Science.gov

Sample records for aerobic rod-shaped bacterium

  1. Elasticity of the Rod-Shaped Gram-Negative Eubacteria

    NASA Astrophysics Data System (ADS)

    Boulbitch, A.; Quinn, B.; Pink, D.

    2000-12-01

    We report a theoretical calculation of the elasticity of the peptidoglycan network, the only stress-bearing part of rod-shaped Gram-negative eubacteria. The peptidoglycan network consists of elastic peptides and inextensible glycan strands, and it has been proposed that the latter form zigzag filaments along the circumference of the cylindrical bacterial shell. The zigzag geometry of the glycan strands gives rise to nonlinear elastic behavior. The four elastic moduli of the peptidoglycan network depend on its stressed state. For a bacterium under physiological conditions the elasticity is proportional to the bacterial turgor pressure. Our results are in good agreement with recent measurements.

  2. Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost.

    PubMed

    Steven, Blaire; Chen, Min Qun; Greer, Charles W; Whyte, Lyle G; Niederberger, Thomas D

    2008-06-01

    A Gram-positive, aerobic, rod-shaped bacterium (strain Eur1 9.5(T)) was isolated from a 9-m-deep permafrost sample from the Canadian high Arctic. Strain Eur1 9.5(T) could not be cultivated in liquid medium and grew over the temperature range 5-37 degrees C; no growth was observed at 42 degrees C and only slow growth was observed at 5 degrees C following 1 month of incubation. Eur1 9.5(T) grew over the pH range 5.5-8.9 and tolerated NaCl concentrations of 0-0.5 % (w/v). Eur1 9.5(T) grew heterotrophically on complex carbon substrates and chemolithoautotrophically on inorganic sulfur compounds, as demonstrated by growth on sodium thiosulfate and sulfite as sole electron donors. Eur1 9.5(T) contained iso-C(15 : 0) as the major cellular fatty acid and menaquinone 7 (MK-7) as the major respiratory quinone. The cell-wall peptidoglycan was of type A1gamma. The DNA G+C content was 53.1 mol%. The 16S rRNA gene sequence of strain Eur1 9.5(T) was only distantly related (

  3. Savagea faecisuis gen. nov., sp. nov., a tylosin- and tetracycline-resistant bacterium isolated from a swine-manure storage pit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A polyphasic taxonomic study using morphological, biochemical, chemotaxonomic and molecular methods was performed on three strains of an unknown Gram-positive staining, nonspore-forming, motile aerobic rod-shaped bacterium resistant to tetracycline and tylosin isolated from a swine-manure storage pi...

  4. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  5. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka.

    PubMed

    Kevbrin, Vadim V; Zengler, Karsten; Lysenko, Anatolii M; Wiegel, Juergen

    2005-10-01

    A facultative aerobic, moderately thermophilic, spore forming bacterium, strain JW/VK-KG4 was isolated from an enrichment culture obtained from the Geyser valley, a geo-thermally heated environment located in the Kamchatka peninsula (Far East region of Russia). The cells were rod shaped, motile, peritrichous flagellated stained Gram positive and had a Gram positive type cell wall. Aerobically, the strain utilized a range of carbohydrates including glucose, fructose, trehalose, proteinuous substrates, and pectin as well. Anaerobically, only carbohydrates are utilized. When growing on carbohydrates, the strain required yeast extract and vitamin B(12). Anaerobically, glucose was fermented to lactate as main product and acetate, formate, ethanol as minor products. Aerobically, even in well-aerated cultures (agitated at 500 rpm), glucose oxidation was incomplete and lactate and acetate were found in culture supernatants as by-products. Optimal growth of the isolate was observed at pH(25 C) 6.8-8.5 and 60 degrees C. The doubling times on glucose at optimal growth conditions were 34 min (aerobically) and 40 min (anaerobically). The G+C content was 42.3 mol% as determined by T(m) assay. Sequence analysis of the 16S rRNA gene indicated an affiliation of strain JW/VK-KG4 with Anoxybacillus species. Based on its morphology, physiology, phylogenetic relationship and its low DNA-DNA homology with validly published species of Anoxybacillus, it is proposed that strain JW/VK-KG4 represents a new species in the genus Anoxybacillus as A. kamchatkensis sp. nov. The type strain for the novel species is JW/VK-KG4(T) (=DSM 14988, =ATCC BAA-549). The GenBank accession number for the 16S rDNA sequence is AF510985.

  6. Swimming motion of rod-shaped magnetotactic bacteria: the effects of shape and growing magnetic moment

    PubMed Central

    Kong, Dali; Lin, Wei; Pan, Yongxin; Zhang, Keke

    2014-01-01

    We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible, we derive a new system of the twelve coupled equations that govern both the motion and orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment in the laboratory frame of reference. It is revealed that the initial pattern of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is also revealed, through comparing mathematical solutions of the twelve coupled equations to the swimming motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria, that the laboratory trajectories of the swimming motion can be approximately reproduced using an appropriate set of the parameters in our theoretical model. PMID:24523716

  7. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  8. Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.

    PubMed Central

    Rhee, S K; Lee, G M; Yoon, J H; Park, Y H; Bae, H S; Lee, S T

    1997-01-01

    New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications. PMID:9212408

  9. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  10. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  11. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  12. Morphology-dependent nanocatalysts: rod-shaped oxides.

    PubMed

    Li, Yong; Shen, Wenjie

    2014-03-07

    Nanocatalysts are characterised by the unique nanoscale properties that originate from their highly reduced dimensions. Extensive studies over the past few decades have demonstrated that the size and shape of a catalyst particle on the nanometre scale profoundly affect its reaction performance. In particular, controlling the catalyst particle morphology allows a selective exposure of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms or domains substantially improves catalytic activity, selectivity, and stability. This phenomenon is called morphology-dependent nanocatalysts: catalyst particles with anisotropic morphologies on the nanometre scale greatly affect the reaction performance by selectively exposing the desired facets. In this review, we highlight important progress in morphology-dependent nanocatalysts based on the use of rod-shaped metal oxides with characteristic redox and acid-base features. The correlation between the catalytic properties and the exposed facets verifies the chemical nature of the morphology effect. Moreover, we provide an overview of the interactions between the rod-shaped oxides and the metal nanoparticles in metal-oxide catalyst systems, involving crystal-facet-selective deposition of metal particles onto different crystal facets in the oxide supports. A fundamental understanding of active sites in morphologically tuneable oxides enclosed by the desired reactive facets is expected to direct the development of highly efficient nanocatalysts.

  13. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.

    PubMed

    Wu, Ming L; Ettwig, Katharina F; Jetten, Mike S M; Strous, Marc; Keltjens, Jan T; van Niftrik, Laura

    2011-01-01

    Biological methane oxidation proceeds either through aerobic or anaerobic pathways. The newly discovered bacterium Candidatus 'Methylomirabilis oxyfera' challenges this dichotomy. This bacterium performs anaerobic methane oxidation coupled to denitrification, but does so in a peculiar way. Instead of scavenging oxygen from the environment, like the aerobic methanotrophs, or driving methane oxidation by reverse methanogenesis, like the methanogenic archaea in sulfate-reducing systems, it produces its own supply of oxygen by metabolizing nitrite via nitric oxide into oxygen and dinitrogen gas. The intracellularly produced oxygen is then used for the oxidation of methane by the classical aerobic methane oxidation pathway involving methane mono-oxygenase. The present mini-review summarizes the current knowledge about this process and the micro-organism responsible for it.

  14. Dynamic features of rod-shaped Au nanoclusters

    NASA Astrophysics Data System (ADS)

    So, Woong Young; Das, Anindita; Wang, Shuxin; Zhao, Shuo; Byun, Hee Young; Lee, Dana; Kumar, Santosh; Jin, Rongchao; Peteanu, Linda A.

    2015-08-01

    Gold nanoclusters hold many potential applications such as biosensing and optics due to their emission characteristics, small size, and non-toxicity. However, their low quantum yields remain problematic for further applications, and their fluorescence mechanism is still unclear. To increase the low quantum yields, various methods have been performed: doping, tuning structures, and changing number of gold atoms. In the past, most characterizations have been performed on spherical shaped nanoclusters; in this paper, several characterizations of various rod-shaped Au nanoclusters specifically on Au25 are shown. It has been determined that the central gold atom in Au25 nano-rod is crucial in fluorescence. Furthermore, single molecule analysis of silver doped Au25 nano-rod revealed that it has more photo-stability than conjugated polymers and quantum dots.

  15. Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1.

    PubMed

    Kottegoda, Samanthi; Waligora, Elizabeth; Hyman, Michael

    2015-03-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h(-1)) with a yield of 0.38 mg (dry weight) mg 2-methylpropene(-1). Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates.

  16. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  17. Preparation and characterization of the rod-shaped stibnite

    SciTech Connect

    Ouni, B.; Zouini, M.; Lakhdar, M. Haj; Larbi, T.; Dimassi, W.; Amlouk, M.

    2015-07-15

    Highlights: • A facile route to synthesize large-scale rod-like Sb{sub 2}S{sub 3} micro-wires was presented. • A deep analysis conjoint between band tails, band gap alteration and electrical model. • The band gap is 1.75 eV which may hold for solar energy conversion. - Abstract: Stibnite (Sb{sub 2}S{sub 3}) micro-wires have been grown on glass substrates by sulfuration of Sb thermal evaporated film in a vacuum sealed tube in presence of sulfur powder at 300 °C for 6 h. X-ray diffraction and Raman spectroscopy techniques indicate that the synthesized micro-wires have an orthorhombic structure. SEM micrographs show rod-shaped micro-wires with a typical length of several tens of micrometers and a diameter of the order of 0.5 μm. The absorption coefficient dependence on the photon energy in the UV–visible range revealed the existence of a direct transition with an energy band gap of about 1.7 eV. Moreover, the band tails and localized states which are related to the level of defects in the material will be presented. These parameters were determined from the exponential absorption profile. All these results have been evaluated and discussed in terms of alteration of band gap edge and electrical measurements.

  18. Rod-shaped nanocrystals elicit neuronal activity in vivo.

    PubMed

    Malvindi, Maria Ada; Carbone, Luigi; Quarta, Alessandra; Tino, Angela; Manna, Liberato; Pellegrino, Teresa; Tortiglione, Claudia

    2008-10-01

    The development of novel nanomaterials has raised great interest in efforts to evaluate their effect on biological systems, ranging from single cells to whole animals. In particular, there exists an open question regarding whether nanoparticles per se can elicit biological responses, which could interfere with the phenomena they are intended to measure. Here it is reported that challenging the small cnidaria Hydra vulgaris in vivo with rod-shaped semiconductor nanoparticles, also known as quantum rods (QRs), results in an unexpected tentacle-writhing behavior, which is Ca(2+) dependent and relies on the presence of tentacle neurons. Due to the absence of surface functionalization of the QRs with specific ligands, and considering that spherical nanoparticles with same composition as the QRs fail to induce any in vivo behavior on the same experimental model, it is suggested that unique shape-tunable electrical properties of the QRs may account for the neuronal stimulation. This model system may represent a widely applicable tool for screening neuronal response to nanoparticles in vivo.

  19. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium

    USGS Publications Warehouse

    Visscher, P.T.; Taylor, B.F.

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.

  20. Characterization of giant spheroplasts generated from the aerobic anoxygenic photosynthetic marine bacterium Roseobacter litoralis.

    PubMed

    Nojiri, Akane; Ogita, Shinjiro; Isogai, Yasuhiro; Nishida, Hiromi

    2015-01-01

    We generated and characterized giant spheroplasts from the aerobic anoxygenic photosynthetic marine bacterium Roseobacter litoralis. The giant spheroplasts contained vacuole-like structures within the cells, mainly consisting of a single membrane. The in vivo absorption spectrum of the giant spheroplasts did not have peaks typically observed for bacteriochlorophyll a. The culture media pH decreased during the growth of the giant spheroplasts. The change in the pH profile for cells grown under light was no different from that for cells grown in the dark. These results showed that the R. litoralis giant spheroplasts formed lost their photosynthetic apparatus in culture. Most of the giant spheroplasts returned to their original size, likely via filamentous cells. The culture media pH increased during the growth of the filamentous cells. Some filamentous cells had septum-like structures. In such filamentous cells, DNA was separated. Initially, the color of the separated cells was white. Two weeks later, the cells changed to red in the dark, and the in vivo absorption spectrum of the cells had peaks typically observed for bacteriochlorophyll a. Our findings strongly suggest that the giant spheroplasts of R. litoralis can control the genetic information, return to their original cell size, and regain their original functions.

  1. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium

    SciTech Connect

    Lobos, J.H.; Leib, T.K. ); Tahmun Su )

    1992-06-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichmet takes from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4[prime]-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO[sub 2], 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.

  2. Rod-shaped hydroxyapatite with mesoporous structure as drug carriers for proteins

    NASA Astrophysics Data System (ADS)

    Zhang, Wandong; Chai, Yamin; Xu, Xianghua; Wang, Yonglan; Cao, Nana

    2014-12-01

    Rod-shaped hydroxyapatite (HAp) with mesoporous structure was synthesized by a hydrothermal method using Pluronic block co-polymer F127 as the template. The rod-shaped HAp was then tested as protein drug carriers by investigating their protein adsorption/release properties. Bovine serum albumin (BSA) and lysozyme (LSZ) were used as the model drugs. Various instrumental methods were used to characterize the structure, morphology, texture and protein drug adsorption/release properties of the samples. The amounts of BSA or LSZ adsorbed onto the rod-shaped HAp and their release profiles were evaluated in a simulated body fluid (SBF). The synthesized rod-shaped HAp had irregular mesostructures with lengths of 75-125 nm and diameters of about 25 nm. The rod-shaped HAp exhibited a higher loading capacity for BSA than for LSZ in the SBF. This adsorption behavior can be explained by the morphology of the rod-shaped HAp, which grew along the c-axis, leading to an a(b)-plane area that is larger than the c-plane area. Consequently, the number of positive charges on the surface of the rod-shaped HAp increased relative to the number of negative charges. The BSA release rate in SBF was slower than that of LSZ which is a result of the HAp surface properties.

  3. Aerobic degradation of mercaptosuccinate by the gram-negative bacterium Variovorax paradoxus strain B4.

    PubMed

    Carbajal-Rodríguez, Irma; Stöveken, Nadine; Satola, Barbara; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2011-01-01

    The Gram-negative bacterium Variovorax paradoxus strain B4 was isolated from soil under mesophilic and aerobic conditions to elucidate the so far unknown catabolism of mercaptosuccinate (MS). During growth with MS this strain released significant amounts of sulfate into the medium. Tn5::mob-induced mutagenesis was successfully employed and yielded nine independent mutants incapable of using MS as a carbon source. In six of these mutants, Tn5::mob insertions were mapped in a putative gene encoding a molybdenum (Mo) cofactor biosynthesis protein (moeA). In two further mutants the Tn5::mob insertion was mapped in the gene coding for a putative molybdopterin (MPT) oxidoreductase. In contrast to the wild type, these eight mutants also showed no growth on taurine. In another mutant a gene putatively encoding a 3-hydroxyacyl-coenzyme A dehydrogenase (paaH2) was disrupted by transposon insertion. Upon subcellular fractionation of wild-type cells cultivated with MS as sole carbon and sulfur source, MPT oxidoreductase activity was detected in only the cytoplasmic fraction. Cells grown with succinate, taurine, or gluconate as a sole carbon source exhibited no activity or much lower activity. MPT oxidoreductase activity in the cytoplasmic fraction of the Tn5::mob-induced mutant Icr6 was 3-fold lower in comparison to the wild type. Therefore, a new pathway for MS catabolism in V. paradoxus strain B4 is proposed: (i) MPT oxidoreductase catalyzes the conversion of MS first into sulfinosuccinate (a putative organo-sulfur compound composed of succinate and a sulfino group) and then into sulfosuccinate by successive transfer of oxygen atoms, (ii) sulfosuccinate is cleaved into oxaloacetate and sulfite, and (iii) sulfite is oxidized to sulfate.

  4. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions.

  5. A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium.

    PubMed

    Lei, Yu; Wang, Yangqing; Liu, Hongjie; Xi, Chuanwu; Song, Liyan

    2016-05-01

    A novel heterotrophic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from ammonium contaminated landfill leachate and physiochemical and phylogenetically identified as Zobellella taiwanensis DN-7. DN-7 converted nitrate, nitrate, and ammonium to N2 as the primary end product. Single factor experiments suggested that the optimal conditions for ammonium removal were trisodium citrate as carbon source, C/N ratio 8, pH 8.0-10.0, salinity less than 3 %, temperature 30 °C, and rotation speed more than 150 rpm. Specifically, DN-7 could remove 1000.0 and 2000.0 mg/L NH4 (+)-N completely within 96 and 216 h, with maximum removal rates of 19.6 and 17.3 mg L(-1) h(-1), respectively. These results demonstrated that DN-7 is a promising candidate for application of high-strength ammonium wastewater treatments.

  6. Draft Genome Sequence of Pseudomonas hussainii Strain MB3, a Denitrifying Aerobic Bacterium Isolated from the Rhizospheric Region of Mangrove Trees in the Andaman Islands, India.

    PubMed

    Jaiswal, Shubham K; Saxena, Rituja; Mittal, Parul; Gupta, Ankit; Sharma, Vineet K

    2017-02-02

    The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification.

  7. Draft Genome Sequence of Pseudomonas hussainii Strain MB3, a Denitrifying Aerobic Bacterium Isolated from the Rhizospheric Region of Mangrove Trees in the Andaman Islands, India

    PubMed Central

    Jaiswal, Shubham K.; Saxena, Rituja; Mittal, Parul; Gupta, Ankit

    2017-01-01

    ABSTRACT The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification. PMID:28153890

  8. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters.

    PubMed

    Schultz, Danielle; Gardner, Kira; Oemrawsingh, Sumant S R; Markešević, Nemanja; Olsson, Kevin; Debord, Mark; Bouwmeester, Dirk; Gwinn, Elisabeth

    2013-05-28

    Fluorescent DNA-stabilized silver nanoclusters contain both cationic and neutral silver atoms. The absorbance spectra of compositionally pure solutions follow the trend expected for rod-shaped silver clusters, consistent with the polarized emission measured from individual nanoclusters. The data suggest a rod-like assembly of silver atoms, with silver cations mediating attachment to the bases.

  9. Complete genome sequence of Campylobacter jejuni RM1285 a rod-shaped morphological variant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a spiral-shaped Gram-negative food-borne human pathogen found on poultry products. Strain RM1285 is a rod-shaped variant of this species. The genome of RM1285 was determined to be 1,635,803 bp with a G+C content of 30.5%....

  10. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    PubMed

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  11. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities

    SciTech Connect

    Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham; Shakibaie, Mojtaba; Rezaie, Sassan; Shahverdi, Ahmad Reza

    2012-11-15

    Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octyl alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.

  12. Melatonin production in an aerobic photosynthetic bacterium: an evolutionarily early association with darkness.

    PubMed

    Tilden, A R; Becker, M A; Amma, L L; Arciniega, J; McGaw, A K

    1997-03-01

    Melatonin was measured in a species of aerobic photosynthetic bacteria, Erythrobacter longus, grown in either constant light or constant dark. A radioimmunoassay was used to quantify melatonin levels and thin-layer chromatography to confirm the identity of melatonin immunoactivity. Melatonin levels were significantly higher (nearly 2.3-fold) in the dark-grown than in the light-grown samples. Also, the homogenates of the dark-grown bacteria retained melatonin-producing enzymatic activity, whereas the light-grown homogenates did not; melatonin levels extracted from the dark-grown homogenates increased with increasing extraction time, reaching as high as 29.2 ng.mg-1 protein at 120 min. Removal of membrane fragments from homogenates did not influence melatonin levels in light-grown homogenate, but this procedure increased melatonin levels in dark-grown homogenate, indicating that at least some of the enzymes in the pathway of melatonin production are not membrane-bound. This study is the second to demonstrate the presence of melatonin at the prokaryotic level, supporting the evidence that melatonin appeared very early in evolution. Its function in prokaryotes has not been determined, but may relate to its antioxidative actions.

  13. Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1-5.

    PubMed

    Li, Yating; Wang, Yanru; Fu, Lin; Gao, Yizhan; Zhao, Haixia; Zhou, Weizhi

    2017-04-01

    An aerobic marine bacterium Vibrio sp. Y1-5 was screened to achieve efficient nitrate and ammonium removal simultaneously and fix nitrogen in cells without N loss. Approximately 98.0% of nitrate (100mg/L) was removed in 48h through assimilatory nitrate reduction and nitrate reductase was detected in the cytoplasm. Instead of nitrification, the strain assimilated ammonium directly, and it could tolerate as high as 1600mg/L ammonium concentration while removing 844.6mg/L. In addition, ammonium assimilation occurred preferentially in the medium containing nitrate and ammonium with a total nitrogen (TN) removal efficiency of 80.4%. The results of nitrogen balance and Fourier infrared spectra illustrated that the removed nitrogen was all transformed to protein or stored as organic nitrogen substances in cells and no N was lost in the process. Toxicological studies with the brine shrimp species Artemia naupliia indicated that Vibrio sp. Y1-5 can be applied in aquatic ecosystems safely.

