorption of Eu³⁺ on the surface of rod-shape anatase TiO₂ nanocrystals and post-synthetic sensitization of the europium-based emission.

    PubMed

    Balasanthiran, Choumini; Zhao, Bo; Lin, Cuikun; May, P S; Berry, Mary T; Hoefelmeyer, James D

    2015-12-01

    The surface of oleic acid stabilized rod-shape anatase TiO2 nanocrystals was modified by adsorption of Eu(3+) ions. The Eu(3+) attachment showed Langmuir adsorption behavior, thus the loading of Eu(3+) could be controlled precisely up to surface saturation coverage. The Eu(3+)-TiO2 nanorods show weak Eu(3+) based luminescence. However, addition of thenoyltrifluoroacetone (TTFA) leads to coordination of the ligand to the Eu(3+) centers and the TTFA-Eu(3+)-TiO2 materials exhibit strong Eu(3+) fluorescence sensitized by the TTFA ligand.

  6. Circumferential gap propagation in an anisotropic elastic bacterial sacculus

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin; Levitan, Benjamin A.; Rutenberg, Andrew D.

    2014-01-01

    We have modeled stress concentration around small gaps in anisotropic elastic sheets, corresponding to the peptidoglycan sacculus of bacterial cells, under loading corresponding to the effects of turgor pressure in rod-shaped bacteria. We find that under normal conditions the stress concentration is insufficient to mechanically rupture bacteria, even for gaps up to a micron in length. We then explored the effects of stress-dependent smart autolysins, as hypothesized by A. L. Koch [Adv. Microb. Physiol. 24, 301 (1983), 10.1016/S0065-2911(08)60388-4; Res. Microbiol. 141, 529 (1990), 10.1016/0923-2508(90)90017-K]. We show that the measured anisotropic elasticity of the peptidoglycan (PG) sacculus can lead to stable circumferential propagation of small gaps in the sacculus. This is consistent with the recent observation of circumferential propagation of PG-associated MreB patches in rod-shaped bacteria. We also find a bistable regime of both circumferential and axial gap propagation, which agrees with behavior reported in cytoskeletal mutants of B. subtilis. We conclude that the elastic anisotropies of a bacterial sacculus, as characterized experimentally, may be relevant for maintaining rod-shaped bacterial growth.

  7. Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost.

    PubMed

    Steven, Blaire; Chen, Min Qun; Greer, Charles W; Whyte, Lyle G; Niederberger, Thomas D

    2008-06-01

    A Gram-positive, aerobic, rod-shaped bacterium (strain Eur1 9.5(T)) was isolated from a 9-m-deep permafrost sample from the Canadian high Arctic. Strain Eur1 9.5(T) could not be cultivated in liquid medium and grew over the temperature range 5-37 degrees C; no growth was observed at 42 degrees C and only slow growth was observed at 5 degrees C following 1 month of incubation. Eur1 9.5(T) grew over the pH range 5.5-8.9 and tolerated NaCl concentrations of 0-0.5 % (w/v). Eur1 9.5(T) grew heterotrophically on complex carbon substrates and chemolithoautotrophically on inorganic sulfur compounds, as demonstrated by growth on sodium thiosulfate and sulfite as sole electron donors. Eur1 9.5(T) contained iso-C(15 : 0) as the major cellular fatty acid and menaquinone 7 (MK-7) as the major respiratory quinone. The cell-wall peptidoglycan was of type A1gamma. The DNA G+C content was 53.1 mol%. The 16S rRNA gene sequence of strain Eur1 9.5(T) was only distantly related (bacterial species. Based on physiological and phylogenetic analyses, strain Eur1 9.5(T) is suggested to represent a novel species of a new genus, for which the name Tumebacillus permanentifrigoris gen. nov., sp. nov. is proposed. The type strain of Tumebacillus permanentifrigoris is Eur1 9.5(T) (=DSM 18773(T) =JCM 14557(T)).

  8. Co-variations of bacterial composition and catabolic genes related to PAH degradation in a produced water treatment system consisting of successive anoxic and aerobic units.

    PubMed

    Wang, Zhenyu; Li, Jian; Hesham, Abd El-Latif; He, Shaowu; Zhang, Yu; Wang, Zijian; Yang, Min

    2007-02-01

    This paper reports on the investigation of concentration levels of PAHs, community structure, as well as the abundance of PAH-related catabolic genes including upper-pathway dioxygenase genes (nahAc and phnAc) and down-pathway catechol dioxygenase genes (C12O and C23O) in a successive anoxic and aerobic treatment of produced water from the Jidong Oilfield, China. 93% of total PAHs were removed, almost equally contributed by the anoxic and aerobic units. However, PAHs of more than 3 benzene rings remained almost unchanged. The signals for phnAc and C12O were undetectable in this biological system, whereas the existence of nahAc and C23O was confirmed in the system and the copies of the two genes in the aerobic tank were 2 or 3 orders higher than those in the influent water sample. The different behavior of C23O demonstrated that mineralization of PAHs might mainly occur in the aerobic unit. The existence of nahAc and C23O genes in the influent and the high similarity of genotype between the influent and the two sludge samples suggested that bacteria existing in the influent contributed to PAH removal and bacteria harboring PAH catabolic genes were enriched in the sludge.

  9. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  10. Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures

    PubMed Central

    Heraty, Linnea; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, J. K.; Hatzinger, Paul B.

    2016-01-01

    ABSTRACT Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. IMPORTANCE This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also

  11. Aerobic bacterial microflora of Broad-snouted caiman (Caiman latirostris) oral cavity and cloaca, originating from parque Zoológico Arruda Câmara, Paraíba, Brazil

    PubMed Central

    Silva, J.S.A.; Mota, R.A.; Pinheiro Júnior, J.W.; Almeida, M.C.S.; Silva, D.R.; Ferreira, D.R.A.; Azevedo, J.C.N.

    2009-01-01

    The objective of this study was to isolate and identify the aerobic bacterial microflora from the oral cavity mucosa and cloaca’s samples, collected from Broad-snouted caiman (Caiman latirostris), born and bred in captivity at Parque Zoológico Arruda Câmara, João Pessoa, Paraíba, Brazil. The most common bacteria were Staphylococcus sp. (14.74%), Corynebacterium sp. (13.68%), Escherichia coli (13.68%) and Shigella sp.(11.58%), and the less common were Citrobacter sp. (1.05%), Klebsiella pneumoniae (1.05%) and Salmonella sp. (1.05%).This emphasizes the importance of these microorganisms’ participation in infectious processes (sepsis) and injuries caused by crocodilians. PMID:24031343

  12. Aerobic bacterial microflora of Broad-snouted caiman (Caiman latirostris) oral cavity and cloaca, originating from parque Zoológico Arruda Câmara, Paraíba, Brazil.

    PubMed

    Silva, J S A; Mota, R A; Pinheiro Júnior, J W; Almeida, M C S; Silva, D R; Ferreira, D R A; Azevedo, J C N

    2009-01-01

    The objective of this study was to isolate and identify the aerobic bacterial microflora from the oral cavity mucosa and cloaca's samples, collected from Broad-snouted caiman (Caiman latirostris), born and bred in captivity at Parque Zoológico Arruda Câmara, João Pessoa, Paraíba, Brazil. The most common bacteria were Staphylococcus sp. (14.74%), Corynebacterium sp. (13.68%), Escherichia coli (13.68%) and Shigella sp.(11.58%), and the less common were Citrobacter sp. (1.05%), Klebsiella pneumoniae (1.05%) and Salmonella sp. (1.05%).This emphasizes the importance of these microorganisms' participation in infectious processes (sepsis) and injuries caused by crocodilians.

  13. Bacterial Wound Culture

    MedlinePlus

    ... and services. Advertising & Sponsorship: Policy | Opportunities Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  14. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin.

    PubMed

    Agbobatinkpo, Pélagie B; Thorsen, Line; Nielsen, Dennis S; Azokpota, Paulin; Akissoe, Noèl; Hounhouigan, Joseph D; Jakobsen, Mogens

    2013-05-15

    Yanyanku and Ikpiru made by the fermentation of Malcavene bean (Hibiscus sabdariffa) are used as functional additives for Parkia biglobosa seed fermentations in Benin. A total of 355 aerobic endospore-forming bacteria (AEFB) isolated from Yanyanku and Ikpiru produced in northern and southern Benin were identified using phenotypic and genotypic methods, including GTG5-PCR, M13-PCR, 16S rRNA, gyrA and gyrB gene sequencing. Generally, the same 5-6 species of the genus Bacillus predominated: Bacillus subtilis (17-41% of isolates), Bacillus cereus (8-39%), Bacillus amyloliquefaciens (9-22%), Bacillus licheniformis (3-26%), Bacillus safensis (8-19%) and Bacillus altitudinis (0-19%). Bacillus aryabhattai, Bacillus flexus, and Bacillus circulans (0-2%), and species of the genera Lysinibacillus (0-14%), Paenibacillus (0-13%), Brevibacillus (0-4%), and Aneurinibacillus (0-3%) occurred sporadically. The diarrheal toxin encoding genes cytK-1, cytK-2, hblA, hblC, and hblD were present in 0%, 91% 15%, 34% and 35% of B. cereus isolates, respectively. 9% of them harbored the emetic toxin genetic determinant, cesB. This study is the first to identify the AEFB of Yanyanku and Ikpiru to species level and perform a safety evaluation based on toxin gene detections. We further suggest, that the gyrA gene can be used for differentiating the closely related species Bacillus pumilus and B. safensis.

  15. Aerobic treatment of dairy wastewater in an industrial three-reactor plant: effect of aeration regime on performances and on protozoan and bacterial communities.

    PubMed

    Tocchi, Carlo; Federici, Ermanno; Fidati, Laura; Manzi, Rodolfo; Vinciguerra, Vittorio; Vincigurerra, Vittorio; Petruccioli, Maurizio

    2012-06-15

    An industrial three-reactor plant treating 45 m(3) d(-1) of dairy wastewater was monitored to investigate the effect of different aeration regimes on performance efficiency and to find relationships with bacterial and protozoan communities in the activated sludge. During the study, the plant was maintained at six different "on/off" cycles of the blower (45/15, 15/15, 15/45, 30/30, 30/45 and 30/60 min), providing between 30.2 and 90.6 kg O(2) d(-1), and the main chemical/biochemical parameters (COD, BOD, NH(4)(+), NO(2)(-), NO(3)(-), PO(4)(3-), etc.) were determined. When at least 45.4 kg O(2) d(-1) (30/45) were provided, COD removal efficiencies were always in the range 88-94% but decreased to about 70% under aeration regimes 15/45 and 30/60. Ammonium ion degradation performance was compromised only in the lowest aeration regime (15/45). Total number of protozoa and their species richness, and bacterial viable counts and denaturing gradient gel electrophoresis (DGGE) profiles were used to characterize the microbiota of the activated sludge. Cell abundances and community structures of protozoa and bacteria were very similar in the three aerated reactors but changed with the aeration regimes. In particular, the 15/45 and 30/60 regimes led to low protozoan diversity with prevalence of flagellates of the genus Trepomonas at the expense of the mobile and sessile forms and, thus, to a less efficient activated sludge as indicated by Sludge Biotic Index values (3 and 4.5 for the two regimes, respectively). The structure of the bacterial community strongly changed when the aeration regimes varied, as indicated by the low similarity values between the DGGE profiles. On the contrary, number of viable bacteria and values of the biodiversity index remained stable throughout the whole experimentation. Taken together, the results of the present study clearly indicate that aeration regime variations strongly influence the structure of both protozoan and bacterial communities and

  16. Bacterial Actins and Their Interactors.

    PubMed

    Gayathri, Pananghat

    2017-01-01

    Bacterial actins polymerize in the presence of nucleotide (preferably ATP), form a common arrangement of monomeric interfaces within a protofilament, and undergo ATP hydrolysis-dependent change in stability of the filament-all of which contribute to performing their respective functions. The relative stability of the filament in the ADP-bound form compared to that of ATP and the rate of addition of monomers at the two ends decide the filament dynamics. One of the major differences between eukaryotic actin and bacterial actins is the variety in protofilament arrangements and dynamics exhibited by the latter. The filament structure and the polymerization dynamics enable them to perform various functions such as shape determination in rod-shaped bacteria (MreB), cell division (FtsA), plasmid segregation (ParM family of actin-like proteins), and organelle positioning (MamK). Though the architecture and dynamics of a few representative filaments have been studied, information on the effect of interacting partners on bacterial actin filament dynamics is not very well known. The chapter reviews some of the structural and functional aspects of bacterial actins, with special focus on the effect that interacting partners exert on the dynamics of bacterial actins, and how these assist them to carry out the functions within the bacterial cell.

  17. Characterization and Formation of Rod-Shaped (Al,Si)3Ti Particles in an Al-7Si-0.35Mg-0.12Ti (Wt Pct) Alloy

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhu, Yuman; Easton, Mark A.; Rinderer, Barbara; Couper, Mal; Nie, Jian-Feng

    2015-08-01

    In this study, the rod-shaped particles in an Al-7Si-0.35Mg-0.12Ti (wt pct) casting alloy have been characterized using transmission electron microscopy. It is found that these particles invariably contain Ti, Al, and Si and that they have the structure of the equilibrium phase (Al,Si)3Ti. A near-rational orientation relationship is observed between the (Al,Si)3Ti particles and the α-Al matrix phase. For this orientation relationship, the long axes of the (Al,Si)3Ti rods are invariably parallel to the moiré planes defined by the intersection of closest-packed planes of the (Al,Si)3Ti and α-Al phases. In contrast to the (Al,Si)3Ti or Al3Ti particles form directly from the melt act as heterogeneous nucleation sites for aluminum grains and thus grain-refined Al-Si foundry alloys, the (Al,Si)3Ti particles are found to form during solution treatment at temperatures above 673 K (400 °C). Their formation occurs in the center of aluminum grains and/or dendrites which is Ti enriched due to partitioning during solidification. The low diffusivity of Ti in α-Al allows the particles to form in the Ti-enriched areas near the center of grains as the Ti concentration is not able to be homogenized during typical solution treatment times.

  18. Changes in the aerobic vaginal bacterial mucous load after treatment with intravaginal sponges in anoestrous ewes: effect of medroxiprogesterone acetate and antibiotic treatment use.

    PubMed

    Gatti, M; Zunino, P; Ungerfeld, R

    2011-04-01

    Intravaginal sponges (IS) impregnated with progestagens are widely used for oestrous synchronization in ewes. As progestogens depress the immuno response, the first aim was to determine whether medroxiprogesterone acetate (MAP) content affects the vaginal bacteria number (VBN) in IS-treated anoestrous ewes. The second aim was to compare the effectiveness of different antibiotic treatments to control the VBN increase caused by IS. In both experiments, IS were inserted during 14 days in anoestrous ewes. In the first, 11 ewes received commercial sponges (50 mg MAP), and 10 ewes received placebo sponges. For the second experiment, IS were inserted in three groups (n = 12/group), containing oxytetracycline im (20 mg/kg); injected into the sponge (0.02 mg), or control (no antibiotic). At sponge withdrawal, all ewes received 300 UI eCG. Mucous samples were collected from the vagina before sponge insertion, at sponge withdrawal, 24, 48 and 72 h later, and the VBN (colony-forming units per ml; CFU/ml) was counted after 48-h incubation. Medroxiprogesterone content did not affect VBN (log CFU/ml: 4.3 ± 0.2 vs 4.4 ± 0.2 with and without MAP, respectively). Bacterial number increased from 3.5 ± 0.2 at sponge insertion to 6.9 ± 0.1 at sponge withdrawal (p < 0.0001) and decreased the following day to 4.3 ± 0.2 (p < 0.0001). In the second experiment, VBN increased at sponge withdrawal (p < 0.0001) in all groups and decreased the following day (p < 0.0001). The CFU/ml at sponge withdrawal was lower in ewes treated with antibiotics (p < 0.0001), being even lower when local rather than systemic antibiotic was administered (log CFU/ml: 3.3 ± 1.8 vs 7.2 ± 1.8). The day of oestrous VBN was similar for all treatments and similar to that observed before sponge insertion. We concluded that MAP does not influence the increase in VBN, as the main effect is provoked by the sponge device itself, and local antibiotic treatment resulted in a lower bacterial growth than systemic treatments.

  19. The bacterial gliding machinery

    NASA Astrophysics Data System (ADS)

    Shrivastava, Abhishek

    Cells of Flavobacterium johnsoniae, a rod-shaped bacterium, glide over surfaces with speeds reaching up to 2 micrometer's. Gliding is powered by a protonmotive force. The adhesin SprB forms filaments about 160 nm long that move on the cell-surface along a looped track. Interaction of SprB filaments with a surface produces gliding. We tethered F. johnsoniae cells to glass by adding anti-SprB antibody. Tethered cells spun about fixed points, rotating at speeds of about 1 Hz. The torques required to sustain such speeds were large, comparable to those generated by the flagellar rotary motor. Using a flow cell apparatus, we changed load on the gliding motor by adding the viscous agent Ficoll to tethered cells. We found that a gliding motor runs at constant speed rather than constant torque. We attached gold nanoparticles to the SprB filament and tracked its motion. We fluorescently tagged a bacterial Type IX secretion system (T9SS) protein and imaged its dynamics. Fluorescently tagged T9SS protein localized near the point of tether, indicating that T9SS localizes with the gliding motor. Based on our results, we propose a model to explain bacterial gliding.

  20. Pattern of elemental release during the granite dissolution can be changed by aerobic heterotrophic bacterial strains isolated from Damma Glacier (central Alps) deglaciated granite sand.

    PubMed

    Lapanje, Aleš; Wimmersberger, Celine; Furrer, Gerhard; Brunner, Ivano; Frey, Beat

    2012-05-01

    Colonisation and weathering of freshly deglaciated granite are key processes in initial soil formation and development. We have obtained 438 isolates from granite sand covering glacial toe, 284 isolates at 22°C and 154 at 4°C incubation temperatures, respectively, to obtain cultures for the investigation of their weathering capabilities under laboratory conditions. The isolation of bacteria from granite sand was performed on rich-, intermediate- and low-nutrient-content solid media. Isolates were identified by 16S rRNA gene sequencing. According to the genera-associated weathering capabilities described in the literature and according to their abundance in our culture collection, we selected eight strains to analyse their effects on the weathering dynamics of granite sand during the batch culture experiment. Analysis of culturable bacteria showed higher species richness among isolates from 22°C than from 4°C incubations. In the R2A and 1/100 Ravan media, we observed the highest species richness of isolates obtained at 22°C and 4°C incubation temperatures, respectively. The obtained 16S rRNA sequences revealed the presence of alpha-, beta- and gamma-proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The most numerous group of isolates was distantly related to Collimonas representatives, and according to the sequences of the 16S rRNA genes, they can form a new genus. Isolates from this group had the capability of causing increased dissolution rates for Fe, W, Ni and Rb. In general, at each sampling during the 30-day experiment, every strain showed a unique weathering profile resulting from differential rates of the dissolution and the precipitation of different minerals in the batch culture. Consequently, the presence of different strains, their growth stage and changes in proportions of strains in the bacterial community can affect further soil development and the successive colonisation by plants.

  1. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  2. Design optimization of rod shaped IPMC actuator

    NASA Astrophysics Data System (ADS)

    Ruiz, S. A.; Mead, B.; Yun, H.; Yim, W.; Kim, K. J.

    2013-04-01

    Ionic polymer-metal composites (IPMCs) are some of the most well-known electro-active polymers. This is due to their large deformation provided a relatively low voltage source. IPMCs have been acknowledged as a potential candidate for biomedical applications such as cardiac catheters and surgical probes; however, there is still no existing mass manufacturing of IPMCs. This study intends to provide a theoretical framework which could be used to design practical purpose IPMCs depending on the end users interest. By explicitly coupling electrostatics, transport phenomenon, and solid mechanics, design optimization is conducted on a simulation in order to provide conceptual motivation for future designs. Utilizing a multi-physics analysis approach on a three dimensional cylinder and tube type IPMC provides physically accurate results for time dependent end effector displacement given a voltage source. Simulations are conducted with the finite element method and are also validated with empirical evidences. Having an in-depth understanding of the physical coupling provides optimal design parameters that cannot be altered from a standard electro-mechanical coupling. These parameters are altered in order to determine optimal designs for end-effector displacement, maximum force, and improved mobility with limited voltage magnitude. Design alterations are conducted on the electrode patterns in order to provide greater mobility, electrode size for efficient bending, and Nafion diameter for improved force. The results of this study will provide optimal design parameters of the IPMC for different applications.

  3. Oceanobacillus endoradicis sp. nov., an endophytic bacterial species isolated from the root of Paris polyphylla Smith var. yunnanensis.

    PubMed

    Yang, Ling-Ling; Tang, Shu-Kun; Chu, Xiao; Jiang, Zhao; Xu, Li-Hua; Zhi, Xiao-Yang

    2016-07-01

    A bacterial strain, py1294(T), isolated from a root of Paris polyphylla Smith var. yunnanensis collected from Yunnan province, southwest China, was characterised by using a polyphasic approach to clarify its taxonomic position. Strain py1294(T) was found to be Gram-positive, aerobic, spore-forming, peritrichous flagella and rod shaped. Growth was found to occur in the presence of 0-8 % (w/v) NaCl (optimum 1-3 %), at pH 6.5-9.5 (optimum 8.0) and at 10-42 °C (optimum 30 °C). The major cellular fatty acids were identified as anteiso-C15:0, anteiso-C17:0, iso-C16:0 and iso-C14:0. The predominant quinone was identified as MK-7 and a minor amount of MK-6 was detected. The diagnostic polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain py1294(T) forms a well-supported clade with Oceanobacillus damuensis PT-20(T) (97.9 % sequence similarity) within the genus Oceanobacillus, although it also shares a high sequence similarity with Ornithinibacillus contaminans (97.5 %). Crucially, the DNA-DNA relatedness value between strain py1294(T) and O. damuensis PT-20(T) was 29.7 ± 3.2 %. The G+C content was determined to be 42.3 mol%. On the basis of the phylogenetic and phenotypic data, a novel species Oceanobacillus endoradicis sp. nov. is proposed, with py1294(T) (=DSM 100726(T) = KCTC 33731(T)) as the type strain.

  4. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  5. Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10.

    PubMed

    Lee, Kevin C-Y; Dunfield, Peter F; Morgan, Xochitl C; Crowe, Michelle A; Houghton, Karen M; Vyssotski, Mikhail; Ryan, Jason L J; Lagutin, Kirill; McDonald, Ian R; Stott, Matthew B

    2011-10-01

    An aerobic, saccharolytic, obligately thermophilic, motile, non-spore-forming bacterium, strain T49(T), was isolated from geothermally heated soil at Hell's Gate, Tikitere, New Zealand. On the basis of 16S rRNA gene sequence similarity, T49(T) is the first representative of a new class in the newly described phylum Armatimonadetes, formerly known as candidate division OP10. Cells of strain T49(T) stained Gram-negative and were catalase-positive and oxidase-negative. Cells possessed a highly corrugated outer membrane. The major fatty acids were 16 : 0, i17 : 0 and ai17 : 0. The G+C content of the genomic DNA was 54.6 mol%. Strain T49(T) grew at 50-73 °C with an optimum temperature of 68 °C, and at pH 4.7-5.8 with an optimum growth pH of 5.3. A growth rate of 0.012 h(-1) was observed under optimal temperature and pH conditions. The primary respiratory quinone was MK-8. Optimal growth was achieved in the absence of NaCl, although growth was observed at NaCl concentrations as high as 2 % (w/v). Strain T49(T) was able to utilize mono- and disaccharides such as cellobiose, lactose, mannose and glucose, as well as branched or amorphous polysaccharides such as starch, CM-cellulose, xylan and glycogen, but not highly linear polysaccharides such as crystalline cellulose or cotton. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain T49(T) represents a novel bacterial genus and species within the new class Chthonomonadetes classis nov. of the phylum Armatimonadetes. The type strain of Chthonomonas calidirosea gen. nov., sp. nov. is T49(T) ( = DSM 23976(T) = ICMP 18418(T)).

  6. Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10.

    PubMed

    Tamaki, Hideyuki; Tanaka, Yasuhiro; Matsuzawa, Hiroaki; Muramatsu, Mizuho; Meng, Xian-Ying; Hanada, Satoshi; Mori, Kazuhiro; Kamagata, Yoichi

    2011-06-01

    A novel aerobic, chemoheterotrophic bacterium, strain YO-36(T), isolated from the rhizoplane of an aquatic plant (a reed, Phragmites australis) inhabiting a freshwater lake in Japan, was morphologically, physiologically and phylogenetically characterized. Strain YO-36(T) was Gram-negative and ovoid to rod-shaped, and formed pinkish hard colonies on agar plates. Strain YO-36(T) grew at 20-40 °C with optimum growth at 30-35 °C, whilst no growth was observed at 15 °C or 45 °C. The pH range for growth was 5.5-8.5 with an optimum at pH 6.5. Strain YO-36(T) utilized a limited range of substrates, such as sucrose, gentiobiose, pectin, gellan gum and xanthan gum. The strain contained C(16 : 0), C(16 : 1), C(14 : 0) and C(15 : 0) as the major cellular fatty acids and menaquinone-12 as the respiratory quinone. The G+C content of the genomic DNA was 62.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YO-36(T) belonged to the candidate phylum OP10 comprised solely of environmental 16S rRNA gene clone sequences except for two strains, P488 and T49 isolated from geothermal soil in New Zealand; strain YO-36(T) showed less than 80 % sequence similarity to strains P488 and T47. Based on the phylogetic and phenotypic findings, a new genus and species, Armatimonas rosea gen. nov., sp. nov., is proposed for the isolate (type strain YO-36(T)  = NBRC 105658(T)  = DSM 23562(T)). In addition, a new bacterial phylum named Armatimonadetes phyl. nov. is proposed for the candidate phylum OP10 represented by A. rosea gen. nov., sp. nov. and Armatimonadaceae fam. nov., Armatimonadales ord. nov., and Armatimonadia classis nov.

  7. Geometry and mechanics of growing bacterial colonies

    NASA Astrophysics Data System (ADS)

    You, Zhihong; Pearce, Daniel; Sengupta, Anupam; Giomi, Luca

    Bacterial colonies are abundant on living and non-living surfaces, and are known to mediate a broad range of processes in ecology, medicine and industry. Although extensively researched - from single cells up to the population levels - a comprehensive biophysical picture, highlighting the cell-to-colony dynamics, is still lacking. Here, using numerical and analytical models, we study the mechanics of self-organization leading to the colony morphology of cells growing on a substrate with free boundary. We consider hard rods to mimic the growth of rod-shaped non-motile cells, and show that the colony, as a whole, does not form an ordered nematic phase, nor does it result in a purely disordered (isotropic) phase. Instead, different sizes of domains, in which cells are highly aligned at specific orientations, are found. The distribution of the domain sizes follows an exponential relation - indicating the existence of a characteristic length scale that determines the domain size relative to that of the colony. A continuum theory, based on the hydrodynamics of liquid crystals, is built to account for these phenomena, and is applied to describe the buckling transition from a planar to three-dimensional (3D) colony. The theory supports preliminary experiments conducted with different strains of rod shaped bacterial cells, and reveals that the buckling transition can be regulated by varying the cell stiffness and aspect ratio. This work proposes that, in addition to biochemical pathways, the spatio-temporal organization in microbial colonies is significantly tuned by the biomechanical and geometric properties of the microbes in consideration.

  8. Bacterial fauna associating with chironomid larvae from lakes of Bengaluru city, India - A 16s rRNA gene based identification.

    PubMed

    Kuncham, Ramprasad; Sivaprakasam, Thiyagarajan; Puneeth Kumar, R; Sreenath, P; Nayak, Ravi; Thayumanavan, Tha; Subba Reddy, Gopireddy V

    2017-06-01

    Chironomid larvae that inhabit in aquatic sediments play an important role as vector for bacterial pathogens. Its life cycle consists of four stages i.e. eggs, larvae, pupae and adult. In the present study we identified bacterial species associated with whole larvae of chironomids from 11 lake sediments of Bangalore region using 16s rRNA gene Sanger sequencing. We found that larvae from all lake sediments associated with bacterial species which include key pathogens. Totally we identified 65 bacterial isolates and obtained GenBank accession numbers (KX980423 - KX980487). Phylogenetic tree constructed using MEGA 7 software and tree analysis highlight the predominant bacterial community associated with larvae which include Enterobacteriaceae (43.08%; 28 isolates) and Aeromonas (24.62%; 16 isolates), Shewanella, Delftia, Bacillus (6.15%; 4 isolates each), Pseudomonas (4.62%; 3 isolates) and Exiguobacterium (3.08%; 2 isolates). Current findings state that among bacterial population Aeromonas, Enterobacter and Escherichia with serotypes are commonly associated with larvae in maximum lake points. In other hand Vibrio, Pseudomonas, Klebsiella, Shigella, Bacillus, and other bacterial species were identified moderately in all lakes. Interestingly, we identified first time Shigella Gram negative, rod shaped pathogenic organism of Enterobacteriaceae and Rheinheimera Gram negative, rod shaped organism associating chironomid larvae.

  9. Ichthyobacterium seriolicida gen. nov., sp. nov., a member of the phylum 'Bacteroidetes', isolated from yellowtail fish (Seriola quinqueradiata) affected by bacterial haemolytic jaundice, and proposal of a new family, Ichthyobacteriaceae fam. nov.

    PubMed

    Takano, Tomokazu; Matsuyama, Tomomasa; Sakai, Takamitsu; Nakamura, Yoji; Kamaishi, Takashi; Nakayasu, Chihaya; Kondo, Hidehiro; Hirono, Ikuo; Fukuda, Yutaka; Sorimachi, Minoru; Iida, Takaji

    2016-02-01

    A novel Gram-stain-negative, rod-shaped (0.3 × 4-6 μm), non-flagellated, aerobic strain with gliding motility, designated JBKA-6T, was isolated in 1991 from a yellowtail fish, Seriola quinqueradiata, showing symptoms of bacterial haemolytic jaundice. 16S rRNA gene sequence analysis showed that strain JBKA-6T was related most closely to members of the family Flavobacteriaceae in the phylum 'Bacteroidetes'. Furthermore, based on gyrB gene sequence analysis, JBKA-6T was classified into a single clade within the order Flavobacteriales, which was distinct from the known clades of the families Flavobacteriaceae, Blattabacteriaceae and Cryomorphaceae. The predominant isoprenoid quinone was identified as MK-6 (97.9 %), and the major cellular fatty acids (>10 %) were C14 : 0 and iso-C15 : 0. The main polar lipids were phosphatidylethanolamine, three unidentified phospholipids, two unidentified aminophospholipids and two unidentified polar lipids. The DNA G+C content of JBKA-6T, as derived from its whole genome, was 33.4 mol%. The distinct phylogenetic position and phenotypic traits of strain JBKA-6T distinguish it from all other described species of the phylum 'Bacteroidetes', and therefore it was concluded that strain JBKA-6T represents a new member of the phylum 'Bacteroidetes', and the name Ichthyobacterium seriolicida gen. nov., sp. nov. is proposed. The type strain of Ichthyobacterium seriolicida is JBKA-6T ( = ATCC BAA-2465T = JCM 18228T). We also propose that Icthyobacterium gen. nov. is the type genus of a novel family, Ichthyobacteriaceae fam. nov.

  10. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  11. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  12. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  13. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  14. [Diversity of bacterial forms in ice wedge of the Mamontova Gora Glacial complex (central Yakutiya)].

    PubMed

    Filippova, S N; Surgucheva, N A; Sorokin, V V; Cherbunina, M Iu; Karnysheva, E A; Brushkov, A V; Gal'chenko, V F

    2014-01-01

    Electron microscopic investigation of four samples of ancient ice wedge from the Pleistocene glacial complex of Mamontova Gora (Yakutiya, Russia) revealed high diversity of bacteriomorphic particles. Their structural features included the presence of electron-transparent zones, presumably inclusions containing storage compounds, and microenvironment (capsules or external sheaths). These features may be a result of adaptive strategies providing for microbial survival under permafrost conditions. Predominance of rod-shaped forms morphologically resembling coryneform actinobacteria was found. X-ray microanalysis revealed organic origin of bacteriomorphic particles. Some particles were characterized by incomplete spectra of the major biogenic elements, resulting probably from low-temperature damage to the cellular structures. Total numbers of aerobic heterotrophic bacteria determined by plating on nutrient media were comparable to the values obtained for permafrost soils and Arctic ice. Predominance of coryneform actinobacteria was observed. Abundance of these evolutionarily early groups of actinobacteria may indicate the ancient origin of the microflora of the relic frozen rocks.

  15. Asymmetry and inequity in the inheritance of a bacterial adhesive

    NASA Astrophysics Data System (ADS)

    Cooley, Benjamin J.; Dellos-Nolan, Sheri; Dhamani, Numa; Todd, Ross; Waller, William; Wozniak, Daniel; Gordon, Vernita D.

    2016-04-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that forms biofilm infections in a wide variety of contexts. Biofilms initiate when bacteria attach to a surface, which triggers changes in gene expression leading to the biofilm phenotype. We have previously shown, for the P. aeruginosa lab strain PAO1, that the self-produced polymer Psl is the most dominant adhesive for attachment to the surface but that another self-produced polymer, Pel, controls the geometry of attachment of these rod-shaped bacteria—strains that make Psl but not Pel are permanently attached to the surface but adhere at only one end (tilting up off the surface), whereas wild-type bacteria that make both Psl and Pel are permanently attached and lie down flat with very little or no tilting (Cooley et al 2013 Soft Matter 9 3871-6). Here we show that the change in attachment geometry reflects a change in the distribution of Psl on the bacterial cell surface. Bacteria that make Psl and Pel have Psl evenly coating the surface, whereas bacteria that make only Psl have Psl concentrated at only one end. We show that Psl can act as an inheritable, epigenetic factor. Rod-shaped P. aeruginosa grows lengthwise and divides across the middle. We find that asymmetry in the distribution of Psl on a parent cell is reflected in asymmetry between siblings in their attachment to the surface. Thus, Pel not only promotes P. aeruginosa lying down flat on the surface, it also helps to homogenize the distribution of Psl within a bacterial population.

  16. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  17. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  18. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  19. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  20. Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth.

    PubMed

    Abrigo, Martina; Kingshott, Peter; McArthur, Sally L

    2015-04-15

    Electrospun materials have been widely investigated in the past few decades as candidates for tissue engineering applications. However, there is little available data on the mechanisms of interaction of bacteria with electrospun wound dressings of different morphology and surface chemistry. This knowledge could allow the development of effective devices against bacterial infections in chronic wounds. In this paper, the interactions of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) with electrospun polystyrene meshes were investigated. Bacterial response to meshes with different fiber diameters was assessed through a combination of scanning electron microscopy (SEM) and confocal microscopy. Experiments included attachment studies in liquid medium but also directly onto agar plates; the latter was aimed at mimicking a chronic wound environment. Fiber diameter was shown to affect the ability of bacteria to proliferate within the fibrous networks, depending on cell size and shape. The highest proliferation rates occurred when fiber diameter was close to the bacterial size. Nanofibers were found to induce conformational changes of rod shaped bacteria, limiting the colonization process and inducing cell death. The data suggest that simply tuning the morphological properties of electrospun fibers may be one strategy used to control biofilm formation within wound dressings.

  1. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  2. Spontaneous bacterial peritonitis due to a group IIk-2 strain.

    PubMed Central

    Dhawan, V K; Rajashekaraiah, K R; Metzger, W I; Rice, T W; Kallick, C A

    1980-01-01

    This paper describes a patient with spontaneous bacterial peritonitis caused by a group IIk-2 strain. No other organism was isolated from the peritoneal fluid cultured aerobically and anaerobically. PMID:7381015

  3. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  4. Aerobic biotransformation and mineralization of 2,4,6-trinitrotoluene

    SciTech Connect

    Bae, B.H.; Autenrieth, R.L.; Bonner, J.S.

    1995-12-31

    Respirometric mineralization studies of 2,4,6-trinitrotoluene (TNT) were conducted with microorganisms isolated from a site contaminated with munitions waste in Illinois. Nine aerobic bacterial species were isolated under a carbon- and nitrogen-limited condition and tentatively identified as: one Pseudomonas species; one Enterobacter species; and seven Alcaligenes species. Experiments were performed using each of the nine organisms individually and with a consortium of all nine bacterial species. The aerobic microorganisms were cultured in a sterile nutrient solution with glucose and 20 mg/L TNT. Mineralization was determined using uniformly ring-labeled {sup 14}C-TNT in a respirometer that trapped the evolved CO{sub 2}. Biodegradation behavior was characterized based on oxygen consumption, distribution of {sup 14}C activity, and high-performance liquid chromatography (HPLC) analysis of TNT and its transformation products.

  5. [Evaluation of normal aerobic skin flora (author's transl)].

    PubMed

    Crémieux, A; Cazac, J L

    1980-01-01

    This work attempts the quantitative and qualitative evaluation of the bacterial population from two different areas: elbow and groin. Bacteria are recovered using the method of Williamson and Kligman modified by Fleurette and Transy. Aerobic flora is determined from bacterial counts on various media. Results show a density of 475 to 630 bacteria/cm2 for elbow, and 1.9 to 2.4 X 10(5) bacteria/cm2 for groin (geometric and arithmetic mean, respectively). Percentages of different species and types are calculated, and skin population is represented by a circular diagram.

  6. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka.

    PubMed

    Kevbrin, Vadim V; Zengler, Karsten; Lysenko, Anatolii M; Wiegel, Juergen

    2005-10-01

    A facultative aerobic, moderately thermophilic, spore forming bacterium, strain JW/VK-KG4 was isolated from an enrichment culture obtained from the Geyser valley, a geo-thermally heated environment located in the Kamchatka peninsula (Far East region of Russia). The cells were rod shaped, motile, peritrichous flagellated stained Gram positive and had a Gram positive type cell wall. Aerobically, the strain utilized a range of carbohydrates including glucose, fructose, trehalose, proteinuous substrates, and pectin as well. Anaerobically, only carbohydrates are utilized. When growing on carbohydrates, the strain required yeast extract and vitamin B(12). Anaerobically, glucose was fermented to lactate as main product and acetate, formate, ethanol as minor products. Aerobically, even in well-aerated cultures (agitated at 500 rpm), glucose oxidation was incomplete and lactate and acetate were found in culture supernatants as by-products. Optimal growth of the isolate was observed at pH(25 C) 6.8-8.5 and 60 degrees C. The doubling times on glucose at optimal growth conditions were 34 min (aerobically) and 40 min (anaerobically). The G+C content was 42.3 mol% as determined by T(m) assay. Sequence analysis of the 16S rRNA gene indicated an affiliation of strain JW/VK-KG4 with Anoxybacillus species. Based on its morphology, physiology, phylogenetic relationship and its low DNA-DNA homology with validly published species of Anoxybacillus, it is proposed that strain JW/VK-KG4 represents a new species in the genus Anoxybacillus as A. kamchatkensis sp. nov. The type strain for the novel species is JW/VK-KG4(T) (=DSM 14988, =ATCC BAA-549). The GenBank accession number for the 16S rDNA sequence is AF510985.

  7. Determinative factors of competitive advantage between aerobic bacteria for niches at the air-liquid interface.

    PubMed

    Yamamoto, Kyosuke; Haruta, Shin; Kato, Souichiro; Ishii, Masaharu; Igarashi, Yasuo

    2010-01-01

    We focused on bacterial interspecies relationships at the air-liquid interface where the formation of pellicles by aerobes was observed. Although an obligate aerobe (Brevibacillus sp. M1-5) was initially dominant in the pellicle population, a facultative aerobe (Pseudoxanthomonas sp. M1-3) emerged and the viability of M1-5 rapidly decreased due to severe competition for oxygen. Supplementation of the medium with carbohydrates allowed the two species to coexist at the air-liquid interface. These results indicate that the population dynamics within pellicles are primarily governed by oxygen utilization which was affected by a combination of carbon sources.

  8. Granular gases of rod-shaped grains in microgravity.

    PubMed

    Harth, K; Kornek, U; Trittel, T; Strachauer, U; Höme, S; Will, K; Stannarius, R

    2013-04-05

    Granular gases are convenient model systems to investigate the statistical physics of nonequilibrium systems. In the literature, one finds numerous theoretical predictions, but only few experiments. We study a weakly excited dilute gas of rods, confined in a cuboid container in microgravity during a suborbital rocket flight. With respect to a gas of spherical grains at comparable filling fraction, the mean free path is considerably reduced. This guarantees a dominance of grain-grain collisions over grain-wall collisions. No clustering was observed, unlike in similar experiments with spherical grains. Rod positions and orientations were determined and tracked. Translational and rotational velocity distributions are non-Gaussian. Equipartition of kinetic energy between translations and rotations is violated.

  9. Molecular mechanisms for the evolution of bacterial morphologies and growth modes

    PubMed Central

    Randich, Amelia M.; Brun, Yves V.

    2015-01-01

    Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery. PMID:26106381

  10. Molecular mechanisms for the evolution of bacterial morphologies and growth modes.

    PubMed

    Randich, Amelia M; Brun, Yves V

    2015-01-01

    Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery.

  11. Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits.

    PubMed

    Ghosh, Shreya; Mohanty, Sansuta; Nayak, Sanghamitra; Sukla, Lala B; Das, Alok P

    2016-03-01

    Manganese (Mn) ranks twelfth among the most exuberant metal present in the earth's crust and finds its imperative application in the manufacturing steel, chemical, tannery, glass, and battery industries. Solubilisation of Mn can be performed by several bacterial strains which are useful in developing environmental friendly solutions for mining activities. The present investigation aims to isolate and characterize Mn solubilising bacteria from low grade ores from Sanindipur Manganese mine of Sundargh district in Odisha state of India. Four morphologically distinct bacterial strains showing visible growth on Mn supplemented plates were isolated. Mn solubilising ability of the bacterial strains was assessed by visualizing the lightening of the medium appearing around the growing colonies. Three isolates were gram negative and rod shaped while the remaining one was gram positive, coccobacilli. Molecular identification of the isolates was carried out by 16S rRNA sequencing and the bacterial isolates were taxonomically classified as Bacillus anthrasis MSB 2, Acinetobacter sp. MSB 5, Lysinibacillus sp. MSB 11, and Bacillus sp. MMR-1 using BLAST algorithm. The sequences were deposited in NCBI GenBank with the accession number KP635223, KP635224, KP635225 and JQ936966, respectively. Manganese solubilisation efficiency of 40, 96, 97.5 and 48.5% were achieved by MMR-1, MSB 2, MSB 5 and MSB 11 respectively. The efficiency of Mn solubilisation is suggested with the help of a pH variation study. The results are discussed in relation to the possible mechanisms involved in Manganese solubilisation efficiency of bacterial isolates.

  12. Development of antifouling surfaces to reduce bacterial attachment

    NASA Astrophysics Data System (ADS)

    Graham, Mary Viola

    Bacteria are exceptionally good at adhering to surfaces and forming complex structures known as biofilms. This process, known as biofouling, can cause problems for infrastructure (eg, clogging and damaging pipes), for the food industry (eg, contamination of processing surfaces and equipment, and for the medical industry (eg, contamination of indwelling medical devices). Accordingly, multiple strategies have been explored to combat biofouling, including chemical modification of surfaces, development of antibiotic coatings, and more recently, the use of engineered surface topography. When designed properly, engineered surface topographies can significantly reduce bacterial surface attachment, ultimately limiting surface colonization. In this work, we hypothesized that the morphology, size, spacing, and surface pre-treatment of topographical features should directly correlate with the size and shape of target organisms, in order to reduce biofouling. Topographical features with size and spacing from 0.25 to 2 mum were fabricated in silicone elastomer and tested against rod shaped bacteria with an average size of 0.5 x 2 mum and spherical bacteria (cocci) ranging from 0.5 - 1 μm in diameter. Antifouling properties of the different topographical features were tested in both static and flow-based assays, and under oxygen plasma-treated (hydrophilic) and untreated (hydrophobic) surface conditions. We found that surface pre-treatment universally affects the ability bacteria to attach to surfaces, while surface topography limits attachment in a manner dependent on the bacterial size/shape and the size/spacing of the topography.

  13. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  14. Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge

    PubMed Central

    Prakasam, T. B. S.; Dondero, N. C.

    1970-01-01

    Two procedures, the confidence interval method and Mountford's index, were tested in analyses of the microbial populations of 11 laboratory activated sludges acclimated to aromatic compounds. The two methods gave somewhat different results but indicated that the populations were quite dissimilar. The activity of seven of the sludges correlated well with the population structure. Some considerations in analysis of microbial population structure are discussed. PMID:5418947

  15. Bacterial Diversity in a Nonsaline Alkaline Environment: Heterotrophic Aerobic Populations

    PubMed Central

    Tiago, Igor; Chung, Ana Paula; Veríssimo, António

    2004-01-01

    Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the α-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11. PMID:15574939

  16. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  17. Isolation and identification of a new tetrodotoxin-producing bacterial species, Raoultella terrigena, from Hong Kong marine puffer fish Takifugu niphobles.

    PubMed

    Yu, Vincent Chung-Him; Yu, Peter Hoi-Fu; Ho, Kin-Chung; Lee, Fred Wang-Fat

    2011-01-01

    Puffer fish, Takifugu niphobles, collected from the Hong Kong coastal waters were screened for tetrodotoxin-producing bacteria. A Gram-negative, non-acid-fast, non-sporing and rod shaped bacterial strain (designated as gutB01) was isolated from the intestine of the puffer fish and was shown to produce tetrodotoxin (TTX). Based on the Microbial Identification (MIDI) and 16S-23S rDNA internal transcribed spacer (ITS) phylogenetic analysis, the strain was identified as Raoultella terrigena. The TTX production ability of the strain was confirmed by mouse bioassay, ELISA and mass spectrometry (MALDI-TOF). Our results reiterate that the TTX found in puffer fish was likely produced by the associated bacteria and TTX are widely produced amongst a diversity of bacterial species.

  18. Inhibition of Salmonella Typhimurium by Cultures of Cecal Bacteria during Aerobic Incubation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two trials were conducted to examine the ability of cecal bacterial cultures from broilers to inhibit growth of Salmonella Typhimurium during aerobic incubation. Cecal broth media was inoculated with 10 µl of cecal contents from 6 week old broilers taken from 2 separate flocks. Cultures were incubat...

  19. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions

    PubMed Central

    Reighard, Katelyn P.

    2015-01-01

    Chitosan oligosaccharides were modified with N-diazeniumdiolates to yield biocompatible nitric oxide (NO) donor scaffolds. The minimum bactericidal concentrations and MICs of the NO donors against Pseudomonas aeruginosa were compared under aerobic and anaerobic conditions. Differential antibacterial activities were primarily the result of NO scavenging by oxygen under aerobic environments and not changes in bacterial physiology. Bacterial killing was also tested against nonmucoid and mucoid biofilms and compared to that of tobramycin. Smaller NO payloads were required to eradicate P. aeruginosa biofilms under anaerobic versus aerobic conditions. Under oxygen-free environments, the NO treatment was 10-fold more effective at killing biofilms than tobramycin. These results demonstrate the potential utility of NO-releasing chitosan oligosaccharides under both aerobic and anaerobic environments. PMID:26239983

  20. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  1. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure.

  2. Pattern formation in a growing bacterial colony facilitated by extra-cellular polymeric substances

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Mondal, Jagannath; Ben-Jacob, Eshel; Levine, Herbert

    2015-03-01

    Self-organization in bacterial colony is quite pervasive and diverse phenomena. Bacteria are known to self-organize into multicellular communities, commonly known as biofilms, in which microbial cells live in close association with a solid surface and are embedded in a self-produced extracellular polymeric substances(EPS). In such dense systems mechanical interactions among the structural components can be expected to significantly contribute to the morphological properties. By a simple particle-based simulation model of nonmotile rod-shaped bacterial cells and EPS secreted in a growing colony, we investigate how the combined mechanical effects can give rise naturally spatial heterogeneity observed in a biofilm. In our individual-based simulation model all the components interact mechanically via repulsive forces by pushing each other away as bacterial cells grow and divide consuming diffusing nutrient and produce EPS. We show that mechanical interactions control the collective behavior of the system, particularly, we show that the presence of non-adsorbing EPS leads spontaneous aggregation of bacterial cells by depletion attraction and generates phase separated patterns in a nonequilibrium growing colony.

  3. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.

    PubMed

    Ali, N; Asghar, Z; Anwar Bég, O; Sajid, M

    2016-05-21

    Gliding bacteria are an assorted group of rod-shaped prokaryotes that adhere to and glide on certain layers of ooze slime attached to a substratum. Due to the absence of organelles of motility, such as flagella, the gliding motion is caused by the waves moving down the outer surface of these rod-shaped cells. In the present study we employ an undulating surface model to investigate the motility of bacteria on a layer of non-Newtonian slime. The rheological behavior of the slime is characterized by an appropriate constitutive equation, namely the Carreau model. Employing the balances of mass and momentum conservation, the hydrodynamic undulating surface model is transformed into a fourth-order nonlinear differential equation in terms of a stream function under the long wavelength assumption. A perturbation approach is adopted to obtain closed form expressions for stream function, pressure rise per wavelength, forces generated by the organism and power required for propulsion. A numerical technique based on an implicit finite difference scheme is also employed to investigate various features of the model for large values of the rheological parameters of the slime. Verification of the numerical solutions is achieved with a variational finite element method (FEM). The computations demonstrate that the speed of the glider decreases as the rheology of the slime changes from shear-thinning (pseudo-plastic) to shear-thickening (dilatant). Moreover, the viscoelastic nature of the slime tends to increase the swimming speed for the shear-thinning case. The fluid flow in the pumping (generated where the organism is not free to move but instead generates a net fluid flow beneath it) is also investigated in detail. The study is relevant to marine anti-bacterial fouling and medical hygiene biophysics.

  4. Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity.

    PubMed

    Hizal, Ferdi; Rungraeng, Natthakan; Lee, Junghoon; Jun, Soojin; Busscher, Henk J; van der Mei, Henny C; Choi, Chang-Hwan

    2017-04-05

    Bacterial adhesion and biofilm formation on surfaces are troublesome in many industrial processes. Here, nanoporous and nanopillared aluminum surfaces were engineered by anodizing and postetching processes and made hydrophilic (using the inherent oxide layer) or hydrophobic (applying a Teflon coating) with the aim of discouraging bacterial adhesion. Adhesion of Staphylococcus aureus ATCC 12600 (Gram-positive, spherically shaped) and Escherichia coli K-12 (Gram-negative, rod-shaped) was evaluated to the nanoengineered surfaces under both static and flow conditions (fluid shear rate of 37 s(-1)). Compared to a nonstructured electropolished flat surface, the nanostructured surfaces significantly reduced the number of adhering colony forming units (CFUs) for both species, as measured using agar plating. For the hydrophilic surfaces, this was attributed to a decreased contact area, reducing bacterial adhesion forces on nanoporous and nanopillared surfaces to 4 and 2 nN, respectively, from 8 nN on flat surfaces. Reductions in the numbers of adhering CFUs were more marked on hydrophobic surfaces under flow, amounting to more than 99.9% and 99.4% for S. aureus and E. coli on nanopillared surfaces, respectively. Scanning electron microscopy revealed a few bacteria found on the hydrophobic nanopillared surfaces adhered predominantly to defective or damaged areas, whereas the intact area preserving the original nanopillared morphology was virtually devoid of adhering bacteria. The greater decrease in bacterial adhesion to hydrophobic nanopillared surfaces than to hydrophilic or nanoporous ones is attributed to effective air entrapment in the three-dimensional pillar morphology, rendering them superhydrophobic and slippery, in addition to providing a minimized contact area for bacteria to adhere to.

  5. Getting into shape: the physics of bacterial morphology

    NASA Astrophysics Data System (ADS)

    Huang, Kerwyn

    2008-03-01

    Bacterial cells come in a wide variety of shapes and sizes, with the peptidoglycan cell wall as the primary stress-bearing structure that dictates cell shape. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. Though many molecular details of the composition and assembly of the cell wall components are known, how the peptidoglycan network organizes to give the cell shape during normal growth, and how it reorganizes in response to damage or environmental forces have been relatively unexplored. We introduce a quantitative mechanical model of the bacterial cell wall that predicts the response of cell shape to peptidoglycan damage in the rod-shaped Gram-negative bacterium Escherichia coli. To test these predictions, we use time-lapse imaging experiments to show that damage often manifests as a bulge on the sidewall, coupled to large-scale bending of the cylindrical cell wall around the bulge. The direction of bending confirms the hypothesis of a longitudinal orientation of peptides and a circumferential orientation of glycan strands in the peptidogylcan layer. Our simulations based on our physical model also suggest a surprising robustness of cell shape to damage, allowing cells to grow and maintain their shape even under conditions that limit crosslinking. Finally, we show that many common bacterial cell shapes can be realized within the model via simple spatial patterning of peptidoglycan defects, suggesting that subtle patterning changes could underlie the great diversity of shapes observed in the bacterial kingdom.

  6. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  7. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  8. Aerobic nitroreduction of dehydrochloramphenicol by bone marrow.

    PubMed

    Isildar, M; Abou-Khalil, W H; Jimenez, J J; Abou-Khalil, S; Yunis, A A

    1988-06-30

    It has been previously demonstrated that dehydrochloramphenicol (DH-CAP), a bacterial metabolite of chloramphenicol, induces DNA single strand breaks in intact cells and is profoundly more cytotoxic than chloramphenicol (CAP). In view of previous observations relating genotoxicity of nitrocompounds to their nitroreduction by the target tissue, we studied the nitroreduction of DH-CAP by human and rabbit bone marrow. Nitroreduction by tissue homogenates was determined by the Bratton Marshall colorimetric assay and by high-performance liquid chromatography (HPLC). Nitroreduction of DH-CAP by bone marrow cell homogenates was observed under aerobic conditions and the reduction was both cell concentration- and time-dependent. The formation of the amino product aminodehydrochloramphenicol was confirmed by HPLC. Reduction by other tissues including human liver, Raji cells, and HL-60 tumors was also observed. These results suggest that genotoxicity of DH-CAP may be related to its nitroreduction by the target tissue with in situ production of toxic intermediates. Together with previous studies, these observations lend support to the thesis that the p-NO2 group may be the structural feature underlying aplastic anemia from CAP.

  9. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  10. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  11. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.

    PubMed

    Gangadharan Puthiya Veetil, Prajeesh; Vijaya Nadaraja, Anupama; Bhasi, Arya; Khan, Sudheer; Bhaskaran, Krishnakumar

    2012-07-01

    Triclosan (2, 4, 4'-trichloro-2'-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

  12. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  13. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies.

    PubMed

    Headd, Brendan; Bradford, Scott A

    2016-03-01

    Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport.

  14. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions.

  15. Initial stages of bacterial fouling during dead-end microfiltration.

    PubMed

    Xu, Wendong; Chellam, Shankararaman

    2005-09-01

    Constant pressure experiments were performed using track-etched polycarbonate membranes and rod-shaped bacteria (viz., Brevundimonas diminuta and Serratia marcescens) to study flux decline and backwashing during the early stages of microfiltration. The intermediate blocking law originally derived for spherical particles was modified to account for the approximate cylindrical shape of the selected bacteria. A deposition factor was introduced to empirically account for the morphology of bacterial deposits. The initial stages of flux decline prior to the secretion of new extracellular polymeric substances (EPS) was quantitatively described by the intermediate blocking law before transitioning to cake filtration at later times. Scanning electron microscopy (SEM) provided additional visual evidence that bacteria simultaneously deposited directly on the membrane and on each other during early stages of filtration as assumed bythe intermediate blocking law. Empirical deposition factors decreased with initial permeate flux indicating its effect on bacteria deposition patterns, which was also confirmed by SEM. Bacteria were easily removed following short filtration times before significant secretion of new EPS by simply rinsing with ultrapure water, thereby completely restoring the clean membrane permeability. In contrast, this rinsing procedure did not completely recover the membrane permeability following longer durations when significant amounts of new EPS proteins and polysaccharides were secreted. Consequently, backwashing effectiveness during water and wastewater microfiltration will be high prior to EPS production whereas flux recovery may not be possible solely by hydrodynamic means once EPS are secreted.

  16. Collective Swimming and the Dynamics of Bacterial Turbulence

    PubMed Central

    Wolgemuth, Charles W.

    2008-01-01

    To swim, a bacterium pushes against the fluid within which it is immersed, generating fluid flow that dies off on a length scale comparable to the size of the bacterium. However, in dense colonies of bacteria, the bacteria are close enough that flow generated by swimming is substantial. For these cases, complex flows can arise due to the interaction and feedback between the bacteria and the fluid. Recent experiments on dense populations of swimming Bacillus subtilis have revealed a volume fraction-dependent transition from random swimming to transient jet and vortex patterns in the bacteria/fluid mixture. The fluid motions that are observed are reminiscent of flows that are observed around translating objects at moderate to high Reynolds numbers. In this work, I present a two-phase model for the bacterial/fluid mixture. The model explains turbulent flows in terms of the dipole stress that the bacteria exert on the fluid, entropic elasticity due to the rod shape of each bacterium, and the torque on the bacteria due to fluid gradients. Solving the equations in two dimensions using realistic parameters, the model reproduces empirically observed velocity fields. Dimensional analysis provides scaling relations for the dependence of the characteristic scales on the model parameters. PMID:18469071

  17. Developmental intestinal aerobic microflora in the kori bustard (Ardeotis kori).

    PubMed

    Naldo, J L; Silvanose, C D; Samour, J H; Bailey, T A

    1998-01-01

    A study was carried out to investigate the normal aerobic bacterial flora of developing kori bustard (Ardeotis kori) chicks, captive bred at the National Avian Research Center, Abu Dhabi, United Arab Emirates. Faecal samples were collected from 14 birds at different ages from the first day of hatching until 99 days old and were cultured for aerobic bacteria. Several bacterial species were isolated from the cultures, they included Escherichia coli, Streptococcus viridians, Enterococcus faecalis, Klebsiella oxytoca, Proteus spp., Enterobacter, spp. and Serratia marcescens. Gram-negative bacilli were isolated from all but one of the faecal samples collected. They were also the predominant bacteria, accounting for between 55.6 and 73.4% of the mean colony count of faecal cultures from all age groups. E. coli was the most frequently isolated bacteria, the frequency and mean colony count increased as the birds grew older. Gram-positive cocci were isolated from between 50 and 100% of the faecal samples from all age groups, and they accounted for between 26.6 and 44.4% of the mean colony count. Results from this study indicated that Gram-negative bacilli and Gram-positive cocci can be isolated frequently from the faeces of developing, clinically normal, captive bred kori bustard chicks.

  18. Quantification, Distribution, and Possible Source of Bacterial Biofilm in Mouse Automated Watering Systems

    PubMed Central

    Meier, Thomas R; Maute, Carrie J; Cadillac, Joan M; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly MS; Deininger, Rolf A; Dysko, Robert C

    2008-01-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial biofilm development within sections of the manifold. By using standard methods of bacterial identification, the aerobic oral flora of 8 strains and stocks of mice were determined on their arrival at our animal facility. Ten rack manifolds were sampled before, during, and after sanitation and monthly for 6 mo. Manifolds were evaluated for aerobic bacterial growth by culture on R2A and trypticase soy agar, in addition to bacterial ATP quantification by bioluminescence. In addition, 6 racks were sampled at 32 accessible sites for evaluation of biofilm distribution within the watering manifold. The identified aerobic bacteria in the oral flora were inconsistent with the bacteria from the manifold, suggesting that the mice do not contribute to the biofilm bacteria. Bacterial growth in manifolds increased while they were in service, with exponential growth of the biofilm from months 3 to 6 and a significant decrease after sanitization. Bacterial biofilm distribution was not significantly different across location quartiles of the rack manifold, but bacterial levels differed between the shelf pipe and connecting elbow pipes. PMID:18351724

  19. Urine flow cytometry can rule out urinary tract infection, but cannot identify bacterial morphologies correctly.

    PubMed

    Geerts, N; Jansz, A R; Boonen, K J M; Wijn, R P W F; Koldewijn, E L; Boer, A K; Scharnhorst, V

    2015-08-25

    The diagnosis of urinary tract infection (UTI) by urine culture is a time-consuming and costly procedure. Usage of a screening method, to identify negative samples, would therefore affect time-to-diagnosis and laboratory cost positively. Urine flow cytometers are able to identify particles in urine. Together with the introduction of a cut-off value, which determines if a urine sample is subsequently cultured or not, the number of cultures can be reduced, while maintaining a low level of false negatives and a high negative predictive value. Recently, Sysmex developed additional software for their urine flow cytometers. Besides measuring the number of bacteria present in urine, information is given on bacterial morphology, which may guide the physician in the choice of antibiotic. In this study, we evaluated this software update. The UF1000i classifies bacteria into two categories: 'rods' and 'cocci/mixed'. Compared to the actual morphology of the bacterial pathogen found, the 'rods' category scores reasonably well with 91% chance of classifying rod-shaped bacteria correctly. The 'cocci/mixed' category underperforms, with only 29% of spherical-shaped bacteria (cocci) classified as such. In its current version, the bacterial morphology software does not classify bacteria, according to their morphology, well enough to be of clinical use in this study population.

  20. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  1. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  2. Laboratory Study of Chemical Speciation of Mercury in Lake Sediment and Water under Aerobic and Anaerobic Conditions

    PubMed Central

    Regnell, Olof; Tunlid, Anders

    1991-01-01

    Chemical speciation and partitioning of radiolabeled HgCl2 were studied in model aquatic systems consisting of undisturbed eutrophic lake sediment and water in plastic cylinders. The cylinders were either gradually made anaerobic by a gentle flow of N2-CO2 or kept aerobic by air flow. The proportion of methylated 203Hg was significantly higher, in both water and sediment, in the anaerobic systems than in the aerobic systems. The composition and total concentration of fatty acids originating from bacterial phospholipids, as well as the concentration of vitamin B12, including related cobalamins, were similar in sediments from the anaerobic and aerobic systems. Bacterial cell numbers were, on average, 3.6 times higher in the anaerobic water columns than in the aerobic ones. Volatilization of 203Hg occurred in all systems except in an autoclaved control and was of similar magnitudes in the anaerobic and aerobic systems. Incorporation of 203Hg into the sediment was significantly faster in the aerobic systems than in the anaerobic systems. These results suggest that episodes of anoxia in bottom waters and sediment cause an increase in net mercury methylation and, hence, an increase in bioavailable mercury. PMID:16348444

  3. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments.

    PubMed

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-08-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments.

  4. Normal bacterial flora from vaginas of Criollo Limonero cows.

    PubMed

    Zambrano-Nava, Sunny; Boscán-Ocando, Julio; Nava, Jexenia

    2011-02-01

    In order to describe the normal bacterial flora in vaginas of Criollo Limonero cows, 51 healthy multiparous cows, at least 90-day postpartum, were selected. Duplicated swabs (N = 102) were taken from the vaginal fornix of cows to perform aerobic and anaerobic cultures as well as conventional biochemical tests. Out of 102 swabs, bacterial growth was obtained in 55 (53.9%) while the remaining 47 (46.1%) did not exhibited any bacterial growth. Of the 55 bacterial growths, 23 (41.8%) were aerobic whereas 32 (58.1%) were anaerobic. Likewise, 29 (52.72%) of bacterial growths were pure and 26 (47.27%) were mixed. Under both aerobic and anaerobic conditions, Gram positive bacteria were predominant (81.82% and 73.08%, respectively) over Gram negative bacteria (18.18% and 26.92%, respectively). Isolated bacteria were Arcanobacterium pyogenes (22.92%), Staphylococcus aureus (15.63%), Staphylococcus coagulase negative (17.71%), Erysipelothrix rhusiopathiae (6.25%), Bacteroides spp. (13.54%), and Peptostreptococcus spp. (7.29%). In conclusion, normal vaginal bacterial flora of Criollo Limonero cows was predominantly Gram positive and included A. pyogenes, S. aureus, coagulase negative Staphylococcus, E. rhusiopathiae, Bacteroides spp., and Peptostreptococcus spp. In Criollo Limonero cattle, adaptive aspects such as development of humoral and physical mechanisms for defense, and bacterial adaptation to host deserve research attention.