  14. Aerobic and anoxic growth and nitrate removal capacity of a marine denitrifying bacterium isolated from a recirculation aquaculture system.

    PubMed

    Borges, Maria-Teresa; Sousa, André; De Marco, Paolo; Matos, Ana; Hönigová, Petra; Castro, Paula M L

    2008-01-01

    Bacterial biofilters used in marine recirculation aquaculture systems need improvements to enhance nitrogen removal efficiency. Relatively little is known about biofilter autochthonous population structure and function. The present study was aimed at isolating and characterizing an autochthonous denitrifying bacterium from a marine biofilter installed at a recirculation aquaculture system. Colonization of four different media in a marine fish farm was followed by isolation of various denitrifying strains and molecular classification of the most promising one, strain T2, as a novel member of the Pseudomonas fluorescens cluster. This strain exhibits high metabolic versatility regarding N and C source utilization and environmental conditions for growth. It removed nitrate through aerobic assimilatory metabolism at a specific rate of 116.2 mg NO(3)-N g dw(-1) h(-1). Dissimilatory NO(3)-N removal was observed under oxic conditions at a limited rate, where transient NO(2)-N formed represented 22% (0.17 mg L(-1)) of the maximum transient NO(2)-N observed under anoxic conditions. Dissimilatory NO(3)-N removal under anoxic conditions occurred at a specific rate of 53.5 mg NO(3)-N g dw(-1) h(-1). The isolated denitrifying strain was able to colonize different materials, such as granular activated carbon (GAC), Filtralite and Bioflow plastic rings, which allow the development of a prototype bioreactor for strain characterization under dynamic conditions and mimicking fish-farm operating conditions.

  15. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440

    PubMed Central

    Schmitz, Simone; Nies, Salome; Wierckx, Nick; Blank, Lars M.; Rosenbaum, Miriam A.

    2015-01-01

    Pseudomonas putida strains are being developed as microbial production hosts for production of a range of amphiphilic and hydrophobic biochemicals. P. putida's obligate aerobic growth thereby can be an economical and technical challenge because it requires constant rigorous aeration and often causes reactor foaming. Here, we engineered a strain of P. putida KT2440 that can produce phenazine redox-mediators from Pseudomonas aeruginosa to allow partial redox balancing with an electrode under oxygen-limited conditions. P. aeruginosa is known to employ its phenazine-type redox mediators for electron exchange with an anode in bioelectrochemical systems (BES). We transferred the seven core phenazine biosynthesis genes phzA-G and the two specific genes phzM and phzS required for pyocyanin synthesis from P. aeruginosa on two inducible plasmids into P. putida KT2440. The best clone, P. putida pPhz, produced 45 mg/L pyocyanin over 25 h of growth, which was visible as blue color formation and is comparable to the pyocyanin production of P. aeruginosa. This new strain was then characterized under different oxygen-limited conditions with electrochemical redox control and changes in central energy metabolism were evaluated in comparison to the unmodified P. putida KT2440. In the new strain, phenazine synthesis with supernatant concentrations up to 33 μg/mL correlated linearly with the ability to discharge electrons to an anode, whereby phenazine-1-carboxylic acid served as the dominating redox mediator. P. putida pPhz sustained strongly oxygen-limited metabolism for up to 2 weeks at up to 12 μA/cm2 anodic current density. Together, this work lays a foundation for future oxygen-limited biocatalysis with P. putida strains. PMID:25914687

  16. On the elastic buckling of rod-shaped particles in sheared suspensions

    SciTech Connect

    DeTeresa, S.J. )

    1993-09-01

    The rheology of rod-shaped particle suspensions is of practical importance for the processing of discontinuous fiber composites. A correction of the original work by Forgacs and Mason describing the elastic buckling of rod-shaped particles in sheared suspensions is presented. Although the qualitative relationship among critical buckling conditions and the fiber aspect ratio and elastic modulus is unaltered, the new result for the predicted critical buckling condition shows that the resistance of suspended rods to buckling is more than five times greater than had been believed. Reexamination of experimental results using the corrected solution yielded mixed conclusions concerning the validity of the model. The agreement with results of the original experiments by Forgacs and Mason using Dacron fibers suspended in corn syrup and the new result was found to be excellent and quantitative. The results of experiments with glass fibers suspended in glucose solutions were found to be in poor agreement with predictions. The ability of the proposed result to account for an unusual degradation due to shearing in polystyrene melts of Kevlar 29 fibers was also found to be quantitative and excellent. The Kevlar fibers exhibited permanent bends spaced with a uniform spacing which was predicted by application of the new buckling relationship.

  17. Differential Isotopic Fractionation during Cr(VI) Reduction by an Aquifer-Derived Bacterium under Aerobic versus Denitrifying Conditions

    SciTech Connect

    Han, R.; Qin, L.; Brown, S. T.; Christensen, J. N.; Beller, H. R.

    2012-01-27

    We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Finally, despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).

  18. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering.

    PubMed

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-05-28

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  19. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    PubMed Central

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-01-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth. PMID:24867385

  20. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  1. Mathematical modelling of the feed rod shape in floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Plāte, M.; Krauze, A.; Virbulis, J.

    2017-01-01

    A three-dimensional (3D) transient multi-physical model of the feed rod melting in the floating zone (FZ) silicon single-crystal growth process is presented. Coupled temperature, electromagnetic (EM), and melt film simulations are performed for a 4 inch FZ system, and the time evolution of the open melting front is studied. The 3D model uses phase boundaries and parameters from a converged solution of a quasi-stationary axisymmetric (2D) model of the FZ system as initial conditions for the time dependent simulations. A parameter study with different feed rod rotation, crystal pull rates and widths of the inductor main slit is carried out to analyse their influence on the evolution of the asymmetric feed rod shape. The feed rod rotation is shown to have a smoothing effect on the shape of the open melting front.

  2. Molecular dynamics simulations of the rotational and translational diffusion of a Janus rod-shaped nanoparticle

    NASA Astrophysics Data System (ADS)

    Kharazmi, Ali; Priezjev, Nikolai

    2016-11-01

    We investigate the diffusion of a Janus nanoparticle immersed in a dense Lennard-Jones fluid using molecular dynamic simulations. In particular we consider a rod-shaped particle with different surface wettability on each half-side of the particle and analyze the mean square displacement and the translational and rotational velocity autocorrelation functions. It is found that diffusion is enhanced when the wettability contrast is high and the local slip length on the nonwetting side is relatively large. We also examine the time evolution of the orientation tensor and correlate it with the particle displacement. These results are compared with our previously published results on diffusive dynamics of a Janus sphere with two hemispheres of different wettability.

  3. FtsZ rings and helices: physical mechanisms for the dynamic alignment of biopolymers in rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Fischer-Friedrich, Elisabeth; Friedrich, Benjamin M.; Gov, Nir S.

    2012-02-01

    In many bacterial species, the protein FtsZ forms a cytoskeletal ring that marks the future division site and scaffolds the division machinery. In rod-shaped bacteria, most frequently membrane-attached FtsZ rings or ring fragments are reported and occasionally helices. By contrast, axial FtsZ clusters have never been reported. In this paper, we investigate theoretically how dynamic FtsZ aggregates align in rod-shaped bacteria. We study systematically different physical mechanisms that affect the alignment of FtsZ polymers using a computational model that relies on autocatalytic aggregation of FtsZ filaments at the membrane. Our study identifies a general tool kit of physical and geometrical mechanisms by which rod-shaped cells align biopolymer aggregates. Our analysis compares the relative impact of each mechanism on the circumferential alignment of FtsZ as observed in rod-shaped bacteria. We determine spontaneous curvature of FtsZ polymers and axial confinement of FtsZ on the membrane as the strongest factors. Including Min oscillations in our model, we find that these stabilize axial and helical clusters on short time scales, but promote the formation of an FtsZ ring at the cell middle at longer times. This effect could provide an explanation to the long standing puzzle of transiently observed oscillating FtsZ helices in Escherichia coli cells prior to cell division.

  4. Extending calibration-free force measurements to optically-trapped rod-shaped samples.

    PubMed

    Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela

    2017-02-21

    Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens.

  5. The Active Sites of a Rod-Shaped Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Schuster, Manfred Erwin; Huang, Zhiwei; Xu, Fei; Jin, Shifeng; Chen, Yaxin; Hua, Weiming; Su, Dang Sheng; Tang, Xingfu

    2015-06-26

    The identification of catalytically active sites (CASs) in heterogeneous catalysis is of vital importance to design and develop improved catalysts, but remains a great challenge. The CASs have been identified in the low-temperature selective catalytic reduction of nitrogen oxides by ammonia (SCR) over a hollandite manganese oxide (HMO) catalyst with a rod-shaped morphology and one-dimensional tunnels. Electron microscopy and synchrotron X-ray diffraction determine the surface and crystal structures of the one-dimensional HMO rods closed by {100} side facets and {001} top facets. A combination of X-ray absorption spectra, molecular probes with potassium and nitric oxide, and catalytic tests reveals that the CASs are located on the {100} side facets of the HMO rods rather than on the top facets or in the tunnels, and hence semi-tunnel structural motifs on the {100} facets are evidenced to be the CASs of the SCR reaction. This work paves the way to further investigate the intrinsic mechanisms of SCR reactions.

  6. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    NASA Astrophysics Data System (ADS)

    Mnasri, Najib; Charnay, Clarence; de Ménorval, Louis-Charles; Elaloui, Elimame; Zajac, Jerzy

    2016-11-01

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO3 reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM and TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV-visible spectroscopy. 129Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores.

  7. Extending calibration-free force measurements to optically-trapped rod-shaped samples

    NASA Astrophysics Data System (ADS)

    Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela

    2017-02-01

    Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens.

  8. Extending calibration-free force measurements to optically-trapped rod-shaped samples

    PubMed Central

    Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela

    2017-01-01

    Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens. PMID:28220855

  9. Magnetic engineering of stable rod-shaped stem cell aggregates: circumventing the pitfall of self-bending.

    PubMed

    Du, V; Fayol, D; Reffay, M; Luciani, N; Bacri, J-C; Gay, C; Wilhelm, C

    2015-02-01

    A current challenge for tissue engineering while restoring the function of diseased or damaged tissue is to customize the tissue according to the target area. Scaffold-free approaches usually yield spheroid shapes with the risk of necrosis at the center due to poor nutrient and oxygen diffusion. Here, we used magnetic forces developed at the cellular scale by miniaturized magnets to create rod-shaped aggregates of stem cells that subsequently matured into a tissue-like structure. However, during the maturation process, the tissue-rods spontaneously bent and coiled into sphere-like structures, triggered by the increasing cell-cell adhesion within the initially non-homogeneous tissue. Optimisation of the intra-tissular magnetic forces successfully hindered the transition, in order to produce stable rod-shaped stem cells aggregates.

  10. Acquisition of Fe from Natural Organic Matter by an Aerobic Pseudomonas Bacterium: Siderophores and Cellular Fe Status

    NASA Astrophysics Data System (ADS)

    Koehn, K.; Dehner, C.; Dubois, J.; Maurice, P. A.

    2010-12-01

    Aerobic microorganisms have evolved various strategies to acquire nutrient Fe, including release of Fe-chelating siderophores. The potential importance of siderophores in Fe acquisition from natural organic matter (NOM) (reverse osmosis, RO; and XAD-8 samples with naturally associated Fe) was investigated using a wild type strain (WT) of aerobic Pseudomonas mendocina that produces siderophore(s) and an engineered mutant that cannot. Microbial growth under Fe-limited batch conditions was monitored via optical density, and a β-galactosidase biosensor assay was used to quantify cellular Fe status. Both WT and mutant strains acquired Fe from NOM. Fe ‘stress’ in the presence of the RO sample decreased with increasing [Fe] (as determined by different [DOC]s) and was consistently less for the WT. For both WT and mutant, maximum growth in the presence of RO sample increased as: 1 mgC/L (0.2μM Fe) < 100 mgC/L (20μM Fe) < 10 mgC/L (2μM Fe). Comparison of XAD-8 and RO samples ([DOC] varied to give 2μM [Fe]total for each), showed that although there were no apparent differences in internal Fe status, growth was better on the XAD-8 sample. Chelex treatment to partially remove metals associated with the RO sample increased Fe stress but did not substantially affect growth. Results demonstrated that: (1) siderophores are useful but not necessary for Fe acquisition from NOM by P. mendocina and (2) NOM may have complex effects on microbial growth, related not just to Fe content but potentially to the presence of other (trace)metals such as Al and/or to effects on biofilm development.

  11. A facile one-step solvothermal synthesis of graphene/rod-shaped TiO₂ nanocomposite and its improved photocatalytic activity.

    PubMed

    Dong, Pengyu; Wang, Yuhua; Guo, Linna; Liu, Bin; Xin, Shuangyu; Zhang, Jia; Shi, Yurong; Zeng, Wei; Yin, Shu

    2012-08-07

    Graphene sheets were obtained through solvothermal reduction of colloidal dispersion of graphene oxide in benzyl alcohol. The graphene/rod-shaped TiO(2) nanocomposite was synthesized by this novel and facile solvothermal method. During the solvothermal reaction, both the reduction of graphene oxide and the growth of rod-shaped TiO(2) nanocrystals as well as its deposition on graphene occur simultaneously. The photocatalytic activity of graphene/rod-shaped TiO(2) and graphene/spherical TiO(2) nanocomposites was compared. In the photocatalytic degradation of methyl orange (MO), the graphene/rod-shaped TiO(2) nanocomposite with the optimized graphene content of 0.48 wt% shows good stability and exhibits a significant enhancement of photocatalytic activity compared to the bare commercial TiO(2) (P25) and graphene/spherical TiO(2) nanocomposite with the same graphene content. Photocurrent experiments were performed, which demonstrate that the photocurrent of the graphene/rod-shaped TiO(2) nanocomposite electrode is about 1.2 times as high as that of the graphene/spherical TiO(2) nanocomposite electrode. The photocatalytic mechanism of graphene/rod-shaped TiO(2) nanocomposite was also discussed on the basis of the experimental results. This work is anticipated to open a possibility in the integration of graphene and TiO(2) with various morphologies for obtaining high-performance photocatalysts in addressing environmental protection issues.

  12. Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum.

    PubMed

    Masuda, T; Inoue, K; Masuda, M; Nagayama, M; Tamaki, A; Ohta, H; Shimada, H; Takamiya, K

    1999-11-19

    To elucidate the mechanism for formation of zinc-containing bacteriochlorophyll a in the photosynthetic bacterium Acidiphilium rubrum, we isolated homologs of magnesium chelatase subunits (bchI, -D, and -H). A. rubrum bchI and -H were encoded by single genes located on the clusters bchP-orf168-bchI-bchD-orf320-crtI and bchF-N-B-H-L as in Rhodobacter capsulatus, respectively. The deduced sequences of A. rubrum bchI, -D, and -H had overall identities of 59. 8, 40.5, and 50.7% to those from Rba. capsulatus, respectively. When these genes were introduced into bchI, bchD, and bchH mutants of Rba. capsulatus for functional complementation, all mutants were complemented with concomitant synthesis of bacteriochlorophyll a. Analyses of bacteriochlorophyll intermediates showed that A. rubrum cells accumulate magnesium protoporphyrin IX monomethyl ester without detectable accumulation of zinc protoporphyrin IX or its monomethyl ester. These results indicate that a single set of magnesium chelatase homologs in A. rubrum catalyzes the insertion of only Mg(2+) into protoporphyrin IX to yield magnesium protoporphyrin IX monomethyl ester. Consequently, it is most likely that zinc-containing bacteriochlorophyll a is formed by a substitution of Zn(2+) for Mg(2+) at a step in the bacteriochlorophyll biosynthesis after formation of magnesium protoporphyrin IX monomethyl ester.

  13. Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium.

    PubMed

    Gardner, Jeffrey G; Crouch, Lucy; Labourel, Aurore; Forsberg, Zarah; Bukhman, Yury V; Vaaje-Kolstad, Gustav; Gilbert, Harry J; Keating, David H

    2014-10-08

    Microbial depolymerization of plant cell walls contributes to global carbon balance and is a critical component of renewable energy. The genomes of lignocellulose degrading microorganisms encode diverse classes of carbohydrate modifying enzymes, although currently there is a paucity of knowledge on the role of these proteins in vivo. We report the comprehensive analysis of the cellulose degradation system in the saprophytic bacterium Cellvibrio japonicus. Gene expression profiling of C. japonicus demonstrated that three of the 12 predicted β-1,4 endoglucanases (cel5A, cel5B, and cel45A) and the sole predicted cellobiohydrolase (cel6A) showed elevated expression during growth on cellulose. Targeted gene disruptions of all 13 predicted cellulase genes showed that only cel5B and cel6A were required for optimal growth on cellulose. Our analysis also identified three additional genes required for cellulose degradation: lpmo10B encodes a lytic polysaccharide monooxygenase (LPMO), while cbp2D and cbp2E encode proteins containing carbohydrate binding modules and predicted cytochrome domains for electron transfer. CjLPMO10B oxidized cellulose and Cbp2D demonstrated spectral properties consistent with redox function. Collectively, this report provides insight into the biological role of LPMOs and redox proteins in cellulose utilization and suggests that C. japonicus utilizes a combination of hydrolytic and oxidative cleavage mechanisms to degrade cellulose.

  14. Ammonium removal at low temperature by a newly isolated heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas fluorescens wsw-1001.

    PubMed

    Zhang, Shumei; Sha, Changqing; Jiang, Wei; Li, Weiguang; Zhang, Duoying; Li, Jing; Meng, Liqiang; Piao, Yongjian

    2015-01-01

    A heterotrophic nitrifier wsw-1001 was isolated from Songhua River and identified as Pseudomonas fluorescens. Ammonium removal by the strain at low temperature was investigated. The effect of initial ammonium concentration (from 5 to 1000 mg/L) and culture temperature (from 4°C to 30°C) on ammonium removal efficiency was studied. Biodegradation product, [Formula: see text], [Formula: see text], N2, N2O and intercellular N were monitored. The results indicated that the strain had potential for water and wastewater treatment. Ammonium could be removed by the strain at low temperature. Ammonium removal efficiency increased with temperature from 4°C to 20°C and decreased with ammonium concentration from 5 to 1000 mg/L. The strain exhibited a capability of heterotrophic nitrification and aerobic denitrification using [Formula: see text] as the sole nitrogen source at 8°C. [Formula: see text] and [Formula: see text] were reduced by the strain. Nitrogen balance analysis in the presence of 39.7 mg/L [Formula: see text] indicated that 71.2% [Formula: see text] was removed by converting to N2 (46.3%) and assimilating as biomass (42.5%). Substances such as [Formula: see text], [Formula: see text] and N2O were detected at very low concentrations. Ammonium mono-oxygenase, hydroxylamine oxidase, nitrite reductase and nitrate reductase activity were measured. The ammonium removal pathway of the strain was speculated to be [Formula: see text].

  15. Effect of azo and ester linkages on rod shaped Schiff base liquid crystals and their photophysical investigations

    NASA Astrophysics Data System (ADS)

    Selvarasu, Chinnaiyan; Kannan, Palaninathan

    2016-12-01

    Two new series of rod shaped Schiff base containing liquid crystal compounds with azo and ester linkages have been synthesized and characterized respectively. The rod like molecules containing cinnamate linkages with four different alkyl spacers (n = 6, 8, 10 and 12) and influence of linking group have been elucidated. Considerable changes in mesomorphic properties were noticed starting from Nematic to Smectic-C on changing of azo and ester linkages along with different terminal alkyl chain lengths. The mesomorphic properties of both series are compared. Photosensitive azobenzene group undergoes photoisomerization under UV light and monitored by UV-Visible spectroscopy.

  16. Visualizing single rod-shaped fission yeast vertically in micro-sized holes on agarose pad made by soft lithography.

    PubMed

    Wang, Li; Tran, Phong T

    2014-01-01

    Fission yeast cells are rod-shaped unicellular organism that is normally imaged horizontally with its long axis parallel to image plane. This orientation, while practical, limits the imaging resolution of biological structures which are oriented perpendicular to the long axis of the cell. We present here a method to prepare agarose pads with micro-sized holes to load single fission yeast cell vertically and image cell with its long axis perpendicular to the image plane. As a demonstration, actomyosin ring contraction is shown with this new imaging device.

  17. Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere.