  5. Bacterial growth with chlorinated methanes.

    PubMed Central

    Leisinger, T; Braus-Stromeyer, S A

    1995-01-01

    Chlorinated methanes are important industrial chemicals and significant environmental pollutants. While the highly chlorinated methanes, trichloromethane and tetrachloromethane, are not productively metabolized by bacteria, chloromethane and dichloromethane are used by both aerobic and anaerobic methylotrophic bacteria as carbon and energy sources. Some of the dehalogenation reactions involved in the utilization of the latter two compounds have been elucidated. In a strictly anaerobic acetogenic bacterium growing with chloromethane, an inducible enzyme forming methyltetrahydrofolate and chloride from chloromethane and tetrahydrofolate catalyzes dehalogenation of the growth substrate. A different mechanism for the nucleophilic displacement of chloride is observed in aerobic methylotrophic bacteria utilizing dichloromethane as the sole carbon and energy source. These organisms possess the enzyme dichloromethane dehalogenase which, in a glutathione-dependent reaction, converts dichloromethane to inorganic chloride and formaldehyde, a central metabolite of methylotrophic growth. Sequence comparisons have shown that bacterial dichloromethane dehalogenases belong to the glutathione S-transferase enzyme family, and within this family to class Theta. The dehalogenation reactions underlying aerobic utilization of chloromethane by a pure culture and anaerobic growth with dichloromethane by an acetogenic mixed culture are not known. It appears that they are based on mechanisms other than nucleophilic attack by tetrahydrofolate or glutathione. PMID:8565906

  6. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  7. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  8. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  9. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  10. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  11. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication.

    PubMed

    Jiang, Bo; Liu, Yu

    2013-06-01

    Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3',4',5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules.

  12. Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1.

    PubMed

    Medhi, Kristina; Singhal, Anjali; Chauhan, D K; Thakur, Indu Shekhar

    2017-03-16

    Municipal wastewater contains multiple nitrogen contaminants such as ammonia, nitrate and nitrite. Two heterotrophic nitrifier and aerobic denitrifiers, bacterial isolates ISTOD1 and ISTVD1 were isolated from domestic wastewater. On the basis of removal efficiency of ammonia, nitrate and nitrite under both aerobic and anaerobic conditions, ISTOD1 was selected and identified as Paracoccus denitrificans. Aerobically, NH4(+)-N had maximum specific nitrogen removal rate (Rxi) of 7.6g/gDCW/h and anaerobically, NO3(-)N showed Rxi of 2.5*10(-1)g/g DCW/h. Monod equation described the bioprocess kinetic coefficients, µmax and Ks, obtained by regression. Error functions were calculated to validate the Monod equation experimental data. Aerobic NO3(-)N showed the highest YW of 0.372mg DCW/mg NO3(-)N among the five conditions. ISTOD1 serves as a potential candidate for treating nitrogen rich wastewater using simultaneous nitrification and aerobic denitrification. It can be used in bioaugmentation studies under varied condition.

  13. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  14. Bacterial Tracheitis

    MedlinePlus

    ... as a complication of croup (see Croup ) or endotracheal intubation (insertion of a plastic breathing tube through the ... irregularities that distinguish bacterial tracheitis from croup. Treatment Endotracheal intubation Antibiotics With treatment, most children recover completely. Very ...

  15. Aerobic fitness testing: an update.

    PubMed

    Stevens, N; Sykes, K

    1996-12-01

    This study confirms that all three tests are reliable tools for the assessment of cardiorespiratory fitness and the prediction of aerobic capacity. While this particular study consisted of active, youthful subjects, subsequent studies at University College Chester have found similar findings with larger databases and a wider cross-section of subjects. The Astrand cycle test and Chester step test are submaximal tests with error margins of 5-15 per cent and therefore, not as precise as maximal testing. However, they still give a reasonably accurate reflection of an individual's fitness without the cost, time, effort and risk on the part of the subject. The bleep test is a low-cost maximal test designed for well-motivated, active individuals who are used to running to physical exhaustion. Used on other groups, results will not accurately reflect cardiorespiratory fitness values. While all three tests have inherent advantages and disadvantages, perhaps the most important factors are the knowledge and skills of the tester. Without a sound understanding of the physiological principles underlying these tests, and the ability to conduct an accurate assessment and evaluation of results in a knowledgeable and meaningful way, then the credibility of the tests and the results become suspect. However, used correctly, aerobic capacity tests can provide valuable baseline data about the fitness levels of individuals and data from which exercise programmes may be developed. The tests also enable fitness improvements to be monitored, help to motivate participants by establishing reasonable and achievable goals, assist in risk stratification and facilitate participants' education about the importance of physical fitness for work and for life. Since this study was completed, further tests have been repeated on 140 subjects of a wider age and ability range. This large database confirms the results found in this study.

  16. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  17. Sequential evolution of bacterial morphology by co-option of a developmental regulator.

    PubMed

    Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V

    2014-02-27

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  18. Sequential evolution of bacterial morphology by co-option of a developmental regulator

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Brown, Pamela J. B.; Ducret, Adrien; Brun, Yves V.

    2014-02-01

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  19. Sequential evolution of bacterial morphology by co-option of a developmental regulator

    PubMed Central

    Jiang, Chao; Brown, Pamela J.B.; Ducret, Adrien; Brun1, Yves V.

    2014-01-01

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? While bacteria display a myriad of morphologies1, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk2,3. The location and number of stalks varies among species, as exemplified by three distinct sub-cellular positions of stalks within a rod-shaped cell body: polar in the Caulobacter genus, and sub-polar or bi-lateral in the Asticcacaulis genus4. Here we show that a developmental regulator of Caulobacter crescentus, SpmX5, was co-opted in the Asticcacaulis genus to specify stalk synthesis at either the sub-polar or bi-lateral positions. We show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that evolution of protein function, co-option, and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes. PMID:24463524

  20. Residence and transit times of MinD in E. coli bacterial cells

    NASA Astrophysics Data System (ADS)

    Giuliani, Maximiliano; Kelly, Corey; Dutcher, John

    2012-02-01

    A key step in the life of a bacterial cell is its division into two daughters cells of equal size. This process is carefully controlled and regulated so that an equal partitioning of the main cell components is obtained, which is critical for the viability of the daughter cells. In E. coli this regulation is accomplished in part by the Min protein system, that determines the localization of the division machinery. Of particular interest is the MinD protein that exhibits an oscillation between the poles in the rod shaped bacteria. The oscillation relies on a ATP mediated dimerization of the MinD protein that allows its insertion into the inner membrane at one of the poles of the cell, followed by an interaction with the MinE protein, which releases the MinD from the membrane, allowing it to travel to the other pole of the cell where the cycle is repeated. We have studied the spatio-temporal characteristics of the MinD oscillation from which we extract the average times for the two main processes that determine the oscillation period: the residence time in the membrane and the transit time to travel the length of the cell. Additionally, we explore how these two timescales are affected by stresses on the bacterial cells due to unfavorable physiological conditions.

  1. Mycobacterium tuberculosis growth following aerobic expression of the DosR regulon.

    PubMed

    Minch, Kyle; Rustad, Tige; Sherman, David R

    2012-01-01

    The Mycobacterium tuberculosis regulator DosR is induced by multiple stimuli including hypoxia, nitric oxide and redox stress. Overlap of these stimuli with conditions thought to promote latency in infected patients fuels a model in which DosR regulon expression is correlated with bacteriostasis in vitro and a proxy for latency in vivo. Here, we find that inducing the DosR regulon to wildtype levels in aerobic, replicating M. tuberculosis does not alter bacterial growth kinetics. We conclude that DosR regulon expression alone is insufficient for bacterial latency, but rather is expressed during a range of growth states in a dynamic environment.

  2. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  3. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean.

    PubMed

    Koblízek, Michal; Masín, Michal; Ras, Josephine; Poulton, Alex J; Prásil, Ondrej

    2007-10-01

    We analysed bacteriochlorophyll diel changes to assess growth rates of aerobic anoxygenic phototrophs in the euphotic zone across the Atlantic Ocean. The survey performed during Atlantic Meridional Transect cruise 16 has shown that bacteriochlorophyll in the North Atlantic Gyre cycles at rates of 0.91-1.08 day(-1) and in the South Atlantic at rates of 0.72-0.89 day(-1). In contrast, in the more productive equatorial region and North Atlantic it cycled at rates of up to 2.13 day(-1). These results suggest that bacteriochlorophyll-containing bacteria in the euphotic zone of the oligotrophic gyres grow at rates of about one division per day and in the more productive regions up to three divisions per day. This is in striking contrast with the relatively slow growth rates of the total bacterial community. Thus, aerobic anoxygenic phototrophs appear to be a very dynamic part of the marine microbial community and due to their rapid growth, they are likely to be larger sinks for dissolved organic matter than their abundance alone would predict.

  4. Microbiological aspects of aerobic thermophilic treatment of swine waste.

    PubMed Central

    Beaudet, R; Gagnon, C; Bisaillon, J G; Ishaque, M

    1990-01-01

    A thermophilic strain (D2) identified as a Bacillus sp. was isolated from an aerobic digestor of swine waste after several months of operation at 55 degrees C. Aerobic thermophilic batch treatment of swine waste inoculated with strain D2 was studied in a 4-liter fixed-bed reactor. Stabilization of the waste was achieved in less than 30 h when the original chemical oxygen demand (COD) was between 15 and 20 g/liter or in less than 48 h when the COD was around 35 g/liter. When the COD was higher than 30 g/liter, the pH of the waste reached 9.2 to 9.5 during the treatment, and periodic adjustment of the pH to 8.5 was necessary to maintain the activity of the biofilm. In this reactor, ammoniacal nitrogen was completely eliminated by desorption in less than 72 h of incubation. The different packing materials used resulted in similar rates of degradation of organic matter. The thermophilic treatment was also efficient in the 75-liter digestor, and stabilization was achieved in approximately 50 h. A bank of 22 thermophilic bacterial strains originating from different environments and adapted to the thermophilic treatment of swine waste was established. This thermophilic treatment allows, in one step, rapid stabilization of the waste, elimination of the bad smell, and complete elimination of ammonia nitrogen by stripping. PMID:2339880

  5. Bacterial rheotaxis.

    PubMed

    Marcos; Fu, Henry C; Powers, Thomas R; Stocker, Roman

    2012-03-27

    The motility of organisms is often directed in response to environmental stimuli. Rheotaxis is the directed movement resulting from fluid velocity gradients, long studied in fish, aquatic invertebrates, and spermatozoa. Using carefully controlled microfluidic flows, we show that rheotaxis also occurs in bacteria. Excellent quantitative agreement between experiments with Bacillus subtilis and a mathematical model reveals that bacterial rheotaxis is a purely physical phenomenon, in contrast to fish rheotaxis but in the same way as sperm rheotaxis. This previously unrecognized bacterial taxis results from a subtle interplay between velocity gradients and the helical shape of flagella, which together generate a torque that alters a bacterium's swimming direction. Because this torque is independent of the presence of a nearby surface, bacterial rheotaxis is not limited to the immediate neighborhood of liquid-solid interfaces, but also takes place in the bulk fluid. We predict that rheotaxis occurs in a wide range of bacterial habitats, from the natural environment to the human body, and can interfere with chemotaxis, suggesting that the fitness benefit conferred by bacterial motility may be sharply reduced in some hydrodynamic conditions.

  6. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.

    PubMed

    Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

    2014-08-29

    The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.

  7. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    PubMed

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop.

  8. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  9. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  10. The rise of oxygen and aerobic biochemistry.

    PubMed

    Saito, Mak A

    2012-01-11

    Analysis of conserved protein folding domains across extant genomes by Kim et al. in this issue of Structure provides insights into the timing of some of the earliest aerobic metabolisms to arise on Earth.

  11. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  12. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  13. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  14. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  15. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  16. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities.

  17. [Cloacal and nasal bacterial flora of Lepidochelys olivacea (Testudines: Cheloniidae) from the North Pacific Coast of Costa Rica].

    PubMed

    Santoro, Mario; Orrego, Carlos Mario; Hernández Gómez, Giovanna

    2006-03-01

    Cloacal and nasal bacterial flora of Lepidochelys olivacea (Testudines: Cheloniidae) from the North Pacific coast of Costa Rica. The aerobic cloacal and nasal bacterial flora of 45 apparently healthy female olive ridley sea turtles (Lepidochelys olivacea) was studied at Nancite nesting beach, in Santa Rosa National Park (Costa Rican North Pacific) during July and August 2002. Bacterial samples were obtained by inserting sterile swabs directly into the cloaca and the nasal cavities of the turtles. Ninety-nine aerobic bacterial isolates, including 10 Gram-negative and 5 Gram-positive bacteria, were recovered. The most common bacteria cultured were Aeromonas spp. (13/45) and Citrobacter freundi (6/45) from cloacal samples and Bacillus spp. (32/45), Staphylococcus aureus (6/45) and Corynebacterium spp. (5/45) from nasal ducts. The results of the present study showed that the aerobic bacterial flora of nesting female olive ridleys was composed of several potential human and animal microbe pathogens.

  18. Bacterial photosynthesis in surface waters of the open ocean.

    PubMed

    Kolber, Z S; Van Dover, C L; Niederman, R A; Falkowski, P G

    2000-09-14

    The oxidation of the global ocean by cyanobacterial oxygenic photosynthesis, about 2,100 Myr ago, is presumed to have limited anoxygenic bacterial photosynthesis to oceanic regions that are both anoxic and illuminated. The discovery of oxygen-requiring photosynthetic bacteria about 20 years ago changed this notion, indicating that anoxygenic bacterial photosynthesis could persist under oxidizing conditions. However, the distribution of aerobic photosynthetic bacteria in the world oceans, their photosynthetic competence and their relationship to oxygenic photoautotrophs on global scales are unknown. Here we report the first biophysical evidence demonstrating that aerobic bacterial photosynthesis is widespread in tropical surface waters of the eastern Pacific Ocean and in temperate coastal waters of the northwestern Atlantic. Our results indicate that these organisms account for 2-5% of the photosynthetic electron transport in the upper ocean.

  19. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  20. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  1. Evaluation of Petrifilm method for enumerating aerobic bacteria in Crottin goat cheese.

    PubMed

    de Sousa, G B; Tamagnini, L M; González, R D; Budde, C E

    2005-01-01

    The Petrifilm Aerobic Count Plate (ACP) developed by 3M laboratories, is a ready-to-use culture medium system, useful for the enumeration of aerobic bacteria in food. Petrifilm was compared with a standard method in several different food products with satisfactory results. However, many studies showed that bacterial counts in Petrifilm were significantly lower than those obtained with conventional methods in fermented food. The purpose of this study was to compare the Petrifilm method for enumerating aerobic bacteria with a conventional method (PCA) in Crottin goat's cheese. Thirty samples were used for the colony count. The mean count and standard deviation were 7.18 +/- 1.17 log CFU g(-1) on PCA and 7.11 +/- 1.05 log CFU g(-1) on Petrifilm. Analysis of variance revealed no significant differences between both methods (t = 1.33, P = 0.193). The Pearson correlation coefficient (0.971, P = 0.0001) indicated a strong linear relationship between the Petrifilm and the standard method. The results showed that Petrifilm is suitable and a convenient alternative to this standard method for the enumeration of aerobic flora in goat soft cheese.

  2. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    PubMed

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se(0)) under both aerobic and anaerobic conditions. The biogenic nano-Se(0) converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg(0)) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg(0) remediation, probably owing to the release of intracellular nano-Se(0) from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se(0) and Hg(0). Biosynthesis of nano-Se(0) both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg(0)-contaminated surface and subsurface soils, where the redox potential often changes dramatically.

  3. Regulation of bacterial cell polarity by small GTPases.

    PubMed

    Keilberg, Daniela; Søgaard-Andersen, Lotte

    2014-04-01

    Bacteria are polarized with many proteins localizing dynamically to specific subcellular sites. Two GTPase families have important functions in the regulation of bacterial cell polarity, FlhF homologues and small GTPases of the Ras superfamily. The latter consist of only a G domain and are widespread in bacteria. The rod-shaped Myxococcus xanthus cells have two motility systems, one for gliding and one that depends on type IV pili. The function of both systems hinges on proteins that localize asymmetrically to the cell poles. During cellular reversals, these asymmetrically localized proteins are released from their respective poles and then bind to the opposite pole, resulting in an inversion of cell polarity. Here, we review genetic, cell biological, and biochemical analyses that identified two modules containing small Ras-like GTPases that regulate the dynamic polarity of motility proteins. The GTPase SofG interacts directly with the bactofilin cytoskeletal protein BacP to ensure polar localization of type IV pili proteins. In the second module, the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB, and the response regulator RomR localize asymmetrically to the poles and sort dynamically localized motility proteins to the poles. During reversals, MglA, MglB, and RomR switch poles, in that way inducing the relocation of dynamically localized motility proteins. Structural analyses have demonstrated that MglB has a Roadblock/LC7 fold, the central β2 strand in MglA undergoes an unusual screw-type movement upon GTP binding, MglA contains an intrinsic Arg finger required for GTP hydrolysis, and MglA and MglB form an unusual G protein/GAP complex with a 1:2 stoichiometry.

  4. Aerobic biodegradation of propylene glycol by soil bacteria.

    PubMed

    Toscano, Giuseppe; Cavalca, Lucia; Letizia Colarieti, M; Scelza, Rosalia; Scotti, Riccardo; Rao, Maria A; Andreoni, Vincenza; Ciccazzo, Sonia; Greco, Guido

    2013-09-01

    Propylene glycol (PG) is a main component of aircraft deicing fluids and its extensive use in Northern airports is a source of soil and groundwater contamination. Bacterial consortia able to grow on PG as sole carbon and energy source were selected from soil samples taken along the runways of Oslo Airport Gardermoen site (Norway). DGGE analysis of enrichment cultures showed that PG-degrading populations were mainly composed by Pseudomonas species, although Bacteroidetes were found, as well. Nineteen bacterial strains, able to grow on PG as sole carbon and energy source, were isolated and identified as different Pseudomonas species. Maximum specific growth rate of mixed cultures in the absence of nutrient limitation was 0.014 h(-1) at 4 °C. Substrate C:N:P molar ratios calculated on the basis of measured growth yields are in good agreement with the suggested values for biostimulation reported in literature. Therefore, the addition of nutrients is suggested as a suitable technique to sustain PG aerobic degradation at the maximum rate by autochthonous microorganisms of unsaturated soil profile.

  5. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    PubMed Central

    Wu, Fabai; van Schie, Bas G.C.; Keymer, Juan E.; Dekker, Cees

    2016-01-01

    The boundary of a cell defines the shape and scale for its subcellular organisation. However, the effects of the cell’s spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shape Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2x1x1 to 11x6x1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe, and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale in adaptation to the cell size within a characteristic length range of 3–6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling, and an adaptive range, when and only when facilitated by the three-dimensional confinement of cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood. PMID:26098227

  6. Spontaneous Bacterial Peritonitis due to Actinomyces Mimicking a Perforation of the Proximal Jejunum

    PubMed Central

    Eenhuis, Louise L.; de Lange, Marleen E.; Samson, Anda D.; Busch, Olivier R.C.

    2016-01-01

    Patient: Female, 42 Final Diagnosis: Spontaneous pelvic-abdominal peritonitis due to actinomyces Symptoms: Abdominal distension • abdominal pain • acute abdomen • fever • intermenstrual bleeding • nausea • sepsis • septic shock Medication: — Clinical Procedure: — Specialty: Surgery Objective: Unusual clinical course Background: Pelvic-abdominal actinomycosis is a rare chronic condition caused by an anaerobic, gram-negative rod-shaped commensal bacterium of the Actinomyces species. When Actinomyces becomes pathogenic, it frequently causes a chronic infection with granulomatous abscess formation with pus. Due to diversity in clinical and radiological presentation, actinomycosis can easily be mistaken for several other conditions. Peritonitis without preceding abscess formation caused by Actinomyces species has been described in only few cases before in literature. Case report: We report a case of spontaneous pelvic-abdominal peritonitis with presence of pneumoperitoneum and absence of preceding abscesses due to acute actinomycosis mimicking a perforation of the proximal jejunum in a 42-year-old female with an intra-uterine contraceptive device in place. Explorative laparotomy revealed 2 liters of odorless pus but no etiological explanation for the peritonitis. The intra-uterine contraceptive device was removed. Cultivation showed growth of Actinomyces turicensis. The patient was successfully treated with penicillin. Conclusions: In the case of primary bacterial peritonitis or lower abdominal pain without focus in a patient with an intrauterine device in situ, Actinomyces should be considered as a pathogen. PMID:27561364

  7. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells

    PubMed Central

    Govindarajan, Sutharsan; Elisha, Yair; Nevo-Dinur, Keren; Amster-Choder, Orna

    2013-01-01

    ABSTRACT The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. PMID:24129255

  8. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    NASA Astrophysics Data System (ADS)

    Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees

    2015-08-01

    The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

  9. Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein

    PubMed Central

    Brzoska, Anthony J.; Jensen, Slade O.; Barton, Deborah A.; Davies, Danielle S.; Overall, Robyn L.; Skurray, Ronald A.; Firth, Neville

    2016-01-01

    Actin-like proteins (Alps) are a diverse family of proteins whose genes are abundant in the chromosomes and mobile genetic elements of many bacteria. The low-copy-number staphylococcal multiresistance plasmid pSK41 encodes ParM, an Alp involved in efficient plasmid partitioning. pSK41 ParM has previously been shown to form filaments in vitro that are structurally dissimilar to those formed by other bacterial Alps. The mechanistic implications of these differences are not known. In order to gain insights into the properties and behavior of the pSK41 ParM Alp in vivo, we reconstituted the parMRC system in the ectopic rod-shaped host, E. coli, which is larger and more genetically amenable than the native host, Staphylococcus aureus. Fluorescence microscopy showed a functional fusion protein, ParM-YFP, formed straight filaments in vivo when expressed in isolation. Strikingly, however, in the presence of ParR and parC, ParM-YFP adopted a dramatically different structure, instead forming axial curved filaments. Time-lapse imaging and selective photobleaching experiments revealed that, in the presence of all components of the parMRC system, ParM-YFP filaments were dynamic in nature. Finally, molecular dissection of the parMRC operon revealed that all components of the system are essential for the generation of dynamic filaments. PMID:27310470

  10. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  11. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    PubMed

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  12. Sequential anaerobic and aerobic treatment of pulp and paper mill effluent in pilot scale bioreactor.

    PubMed

    Singh, Pratibha

    2007-01-01

    In the present study sequential anaerobic and aerobic treatment in two step bioreactor was performed for removal of colour in the pulp and paper mill effluent. In anaerobic treatment, colour 50%, lignin 62%, COD 29%, absordable organic halides (AOX) 25% and phenol 29% were reduced in eight days. The anaerobically treated effluent was separately applied in bioreactor in presence of fungal strain, Paecilomyces sp., and bacterial strain, Microbrevis luteum. Data of study indicated reduction in colour 80%, AOX 74%, lignin 81%, COD 93% and phenol 76 per cent by Paecilomyces sp. where as Microbrevis luteum showed removal in colour 59%, lignin 71%, COD 86%, AOX 84% and phenol 88% by day third when 7 days anaerobically treated effluent was further treated by aerobic microorganisms. Change in pH of the effluent and increase in biomass of microorganism's substantiated results of the study, which was concomitant to the treatment method.

  13. Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces

    PubMed Central

    Gómez-Suárez, Cristina; Busscher, Henk J.; van der Mei, Henny C.

    2001-01-01

    air bubble velocities, and spherical strains (i.e., streptococci) detached more efficiently than rod-shaped organisms. The present results demonstrate that methodologies to study bacterial adhesion which include contact with a moving air-liquid interface (i.e., rinsing and dipping) yield detachment of an unpredictable number of adhering microorganisms. Hence, results of studies based on such methodologies should be referred as “bacterial retention” rather than “bacterial adhesion”. PMID:11375160

  14. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  15. ULTRASTRUCTURE OF LIGHT ORGANS OF LOLIGINID SQUIDS AND THEIR BACTERIAL SYMBIONTS: A NOVEL MODEL SYSTEM FOR THE STUDY OF MARINE SYMBIOSES

    PubMed Central

    GUERRERO-FERREIRA, R. C.; NISHIGUCHI, M. K.

    2010-01-01

    The class Cephalopoda (Phylum Mollusca), encompassing squids and octopuses, contains multiple species that are characterized by the presence of specialized organs known to emit light. These complex organs have a variety of morphological characteristics ranging from groups of simple, light-producing cells, to highly specialized organs (light organs) with cells surrounded by reflectors, lenses, light guides, color filters, and muscles. Bacteriogenic light organs have been well characterized in sepiolid squids, but a number of species in the family Loliginidae are also known to contain bacteriogenic light organs. Interest in loliginid light organ structure has recently arisen because of their potential as ecological niches for Vibrio harveyi, a pathogenic marine bacterium. This also implies the importance of loliginid light organs as reservoirs for V. harveyi persistence in the ocean. The present study utilized transmission and scanning electron microscopy to characterize the morphology of loliginid light organs and determined the location of bacterial symbiont cells within the tissue. It was determined that the rod-shaped loliginid symbionts lack flagella, as similarly observed in other light organ-associated bacteria. Also, the interaction of individual cells to light organ tissue is not as defined as reported for other squid-Vibrio systems. In addition, SEM observations show the presence of two pores leading to the bacterial chamber. Data presented here offer support for the hypothesis of environmental transfer of bacterial symbionts in loliginid squids. PMID:21152248

  16. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  17. Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass

    USGS Publications Warehouse

    Zehr, Jon P.; Harvey, Ronald W.; Oremland, Ronald S.; Cloern, James E.; George, Leah H.; Lane, Judith L.

    1987-01-01

    Bacterial activities and abundance were measured seasonally in the water column of meromictic Big Soda Lake which is divided into three chemically distinct zones: aerobic mixolimnion, anaerobic mixolimnion, and anaerobic monimolimnion. Bacterial abundance ranged between 5 and 52 x 106 cells ml−1, with highest biomass at the interfaces between these zones: 2–4 mg C liter−1 in the photosynthetic bacterial layer (oxycline) and 0.8–2.0 mg C liter−1 in the chemocline. Bacterial cell size and morphology also varied with depth: small coccoid cells were dominant in the aerobic mixolimnion, whereas the monimolimnion had a more diverse population that included cocci, rods, and large filaments. Heterotrophic activity was measured by [methyl-3H]thymidine incorporation and [14C]glutamate uptake. Highest uptake rates were at or just below the photosynthetic bacterial layer and were attributable to small (<1 µm) heterotrophs rather than the larger photosynthetic bacteria. These high rates of heterotrophic uptake were apparently linked with fermentation; rates of other mineralization processes (e.g. sulfate reduction, methanogenesis, denitrification) in the anoxic mixolimnion were insignificant. Heterotrophic activity in the highly reduced monimolimnion was generally much lower than elsewhere in the water column. Therefore, although the monimolimnion contained most of the bacterial abundance and biomass (∼60%), most of the cells there were inactive.

  18. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  19. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms.

  20. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  1. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  2. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  3. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  4. Aerobic exercise in fibromyalgia: a practical review.

    PubMed

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  5. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  6. The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems.

    PubMed

    Rush, Darci; Osborne, Kate A; Birgel, Daniel; Kappler, Andreas; Hirayama, Hisako; Peckmann, Jörn; Poulton, Simon W; Nickel, Julia C; Mangelsdorf, Kai; Kalyuzhnaya, Marina; Sidgwick, Frances R; Talbot, Helen M

    2016-01-01

    Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO.

  7. The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems

    PubMed Central

    Birgel, Daniel; Kappler, Andreas; Hirayama, Hisako; Peckmann, Jörn; Poulton, Simon W.; Nickel, Julia C.; Mangelsdorf, Kai; Kalyuzhnaya, Marina; Sidgwick, Frances R.; Talbot, Helen M.

    2016-01-01

    Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO. PMID:27824887

  8. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  9. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  10. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  11. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    PubMed

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  12. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  13. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria.

    PubMed

    Ney, Blair; Ahmed, F Hafna; Carere, Carlo R; Biswas, Ambarish; Warden, Andrew C; Morales, Sergio E; Pandey, Gunjan; Watt, Stephen J; Oakeshott, John G; Taylor, Matthew C; Stott, Matthew B; Jackson, Colin J; Greening, Chris

    2017-01-01

    F420 is a low-potential redox cofactor that mediates the transformations of a wide range of complex organic compounds. Considered one of the rarest cofactors in biology, F420 is best known for its role in methanogenesis and has only been chemically identified in two phyla to date, the Euryarchaeota and Actinobacteria. In this work, we show that this cofactor is more widely distributed than previously reported. We detected the genes encoding all five known F420 biosynthesis enzymes (cofC, cofD, cofE, cofG and cofH) in at least 653 bacterial and 173 archaeal species, including members of the dominant soil phyla Proteobacteria, Chloroflexi and Firmicutes. Metagenome datamining validated that these genes were disproportionately abundant in aerated soils compared with other ecosystems. We confirmed through high-performance liquid chromatography analysis that aerobically grown stationary-phase cultures of three bacterial species, Paracoccus denitrificans, Oligotropha carboxidovorans and Thermomicrobium roseum, synthesized F420, with oligoglutamate sidechains of different lengths. To understand the evolution of F420 biosynthesis, we also analyzed the distribution, phylogeny and genetic organization of the cof genes. Our data suggest that although the Fo precursor to F420 originated in methanogens, F420 itself was first synthesized in an ancestral actinobacterium. F420 biosynthesis genes were then disseminated horizontally to archaea and other bacteria. Together, our findings suggest that the cofactor is more significant in aerobic bacterial metabolism and soil ecosystem composition than previously thought. The cofactor may confer several competitive advantages for aerobic soil bacteria by mediating their central metabolic processes and broadening the range of organic compounds they can synthesize, detoxify and mineralize.

  14. Aerobic intestinal flora of wild-caught African dwarf crocodiles Osteolaemus tetraspis.

    PubMed

    Huchzermeyer, F W; Henton, M M; Riley, J; Agnagna, M

    2000-09-01

    Intestinal contents were collected from wild-caught African dwarf crocodiles (Osteolaemus tetraspis) in 1993 and 1995 which were slaughtered at urban markets in the Congo Republic. The samples were kept frozen and brought back to Onderstepoort for aerobic culture. Out of 29 specimens, 33 species of bacteria and 20 species of fungi were isolated. The bacteria included three isolates of Salmonella and eight isolates of Escherichia coli, most of the latter being rough strains. The flora of individual specimens contained 1-5 bacterial and 0-5 fungal species. Neither Aeromonas hydrophila nor Edwardsiella tarda were isolated from any of the samples.

  15. Bacterial spores in silage and raw milk.

    PubMed

    te Giffel, M C; Wagendorp, A; Herrewegh, A; Driehuis, F

    2002-08-01

    Spore-forming bacteria can survive food-processing treatments. In the dairy industry, Bacillus and Clostridium species determine the shelf-life of a variety of heat-treated milk products, mainly if the level of post-process contamination is low. In order to minimize problems caused by bacterial spores in foods and food production processes a chain management approach, from raw materials, ingredients and environmental sources to final product storage conditions, is most effective. Silage is considered to be a significant source of contamination of raw milk with spores. PCR-RAPD fingerprinting and heat resistance studies of populations of aerobic spore-formers isolated from grass and maize silage and from raw milk confirmed this assumption. Prevention of outgrowth of aerobic spores in silage will contribute to reduction of the total spore load of raw milk. Therefore, it is important that the silage fermentation process is controlled. Application of cultures of lactic acid bacteria or chemical additives can aid silage fermentation and improve aerobic stability.

  16. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  17. Bacterial vaginosis.

    PubMed Central

    Spiegel, C A

    1991-01-01

    Bacterial vaginosis (BV) is the most common of the vaginitides affecting women of reproductive age. It appears to be due to an alteration in the vaginal ecology by which Lactobacillus spp., the predominant organisms in the healthy vagina, are replaced by a mixed flora including Prevotella bivia, Prevotella disiens, Porphyromonas spp., Mobiluncus spp., and Peptostreptococcus spp. All of these organisms except Mobiluncus spp. are also members of the endogenous vaginal flora. While evidence from treatment trials does not support the notion that BV is sexually transmitted, recent studies have shown an increased risk associated with multiple sexual partners. It has also been suggested that the pathogenesis of BV may be similar to that of urinary tract infections, with the rectum serving as a reservoir for some BV-associated flora. The organisms associated with BV have also been recognized as agents of female upper genital tract infection, including pelvic inflammatory disease, and the syndrome BV has been associated with adverse outcome of pregnancy, including premature rupture of membranes, chorioamnionitis, and fetal loss; postpartum endometritis; cuff cellulitis; and urinary tract infections. The mechanisms by which the BV-associated flora causes the signs of BV are not well understood, but a role for H2O2-producing Lactobacillus spp. in protecting against colonization by catalase-negative anaerobic bacteria has been recognized. These and other aspects of BV are reviewed. PMID:1747864

  18. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  19. Bacterial signaling and motility: Sure bets

    SciTech Connect

    Zhulin, Igor B

    2008-01-01

    swarms propagate and move outward like hunting wolf packs in search of additional macromolecules or prey. Upon starvation, cells aggregate at discrete foci to form mounds and then macroscopic fruiting bodies, each with hundreds of thousands of cells. The rod-shaped cells in the fruiting bodies eventually morph into spherical spores that are metabolically inactive and partially resistant to desiccation and temperature. When nutrients become available, spores can germinate and reenter the vegetative cell cycle. Two talks highlighted in this meeting review will tackle the mysteries of the gliding motility of M. xanthus in greater detail. In addition to M. xanthus, Caulobacter crescentus has extensively been investigated as a bacterial model of cell differentiation and development.

  20. Small bowel bacterial overgrowth

    MedlinePlus

    Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine; Small intestinal bacterial overgrowth; SIBO ... intestine does not have a high number of bacteria. Excess bacteria in the small intestine may use ...

  1. Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site

    USGS Publications Warehouse

    Essaid, Hedeff I.; Bekins, Barbara A.; Godsy, E. Michael; Warren, Ean; Baedecker, Mary Jo; Cozzarelli, Isabelle M.

    1995-01-01

    A two-dimensional, multispecies reactive solute transport model with sequential aerobic and anaerobic degradation processes was developed and tested. The model was used to study the field-scale solute transport and degradation processes at the Bemidji, Minnesota, crude oil spill site. The simulations included the biodegradation of volatile and nonvolatile fractions of dissolved organic carbon by aerobic processes, manganese and iron reduction, and methanogenesis. Model parameter estimates were constrained by published Monod kinetic parameters, theoretical yield estimates, and field biomass measurements. Despite the considerable uncertainty in the model parameter estimates, results of simulations reproduced the general features of the observed groundwater plume and the measured bacterial concentrations. In the simulation, 46% of the total dissolved organic carbon (TDOC) introduced into the aquifer was degraded. Aerobic degradation accounted for 40% of the TDOC degraded. Anaerobic processes accounted for the remaining 60% of degradation of TDOC: 5% by Mn reduction, 19% by Fe reduction, and 36% by methanogenesis. Thus anaerobic processes account for more than half of the removal of DOC at this site.

  2. Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor.

    PubMed

    Chen, Yao; Jiang, Wenju; Liang, David Tee; Tay, Joo Hwa

    2008-05-01

    Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m(-3) day(-1) in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (muoverall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (kd), observed yield (Yobs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Yobs) is associated with an increased solid retention time, while kd and Y changed insignificantly and can be regarded as constants under different organic loading rates.

  3. Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Myrold, David D.

    2012-09-01

    The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship between the transformation of Raz and aerobic bacterial respiration in pure culture experiments using two obligate aerobes and two facultative anaerobes, and in colonized surface and shallow (<10 cm) hyporheic sediments using reach-scale experiments. We found that the transformation of Raz to Rru was nearly perfectly (minr2 = 0.986), positively correlated with aerobic microbial respiration in all experiments. These results suggest that Raz can be used as a surrogate to measure respiration in situ and in vivoat different spatial scales, thus providing an alternative to investigate mechanistic controls of solute transport and stream metabolism on nutrient processing. Lastly, a comparison of respiration and mass-transfer rates in streams suggests that field-scale respiration is controlled by the slower of respiration and mass transfer, highlighting the need to understand both biogeochemistry and physics in stream ecosystems.

  4. Evaluation of a standard scrubbing method for the recovery of aerobic skin flora.

    PubMed

    Chevalier, J; Mercier, G M; Crémieux, A

    1987-01-01

    The most reliable method for sampling skin flora is still a matter of debate, although the subject is of importance in many fields ranging from clinical to basic research. For the evaluation of normal skin flora, Williamson and Kligman's scrub method is the most commonly used. In order to determine the value of this method, standardized for the evaluation of topical antimicrobial agents on aerobic skin flora, we compared its results to those obtained both from bacterial counts and from microscopic studies on biopsies performed at the same site. After different experiments had established the optimal experimental conditions on human and pig skin, a comparative study on six healthy subjects was carried out in the peri-umbilical area. The mean log numbers of aerobic bacteria in the scrub samples and in the biopsies were respectively, 3.1 and 2.9, which were not statistically significant. These numerical results were similar to those obtained by electron microscopy. Hence, the standard scrub method may be considered satisfactory for the recovery of aerobic bacteria from healthy human skin.

  5. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  6. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  7. A genomic perspective on a new bacterial genus and species from the Alcaligenaceae family, Basilea psittacipulmonis

    PubMed Central

    2014-01-01

    Background A novel Gram-negative, non-haemolytic, non-motile, rod-shaped bacterium was discovered in the lungs of a dead parakeet (Melopsittacus undulatus) that was kept in captivity in a petshop in Basel, Switzerland. The organism is described with a chemotaxonomic profile and the nearly complete genome sequence obtained through the assembly of short sequence reads. Results Genome sequence analysis and characterization of respiratory quinones, fatty acids, polar lipids, and biochemical phenotype is presented here. Comparison of gene sequences revealed that the most similar species is Pelistega europaea, with BLAST identities of only 93% to the 16S rDNA gene, 76% identity to the rpoB gene, and a similar GC content (~43%) as the organism isolated from the parakeet, DSM 24701 (40%). The closest full genome sequences are those of Bordetella spp. and Taylorella spp. High-throughput sequencing reads from the Illumina-Solexa platform were assembled with the Edena de novo assembler to form 195 contigs comprising the ~2 Mb genome. Genome annotation with RAST, construction of phylogenetic trees with the 16S rDNA (rrs) gene sequence and the rpoB gene, and phylogenetic placement using other highly conserved marker genes with ML Tree all suggest that the bacterial species belongs to the Alcaligenaceae family. Analysis of samples from cages with healthy parakeets suggested that the newly discovered bacterial species is not widespread in parakeet living quarters. Conclusions Classification of this organism in the current taxonomy system requires the formation of a new genus and species. We designate the new genus Basilea and the new species psittacipulmonis. The type strain of Basilea psittacipulmonis is DSM 24701 (= CIP 110308 T, 16S rDNA gene sequence Genbank accession number JX412111 and GI 406042063). PMID:24581117

  8. 454-Pyrosequencing analysis of highly adapted azo dye-degrading microbial communities in a two-stage anaerobic-aerobic bioreactor treating textile effluent.

    PubMed

    Köchling, Thorsten; Ferraz, Antônio Djalma Nunes; Florencio, Lourdinha; Kato, Mario Takayuki; Gavazza, Sávia

    2017-03-01

    Azo dyes, which are widely used in the textile industry, exhibit significant toxic characteristics for the environment and the human population. Sequential anaerobic-aerobic reactor systems are efficient for the degradation of dyes and the mineralization of intermediate compounds; however, little is known about the composition of the microbial communities responsible for dye degradation in these systems. 454-Pyrosequencing of the 16S rRNA gene was employed to assess the bacterial biodiversity and composition of a two-stage (anaerobic-aerobic) pilot-scale reactor that treats effluent from a denim factory. The anaerobic reactor was inoculated with anaerobic sludge from a domestic sewage treatment plant. Due to the selective composition of the textile wastewater, after 210 days of operation, the anaerobic reactor was dominated by the single genus Clostridium, affiliated with the Firmicutes phylum. The aerobic biofilter harbored a diverse bacterial community. The most abundant phylum in the aerobic biofilter was Proteobacteria, which was primarily represented by the Gamma, Delta and Epsilon classes followed by Firmicutes and other phyla. Several bacterial genera were identified that most likely played an essential role in azo dye degradation in the investigated system.

  9. Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically.

    PubMed

    Wu, Hong; Wang, Huan; Chen, Jinchun; Chen, Guo-Qiang

    2014-12-01

    Micro-aeration is a situation that will be encountered in bacterial cell growth especially when the saturated dissolved oxygen level cannot match the demand from cells grown to a high density. Therefore, it is desirable to separate aerobic growth and micro-aerobic product formation into two stages using methods including anaerobic or micro-aerobic promoters that are inducible under low aeration intensity. Eleven potential low aeration-inducible promoters were cloned and studied for their induction strengths under micro-aerobic conditions. Of them, Vitreoscilla hemoglobin promoter (P vgb ) was found to be the strongest among all 11 promoters. At the same time, six E. coli hosts harboring poly(R-3-hydroxybutyrate) (PHB) synthesis operon phaCAB were compared for their ability to accumulate poly(hydroxyalkanoates) (PHA). E. coli S17-1 was demonstrated to be the best host achieving a 70 % (mass fraction) PHB in the cell dry weigh (CDW) after 48 h under micro-aerobic growth. Cascaded P vgb repeats (P nvgb ) were investigated for enhanced expression level under micro-aerobic growth. The highest PHA production was obtained when a promoter containing eight cascaded P vgb repeats (P 8vgb ) was used, 5.37 g/l CDW containing 90 % PHB was obtained from recombinant in E. coli S17-1. Cells grew further to 6.30 g/l CDW containing 91 % PHB when oxygen-responsive transcription factor ArcA (arcA) was deleted in the same recombinant E. coli S17-1. This study revealed that vgb promoter containing cascaded P vgb repeats (P 8vgb ) is useful for product formation under low aeration intensity.

  10. Aerobic degradation study of three fluoroanilines and microbial community analysis: the effects of increased fluorine substitution.

    PubMed

    Zhao, Zhi-Qing; Tian, Bao-Hu; Zhang, Xuan; Ghulam, Abbas; Zheng, Tu-Cai; Shen, Dong-Sheng

    2015-02-01

    The fate of fluorinated compounds in the environment, especially polyfluorinated aromatics, is a matter of great concern. In this work, 4-Fluoroaniline (4-FA), 2,4-Difluoroanilines (2,4-DFA), and 2,3,4-Trifluoroanilines (2,3,4-TFA), were chosen as the target pollutants to study their biodegradability under aerobic conditions. The required enriched time of the mixed bacterial culture for degrading 4-FA, 2,4-DFA, and 2,3,4-TFA was 26, 51, and 165 days, respectively, which suggested that the longer enrichment time was required with the increase of fluorine substitution. At the initial concentrations of 100-200 mg L(-1), the 4-FA, 2,4-DFA, and 2,3,4-TFA could be degraded completely by the mixed bacterial culture. The maximum specific degradation rates of 4-FA, 2,4-DFA, and 2,3,4-TFA were 22.48 ± 0.55, 15.27 ± 2.04, and 8.84 ± 0.93 mg FA (g VSS h)(-1), respectively. Also, the three FAs enriched cultures showed certain potential of degrading other two FAs. The results from enzyme assay suggested the expression of meta-cleavage pathways during three FAs degradation. The denaturing gradient gel electrophoresis analysis revealed that unique bacterial communities were formed after FAs enrichment and these were principally composed of β-Proteobacteria, Oscillatoriophycideae, δ-Proteobacteria, α-Proteobacteria, Thermales, Xanthomonadales, Deinococci, Flavobacteriia, and Actinobacteridae. The Shannon-Wiener indexes in three FAs enriched culture decreased with the increase of fluorine substitution, indicating the significant effect of fluorine substitution on the microbial diversity. These findings supply important information on the fate of three FAs under aerobic environment, and the bacterial communities in their degradation systems.

  11. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    PubMed Central

    Abdallah, Rehab Z.; Adel, Mustafa; Ouf, Amged; Sayed, Ahmed; Ghazy, Mohamed A.; Alam, Intikhab; Essack, Magbubah; Lafi, Feras F.; Bajic, Vladimir B.; El-Dorry, Hamza; Siam, Rania

    2014-01-01

    The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces. PMID:25295031

  12. Oral bacterial flora of dogs with and without rabies: a preliminary study in Thailand.

    PubMed

    Kasempimolporn, Songsri; Benjavongkulchai, Maneerat; Saengseesom, Wachiraporn; Sitprija, Visith

    2003-12-01

    The authors studied the bacterial flora of the dog oral cavity and of bite wounds, Aerobic bacteria were isolated from mouth swabs of 16 normal and 5 rabid dogs as well as from infected dog-bite wounds from 18 patients. A total of 20 different microbial species were recovered from mouth swab cultures. The most frequently isolated organisms were Klebsiella pneumoniae ssp pneumoniae, Escherichia coli, Staphylococcus aureus, Citrobacter freundii, Enterobacter cloacae, Acinetobacter calcoaceticus, and Pasteurella species. There were no differences in the aerobic bacterial flora between rabid and nonrabid dogs. From the cultures of the bite wound swabs, the authors found that almost all of the organisms identified were part of the normal oral flora of the dog. One or more aerobic bacteria were isolated from the infected dog-bite wounds. Two patients had four, 3 had three, 4 had two, and 6 had one of the nine organisms in their wounds. The predominant species of bacteria involved in infection of bite wounds were, as follows: Staphylococcus aureus, Pasteurella multocida, E. coli, Moraxella species, Pasteurella canis, and Enterobacter cloacae. However, three wound cultures had no aerobic bacterial growth. The results of this study show that the infected bite wounds may contain a mixed bacterial flora that colonize human skin and the oral cavity of dogs.

  13. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  14. [Cardiovascular protection and mechanisms of actions of aerobic exercise].

    PubMed

    Hou, Zuo-Xu; Zhang, Yuan; Gao, Feng

    2014-08-01

    It is well established that aerobic exercise exerts beneficial effect on cardiovascular system, but the underlying mechanisms are yet to be elucidated. Recent studies have shown that aerobic exercise ameliorates insulin resistance, inflammation and mitochondrial dysfunction which play important roles in the development of cardiovascular disease. In this review, we discussed the underlying mechanisms of the cardioprotective role of aerobic exercise, especially the latest progress in this field.

  15. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  16. Aerobic Capacity and Postprandial Flow Mediated Dilation.

    PubMed

    Ballard, Kevin D; Miller, James J; Robinson, James H; Olive, Jennifer L

    The consumption of a high-fat meal induces transient vascular dysfunction. Aerobic exercise enhances vascular function in healthy individuals. Our purpose was to determine if different levels of aerobic capacity impact vascular function, as measured by flow mediated dilation, following a high-fat meal. Flow mediated dilation of the brachial artery was determined before, two- and four-hours postprandial a high-fat meal in young males classified as highly trained (n = 10; VO2max = 74.6 ± 5.2 ml·kg·min(-1)) or moderately active (n = 10; VO2max = 47.3 ± 7.1 ml·kg·min(-1)). Flow mediated dilation was reduced at two- (p < 0.001) and four-hours (p < 0.001) compared to baseline for both groups but was not different between groups at any time point (p = 0.108). Triglycerides and insulin increased at two- (p < 0.001) and four-hours (p < 0.05) in both groups. LDL-C was reduced at four-hours (p = 0.05) in highly trained subjects, and two- and four-hours (p ≤ 0.01) in moderately active subjects. HDL-C decreased at two- (p = 0.024) and four-hours (p = 0.014) in both groups. Glucose increased at two-hours postprandial for both groups (p = 0.003). Our results indicate that a high-fat meal results in reduced endothelium-dependent vasodilation in highly trained and moderately active individuals with no difference between groups. Thus, high aerobic capacity does not protect against transient reductions in vascular function after the ingestion of a single high-fat meal compared to individuals who are moderately active.

  17. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    PubMed Central

    Jusop, Shamshuddin; Naher, Umme Aminun; Othman, Radziah; Razi, Mohd Ismail

    2013-01-01

    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1), plant P uptake (0.78 P pot−1), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH. PMID:24288473

  18. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  19. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  20. Applications of bacterial cellulose and its composites in biomedicine.

    PubMed

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

  1. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  2. Aerobic treatment of wine-distillery wastewaters

    SciTech Connect

    Sales, D.; Valcarcel, M.J.; Perez, L.; de la Ossa, E.M.

    1987-01-01

    Waste from food-processing and allied industries is largely made up of organic compounds which can be metabolized by aerobic or anaerobic means. However, these wastes present a series of problems to biological depuration plants, such as the need for prior treatment to establish conditions suitable for the development of the microorganisms responsible for the process; and the long retention time of the biomass if acceptable effluents are to be obtained. Again, the seasonal nature of many of these industries makes for very heterogeneous waste. This means that treatment plant must be versatile and are subject to rapid successions of close-down and start-up interspersed with long intervals of inactivity. All these difficulties oblige the industries in the sector to adapt depurative technology to their particular needs. Wine distilleries fall into this general category. Their waste (called vinasses) is acidic, has a high organic content and varies widely according to the raw matter distilled: wine, lies, etc. This paper studies the start-up of digestors for aerobic treatment of vinasses and the establishment of optimum operating conditions for an adequate depurative performance.

  3. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  4. Second virial coefficient of rod-shaped molecules and molecular dynamics simulations of the isotropic phase

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.; Turner, P.; English, R. J.; Williams, R.; Brańka, A. C.

    2015-04-01

    The second virial coefficient, B2 is computed of linear rigid rods composed of m equally spaced sites interacting with sites on other rods via the hard-sphere or Weeks-Chandler-Andersen (WCA) pair potentials. The dependence of B2 on a wide range of separation distance between the sites L and m for both types of potential is computed. Molecular dynamics simulations were carried out of the thermodynamic, static, and percolation properties of the WCA rigid rods in the isotropic phase as a function of rod number density ρ . Simple scaling relationships are discovered between thermodynamic and other static properties as a function of ρ and m , which extend well into the semidilute density range. The percolation threshold distance (PTD) between the centers of mass of the rods complies well with a mean-field random orientation approximation from low density well into the semidilute regime. The corresponding site-site PTD proved more problematic to represent by simple functions, but at high rod density, scales better with the number of sites density rather than the rod number density.

  5. Second virial coefficient of rod-shaped molecules and molecular dynamics simulations of the isotropic phase.

    PubMed

    Heyes, D M; Turner, P; English, R J; Williams, R; Brańka, A C

    2015-04-01

    The second virial coefficient, B(2) is computed of linear rigid rods composed of m equally spaced sites interacting with sites on other rods via the hard-sphere or Weeks-Chandler-Andersen (WCA) pair potentials. The dependence of B(2) on a wide range of separation distance between the sites L and m for both types of potential is computed. Molecular dynamics simulations were carried out of the thermodynamic, static, and percolation properties of the WCA rigid rods in the isotropic phase as a function of rod number density ρ. Simple scaling relationships are discovered between thermodynamic and other static properties as a function of ρ and m, which extend well into the semidilute density range. The percolation threshold distance (PTD) between the centers of mass of the rods complies well with a mean-field random orientation approximation from low density well into the semidilute regime. The corresponding site-site PTD proved more problematic to represent by simple functions, but at high rod density, scales better with the number of sites density rather than the rod number density.

  6. Phase transfer of oleic acid stabilized rod-shaped anatase TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wilkerson, Rachel J.; Elder, Theresa; Sowinksi, Olivia; Fostvedt, Jade I.; Hoefelmeyer, James D.

    2016-06-01

    Three methods were evaluated for phase transfer of oleic acid stabilized TiO2 nanorods from non-polar phase to an aqueous phase. Three alkyltrimethylammonium bromide (C6, C8, C12) surfactants were tested and compared with an amphiphilic polymer as interdigitation agents. Ligand substitutions with catechol derivatives with polar functional groups para to the -enediol were evaluated as well. The molecular surfactants were ineffective compared to the amphiphilic polymer in the interdigitation phase transfer approach. Ligand substitution with catechols proceeded efficiently with phase transfer. The ligand substitution reactions were accompanied by gas evolution, which was found to result from decarboxylation of oleic acid in alkaline aqueous conditions.

  7. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles

    PubMed Central

    Wang, Wei; Duan, Wentao; Sen, Ayusman; Mallouk, Thomas E.

    2013-01-01

    Nano- and microscale motors powered by catalytic reactions exhibit collective behavior such as swarming, predator–prey interactions, and chemotaxis that resemble those of biological microorganisms. A quantitative understanding of the catalytically generated forces between particles that lead to these behaviors has so far been lacking. Observations and numerical simulations of pairwise interactions between gold-platinum nanorods in hydrogen peroxide solutions show that attractive and repulsive interactions arise from the catalytically generated electric field. Electrokinetic effects drive the assembly of staggered doublets and triplets of nanorods that are moving in the same direction. None of these behaviors are observed with nanorods composed of a single metal. The motors also collect tracer microparticles at their head or tail, depending on the charge of the particles, actively assembling them into close-packed rafts and aggregates of rafts. These motor–tracer particle interactions can also be understood in terms of the catalytically generated electric field around the ends of the nanorod motors. PMID:24127603

  8. Rhizobium lemnae sp. nov., a bacterial endophyte of Lemna aequinoctialis.

    PubMed

    Kittiwongwattana, Chokchai; Thawai, Chitti

    2014-07-01

    Bacterial strain L6-16(T) was isolated from Lemna aequinoctialis. Cells were Gram-stain-negative, rod-shaped and motile with monopolar flagella. The phylogenetic analysis of its nearly complete 16S rRNA gene sequence revealed that strain L6-16(T) was a member of the genus Rhizobium. Its closest relative was Rhizobium tarimense PL-41(T) with a 16S rRNA gene sequence similarity value of 98.3%. Sequence similarity analysis of the housekeeping recA and atpD genes showed low levels of sequence similarity (<93.9%) between strain L6-16(T) and other species of the genus Rhizobium. Strain L6-16(T) was able to grow between pH 5 and 11 (optimum 7.0) and at temperatures ranging from 20 to 41 °C (optimum 30 °C). It tolerated NaCl up to 1 % (w/v) (optimum 0.5%). C18 : 1ω7c and/or C18 :  1ω6c (summed feature 8; 79.5%) were found as predominant cellular fatty acids. The DNA G+C content of strain L6-16(T) was 58.1 mol% (Tm). Based on low levels of DNA-DNA relatedness, strain L6-16(T) was distinct from members of phylogenetically related species including R. tarimense PL-41(T) (38.3 ± 0.8%), Rhizobium rosettiformans W3(T) (6.9 ± 0.4%) and Rhizobium pseudoryzae J3-A127(T) (12.3 ± 0.6 %). Strain L6-16(T) was unable to nodulate the roots of Phaseolus vulgaris, and nodC and nifH genes were not detected. The results obtained from phylogenetic analyses, phenotypic characterization and DNA-DNA hybridization indicated that strain L6-16(T) represents a novel species of the genus Rhizobium, for which the name Rhizobium lemnae sp. nov. is proposed. The type strain is L6-16(T) ( = NBRC 109339(T) = BCC 55143(T)).

  9. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  10. Aerobic Physical Activity and the Leadership of Principals

    ERIC Educational Resources Information Center

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  11. The Effectiveness of Aerobic Exercise Instruction for Totally Blind Women.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.; And Others

    1992-01-01

    A multifaceted method (involving verbal and hands-on training) was used to teach aerobic exercises to 3 totally blind women (ages 24-37). All three women demonstrated positive gains in their performance, physical fitness, and attitudes toward participating in future mainstream aerobic exercise classes. (DB)

  12. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  13. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  14. p53 aerobics: the major tumor suppressor fuels your workout.

    PubMed

    Kruse, Jan-Philipp; Gu, Wei

    2006-07-01

    In addition to its role as the central regulator of the cellular stress response, p53 can regulate aerobic respiration via the novel transcriptional target SCO2, a critical regulator of the cytochrome c oxidase complex (Matoba et al., 2006). Loss of p53 results in decreased oxygen consumption and aerobic respiration and promotes a switch to glycolysis, thereby reducing endurance during physical exercise.

  15. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  16. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  17. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  18. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  19. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  20. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  1. Microbial Composition and Structure of Aerobic Granular Sewage Biofilms▿

    PubMed Central

    Weber, S. D.; Ludwig, W.; Schleifer, K.-H.; Fried, J.

    2007-01-01

    Aerobic activated sludge granules are dense, spherical biofilms which can strongly improve purification efficiency and sludge settling in wastewater treatment processes. In this study, the structure and development of different granule types were analyzed. Biofilm samples originated from lab-scale sequencing batch reactors which were operated with malthouse, brewery, and artificial wastewater. Scanning electron microscopy, light microscopy, and confocal laser scanning microscopy together with fluorescence in situ hybridization (FISH) allowed insights into the structure of these biofilms. Microscopic observation revealed that granules consist of bacteria, extracellular polymeric substances (EPS), protozoa and, in some cases, fungi. The biofilm development, starting from an activated sludge floc up to a mature granule, follows three phases. During phase 1, stalked ciliated protozoa of the subclass Peritrichia, e.g., Epistylis spp., settle on activated sludge flocs and build tree-like colonies. The stalks are subsequently colonized by bacteria. During phase 2, the ciliates become completely overgrown by bacteria and die. Thereby, the cellular remnants of ciliates act like a backbone for granule formation. During phase 3, smooth, compact granules are formed which serve as a new substratum for unstalked ciliate swarmers settling on granule surfaces. These mature granules comprise a dense core zone containing bacterial cells and EPS and a loosely structured fringe zone consisting of either ciliates and bacteria or fungi and bacteria. Since granules can grow to a size of up to several millimeters in diameter, we developed and applied a modified FISH protocol for the study of cryosectioned biofilms. This protocol allows the simultaneous detection of bacteria, ciliates, and fungi in and on granules. PMID:17704280

  2. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage.

    PubMed

    Duniere, L; Jin, L; Smiley, B; Qi, M; Rutherford, W; Wang, Y; McAllister, T

    2015-05-01

    Bacterial inoculants can improve the conservation and nutritional quality of silages. Inclusion of the yeast Saccharomyces in the diet of dairy cattle has also been reported to be beneficial. The present study assessed the ability of silage to be used as a means of delivering Saccharomyces strains to ruminants. Two strains of Saccharomyces cerevisiae (strain 1 and 3)and 1 strain of Saccharomyces paradoxus (strain 2) were inoculated (10(3) cfu/g) individually onto corn forage that was ensiled in mini silos for 90 d. Fermentation characteristics, aerobic stability, and nutritive value of silages were determined and real-time quantitative PCR (RT-qPCR) was used to quantify S. cerevisiae, S.paradoxus, total Saccharomyces, fungal, and bacterial populations. Fermentation characteristics of silage inoculated with S1 were similar to control silage. Although strain 3 inoculation increased ash and decreased OM contents of silage (P = 0.017), no differences were observed in nutrient composition or fermentation profiles after 90 d of ensiling. Inoculation with Saccharomyces had no detrimental effect on the aerobic stability of silage. In vitro DM disappearance, gas production, and microbial protein synthesis were not affected by yeast inoculation.Saccharomyces strain 1 was quantified throughout ensiling, whereas strain 2 was detected only immediately after inoculation. Saccharomyces cerevisiae strain 3 was quantified until d 7 and detectable 90 d after ensiling. All inoculants were detected and quantified during aerobic exposure. Inoculation with Saccharomyces did not alter lactobacilli populations. Saccharomycetales were detected by RT-qPCR throughout ensiling in all silages. Both S. cerevisiae and S. paradoxus populations increased during aerobic exposure, demonstrating that the density of these yeast strains would increase between the time that silage was removed from storage and the time it was fed.

  3. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    SciTech Connect

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.

  4. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity.

    PubMed

    Wasmund, Kenneth; Kurtböke, D Ipek; Burns, Kathryn A; Bourne, David G

    2009-05-01

    This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the alpha-subunit of particulate methane monooxygenase (pmoA) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum. Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages.

  5. Aerobic deterioration stimulates outgrowth of spore-forming Paenibacillus in corn silage stored under oxygen-barrier or polyethylene films.

    PubMed

    Borreani, Giorgio; Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca

    2013-08-01

    The occurrence of Bacillus and Paenibacillus spores in silage is of great concern to dairy producers because their spores can survive pasteurization and some strains are capable of subsequently germinating and growing under refrigerated conditions in pasteurized milk. The objectives of this study were to verify the role of aerobic deterioration of corn silage on the proliferation of Paenibacillus spores and to evaluate the efficacy of oxygen-barrier films used to cover silage during fermentation and storage to mitigate these undesirable bacterial outbreaks. The trial was carried out on whole-crop maize (Zea mays L.) inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium. A standard polyethylene film and a polyethylene-polyamide film with an enhanced oxygen barrier were used to produce the silage bags for this experiment. The silos were stored indoors at ambient temperature (18 to 22°C) and opened after 110 d. The silage was sampled after 0, 2, 5, 7, 9, and 14 d of aerobic exposure to quantify the growth of endospore-forming bacteria during the exposure of silages to air. Paenibacillus macerans (gram-positive, facultatively anaerobic bacteria) was able to develop during the aerobic exposure of corn silage. This species was present in the herbage at harvesting, together with clostridial spores, and survived ensiling fermentation; it constituted more than 60% of the anaerobic spore formers at silage opening. During silage spoilage, the spore concentration of P. macerans increased to values greater than 7.0 log10 cfu/g of silage. The use of different plastic films to seal silages affected the growth of P. macerans and the number of spores during aerobic exposure of silages. These results indicate that the number of Paenibacillus spores could greatly increase in silage after exposure to air, and that oxygen-barrier films could help to reduce the potential for silage contamination of this important group of milk spoilage

  6. Bacterial Fouling in a Model Core System

    PubMed Central

    Shaw, J. C.; Bramhill, B.; Wardlaw, N. C.; Costerton, J. W.

    1985-01-01

    We have used a sintered glass bead core to simulate the spaces and surfaces of reservoir rock in studies of the bacterial plugging phenomenon that affects waterflood oil recovery operations. The passage of pure or mixed natural populations of bacteria through this solid matrix was initially seen to promote the formation of adherent bacterial microcolonies on available surfaces. Bacteria within these microcolonies produced huge amounts of exopolysaccharides and coalesced to form a confluent plugging biofilm that eventually caused a >99% decrease in core permeability. Aerobic bacteria developed a plugging biofilm on the inlet face of the core, facultative anaerobes plugged throughout the core, and dead bacteria did not effectively plug the narrow (33-μm) spaces of this solid matrix because they neither adhered extensively to surfaces nor produced the extensive exopolysaccharides characteristic of living cells. The presence of particles in the water used in these experiments rapidly decreased the core permeability because they became trapped in the developing biofilm and accelerated the plugging of pore spaces. Once established, cells within the bacterial biofilm could be killed by treatment with a biocide (isothiazalone), but their essentially inert carbohydrate biofilm matrix persisted and continued to plug the pore spaces, whereas treatment with 5% sodium hypochlorite killed the bacteria, dissolved the exopolysaccharide biofilm matrix, and restored permeability to these plugged glass bead cores. Images PMID:16346760

  7. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  8. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  9. Clostridium algifaecis sp. nov., an anaerobic bacterial species from decomposing algal scum.

    PubMed

    Wu, Yu-Fan; Zheng, Hui; Wu, Qing-Long; Yang, Hong; Liu, Shuang-Jiang

    2014-11-01

    Two anaerobic bacterial strains, MB9-7(T) and MB9-9, were isolated from decomposing algal scum and were characterized using a polyphasic approach. Phylogenetic analysis of 16S rRNA gene sequences showed that strains MB9-7(T) and MB9-9 are closely related to each other (99.7% similarity) and they are also closely related to Clostridium tyrobutyricum (96.5%). The two strains were Gram-stain positive and rod-shaped. Growth occurred at 20-45 °C, at pH 4.0-8.0 and at NaCl concentrations of up to 2% (w/v). Acid was produced from glucose, xylose and mannose. Products of fermentation in PYG medium were mainly butyrate, acetate, carbon dioxide and hydrogen. The predominant cellular fatty acids were C(14:0) and C(16:0). The cellular polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two glycolipids, one phospholipid, one aminophospholipid and two aminolipids. The DNA G+C contents of strain MB9-7(T) and MB9-9 were 27.9 and 28.7 mol%, respectively. These results support the assignment of the new isolates to the genus Clostridium and also distinguish them from other species of the genus Clostridium. Hence, it is proposed that strains MB9-7(T) and MB9-9 represent a novel species of the genus Clostridium, with the suggested name Clostridium algifaecis sp. nov. The type strain is MB9-7(T) ( =CGMCC 1.5188(T) =DSM 28783(T)).