    PubMed

    Gao, Jun-lian; Yuan, Mei; Wang, Xu-ming; Qiu, Tian-lei; Li, Ji-wei; Liu, Hong-can; Li, Xiu-ai; Chen, Jian; Sun, Jian-guang

    2015-01-01

    A 1-aminocyclopropane-1-carboxylate deaminase producing bacterium, designated GXGD002(T), was isolated from the rhizosphere of banana plants cultivated in Guangxi province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GXGD002(T) is a member of the genus Variovorax. High levels of 16S rRNA gene sequence similarity are found between strain GXGD002(T) and Variovorax paradoxus DSM 30034(T) (99.4 %), Variovorax ginsengisoli KCTC 12583(T) (99.1 %), Variovorax boronicumulans KCTC 22010(T) (99.0 %), Variovorax soli DSM18216(T) (98.7 %), Variovorax defluvii DSM 27259(T) (98.1 %) and Variovorax dokdonensis KCTC 12544(T) (97.4 %) respectively. However, the DNA-DNA hybridization values between strain GXGD002(T) and its closely related species V. paradoxus DSM 30034(T), V. ginsengisoli KCTC 12583(T) and V. boronicumulans KCTC 22010(T) were found to be 40.7, 30.9 and 23.7 %, respectively. The DNA G + C content of strain GXGD002(T) was found to be 67.8 mol%. The major fatty acids of strain GXGD002(T) are C16:0 (20.3 %), C10:0 3OH (18.4 %), C17:0 cyclo (18.9 %), C18:1w7c (12.3 %) and summed feature 3 (13.9 %). The predominant respiratory quinone was identified as ubiquinone-8 (Q-8) and the major polar lipids as phosphatidylethanolamine and phosphatidylglycerol. The results of polyphasic taxonomic study including physiological and biochemical tests, whole-cell SDS-PAGE profiles and chemotaxonomic analysis allowed a clear differentiation of strain GXGD002(T) from the other species in the genus Variovorax. Based on these results, a new species, Variovorax guangxiensis, is proposed. The type strain is GXGD002(T) (=DSM 27352(T) = ACCC 05911(T)).

  18. Genome Sequence of the Butyrate-Producing Anaerobic Bacterium Anaerostipes hadrus PEL 85.

    PubMed

    Kant, Ravi; Rasinkangas, Pia; Satokari, Reetta; Pietilä, Taija E; Palva, Airi

    2015-04-02

    Anaerostipes hadrus PEL 85, which was isolated from human feces, is a Gram-positive rod-shaped bacterium. The species may play an important role in gut health, as it was previously reported to produce butyric acid. Here, we present the genome assembly of PEL 85, a novel strain of A. hadrus.

  19. First Insights into the Genome of the Amino Acid-Metabolizing Bacterium Clostridium litorale DSM 5388

    PubMed Central

    Poehlein, Anja; Alghaithi, Hamed S.; Chandran, Lenin; Chibani, Cynthia M.; Davydova, Elena; Dhamotharan, Karthikeyan; Ge, Wanwan; Gutierrez-Gutierrez, David A.; Jagirdar, Advait; Khonsari, Bahar; Nair, Kamal Prakash P. R.

    2014-01-01

    Clostridium litorale is a Gram-positive, rod-shaped, and spore-forming bacterium, which is able to use amino acids such as glycine, sarcosine, proline, and betaine as single carbon and energy sources via Stickland reactions. The genome consists of a circular chromosome (3.41 Mb) and a circular plasmid (27 kb). PMID:25081264

  20. Draft Genome Sequence of Pontibacter sp. nov. BAB1700, a Halotolerant, Industrially Important Bacterium

    PubMed Central

    Joshi, M. N.; Sharma, A. C.; Pandya, R. V.; Patel, R. P.; Saiyed, Z. M.; Saxena, A. K.

    2012-01-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  1. Formation of Rod Shape Secondary Aggregation of Copper Nanoparticles in Aqueous Solution of Sodium Borohydride with Stabilizing Polymer

    NASA Astrophysics Data System (ADS)

    Harada, Takuya; Fujiwara, Hidemichi

    2007-03-01

    Morphological variations of copper nanoparticles synthesized by the reduction of copper acetate with sodium borohydride in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) have been investigated. The results indicate that the specific rod shape secondary aggregation of copper nanoparticles are formed in the case that the oxygen is dissolved in the reacting solutions. Furthermore, it is also demonstrated that the copper nanorods with the aspect ratio of 2 - 20 and the average short axis length of 5 nm are synthesized in the weak oxidizing ambiance with a medium amount of PVP. The anomalous variations of copper nanoparticles are explained by the alignments of precursor copper ions and their reducing rates, which are modified by the density of resolved oxygen and the amount of PVP.

  2. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape.

    PubMed

    Constantino, Maira A; Jabbarzadeh, Mehdi; Fu, Henry C; Bansil, Rama

    2016-11-01

    It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion.

  3. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape

    PubMed Central

    Constantino, Maira A.; Jabbarzadeh, Mehdi; Fu, Henry C.; Bansil, Rama

    2016-01-01

    It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion. PMID:28138539

  4. Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems.

    PubMed

    Prasad, A S Arun; Rao, K V Bhaskara

    2013-08-01

    An obligate alkaliphilic bacterium Bacillus cohnii MTCC 3616 aerobically decolorized a textile azo dye Direct Red-22 (5,000 mg l⁻¹) with 95 % efficiency at 37 °C and pH 9 in 4 h under static conditions. The decolorization of Direct Red-22 (DR-22) was possible through a broad pH (7-11), temperature (10-45 °C), salinity (1-7 %), and dye concentration (5-10 g l⁻¹) range. Decolorization of dye was assessed by UV-vis spectrophotometer with reduction of peak intensity at 549 nm (λ(max)). Biodegradation of dye was analyzed by Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC). The FTIR spectrum revealed that B. cohnii specifically targeted azo bond (N=N) at 1,614.42 cm⁻¹ to break down Direct Red-22. Formation of metabolites with different retention times in HPLC analysis further confirmed the degradation of dye. The phytotoxicity test with 5,000 mg l⁻¹ of untreated dye showed 80 % germination inhibition in Vigna mungo, 70 % in Sorghum bicolor and 80 % in Vigna radiata. No germination inhibition was noticed in all three plants by DR-22 metabolites at 5,000 mg l⁻¹. Biotoxicity test with Artemia salina proved the lethality of the azo dye at LC₅₀ of 4 and 8 % for degraded metabolites by causing death of its nauplii compared to its less toxic-degraded metabolites. Bioaccumulation of dye was observed in the mid-gut of A. salina. The cytogenotoxicity assay on the meristematic root tip cells of Allium cepa further confirmed the cytotoxic nature of azo dye (DR-22) with decrease in mitotic index (0.5 % at 500 ppm) and increase in aberrant index (4.56 %) over 4-h exposure period. Genotoxic damages (lagging chromosome, metaphase cluster, chromosome bridges, and dye accumulation in cytoplasm) were noticed at different stages of cell cycle. The degraded metabolites had negligible cytotoxic and genotoxic effects.

  5. Aurantibacter crassamenti gen. nov., sp. nov., a bacterium isolated from marine sediment.

    PubMed

    Yoon, Jaewoo; Kasai, Hiroaki

    2017-01-01

    A Gram-stain-negative, strictly aerobic, orange-colored, rod-shaped, chemoheterotrophic bacterium, designated HG732(T), was isolated from marine sediment in Japan. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the novel marine strain was affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it shared the highest (94.1 %) sequence similarity with Kriegella aquimaris KMM 3665(T). The strain could be differentiated phenotypically from related members of the family Flavobacteriaceae. Major fatty acids of strain HG732(T) were iso-C15:1 G, iso-C15:0 and iso-C17:0 3-OH. The polar lipid profile consisted of phosphatidylglycerol, three unidentidied aminolipids and two unidentified lipids. The DNA G+C content of the strain was determined to be 35.2 mol%, and the major respiratory quinone was identified as menaquinone 6 (MK-6). From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel genus in the family Flavobacteriaceae, for which the name Aurantibacter crassamenti gen. nov., sp. nov. is proposed. The type strain of A. crassamenti gen. nov., sp. nov. is HG732(T) (= KCTC 52207(T) = NBRC 112211(T)).

  6. Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice.

    PubMed

    Liu, Qing; Liu, Hong-Can; Zhang, Jian-Li; Zhou, Yu-Guang; Xin, Yu-Hua

    2015-09-01

    A Gram-stain-negative, rod-shaped, orange bacterium (strain MDB1-A(T)) was isolated from ice samples collected from Midui glacier in Tibet, south-west China. Cells were aerobic and psychrotolerant (growth occurred at 0-25 °C). Phylogenetic analysis based on 16S rRNA gene sequences showed that it was a member of the genus Sphingomonas, with its closest relative being Sphingomonas glacialis C16y(T) (98.9% similarity). Q-10 was the predominant ubiquinone. C17 : 1ω6c and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) were the major cellular fatty acids. The predominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and sphingoglycolipid. The polyamines detected were sym-homospermidine, spermidine and spermine. The G+C content of the genomic DNA was 63.6%. Based on data from this polyphasic analysis, strain MDB1-A(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas psychrolutea sp. nov. is proposed. The type strain is MDB1-A(T) ( = CGMCC 1.10106(T) = NBRC 109639(T)).

  7. Bacillus seohaeanensis sp. nov., a halotolerant bacterium that contains L-lysine in its cell wall.

    PubMed

    Lee, Jae-Chan; Lim, Jee-Min; Park, Dong-Jin; Jeon, Che Ok; Li, Wen-Jun; Kim, Chang-Jin

    2006-08-01

    A halotolerant, round-endospore-forming, aerobic, Gram-positive bacterium, designated BH724(T), was isolated from a solar saltern at Taean in Korea. Cells of this strain were rod-shaped and found to be non-motile. Strain BH724(T) grew at salinities of 0-10 % (w/v) NaCl with an optimum of 3 % (w/v) NaCl and at temperatures of 15-50 degrees C with an optimum of 40 degrees C. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BH724(T) belonged to the genus Bacillus and that Bacillus aquimaris TF-12(T), Bacillus marisflavi TF-11(T) and Bacillus vietnamensis JCM 11124(T) were its closest neighbours, sharing 97.3, 97.2 and 97.0 % 16S rRNA gene sequence similarity, respectively. The genomic DNA G+C content was 39 mol% and the predominant menaquinone was MK-7. Its major cellular fatty acids were anteiso-C(15 : 0), iso-C(15 : 0), iso-C(16 : 0) and iso-C(14 : 0). The peptidoglycan type was A1alpha, linked directly through l-lysine. On the basis of morphological, chemotaxonomic, physiological and phylogenetic properties, strain BH724(T) represents a novel species of the genus Bacillus, for which the name Bacillus seohaeanensis sp. nov. is proposed. The type strain is BH724(T) (=KCTC 3913(T)=DSM 16464(T)).

  8. Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora.

    PubMed

    Kim, Byung-Chun; Lee, Kang Hyun; Kim, Mi Na; Kim, Eun-Mi; Rhee, Moon-Soo; Kwon, O-Yu; Shin, Kee-Sun

    2009-10-01

    A novel cellulolytic bacterium, strain S23(T), was isolated from the rhizosphere of the pine trees in Daejeon, Republic of Korea. This isolate was Gram-positive, strictly aerobic, rod-shaped, catalase-negative, oxidase-positive, motile by means of peritrichous flagella, and tested positive for alkaline phosphatase, esterase lipase, leucine arylamidase, alpha-galactosidase, and beta-galactosidase activities. The DNA G+C content was 49.5 mol%. The main cellular fatty acids were anteiso-C(15:0) (51.9%), iso-C(16:0) (14.7%), and iso-C(15:0) (13.2%). The major isoprenoid quinone was menaquinone 7 (MK-7). Diagnostic diamino acid in the cell-wall pepti-doglycan was meso-diaminopimelic acid. Comparative 16S rRNA gene sequence analysis showed that this strain clustered with Paenibacillus species. The 16S rRNA gene sequence similarity values between S23(T) and other Paenibacillus species were between 89.9% and 95.9%, and S23(T) was most closely related to Paenibacillus tarimensis SA-7-6(T). On the basis of phylogenetic and phenotypic properties of strain S23(T), the isolate is considered as a novel species belonging to the genus Paenibacillus. Therefore, the name, Paenibacillus pinihumi sp. nov., is proposed for the rhizosphere isolate; the type strain is S23(T) (=KCTC 13695(T) =KACC 14199(T) =JCM 16419(T)).

  9. Paenibacillus puernese sp. nov., a β-glucosidase-producing bacterium isolated from Pu'er tea.

    PubMed

    Wang, Dan-Dan; Kim, Yeon-Ju; Hoang, Van-An; Nguyen, Ngoc-Lan; Singh, Priyanka; Wang, Chao; Chun-Yang, Deok

    2016-04-01

    A Gram-staining-positive, endospore-forming, aerobic, rod-shaped bacterium, designated as DCY97(T), was isolated from ripened Pu'er tea and was identified by using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain DCY97(T) was closely related to Paenibacillus dongdonensis KUDC0114(T) (98.0 %), Paenibacillus oceanisediminis L10(T) (97.7 %), and Paenibacillus barcinonensis BP-23(T) (97.2 %). The phenotypic and chemotaxonomic characteristics of strain DCY97(T) matched with the characteristics of members belonging to the genus Paenibacillus. The major identified polar lipids included phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant quinone was MK-7. The major fatty acids were anteiso-C15:0 (35.1 %), anteiso-C16:0 (19.0 %), and iso-C16:0 (13.9 %). The peptidoglycan cell wall was composed of meso-diaminopimelic acids, alanine, and D-glutamic acid. The genomic DNA G + C content was determined to be 46.7 mol%. The DNA-DNA relatedness between strain DCY97(T) and Paenibacillus dongdonensis KCTC 33221(T), Paenibacillus oceanisediminis KACC 16023(T), Paenibacillus barcinonensis KCTC 13019(T) were 27, 19, and 10 %, respectively. Based on the genotypic, phenotypic, and chemotaxonomic characteristics, strain DCY97(T) is considered as a novel species of the genus Paenibacillus, for which the name Paenibacillus puernese sp. nov. is proposed. The type strain is DCY97(T) (=KCTC 33596(T) = JCM 140369(T)).

  10. Pseudomonas glareae sp. nov., a marine sediment-derived bacterium with antagonistic activity.

    PubMed

    Romanenko, Lyudmila A; Tanaka, Naoto; Svetashev, Vassilii I; Mikhailov, Valery V

    2015-06-01

    An aerobic, Gram-negative, motile, rod-shaped bacterium designated KMM 9500(T) was isolated from a sediment sample collected from the Sea of Japan seashore. Comparative 16S rRNA gene sequence analysis affiliated strain KMM 9500(T) to the genus Pseudomonas as a distinct subline clustered with Pseudomonas marincola KMM 3042(T) and Pseudomonas segetis KCTC 12331(T) sharing the highest similarities of 98 and 97.9 %, respectively. Strain KMM 9500(T) was characterized by mainly possessing ubiquinone Q-9, and by the predominance of C18:1 ω7c, C16:1 ω7c, and C16:0 followed by C12:0 in its fatty acid profile. Polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unknown aminophospholipid, and unknown phospholipids. Strain KMM 9500(T) was found to inhibit growth of Gram-negative and Gram-positive indicatory microorganisms. Based on the phylogenetic analysis and distinctive phenotypic characteristics, strain 9500(T) is concluded to represent a novel species of the genus Pseudomonas, for which the name Pseudomonas glareae sp. nov. is proposed. The type strain of the species is strain KMM 9500(T) (=NRIC 0939(T)).

  11. Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field.

    PubMed

    Im, Wan-Taek; Liu, Qing-Mei; Lee, Kang-Jin; Kim, Se-Young; Lee, Sung-Taik; Yi, Tae-Hoo

    2010-07-01

    A Gram-negative, aerobic or facultatively anaerobic, non-spore-forming, motile, rod-shaped bacterium (strain Gsoil 3165(T)) was isolated from soil of a ginseng field in Pocheon, South Korea. Its taxonomic position was determined by using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain Gsoil 3165(T) was shown to belong to the family Comamonadaceae, class Betaproteobacteria, and was related most closely to the type strains of Variovorax boronicumulans (98.9 % similarity), Variovorax paradoxus (98.3 %), Variovorax soli (98.2 %) and Variovorax dokdonensis (96.6 %). Levels of 16S rRNA gene sequence similarity between strain Gsoil 3165(T) and the type strains of other species in the family Comamonadaceae were less than 97.0 %. The G+C content of the genomic DNA of strain Gsoil 3165(T) was 66 mol%. Phenotypic and chemotaxonomic data (Q-8 as the major ubiquinone; C(16 : 0) and C(17 : 0) cyclo as major fatty acids) supported the affiliation of strain Gsoil 3165(T) to the genus Variovorax. The results of physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain Gsoil 3165(T) from recognized Variovorax species. Gsoil 3165(T) is therefore considered to represent a novel species of the genus Variovorax, for which the name Variovorax ginsengisoli sp. nov. is proposed. The type strain is Gsoil 3165(T) (=KCTC 12583(T) =LMG 23392(T)).

  12. Preparation and characterization of gold nanoparticles and nanowires loaded into rod-shaped silica by a one-step procedure

    NASA Astrophysics Data System (ADS)

    Mnasri, Najib; Nyalosaso, Jeff L.; Kachbouri, Sana; Zajac, Jerzy; Elaloui, Elimame; Charnay, Clarence

    2017-01-01

    Rod-shaped mesoporous silica nanoparticles (RMSN) with built-in gold nanoparticles or thin gold nanowires in the pore channels were in situ synthesized via a one-step procedure. The insertion of a hydrophobic gold precursor into the mesopores of RMSN was reached through a micellar solubilization mechanism and gold nanoparticles were achieved through a thermal reduction. The resulting RMSN and Au-RMSN samples were characterized by using X-ray diffraction, transmission and scanning microscopies (TEM and SEM), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption and solid-state Nuclear Magnetic Resonance (NMR). The interaction of Au precursor (a carbene complex) with the thiol group at the silica surface was identified and found to play a crucial role in the dispersion of the uniform metal nanoparticles at the internal surface of RMSN. Moreover, TEM micrographs revealed the absence of large gold particles outside the mesopore network. The shape of Au nanoparticles and their loading amount in the mesoporous silica could be easily tuned by altering the concentration of gold precursor.

  13. Mineralization and kinetics of Reactive Brilliant Red X-3B by a combined anaerobic-aerobic bioprocess inoculated with the coculture of fungus and bacterium.

    PubMed

    Shi, Shengnan; Ma, Fang; Sun, Tieheng; Li, Ang; Zhou, Jiti; Qu, Yuanyuan

    2014-01-01

    Mineralization of Reactive Brilliant Red X-3B by a combined anaerobic-aerobic process which was inoculated with the co-culture of Penicillium sp. QQ and Exiguobacterium sp. TL was studied. The optimal conditions of decolorization were investigated by response surface methodology as follows: 132.67 g/L of strain QQ wet spores, 1.09 g/L of strain TL wet cells, 2.25 g/L of glucose, 2.10 g/L of yeast extract, the initial dye concentration of 235.14 mg/L, pH 6.5, and 33 °C. The maximal decolorization rate was about 96 % within 12 h under the above conditions. According to the Haldane kinetic equation, the maximal specific decolorization rate was 89.629 mg/g˙h. It was suggested that in the anaerobic-aerobic combined process, decolorization occurred in the anaerobic unit and chemical oxygen demand (COD) was mainly removed in the aerobic one. Inoculation of fungus QQ in the anaerobic unit was important for mineralization of X-3B. Besides, the divided anaerobic-aerobic process showed better performance of COD removal than the integrated one. It was suggested that the combined anaerobic-aerobic process which was inoculated with co-culture was potentially useful for the field application.

  14. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: A two-dimensional study

    NASA Astrophysics Data System (ADS)

    Yi, Xin; Gao, Huajian

    2014-06-01

    A fundamental understanding of cell-nanomaterial interaction is essential for biomedical diagnostics, therapeutics, and nanotoxicity. Here, we perform a theoretical analysis to investigate the phase diagram and morphological evolution of an elastic rod-shaped nanoparticle wrapped by a lipid membrane in two dimensions. We show that there exist five possible wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the shape and size of the particle, adhesion energy, membrane tension, and bending rigidity ratio between the particle and membrane. While symmetric morphologies are observed in the early and late stages of wrapping, in between a soft rod-shaped nanoparticle undergoes a dramatic symmetry breaking morphological change while stiff and rigid nanoparticles experience a sharp reorientation. These results are of interest to the study of a range of phenomena including viral budding, exocytosis, as well as endocytosis or phagocytosis of elastic particles into cells.

  15. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    NASA Astrophysics Data System (ADS)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core-shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  16. Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil.