  10. Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels.

    PubMed

    Zielinski, Frank U; Pernthaler, Annelie; Duperron, Sébastien; Raggi, Luciana; Giere, Olav; Borowski, Christian; Dubilier, Nicole

    2009-05-01

    Many parasitic bacteria live in the cytoplasm of multicellular animals, but only a few are known to regularly invade their nuclei. In this study, we describe the novel bacterial parasite "Candidatus Endonucleobacter bathymodioli" that invades the nuclei of deep-sea bathymodiolin mussels from hydrothermal vents and cold seeps. Bathymodiolin mussels are well known for their symbiotic associations with sulfur- and methane-oxidizing bacteria. In contrast, the parasitic bacteria of vent and seep animals have received little attention despite their potential importance for deep-sea ecosystems. We first discovered the intranuclear parasite "Ca. E. bathymodioli" in Bathymodiolus puteoserpentis from the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. Using primers and probes specific to "Ca. E. bathymodioli" we found this intranuclear parasite in at least six other bathymodiolin species from vents and seeps around the world. Fluorescence in situ hybridization and transmission electron microscopy analyses of the developmental cycle of "Ca. E. bathymodioli" showed that the infection of a nucleus begins with a single rod-shaped bacterium which grows to an unseptated filament of up to 20 microm length and then divides repeatedly until the nucleus is filled with up to 80,000 bacteria. The greatly swollen nucleus destroys its host cell and the bacteria are released after the nuclear membrane bursts. Intriguingly, the only nuclei that were never infected by "Ca. E. bathymodioli" were those of the gill bacteriocytes. These cells contain the symbiotic sulfur- and methane-oxidizing bacteria, suggesting that the mussel symbionts can protect their host nuclei against the parasite. Phylogenetic analyses showed that the "Ca. E. bathymodioli" belongs to a monophyletic clade of Gammaproteobacteria associated with marine metazoans as diverse as sponges, corals, bivalves, gastropods, echinoderms, ascidians and fish. We hypothesize that many of the sequences from this clade

  11. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  12. Magnesium carbonate precipitate strengthened aerobic granules.

    PubMed

    Lee, Duu-Jong; Chen, Yu-You

    2015-05-01

    Aerobic granules were precipitated internally with magnesium carbonate to enhance their structural stability under shear. The strengthened granules were tested in continuous-flow reactors for 220 days at organic loadings of 6-39 kg/m(3)/day, hydraulic retention times of 0.44-19 h, and temperatures of 10 or 28°C. The carbonate salt had markedly improved the granule strength without significant changes in granule morphology or microbial communities (with persistent strains Streptomyces sp., Rhizobium sp., Brevundimonas sp., and Nitratireductor sp.), or sacrifice in biological activity for organic degradation. MgCO3 precipitated granules could be used in continuous-flow reactor for wastewater treatment at low cost and with easy processing efforts.

  13. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  14. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  15. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  16. Effects of Kettlebell Training on Aerobic Capacity.

    PubMed

    Falatic, J Asher; Plato, Peggy A; Holder, Christopher; Finch, Daryl; Han, Kyungmo; Cisar, Craig J

    2015-07-01

    This study examined the effects of a kettlebell training program on aerobic capacity. Seventeen female National Collegiate Athletic Association Division I collegiate soccer players (age: 19.7 ± 1.0 years, height: 166.1 ± 6.4 cm, weight: 64.2 ± 8.2 kg) completed a graded exercise test to determine maximal oxygen consumption (V̇O2max). Participants were assigned to a kettlebell intervention group (KB) (n = 9) or a circuit weight-training (CWT) control group (n = 8). Participants in the KB group completed a kettlebell snatch test to determine individual snatch repetitions. Both groups trained 3 days a week for 4 weeks in addition to their off-season strength and conditioning program. The KB group performed the 15:15 MVO2 protocol (20 minutes of kettlebell snatching with 15 seconds of work and rest intervals). The CWT group performed multiple free-weight and dynamic body-weight exercises as part of a continuous circuit program for 20 minutes. The 15:15 MVO2 protocol significantly increased V̇O2max in the KB group. The average increase was 2.3 ml·kg⁻¹·min⁻¹, or approximately a 6% gain. There was no significant change in V̇O2max in the CWT control group. Thus, the 4-week 15:15 MVO2 kettlebell protocol, using high-intensity kettlebell snatches, significantly improved aerobic capacity in female intercollegiate soccer players and could be used as an alternative mode to maintain or improve cardiovascular conditioning.

  17. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates

    NASA Astrophysics Data System (ADS)

    Patterson, B. M.; Aravena, R.; Davis, G. B.; Furness, A. J.; Bastow, T. P.; Bouchard, D.

    2013-10-01

    rates were independent of substrate (VC and/or oxygen) concentration. The high correlation (R = 0.962 to 0.975) between CO2 concentrations and temperature suggested that aerobic biodegradation of VC was controlled by bacterial activity that was regulated by the temperature within the vadose zone. When assessing a contaminated site for possible vapour intrusion into buildings, accounting for environmental conditions for aerobic biodegradation of VC in the vadose zone should improve the assessment of environmental risk of VC intrusion into buildings, enabling better identification and prioritisation of contaminated sites to be remediated.

  18. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates.

    PubMed

    Patterson, B M; Aravena, R; Davis, G B; Furness, A J; Bastow, T P; Bouchard, D

    2013-10-01

    biodegradation rates were independent of substrate (VC and/or oxygen) concentration. The high correlation (R=0.962 to 0.975) between CO₂ concentrations and temperature suggested that aerobic biodegradation of VC was controlled by bacterial activity that was regulated by the temperature within the vadose zone. When assessing a contaminated site for possible vapour intrusion into buildings, accounting for environmental conditions for aerobic biodegradation of VC in the vadose zone should improve the assessment of environmental risk of VC intrusion into buildings, enabling better identification and prioritisation of contaminated sites to be remediated.

  19. Bacterial hydroxylation of codeine

    SciTech Connect

    Harder, P.A.; Kunz, D.A.

    1989-01-17

    A process is described for preparing 14-hydroxycodeine which comprises: contacting codeine or a water-soluble salt thereof with bacteria of the genus Streptomyces for a period of at least about three days while the bacteria are being aerobically cultured in a rich medium in which the growth nutrients are supplied in excess and recovering 14-hydroxycodeine from the medium.

  20. Aerobic carboxydotrophy under extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes.

    PubMed

    Sorokin, Dimitry Yu; Tourova, Tatjana P; Kovaleva, Olga L; Kuenen, J Gijs; Muyzer, Gerard

    2010-03-01

    Aerobic enrichments from soda lake sediments with CO as the only substrate resulted in the isolation of five bacterial strains capable of autotrophic growth with CO at extremely high pH and salinity. The strains belonged to the Alkalispirillum/Alkalilimnicola cluster in the Gammaproteobacteria, where the ability to oxidize CO, but not growth with CO, has been demonstrated previously. The growth with CO was possible only at an oxygen concentration below 5 % and CO concentration below 20 % in the gas phase. The isolates were also capable of growth with formate but not with H(2). The carboxydotrophic growth occurred within a narrow pH range from 8 to 10.5 (optimum at 9.5) and a broad salt concentration from 0.3 to 3.5 M total Na(+) (optimum at 1.0 M). Cells grown on CO had high respiration activity with CO and formate, while the cells grown on formate actively oxidized formate alone. In CO-grown cells, CO-dehydrogenase (CODH) activity was detectable both in soluble and membrane fractions, while the NAD-independent formate dehydrogenase (FDH) resided solely in membranes. The results of total protein profiling and the failure to detect CODH with conventional primers for the coxL gene indicated that the CO-oxidizing enzyme in haloalkaliphilic isolates might differ from the classical aerobic CODH complex. A single cbbL gene encoding the RuBisCO large subunit was detected in all strains, suggesting the presence of the Calvin cycle of inorganic carbon fixation. Overall, these results demonstrated the possibility of aerobic carboxydotrophy under extremely haloalkaline conditions.

  1. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  2. Bacterial Colonization in Hidradenitis Suppurativa/Acne Inversa: A Cross-sectional Study of 50 Patients and Review of the Literature.

    PubMed

    Nikolakis, Georgios; Liakou, Aikaterini I; Bonovas, Stefanos; Seltmann, Holger; Bonitsis, Nikolaos; Join-Lambert, Olivier; Wild, Thomas; Karagiannidis, Ioannis; Zolke-Fischer, Silvia; Langner, Klaus; Zouboulis, Christos C

    2016-11-24

    It is unclear whether bacterial colonization in hidradenitis suppurativa/acne inversa (HS) comprises a primary cause, triggering factor or secondary phenomenon of the disease pathogenesis. Furthermore, the connection between certain bacterial species, the disease severity and its localization is unknown. Bacterial species were isolated from HS lesions to reveal a potential correlation with localization and disease severity. Ninety swab tests were prospectively obtained from 90 HS lesions of 50 consecutive patients. The material was cultured under aerobic and anaerobic conditions. The identified species were statistically correlated with Hurley stage and localization of the lesions. The most prevalent isolates were reported. Hurley stage significantly correlated with disease localization. Particular bacterial species were associated with "extended" disease and Hurley III stage with the detection of both aerobic and anaerobic bacteria and with a higher number of species. The presence of bacterial species is dependent on the local milieu, which correlates with the localization of the disease, its clinical manifestations and its extension.

  3. Characterization of bacterial pathogens in rural and urban irrigation water.

    PubMed

    Aijuka, Matthew; Charimba, George; Hugo, Celia J; Buys, Elna M

    2015-03-01

    The study aimed to compare the bacteriological quality of an urban and rural irrigation water source. Bacterial counts, characterization, identification and diversity of aerobic bacteria were determined. Escherichia coli isolated from both sites was subjected to antibiotic susceptibility testing, virulence gene (Stx1/Stx2 and eae) determination and (GTG)5 Rep-PCR fingerprinting. Low mean monthly counts for aerobic spore formers, anaerobic spore formers and Staphylococcus aureus were noted although occasional spikes were observed. The most prevalent bacterial species at both sites were Bacillus spp., E. coli and Enterobacter spp. In addition, E. coli and Bacillus spp. were most prevalent in winter and summer respectively. Resistance to at least one antibiotic was 84% (rural) and 83% (urban). Highest resistance at both sites was to cephalothin and ampicillin. Prevalence of E. coli possessing at least one virulence gene (Stx1/Stx2 and eae) was 15% (rural) and 42% (urban). All (rural) and 80% (urban) of E. coli possessing virulence genes showed antibiotic resistance. Complete genetic relatedness (100%) was shown by 47% of rural and 67% of urban E. coli isolates. Results from this study show that surface irrigation water sources regardless of geographical location and surrounding land-use practices can be reservoirs of similar bacterial pathogens.

  4. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  5. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  6. Hydrogen sulfide (H2S) emission control by aerobic sulfate reduction in landfill

    NASA Astrophysics Data System (ADS)

    Long, Yuyang; Fang, Yuan; Shen, Dongsheng; Feng, Huajun; Chen, Ting

    2016-12-01

    H2S emissions from landfill sites resulting from sulfate reduction has become a serious human health and ecological safety issue. This study investigated H2S emission behavior and sulfate metabolism occurring in simulated landfills under different operating conditions. Under aerobic conditions, great attenuation of the original sulfate content (from around 6000 mg kg‑1 dropped to below 800 mg kg‑1) with corresponding accumulation of sulfides and elemental sulfur were observed, indicating that sulfate reduction processes were intense under such conditions. Analysis of the bacterial community in these landfills showed great abundance (1.10%) and diversity of sulfur reducing types, confirming their active involvement in this process. In particular, the total abundance of sulfate-reducing bacteria increased nearly 30 times under aerobic conditions, leading to the transformation of sulfate to sulfide and other reduced sulfur species. Although exposure to air promoted the accumulation of sulfide, it did not lead to an increase in H2S release in these landfills.

  7. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    PubMed Central

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195

  8. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    PubMed

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  9. Hydrogen sulfide (H2S) emission control by aerobic sulfate reduction in landfill

    PubMed Central

    Long, Yuyang; Fang, Yuan; Shen, Dongsheng; Feng, Huajun; Chen, Ting

    2016-01-01

    H2S emissions from landfill sites resulting from sulfate reduction has become a serious human health and ecological safety issue. This study investigated H2S emission behavior and sulfate metabolism occurring in simulated landfills under different operating conditions. Under aerobic conditions, great attenuation of the original sulfate content (from around 6000 mg kg−1 dropped to below 800 mg kg−1) with corresponding accumulation of sulfides and elemental sulfur were observed, indicating that sulfate reduction processes were intense under such conditions. Analysis of the bacterial community in these landfills showed great abundance (1.10%) and diversity of sulfur reducing types, confirming their active involvement in this process. In particular, the total abundance of sulfate-reducing bacteria increased nearly 30 times under aerobic conditions, leading to the transformation of sulfate to sulfide and other reduced sulfur species. Although exposure to air promoted the accumulation of sulfide, it did not lead to an increase in H2S release in these landfills. PMID:27909309

  10. Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure.

    PubMed

    Whitehead, Terence R; Cotta, Michael A

    2016-03-01

    Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems.

  11. Comparative Analysis of Lacinutrix Genomes and Their Association with Bacterial Habitat

    PubMed Central

    Lee, Yung Mi; Kim, Mi-Kyeong; Ahn, Do Hwan; Kim, Han-Woo; Park, Hyun; Shin, Seung Chul

    2016-01-01

    The genus Lacinutrix, which belongs to the family Flavobacteriaceae, consists of seven bacterial species that were mainly isolated from marine life and sediments. As most bacteria in the family Flavobacteriaceae favor aerobic conditions, the seven bacterial species in the genus Lacinutrix also showed aerobic growth. We selected four monophyletic bacterial species living in a polar environment. Two of these species were isolated from sediment and two types were isolated from algae. In a comparative analysis, we investigated how these different environments were related to genomic features of these four species in the genus Lacinutrix. We found that the gene sets for glycolysis, the Krebs cycle, and oxidative phosphorylation were conserved in these four type strains. However, the presence of nitrous oxide reductase for denitrification and the absence of essential components related to thiamin biosynthesis for aerobic respiration were only found in isolates from sediment. Elevated bacterial metabolism on the surface of marine sediments might limit the oxygen penetration into sediment, and such an environment might affect the genomes of bacteria isolated from these habitats. PMID:26882010

  12. Rapid detection of a gfp-marked Enterobacter aerogenes under anaerobic conditions by aerobic fluorescence recovery.

    PubMed

    Zhang, Chong; Xing, Xin-Hui; Lou, Kai

    2005-08-15

    A gfp- and kanamycin-resistance gene-containing plasmid pUCGK was successfully constructed and transformed into Enterobacter aerogenes to develop a rapid GFP-based method for quantifying the bacterial concentration under anaerobic conditions for production of biohydrogen. Since the use of GFP as a molecular reporter is restricted by its requirement for oxygen in the development of the fluorophore, fluorescence detection for the fluorescent E. aerogenes grown anaerobically for hydrogen production was performed by developing a method of aerobic fluorescence recovery (AFR) of the anaerobically expressed GFP. By using this AFR method, rapid and non-disruptive cell quantification of E. aerogenes by fluorescence density was achieved for analyzing the hydrogen production process.

  13. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2014-01-01

    Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.

  14. Aerobic Degradation of Dinitrotoluenes and Pathway for Bacterial Degradation of 2,6- Dinitrotoluene.

    DTIC Science & Technology

    2000-01-01

    of 3M4NC, 9.8 t±mol of sodium phosphate (pH 7.0), and cell extract (0.1 been designated Alcaligenes sp. They are represented by strain to 0.5 mg of...protein) in a final volume of 1 ml. The molar extinction coefficients JS867 ( Alcaligenes denitrificans Biolog cluster) and strain JS871 of compounds X...cepacia Pseudomonas sp. 1; 1992 2,4 - + + PR7 Burkholderia cepacia Pseudomonas sp. 1; 1992 2,4 - + + JS850 Burkholderia cepacia None 3; 1995 2,6

  15. Permissivity of the biphenyl-specific aerobic bacterial metabolic pathway towards analogues with various steric requirements.

    PubMed

    Overwin, Heike; Standfuß-Gabisch, Christine; González, Myriam; Méndez, Valentina; Seeger, Michael; Reichelt, Joachim; Wray, Victor; Hofer, Bernd

    2015-09-01

    It has repeatedly been shown that aryl-hydroxylating dioxygenases do not possess a very high substrate specificity. To gain more insight into this phenomenon, we examined two powerful biphenyl dioxygenases, the well-known wild-type enzyme from Burkholderia xenovorans LB400 (BphA-LB400) and a hybrid enzyme, based on a dioxygenase from Pseudomonas sp. B4-Magdeburg (BphA-B4h), for their abilities to dioxygenate a selection of eight biphenyl analogues in which the second aromatic ring was replaced by aliphatic as well as aliphatic/aromatic moieties, reflecting a variety of steric requirements. Interestingly, both enzymes were able to catalyse transformation of almost all of these compounds. While the products formed were identical, major differences were observed in transformation rates. In most cases, BphA-B4h proved to be a significantly more powerful catalyst than BphA-LB400. NMR characterization of the reaction products showed that the metabolite obtained from biphenylene underwent angular dioxygenation, whereas all other compounds were subject to lateral dioxygenation at ortho and meta carbons. Subsequent growth studies revealed that both dioxygenase source strains were able to utilize several of the biphenyl analogues as sole sources of carbon and energy. Therefore, prototype BphBCD enzymes of the biphenyl degradative pathway were examined for their ability to further catabolize the lateral dioxygenation products. All of the ortho- and meta-hydroxylated compounds were converted to acids, showing that this pathway is quite permissive, enabling catalysis of the turnover of a fairly wide variety of metabolites.

  16. Structure-toxicity assessment of metabolites of the aerobic bacterial transformation of substituted naphthalenes

    SciTech Connect

    LeBlond, J.D.; Applegate, B.M.; Menn, F.M.; Schultz, T.W.; Sayler, G.S.

    2000-05-01

    Pseudomonas fluorescens 5R, a naphthalene-degrading bacterium isolated from manufactured gas plant soil contaminated with polycyclic aromatic hydrocarbons, was examined for its degradative capacity of a number of substituted naphthalenes. In general, those compounds substituted on only one ring with an electrically neutral substituent were found to be transformed primarily to substituted salicylic acids according to the classical (NAH7) naphthalene dioxygenase-initiated upper pathway reactions of the naphthalene degradative pathway (i.e., the NAH system). Dimethylnaphthalenes with a substituent on each ring, and certain halogenated naphthalenes, were transformed via a monohydroxylation reaction to form hydroxylated dead-end products. Of the substituted salicylic acids examined, only 3- and 4-methylsalicylic acid, the respective products of the degradation of 1- and 2-methylnaphthalene, were further degraded by salicylate hydroxylase and catechol 2,3-dioxygenase, the first two enzymes of the NAH lower pathway. Using the Tetrahymena pyriformis acute toxicity assay, many of the monohydroxylated products of incomplete biodegradation were found to be polar narcotics. Substituted salicylic acids that are not further degraded by the NAH lower pathway were found to be toxic via carboxylic acid narcosis.

  17. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part II. The application of aerobic sequencing batch reactor (aerobic SBR) to produce high biomass of Dioszegia sp. TISTR 5792.

    PubMed

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-07-03

    This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment.

  18. Effects of a Rebound Exercise Training Program on Aerobic Capacity and Body Composition.

    ERIC Educational Resources Information Center

    Tomassoni, Teresa L.; And Others

    1985-01-01

    This study was designed to determine if aerobic dancing on rebound exercise equipment (minitrampolines) is an effective way to improve aerobic capacity and body composition. Although aerobic capacity improved, percent body fat did not change. Results were similar to those produced by conventional aerobic dance programs of like intensity. (MT)

  19. Issues of Health, Appearance and Physical Activity in Aerobic Classes for Women

    ERIC Educational Resources Information Center

    D'Abundo, Michelle Lee

    2009-01-01

    The purpose of this research was to explore what appearance-focused messages were conveyed by aerobic instructors in aerobic classes for women. This qualitative research was influenced by the concept of wellness and how feminist pedagogy can be applied to promote individuals' well-being in aerobic classes. The practices of five aerobic instructors…

  20. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin.

    PubMed

    Amorim, Catarina L; Maia, Alexandra S; Mesquita, Raquel B R; Rangel, António O S S; van Loosdrecht, Mark C M; Tiritan, Maria Elizabeth; Castro, Paula M L

    2014-03-01

    A granular sludge sequencing batch reactor (SBR) was operated for 340 days for treating a synthetic wastewater containing fluoroquinolones (FQs), namely ofloxacin, norfloxacin and ciprofloxacin. The SBR was intermittently fed with FQs, at concentrations of 9 and 32 μM. No evidence of FQ biodegradation was observed but the pharmaceutical compounds adsorbed to the aerobic granular sludge, being gradually released into the medium in successive cycles after stopping the FQ feeding. Overall COD removal was not affected during the shock loadings. Activity of ammonia oxidizing bacteria and nitrite oxidizing bacteria did not seem to be inhibited by the presence of FQs (maximum of 0.03 and 0.01 mM for ammonium and nitrite in the effluent, respectively). However, during the FQs feeding, nitrate accumulation up to 1.7 mM was observed at the effluent suggesting that denitrification was inhibited. The activity of phosphate accumulating organisms was affected, as indicated by the decrease of P removal capacity during the aerobic phase. Exposure to the FQs also promoted disintegration of the granules leading to an increase of the effluent solid content, nevertheless the solid content at the bioreactor effluent returned to normal levels within ca. 1 month after removing the FQs in the feed allowing recovery of the bedvolume. Denaturing gradient gel electrophoresis revealed a dynamic bacterial community with gradual changes due to FQs exposure. Bacterial isolates retrieved from the granules predominantly belonged to α- and γ-branch of the Proteobacteria phylum. The capacity of the system to return to its initial conditions after withdrawal of the FQ compounds in the inlet stream, reinforced its robustness to deal with wastewaters containing organic pollutants.

  1. Prediction of Maximum Aerobic Power in Untrained Females

    ERIC Educational Resources Information Center

    Dolgener, Forrest A.

    1978-01-01

    The author presents an equation for predicting maximum aerobic power in untrained females from values of percent body fat, weight, and submaximal values of heart rate, respiratory quotient, and expired gas. (MJB)

  2. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation.

  3. Demonstrating Bacterial Flagella.

    ERIC Educational Resources Information Center

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  4. Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge.

    PubMed

    Mohanty, Sagarika; Dafale, Nishant; Rao, Nageswara Neti

    2006-10-01

    A two-stage anaerobic-aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l(-1). The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by > 90% increased as the concentration of the dye increased. It was also found that maintaining dissolved oxygen (DO) concentration below 0.5 mg l(-1 )and addition of a co-substrate viz., glucose, facilitates anaerobic decolorization reaction remarkably. An attempt was made to identify the metabolites formed in anaerobic process by using high performance liquid chromatography (HPLC) and UV-VIS spectrophotometry. A plate assay was performed for the detection of dominant decolorizing bacteria. Only a few bacterial colonies with high clearing zones (decolorization zones) were found. The results showed that under anaerobic condition RB-5 molecules were reduced and aromatic amines were generated. The aromatic amine metabolite was partly removed in subsequent aerobic bio-treatment. It was possible to achieve more than 90% decolorization and approximately 46% reduction in amine metabolite concentration through two-stage anaerobic-aerobic treatment after a reaction period of 2 days.

  5. Concomitant aerobic biodegradation of benzene and thiophene

    SciTech Connect

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1998-05-01

    The concomitant aerobic biodegradation of benzene and thiophene was investigated in microcosm experiments using a groundwater enrichment culture. Benzene was biodegraded within 1 d, whereas thiophene could not be biodegraded as the sole source of carbon and energy. Some interesting phenomena were observed when both benzene and thiophene were present. In most cases, removal of thiophene was observed, and the removal occurred concomitantly with the biodegradation of benzene, suggesting that benzene was used as a primary substrate in the cometabolic biodegradation of thiophene. No biodegradation of the two compounds was observed for some combinations of concentrations, suggesting that thiophene could act as an inhibitor to benzene biodegradation. However, this effect could be overcome if more benzene was added to the microcosm. Residual concentrations of benzene and thiophene were observed in some microcosms and the data indicated that the biodegradation of the two compounds stopped when a critical threshold ratio between the concentrations of thiophene and benzene was reached. This ratio varied between 10 and 20. Results from modeling the biodegradation data suggested that thiophene was cometabolized concomitantly with the biodegradation of benzene and that the biodegradation may be described by a modified model based on a traditional model with an inhibition term incorporated.

  6. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  7. Dancing the aerobics ''hearing loss'' choreography

    NASA Astrophysics Data System (ADS)

    Pinto, Beatriz M.; Carvalho, Antonio P. O.; Gallagher, Sergio

    2002-11-01

    This paper presents an overview of gymnasiums' acoustic problems when used for aerobics exercises classes (and similar) with loud noise levels of amplified music. This type of gymnasium is usually a highly reverberant space, which is a consequence of a large volume surrounded by hard surfaces. A sample of five schools in Portugal was chosen for this survey. Noise levels in each room were measured using a precision sound level meter, and analyzed to calculate the standardized daily personal noise exposure levels (LEP,d). LEP,d values from 79 to 91 dB(A) were found to be typical values in this type of room, inducing a health risk for its occupants. The reverberation time (RT) values were also measured and compared with some European legal requirements (Portugal, France, and Belgium) for nearly similar situations. RT values (1 kHz) from 0.9 s to 2.8 s were found. These reverberation time values clearly differentiate between good and acoustically inadequate rooms. Some noise level and RT limits for this type of environment are given and suggestions for the improvement of the acoustical environment are shown. Significant reductions in reverberation time values and noise levels can be obtained by simple measures.

  8. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  9. The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners

    PubMed Central

    GILLEN, ZACHARY M.; WYATT, FRANK B.; WINCHESTER, JASON B.; SMITH, DALTON A.; GHETIA, VIDHI

    2016-01-01

    Research has indicated that combined aerobic and anaerobic training (concurrent training) may improve aerobic performance greater than aerobic training alone. The purpose of this investigation was to establish any associations between aerobic and anaerobic performance. Eleven participants (n = 11, age = 34.1 ± 13 years, VO2max = 58.4 ± 7.8) volunteered for this study. Participants were asked for endurance training experience (4.7 ± 3.7 years) and resistance training experience (4.1 ± 4.6 years). To meet training status, participants were to have a VO2max in the 80th percentile as per ACSM guidelines. The Bruce treadmill test was used to measure aerobic performance. In order to measure anaerobic performance, several tests were completed utilizing a force platform. A Pearson Product R Correlation Coefficient was calculated to determine correlations between variables. The results show significant correlation between VO2max and RFD (r = 0.68). Further analyses utilizing Cohen’s effect size indicated a strong association between VO2max and peak force, as well as running efficiency and peak power, relative peak power, and power endurance. These results indicate an existing possibility that anaerobic performance measures such as RFD may have a positive relationship with aerobic performance measures such as VO2max. Therefore, it may be beneficial to integrate specific training components which focus on improving RFD as a method of improving running performance. PMID:27990224

  10. Aerobic Exercise Preserves Olfaction Function in Individuals with Parkinson's Disease

    PubMed Central

    Rosenfeldt, Anson B.; Dey, Tanujit

    2016-01-01

    Introduction. Based on anecdotal reports of improved olfaction following aerobic exercise, the aim of this study was to evaluate the effects of an 8-week aerobic exercise program on olfaction function in individuals with Parkinson's disease (PD). Methods. Thirty-eight participants with idiopathic PD were randomized to either an aerobic exercise group (n = 23) or a nonexercise control group (n = 15). The aerobic exercise group completed a 60-minute cycling session three times per week for eight weeks while the nonexercise control group received no intervention. All participants completed the University of Pennsylvania Smell Identification Test (UPSIT) at baseline, end of treatment, and a four-week follow up. Results. Change in UPSIT scores between the exercise and nonexercise groups from baseline to EOT (p = 0.01) and from baseline to EOT+4 (p = 0.02) favored the aerobic exercise group. Individuals in the nonexercise group had worsening olfaction function over time, while the exercise group was spared from decline. Discussion. The difference in UPSIT scores suggested that aerobic exercise may be altering central nervous system pathways that regulate the physiologic or cognitive processes controlling olfaction in individuals with PD. While these results provide promising preliminary evidence that exercise may modify the disease process, further systematic evaluation is necessary. PMID:27999706

  11. Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke

    PubMed Central

    Rosenfeldt, Anson B.; Dey, Tanujit; Alberts, Jay L.

    2017-01-01

    OBJECTIVE. To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. METHOD. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. RESULTS. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice–only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. CONCLUSION. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. PMID:28218596

  12. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  13. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  14. A Quiet Riot: Furthering the discussion on aerobic heterotrophy in deep sediments

    NASA Astrophysics Data System (ADS)

    Russell, J. A., III; Biddle, J.

    2014-12-01

    North Pond, a sediment deposit ringed by basalt outcrops just west of the Mid-Atlantic Ridge, remains a site of intense study of the subseafloor biosphere. During IODP Expedition 336, core samples of sediment and basalt were drilled and permanent CORK observatories were installed in the basalt crust. Heterotrophic enrichments were started aboard ship and multiple aerobic, heterotrophic bacterial isolates were obtained from two sediment horizons. Isolate identities were compared to sequences from drilling fluid and surrounding sediment to establish the likelihood of their sedimentary source. Three isolates currently in pure culture are from site U1382B and include an Arthrobacter species from 4 meters below seafloor (mbsf) as well as a Paracoccus and Pseudomonas species from 70 mbsf. All isolates grow at tested temperatures of 4 to 37°C. Only the Arthrobacter species grows at 42°C and no isolates grew at 50°C. The presence of aerobic microorganisms at these depths is consistent with previously published oxygen profiles of site U1382B where O2 is present in low amounts (10 to 20μm) at both 4 mbsf (originating from overlying seawater) and 70 mbsf (originating from subseafloor aquifer leaching into deep sediment), yet substantial enough to support aerobic heterotrophy. Despite similar oxygen concentrations, two key differences between these depths are the origin and quality of organic matter and the surrounding lithology. Section 1H4 from site U1382B, where the Arthrobacter species was isolated, consists primarily of a nanofossil ooze. Section 8H6 (~70 mbsf) is much more clay-rich. Previous explorations of microbial heterotrophy in North Pond sediments using 14C-acetate have suggested that this metabolism may be linked to particular lithologies. A 2011 study noted higher rates of potential aerobic heterotrophy in sandy and clay-rich layers compared to nannofossil ooze layers. Since isolates are from different depths, ages and lithologies they can be used to examine

  15. Vimentin in Bacterial Infections

    PubMed Central

    Mak, Tim N.; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  16. Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Asgharzadeh, Mohammad; Varshochi, Mojtaba; Pirzadeh, Tahereh; Memar, Mohammad Yousef; Zahedi Bialvaei, Abed; Seifi Yarijan Sofla, Hasan; Alizadeh, Naser

    2015-01-01

    Aim: The aim of this study was to investigate anaerobic and aerobic bacteria profile and determination of antibiotic susceptibility pattern in aerobic bacteria. Method: Specimens were cultured using optimal aerobic and anaerobic microbiological techniques. Identification of bacterial isolates was performed by standard microbiological methods and antibiotic susceptibility testing was performed according to the guidelines of Clinical and Laboratory Standards Institute (CLSI). Result: 92 bacterial strains were isolated from 60 samples of diabetic foot ulcers. Predominant aerobic bacteria isolated from these infections were S. aureus (28%) followed by Enterobacteriaceae family (24%) including Escherichia coli (15%), Citrobacter spp. (4%), Enterobacter spp. (4%), and coagulase-negative Staphylococcus spp. (17%), Enterococcus spp. (15%), Pseudomonas aeruginosa (7%) and Acinetobacter spp. (4%). No Clostridium spp. were isolated and 4% Bacteroides fragilis obtained from anaerobic culture. All Gram-positive isolates were susceptible to linezolid while all Enterobacteriaceae showed sensitivity to imipenem. Conclusion: Most of DFIs specimens were poly microbial infection and predominant bacteria were S. aureus and B. fragilis. These wounds may require use of combined antimicrobial therapy for initial management. PMID:25699225

  17. Septins and Bacterial Infection

    PubMed Central

    Torraca, Vincenzo; Mostowy, Serge

    2016-01-01

    Septins, a unique cytoskeletal component associated with cellular membranes, are increasingly recognized as having important roles in host defense against bacterial infection. A role for septins during invasion of Listeria monocytogenes into host cells was first proposed in 2002. Since then, work has shown that septins assemble in response to a wide variety of invasive bacterial pathogens, and septin assemblies can have different roles during the bacterial infection process. Here we review the interplay between septins and bacterial pathogens, highlighting septins as a structural determinant of host defense. We also discuss how investigation of septin assembly in response to bacterial infection can yield insight into basic cellular processes including phagocytosis, autophagy, and mitochondrial dynamics. PMID:27891501

  18. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors.

    PubMed

    Huang, Wenli; Li, Bing; Zhang, Chao; Zhang, Zhenya; Lei, Zhongfang; Lu, Baowang; Zhou, Beibei

    2015-03-01

    The effect of algae growth on aerobic granulation and nutrients removal was studied in two identical sequencing batch reactors (SBRs). Sunlight exposure promoted the growth of algae in the SBR (Rs), forming an algal-bacterial symbiosis in aerobic granules. Compared to the control SBR (Rc), Rs had a slower granulation process with granules of loose structure and smaller particle size. Moreover, the specific oxygen uptake rate was significantly decreased for the granules from Rs with secretion of 25.7% and 22.5% less proteins and polysaccharides respectively in the extracellular polymeric substances. Although little impact was observed on chemical oxygen demand (COD) removal, algal-bacterial symbiosis deteriorated N and P removals, about 40.7-45.4% of total N and 44% of total P in Rs in contrast to 52.9-58.3% of TN and 90% of TP in Rc, respectively. In addition, the growth of algae altered the microbial community in Rs, especially unfavorable for Nitrospiraceae and Nitrosomonadaceae.

  19. Radioassay for Hydrogenase Activity in Viable Cells and Documentation of Aerobic Hydrogen-Consuming Bacteria Living in Extreme Environments

    PubMed Central

    Schink, Bernhard; Lupton, F. S.; Zeikus, J. G.

    1983-01-01

    An isotopic tracer assay based on the hydrogenase-dependent formation of tritiated water from tritium gas was developed for in life analysis of microbial hydrogen transformation. This method allowed detection of bacterial hydrogen metabolism in pure cultures or in natural samples obtained from aquatic ecosystems. A differentiation between chemical-biological and aerobic-anaerobic hydrogen metabolism was established by variation of the experimental incubation temperature or by addition of selective inhibitors. Hydrogenase activity was shown to be proportional to the consumption or production of hydrogen by cultures of Desulfovibrio vulgaris, Clostridium pasteurianum, and Methanosarcina barkeri. This method was applied, in connection with measurements of free hydrogen and most-probable-number enumerations, in aerobic natural source waters to establish the activity and document the ecology of hydrogen-consuming bacteria in extreme acid, thermal, or saline environments. The utility of the assay is based in part on the ability to quantify bacterial hydrogen transformation at natural hydrogen partial pressures, without the use of artificial electron acceptors. PMID:16346288

  20. Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Meng, Qiu; Fu, Huihui; Gao, Haichun

    2016-01-01

    Inhibition of bacterial growth under aerobic conditions by elevated levels of cyclic adenosine 3′,5′-monophosphate (cAMP), first revealed more than 50 years ago, was attributed to accumulation of toxic methylglyoxal (MG). Here, we report a Crp-dependent mechanism rather than MG accumulation that accounts for the phenotype in Shewanella oneidensis, an emerging research model for the bacterial physiology. We show that a similar phenotype can be obtained by removing CpdA, a cAMP phosphodiesterase that appears more effective than its Escherichia coli counterpart. Although production of heme c and cytochromes c is correlated well with cAMP levels, neither is sufficient for the retarded growth. Quantities of overall cytochromes c increased substantially in the presence of elevated cAMP, a phenomenon resembling cells respiring on non-oxygen electron acceptors. In contrast, transcription of Crp-dependent genes encoding both cytochromes bd and cbb3 oxidases is substantially repressed under the same condition. Overall, our results suggest that cAMP of elevated levels drives cells into a low-energetic status, under which aerobic respiration is inhibited. PMID:27076065

  1. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion

    SciTech Connect

    Sanders, R.W.; Porter, K.G.

    1986-07-01

    Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenical) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with (/sup 3/H)thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. The authors recommended that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors.

  2. Risk factors for bacterial contamination during boar semen collection.

    PubMed

    Goldberg, Ana Maria G; Argenti, Laura E; Faccin, Jamil E; Linck, Lídia; Santi, Mônica; Bernardi, Mari Lourdes; Cardoso, Marisa R I; Wentz, Ivo; Bortolozzo, Fernando P

    2013-10-01

    The aim of this study was to evaluate the influence of multiple factors on bacterial contamination in 213 ejaculates from four boar studs. Semen contamination by aerobic mesophiles increased in ejaculates where the preputial fluid flowed into the collection container, collection glove was dirty, preputial hair was long (>1.0 cm), the collection lasted >7 min and boars were older than 18 months. An increase in coliforms occurred when preputial fluid dripped into the collection container, collections lasted >7 min or when penis escaped during collection. Semen contamination increased when two or more factors related to hygiene (poor hygiene of the boar, dirty preputial ostium, large preputial diverticulum, long preputial hair, dirty gloves, preputial liquid trickling from the hand of the technician into the semen container and penis escaping) were present. A vigilant protocol of collection must be followed to minimize bacterial contamination, especially avoiding dripping of preputial liquid into the semen container.

  3. Enhanced mixing and spatial instability in concentrated bacterial suspensions.

    SciTech Connect

    Sokolov, A.; Goldstein, R. E.; Feldchtein, F. I.; Aranson, I. S.; Materials Science Division; Illinois Inst. of Tech.; Univ. of Cambridge; Imalux Corp.

    2009-09-01

    High-resolution optical coherence tomography is used to study the onset of a large-scale convective motion in free-standing thin films of adjustable thickness containing suspensions of swimming aerobic bacteria. Clear evidence is found that beyond a threshold film thickness there exists a transition from quasi-two-dimensional collective swimming to three-dimensional turbulent behavior. The latter state, qualitatively different from bioconvection in dilute bacterial suspensions, is characterized by enhanced diffusivities of oxygen and bacteria. These results emphasize the impact of self-organized bacterial locomotion on the onset of three-dimensional dynamics, and suggest key ingredients necessary to extend standard models of bioconvection to incorporate effects of large-scale collective motion.

  4. The compartmentalized vessel: The bacterial cell as a model for subcellular organization (a tale of two studies).

    PubMed

    Amster-Choder, Orna

    2011-03-01

    The traditional view of bacterial cells as non-compartmentalized, which is based on the lack of membrane-engulfed organelles, is currently being reassessed. Many studies in recent years led to the realization that bacteria have an intricate internal organization that is vital for various cellular processes. Specifically, various machineries were shown to localize to the poles of rod-shaped bacteria. We have recently shown that the control center of the PTS system, which governs carbon uptake and metabolism, localizes to the poles of E. coli cells. Notably, the machinery that controls bacterial taxis along chemical gradients (chemotaxis) has a similar localization pattern. The fact that the two systems need to communicate in order to generate an optimal metabolic response suggests that their similar spatial organization is not a coincidence. Rather, due to their special characteristics, the poles may function as hubs for signaling systems to allow for efficient crosstalk between different pathways in order to improve coordination of their actions.The regulatory mechanisms that underlie the spatial and temporal organization of microbial cells are largely unknown. Thus far, these mechanisms were believed to rely on embedded features of the localized proteins. In another study, we have recently shown that mRNAs are capable of migrating to particular domains in the bacterial cell where their protein products are required. In contrast to the view that transcription and translation are coupled in bacteria, localization of bacterial transcripts may occur in a translation-independent manner. Hence, it seems that the mechanistic basis for separating transcription and translation is more primitive than assumed up until now. We propose that bacteria synthesize proteins either by a transcription-translation coupled mechanism or by transporting mRNAs away from the transcription apparatus. Obviously, eukaryotic cells rely on the latter mechanism. Hence, the capacity of

  5. Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany

    NASA Astrophysics Data System (ADS)

    Toporski, J. K. W.; Steele, A.; Westall, F.; Avci, R.; Martill, D. M.; McKay, D. S.

    2002-05-01

    The fossilised soft tissues of a tadpole and an associated coprolitic structure from the organic-rich volcanoclastic lacustrine Upper Oligocene Enspel sediments (Germany) were investigated using high-resolution imaging techniques and nondestructive in situ surface analysis. Total organic carbon analysis of the coprolite and the sediment revealed values of 28.9 and 8.9% respectively. The soft tissues from the tadpole and the coprolite were found to be composed of 0.5 to 1 μm-sized spheres and rod shapes. These features are interpreted as the fossil remains of bacterial biofilms consisting probably of heterotrophic bacteria and fossilised extracellular polymeric substances. They became fossilised while in the process of degrading the organic matter of the organism and the coprolite. Comparison with a modern marine biofilm revealed morphologic details identical to those observed in the fossil bacterial biofilms. Although the fossil biofilms on both macrofossils exhibited identical microtextures, their mode of preservation was inhomogeneous and varied between calcium phosphate and an as yet unidentified mineral phase consisting mainly of Si, Ca, Ti, P, and S, but also showing the presence of Mg, Al, and Fe. The coprolite consists purely of fossilised bacterial cells in a densely packed arrangement and associated fossilised extracellular polymeric substances. In addition to preliminary imaging and energy-dispersive X-ray analysis, both the fossil biofilms and the sediment were investigated by nondestructive in situ analysis using time of flight-secondary ion mass spectroscopy (ToF-SIMS). The mass spectra obtained on the coprolite in mass-resolved chemical mapping mode allowed the tentative identification of a number of organic secondary ion species. Some spectra appear to indicate the presence of bacterial hopanoids, but further work using standard techniques such as gas chromatography mass spectroscopy is needed to conclusively verify the presence of these substances

  6. Effects of randomly methylated-beta-cyclodextrins (RAMEB) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil.

    PubMed

    Fava, F; Ciccotosto, V F

    2002-03-01

    The low bioavailability of polychlorinated biphenyls (PCBs) in soils often results in their slow and partial aerobic biodegradation. The process can be enhanced by supplementing soils with cyclodextrins. However, pure cyclodextrins are expensive and we have therefore explored the use of a less costly technical grade mixture of randomly methylated-beta-cyclodextrins (RAMEB). RAMEB was tested at 0, 1, 3 and 5% (w/w) in the aerobic bioremediation and detoxification of a loamy-, a humic- and a sandy-soil, each artificially contaminated with a PCB-containing transformer oil (added PCBs: about 450 or 700 mg/kg), inoculated with an exogenous aerobic PCB-biodegrading bacterial co-culture and treated in slurry- and solid-phase laboratory conditions. Significant depletions of the spiked PCBs were observed in all microcosms of the three soils after 90 days of treatment; however, interesting yields of PCB dechlorination and detectable decreases of the original soil ecotoxicity were observed in the slurry-phase microcosms. RAMEB generally enhanced PCB-metabolism with effects which were dependent on the concentration at which it was applied, the physical-chemical nature of the amended soil, and the soil treatment conditions employed. RAMEB, which was slowly metabolized by soil microorganisms, enhanced the presence of PCBs and PCB-cometabolizing bacteria in the soil-water phase, suggesting that RAMEB enhances aerobic biodegradation of PCBs by increasing pollutant bioavailability in soil microcosms.

  7. ABC transporters: bacterial exporters.

    PubMed Central

    Fath, M J; Kolter, R

    1993-01-01

    The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review. PMID:8302219

  8. Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area

    PubMed Central

    Sato-Takabe, Yuki; Nakao, Hironori; Kataoka, Takafumi; Yokokawa, Taichi; Hamasaki, Koji; Ohta, Kohei; Suzuki, Satoru

    2016-01-01

    Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10–53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas. PMID:28018324

  9. Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area.

    PubMed

    Sato-Takabe, Yuki; Nakao, Hironori; Kataoka, Takafumi; Yokokawa, Taichi; Hamasaki, Koji; Ohta, Kohei; Suzuki, Satoru

    2016-01-01

    Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10-53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas.

  10. Bacterial Community Associated with the Intestinal Tract of Chinese Mitten Crab (Eriocheir sinensis) Farmed in Lake Tai, China

    PubMed Central

    Chen, Xiaobing; Di, Panpan; Wang, Hongming; Li, Bailin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Chinese mitten crab (CMC, Eriocheir sinensis) is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal >95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives). Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda). Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host. PMID:25875449

  11. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  12. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil

    PubMed Central

    2010-01-01

    Background Microorganisms that are exposed to pollutants in the environment, such as metals/metalloids, have a remarkable ability to fight the metal stress by various mechanisms. These metal-microbe interactions have already found an important role in biotechnological applications. It is only recently that microorganisms have been explored as potential biofactories for synthesis of metal/metalloid nanoparticles. Biosynthesis of selenium (Se0) nanospheres in aerobic conditions by a bacterial strain isolated from the coalmine soil is reported in the present study. Results The strain CM100B, identified as Bacillus cereus by morphological, biochemical and 16S rRNA gene sequencing [GenBank:GU551935.1] was studied for its ability to generate selenium nanoparticles (SNs) by transformation of toxic selenite (SeO32-) anions into red elemental selenium (Se0) under aerobic conditions. Also, the ability of the strain to tolerate high levels of toxic selenite ions was studied by challenging the microbe with different concentrations of sodium selenite (0.5 mM-10 mM). ESEM, AFM and SEM studies revealed the spherical Se0 nanospheres adhering to bacterial biomass as well as present as free particles. The TEM microscopy showed the accumulation of spherical nanostructures as intracellular and extracellular deposits. The deposits were identified as element selenium by EDX analysis. This is also indicated by the red coloration of the culture broth that starts within 2-3 h of exposure to selenite oxyions. Selenium nanoparticles (SNs) were further characterized by UV-Visible spectroscopy, TEM and zeta potential measurement. The size of nanospheres was in the range of 150-200 nm with high negative charge of -46.86 mV. Conclusions This bacterial isolate has the potential to be used as a bionanofactory for the synthesis of stable, nearly monodisperse Se0 nanoparticles as well as for detoxification of the toxic selenite anions in the environment. A hypothetical mechanism for the biogenesis

  13. Characteristics of alcohol dehydrogenases of certain aerobic bacteria representing human colonic flora.

    PubMed

    Nosova, T; Jousimies-Somer, H; Kaihovaara, P; Jokelainen, K; Heine, R; Salaspuro, M

    1997-05-01

    We have recently proposed the existence of a bacteriocolonic pathway for ethanol oxidation [i.e., ethanol is oxidized by alcohol dehydrogenases (ADHs) of intestinal bacteria resulting in high intracolonic levels of reactive and toxic acetaldehyde]. The aim of this in vitro study was to characterize further ADH activity of some aerobic bacteria, representing the normal human colonic flora. These bacteria were earlier shown to possess high cytosolic ADH activities (Escherichia coli IH 133369, Klebsiella pneumoniae IH 35385, Klebsiella oxytoca IH 35339, Pseudomonas aeruginosa IH 35342, and Hafnia alvei IH 53227). ADHs of the tested bacteria strongly preferred NAD as a cofactor. Marked ADH activities were found in all bacteria, even at low ethanol concentrations (1.5 mM) that may occur in the colon due to bacterial fermentation. The Km for ethanol varied from 29.9 mM for K. pneumoniae to 0.06 mM for Hafnia alvei. The inhibition of ADH by 4-methylpyrazole was found to be of the competitive type in 4 of 5 bacteria, and Ki varied from 18.26 +/- 3.3 mM for Escherichia coli to 0.47 +/- 0.13 mM for K. pneumoniae. At pH 7.4, ADH activity was significantly lower than at pH 9.6 in four bacterial strains. ADH of K. oxytoca, however, showed almost equal activities at neutral pH and at 9.6. In conclusion, NAD-linked alcohol dehydrogenases of aerobic colonic bacteria possess low apparent Km's for ethanol. Accordingly, they may oxidize moderate amounts of ethanol ingested during social drinking with nearly maximal velocity. This may result in the marked production of intracolonic acetaldehyde. Kinetic characteristics of the bacterial enzymes may enable some of them to produce acetaldehyde even from endogenous ethanol formed by other bacteria via alcoholic fermentation. The microbial ADHs were inhibited by 4-methylpyrazole by the same competitive inhibition as hepatic ADH, however, with nearly 1000 times lower susceptibility. Individual variations in human colonic flora may thus

  14. Haemoglobin, blood volume, cardiac function, and aerobic power.

    PubMed

    Gledhill, N; Warburton, D; Jamnik, V

    1999-02-01

    Alterations in [Hb], which are mediated through changes in arterial oxygen content, and alterations in BV, which are mediated through changes in cardiac output (Q), have a significant effect on both VO2max and aerobic performance. If BV is held constant, a decrease in [Hb] (anaemia) causes a decrease in VO2max and aerobic performance, while an increase in [Hb] (blood doping) causes an increase in VO2max and aerobic performance. If [Hb] is held constant, an increase in BV can cause and increase in both VO2max and aerobic performance, while a decrease in BV can cause a decrease in VO2max and aerobic performance. In addition, an increase in BV can compensate for moderate reductions in [Hb] through increase in Q, allowing VO2max to remain unchanged or even increase. Also, a large portion of the difference in the enhanced cardiovascular function of endurance athletes is due to their high BV and the resultant enhancement of diastolic function. Hence, optimizing both [Hb] and BV is a very important consideration for endurance performance.

  15. Gender difference in anaerobic capacity: role of aerobic contribution.

    PubMed

    Hill, D W; Smith, J C

    1993-03-01

    The purpose of this study was to evaluate effects of gender on anaerobic and aerobic contributions to high-intensity exercise. A group of 38 subjects (22 women, 16 men) performed modified Wingate tests against resistances of 0.086 kg kg-1 body mass (0.844 N kg-1) for women and 0.095 kg kg-1 body mass (0.932 N kg-1) for men. The aerobic contribution to total work performed was determined from breath-by-breath analyses of expired gases during each test. Total work in 30 s was 30% lower (Student's t test; P < 0.01) in women than men (211 +/- 5 J kg-1 versus 299 +/- 14 J kg-1). Aerobic contribution was only 7% lower (P = 0.12) in women than men (53 +/- 1 J kg-1 versus 57 +/- 2 J kg-1). The anaerobic component of the work performed, determined by subtraction of the aerobic component from total work in 30 s, was 35% lower (P < 0.01) in women than men (158 +/- 5 J kg-1 versus 242 +/- 15 J kg-1). It is concluded that, because women provide a relatively higher (P < 0.01) portion of the energy for a 30-s test aerobically than men (25% versus 20%), total work during a Wingate test actually underestimates the gender difference in anaerobic capacity between women and men.

  16. Mood alterations in mindful versus aerobic exercise modes.

    PubMed

    Netz, Yael; Lidor, Ronnie

    2003-09-01

    The results of most recent studies have generally indicated an improvement in mood after participation in aerobic exercise. However, only a few researchers have compared mindful modes of exercise with aerobic exercise to examine the effect of 1 single session of exercise on mood. In the present study, the authors assessed state anxiety, depressive mood, and subjective well-being prior to and following 1 class of 1 of 4 exercise modes: yoga, Feldenkrais (awareness through movement), aerobic dance, and swimming; a computer class served as a control. Participants were 147 female general curriculum and physical education teachers (mean age = 40.15, SD = 0.2) voluntarily enrolled in a 1-year enrichment program at a physical education college. Analyses of variance for repeated measures revealed mood improvement following Feldenkrais, swimming, and yoga but not following aerobic dance and computer lessons. Mindful low-exertion activities as well as aerobic activities enhanced mood in 1 single session of exercise. The authors suggest that more studies assessing the mood-enhancing benefits of mindful activities such as Feldenkrais and yoga are needed.

  17. Strength and aerobic training in overweight females in Gdansk, Poland

    PubMed Central

    Sawczyn, Stanisław; Mishchenko, Viktor; Moska, Waldemar; Sawczyn, Michał; Jagiełło, Marina; Kuehne, Tatiana; Nowak, Robert; Cięszczyk, Paweł

    2015-01-01

    We compared the effects of 16-week-training on rest metabolic rate, aerobic power, and body fat, and the post-exercise effects upon rest oxygen uptake and respiratory exchange ratio in overweight middle-aged females. Twenty nine overweight women (BMI 29.9 ± 1.2 kg*m−2) participated in training (3 days a week). The subjects were divided onto groups of aerobic (AT) and strength (ST) training. The results showed that the total body mass decrease and VO2 max increase did not differ in both groups. Decrease in waist circumference after 16 weeks was higher in the ST group. In the ST group fat-free mass increased during the first 8 weeks. Rest metabolic rate was increased significantly at 16th week compared to initial value in ST group only. Significant increase in post-exercise resting VO2 and respiratory exchange ratio at 12 and 36 h was observed after the strength training session only. Increase in rest metabolic rate and post-exercise rest energy expenditure occurred after strength training but not after aerobic training despite the similar increase in aerobic power. The effect of 8–16 weeks of strength training on body mass decrease was higher in comparison to aerobic training. PMID:28352690

  18. Bacterial diversity at different stages of the composting process

    PubMed Central

    2010-01-01

    Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants. PMID:20350306

  19. Degradation of toluene by a mixed population of archetypal aerobes, microaerophiles, and denitrifiers: laboratory sand column experiment and multispecies biofilm model formulation.

    PubMed

    Kim, Hyun-Su; Jaffé, Peter R

    2008-02-01

    An experiment was conducted in a saturated sand column with three bacterial strains that have different growth characteristics on toluene, Pseudomonas putida F1 which degrades toluene only under aerobic conditions, Thauera aromatica T1 which degrades toluene only under denitrifying conditions, and Ralstonia pickettii PKO1 has a facultative nature and can perform nitrate-enhanced biodegradation of toluene under hypoxic conditions (DO <2 mg/L). Steady-state concentration profiles showed that oxygen and nitrate appeared to be utilized simultaneously, regardless of the dissolved oxygen concentration and the results from fluorescent in-situ hybridization (FISH) indicated that PKO1 maintained stable cells numbers throughout the column, even when the pore water oxygen concentration was high. Since PKO1's growth rate under aerobic condition is much lower than that of F1, except under hypoxic conditions, these observations were not anticipated. Therefore these observations require a mechanistic explanation that can account for localized low oxygen concentrations under aerobic conditions. To simulate the observed dynamics, a multispecies biofilm model was implemented. This model formulation assumes the formation of a thin biofilm that is composed of the three bacterial strains. The individual strains grow in response to the substrate and electron acceptor flux from bulk fluid into the biofilm. The model was implemented such that internal changes in bacterial composition and substrate concentration can be simulated over time and space. The model simulations from oxic to denitrifying conditions compared well to the experimental profiles of the chemical species and the bacterial strains, indicating the importance of accounting for the biological activity of individual strains in biofilms that span different redox conditions.

  20. Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants.

    PubMed

    Borde, Xavier; Guieysse, Benoît; Delgado, Osvaldo; Muñoz, Raúl; Hatti-Kaul, Rajni; Nugier-Chauvin, Caroline; Patin, Henri; Mattiasson, Bo

    2003-02-01

    The potential of algal-bacterial microcosms was studied for the biodegradation of salicylate, phenol and phenanthrene. The isolation and characterization of aerobic bacterial strains capable of mineralizing each pollutant were first conducted. Ralstonia basilensis was isolated for salicylate degradation, Acinetobacter haemolyticus for phenol and Pseudomonas migulae and Sphingomonas yanoikuyae for phenanthrene. The green alga Chlorella sorokiniana was then cultivated in the presence of the pollutants at different concentrations, showing increasing inhibitory effects in the following order: salicylate < phenol < phenanthrene. The synergistic relationships in the algal-bacterial microcosms were clearly demonstrated, since for the three contaminants tested, a substantial removal (>85%) was recorded only in the systems inoculated with both algae and bacteria and incubated under continuous lighting. This study presents, to our knowledge, the first reported case of photosynthesis-enhanced biodegradation of toxic aromatic pollutants by algal-bacterial microcosms in a one-stage treatment.

  1. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  2. Effects of 12 weeks of aerobic training on autonomic modulation, mucociliary clearance, and aerobic parameters in patients with COPD

    PubMed Central

    Leite, Marceli Rocha; Ramos, Ercy Mara Cipulo; Kalva-Filho, Carlos Augusto; Freire, Ana Paula Coelho Figueira; de Alencar Silva, Bruna Spolador; Nicolino, Juliana; de Toledo-Arruda, Alessandra Choqueta; Papoti, Marcelo; Vanderlei, Luiz Carlos Marques; Ramos, Dionei

    2015-01-01

    Introduction Patients with chronic obstructive pulmonary disease (COPD) exhibit aerobic function, autonomic nervous system, and mucociliary clearance alterations. These parameters can be attenuated by aerobic training, which can be applied with continuous or interval efforts. However, the possible effects of aerobic training, using progressively both continuous and interval sessions (ie, linear periodization), require further investigation. Aim To analyze the effects of 12-week aerobic training using continuous and interval sessions on autonomic modulation, mucociliary clearance, and aerobic function in patients with COPD. Methods Sixteen patients with COPD were divided into an aerobic (continuous and interval) training group (AT) (n=10) and a control group (CG) (n=6). An incremental test (initial speed of 2.0 km·h−1, constant slope of 3%, and increments of 0.5 km·h−1 every 2 minutes) was performed. The training group underwent training for 4 weeks at 60% of the peak velocity reached in the incremental test (vVO2peak) (50 minutes of continuous effort), followed by 4 weeks of sessions at 75% of vVO2peak (30 minutes of continuous effort), and 4 weeks of interval training (5×3-minute effort at vVO2peak, separated by 1 minute of passive recovery). Intensities were adjusted through an incremental test performed at the end of each period. Results The AT presented an increase in the high frequency index (ms2) (P=0.04), peak oxygen uptake (VO2peak) (P=0.01), vVO2peak (P=0.04), and anaerobic threshold (P=0.02). No significant changes were observed in the CG (P>0.21) group. Neither of the groups presented changes in mucociliary clearance after 12 weeks (AT: P=0.94 and CG: P=0.69). Conclusion Twelve weeks of aerobic training (continuous and interval sessions) positively influenced the autonomic modulation and aerobic parameters in patients with COPD. However, mucociliary clearance was not affected by aerobic training. PMID:26648712

  3. Experimental Bacterial Endocarditis

    PubMed Central

    Durack, David T.; Beeson, Paul B.

    1972-01-01

    A method has been developed for assessing metabolic activity of bacteria in the vegetations of bacterial endocarditis using a labelled metabolite and autoradiography. Evidence provided by this technique suggests that there are different degrees of activity between superficial and more deeply placed bacterial colonies, and that variations in activity also exist within a single group of organisms. The possible relevance of these findings to the antibiotic therapy of endocarditis is discussed. ImagesFigs. 1-3Figs. 4-5 PMID:4111329

  4. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  5. Anaerobic and aerobic treatment of chlorinated, aliphatic compounds

    SciTech Connect

    Long, J.L.; Stensel, H.D.; Ferguson, J.F.; Strand, S.E.; Ongerth, J.E.

    1993-01-01

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). The anaerobic culture degraded seven of the feed CACs. The specialized aerobic cultures degraded all but three of the highly chlorinated CACs. The sequential system outperformed either of the other systems alone by degrading 10 of the feed CACs: chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,1,1-trichloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, perchloroethylene, and 1,2,3-trichloropropane, plus the anaerobic metabolites: dichloromethane and cis-1,2-dichloroethylene.

  6. High-intensity aerobic interval exercise in chronic heart failure.

    PubMed

    Meyer, Philippe; Gayda, Mathieu; Juneau, Martin; Nigam, Anil

    2013-06-01

    Aerobic exercise training is strongly recommended in patients with heart failure (HF) and reduced left ventricular ejection fraction (LVEF) to improve symptoms and quality of life. Moderate-intensity aerobic continuous exercise (MICE) is the best established training modality in HF patients. For about a decade, however, another training modality, high-intensity aerobic interval exercise (HIIE), has aroused considerable interest in cardiac rehabilitation. Originally used by athletes, HIIE consists of repeated bouts of high-intensity exercise interspersed with recovery periods. The rationale for its use is to increase exercise time spent in high-intensity zones, thereby increasing the training stimulus. Several studies have demonstrated that HIIE is more effective than MICE, notably for improving exercise capacity in patients with HF. The aim of the present review is to describe the general principles of HIIE prescription, the acute physiological effects, the longer-term training effects, and finally the future perspectives of HIIE in patients with HF.

  7. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    PubMed

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.

  8. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  9. Vocal parameters of aerobic instructors with and without voice problems.

    PubMed

    Wolfe, Virginia; Long, Joanne; Youngblood, Heather Conner; Williford, Henry; Olson, Michelle Scharff

    2002-03-01

    Aerobic instructors frequently experience vocal fatigue and are at risk for the development of vocal fold pathology. Six female aerobic instructors, three with self-reported voice problems and three without, served as subjects. Measures of vocal function (perturbation and EGG) were obtained before and after a 30-minute exercise session. Results showed that the group with self-reported voice problems had greater amounts of jitter, lower harmonic-to-noise ratios, and less periodicity in sustained vowels overall, but no significant differences in measures of perturbation and EGG were found before and immediately after instruction. Measures of vocal parameters showed that subjects with self-reported voice problems projected with relatively greater vocal intensity and phonated for a greater percentage of time across beginning, middle, and ending periods of aerobic instruction than subjects with no reported voice problems.

  10. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration

    PubMed Central

    Lopez, Christopher A.; Miller, Brittany M.; Rivera-Chávez, Fabian; Velazquez, Eric; Byndloss, Mariana X.; Chávez-Arroyo, Alfredo; Lokken, Kristen L.; Tsolis, Renée M.; Winter, Sebastian E.; Bäumler, Andreas J.

    2016-01-01

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration. PMID:27634526

  11. General review of maximal aerobic velocity measurement at laboratory. Proposition of a new simplified protocol for maximal aerobic velocity assessment.

    PubMed

    Berthon, P; Fellmann, N

    2002-09-01

    The maximal aerobic velocity concept developed since eighties is considered as either the minimal velocity which elicits the maximal aerobic consumption or as the "velocity associated to maximal oxygen consumption". Different methods for measuring maximal aerobic velocity on treadmill in laboratory conditions have been elaborated, but all these specific protocols measure V(amax) either during a maximal oxygen consumption test or with an association of such a test. An inaccurate method presents a certain number of problems in the subsequent use of the results, for example in the elaboration of training programs, in the study of repeatability or in the determination of individual limit time. This study analyzes 14 different methods to understand their interests and limits in view to propose a general methodology for measuring V(amax). In brief, the test should be progressive and maximal without any rest period and of 17 to 20 min total duration. It should begin with a five min warm-up at 60-70% of the maximal aerobic power of the subjects. The beginning of the trial should be fixed so that four or five steps have to be run. The duration of the steps should be three min with a 1% slope and an increasing speed of 1.5 km x h(-1) until complete exhaustion. The last steps could be reduced at two min for a 1 km x h(-1) increment. The maximal aerobic velocity is adjusted in relation to duration of the last step.

  12. [Diagnosis of bacterial vaginosis].