    PubMed

    Khianngam, Saowapar; Akaracharanya, Ancharida; Lee, Jung-Sook; Lee, Keun Chul; Kim, Kyoung-Woong; Tanasupawat, Somboon

    2014-12-01

    An arsenite-oxidizing bacterium, strain S2-3H(T), was isolated from arsenic-contaminated soil sample collected from Dantchaeng district, Suphanburi province, Thailand and was characterized based on polyphasic taxonomic study. The strain was observed to be a Gram-stain negative, aerobic, yellow pigmented, non-spore forming and rod-shaped bacterium. Major menaquinone was MK-6. Iso-C15:0, iso-C15:0 3OH, C16:1 ω7c/C16:1 ω6c, C16:0, iso-C17:0 3OH, and C16:0 3OH were the predominant cellular fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, unidentified phospholipids and unidentified aminophospholipids. The DNA G+C content was 37.0 mol%. Phylogenetic analysis using 16S rRNA sequence showed that strain S2-3H(T) is affiliated to the genus Flavobacterium, and is closely related to F. defluvii KCTC 12612(T) (97.0 %) and F. johnsoniae NBRC 14942(T) (97.0 %). The strain S2-3H(T) could be clearly distinguished from the related Flavobacterium species by its physiological and biochemical characteristics as well as its phylogenetic position and DNA-DNA relatedness. Therefore, the strain represents a novel species of the genus Flavobacterium, for which the name Flavobacterium arsenitoxidans sp. nov. (type strain S2-3H(T) = KCTC 22507(T) = NBRC 109607(T) = PCU 331(T) = TISTR 2238(T)) is proposed.

  17. Phenotypic and genotypic properties of Microbacterium yannicii, a recently described multidrug resistant bacterium isolated from a lung transplanted patient with cystic fibrosis in France

    PubMed Central

    2013-01-01

    Background Cystic fibrosis (CF) lung microbiota consists of diverse species which are pathogens or opportunists or have unknown pathogenicity. Here we report the full characterization of a recently described multidrug resistant bacterium, Microbacterium yannicii, isolated from a CF patient who previously underwent lung transplantation. Results Our strain PS01 (CSUR-P191) is an aerobic, rod shaped, non-motile, yellow pigmented, gram positive, oxidase negative and catalase positive bacterial isolate. Full length 16S rRNA gene sequence showed 98.8% similarity with Microbacterium yannicii G72T type strain, which was previously isolated from Arabidopsis thaliana. The genome size is 3.95Mb, with an average G+C content of 69.5%. In silico DNA-DNA hybridization analysis between our Microbacterium yannicii PS01isolate in comparison with Microbacterium testaceum StLB037 and Microbacterium laevaniformans OR221 genomes revealed very weak relationship with only 28% and 25% genome coverage, respectively. Our strain, as compared to the type strain, was resistant to erythromycin because of the presence of a new erm 43 gene encoding a 23S rRNA N-6-methyltransferase in its genome which was not detected in the reference strain. Interestingly, our patient received azithromycin 250 mg daily for bronchiolitis obliterans syndrome for more than one year before the isolation of this bacterium. Conclusions Although significance of isolating this bacterium remains uncertain in terms of clinical evolution, this bacterium could be considered as an opportunistic human pathogen as previously reported for other species in this genus, especially in immunocompromised patients. PMID:23642186

  18. Spongiimicrobium salis gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae isolated from a marine sponge.

    PubMed

    Yoon, Jaewoo; Adachi, Kyoko; Kasai, Hiroaki

    2016-09-01

    A Gram-stain-negative, strictly aerobic, pale-yellow pigmented, rod-shaped, chemoheterotrophic bacterium, designated A6F-11(T), was isolated from a marine sponge collected in Japan. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the novel marine strain was affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it shared the highest (92.9 %) sequence similarity with Arenibacter palladensis LMG 21972(T). The strain could be differentiated phenotypically from related members of the family Flavobacteriaceae. The major fatty acids of strain A6F-11(T) were iso-C15:1 G, iso-C15:0, C16:1 ω6c and/or C16:1 ω7c and iso-C17:0 3-OH. The polar lipid profile consisted of phosphatidylglycerol, two unidentified aminolipids and two unidentified lipids. The DNA G+C content was 34.7 mol%, and the major respiratory quinone was menaquinone 6 (MK-6). From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel taxon in the family Flavobacteriaceae, for which the name Spongiimicrobium salis gen. nov., sp. nov. is proposed. The type strain of S. salis gen. nov., sp. nov. is A6F-11(T) (= KCTC 42753(T) = NBRC 111401(T)).

  19. Isolation and identification of a bacterium from marine shrimp digestive tract: A new degrader of starch and protein

    NASA Astrophysics Data System (ADS)

    Li, Jiqiu; Tan, Beiping; Mai, Kangsen

    2011-09-01

    It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp ( Litopenaeus vannamei) intestines by using multiple selective media. The selected isolate STE was identified on the basis of its morphological, physiological, and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas. This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.

  20. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga.

    PubMed

    Nedashkovskaya, Olga I; Balabanova, Larissa A; Zhukova, Natalia V; Kim, So-Jeong; Bakunina, Irina Y; Rhee, Sung-Keun

    2014-10-01

    A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 130(T), that displayed the ability to destroy polysaccharides of red and brown algae, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Flavobacterium, the type genus of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 96.2 and 95.7 % to Flavobacterium jumunjiense KCTC 23618(T) and Flavobacterium ponti CCUG 58402(T), and 95.3-92.5 % to other recognized Flavobacterium species. The prevalent fatty acids of strain 10Alg 130(T) were iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0 and iso-C17:1ω9c. The polar lipid profile consisted of phosphatidylethanolamine, two unknown aminolipids and three unknown lipids. The DNA G+C content of the type strain was 34.3 mol%. The new isolate and the type strains of recognized species of the genus Flavobacterium could strongly be distinguished by a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ahnfeltiae sp. nov. is proposed. The type strain is 10Alg 130(T) (=KCTC 32467(T) = KMM 6686(T)).

  1. Dyella thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.).

    PubMed

    Anandham, Rangasamy; Kwon, Soon-Wo; Indira Gandhi, Pandiyan; Kim, Soo-Jin; Weon, Hang-Yeon; Kim, Yi-Seul; Sa, Tong-Min; Kim, Yong-Ki; Jee, Hyeong-Jin

    2011-02-01

    A Gram-negative, aerobic, motile, rod-shaped, thiosulfate-oxidizing bacterium, designated ATSB10(T), was isolated from rhizosphere soil of sunflower (Helianthus annuus L.). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ATSB10(T) was closely related to members of the genera Dyella (96.4-98.1 % 16S rRNA gene sequence similarity) and Luteibacter (96.4-97.0 %) and Fulvimonas soli LMG 19981(T) (96.7 %) and Frateuria aurantia IFO 3245(T) (97.8 %). The predominant fatty acids were iso-C(16 : 0), iso-C(17 : 1)ω9c and iso-C(15 : 0). The major quinone was Q-8. The G+C content of the genomic DNA was 66.0 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, an unknown phospholipid, unknown aminophospholipids and an unknown aminolipid. On the basis of phenotypic properties, phylogenetic distinctiveness and DNA-DNA relatedness, strain ATSB10(T) represents a novel species in the genus Dyella, for which the name Dyella thiooxydans sp. nov. is proposed. The type strain is ATSB10(T) (=KACC 12756(T) =LMG 24673(T)).

  2. Pseudomonas linyingensis sp. nov.: a novel bacterium isolated from wheat soil subjected to long-term herbicides application.

    PubMed

    He, Wei-Hong; Wang, Ya-Nan; Du, Xun; Zhou, Yang; Jia, Bin; Bian, Jiang; Liu, Shuang-Jiang; Chen, Guo-Can

    2012-11-01

    A strain of genus Pseudomonas, LYBRD3-7(T) was isolated from long-term sulfonylurea herbicides applied wheat-field soil in Linying located in Henan province of China. This strain is a strictly aerobic and Gram-negative short rod-shaped bacterium with single flagellum. Phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this isolate as a member of Pseudomonas, and most closely to Pseudomonas tuomuerensis CGMCC 1.1365(T) (97.1 %) and P. alcaligenes IAM12411(T) (97.1 %). Morphological characters and chemotaxonomic data confirmed the affiliation of strain LYBRD3-7(T) to the genus Pseudomonas. The results of phylogenetic analysis, physiological and biochemical studies, and DNA-DNA hybridization allowed the differentiation of genotype and phenotype between strain LYBRD3-7(T) and the phylogenetic closest species with valid names. The name proposed for the new species is Pseudomonas linyingensis sp. nov. The type strain is LYBRD3-7(T) (=CGMCC 1.10701(T ) =LMG 25967(T)).

  3. Caenibacillus caldisaponilyticus gen. nov., sp. nov., a thermophilic, spore-forming and phospholipid-degrading bacterium isolated from acidulocompost.

    PubMed

    Tsujimoto, Yoshiyuki; Saito, Ryo; Furuya, Hiroto; Ishihara, Daisuke; Sahara, Takehiko; Kimura, Nobutada; Nishino, Tokuzo; Tsuruoka, Naoki; Shigeri, Yasushi; Watanabe, Kunihiko

    2016-07-01

    A thermophilic and phospholipid-degrading bacterium, designated strain B157T, was isolated from acidulocompost, a garbage compost processed under acidic conditions at moderately high temperature. The organism was Gram-stain-positive, aerobic, spore-forming and rod-shaped. Growth was observed to occur at 40-65 °C and pH 4.8-8.1 (optimum growth: 50-60 °C, pH 6.2). The strain was catalase- and oxidase-positive. The cell wall contained meso-diaminopimelic acid, alanine, glutamic acid and galactose. The predominant respiratory quinone was menaquinone-7 (MK-7) and the major fatty acids were anteiso-C17 : 0 and iso-C17 : 0. Comparative 16S rRNA gene sequence analysis showed that strain B157T was related most closely to Tuberibacillus calidus 607T (94.8 % identity), and the phylogenetic analysis revealed that it belonged to the family Sporolactobacillaceae. The DNA G+C content was determined as 51.8 mol%. In spite of many similarities with the type strains of members of the family Sporolactobacillaceae, genotypic analyses suggest that strain B157T represents a novel species of a new genus, Caenibacilluscaldisaponilyticus gen. nov., sp. nov. The type strain of Caenibacilluscaldisaponilyticus is B157T (=NBRC 111400T=DSM 101100T).

  4. Bacillus dabaoshanensis sp. nov., a Cr(VI)-tolerant bacterium isolated from heavy-metal-contaminated soil.

    PubMed

    Cui, Xiaowen; Wang, Yueqiang; Liu, Jing; Chang, Ming; Zhao, Yong; Zhou, Shungui; Zhuang, Li

    2015-05-01

    A Cr(VI)-tolerant, Gram-staining-positive, rod-shaped, endospore-forming and facultative anaerobic bacterium, designated as GSS04(T), was isolated from a heavy-metal-contaminated soil. Strain GSS04(T) was Cr(VI)-tolerant with a minimum inhibitory concentration of 600 mg l(-1) and was capable of reducing Cr(VI) under both aerobic and anaerobic conditions. Growth occurred with presence of 0-3 % (w/v) NaCl (optimum 1 %), at pH 5.5-10.0 (optimum pH 7.0) and 15-50 °C (optimum 30-37 °C). The main respiratory quinone was MK-7 and the major fatty acids were anteiso-C15:0 and iso-C15:0. The DNA G+C content was 41.1 mol%. The predominant polar lipid was diphosphatidylglycerol. Based on 16S rRNA gene sequence similarity, the closest phylogenetic relative was Bacillus shackletonii DSM 18868(T) (97.6 %). The DNA-DNA hybridization between GSS04(T) and its closest relatives revealed low relatedness (<70 %). The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS04(T) represents a novel species of the genus Bacillus, for which the name Bacillus dabaoshanensis sp. nov. is proposed. The type strain is GSS04(T) (=CCTCC AB 2013260(T) = KCTC 33191(T)).

  5. The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations.

    PubMed

    Schmidt, R J; Kung, L

    2010-04-01

    Whole-plant corn (31 to 39% dry matter) from several locations was chopped, treated with nothing (U), Lactobacillus buchneri 40788 (4 x 10(5) cfu/g; LB), or L. buchneri (4 x 10(5) cfu/g) and Pediococcus pentosaceus (1 x 10(5) cfu/g; LBPP), and packed into quadruplicate 20-L silos to determine their effects on silage fermentation and aerobic stability after 120 d of storage. The experiment was a randomized complete block design with main effects of treatment (T), block (location; L), and T x L interaction. Dry matter recovery was different among locations but unaffected by T. The population of lactic acid bacteria was greater in LB and LBPP than in U, and the opposite was true regarding the population of yeasts. Numbers of L. buchneri (colony-forming unit equivalents), determined by a real-time quantitative polymerase chain reaction, were higher in 4 of 5 locations for LB and LBPP compared with U (T x L interaction) with an average 6.70 log cfu/g for LB and LBPP versus 4.87 log cfu/g for U. Silages inoculated with LB and LBPP had higher silage pH and higher concentrations of acetic acid and 1,2 propanediol but lower concentrations of ethanol and water-soluble carbohydrates; there was a T x L interaction for all these variables. Aerobic stability was improved by LB and LBPP (mean of 136 h) compared with U (44 h), but there was an interaction between T x L. In general, locations with the highest population of L. buchneri had the largest increases in acetic acid and, consequently, the greatest improvements in aerobic stability. The addition of L. buchneri 40788 alone or with P. pentosaceus resulted in similar effects on silage fermentation and aerobic stability, but the effects were variable among locations, suggesting that unidentified factors; for example, in the field or on the forage crop, may alter the effectiveness of microbial inoculation.

  6. Anaerobic and aerobic degradation of cyanophycin by the denitrifying bacterium Pseudomonas alcaligenes strain DIP1 and role of three other coisolates in a mixed bacterial consortium.

    PubMed

    Sallam, Ahmed; Steinbüchel, Alexander

    2008-06-01

    Four bacterial strains were isolated from a cyanophycin granule polypeptide (CGP)-degrading anaerobic consortium, identified by 16S rRNA gene sequencing, and assigned to species of the genera Pseudomonas, Enterococcus, Clostridium, and Paenibacillus. The consortium member responsible for CGP degradation was assigned as Pseudomonas alcaligenes strain DIP1. The growth of and CGP degradation by strain DIP1 under anaerobic conditions were enhanced but not dependent on the presence of nitrate as an electron acceptor. CGP was hydrolyzed to its constituting beta-Asp-Arg dipeptides, which were then completely utilized within 25 and 4 days under anaerobic and aerobic conditions, respectively. The end products of CGP degradation by strain DIP1 were alanine, succinate, and ornithine as determined by high-performance liquid chromatography analysis. The facultative anaerobic Enterococcus casseliflavus strain ELS3 and the strictly anaerobic Clostridium sulfidogenes strain SGB2 were coisolates and utilized the beta-linked isodipeptides from the common pool available to the mixed consortium, while the fourth isolate, Paenibacillus odorifer strain PNF4, did not play a direct role in the biodegradation of CGP. Several syntrophic interactions affecting CGP degradation, such as substrate utilization, the reduction of electron acceptors, and aeration, were elucidated. This study demonstrates the first investigation of CGP degradation under both anaerobic and aerobic conditions by one bacterial strain, with regard to the physiological role of other bacteria in a mixed consortium.

  7. A marine inducible prophage vB_CibM-P1 isolated from the aerobic anoxygenic phototrophic bacterium Citromicrobium bathyomarinum JL354

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Zhang, Rui; Xu, Yongle; , Richard Allen White, III; Wang, Yu; Luo, Tingwei; Jiao, Nianzhi

    2014-11-01

    A prophage vB_CibM-P1 was induced by mitomycin C from the epipelagic strain Citromicrobium bathyomarinum JL354, a member of the alpha-IV subcluster of marine aerobic anoxygenic phototrophic bacteria (AAPB). The induced bacteriophage vB_CibM-P1 had Myoviridae-like morphology and polyhedral heads (approximately capsid 60-100 nm) with tail fibers. The vB_CibM-P1 genome is ~38 kb in size, with 66.0% GC content. The genome contains 58 proposed open reading frames that are involved in integration, DNA packaging, morphogenesis and bacterial lysis. VB_CibM-P1 is a temperate phage that can be directly induced in hosts. In response to mitomycin C induction, virus-like particles can increase to 7 × 109 per ml, while host cells decrease an order of magnitude. The vB_CibM-P1 bacteriophage is the first inducible prophage from AAPB.

  8. Savagea faecisuis gen. nov., sp. nov., a tylosin- and tetracycline-resistant bacterium isolated from a swine-manure storage pit.

    PubMed

    Whitehead, Terence R; Johnson, Crystal N; Patel, Nisha B; Cotta, Michael A; Moore, Edward R B; Lawson, Paul A

    2015-07-01

    A polyphasic taxonomic study using morphological, biochemical, chemotaxonomic and molecular methods was performed on three strains of a Gram-stain positive, non-sporeforming, motile aerobic rod-shaped bacterium resistant to tylosin and tetracycline isolated from a swine-manure storage pit. On the basis of 16S rRNA gene sequence analyses, it was confirmed that these isolates are highly related to each other and form a hitherto unknown lineage within the Planococcaceae. In particular, pairwise analysis of the 16S rRNA gene sequence demonstrated that the novel organism is closely related to members of the genus Sporosarcina (92.8-94.5 %), Pyschrobacillus (93.5-93.9 %) and Paenisporosarcina (93.3-94.5 %). The predominant fatty acids were found to consist of iso-C15:0 and iso-C17:1 ω10c and the G+C mol% was determined to be 41.8. Based on biochemical, chemotaxonomic, and phylogenetic evidence, it is proposed that these novel strains be classified as a novel genus and species, Savagea faecisuis gen nov., sp. nov. The type strain is Con12(T) (=CCUG 63563(T) = NRRL B-59945(T) = NBRC 109956(T)).

  9. Lysinibacillus endophyticus sp. nov., an indole-3-acetic acid producing endophytic bacterium isolated from corn root (Zea mays cv. Xinken-5).

    PubMed

    Yu, Jiang; Guan, Xuejiao; Liu, Chongxi; Xiang, Wensheng; Yu, Zhenhua; Liu, Xiaobing; Wang, Guanghua

    2016-10-01

    A Gram-positive, aerobic, motile, rod-shaped bacterium, designated strain C9(T), was isolated from surface sterilised corn roots (Zea mays cv. Xinken-5) and found to be able to produce indole-3-acetic acid. A polyphasic taxonomic study was carried out to determine the status of strain C9(T). The major cellular fatty acids were found to contain iso-C15:0, anteiso-C15:0 and anteiso-C17:0, and the only menaquinone was identified as MK-7. The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and an unidentified lipid. The cell wall peptidoglycan was found to be of the A4α L-Lys-D-Asp type and the whole cell sugar was found to be glucose. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain C9(T) belongs to the genus Lysinibacillus and is closely related to Lysinibacillus chungkukjangi NBRC 108948(T) (98.1 % similarity) and Lysinibacillus sinduriensis DSM 27595(T) (98.0 %). However, the low levels of DNA-DNA relatedness and some differential phenotypic characteristics allowed the strain to be distinguished from its close relatives. Therefore, it is concluded that strain C9(T) represents a novel species of the genus Lysinibacillus, for which the name Lysinibacillus endophyticus sp. nov. is proposed. The type strain is C9(T) (=DSM 100506(T) = CGMCC 1.15291(T)).

  10. Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir.

    PubMed

    Huang, Tinglin; Guo, Lin; Zhang, Haihan; Su, Junfeng; Wen, Gang; Zhang, Kai

    2015-11-01

    An aerobic denitrifier, identified as Pseudomonas stutzeri strain ZF31, was isolated from the Zhoucun drinking-water reservoir. Strain ZF31 removed 97% of nitrate nitrogen after 16h, without nitrite accumulation. Sequence amplification indicated the presence of the denitrification genes napA, nirS, norB, and nosZ. Nitrogen balance analysis revealed that approximately 75% of the initial nitrogen was removed as gas products. Response surface methodology (RSM) experiments showed that maximum removal of total nitrogen (TN) occurred at pH 8.23, a C/N ratio of 6.68, temperature of 27.72°C, and with shaking at 54.15rpm. The TN removal rate at low C/N ratio (i.e., 3) and low temperature (i.e., 10°C) was 73.30% and 60.08%, respectively. These results suggest that strain ZF31 has potential applications for the bioremediation of slightly polluted drinking-water reservoirs.