    PubMed

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana

    2013-01-01

    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  13. Assessment of Aerobic Exercise Adverse Effects during COPD Exacerbation Hospitalization

    PubMed Central

    Mesquita, Carolina Bonfanti; Caram, Laura M. O.; Dourado, Victor Zuniga; de Godoy, Irma; Tanni, Suzana Erico

    2017-01-01

    Introduction. Aerobic exercise performed after hospital discharge for exacerbated COPD patients is already recommended to improve respiratory and skeletal muscle strength, increase tolerance to activity, and reduce the sensation of dyspnea. Previous studies have shown that anaerobic activity can clinically benefit patients hospitalized with exacerbated COPD. However, there is little information on the feasibility and safety of aerobic physical activity performed by patients with exacerbated COPD during hospitalization. Objective. To evaluate the effects of aerobic exercise on vital signs in hospitalized patients with exacerbated COPD. Patients and Methods. Eleven COPD patients (63% female, FEV1: 34.2 ± 13.9% and age: 65 ± 11 years) agreed to participate. Aerobic exercise was initiated 72 hours after admission on a treadmill; speed was obtained from the distance covered in a 6-minute walk test (6MWT). Vital signs were assessed before and after exercise. Results. During the activity systolic blood pressure increased from 125.2 ± 13.6 to 135.8 ± 15.0 mmHg (p = 0.004) and respiratory rate from 20.9 ± 4.4 to 24.2 ± 4.5 rpm (p = 0.008) and pulse oximetry (SpO2) decreased from 93.8 ± 2.3 to 88.5 ± 5.7% (p < 0.001). Aerobic activity was considered intense, heart rate ranged from 99.2 ± 11.5 to 119.1 ± 11.1 bpm at the end of exercise (p = 0.092), and patients reached on average 76% of maximum heart rate. Conclusion. Aerobic exercise conducted after 72 hours of hospitalization in patients with exacerbated COPD appears to be safe. PMID:28265180

  14. Chemical characterization of some aerobic liquids in CELSS

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1993-01-01

    Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.

  15. A novel terminal oxidase, cytochrome baa3 purified from aerobically grown Pseudomonas aeruginosa: it shows a clear difference between resting state and pulsed state.

    PubMed

    Fujiwara, T; Fukumori, Y; Yamanaka, T

    1992-08-01

    A novel type of cytochrome c oxidase was purified to homogeneity from Pseudomonas aeruginosa which was grown aerobically. The purified oxidase contained two molecules of heme a, two atoms of copper, and one molecule of protoheme per molecule. One of the two heme a molecules in the oxidase reacted with carbon monoxide, so that the enzyme was of baa3-type. The oxidase molecule was composed of three subunits with molecular weights of 38,000, 57,000, and 82,000. Although the oxidase oxidized ferrocytochrome c-550 obtained from the bacterial cells grown aerobically, the oxidizing activity was not high. The "resting form" and the "pulsed form" of the oxidase were observed clearly with this enzyme, and the transition from the resting form to the pulsed form was accompanied by a distinct change of the enzymatic activity. The difference in the kinetics of the catalytic reactions between the two forms is discussed.

  16. (An)aerobic bacteria found in secondary-cataract material. A SEM/TEM study.

    PubMed

    Kalicharan, D; Jongebloed, W L; Los, L I; Worst, J G

    1992-01-01

    Twenty four patients, who had marked reduction of vision due to secondary-cataract developed after an ECCE, were treated by surgical cleaning of the posterior lens capsule. During this procedure globular secondary-cataract material was removed and collected for morphological examination by SEM and TEM. Fragments of various sizes and shapes, including some with a 'golf ball' structure, were seen; these closely resembled particles frequently found in cataractous lenses. In addition, in 18 patients micro-organisms were found: rod-shaped bacteria, cocci, and in 2 cases yeasts. These findings were the more remarkable because these were clinically quiet eyes with no signs of intra-ocular inflammation and cultures have been persistently negative. We imagine that these bacteria must have entered the eye during the cataract extraction and have settled there without causing an infection.

  17. Bacterial colonization of a fumigated alkaline saline soil.

    PubMed

    Bello-López, Juan M; Domínguez-Mendoza, Cristina A; de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Rodríguez-Valentín, Analine; Ruíz-Valdiviezo, Victor M; Luna-Guido, Marco; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2014-07-01

    After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased.

  18. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.

  19. Microbial Dynamics during Aerobic Exposure of Corn Silage Stored under Oxygen Barrier or Polyethylene Films▿

    PubMed Central

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-01-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm3 m−2 per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log10 CFU g−1, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure. PMID:21821764

  20. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films.

    PubMed

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-11-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm³ m⁻² per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log₁₀ CFU g⁻¹, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure.

  1. Effect of aerobic training and aerobic and resistance training on the inflammatory status of hypertensive older adults.

    PubMed

    Lima, Leandra G; Bonardi, José M T; Campos, Giulliard O; Bertani, Rodrigo F; Scher, Luria M L; Louzada-Junior, Paulo; Moriguti, Júlio C; Ferriolli, Eduardo; Lima, Nereida K C

    2015-08-01

    There is a relationship between high levels of inflammatory markers and low adhesion to the practice of physical activity in the older population. The objective of the present study was to compare the effect of two types of exercise programs, i.e., aerobic training and aerobic plus resistance training on the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) of elderly hypertensive subjects. Hypertensive older volunteers in use of antihypertensive drugs were randomized to three groups: aerobic group (AG), resistance and aerobic group (RAG) and control group (CG). Training lasted 10 weeks, with sessions held three times a week. Blood samples were collected before training and 24 h after completion of the 30 sessions for the determination of serum IL-6 and TNF-α levels. Body mass index was obtained before and after 10 weeks. After intervention, BMI values were lower in AG and RAG compared to CG (p < 0.001), IL-6 was reduced in AG compared to CG (p = 0.04), and TNF-α levels were lower only in RAG compared to CG (p = 0.01). Concluding, both types of training were effective in reducing BMI values in hypertensive older subjects. Aerobic exercise produced the reduction of plasma IL-6 levels. However, the combination of aerobic and resistance exercise, which would be more indicated for the prevention of loss of functionality with aging, showed lower TNF-α mediator after training than control group and a greater fall of TNF-α levels associated to higher BMI reduction.

  2. Helping Adults to Stay Physically Fit: Preventing Relapse Following Aerobic Exercise Training.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; And Others

    1984-01-01

    Long-term adherence to an aerobic exercise regime is a major problem among exercise program graduates. This article discusses the steps involved in developing relapse prevention treatment strategies for aerobic exercise programs. (JMK)

  3. [Population development characteristics of rice crop cultivated on aerobic soil with mulching].

    PubMed

    Sheng, Haijun; Shen, Qirong; Feng, Ke

    2004-01-01

    Field experiments were carried out to study the population development characteristics of rice crop cultivated both on aerobic and waterlogged soil conditions. The results showed that the whole growth duration of rice growing on aerobic soil was one week longer than that on waterlogged soil. Shorter and narrower leaves and smaller LAI of rice population were found on aerobic soil than on waterlogged soil, which resulted in a decreased photosynthesis, smaller amount and lighter weight of rice grains on aerobic soil, compared with those on waterlogged soil. Among the aerobic treatments, more tillers, lower percentage of filled grains and shorter duration of grain forming were found on soils covered with plastic film than on soils covered with semi-decomposed straw or without mulching. The rice grain yield was decreased in the order of waterlogged soil > aerobic soil covered with plastic film > aerobic soil covered with semi-decomposed straw > aerobic soil without mulching.

  4. Aerobic Toluene Degraders in the Rhizosphere of a Constructed Wetland Model Show Diurnal Polyhydroxyalkanoate Metabolism

    PubMed Central

    Lünsmann, Vanessa; Kappelmeyer, Uwe; Taubert, Anja; Nijenhuis, Ivonne; von Bergen, Martin; Müller, Jochen A.; Jehmlich, Nico

    2016-01-01

    ABSTRACT Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. IMPORTANCE Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results

  5. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with lactobacillus buchneri inhibits yeast growth and improves aerobic stability

    PubMed

    Driehuis; Elferink; Spoelstra

    1999-10-01

    Aerobic deterioration of silages is initiated by (facultative) aerobic micro-organisms, usually yeasts, that oxidize the preserving organic acids. In this study, a Lactobacillus buchneri strain isolated from maize silage was evaluated for its potential as a bacterial inoculant that enhances aerobic stability of silages. In four experiments, chopped whole crop maize (30-43% dry matter (DM)) was inoculated with Lact. buchneri and ensiled in laboratory silos. Uninoculated silages served as controls. Analysis of silages treated with Lact. buchneri at levels of 103-106 cfu g-1 after about 3 months of anaerobic storage showedthat acetic acid and 1-propanol contents increased with inoculum levels above 104 cfu g-1,whereas lactic acid decreased. Propionic acid, silage pH and DM loss increased withinoculum levels above 105 cfu g-1. Time course experiments with maize inoculated with Lact. buchneri at 4 x 104-2 x 105 cfu g-1 showed that up to 7-14 d after ensiling, Lact. buchneri had no effect on silage characteristics. Thereafter, the lactic acid content of the inoculated silages declined and, simultaneously, acetic acid and, to a lesser extent, propionic acid and 1-propanol, accumulated. Inoculation reduced survival of yeasts during the anaerobic storage phase and inhibited yeast growth when the silage was exposed to O2, resulting in a substantial improvement in aerobic stability. The results indicate that the use of Lact. buchneri as a silage inoculant can enhance aerobic stability by inhibition of yeasts. The ability of the organism to ferment lactic acid to acetic acid appears to be an important underlying principle of this effect.

  6. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions.

    PubMed

    Dominguez, Silvia A; Schaffner, Donald W

    2007-12-15

    Poultry meat spoils quickly unless it is processed, stored, and distributed under refrigerated conditions. Research has shown that the microbial spoilage rate is predominantly controlled by temperature and the spoilage flora of refrigerated, aerobically-stored poultry meat is generally dominated by Pseudomonas spp. The objective of our study was to develop and validate a mathematical model that predicts the growth of Pseudomonas in raw poultry stored under aerobic conditions over a variety of temperatures. Thirty-seven Pseudomonas growth rates were extracted from 6 previously published studies. Objectives, methods and data presentation formats varied widely among the studies, but all the studies used either naturally contaminated meat or poultry or Pseudomonas isolated from meat or poultry grown in laboratory media. These extracted growth rates were used to develop a model relating growth rate of Pseudomonas to storage or incubation temperature. A square-root equation [Ratkowsky, D.A., Olley, J., McMeekin, T.A., and Ball, A., 1982. Relationship between temperature and growth rate of bacterial cultures. J. Appl. Bacteriol. 149, 1-5.] was used to model the data. Model predictions were then compared to 20 Pseudomonas and 20 total aerobes growth rate measurements collected in our laboratory. The growth rates were derived from more than 600 bacterial concentration measurements on raw poultry at 10 temperatures ranging from 0 to 25 degrees C. Visual inspection of the data and the indices of bias and accuracy factors proposed by Baranyi et al. [Baranyi, J., Pin, C., and Ross, T., 1999. Validating and comparing predictive models. Int. J. Food Micro. 48, 159-166.] were used to analyze the performance of the model. The experimental data for Pseudomonas showed a 4.8% discrepancy with the predictions and a bias of +3.6%. Percent discrepancies show close agreement between model predictions and observations, and the positive bias factor demonstrates that the proposed model over

  7. Duodenal bacterial overgrowth during treatment in outpatients with omeprazole.

    PubMed Central

    Fried, M; Siegrist, H; Frei, R; Froehlich, F; Duroux, P; Thorens, J; Blum, A; Bille, J; Gonvers, J J; Gyr, K

    1994-01-01

    The extent of duodenal bacterial overgrowth during the pronounced inhibition of acid secretion that occurs with omeprazole treatment is unknown. The bacterial content of duodenal juice of patients treated with omeprazole was therefore examined in a controlled prospective study. Duodenal juice was obtained under sterile conditions during diagnostic upper endoscopy. Aspirates were plated quantitatively for anaerobic and aerobic organisms. Twenty five outpatients with peptic ulcer disease were investigated after a 5.7 (0.5) weeks (mean (SEM)) treatment course with 20 mg (nine patients) or 40 mg (16 patients). The control group consisted of 15 outpatients referred for diagnostic endoscopy without prior antisecretory treatment. No patient in the control group had duodenal bacterial overgrowth. In the omeprazole group bacterial overgrowth (> or = 10(5) cfu/ml) was found in 14 (56%) patients (p = 0.0003). The number of bacteria (log10) in duodenal juice in patients treated with omeprazole was distinctly higher (median 5.7; range < 2-8.7) when compared with the control group (median < 2; range < 2-5.0; p = 0.0004). As well as orally derived bacteria, faecal type bacteria were found in seven of 14 and anaerobic bacteria in three of 14 patients. Bacterial overgrowth was similar with the two doses of omeprazole. These results indicate that duodenal bacterial overgrowth of both oral and faecal type bacteria occurs often in ambulatory patients treated with omeprazole. Further studies are needed to determine the clinical significance of these findings, particularly in high risk groups during long term treatment with omeprazole. PMID:8307444

  8. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.; Winfrey, M.R.

    1991-01-01

    Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14CH3HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominating estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demethylation were mainly 14CO2 as well as lesser amounts of 14CH4. Acetogenic activity resulted in fixation of some 14CO2 produced from 14CH3HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14CH4, while aerobic demethylation in freshwater sediments produced small amounts of both 14CH4 and 14CO2. Two species of Desulfovibrio produced only traces of 14CH4 from 14CH3HgI, while a culture of a methylotrophic methanogen formed traces of 14CO2 and 14CH4 when grown on trimethylamine in the presence of the 14CH3HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. However, aerobic demethylation in freshwater sediments as well as anaerobic demethylation in all sediments studied produced primarily carbon dioxide. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates.

  9. Ergolytic/ergogenic effects of creatine on aerobic power.

    PubMed

    Smith, A E; Fukuda, D H; Ryan, E D; Kendall, K L; Cramer, J T; Stout, J

    2011-12-01

    This study evaluated the effects of creatine (Cr) loading and sex differences on aerobic running performance. 27 men (mean±SD; age: 22.2±3.1 years, ht: 179.5±8.7 cm, wt: 78.0±9.8 kg) and 28 women (age: 21.2±2.1 years, ht: 166.0±5.8 cm, wt: 63.4±8.9 kg) were randomly assigned to either creatine (Cr, di-creatine citrate; n=27) or a placebo (PL; n=28) group, ingesting 1 packet 4 times daily (total of 20 g/day) for 5 days. Aerobic power (maximal oxygen consumption: VO2max) was assessed before and after supplementation using open circuit spirometry (Parvo-Medics) during graded exercise tests on a treadmill. 4 high-speed runs to exhaustion were conducted at 110, 105, 100, and 90% of peak velocity to determine critical velocity (CV). Distances achieved were plotted over times-to-exhaustion and linear regression was used to determine the slopes (critical velocity, CV) assessing aerobic performance. The results indicated that Cr loading did not positively or negatively influence VO2max, CV, time to exhaustion or body mass (p>0.05). These results suggest Cr supplementation may be used in aerobic running activities without detriments to performance.

  10. Thirty-Three Years of Aerobic Exercise Adherence.

    ERIC Educational Resources Information Center

    Kasch, Frederick W.

    2001-01-01

    Followed 15 middle-aged men for 25-33 years while they participated in an aerobic exercise program. Adherence in the sample was 100 percent. Possible explanations for the adherence include program leadership, peer support, written evaluations and progress reports, emphasis on health, early and continued interest in sport and exercise, recognition…

  11. Aerobic Exercise Equipment Preferences among Older Adults: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Looney, Marilyn A.; Rimmer, James H.

    2003-01-01

    Developed an instrument to measure the aerobic exercise equipment preference of a frail older population and applied many-facet Rasch analysis to study construct validity and equipment preferences. Results for 16 participants show the usefulness of many-facet Rasch analysis in guiding instrument revision. (SLD)

  12. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy

    PubMed Central

    Schadler, Keri L.; Thomas, Nicholas J.; Galie, Peter A.; Bhang, Dong Ha; Roby, Kerry C.; Addai, Prince; Till, Jacob E.; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S.; Ryeom, Sandra

    2016-01-01

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant. PMID:27589843

  13. Group Aquatic Aerobic Exercise for Children with Disabilities

    ERIC Educational Resources Information Center

    Fragala-Pinkham, Maria; Haley, Stephen M.; O'Neill, Margaret E.

    2008-01-01

    The effectiveness and safety of a group aquatic aerobic exercise program on cardiorespiratory endurance for children with disabilities was examined using an A-B study design. Sixteen children (11 males, five females) age range 6 to 11 years (mean age 9y 7mo [SD 1y 4mo]) participated in this twice-per-week program lasting 14 weeks. The children's …

  14. Aerobic Capacity in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Verschuren, Olaf; Takken, Tim

    2010-01-01

    This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…

  15. Is Low-Impact Aerobic Dance an Effective Cardiovascular Workout?

    ERIC Educational Resources Information Center

    Williford, Henry N.; And Others

    1989-01-01

    Presents results of an investigation comparing energy cost and cardiovascular responses of aerobic dance routines performed at different intensity levels in varying amounts of energy expenditure. For low-impact dance to meet minimum guidelines suggested by the American College of Sports Medicine, it should be performed at high intensity. (SM)

  16. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  17. Aerobic Capacities of Early College High School Students

    ERIC Educational Resources Information Center

    Loflin, Jerry W.

    2014-01-01

    The Early College High School Initiative (ECHSI) was introduced in 2002. Since 2002, limited data, especially student physical activity data, have been published pertaining to the ECHSI. The purpose of this study was to examine the aerobic capacities of early college students and compare them to state and national averages. Early college students…

  18. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  19. Aerobic response to exercise of the fastest land crab.

    PubMed

    Full, R J; Herreid, C F

    1983-04-01

    To view the aerobic response to exercise, the ghost crab Ocypode guadichaudii was run in a treadmill respirometer at three velocities (0.13, 0.19, and 0.28 km/h) while oxygen consumption (VO2) was monitored. A steady-state VO2 that increased linearly with velocity was attained. VO2 transient periods at the beginning and end of exercise were extremely rapid with half times from 50 to 150 s. The magnitude of oxygen deficit and debt were small and both showed increases with an increase in velocity. Oxygen debt was measured at each velocity after 4-, 10-, and 20-min exercise bouts. No change in the magnitude of oxygen debt was observed with respect to exercise duration. Maximal VO2 was 11.9 times the average resting VO2. Oxygen uptake kinetics have shown only very sluggish and reduced rates in five other more sedentary crab species previously tested. The aerobic response pattern observed in the present study is more comparable to that of exercising mammals and highly aerobic ectothermic vertebrates. This suggests that the ghost crab meets the energy demand of sustained exercise by aerobic ATP production in contrast to many other crab species.

  20. AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA

    EPA Science Inventory

    MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...

  1. Relative importance of aerobic versus resistance training for healthy aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review will focus on the importance of aerobic and resistance modes of physical activity for healthy aging as supported by findings in 2007. In line with public health recommendations, several studies in 2007 employed an exercise paradigm that combined both modes of physical activity. While a...

  2. Aerobic Capacity and Anaerobic Power Levels of the University Students

    ERIC Educational Resources Information Center

    Taskin, Cengiz

    2016-01-01

    The aim of study was to analyze aerobic capacity and anaerobic power levels of the university students. Total forty university students who is department physical education and department business (age means; 21.15±1.46 years for male and age means; 20.55±1.79 years for female in department physical education), volunteered to participate in this…

  3. Aerobic Fitness for the Severely and Profoundly Mentally Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    The booklet discusses the aerobic fitness capacities of severely/profoundly retarded students and discusses approaches for improving their fitness. An initial section describes a method for determining the student's present fitness level on the basis of computations of height, weight, blood pressure, resting pulse, and Barach Index and Crampton…

  4. Waiting to inhale: HIF-1 modulates aerobic respiration.

    PubMed

    Boutin, Adam T; Johnson, Randall S

    2007-04-06

    The hypoxia-inducible factor HIF-1 is known to promote anaerobic respiration during low oxygen conditions (hypoxia). In this issue, Fukuda et al. (2007) expand the range of HIF-1's functions by showing that it modulates aerobic respiration as well.

  5. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  6. Teaching Aerobic Cell Respiration Using the 5Es

    ERIC Educational Resources Information Center

    Patro, Edward T.

    2008-01-01

    The 5E teaching model provides a five step method for teaching science. While the sequence of the model is strictly linear, it does provide opportunities for the teacher to "revisit" prior learning before moving on. The 5E method is described as it relates to the teaching of aerobic cell respiration.

  7. Identification of serum analytes and metabolites associated with aerobic capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies aimed at identifying serum markers of cellular metabolism (biomarkers) that are associated at baseline with aerobic capacity (V02 max) in young, healthy individuals have yet to be reported. Therefore, the goal of the present study was to use the standard chemistry screen and untargeted mass ...

  8. The medically important aerobic actinomycetes: epidemiology and microbiology.

    PubMed Central

    McNeil, M M; Brown, J M

    1994-01-01

    The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes. Images PMID:7923055

  9. In situ aerobic cometabolism of chlorinated solvents: a review.

    PubMed

    Frascari, Dario; Zanaroli, Giulio; Danko, Anthony S

    2015-01-01

    The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.

  10. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  11. Measurement Agreement between Estimates of Aerobic Fitness in Youth: The Impact of Body Mass Index

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Welk, Gregory J.; Laurson, Kelly R.; Brown, Dale D.

    2014-01-01

    Purpose: The purpose of this study was to examine the impact of body mass index (BMI) on the agreement between aerobic capacity estimates from different Progressive Aerobic Cardiorespiratory Endurance Run (PACER) equations and the Mile Run Test. Method: The agreement between 2 different tests of aerobic capacity was examined on a large data set…

  12. Effects of dominant somatotype on aerobic capacity trainability

    PubMed Central

    Chaouachi, M; Chaouachi, A; Chamari, K; Chtara, M; Feki, Y; Amri, M; Trudeau, F

    2005-01-01

    Purpose: This study examined the association between dominant somatotype and the effect on aerobic capacity variables of individualised aerobic interval training. Methods: Forty one white North African subjects (age 21.4±1.3 years; V·o2max = 52.8±5.7 ml kg–1 min–1) performed three exercise tests 1 week apart (i) an incremental test on a cycle ergometer to determine V·o2max and V·o2 at the second ventilatory threshold (VT2); (ii) a VAM-EVAL track test to determine maximal aerobic speed (vV·o2max); and (iii) an exhaustive constant velocity test to determine time limit performed at 100% vV·o2max (tlim100). Subjects were divided into four somatometric groups: endomorphs-mesomorphs (Endo-meso; n = 9), mesomorphs (Meso; n = 11), mesomorphs-ectomorphs (Meso-ecto; n = 12), and ectomorphs (Ecto; n = 9). Subjects followed a 12 week training program (two sessions/week). Each endurance training session consisted of the maximal number of successive fractions for each subject. Each fraction consisted of one period of exercise at 100% of vV·o2max and one of active recovery at 60% of vV·o2max. The duration of each period was equal to half the individual tlim100 duration (153.6±39.7 s). After the training program, all subjects were re-evaluated for comparison with pre-test results. Results: Pre- and post-training data were grouped by dominant somatotype. Two way ANOVA revealed significant somatotype-aerobic training interaction effects (p<0.001) for improvements in vV·o2max, V·o2max expressed classically and according to allometric scaling, and V·o2 at VT2. There were significant differences among groups post-training: the Meso-ecto and the Meso groups showed the greatest improvements in aerobic capacity. Conclusion: The significant somatotype-aerobic training interaction suggests different trainability with intermittent and individualised aerobic training according to somatotype. PMID:16306506

  13. Aerobic Development of Elite Youth Ice Hockey Players.

    PubMed

    Leiter, Jeff R; Cordingley, Dean M; MacDonald, Peter B

    2015-11-01

    Ice hockey is a physiologically complex sport requiring aerobic and anaerobic energy metabolism. College and professional teams often test aerobic fitness; however, there is a paucity of information regarding aerobic fitness of elite youth players. Without this knowledge, training of youth athletes to meet the standards of older age groups and higher levels of hockey may be random, inefficient, and or effective. Therefore, the purpose of this study was to determine the aerobic fitness of elite youth hockey players. A retrospective database review was performed for 200 male AAA hockey players between the ages of 13 and 17 (age, 14.4 ± 1.2 years; height, 174.3 ± 8.5 cm; body mass, 67.2 ± 11.5 kg; body fat, 9.8 ± 3.5%) before the 2012-13 season. All subjects performed a graded exercise test on a cycle ergometer, whereas expired air was collected by either a Parvo Medics TrueOne 2400 or a CareFusion Oxycon Mobile metabolic cart to determine maximal oxygen consumption (V[Combining Dot Above]O2max). Body mass, absolute V[Combining Dot Above]O2max, and the power output achieved during the last completed stage increased in successive age groups from age 13 to 15 years (p ≤ 0.05). Ventilatory threshold (VT) expressed as a percentage of V[Combining Dot Above]O2max and the heart rate (HR) at which VT occurred decreased between the ages of 13 and 14 years (p ≤ 0.05), whereas the V[Combining Dot Above]O2 at which VT occurred increased from the age of 14-15 years. There were no changes in relative V[Combining Dot Above]O2max or HRmax between any successive age groups. The aerobic fitness levels of elite youth ice hockey players increased as players age and mature physically and physiologically. However, aerobic fitness increased to a lesser extent at older ages. This information has the potential to influence off-season training and maximize the aerobic fitness of elite amateur hockey players, so that these players can meet standards set by advanced elite age groups.

  14. Bacterial transfer RNAs

    PubMed Central

    Shepherd, Jennifer; Ibba, Michael

    2015-01-01

    Transfer RNA is an essential adapter molecule that is found across all three domains of life. The primary role of transfer RNA resides in its critical involvement in the accurate translation of messenger RNA codons during protein synthesis and, therefore, ultimately in the determination of cellular gene expression. This review aims to bring together the results of intensive investigations into the synthesis, maturation, modification, aminoacylation, editing and recycling of bacterial transfer RNAs. Codon recognition at the ribosome as well as the ever-increasing number of alternative roles for transfer RNA outside of translation will be discussed in the specific context of bacterial cells. PMID:25796611

  15. Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial

    PubMed Central

    Van Sciver, Angela; Mahnken, Jonathan D.; Honea, Robyn A.; Brooks, William M.; Billinger, Sandra A.; Swerdlow, Russell H.; Burns, Jeffrey M.

    2017-01-01

    Background There is increasing interest in the role of physical exercise as a therapeutic strategy for individuals with Alzheimer’s disease (AD). We assessed the effect of 26 weeks (6 months) of a supervised aerobic exercise program on memory, executive function, functional ability and depression in early AD. Methods and findings This study was a 26-week randomized controlled trial comparing the effects of 150 minutes per week of aerobic exercise vs. non-aerobic stretching and toning control intervention in individuals with early AD. A total of 76 well-characterized older adults with probable AD (mean age 72.9 [7.7]) were enrolled and 68 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. Neuropsychological tests and surveys were conducted at baseline,13, and 26 weeks to assess memory and executive function composite scores, functional ability (Disability Assessment for Dementia), and depressive symptoms (Cornell Scale for Depression in Dementia). Cardiorespiratory fitness testing and brain MRI was performed at baseline and 26 weeks. Aerobic exercise was associated with a modest gain in functional ability (Disability Assessment for Dementia) compared to individuals in the ST group (X2 = 8.2, p = 0.02). There was no clear effect of intervention on other primary outcome measures of Memory, Executive Function, or depressive symptoms. However, secondary analyses revealed that change in cardiorespiratory fitness was positively correlated with change in memory performance and bilateral hippocampal volume. Conclusions Aerobic exercise in early AD is associated with benefits in functional ability. Exercise-related gains in cardiorespiratory fitness were associated with improved memory performance and reduced hippocampal atrophy, suggesting cardiorespiratory fitness gains may be important in driving brain benefits. Trial registration ClinicalTrials.gov NCT01128361 PMID:28187125

  16. Control of aerobic glycolysis in the brain in vitro.

    PubMed

    Benjamin, A M; Verjee, Z H

    1980-09-01

    Protoveratrine-(5 microM) stimulated aerobic glycolysis of incubated rat brain cortex slices that accompanies the enhanced neuronal influx of Na+ is blocked by tetrodotoxin (3 microM) and the local anesthetics, cocaine (0.1 mM) and lidocaine (0.5 mM). On the other hand, high [K+]-stimulated aerobic glycolysis that accompanies the acetylcholine-sensitive enhanced glial uptakes of Na+ and water is unaffected by acetylcholine (2 mM). Experiments done under a variety of metabolic conditions show that there exists a better correlation between diminished ATP content of the tissue and enhanced aerobic glycolysis than between tissue ATP and the ATP-dependent synthesis of glutamine. Whereas malonate (2 mM) and amino oxyacetate (5 mM) suppress ATP content and O2 uptake, stimulate lactate formation, but have little effect on glutamine levels, fluoroacetate (3 mM) suppresses glutamine synthesis in glia, presumably by suppressing the operation of the citric acid cycle, with little effect on ATP content, O2 uptake, and lactate formation. Exogenous citrate (5 mM), which may be transported and metabolized in glia but not in neurons, inhibits lactate formation by cell free acetone-dried powder extracts of brain cortex but not by brain cortex slices. These results suggest that the neuron is the major site of stimulated aerobic glycolysis in the brain, and that under our experimental conditions glycolysis in glia is under lesser stringent metabolic control than that in the neuron. Stimulation of aerobic glycolysis by protoveratrine occurs due to diminution of the energy charge of the neuron as a result of stimulation of the sodium pump following tetrodotoxin-sensitive influx of Na+; stimulation by high [K+], NH4+, or Ca2+ deprivation occurs partly by direct stimulation of key enzymes of glycolysis and partly by a fall in the tissue ATP concentration.

  17. Acute aerobic exercise modulates primary motor cortex inhibition.

    PubMed

    Mooney, Ronan A; Coxon, James P; Cirillo, John; Glenny, Helen; Gant, Nicholas; Byblow, Winston D

    2016-12-01

    Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABAB-mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.

  18. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  19. The effects of Propionibacterium acidipropionici and Lactobacillus plantarum, applied at ensiling, on the fermentation and aerobic stability of low dry matter corn and sorghum silages.

    PubMed

    Filya, I; Sucu, E; Karabulut, A

    2006-05-01

    The aim of this work was to study the effects of applying a strain of Propionibacterium acidipropionici, with or without Lactobacillus plantarum, on the fermentation and aerobic stability characteristics of low dry matter (DM) corn (Zea mays L.) and sorghum (Sorghum bicolor L.) silages. Corn at the dent stage and sorghum at the flowering stage were harvested. Treatments comprised control (no additives), P. acidipropionici, L. plantarum and a combination of P. acidipropionici and L. plantarum. Fresh forages were sampled prior to ensiling. Bacterial inoculants were applied to the fresh forage at 1.0 x 10(6) colony-forming units per gram. After treatment, the chopped fresh materials were ensiled in 1.5-l anaerobic glass jars equipped with a lid that enabled gas release only. Three jars per treatment were sampled on days 2, 4, 8, 16 and 60 after ensiling, for chemical and microbiological analysis. At the end of the ensiling period, 60 days, the silages were subjected to an aerobic stability test. The L. plantarum inoculated silages had significantly higher levels of lactic acid than the controls, P. acidipropionici and combination of P. acidipropionici and L. plantarum inoculated silages (P<0.05). The P. acidipropionici did not increase propionic and acetic acid levels of the silages. After the aerobic exposure test, the L. plantarum and combination of P. acidipropionici and L. plantarum had produced more CO2 than the controls and the silages inoculated with P. acidipropionici (P<0.05). All silages had high levels of CO2 and high numbers of yeasts and molds in the experiment. Therefore, all silages were deteriorated under aerobic conditions. The P. acidipropionici and combination of P. acidipropionici and L. plantarum were not able to improve the aerobic stability of fast-fermenting silages, because they could not work well in this acidic environment. The results showed that P. acidipropionici and combination of P. acidipropionici and L. plantarum did not improve the

  20. Effects of Aerobic Exercise Based upon Heart Rate at Aerobic Threshold in Obese Elderly Subjects with Type 2 Diabetes

    PubMed Central

    Donini, Lorenzo Maria

    2015-01-01

    In obese diabetic subjects, a correct life style, including diet and physical activity, is part of a correct intervention protocol. Thus, the aim of this study was to evaluate the effects of aerobic training intervention, based on heart rate at aerobic gas exchange threshold (AerTge), on clinical and physiological parameters in obese elderly subjects with type 2 diabetes (OT2DM). Thirty OT2DM subjects were randomly assigned to an intervention (IG) or control group (CG). The IG performed a supervised aerobic exercise training based on heart rate at AerTge whereas CG maintained their usual lifestyle. Anthropometric measures, blood analysis, peak oxygen consumption (V˙O2peak), metabolic equivalent (METpeak), work rate (WRpeak), and WRAerTge were assessed at baseline and after intervention. After training, patients enrolled in the IG had significantly higher (P < 0.001) V˙O2peak, METpeak, WRpeak, and WRAerTge and significantly lower (P < 0.005) weight, BMI, %FM, and waist circumference than before intervention. Both IG and CG subjects had lower glycated haemoglobin levels after intervention period. No significant differences were found for all the other parameters between pre- and posttraining and between groups. Aerobic exercise prescription based upon HR at AerTge could be a valuable physical intervention tool to improve the fitness level and metabolic equilibrium in OT2DM patients. PMID:26089890

  1. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    PubMed

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  2. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  3. Bacterial microflora of nectarines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  4. Bacterial leaf spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot has been reported in Australia (Queensland), Egypt, El Salvador, India, Japan, Nicaragua, Sudan, and the United States (Florida, Iowa, Kansas, Maryland, and Wisconsin). It occasionally causes locally severe defoliation and post-emergence damping-off and stunting. The disease is...

  5. Bacterial inclusion body purification.

    PubMed

    Seras-Franzoso, Joaquin; Peternel, Spela; Cano-Garrido, Olivia; Villaverde, Antonio; García-Fruitós, Elena

    2015-01-01

    Purification of bacterial inclusion bodies (IBs) is gaining importance due to the raising of novel applications for this type of submicron particulate protein clusters, with potential uses in the biomedical field among others. Here, we present two optimized methods to purify IBs adapting classical procedures to the material nature as well as the requirements of its final application.

  6. Proteases in bacterial pathogenesis.

    PubMed

    Ingmer, Hanne; Brøndsted, Lone

    2009-11-01

    Bacterial pathogens rely on proteolysis for protein quality control under adverse conditions experienced in the host, as well as for the timely degradation of central virulence regulators. We have focused on the contribution of the conserved Lon, Clp, HtrA and FtsH proteases to pathogenesis and have highlighted common biological processes for which their activities are important for virulence.

  7. BACTERIAL WATERBORNE PATHOGENS

    EPA Science Inventory

    Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

  8. The Bacterial Growth Curve.

    ERIC Educational Resources Information Center

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  9. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese.

    PubMed

    Graham, Marilynn H; Bush, Jill A; Olvera, Norma; Puyau, Maurice R; Butte, Nancy F

    2014-10-01

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (≥ 95 th body mass index [BMI] percentile) and 16 children who were considered normal weight (<85th BMI percentile) participated in this study. Performance outcomes included test duration (in minutes) and exercise heart rate (HR) (first-stage and peak HR) for each test. Ninety-five percent confidence intervals and independent t-tests were used to assess differences in primary outcomes. Mean PACER test duration was 1.6 ± 0.6 and 3.1 ± 1.3 minutes for children who were obese and normal weight, respectively. Modified PACER duration was higher than 3 minutes for the obese (3.6 ± 0.6 minutes) and normal weight (5.3 ± 1.2 minutes) groups. Children first-stage HR, expressed as a percent of peak HR, was above the predicted anaerobic threshold during the PACER, but below the anaerobic threshold during the MPACER. Relative first-stage HR was not significantly different between groups for the PACER, but they were significantly different between groups for the MPACER. In conclusion, the MPACER was a better alternative than the PACER for assessing aerobic fitness in Hispanic children who were normal weight and obese. When validated, this modified field test could be used to assess aerobic fitness in Hispanic children, particularly those who are overweight or obese. Additionally, the study provides evidence in which physical educators, personal trainers, and others most apt to assess aerobic fitness in children who are obese, should modify tests originally designed for the population who are normal weight.

  10. Upper intestinal bacterial flora during transpyloric feeding.

    PubMed Central

    Dellagrammaticas, H D; Duerden, B I; Milner, R D

    1983-01-01

    Samples from the pharynx, stomach, duodenum or jejunum, and faeces were collected on 7 days between 1st and 28th day from neonates weighing less than 1.5 kg at birth who were fed by transpyloric tube. These were cultured on selective and non-selective media, and the results were expressed in a semi-quantitative manner. The number of bacterial species and the density of their growth increased with the patient's age; this was particularly noticeable with Gram-negative bacteria and the ratio of Gram-negative to Gram-positive organisms increased steadily in specimens from all sites with increasing age. The upper small intestine was more heavily colonised than the stomach early in life and the microflora present was predominantly faecal in nature. The species isolated from all sites were mainly aerobes or facultative anaerobes; strict anaerobes did not form a significant proportion of the microflora in these infants. Necrotising enterocolitis developed only after heavy jejunal colonisation with Gram-negative bacilli. PMID:6402990

  11. Bacterial phenylalanine and phenylacetate catabolic pathway revealed

    PubMed Central

    Teufel, R.; Mascaraque, V.; Ismail, W.; Voss, M.; Perera, J.; Eisenreich, W.; Haehnel, W.; Fuchs, G.

    2010-01-01

    Aromatic compounds constitute the second most abundant class of organic substrates and environmental pollutants, a substantial part of which (e.g., phenylalanine or styrene) is metabolized by bacteria via phenylacetate. Surprisingly, the bacterial catabolism of phenylalanine and phenylacetate remained an unsolved problem. Although a phenylacetate metabolic gene cluster had been identified, the underlying biochemistry remained largely unknown. Here we elucidate the catabolic pathway functioning in 16% of all bacteria whose genome has been sequenced, including Escherichia coli and Pseudomonas putida. This strategy is exceptional in several aspects. Intermediates are processed as CoA thioesters, and the aromatic ring of phenylacetyl-CoA becomes activated to a ring 1,2-epoxide by a distinct multicomponent oxygenase. The reactive nonaromatic epoxide is isomerized to a seven-member O-heterocyclic enol ether, an oxepin. This isomerization is followed by hydrolytic ring cleavage and β-oxidation steps, leading to acetyl-CoA and succinyl-CoA. This widespread paradigm differs significantly from the established chemistry of aerobic aromatic catabolism, thus widening our view of how organisms exploit such inert substrates. It provides insight into the natural remediation of man-made environmental contaminants such as styrene. Furthermore, this pathway occurs in various pathogens, where its reactive early intermediates may contribute to virulence. PMID:20660314

  12. Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization.

    PubMed

    Spickler, J L; Buhr, R J; Cox, N A; Bourassa, D V; Rigsby, L L

    2011-07-01

    This study compared surface and deep eggshell aerobic bacteria recovered by the rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of no treatment, water, and 3 sanitizers. The sanitizers were H(2)O(2), phenol, and Q(4)B (a compound chemical containing 4 quaternary ammoniums and 1 biguanide moiety). Eggs were sprayed according to treatment and allowed to dry for 1 h before sampling. To collect samples for the eggshell rinse, each egg was massaged in a plastic bag with 20 mL of saline. Eggshells were then aseptically opened and their contents were discarded before being individually crushed into 50-mL centrifuge tubes containing 20 mL of saline. Aerobic bacteria were enumerated on Petrifilm after 48 h of incubation at 37°C. Aerobic bacteria recovered (log(10) cfu/mL) from the eggshell rinse were highest and similar for the no-treatment (4.0) and water (3.7) groups, lower for the phenol (3.2) and H(2)O(2) (3.1) groups, and lowest for the Q(4)B (2.4) group. Aerobic bacteria levels with the crush-and-rub method were similar for the no-treatment (2.5) and water (2.3) groups, lower for the phenol (1.6) group, intermediate for the H(2)O(2) (1.2) group, and lowest for the Q(4)B (0.9) group. The overall correlation between the rinse and crush-and-rub sampling methods for individual egg aerobic bacteria counts was r = 0.71. The correlation within each treatment revealed the following r values: no treatment, 0.55; water, 0.72; H(2)O(2), 0.67; phenol, 0.73; and Q(4)B, 0.38. A second experiment was designed to further examine the lower aerobic bacterial levels recovered by the crush-and-rub method (for previously rinsed eggs) than the levels recovered in the initial eggshell rinse sample. Eggs were either rinsed and then crushed and rubbed, or they were only crushed and rubbed without a prior rinse. Results confirmed a significant decrease (1.5 log(10) cfu/mL) in bacteria levels

  13. Ozone oxidation and aerobic biodegradation with spent mushroom compost for detoxification and benzo(a)pyrene removal from contaminated soil.

    PubMed

    Russo, Lara; Rizzo, Luigi; Belgiorno, Vincenzo

    2012-05-01

    The combination of ozonation and spent mushroom compost (SMC)-mediated aerobic biological treatment was investigated in the removal of benzo(a)pyrene from contaminated soil. The performances of the process alone and combined were evaluated in terms of benzo(a)pyrene removal efficiency, mineralization efficiency (as total organic carbon removal), and soil residual toxicity (phytotoxicity to Lepidium Sativum and toxicity to Vibrio fischeri). In spite of the removal efficiency (35%) obtained by SMC-mediated biological process as a stand-alone treatment, the combined process showed a benzo(a)pyrene concentration reduction higher than 75%; the best removal (82%) was observed after 10 min pre-ozonation treatment. In particular, ozonation improved the biodegradability of the contaminant, as confirmed by the increase of CO(2) production (close to 70% compared to the control), mineralization (greater than 60%) and bacterial density (which increased by two orders of magnitude). Moreover, according to phytotoxicity tests on L. Sativum, the aerobic biological process of pre-ozonated soil decreased toxicity. According to the results achieved in the present study, ozonation pre-treatment showed an high potential to overcome the limitation of bioremediation of recalcitrant compound, but it should be carefully operated in order to maximize PAH removal efficiency as well as to minimize soil residual toxicity which can result from the formation of the oxidation intermediates.

  14. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment.

    PubMed

    Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan

    2014-01-01

    In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.

  15. Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil.

    PubMed

    Sánchez-Peinado, María del Mar; González-López, Jesús; Rodelas, Belén; Galera, Vanesa; Pozo, Clementina; Martínez-Toledo, María Victoria

    2008-08-01

    An enrichment culture technique was used to isolate soil bacteria capable of growing in the presence of two different concentrations of linear alkylbenzene sulfonates (LAS) (10 and 500 microg ml(-1)). Nine bacterial strains, representatives of the major colony types of aerobic heterotrophic cultivable bacteria in the enriched samples, were isolated and subsequently identified by PCR-amplification and partial sequencing of the 16S rRNA gene. Amongst the isolates, strains LAS05 (Pseudomonas syringae), LAS06 (Staphylococcus epidermidis), LAS07 (Delftia tsuruhatensis), LAS08 (Staphylococcus epidermidis) and LAS09 (Enterobacter aerogenes), were able to grow in pure culture in dialysed soil media amended with LAS (50 microg ml(-1)). The three Gram-negative strains grew to higher cell numbers in the presence of 50 microg ml(-1) of LAS, compared to LAS-unamended dialysed soil medium, and were selected for further testing of their ability to use LAS as carbon source. However, HPLC analysis of culture supernatants showed that the three strains can tolerate but not degrade LAS when grown in pure cultures. A higher concentration of soluble phosphates was recorded in dialysed soil media amended with LAS (50 microg ml(-1)) compared to unamended control media, suggesting an effect of the surfactant that enhanced the bioavailability of P from soil. The presence of LAS at a concentration of 50 microg ml(-1) had an important impact on growth of selected aerobic heterotrophic soil bacteria, a deleterious effect which may be relevant for the normal function and evolution of agricultural soil.

  16. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    NASA Astrophysics Data System (ADS)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  17. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step

  18. The antimicrobial activity of honey against common equine wound bacterial isolates.

    PubMed

    Carnwath, R; Graham, E M; Reynolds, K; Pollock, P J

    2014-01-01

    Delayed healing associated with distal limb wounds is a particular problem in equine clinical practice. Recent studies in human beings and other species have demonstrated the beneficial wound healing properties of honey, and medical grade honey dressings are available commercially in equine practice. Equine clinicians are reported to source other non-medical grade honeys for the same purpose. This study aimed to assess the antimicrobial activity of a number of honey types against common equine wound bacterial pathogens. Twenty-nine honey products were sourced, including gamma-irradiated and non-irradiated commercial medical grade honeys, supermarket honeys, and honeys from local beekeepers. To exclude contaminated honeys from the project, all honeys were cultured aerobically for evidence of bacterial contamination. Aerobic bacteria or fungi were recovered from 18 products. The antimicrobial activity of the remaining 11 products was assessed against 10 wound bacteria, recovered from the wounds of horses, including methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa. Eight products were effective against all 10 bacterial isolates at concentrations varying from <2% to 16% (v/v). Overall, the Scottish Heather Honey was the best performing product, and inhibited the growth of all 10 bacterial isolates at concentrations ranging from <2% to 6% (v/v). Although Manuka has been the most studied honey to date, other sources may have valuable antimicrobial properties. Since some honeys were found to be contaminated with aerobic bacteria or fungi, non-sterile honeys may not be suitable for wound treatment. Further assessment of gamma-irradiated honeys from the best performing honeys would be useful.

  19. The use of dissolved oxygen-controlled, fed-batch aerobic cultivation for recombinant protein subunit vaccine manufacturing.

    PubMed

    Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony

    2015-11-27

    A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales.

  20. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    PubMed

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application.

  1. Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere

    PubMed Central

    Stiefel, Philipp; Zambelli, Tomaso

    2013-01-01

    In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

  2. Bacterial communities in tetrachloroethene-polluted groundwaters: a case study.

    PubMed

    Kotik, Michael; Davidová, Anna; Voříšková, Jana; Baldrian, Petr

    2013-06-01

    The compositions of bacterial groundwater communities of three sites contaminated with chlorinated ethenes were analyzed by pyrosequencing their 16S rRNA genes. For each location, the entire and the active bacterial populations were characterized by independent molecular analysis of the community DNA and RNA. The sites were selected to cover a broad range of different environmental conditions and contamination levels, with tetrachloroethene (PCE) and trichloroethene (TCE) being the primary contaminants. Before sampling the biomass, a long-term monitoring of the polluted locations revealed high concentrations of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), which are toxic by-products of the incomplete bacterial degradation of PCE and TCE. The applied pyrosequencing technique enabled known dechlorinators to be identified at a very low detection level (<0.25%) without compromising the detailed analysis of the entire bacterial community of these sites. The study revealed that only a few species dominated the bacterial communities, with Albidiferax ferrireducens being the only highly prominent member found at all three sites. Only a limited number of OTUs with abundances of up to 1% and high sequence identities to known dechlorinating microorganisms were retrieved from the RNA pools of the two highly contaminated sites. The dechlorinating consortium was likely to be comprised of cDCE-assimilating bacteria (Polaromonas spp.), anaerobic organohalide respirers (mainly Geobacter spp.), and Burkholderia spp. involved in cometabolic dechlorination processes, together with methylotrophs (Methylobacter spp.). The deep sequencing results suggest that the indigenous dechlorinating consortia present at the investigated sites can be used as a starting point for future bioremediation activities by stimulating their anaerobic and aerobic chloroethene degradation capacities (i.e. reductive dechlorination, and metabolic and cometabolic oxidation).

  3. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    SciTech Connect

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  4. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes

    PubMed Central

    Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    Background The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. Methods A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. Results The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. Conclusions STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients. PMID:26176548

  5. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase

    NASA Astrophysics Data System (ADS)

    Banta, Amy B.; Wei, Jeremy H.; Gill, Clare C. C.; Giner, José-Luis; Welander, Paula V.

    2017-01-01

    Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica. Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.

  6. Nonabsorbable Antibiotics Reduce Bacterial and Endotoxin Translocation in Hepatectomised Rats

    PubMed Central

    Kakkos, S. K.; Kirkilesis, J.; Scopa, C. D.; Arvaniti, A.; Alexandrides, T.

    1997-01-01

    There is increasing evidence that septic complications, occurring after major hepatectomies, may be caused by gram negative bacteria, translocating from the gut. We investigated in rats, the effect of extended hepatectomy on the structure and morphology of the intestinal mucosa as well as on the translocation of intestinal bacteria and endotoxins. We also examined the effect of nonabsorbable antibiotics on reducing the intestinal flora and consequently the phenomenon of translocation by administering neomycin sulphate and cefazoline. Hepatectomy was found to increase translocation, while administration of nonabsorbable antibiotics decreased it significantly. In addition, hepatectomy increased the aerobic cecal bacterial population, which normalised in the group receiving antibiotics. Among the histological parameters evaluated, villus height demonstrated a significant reduction after hepatectomy, while the number of villi per cm and the number of mitoses per crypt, remained unchanged. Our results indicate that administration of nonabsorbable antibiotics presents a positive effect on bacterial and endotoxin translocation after extended hepatectomy, and this may be related to reduction of colonic bacterial load as an intraluminal effect of antibiotics. PMID:9298382

  7. Anamet anaerobic-aerobic treatment of concentrated wastewaters

    SciTech Connect

    Frostell, B.

    1982-01-01

    The process, consisting of a closed anaerobic tank reactor with side mounted agitator and electric heaters to control temperature at 35-37 degrees, an external solids separator for recycle of anaerobic sludge, an open aerobic tank reactor with an air sparger at the bottom, and a conical settling clarifier to separate and recycle aerobic sludge, decreased the COD from 3-89 to 0.10-18 and the BOD5 from 1.4-26 to 0.03-0.30 g O2/L in dairy, vegetable cannery, beet sugar, wheat starch, mixed pulp and paper, citric acid, and rum distillery wastewater. Recoveries of CH4-containing gas produced by the process were 69-107% of theory. Total excess sludge production was only 0.05 kg/kg COD added or 0.06 kg/kg COD removed.

  8. Aerobic and microaerophilic actinomycetes of typical agropeat and peat soils

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Gryadunova, A. A.; Pozdnyakov, A. I.; Zvyagintsev, D. G.

    2008-02-01

    A high number (from tens of thousands to millions of CFU/g of soil) of actinomycetes and a high diversity of genera were found in typical peat and agropeat soils. Agricultural use increases the number and diversity of the actinomycete complexes of the peat soils. In the peat soils, the actinomycete complex is represented by eight genera: Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, Saccharopolyspora, Saccharomonospora, and Microtetraspora. A considerable share of sporangial forms in the actinomycete complex of the peat soils not characteristic of the zonal soils was revealed. The number of actinomycetes that develop under aerobic conditions is smaller by 10-100 times than that of aerobic forms in the peat soils. Among the soil actinomycetes of the genera Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, and Microtetraspora, the microaerophilic forms were found; among the Saccharopolyspora and Saccharomonospora, no microaerophilic representatives were revealed.

  9. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females.

    PubMed

    Myers, Terrence R; Schneider, Matthew G; Schmale, Matthew S; Hazell, Tom J

    2015-06-01

    This study aimed to determine whether a time-effective whole-body aerobic resistance training circuit using only body weight exercises is as effective in improving aerobic and anaerobic fitness, as well as muscular strength and endurance as a traditional concurrent style training combining resistance and endurance training. Thirty-four sedentary females (20.9 ± 3.2 years; 167.6 ± 6.4 cm; 65.0 ± 15.2 kg) were assigned to either: (a) a combined resistance and aerobic exercise group (COMBINED; n = 17) or (b) a circuit-based whole-body aerobic resistance training circuit group (CIRCUIT; n = 17). Training was 3 days per week for 5 weeks. Pre- and post-training measures included a (Equation is included in full-text article.)test, anaerobic Wingate cycling test, and muscular strength and endurance tests. After training, (Equation is included in full-text article.)improved with CIRCUIT by 11% (p = 0.015), with no change for COMBINED (p = 0.375). Both relative peak power output and relative average power output improved with CIRCUIT by 5% (p = 0.027) and 3.2% (p = 0.006), respectively, and with COMBINED by 5.3% (p = 0.025) and 5.1% (p = 0.003). Chest and hamstrings 1 repetition maximum (1RM) improved with CIRCUIT by 20.6% (p = 0.011) and 8.3% (p = 0.022) and with COMBINED by 35.6% (p < 0.001) and 10.2% (p = 0.004), respectively. Only the COMBINED group improved back (11.7%; p = 0.017) and quadriceps (9.6%; p = 0.006) 1RM. The COMBINED group performed more repetitions at 60% of their pretraining 1RM for back (10.0%; p = 0.006) and hamstring (23.3%; p = 0.056) vs. CIRCUIT. Our results suggest that a circuit-based whole-body aerobic resistance training program can elicit a greater cardiorespiratory response and similar muscular strength gains with less time commitment compared with a traditional resistance training program combined with aerobic exercise.

  10. A redox-responsive transcription factor is critical for pathogenesis and aerobic growth of Listeria monocytogenes.

    PubMed

    Whiteley, Aaron T; Ruhland, Brittany R; Edrozo, Mauna B; Reniere, Michelle L

    2017-02-13

    Bacterial pathogens have evolved sophisticated mechanisms to sense and adapt to redox stress in nature and within the host. However, deciphering the redox environment encountered by intracellular pathogens in the mammalian cytosol is challenging and remains poorly understood. In this study, we assessed the contributions of the two redox-responsive, Spx-family transcriptional regulators to the virulence of Listeria monocytogenes, a Gram-positive facultative intracellular pathogen. Spx-family proteins are highly conserved in Firmicutes and L. monocytogenes encodes two paralogues, spxA1 and spxA2 Here, we demonstrated that spxA1, but not spxA2, was required for the oxidative stress response and pathogenesis. SpxA1 function appeared to be conserved with the Bacillus subtilis homologue and resistance to oxidative stress required the canonical CXXC redox-sensing motif. Remarkably, spxA1 was essential for aerobic growth, demonstrating that L. monocytogenes SpxA1 likely regulates a distinct set of genes. Although the ΔspxA1 mutant did not grow in the presence of oxygen in the laboratory, it was able to replicate in macrophages and colonize the spleens, but not the livers, of infected mice. These data suggest that the redox state of bacteria during infection differs significantly from bacteria growing in vitro Further, the host cell cytosol may resemble an anaerobic environment with tissue-specific variations in redox stress and oxygen concentration.

  11. An initial investigation into the ecology of culturable aerobic postmortem bacteria.

    PubMed

    Chun, Lauren P; Miguel, Marcus J; Junkins, Emily N; Forbes, Shari L; Carter, David O

    2015-12-01

    Postmortem microorganisms are increasingly recognized for their potential to serve as physical evidence. Yet, we still understand little about the ecology of postmortem microbes, particularly those associated with the skin and larval masses. We conducted an experiment to characterize microbiological and chemical properties of decomposing swine (Sus scrofa domesticus) carcasses on the island of Oahu, Hawaii, USA, during June 2013. Bacteria were collected from the head, limb, and larval mass during the initial 145h of decomposition. We also measured the pH, temperature, and oxidation-reduction potential of larval masses in situ. Bacteria were cultured aerobically on Standard Nutrient Agar at 22°C and identified using protein or genetic signals. Carcass decomposition followed a typical sigmoidal pattern and associated bacterial communities differed by sampling location and time since death, although all communities were dominated by phyla Actinobacteria, Firmicutes, and Proteobacteria. Larval masses were reducing environments (~-200mV) of neutral pH (6.5-7.5) and high temperature (35°C-40°C). We recommend that culturable postmortem and larval mass microbiology and chemistry be investigated in more detail, as it has potential to complement culture-independent studies and serve as a rapid estimate of PMI.

  12. Continuous coculture degradation of selected polychlorinated biphenyl congeners by Acinetobacter spp. in an aerobic reactor system

    SciTech Connect

    Adriaens, P.; Focht, D.D. )

    1990-07-01

    A coculture of two Acinetobacter spp. was applied to degrade polychlorinated biphenyls during a 42-day incubation study in a continuous aerobic fixed-bed reactor system, filled with polyurethane foam boards as support for bacterial biofilm development. The reactor was supplied with mineral medium containing 500 ppm sodium benzoate as a growth (primary) substrate, while the incoming airstream was saturated with biphenyl vapors to induce for PCB cometabolism in Acinetobacter sp. strain P6. The chlorobenzoates thus generated from 4,4{prime}-dichlorobiphenyl (4,4{prime}-DCBP), 3,4-dichlorobiphenyl (3,4-DCBP), and 3,3{prime},4,4{prime}-tetrachlorobiphenyl were further metabolized by Acinetobacter sp. strain 4-CB1. The chlorobenzoate metabolites, as well as ring-fission product ({lambda}{sub max} = 442 nm) from the PCB congeners, accounted for the degradation of 63% (2.8 mM) of the 4,4{prime}-DCBP, 100% (0.5 mM) of the 3,4-DCBP, and 32% (0.12 mM) of the 3,3{prime},4,4{prime}-TCBP, the biofilm responded with a concurrent higher release of chlorobenzoates and chloride through cosubstrate utilization.

  13. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised

    NASA Technical Reports Server (NTRS)

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2005-01-01

    The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

  14. Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge.

    PubMed

    Wang, Dianzhan; Zheng, Guanyu; Wang, Shimei; Zhang, Dewei; Zhou, Lixiang

    2011-01-01

    Aniline-degrading microbes were cultivated and acclimated with the initial activated sludge collected from a chemical wastewater treatment plant. During the acclimation processes, aerobic granular sludge being able to effectively degrade aniline was successfully formed, from which a preponderant bacterial strain was isolated and named as AN1. Effects of factors including pH, temperature, and second carbon/nitrogen source on the biodegradation of aniline were investigated. Results showed that the optimal conditions for the biodegradation of aniline by the strain AN1 were at pH 7.0 and 28-35 degrees C. At the optimal pH and temperature, the biodegradation rate of aniline could reach as high as 17.8 mg/(L x hr) when the initial aniline concentration was 400 mg/L. Further studies revealed that the addition of 1 g/L glucose or ammonium chloride as a second carbon or nitrogen source could slightly enhance the biodegradation efficiency from 93.0% to 95.1%-98.5%. However, even more addition of glucose or ammonium could not further enhance the biodegradation process but delayed the biodegradation of aniline by the strain AN1. Based on morphological and physiological characteristics as well as the phylogenetic analysis of 26S rDNA sequences, the strain AN1 was identified as Candida tropicalis.

  15. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms.

    PubMed

    Chaillan, Frédéric; Le Flèche, Anne; Bury, Edith; Phantavong, Y-Hui; Grimont, Patrick; Saliot, Alain; Oudot, Jean

    2004-09-01

    Screening of aerobic culturable hydrocarbon (HC)-degrading microorganisms isolated from petroleum-polluted soils and cyanobacterial mats from Indonesia resulted in the collection of 33 distinct species. Eight bacteria, 21 fungi and 4 yeasts were identified to the specific level by molecular and phenotypic techniques. Bacterial strains belonged to the genera Gordonia, Brevibacterium, Aeromicrobium, Dietzia, Burkholderia and Mycobacterium. Four species are new and not yet described. Fungi belonged to Aspergillus, Penicillium, Fusarium, Amorphoteca, Neosartorya, Paecilomyces, Talaromyces and Graphium. Yeasts were Candida, Yarrowia and Pichia. All strains were cultivated axenically in synthetic liquid media with crude oil as sole carbon and energy source. After incubation, the detailed chemical composition of the residual oil was studied by gravimetric and gas-chromatographic techniques. Thirteen parameters for assessing the biodegradation potential were defined and computed for each strain. Maximum degradation was observed on the saturated HCs (n- and isoalkanes, isoprenoids), whereas aromatic HC degradation was lower and was related to the structural composition of the molecules. A principal components analysis (PCA) permitted grouping and classifying the strains as a function of their degradative capacities. It was shown that the most active strains produced polar metabolites which accumulated in the resins and asphaltene fractions. These fractions are highly resistant to microbial metabolism. No taxonomic trend could be defined between microbial phyla in terms of HC biodegradation activity.

  16. Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene.

    PubMed

    Vorbeck, C; Lenke, H; Fischer, P; Spain, J C; Knackmuss, H J

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur.

  17. Kinetic Behavior of Salmonella on Low NaNO2 Sausages during Aerobic and Vacuum Storage

    PubMed Central

    Ha, Jimyeong; Gwak, Eunji; Oh, Mi-Hwa; Park, Beomyoung; Lee, Jeeyeon; Kim, Sejeong; Lee, Heeyoung; Lee, Soomin; Yoon, Yohan; Choi, Kyoung-Hee

    2016-01-01

    This study evaluated the growth kinetics of Salmonella spp. in processed meat products formulated with low sodium nitrite (NaNO2). A 5-strain mixture of Salmonella spp. was inoculated on 25-g samples of sausages formulated with sodium chloride (NaCl) (1.0%, 1.25%, and 1.5%) and NaNO2 (0 and 10 ppm) followed by aerobic or vacuum storage at 10℃ and 15℃ for up to 816 h or 408 h, respectively. The bacterial cell counts were enumerated on xylose lysine deoxycholate agar, and the modified Gompertz model was fitted to the Salmonella cell counts to calculate the kinetic parameters as a function of NaCl concentration on the growth rate (GR; Log CFU/g/h) and lag phase duration (LPD; h). A linear equation was then fitted to the parameters to evaluate the effect of NaCl concentration on the kinetic parameters. The GR values of Salmonella on sausages were higher (p<0.05) with 10 ppm NaNO2 concentration than with 0 ppm NaNO2. The GR values of Salmonella decreased (p<0.05) as NaCl concentration increased, especially at 10℃. This result indicates that 10 ppm NaNO2 may increase Salmonella growth at low NaCl concentrations, and that NaCl plays an important role in inhibiting Salmonella growth in sausages with low NaNO2. PMID:27194936

  18. Clinical evaluation of moxalactam: evidence of decreased efficacy in gram-positive aerobic infections.

    PubMed Central

    Salzer, W; Pegram, P S; McCall, C E

    1983-01-01

    Moxalactam was used as initial, empirical therapy in 69 patients with a variety of serious bacterial infections, 32% of which were accompanied by bacteremia. Overall, the success rate was 83% and drug-related adverse effects were minimal. The drug was less efficacious in infections caused by aerobic gram-positive pathogens than it was in those caused by gram-negative pathogens. The following gram-positive organisms were associated with special problems during moxalactam therapy: Streptococcus pneumoniae (development of meningitis and a relapse of pneumonia with a more resistant strain), Staphylococcus epidermidis (in vivo emergence of moxalactam resistance, and the enterococci (failure of therapy and a fatal superinfection. Moxalactam performed well in infections caused by most gram-negative organisms, including aminoglycoside-resistant strains, but the previously reported emergence of gram-negative bacillary resistance to moxalactam during therapy was reconfirmed in our series with Serratia marcescens. The use of moxalactam in the treatment of gram-negative meningitis was further supported by a patient with meningitis-ventriculitis caused by Bacteroides fragilis who was cured with moxalactam after failure on chloramphenicol. PMID:6222696

  19. Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene

    PubMed Central

    Vorbeck, Claudia; Lenke, Hiltrud; Fischer, Peter; Spain, Jim C.; Knackmuss, Hans-Joachim

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H−-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H−-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT−), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur. PMID:16349484

  20. Reducing time to identification of aerobic bacteria and fastidious micro-organisms in positive blood cultures.

    PubMed

    Intra, J; Sala, M R; Falbo, R; Cappellini, F; Brambilla, P

    2016-12-01

    Rapid and early identification of micro-organisms in blood has a key role in the diagnosis of a febrile patient, in particular, in guiding the clinician to define the correct antibiotic therapy. This study presents a simple and very fast method with high performances for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after only 4 h of incubation. We used early bacterial growth on PolyViteX chocolate agar plates inoculated with five drops of blood-broth medium deposited in the same point and spread with a sterile loop, followed by a direct transfer procedure on MALDI-TOF MS target slides without additional modification. Ninety-nine percentage of aerobic bacteria were correctly identified from 600 monomicrobial-positive blood cultures. This procedure allowed obtaining the correct identification of fastidious pathogens, such as Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae that need complex nutritional and environmental requirements in order to grow. Compared to the traditional pathogen identification from blood cultures that takes over 24 h, the reliability of results, rapid performance and suitability of this protocol allowed a more rapid administration of optimal antimicrobial treatment in the patients.