  11. Bacillus salitolerans sp. nov., a novel bacterium isolated from a salt mine in Xinjiang province, China.

    PubMed

    Zhang, Wei-Yan; Hu, Jing; Zhang, Xin-Qi; Zhu, Xu-Fen; Wu, Min

    2015-08-01

    A novel aerobic bacterium, KC1(T), was isolated from a salt mine in Kuche county, Xinjiang province, China. Cells were observed to be Gram-positive, rod-shaped, endospore-forming and motile with flagella. Strain KC1(T) was found to grow at 25-45 °C (optimum 37 °C), pH 6.5-9.0 (optimum 8.0) and NaCl 0-10 % (v/v) (optimum 4 %). The major fatty acids were identified as anteiso-C15:0 and anteiso-C17:0. Menaquinone-7 (MK-7) was found to be the predominant isoprenoid quinone. The cell-wall diamino acid was found to be meso-diaminopimelic acid. Polar lipid analysis revealed the presence of phosphatidylglycerol and a glycolipid. The 16S rRNA gene sequence of strain KC1(T) showed low similarity (<96 %) to other validly named species. The phylogenetic trees showed that strain KC1(T) is closely related to Bacillus azotoformans DSM 1046(T) and Bacillus methanolicus DSM 16454(T). Both these type strains showed 95.4 % 16S rRNA gene sequence similarity to strain KC1(T). The DNA G+C content of strain KC1(T) was determined to be 39.0 mol%. On the basis of its phenotypic, chemotaxonomic and genotypic characteristics, strain KC1(T) is considered to represent a novel species of the genus Bacillus, for which the name Bacillus salitolerans sp. nov. is proposed. The type strain is KC1(T) (=JCM 19760(T) = CGMCC 1.12810(T)).

  12. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus

    PubMed Central

    Bloh, Anmar Hameed; Usup, Gires; Ahmad, Asmat

    2016-01-01

    Aim: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. Materials and Methods: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup's Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. Results: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06) were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity). Conclusion: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates. PMID:27051199

  13. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.

    PubMed

    Kim, Ji-Young; Yoo, Han-Su; Lee, Dong-Heon; Park, So-Hyun; Kim, Young-Ju; Oh, Duck-Chul

    2016-06-01

    A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T).

  14. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil.

    PubMed

    Yan, Jun; Yan, Hui; Liu, Li Xue; Chen, Wen Feng; Zhang, Xiao Xia; Verástegui-Valdés, Myrthala M; Wang, En Tao; Han, Xiao Zeng

    2017-01-01

    One Gram-negative, aerobic, motile, rod-shaped bacterium, designated as FH14(T), was isolated from nodules of Phaseolus vulgaris grown in Hidalgo State of Mexico. Results based upon 16S rRNA gene (≥99.8 % similarities to known species), concatenated sequence (recA, atpD and glnII) analysis of three housekeeping genes (≤93.4 % similarities to known species) and average nucleotide identity (ANI) values of genome sequence (ranged from 87.6 to 90.0 % to related species) indicated the distinct position of strain FH14(T) within the genus Rhizobium. In analyses of symbiotic genes, only nitrogen fixation gene nifH was amplified that had nucleotide sequence identical to those of the bean-nodulating strains in R. phaseoli and R. vallis, while nodulation gene nodC gene was not amplified. The failure of nodulation to its original host P. vulgaris and other legumes evidenced the loss of its nodulation capability. Strain FH14(T) contained summed feature 8 (C18:1 ω6c/C18:1 ω7c, 59.96 %), C16:0 (10.6 %) and summed feature 2 (C12:0 aldehyde/unknown 10.928, 10.24 %) as the major components of cellular fatty acids. Failure to utilize alaninamide, and utilizing L-alanine, L-asparagine and γ-amino butyric acid as carbon source, distinguished the strain FH14(T) from the type strains for the related species. The genome size and DNA G+C content of FH14(T) were 6.94 Mbp and 60.8 mol %, respectively. Based on those results, a novel specie in Rhizobium, named Rhizobium hidalgonense sp. nov., was proposed, with FH14(T) (=HAMBI 3636(T) = LMG 29288(T)) as the type strain.

  15. Microbulbifer mangrovi sp. nov., a polysaccharide-degrading bacterium isolated from an Indian mangrove.

    PubMed

    Vashist, Poonam; Nogi, Yuichi; Ghadi, Sanjeev C; Verma, Pankaj; Shouche, Yogesh S

    2013-07-01

    A rod-shaped, Gram-negative, non-motile, aerobic and non-endospore forming bacterium, designated strain DD-13(T), was isolated from the mangrove ecosystem of Goa, India. Strain DD-13(T) degraded polysaccharides such as agar, alginate, chitin, cellulose, laminarin, pectin, pullulan, starch, carrageenan, xylan and β-glucan. The optimum pH and temperature for growth was 7 and 36 °C, respectively. The strain grew optimally in the presence of 3 % NaCl (w/v). The DNA G+C content was 61.4 mol%. The predominant fatty acid of strain DD-13(T) was iso-C15 : 0. Ubiquinone-8 was detected as the major respiratory lipoquinone. Phylogenetic studies based on 16S rRNA gene sequence analysis demonstrated that strain DD-13(T) formed a coherent cluster with species of the genus Microbulbifer. Strain DD-13(T) exhibited 16S rRNA gene sequence similarity levels of 98.9-97.1 % with Microbulbifer hydrolyticus IRE-31(T), Microbulbifer salipaludis JCM 11542(T), Microbulbifer agarilyticus JAMB A3(T), Microbulbifer celer KCTC 12973(T) and Microbulbifer elongatus DSM 6810(T). However, the level of DNA-DNA relatedness between strain DD-13(T) and the five type strains of these species of the genus Microbulbifer were in the range of 26-33 %. Additionally, strain DD-13(T) demonstrates several phenotypic differences from these type strains of species of the genus Microbulbifer. Thus strain DD-13(T) represents a novel species of the genus Microbulbifer, for which the name Microbulbifer mangrovi sp. nov. is proposed with the type strain DD-13(T) ( = KCTC 23483(T) = JCM 17729(T)).

  16. Halomonas huangheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    PubMed

    Miao, Chaohua; Jia, Fangfang; Wan, Yusong; Zhang, Wei; Lin, Min; Jin, Wujun

    2014-03-01

    A novel, Gram-stain-negative, aerobic, rod-shaped, non-motile and moderately halophilic bacterium, designated strain BJGMM-B45(T), was isolated from a saline-alkali soil collected from Shandong Province, China. Growth of strain BJGMM-B45(T) occurred at 10-45 °C (optimum, 30 °C) and pH 5.0-12.0 (optimum, pH 7.0) on Luria-Bertani agar medium with 1-20 % (w/v) NaCl (optimum, 7-10 %). The predominant respiratory quinone was Q-9. The major cellular fatty acids (>5 %) were C18 : 1ω7c, C16 : 0, C19 : 0 cyclo ω8c, summed feature 3, C12 : 0 3-OH and C12 : 0. The genomic DNA G+C content was 57.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BJGMM-B45(T) belonged to the genus Halomonas in the class Gammaproteobacteria. The closest relatives were Halomonas cupida DSM 4740(T) (98.2 % 16S rRNA gene sequence similarity) and Halomonas denitrificans M29(T) (97.8 %). Levels of DNA-DNA relatedness between strain BJGMM-B45(T) and Halomonas cupida CGMCC 1.2312(T) and Halomonas denitrificans DSM 18045(T) were 57.0 and 58.9 %, respectively. On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain BJGMM-B45(T) is considered to represent a novel species of the genus Halomonas, for which the name Halomonas huangheensis sp. nov. is proposed. The type strain is BJGMM-B45(T) ( = ACCC 05850(T) = KCTC 32409(T)).

  17. Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, OR

    SciTech Connect

    Ledbetter, Rhesa N.; Connon, Stephanie A.; Neal, Andrew L.; Dohnalkova, Alice; Magnuson, Timothy S.

    2007-09-01

    The Alvord Basin in southeast Oregon, USA contains a variety of hydrothermal features, which have never been microbiologically characterized. Murky Pot (61°C, pH 7.1) was selected for this study. Sampling of Murky Pot led to the isolation of a novel arsenic-metabolizing organism (YeAs), which produces an arsenic sulfide mineral known as beta-realgar, a mineral that has not previously been observed as a product of bacterial arsenic metabolism. Our goal was to characterize and identify YeAs based on its phylogenetic, physiological, and morphological characteristics. 16S rRNA gene analysis revealed that YeAs has 98.9% sequence similarity to that of Thermobrachium celere. YeAs was grown on a freshwater medium and could utilize a variety of organic substrates, particularly carbohydrates and organic acids. Optimum growth of the organism was seen at 55ºC, but showed growth at a range of 37° to 75°C. No growth was observed when YeAs was grown under aerobic conditions. Microscopic examination revealed Gram-indeterminate, non-spore forming, rod shaped cells. Electron microscopy and elemental analysis revealed significant arsenic sulfide mineralization of cell walls, and extracellular particulate deposition of arsenic sulfide minerals. YeAs showed no detectable respiratory arsenate reductase; however, the organism did display significant detoxification arsenate reductase activity. The phylogenetic, physiological, and morphological characteristics of YeAs demonstrate that it is an anaerobic, moderately thermophilic, arsenic-reducing bacterium. This organism and its associated metabolism could have major implications in the search for innovative methods for arsenic waste management and in the search for novel biogenic signatures.

  18. Asticcacaulis endophyticus sp. nov., a prosthecate bacterium isolated from the root of Geum aleppicum.

    PubMed

    Zhu, Lingfang; Long, Mingxiu; Si, Meiru; Wei, Linfang; Li, Changfu; Zhao, Liang; Shen, Xihui; Wang, Yao; Zhang, Lei

    2014-12-01

    A strictly aerobic, light-yellow-coloured, stalked bacterium, designated strain ZFGT-14(T), was isolated from the root of Geum aleppicum Jacq. collected from Taibai Mountain in Shaanxi province, north-west China, and was subjected to a taxonomic study using a polyphasic approach. This novel isolate grew at 7-33 °C (optimum 25-28 °C) and pH 6.0-10.0 (optimum pH 7.0-8.0). Flexirubin-type pigments were not produced. Cells were Gram-stain-negative, rod-shaped and motile with a single polar flagellum. The predominant respiratory quinone was Q-10. The major cellular fatty acids were summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c), C16 : 0, C19 : 0 cyclo ω8c and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and the major polar lipids were phosphatidylglycerol and glycolipids. The DNA G+C content was 57.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFGT-14(T) was most closely related to the genus Asticcacaulis and had low sequence similarity (95.0-95.9 %) with all species with validly published names within the genus Asticcacaulis. Based on the phenotypic, phylogenetic and genotypic data, strain ZFGT-14(T) is considered to represent a novel species of the genus Asticcacaulis, for which the name Asticcacaulis endophyticus sp. nov. is proposed. The type strain is ZFGT-14(T) ( = CCTCC AB 2013012(T) = KCTC 32296(T) = LMG 27605(T)).

  19. Hoeflea suaedae sp. nov., an endophytic bacterium isolated from the root of the halophyte Suaeda maritima.

    PubMed

    Chung, Eu Jin; Park, Jeong Ae; Pramanik, Prabhat; Bibi, Fehmida; Jeon, Che Ok; Chung, Young Ryun

    2013-06-01

    A Gram-negative, aerobic, short rod-shaped bacterium, designated strain YC6898(T), was isolated from the surface-sterilized root of a halophyte (Suaeda maritima) inhabiting tidal flat of Namhae Island, Korea. Strain YC6898(T) grew optimally at 30-37 °C and pH 6.5-7.5. The strain inhibited mycelial growth of Pythium ultimum and Phytophthora capsici. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YC6898(T) belongs to the genus Hoeflea in the family Phyllobacteriaceae. Its closest relatives were Hoeflea alexandrii AM1V30(T) (96.7% 16S rRNA gene sequence similarity), Hoeflea anabaenae WH2K(T) (95.7%), Hoeflea phototrophica DFL-43(T) (95.5%) and Hoeflea marina LMG 128(T) (94.8%). Strain YC6898(T) contained Q-10 as the major ubiquinone. The major fatty acids of strain YC6898(T) were C18:1ω7c (61.1%), C16:0 (11.9%), 11-methyl C18:1ω7c (9.6%) and C19:0 cyclo ω8c (8.0%). The polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, unknown lipids and an unknown glycolipid. The total genomic DNA G+C content was 53.7 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analysis, strain YC6898(T) represents a novel species of the genus Hoeflea, for which the name Hoeflea suaedae sp. nov. is proposed. The type strain is YC6898(T) (=KACC 14911(T)=NBRC 107700(T)).

  20. Pseudomonas sagittaria sp. nov., a siderophore-producing bacterium isolated from oil-contaminated soil.

    PubMed

    Lin, Shih-Yao; Hameed, Asif; Liu, You-Cheng; Hsu, Yi-Han; Lai, Wei-An; Chen, Wen-Ming; Shen, Fo-Ting; Young, Chiu-Chung

    2013-07-01

    An aerobic, Gram-stain-negative, rod-shaped bacterium with a single polar flagellum, designated CC-OPY-1(T), was isolated from an oil-contaminated site in Taiwan. CC-OPY-1(T) produces siderophores, and can grow at temperatures of 25-37 °C and pH 5.0-9.0 and tolerate <5 % (w/v) NaCl. The 16S rRNA gene sequence analysis of CC-OPY-1(T) showed high pairwise sequence similarity to Pseudomonas alcaligenes BCRC 11893(T) (97.1 %), Pseudomonas. alcaliphila DSM 17744(T) (97.1 %), Pseudomonas tuomuerensis JCM 14085(T) (97.1 %), Pseudomonas toyotomiensis JCM 15604(T) (96.9 %) and lower sequence similarity to remaining species of the genus Pseudomonas. The phylogenetic trees reconstructed based on gyrB and rpoB gene sequences supported the classification of CC-OPY-1(T) as a novel member of the genus Pseudomonas. The predominant quinone system of strain CC-OPY-1T was ubiquinone (Q-9) and the DNA G+C content was 68.4 ± 0.3 mol%. The major fatty acids were C12 : 0, C16 : 0, C17 : 0 cyclo and summed features 3 and 8 consisting of C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c, respectively. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylcholine (PC) and two unknown phospholipids (PL1-2). Due to distinct phylogenetic, phenotypic and chemotaxonomic features, CC-OPY-1(T) is proposed to represent a novel species within the genus Pseudomonas for which the name Pseudomonas sagittaria sp. nov. is proposed. The type strain is CC-OPY-1(T) ( = BCRC 80399(T) = JCM 18195(T)).

  1. Rufibacter glacialis sp. nov., a psychrotolerant bacterium isolated from glacier soil.

    PubMed

    Liu, Qing; Liu, Hong-Can; Zhang, Jian-Li; Zhou, Yu-Guang; Xin, Yu-Hua

    2016-01-01

    A Gram-stain-negative, rod-shaped, red-pigmented bacterium (MDT1-10-3T) was isolated from Midui glacier in Tibet, China. Cells were aerobic and psychrotolerant (growth occurred at 4-25 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that it was a member of the genus Rufibacter, with Rufibacter immobilis MCC P1T (96.7 % similarity) as its closest phylogenetic relative. MK-7 was the predominant respiratory menaquinone. The major cellular fatty acids were summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C17 : 1ω6c, iso-C16 : 0, iso-C15 : 0 and C16 : 1ω5c. The predominant polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids, one glycolipid and four unidentified lipids. The G+C content of the genomic DNA was 49 mol%. On the basis of the phenotypic characteristics and phylogenetic analysis, strain MDT1-10-3T represents a novel species of the genus Rufibacter, for which the name Rufibacter glacialis sp. nov. is proposed. The type strain is MDT1-10-3T ( = CGMCC 1.9789T = NBRC 109705T).

  2. Cupriavidus nantongensis sp. nov., a novel chlorpyrifos-degrading bacterium isolated from sludge.

    PubMed

    Sun, Le-Ni; Wang, Dao-Sheng; Yang, En-Dong; Fang, Lian-Cheng; Chen, Yi-Fei; Tang, Xin-Yun; Hua, Ri-Mao

    2016-06-01

    A Gram-stain-negative, aerobic, coccoid to small rod-shaped bacterium, designated X1T, was isolated from sludge collected from the vicinity of a pesticide manufacturer in Nantong, Jiangsu Province, China. Based on 16S rRNA gene sequence analysis, strain X1T belonged to the genus Cupriavidus, and was most closely related to Cupriavidus taiwanensis LMG 19424T (99.1 % 16S rRNA gene sequence similarity) and Cupriavidus alkaliphilus LMG 26294T (98.9 %). Strain X1T showed 16S rRNA gene sequence similarities of 97.2-98.2 % with other species of the genus Cupriavidus. The major cellular fatty acids of strain X1T were C16 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH (summed feature 3), C18 : 1ω7c and C17 : 0 cyclo, and the major respiratory quinone was ubiquinone Q-8. The major polar lipids of strain X1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, phospholipid and hydroxyphosphatidylethanolamine. The DNA G+C content was 66.6 mol%. The DNA-DNA relatedness values of strain X1T with the five reference strains C. taiwanensis LMG 19424T, C. alkaliphilus LMG 26294T, Cupriavidus necator LMG 8453T, Cupriavidus gilardii LMG 5886T and 'Cupriavidus yeoncheonense' KCTC 42053 were lower than 70 %. The results obtained from phylogenetic analysis, phenotypic characterization and DNA-DNA hybridization indicated that strain X1T should be proposed to represent a novel species of the genus Cupriavidus, for which the name Cupriavidus nantongensis sp. nov. is proposed. The type strain is X1T (=KCTC 42909T=LMG 29218T).

  3. Thermalkalibacillus uzonensis gen. nov. sp. nov, a novel aerobic alkali-tolerant thermophilic bacterium isolated from a hot spring in Uzon Caldera, Kamchatka.

    PubMed

    Zhao, Weidong; Weber, Carolyn; Zhang, Chuanlun L; Romanek, Christopher S; King, Gary M; Mills, Gary; Sokolova, Tatyana; Wiegel, Juergen

    2006-08-01

    A novel thermophilic, alkali-tolerant, and CO-tolerant strain JW/WZ-YB58(T) was isolated from green mat samples obtained from the Zarvarzin II hot spring in the Uzon Caldera, Kamchatka (Far East Russia). Cells were Gram-type and Gram stain-positive, strictly aerobic, 0.7-0.8 mum in width and 5.5-12 mum in length and produced terminal spherical spores of 1.2-1.6 mum in diameter with the mother cell swelling around 2 mum in diameter (drumstick-type morphology). Cells grew optimally at pH(25 degrees C) 8.2-8.4 and temperature 50-52 degrees C and tolerated maximally 6% (w/v) NaCl. They were strict heterotrophs and could not use either CO or CO(2 )(both with or without H(2)) as sole carbon source, but tolerated up to 90% (v/v) CO in the headspace. The isolate grew on various complex substrates such as yeast extract, on carbohydrates, and organic acids, which included starch, D: -galactose, D: -mannose, glutamate, fumarate and acetate. Catalase reaction was negative. The membrane polar lipids were dominated by branched saturated fatty acids, which included iso-15:0 (24.5%), anteiso-15:0 (18.3%), iso-16:0 (9.9%), iso-17:0 (17.5%) and anteiso-17:0 (9.7%) as major constituents. The DNA G+C content of the strain is 45 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain JW/WZ-YB58(T) is distantly (<93% similarity) related to members of Bacillaceae. On the basis of 16S rRNA gene sequence, physiological and phenotypic characteristics, the isolate JW/WZ-YB58(T) (ATCC BAA-1258; DSM 17740) is proposed to be the type strain for the type species of the new taxa within the family Bacillaceae, Thermalkalibacillus uzoniensis gen. nov. sp. nov. The Genbank accession number for the 16S rRNA gene sequence is DQ221694.

  4. Thermal management, beam control, and packaging designs for high power diode laser arrays and pump cavity designs for diode laser array pumped rod shaped lasers

    NASA Astrophysics Data System (ADS)

    Chung, Te-Yuan

    Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.

  5. A Facile One-Step Solvothermal Synthesis and Electrical Properties of Reduced Graphene Oxide/Rod-Shaped Potassium Tungsten Bronze Nanocomposite.

    PubMed

    Liu, Bin; Yin, Shu; Wang, Yuhua; Guo, Chongshen; Wu, Xiaoyong; Dong, Qiang; Kobayashi, Makoto; Kakihana, Masato; Sato, Tsugio

    2015-09-01

    Reduced graphene oxide (rGO)/rod-shaped potassium tungsten bronze nanocomposites with the different ratio were successfully synthesized by solvothermal reaction and followed by the reduction in H2(5 vol.%)/N2 atmosphere at 550 degrees C. The coupled samples showed excellent shielding ability of NIR light as well as certain visible lights transparency. The synergistic effects could be observed in the composites, i.e., when 15 wt% and 20 wt% of rGO which was fabricated by chemical reduction of graphene oxide, were composed into K(x)WO3, the composite showed the higher electrical conductivity than those of rGO and potassium tungsten bronze.

  6. Crystalline characterization and photodecomposition properties of rod-shaped Na2Ti6O13 powder prepared by molten salt process.

    PubMed

    Ku, Hye-Kyung; Oh, Hyo-Jin; Noh, Kyung-Jong; Jung, Sang-Chul; Park, Kyeong-Soon; Lee, Won-Jae; Kim, Sun-Jae

    2011-08-01

    To prepare one-dimensional nanostructured Na2Ti6O13 powder, the starting materials of TiO2, NaCl and Na2CO3 were mixed and then heat-treated at 1000 degrees C for 2 hrs in air under molten state of NaCl. Changes in shape and phase, photo absorbance and photocatalytic ability of TiO2 particle were observed controlling added amount of Na2CO3 under constant weight ratio of TiO2 to NaCl using SEM, X-ray diffractometer, Raman spectroscopy, and UV-Vis spectroscopy. The TiO2 particle was changed into rod-shape Na2Ti6O13 with the addition of Na2CO3, showing increase in optical energy band-gap of the powder as well as gradual decrease of the photo-decomposition ability.

  7. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov.

    PubMed Central

    Nakai, Ryosuke; Nishijima, Miyuki; Tazato, Nozomi; Handa, Yutaka; Karray, Fatma; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    A phylogenetically novel proteobacterium, strain Shr3T, was isolated from sand gravels collected from the eastern margin of the Sahara Desert. The isolation strategy targeted bacteria filterable through 0.2-µm-pore-size filters. Strain Shr3T was determined to be a Gram-negative, aerobic, non-motile, filamentous bacterium. Oxidase and catalase reactions were positive. Strain Shr3T showed growth on R2A medium, but poor or no growth on nutrient agar, trypticase soy agar and standard method agar. The major isoprenoid quinone was menaquinone-7. The dominant cellular fatty acids detected were C16 : 1ω5c and C16 : 0, and the primary hydroxy acid present was C12 : 0 3-OH. The DNA G+C content was 54.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Shr3T was affiliated with an uncultivated lineage of the phylum Proteobacteria; the nearest known type strain, with 83 % sequence similarity, was Desulfomicrobium orale DSM 12838T in the class Deltaproteobacteria. The isolate and closely related environmental clones formed a novel class-level clade in the phylum Proteobacteria with high bootstrap support (96–99 %). Based on these results, the novel class Oligoflexia classis nov. in the phylum Proteobacteria and the novel genus and species Oligoflexus tunisiensis gen. nov., sp. nov. are proposed for strain Shr3T, the first cultivated representative of the Oligoflexia. The type strain of Oligoflexus tunisiensis is Shr3T ( = JCM 16864T = NCIMB 14846T). We also propose the subordinate taxa Oligoflexales ord. nov. and Oligoflexaceae fam. nov. in the class Oligoflexia. PMID:25013226

  8. The Growth of Steroidobacter agariperforans sp. nov., a Novel Agar-Degrading Bacterium Isolated from Soil, is Enhanced by the Diffusible Metabolites Produced by Bacteria Belonging to Rhizobiales

    PubMed Central

    Sakai, Masao; Hosoda, Akifumi; Ogura, Kenjiro; Ikenaga, Makoto

    2014-01-01

    An agar-degrading bacterium was isolated from soil collected in a vegetable cropping field. The growth of this isolate was enhanced by supplying culture supernatants of bacteria belonging to the order Rhizobiales. Phylogenetic analysis based on 16S rRNA gene sequences indicated the novel bacterium, strain KA5–BT, belonged to the genus Steroidobacter in Gammaproteobacteria, but differed from its closest relative, Steroidobacter denitrificans FST, at the species level with 96.5% similarity. Strain KA5–BT was strictly aerobic, Gram-negative, non-motile, non-spore forming, and had a straight to slightly curved rod shape. Cytochrome oxidase and catalase activities were positive. The strain grew on media containing culture supernatants in a temperature range of 15–37°C and between pH 4.5 and 9.0, with optimal growth occurring at 30°C and pH 6.0–8.0. No growth occurred at 10 or 42°C or at NaCl concentrations more than 3% (w/v). The main cellular fatty acids were iso–C15:0, C16:1ω7c, and iso–C17:1ω9c. The main quinone was ubiquinone-8 and DNA G+C content was 62.9 mol%. In contrast, strain FST was motile, did not grow on the agar plate, and its dominant cellular fatty acids were C15:0 and C17:1ω8c. Based on its phylogenetic and phenotypic properties, strain KA5–BT (JCM 18477T = KCTC 32107T) represents a novel species in genus Steroidobacter, for which the name Steroidobacter agariperforans sp. nov. is proposed. PMID:24621511

  9. Deinobacterium chartae gen. nov., sp. nov., an extremely radiation-resistant, biofilm-forming bacterium isolated from a Finnish paper mill.

    PubMed

    Ekman, Jaakko V; Raulio, Mari; Busse, Hans-Jürgen; Fewer, David P; Salkinoja-Salonen, Mirja

    2011-03-01

    A rod-shaped, non-spore-forming, non-motile, aerobic, oxidase and catalase-positive and radiation-resistant bacterium (designated strain K4.1(T)) was isolated from biofilm collected from a Finnish paper mill. The bacterium grew as pale pink colonies on oligotrophic medium at 12 to 50 °C (optimum 37 to 45 °C) and at pH 6 to 10.3. The DNA G+C content of the strain was 66.8 l%. According to 16S rRNA gene sequence analysis, strain K4.1(T) was distantly related to the genus Deinococcus, sharing highest similarity with Deinococcus pimensis (90.0  %). In the phylogenetic tree, strain K4.1(T) formed a separate branch in the vicinity of the genus Deinococcus. The peptidoglycan type was A3β with L-Orn-Gly-Gly and the quinone system was determined to be MK-8. The polar lipid profile of strain K4.1(T) differed markedly from that of the genus Deinococcus. The predominant lipid of strain K4.1(T) was an unknown aminophospholipid and it did not contain the unknown phosphoglycolipid predominant in the polar lipid profiles of deinococci analysed to date. Two of the predominant fatty acids of the strain, 15 : 0 anteiso and 17 : 0 anteiso, were lacking or present in small amounts in species of the genus Deinococcus. Phylogenetic distinctness and significant differences in the polar lipid and fatty acid profiles suggest classification of strain K4.1(T) as a novel genus and species in the family Deinococcaceae, for which we propose the name Deinobacterium chartae gen. nov., sp. nov. The type strain is K4.1(T) (=DSM 21458(T) =HAMBI 2721(T)).

  10. Bacillus piscis sp. nov., a novel bacterium isolated from the muscle of the antarctic fish Dissostichus mawsoni.

    PubMed

    Lee, Jae-Bong; Jeon, Seon Hwa; Choi, Seok-Gwan; Jung, Hee-Young; Kim, Myung Kyum; Srinivasan, Sathiyaraj

    2016-12-01

    In this paper, a new bacterial strain designated as 16MFT21(T) is isolated from the muscle of a fish caught in the Antarctic Ocean. Strain 16MFT21(T) is a Gram-staining-positive, catalase-oxidase-positive, rod-shaped facultative-aerobic bacterium. The phylogenetic analysis that is based on the 16S-rRNA gene sequence of strain 16MFT21(T) revealed that it belongs to the genus Bacillus in the family Bacillaceae in the class Bacilli. The highest degrees of the sequence similarity of the strain 16MFT21(T) is with Bacillus licheniformis ATCC 14580(T) (96.6%) and Bacillus sonorensis NBRC 101234(T) (96.6%). The isolate formed a pale-yellow pigment, and it grew in the presence of 0% to 10% (w/v) NaCl (optimum at 2% NaCl), a pH of 6.0 to 10.0 (optimum pH from 7.0 to 8.0), and from 4°C to 30°C (optimum at 30°C). The major polar lipids consist of diphosphatidylglycerol (DPG) and phosphatidylglycerol (PG). The predominant fatty acids are iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0. The main respiratory quinone is menaquinone-7 (MK-7), and based on the use of the meso-diaminopimelic acid as the diagnostic diamino acid, the peptidoglycan cell-wall type is A1γ. Based on the phylogenetic, phenotypic, and chemotaxonomic data, strain 16MFT21(T) (=KCTC 18866(T) =JCM 31664(T)) for which the name Bacillus piscis sp. nov. is proposed should be classified as a new species.

  11. Neisseria weaveri sp. nov., formerly CDC group M-5, a gram-negative bacterium associated with dog bite wounds.

    PubMed Central

    Andersen, B M; Steigerwalt, A G; O'Connor, S P; Hollis, D G; Weyant, R S; Weaver, R E; Brenner, D J

    1993-01-01

    CDC group M-5 is a rod-shaped, gram-negative, nonmotile bacterium associated with dog bite wounds. DNA-DNA relatedness and biochemical and growth characteristics were studied for 54 strains from the collection at the Centers for Disease Control and Prevention. One typical M-5 strain, 8142, was further studied by 16S rRNA sequencing. DNA from 40 of 53 strains showed 82 to 100% relatedness (hydroxyapatite method) to labeled DNA from strain 8142. The guanine-plus-cytosine (G + C) content in 8 of the 41 highly related M-5 strains was 50.5 to 52 mol%. These 41 strains were oxidase and catalase positive, nonfermentative, nitrite positive, nitrate negative, weakly phenylalanine deaminase positive, aerobic, and alpha-hemolytic (sheep blood). DNA from the 13 remaining strains showed only 7 to 46% DNA relatedness to strain 8142. These 13 non-M-5 strains differed from the M-5 strains in G + C content, growth characteristics, and biochemical profiles. DNA from M-5 strain 8142 was most closely related to DNA from groups EF-4b (47%) and EF-4a (45%). 16S rRNA sequence analysis placed M-5 strain 8142 in the Neisseriaceae cluster of the beta-3 subgroup of the class Proteobacteria. It was most homologous (98.4 to 98.8%) to Neisseria animalis, Neisseria flavescens, Neisseria canis, and Neisseria elongata. All data are consistent with M-5 being a new species of Neisseria, for which we propose the name Neisseria weaveri. PMID:8408570

  12. Lacinutrix gracilariae sp. nov., a bacterium isolated from the surface of a marine red alga Gracilaria sp.

    PubMed

    Huang, Zhaobin; Li, Guizhen; Lai, Qiliang; Gu, Li; Shao, Zongze

    2015-11-09

    A Gram-negative, aerobic, non-flagellated, rod-shaped bacterium, designated as strain Lxc1T, was isolated from the surface of a marine red alga, Gracilaria sp., which was collected from the coastal regions in Jinjiang, Fujian Province, China. The colony of the strain was orange-yellow, circular and smooth. The 16S rRNA gene of Lxc1T had maximum sequence similarity with Lacinutrix himadriensis E4-9aT (97.1%), followed by L. jangbogonensis PAMC 27137T, L. copepodicola DJ3T, L. algicola AKS293T, and L. mariniflava AKS 432T (similarities <96.4%). Phylogenetic analysis showed strain Lxc1T formed a tight cluster with L. himadriensis E4-9aT and L. copepodicola DJ3T, but represented a novel lineage belonging to the genus Lacinutrix. The predominant fatty acids were iso-C15:1 G (18.3%), iso-C15:0 (16.7%), iso-C17:0-3OH (10.6%), and iso-C15:0-3OH (8.6%). Menaquinone-6 (MK-6) was the only respiratory quinone present. The DNA G+C content of Lxc1T was 31.7 mol%. Combining the results above, it was ascertained that the strain Lxc1T represented a novel species of the genus Lacinutrix, for which the name Lacinutrix gracilariae sp. nov. is proposed. The type strain is Lxc1T (=MCCC 1A01567T=KCTC 42808T).

  13. Alicyclobacillus aeris sp. nov., a novel ferrous- and sulfur-oxidizing bacterium isolated from a copper mine.

    PubMed

    Guo, Xu; You, Xiao-Yan; Liu, Li-Jun; Zhang, Jia-Yue; Liu, Shuang-Jiang; Jiang, Cheng-Ying

    2009-10-01

    A novel mesophilic, acidophilic, endospore-forming bacterium, designated strain ZJ-6(T), was isolated from Zi-Jin copper mine in Inner Mongolia, China. Cells of strain ZJ-6(T) were rod-shaped, stained Gram-positive or were Gram-variable, and grew aerobically at 25-35 degrees C (optimum, 30 degrees C) and pH 2.0-6.0 (optimum, pH 3.5). 16S rRNA gene sequence analysis showed that strain ZJ-6(T) was related phylogenetically to members of the genus Alicyclobacillus, with 16S rRNA gene sequence similarities of 89.5-94.2 %. Cells contained MK-7 as the major quinone and the DNA G+C content was 51.2 mol%. Strain ZJ-6(T) possessed a number of phenotypic characteristics that differentiated it from recognized Alicyclobacillus species, including its growth temperature, assimilation of various carbon sources, production of acids from a range of compounds, and the ability to grow chemoautotrophically using ferrous iron, elemental sulfur and tetrathionate as electron donors. The predominant cellular fatty acids of strain ZJ-6(T) were anteiso-C(15 : 0) (67.1 %), iso-C(16 : 0) (7.7 %) and anteiso-C(17 : 0) (7.4 %); omega-alicyclic fatty acids were not found. On the basis of these results, it is concluded that strain ZJ-6(T) represents a novel species within the genus Alicyclobacillus, for which the name Alicyclobacillus aeris sp. nov. is proposed; the type strain is ZJ-6(T) (=CGMCC 1.7072(T)=NBRC 104953(T)).

  14. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Kwon, Soon-Wo; Sa, Tong-Min

    2010-10-01

    A Gram-positive bacterium, designated strain CBMB205(T), was isolated from the rhizosphere soil of traditionally cultivated, field-grown rice. Cells were strictly aerobic, motile, rod-shaped and formed endospores. The best growth was achieved at 30°C and pH 7.0 in ammonium mineral salts (AMS) medium containing 600 mM methanol. A comparative 16S rRNA gene sequence-based phylogenetic analysis placed strain CBMB205(T) in a clade with the species Bacillus amyloliquefaciens, Bacillus vallismortis, Bacillus subtilis, Bacillus atrophaeus, Bacillus mojavensis and Bacillus licheniformis and revealed pairwise similarities ranging from 98.2 to 99.2 %. DNA-DNA hybridization experiments revealed a low level (<36 %) of DNA-DNA relatedness between strain CBMB205(T) and its closest relatives. The major components of the fatty acid profile were C₁₅:₀ anteiso, C₁₅:₀ iso, C₁₆:₀ iso and C₁₇:₀ anteiso. The diagnostic diamino acid of the cell wall was meso-diaminopimelic acid. The G+C content of the genomic DNA was 45.0 mol%. The lipids present in strain CBMB205(T) were diphosphatidylglycerol, phosphatidylglycerol, a minor amount of phosphatidylcholine and two unknown phospholipids. The predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing enabled strain CBMB205(T) to be described as representing a novel species of the genus Bacillus, for which the name Bacillus methylotrophicus sp. nov. is proposed. The type strain is CBMB205(T) (=KACC 13105(T)=NCCB 100236(T)).

  15. Flavobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside converting activity isolated from soil of a ginseng field.

    PubMed

    Yang, Jung-Eun; Kim, Se-Young; Im, Wan-Taek; Yi, Tae-Hoo

    2011-06-01

    A Gram-negative, aerobic, non-motile, non-spore-forming, yellow-pigmented, rod-shaped bacterium, designated strain THG 01(T), was isolated from the soil of a ginseng field in Pocheon province, South Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain THG 01(T) grew well at 25-37 °C and pH 6.0-7.5 in the absence of NaCl on nutrient agar. On the basis of 16S rRNA gene sequence similarity data, strain THG 01(T) was shown to belong to the family Flavobacteriaceae and was related to Flavobacterium anhuiense D3(T) (97.5 % similarity), Flavobacterium johnsoniae UW101(T) (96.8 %) and Flavobacterium denitrificans ED5(T) (96.7 %). 16S rRNA gene sequence similarities between the novel strain and members of other recognized species within the family Flavobacteriaceae were less than 96.7 %. The G+C content of the genomic DNA of strain THG 01(T) was 32.1 mol%. Phenotypic and chemotaxonomic data (major menaquinone was MK-6 and major fatty acids were iso-C(15 : 0), iso-C(15 : 0) 3-OH and C(16 : 1)ω7c and/or C(16 : 1)ω6c ) supported the affiliation of strain THG 01(T) to the genus Flavobacterium. DNA-DNA hybridization experiments showed that DNA-DNA relatedness values between strain THG 01(T) and its closest phylogenetic neighbours were below 11 %. The results of physiological and biochemical tests enabled strain THG 01(T) to be differentiated genotypically and phenotypically from recognized species of the genus Flavobacterium. The isolate therefore represents a novel species, for which the name Flavobacterium ginsenosidimutans sp. nov. is proposed, with THG 01(T) ( = KACC 14525(T) = JCM 16720(T)) as the type strain.

  16. Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries.

    PubMed

    Liu, Qiannan; Hu, Zhe; Chen, Mingzhe; Gu, Qinfen; Dou, Yuhai; Sun, Ziqi; Chou, Shulei; Dou, Shi Xue

    2017-02-01

    The tunnel-structured Na0.44MnO2 is considered as a promising cathode material for sodium-ion batteries because of its unique three-dimensional crystal structure. Multiangular rod-shaped Na0.44MnO2 have been first synthesized via a reverse microemulsion method and investigated as high-rate and long-life cathode materials for Na-ion batteries. The microstructure and composition of prepared Na0.44MnO2 is highly related to the sintering temperature. This structure with suitable size increases the contact area between the material and the electrolyte and guarantees fast sodium-ion diffusion. The rods prepared at 850 °C maintain specific capacity of 72.8 mA h g(-1) and capacity retention of 99.6% after 2000 cycles at a high current density of 1000 mA g(-1). The as-designed multiangular Na0.44MnO2 provides new insight into the development of tunnel-type electrode materials and their application in rechargeable sodium-ion batteries.

  17. Prevalence and Characteristics of Surgical Site Infections Caused by Gram-negative Rod-shaped Bacteria from the Family Enterobacteriacae and Gram-positive Cocci from the Genus Staphylococcus in Patients who Underwent Surgical Procedures on Selected Surgical Wards.

    PubMed

    Tomaszewska-Kowalska, Małgorzata; Kołomecki, Krzysztof; Wieloch-Torzecka, Maria

    2016-10-01

    Surgical site infections on surgical wards are the most common cause of postoperative complications. Prevalence of surgical site infections depends on the surgical specialization. Analysis of the causes of surgical site infections allows to conclude that microorganisms from the patient's own microbiota - Gram-negative rod-shaped bacteria from the family Enterobacteriacae and from the patient's skin microbiota - Gram-positive cocci - Staphylococcus are the most common agents inducing surgical site infections. The aim of the study was to assess prevalence and characteristics of surgical site infections caused by Gram-negative rod-shaped bacteria from the family Eneterobacteriacae and Gram-positive cocci from the genus Staphylococcus in patients who underwent surgical procedures at the Regional Specialist Hospital named after M. Copernika in Łódź on selected surgical wards.

  18. Olivibacter oleidegradans sp. nov., a hydrocarbon-degrading bacterium isolated from a biofilter clean-up facility on a hydrocarbon-contaminated site.

    PubMed

    Szabó, István; Szoboszlay, Sándor; Kriszt, Balázs; Háhn, Judit; Harkai, Péter; Baka, Erzsébet; Táncsics, András; Kaszab, Edit; Privler, Zoltán; Kukolya, József

    2011-12-01

    A novel hydrocarbon-degrading, Gram-negative, obligately aerobic, non-motile, non-sporulating, rod-shaped bacterium, designated strain TBF2/20.2(T), was isolated from a biofilter clean-up facility set up on a hydrocarbon-contaminated site in Hungary. It was characterized by using a polyphasic approach to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate is affiliated with the genus Olivibacter in the family Sphingobacteriaceae. It was found to be related most closely to Olivibacter ginsengisoli Gsoil 060(T) (93.3% 16S rRNA gene sequence similarity). Strain TBF2/20.2(T) grew at pH 6-9 (optimally at pH 6.5-7.0) and at 15-42 °C (optimally at 30-37 °C). The major fatty acids were iso-C(15:0) (39.4%), summed feature 3 (iso-C(15:0) 2-OH and/or C(16:1)ω7c; 26.0%), iso-C(17:0) 3-OH (14.5%) and C(16:0) (4.5%). The major menaquinone was MK-7 and the predominant polar lipid was phosphatidylethanolamine. The DNA G+C content of strain TBF2/20.2(T) was 41.2 mol%. Physiological and chemotaxonomic data further confirmed the distinctiveness of strain TBF2/20.2(T) from recognized members of the genus Olivibacter. Thus, strain TBF2/20.2(T) is considered to represent a novel species of the genus Olivibacter, for which the name Olivibacter oleidegradans sp. nov. is proposed. The type strain is TBF2/20.2(T) (=NCAIM B 02393(T) =CCM 7765(T)).

  19. Nonlabens antarcticus sp. nov., a psychrophilic bacterium isolated from glacier ice, and emended descriptions of Nonlabens marinus Park et al. 2012 and Nonlabens agnitus Yi and Chun 2012.

    PubMed

    Kwon, Yong Min; Yang, Sung-Hyun; Kwon, Kae Kyoung; Kim, Sang-Jin

    2014-02-01

    A Gram-negative, proteorhodopsin-containing, orange pigmented, rod-shaped and strictly aerobic bacterium, designated strain AKS622(T), was isolated from a glacier core collected from the coast of King George Island, Antarctica. 16S rRNA gene sequence analysis revealed that strain AKS622(T) was affiliated to the genus Nonlabens of the family Flavobacteriaceae and showed highest similarity to Nonlabens marinus S1-08(T) (97.9%). The level of DNA-DNA relatedness between strain AKS622(T) and N. marinus S1-08(T) was 46%. Optimal growth of strain AKS622(T) was observed at pH 7.0, at 15 °C and with 2.0% NaCl. The predominant cellular fatty acids were anteiso-C(15 : 0), iso-C(16 : 0), iso-C(16 : 0) 3-OH, C17:0 2-OH and summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c). The DNA G+C content was 37.9 mol%. The major respiratory quinone was MK-6. Phosphatidylethanolamine, four unidentified glycolipids, three unidentified aminolipids and one unidentified lipid were detected as major polar lipids. On the basis of the data from this polyphasic taxonomic study, it was concluded that strain AKS622(T) represents a novel species within the genus Nonlabens, for which the name Nonlabens antarcticus sp. nov. is proposed. The type strain is AKS622(T) ( = KCCM 43019(T) = JCM 14068(T)). Emended descriptions of N. marinus Park et al. 2012 and Nonlabens agnitus Yi and Chun 2012 are given.

  20. Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of cassava from the Republic of the Congo.

    PubMed

    Ouoba, Labia Irène I; Vouidibio Mbozo, Alain B; Thorsen, Line; Anyogu, Amarachukwu; Nielsen, Dennis S; Kobawila, Simon C; Sutherland, Jane P

    2015-11-01

    Investigation of the microbial diversity of Ntoba Mbodi, an African food made from the alkaline fermentation of cassava leaves, revealed the presence of a Gram-positive, catalase-positive, aerobic, motile and rod-shaped endospore-forming bacterium (NM73) with unusual phenotypic and genotypic characteristics. The analysis of the 16S rRNA gene sequence revealed that the isolate was most closely related to Lysinibacillus meyeri WS 4626T (98.93%), Lysinibacillus xylanilyticus XDB9T (96.95%) and Lysinibacillus odysseyi 34hs-1T (96.94%). The DNA-DNA relatedness of the isolate with L. meyeri LMG 26643T, L. xylanilyticus DSM 23493T and L. odysseyi DSM 18869T was 41%, 16% and 15%, respectively. The internal transcribed spacer-PCR profile of the isolate was different from those of closely related bacteria. The cell-wall peptidoglycan type was A4α, L-Lys-D-Asp and the major fatty acids were iso-C15:0, anteiso-C15:0, anteiso-C17:0 and iso-C17:0 and iso-C17:1ω10c. The polar lipids included phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphoaminolipid, aminolipid, two phospholipids and two unknown lipids. The predominant menaquinones were MK-7 and MK-6. Ribose was the only whole-cell sugar detected. The DNA G+C content was 38 mol%. Based on the results of the phenotypic and genotypic characterization, it was concluded that the isolate represents a novel species of the genus Lysinibacillus, for which the name of Lysinibacillus louembei sp. nov. is proposed. NM73T ( = DSM 25583T = LMG 26837T) represents the type strain.

  1. Polycyclovorans algicola gen. nov., sp. nov., an Aromatic-Hydrocarbon-Degrading Marine Bacterium Found Associated with Laboratory Cultures of Marine Phytoplankton

    PubMed Central

    Green, David H.; Nichols, Peter D.; Whitman, William B.; Semple, Kirk T.; Aitken, Michael D.

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C16:0, C16:1 ω7c, and C18:1 ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes. PMID:23087039

  2. Synthesis, crystal structures, and optical/electronic properties of sphere-rod shape amphiphiles based on a [60]fullerene-oligofluorene conjugate.

    PubMed

    Teng, Fu-Ai; Cao, Yan; Qi, Yuan-Jiang; Huang, Mingjun; Han, Zhe-Wen; Cheng, Stephen Z D; Zhang, Wen-Bin; Li, Hui

    2013-06-01

    A series of sphere-rod shape amphiphiles, in which a [60]fullerene (C60) sphere was connected to the center of an oligofluorene (OF) rod through a rigid linkage (OF-C60), were designed and synthesized. Alkyl chains of various lengths were attached onto the OFs on both sides of the C60 spheres. These compounds, denoted as alkyl-OF-C60, were fully characterized by (1)H NMR, (13)C NMR, and FTIR spectroscopy and by MALDI-TOF mass spectrometry. The morphologies and structures of their crystals were elucidated by wide-angle X-ray diffraction (WAXD) and by electron diffraction in transmission electron microscopy (TEM). Butyl-OF-C60 forms a monoclinic unit cell (a=1.86, b=3.96, c=2.24 nm; α=γ=90°, β=68°; space group P2), octyl-OF-C60 also forms a monoclinic unit cell (a=2.21, b=4.06, c=1.81 nm; α=γ=90°, β=75.5°; space group C2m), and dodecanyl-OF-C60 forms a triclinic structure (a=1.82, b=4.35, c=2.26 nm; α=93.1°, β=94.5°, γ=92.7°; space group P1). The inequivalent spheres and rods were found to pack into an alternating layered structure of C60 and OF in the crystals, thus resembling a "double-cable" structure. UV/Vis absorption spectroscopy revealed an electron perturbation between the two individual chromophores (C60 and OF) in their ground states. Fluorescence spectroscopy exhibited complete fluorescence quenching of their solutions in toluene, thus suggesting an effective energy transfer from OF to C60. Cyclic voltammetry indicated that the energy-level profiles of C60 and OF remained essentially unchanged. This work has broad implications in terms of understanding the self-assembly and molecular packing of conjugated materials in crystals and has potential applications in organic field-effect transistors and bulk heterojunction solar cells.

  3. Longimicrobium terrae gen. nov., sp. nov., an oligotrophic bacterium of the under-represented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers.

    PubMed

    Pascual, Javier; García-López, Marina; Bills, Gerald F; Genilloud, Olga

    2016-05-01

    A novel chemo-organoheterotroph bacterium, strain CB-286315T, was isolated from a Mediterranean forest soil sampled at the Sierra de Tejeda, Almijara and Alhama Natural Park, Spain, by using the diffusion sandwich system, a device with 384 miniature diffusion chambers. 16S rRNA gene sequence analyses identified the isolate as a member of the under-represented phylum Gemmatimonadetes, where 'Gemmatirosa kalamazoonensis' KBS708, Gemmatimonas aurantiaca T-27T and Gemmatimonas phototrophica AP64T were the closest relatives, with respective similarities of 84.4, 83.6 and 83.3 %. Strain CB-286315T was characterized as a Gram-negative, non-motile, short to long rod-shaped bacterium. Occasionally, some cells attained an unusual length, up to 35-40 μm. The strain showed positive responses for catalase and cytochrome-c oxidase and division by binary fission, and exhibited an aerobic metabolism, showing optimal growth under normal atmospheric conditions. Strain CB-286315T was also able to grow under micro-oxic atmospheres, but not under anoxic conditions. The strain is a slowly growing bacterium able to grow under low nutrient concentrations. Major fatty acids included iso-C17 : 1ω9c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and iso-C17 : 0. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified glycolipids and three phospholipids. The major isoprenoid quinone was MK-8 and the diagnostic diamino acid was meso-diaminopimelic acid. The DNA G+C content was 67.0 mol%. Based on a polyphasic taxonomic characterization, strain CB-286315T represents a novel genus and species, Longimicrobium terrae gen. nov., sp. nov., within the phylum Gemmatimonadetes. The type strain of Longimicrobium terrae is strain CB-286315T ( = DSM 29007T = CECT 8660T). In order to classify the novel taxon within the existing taxonomic framework, the family Longimicrobiaceae fam. nov., order

  4. Larsenimonas suaedae sp. nov., a moderately halophilic, endophytic bacterium isolated from the euhalophyte Suaeda salsa.

    PubMed

    Xia, Zhi-Jie; Wu, Hong-Zhen; Cui, Chun-Xiao; Chen, Qi; Zhao, Guo-Yan; Wang, Hai-Xia; Dai, Mei-Xue

    2016-08-01

    A moderately halophilic, Gram-stain-negative, non-endospore-forming endophytic bacterium designated strain ST307T was isolated from the euhalophyte Suaeda salsa in Dongying, China. Strain ST307T was aerobic, rod-shaped, motile and orange-yellow-pigmented. The organism grew at NaCl concentrations of 0.6-20 % (w/v) (optimum 5-6 %, w/v), at temperatures of 5-45 °C (optimum 35 °C) and at pH 5-9 (optimum pH 7-8). It accumulated poly-β-hydroxybutyric acid and produced exopolysaccharides. The major fatty acids were C18 : 1ω7c/C18 : 1ω6c, C16 : 0 and C16 : 1ω7c/C16 : 1ω6c. The predominant lipoquinone was ubiquinone Q-9. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, a glycoaminolipid and a phosphoglycoaminolipid. The DNA G+C content was 60.5 mol%. Phylogenetic analyses of 16S rRNA gene sequences and concatenated atpA, rpoD and secA gene sequences revealed that the strain represents a member of the genus Larsenimonas. The closest related type strain was Larsenimonas salina M1-18T. Mean DNA-DNA relatedness values between strain ST307T and the related species L. salina M1-18T, Chromohalobacter beijerinckii DSM 7218T, C. canadensis DSM 6769T, C. israelensis DSM 6768T, C. marismortui CGMCC 1.2321T, C. nigrandesensis DSM 14323T, C. salexigens DSM 3043T and C. sarecensis DSM 15547T were 15±2-45±1 %. On the basis of phenotypic, chemotaxonomic and molecular features, strain ST307T clearly represents a novel species of the genus Larsenimonas. The name Larsenimonassuaedae sp. nov. is proposed, with ST307T (=CGMCC 1.8902T=DSM 22428T) as the type strain.

  5. Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica.

    PubMed

    Rozahon, Manziram; Ismayil, Nurimangul; Hamood, Buayshem; Erkin, Raziya; Abdurahman, Mehfuzem; Mamtimin, Hormathan; Abdukerim, Muhtar; Lal, Rup; Rahman, Erkin

    2014-09-01

    An endophytic bacterium, designated K-38(T), was isolated from the storage liquid in the stems of Populus euphratica trees at the ancient Ugan River in Xinjiang, PR China. Strain K-38(T) was found to be rod-shaped, Gram-stain-negative, aerobic, non-motile and non-spore-forming. Strain K-38(T) grew at temperatures of 25-37 °C (optimum, 28 °C), at pH 6.0-9.0 (optimum, pH 7.5) and in the presence of 0-3 % (w/v) NaCl with 1 % as the optimum concentration for growth. According to phylogenetic analysis based on 16S rRNA gene sequences, strain K-38(T) was assigned to the genus Rhizobium with highest 16S rRNA gene sequence similarity of 97.2 % to Rhizobium rosettiformans W3(T), followed by Rhizobium nepotum 39/7(T) (96.5 %) and Rhizobium borbori DN316(T) (96.2 %). Phylogenetic analysis of strain K-38(T) based on the protein coding genes recA, atpD and nifH confirmed (similarities were less than 90 %) it to be a representative of a distinctly delineated species of the genus Rhizobium. The DNA G+C content was determined to be 63.5 mol%. DNA-DNA relatedness between K-38(T) and R. rosettiformans W3(T) was 48.4 %, indicating genetic separation of strain K-38(T) from the latter strain. The major components of the cellular fatty acids in strain K-38(T) were revealed to be summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c; 57.2 %), C16 : 0 (13.6 %) and summed feature 2 (comprising C12 : 0 aldehyde, C14 : 0 3-OH/iso-C16 : 1 I and/or unknown ECL 10.928; 11.0 %). Polar lipids of strain K-38(T) include phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, two unidentified aminophospholipids and two unidentified phospholipids. Q-10 was the major quinone in strain K-38(T). Based on phenotypic, chemotaxonomic and phylogenetic properties, strain K-38(T) represents a novel species of the genus Rhizobium, for which the name Rhizobium populi sp. nov. is proposed

  6. Oceanobacillus limi sp. nov., a moderately halophilic bacterium from a salt lake.

    PubMed

    Amoozegar, Mohammad Ali; Bagheri, Maryam; Makhdoumi-Kakhki, Ali; Didari, Maryam; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-04-01

    A Gram-stain-positive, endospore-forming, rod-shaped, strictly aerobic, moderately halophilic bacterium, designated strain H9B(T), was isolated from a mud sample of the hypersaline lake Aran-Bidgol in Iran. Cells of strain H9B(T) were motile and produced colonies with a yellowish-grey pigment. Growth occurred between 2.5 and 10 % (w/v) NaCl and the isolate grew optimally at 7.5 % (w/v) NaCl. The optimum pH and temperature for growth of the strain were pH 7.0 and 35 °C, respectively, while it was able to grow over pH and temperature ranges of pH 6-10 and 25-45 °C, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain H9B(T) is a member of the genus Oceanobacillus. The closest relative to this strain was Oceanobacillus profundus CL-MP28(T) with 97.1 % 16S rRNA gene sequences similarity. The level of DNA-DNA relatedness between the novel isolate and this phylogenetically related species was 17 %. The major cellular fatty acids of the isolate were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0. The polar lipid pattern of strain H9B(T) consisted of phosphatidylglycerol, diphosphatidylglycerol, four phospholipids and an aminolipid. It contained MK-7 as the predominant menaquinone and meso-diaminopimelic acid in the cell-wall peptidoglycan. The G+C content of the genomic DNA of this strain was 37.1 mol%. Phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data suggest that this strain represents a novel species of the genus Oceanobacillus, for which the name Oceanobacillus limi sp. nov. is proposed. The type strain of Oceanobacillus limi is strain H9B(T) ( = IBRC-M 10780(T) = KCTC 13823(T) = CECT 7997(T)).

  7. Bacillusurumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake.

    PubMed

    Zhang, Shanshan; Li, Zhaojun; Yan, Yanchun; Zhang, Chuanlun; Li, Jun; Zhao, Baisuo

    2016-06-01

    A Gram-stain-positive, rod-shaped, aerobic and moderately haloalkaliphilic bacterium, designated BZ-SZ-XJ18T, was isolated from the mixed water and sediment of a saline-alkaline lake located in the Xinjiang Uyghur Autonomous Region of China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BZ-SZ-XJ18T was a member of the genus Bacillus. The closest phylogenetic relatives were Bacillus saliphilus 6AGT (96.7 % 16S rRNA gene sequence similarity), 'Bacillusdaqingensis' X10-1 (96.6 %), Bacillus luteus JC167T (96.5 %), Bacillus daliensis DLS13T (96.2 %), Bacillus chagannorensis CG-15T (95.2 %) and Bacillus polygoni YN-1T (95.0 %). DNA-DNA relatedness between strain BZ-SZ-XJ18T and the reference type strains of the related species of the genus Bacillus was lower than 27 %. The isolate formed yellow pigment and grew in the presence of 0.22-4.32 M Na+ (equivalent to 1.3-25.3 %, w/v, NaCl) (optimum 1.08 M Na+, equivalent to 6.3 %, w/v, NaCl), at pH 6.5-10.0 (optimum pH 8.5-9.5) and at 8-41 ºC (optimum 37 ºC). The major cellular fatty acids were anteiso-C15:0 (43.0 %), C16:0 (18.1 %), iso-C15:0 (11.3 %), anteiso-C17:0 (8.0 %) and iso-C16:0 (7.0 %). The major polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The main respiratory quinone was menaquinone-7 (MK-7), and the peptidoglycan type of the cell wall was A1γ based on meso-diaminopimelic acid as the diagnostic diamino acid. The genomic DNA G+C content was 42.3 mol% (HPLC) or 41.4 mol% (Tm). On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain BZ-SZ-XJ18T is proposed to represent a novel species, Bacillusurumqiensis within the genus Bacillus. The type strain is BZ-SZ-XJ18T (=DSM 29145T=JCM 30195T).

  8. Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock.

    PubMed

    Fukuda, Wakao; Chino, Yohzo; Araki, Shigeo; Kondo, Yuka; Imanaka, Hiroyuki; Kanai, Tamotsu; Atomi, Haruyuki; Imanaka, Tadayuki

    2014-06-01

    A Gram-stain-negative, non-spore-forming, aerobic, oligotrophic bacterium (strain 262-7(T)) was isolated from a crack of white rock collected in the Skallen region of Antarctica. Strain 262-7(T) grew at temperatures between -4 and 30 °C, with optimal growth at 25 °C. The pH range for growth was between pH 6.0 and 9.0, with optimal growth at approximately pH 7.0. The NaCl concentration range allowing growth was between 0.0 and 1.0%, with an optimum of 0.5%. Strain 262-7(T) showed an unprecedented range of morphological diversity in response to growth conditions. Cells grown in liquid medium were circular or ovoid with smooth surfaces in the lag phase. In the exponential phase, ovoid cells with short projections were observed. Cells in the stationary phase possessed long tentacle-like projections intertwined intricately. By contrast, cells grown on agar plate medium or in liquid media containing organic compounds at low concentration exhibited short- and long-rod-shaped morphology. These projections and morphological variations clearly differ from those of previously described bacteria. Ubiquinone 10 was the major respiratory quinone. The major fatty acids were C(17 : 1)ω6c (28.2%), C(16 : 1)ω7c (22.6%), C(18 : 1)ω7c (12.9%) and C(15 : 0) 2-OH (12.3%). The G+C content of genomic DNA was 68.0 mol%. Carotenoids were detected from the cells. Comparative analyses of 16S rRNA gene sequences indicated that strain 262-7(T) belongs to the family Sphingomonadaceae, and that 262-7(T) should be distinguished from known genera in the family Sphingomonadaceae. According to the phylogenetic position, physiological characteristics and unique morphology variations, strain 262-7(T) should be classified as a representative of a novel genus of the family Sphingomonadaceae. Here, a novel genus and species with the name Polymorphobacter multimanifer gen. nov., sp. nov. is proposed (type strain 262-7(T) = JCM 18140(T) = ATCC BAA-2413(T)). The novel species was

  9. Complete genome sequence of the heavy metal resistant bacterium Agromyces aureus AR33(T) and comparison with related Actinobacteria.

    PubMed

    Corretto, Erika; Antonielli, Livio; Sessitsch, Angela; Compant, Stéphane; Höfer, Christoph; Puschenreiter, Markus; Brader, Günter

    2017-01-01

    Agromyces aureus AR33(T) is a Gram-positive, rod-shaped and motile bacterium belonging to the Microbacteriaceae family in the phylum Actinobacteria that was isolated from a former zinc/lead mining and processing site in Austria. In this study, the whole genome was sequenced and assembled combining sequences obtained from Illumina MiSeq and Sanger sequencing. The assembly resulted in the complete genome sequence which is 4,373,124 bp long and has a GC content of 70.1%. Furthermore, we performed a comparative genomic analysis with other related organisms: 6 Agromyces spp., 4 Microbacteriaceae spp. and 2 other members of the class Actinobacteria.

  10. Self-limiting adsorption of Eu³⁺ on the surface of rod-shape anatase TiO₂ nanocrystals and post-synthetic sensitization of the europium-based emission.

    PubMed

    Balasanthiran, Choumini; Zhao, Bo; Lin, Cuikun; May, P S; Berry, Mary T; Hoefelmeyer, James D

    2015-12-01

    The surface of oleic acid stabilized rod-shape anatase TiO2 nanocrystals was modified by adsorption of Eu(3+) ions. The Eu(3+) attachment showed Langmuir adsorption behavior, thus the loading of Eu(3+) could be controlled precisely up to surface saturation coverage. The Eu(3+)-TiO2 nanorods show weak Eu(3+) based luminescence. However, addition of thenoyltrifluoroacetone (TTFA) leads to coordination of the ligand to the Eu(3+) centers and the TTFA-Eu(3+)-TiO2 materials exhibit strong Eu(3+) fluorescence sensitized by the TTFA ligand.

  11. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  12. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    PubMed

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain

  13. Characterization of a novel extremely alkalophilic bacterium

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Deal, P. H.

    1977-01-01

    A new alkalophilic bacterium, isolated from a natural spring of high pH is characterized. It is a Gram-positive, non-sporulating, motile rod requiring aerobic and alkaline conditions for growth. The characteristics of this organism resemble those of the coryneform group of bacteria; however, there are no accepted genera within this group with which this organism can be closely matched. Therefore, a new genus may be warranted.

  14. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  15. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.

    PubMed

    Zhang, Hui; Sekiguchi, Yuji; Hanada, Satoshi; Hugenholtz, Philip; Kim, Hongik; Kamagata, Yoichi; Nakamura, Kazunori

    2003-07-01

    A phylogenetically novel aerobic bacterium was isolated from an anaerobic-aerobic sequential batch reactor operated under enhanced biological phosphorus removal conditions for wastewater treatment. The isolation strategy used targeted slowly growing polyphosphate-accumulating bacteria by combining low-speed centrifugations and prolonged incubation on a low-nutrient medium. The isolate, designated strain T-27T, was a gram-negative, rod-shaped aerobe. Cells often appeared to divide by budding replication. Strain T-27T grew at 25-35 degrees C with an optimum growth temperature of 30 degrees C, whilst no growth was observed below 20 degrees C or above 37 degrees C within 20 days incubation. The pH range for growth was 6.5-9.5, with an optimum at pH 7.0. Strain T-27T was able to utilize a limited range of substrates, such as yeast extract, polypepton, succinate, acetate, gelatin and benzoate. Neisser staining was positive and 4,6-diamidino-2-phenylindole-stained cells displayed a yellow fluorescence, indicative of polyphosphate inclusions. Menaquinone 9 was the major respiratory quinone. The cellular fatty acids of the strain were mainly composed of iso-C15:0, C16:1 and C14:0. The G + C content of the genomic DNA was 66 mol%. Comparative analyses of 16S rRNA gene sequences indicated that strain T-27T belongs to candidate division BD (also called KS-B), a phylum-level lineage in the bacterial domain, to date comprised exclusively of environmental 16S rDNA clone sequences. Here, a new genus and species are proposed, Gemmatimonas aurantiaca (type strain T-27T=JCM 11422T=DSM 14586T) gen. nov., sp. nov., the first cultivated representative of the Gemmatimonadetes phyl. nov. Environmental sequence data indicate that this phylum is widespread in nature and has a phylogenetic breadth (19% 16S rDNA sequence divergence) that is greater than well-known phyla such as the Actinobacteria (18% divergence).

  16. Molecular characterization of the nonphotosynthetic partner bacterium in the consortium "Chlorochromatium aggregatum".

    PubMed

    Kanzler, Birgit E M; Pfannes, Kristina R; Vogl, Kajetan; Overmann, Jörg

    2005-11-01

    Phototrophic consortia represent valuable model systems for the study of signal transduction and coevolution between different bacteria. The phototrophic consortium "Chlorochromatium aggregatum" consists of a colorless central rod-shaped bacterium surrounded by about 20 green-pigmented epibionts. Although the epibiont was identified as a member of the green sulfur bacteria, and recently isolated and characterized in pure culture, the central colorless bacterium has been identified as a member of the beta-Proteobacteria but so far could not be characterized further. In the present study, "C. aggregatum" was enriched chemotactically, and the 16S rRNA gene sequence of the central bacterium was elucidated. Based on the sequence information, fluorescence in situ hybridization probes targeting four different regions of the 16S rRNA were designed and shown to hybridize exclusively to cells of the central bacterium. Phylogenetic analyses of the 1,437-bp-long sequence revealed that the central bacterium of "C. aggregatum" represents a so far isolated phylogenetic lineage related to Rhodoferax spp., Polaromonas vacuolata, and Variovorax paradoxus within the family Comamonadaceae. The majority of relatives of this lineage are not yet cultured and were found in low-temperature aquatic environments or aquatic environments containing xenobiotica or hydrocarbons. In CsCl-bisbenzimidazole equilibrium density gradients, genomic DNA of the central bacterium of "Chlorochromatium aggregatum" formed a distinct band which could be detected by quantitative PCR using specific primers. Using this method, the G+C content of the central bacterium was determined to be 55.6 mol%.

  17. Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain.

    PubMed

    Aguilera, Margarita; Jiménez-Pranteda, Maria L; Kharroub, Karima; González-Paredes, Ana; Durban, Juan J; Russell, Nick J; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2009-07-01

    A Gram-negative, non-spore-forming, motile, moderately halophilic, aerobic, rod-shaped bacterium, designated strain FP2.5(T), was isolated from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Strain FP2.5(T) was subjected to a polyphasic taxonomic study. It produced colonies with a light-yellow pigment. Strain FP2.5(T) grew at salinities of 3-15 % (w/v) and at temperatures of 20-40 degrees C. The pH range for growth was 5-9. Strain FP2.5(T) was able to utilize various organic acids as sole carbon and energy source. Its major fatty acids were C(16 : 0), C(18 : 1)omega9c and C(16 : 1)omega9c. The DNA G+C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FP2.5(T) appeared to be a member of the genus Marinobacter and clustered closely with the type strains of Marinobacter segnicrescens, Marinobacter bryozoorum and Marinobacter gudaonensis (levels of 16S rRNA gene sequence similarity of 98.1, 97.4 and 97.2 %, respectively). However, DNA-DNA relatedness between the new isolate and the type strains of its closest related Marinobacter species was low; levels of DNA-DNA relatedness between strain FP2.5(T) and M. segnicrescens LMG 23928(T), M. bryozoorum DSM 15401(T) and M. gudaonensis DSM 18066(T) were 36.3, 32.1 and 24.9 %, respectively. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain FP2.5(T) is considered to represent a novel species of the genus Marinobacter, for which the name Marinobacter lacisalsi sp. nov. is proposed. The type strain is FP2.5(T) (=CECT 7297(T)=LMG 24237(T)).

  18. Keep your Sox on: Community genomics-directed isolation and microscopic characterization of the dominant subsurface sulfur-oxidizing bacterium in a sediment aquifer

    NASA Astrophysics Data System (ADS)

    Mullin, S. W.; Wrighton, K. C.; Luef, B.; Wilkins, M. J.; Handley, K. M.; Williams, K. H.; Banfield, J. F.

    2012-12-01

    capable of aerobic growth, but it could tolerate low oxygen conditions in the polysulfide/nitrate growth medium, suggesting that oxidases identified by genomics may play a role in detoxification rather than energy generation. Cryo-TEM imaging showed that strain OBA cells are rod-shaped and ~0.4 wide and 1.0 μm in length, and confirmed metagenomics-based predictions of a Gram-negative cell envelope, pili and polyphosphate body production. Our results show the value of integrating metagenomics, culturing, and microscopic imaging to discern the physiology of bacteria involved in biogeochemical transformations in the subsurface.

  19. Characterization and Formation of Rod-Shaped (Al,Si)3Ti Particles in an Al-7Si-0.35Mg-0.12Ti (Wt Pct) Alloy

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhu, Yuman; Easton, Mark A.; Rinderer, Barbara; Couper, Mal; Nie, Jian-Feng

    2015-08-01

    In this study, the rod-shaped particles in an Al-7Si-0.35Mg-0.12Ti (wt pct) casting alloy have been characterized using transmission electron microscopy. It is found that these particles invariably contain Ti, Al, and Si and that they have the structure of the equilibrium phase (Al,Si)3Ti. A near-rational orientation relationship is observed between the (Al,Si)3Ti particles and the α-Al matrix phase. For this orientation relationship, the long axes of the (Al,Si)3Ti rods are invariably parallel to the moiré planes defined by the intersection of closest-packed planes of the (Al,Si)3Ti and α-Al phases. In contrast to the (Al,Si)3Ti or Al3Ti particles form directly from the melt act as heterogeneous nucleation sites for aluminum grains and thus grain-refined Al-Si foundry alloys, the (Al,Si)3Ti particles are found to form during solution treatment at temperatures above 673 K (400 °C). Their formation occurs in the center of aluminum grains and/or dendrites which is Ti enriched due to partitioning during solidification. The low diffusivity of Ti in α-Al allows the particles to form in the Ti-enriched areas near the center of grains as the Ti concentration is not able to be homogenized during typical solution treatment times.

  20. Paenibacillus susongensis sp. nov., a mineral-weathering bacterium.

    PubMed

    Guo, Xin-Qi; Gu, Jia-Yu; Yu, Ya-Jun; Zhang, Wen-Bin; He, Lin-Yan; Sheng, Xia-Fang

    2014-12-01

    A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated M327(T), was isolated from the weathered surfaces of rock (mica schist) from Susong, Anhui Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M327(T) belonged to the genus Paenibacillus and was related most closely to Paenibacillus terrigena A35(T) (98.6 % similarity) and Paenibacillus selenitireducens ES3-24(T) (98.3 %). Strain M327(T) contained meso-diaminopimelic acid in the cell wall and MK-7 as the major menaquinone. The main fatty acids of strain M327(T) were anteiso-C15 : 0 and iso-C16 : 0. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown aminophospholipids and an unknown lipid. The total DNA G+C content of strain M327(T) was 48.6 mol%. Based on the low level of DNA-DNA relatedness (ranging from 26.6 to 33.1 %) to these type strains of species of the genus Paenibacillus and unique phenotypic characteristics, it is suggested that strain M327(T) represents a novel species of the genus Paenibacillus, for which the name Paenibacillus susongensis sp. nov. is proposed. The type strain is M327(T) ( = CCTCC AB 2014058(T) = LMG 28236(T) = JCM 19951(T)).

  1. Mineralization of Linear Alkylbenzene Sulfonate by a Four-Member Aerobic Bacterial Consortium

    PubMed Central

    Jiménez, Luis; Breen, Alec; Thomas, Nikki; Federle, Thomas W.; Sayler, Gary S.

    1991-01-01

    A bacterial consortium capable of linear alkylbenzene sulfonate (LAS) mineralization under aerobic conditions was isolated from a chemostat inoculated with activated sludge. The consortium, designated KJB, consisted of four members, all of which were gram-negative, rod-shaped bacteria that grew in pairs and short chains. Three isolates had biochemical properties characteristic of Pseudomonas spp.; the fourth showed characteristics of the Aeromonas spp. Cell suspensions were grown together in minimal medium with [14C]LAS as the only carbon source. After 13 days of incubation, more than 25% of the [14C]LAS was mineralized to 14CO2 by the consortium. Pure bacterial cultures and combinations lacking any one member of the KJB bacterial consortium did not mineralize LAS. Three isolates carried out primary biodegradation of the surfactant, and one did not. This study shows that the four bacteria complemented each other and synergistically mineralized LAS, indicating catabolic cooperation among the four consortium members. PMID:16348496

  2. Genome sequence of the pink–pigmented marine bacterium Loktanella hongkongensis type strain (UST950701–009PT), a representative of the Roseobacter group

    DOE PAGES

    Lau, Stanley CK; Riedel, Thomas; Fiebig, Anne; ...

    2015-08-11

    Loktanella hongkongensis UST950701-009PT is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492T together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-codingmore » genes and 57 RNA genes. Lastly, the two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.« less

  3. Genome sequence of the pink–pigmented marine bacterium Loktanella hongkongensis type strain (UST950701–009PT), a representative of the Roseobacter group

    SciTech Connect

    Lau, Stanley CK; Riedel, Thomas; Fiebig, Anne; Han, James; Huntemann, Marcel; Petersen, Jörn; Ivanova, Natalia N.; Markowitz, Victor; Woyke, Tanja; Göker, Markus; Kyrpides, Nikos C.; Klenk, Hans-Peter; Qian, Pei-Yuan

    2015-08-11

    Loktanella hongkongensis UST950701-009PT is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492T together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-coding genes and 57 RNA genes. Lastly, the two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.

  4. Genome sequence of the pink-pigmented marine bacterium Loktanella hongkongensis type strain (UST950701-009P(T)), a representative of the Roseobacter group.

    PubMed

    Lau, Stanley Ck; Riedel, Thomas; Fiebig, Anne; Han, James; Huntemann, Marcel; Petersen, Jörn; Ivanova, Natalia N; Markowitz, Victor; Woyke, Tanja; Göker, Markus; Kyrpides, Nikos C; Klenk, Hans-Peter; Qian, Pei-Yuan

    2015-01-01

    Loktanella hongkongensis UST950701-009P(T) is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492(T) together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-coding genes and 57 RNA genes. The two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.

  5. Design optimization of rod shaped IPMC actuator

    NASA Astrophysics Data System (ADS)

    Ruiz, S. A.; Mead, B.; Yun, H.; Yim, W.; Kim, K. J.

    2013-04-01

    Ionic polymer-metal composites (IPMCs) are some of the most well-known electro-active polymers. This is due to their large deformation provided a relatively low voltage source. IPMCs have been acknowledged as a potential candidate for biomedical applications such as cardiac catheters and surgical probes; however, there is still no existing mass manufacturing of IPMCs. This study intends to provide a theoretical framework which could be used to design practical purpose IPMCs depending on the end users interest. By explicitly coupling electrostatics, transport phenomenon, and solid mechanics, design optimization is conducted on a simulation in order to provide conceptual motivation for future designs. Utilizing a multi-physics analysis approach on a three dimensional cylinder and tube type IPMC provides physically accurate results for time dependent end effector displacement given a voltage source. Simulations are conducted with the finite element method and are also validated with empirical evidences. Having an in-depth understanding of the physical coupling provides optimal design parameters that cannot be altered from a standard electro-mechanical coupling. These parameters are altered in order to determine optimal designs for end-effector displacement, maximum force, and improved mobility with limited voltage magnitude. Design alterations are conducted on the electrode patterns in order to provide greater mobility, electrode size for efficient bending, and Nafion diameter for improved force. The results of this study will provide optimal design parameters of the IPMC for different applications.

  6. Complete genome sequence of Hymenobacter sp. strain PAMC26554, an ionizing radiation-resistant bacterium isolated from an Antarctic lichen.

    PubMed

    Oh, Tae-Jin; Han, So-Ra; Ahn, Do-Hwan; Park, Hyun; Kim, Augustine Yonghwi

    2016-06-10

    A Gram-negative, rod-shaped, red-pink in color, and UV radiation-resistant bacterium Hymenobacter sp. strain PAMC26554 was isolated from Usnea sp., an Antarctic lichen, and belongs to the class of Cytophagia and the phylum of Bacteroidetes. The complete genome of Hymenobacter sp. PAMC26554 consists of one chromosome (5,244,843bp) with two plasmids (199,990bp and 6421bp). The genomic sequence indicates that Hymenobacter sp. strain PAMC26554 possesses several genes involved in the nucleotide excision repair pathway that protects damaged DNA. This complete genome information will help us to understand its adaptation and novel survival strategy in the Antarctic extreme cold environment.

  7. Genome sequence of the chromate-resistant bacterium Leucobacter salsicius type strain M1-8T

    PubMed Central

    Yun, Ji-Hyun; Cho, Yong-Joon; Chun, Jongsik; Hyun, Dong-Wook; Bae, Jin-Woo

    2013-01-01

    Leucobacter salsicius M1-8T is a member of the Microbacteriaceae family within the class Actinomycetales. This strain is a Gram-positive, rod-shaped bacterium and was previously isolated from a Korean fermented food. Most members of the genus Leucobacter are chromate-resistant and this feature could be exploited in biotechnological applications. However, the genus Leucobacter is poorly characterized at the genome level, despite its potential importance. Thus, the present study determined the features of Leucobacter salsicius M1-8T, as well as its genome sequence and annotation. The genome comprised 3,185,418 bp with a G+C content of 64.5%, which included 2,865 protein-coding genes and 68 RNA genes. This strain possessed two predicted genes associated with chromate resistance, which might facilitate its growth in heavy metal-rich environments. PMID:25197435

  8. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  9. Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996.

    PubMed

    Ntougias, Spyridon; Zervakis, Georgios I; Fasseas, Constantinos

    2007-09-01

    A novel Gram-negative, motile, nonsporulating, rod-shaped bacterium isolated from alkaline sludge-like wastes ('alpeorujo' or 'alperujo') of two-phase olive oil extraction is described. The strain, designated AW-7(T), is an obligate aerobe that is halotolerant (tolerating up to 15 % w/v NaCl), sugar-tolerant (tolerating up to 45 % and 60 % w/v (+)-d-glucose and maltose respectively; these are the highest concentrations tolerated by any known members of the Bacteria domain) and alkalitolerant (growing at a broad pH range of 5-11). Strain AW-7(T) is chemo-organotrophic. Ubiquinone-9 was detected in the respiratory chain of strain AW-7(T). The major fatty acids present are C(18 : 1)omega7c, C(16 : 0), C(19 : 0) cyclo omega8c, C(12 : 0) 3-OH and C(16 : 1)omega7c/iso-C(15 : 0) 2-OH. Based on 16S rRNA gene sequence analysis, strain AW-7(T) showed almost equal phylogenetic distances from Zymobacter palmae (95.6 % similarity) and Carnimonas nigrificans (95.4 % similarity). In addition, low DNA-DNA relatedness values were found for strain AW-7(T) against Carnimonas nigrificans CECT 4437(T) (22.5-25.4 %) and Z. palmae DSM 10491(T) (11.9-14.4 %). The DNA G+C content of strain AW-7(T) is 64.4 mol%. Physiological and chemotaxonomic data further confirmed the differentiation of strain AW-7(T) from the genera Zymobacter and Carnimonas. Thus, strain AW-7(T) represents a novel bacterial genus within the family Halomonadaceae, for which the name Halotalea gen. nov. is proposed. Halotalea alkalilenta sp. nov. (type strain AW-7(T)=DSM 17697(T)=CECT 7134(T)) is proposed as the type species of the genus Halotalea gen. nov. A reassignment of the descriptive 16S rRNA signature characteristics of the family Halomonadaceae permitted the placement of the novel genus Halotalea into the family; in contrast, the genus Halovibrio possessed only 12 out of the 18 signature characteristics proposed, and hence it was excluded from the family Halomonadaceae.

  10. Isolation and Characterization of a Chlorinated-Pyridinol-Degrading Bacterium

    PubMed Central

    Feng, Y.; Racke, K. D.; Bollag, J.

    1997-01-01

    The isolation of a pure culture of bacteria able to use 3,5,6-trichloro-2-pyridinol (TCP) as a sole source of carbon and energy under aerobic conditions was achieved for the first time. The bacterium was identified as a Pseudomonas sp. and designated ATCC 700113. [2,6-(sup14)C]TCP degradation yielded (sup14)CO(inf2), chloride, and unidentified polar metabolites. PMID:16535719

  11. Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?

    NASA Astrophysics Data System (ADS)

    Howard, Martin; Rutenberg, Andrew

    2004-03-01

    I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).

  12. Glaciihabitans tibetensis gen. nov., sp. nov., a psychrotolerant bacterium of the family Microbacteriaceae, isolated from glacier ice water.

    PubMed

    Li, Ai-Hua; Liu, Hong-Can; Xin, Yu-Hua; Kim, Song-Gun; Zhou, Yu-Guang

    2014-02-01

    A Gram-stain-positive, aerobic, non-spore-forming, short-rod-shaped bacterium, designated strain MP203(T), was isolated from ice water of Midui Glacier in Tibet Autonomous Region, China. The strain was psychrotolerant, growing at 0-25 °C. 16S rRNA gene sequence analysis showed that strain MP203(T) was most similar to Frigoribacterium faeni NBRC 103066(T), Compostimonas suwonensis KACC 13354(T), Frigoribacterium mesophilum KCTC 19311(T), Marisediminicola antarctica CCTCC AB 209077(T) and Alpinimonas psychrophila JCM 18951(T), with similarities of 97.4, 97.2, 97.2, 97.1 and 97.1%, respectively. The maximum-likelihood phylogenetic tree indicated that strain MP203(T) clustered with nine genera of the family Microbacteriaceae, namely Frigoribacterium, Compostimonas, Marisediminicola, Alpinimonas, Frondihabitans, Clavibacter, Subtercola, Klugiella and Agreia. However, bootstrap analysis showed that there was no significance in the branching pattern of the linage comprising strain MP203(T) and any existing generic lineage of the family Microbacteriaceae. DNA-DNA hybridization results indicated levels of relatedness between strain MP203(T) and Marisediminicola antarctica CCTCC AB 209077(T), Frigoribacterium faeni NBRC 103066(T), Frigoribacterium mesophilum KCTC 19311(T), Compostimonas suwonensis KACC 13354(T) and Alpinimonas psychrophila JCM 18951(T) were 25.8 ± 7.3, 29.6 ± 7.6, 19.7 ± 6.7, 16.0 ± 4.2 and 12.4 ± 5.1 % (mean ± SD), respectively. The G+C content of the genomic DNA was 64.1 mol%. Analysis of the cell-wall peptidoglycan revealed that the peptidoglycan structure of strain MP203(T) was B10 type with Gly[l-Hse]-D-Glu-D-DAB, containing 2, 4-diaminobutyric acid (DAB) as a diagnostic amino acid. The cell-wall sugars were rhamnose, ribose, mannose and glucose. The major fatty acids were anteiso-C(15 : 0), iso-C(16 : 0) and anteiso A-C(15 : 1). An unusual compound identified as anteiso-C(15 : 0)-DMA (1,1-dimethoxy-anteiso-pentadecane) was also present in strain

  13. Bacillus nakamurai sp. nov., a black pigment producing strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two isolates of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore-forming bacterium were identified during a survey of the Bacillus diversity of the Agriculture Research Service Culture Collection. These strains were originally isolated from soil and have a phenotype of producing a da...

  14. Bacillus glycinifermentans sp. nov., isolated from fermented soybean paste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two independent isolates of a Gram-positive, aerobic, motile rod-shaped bacterium were recovered from soybean-based fermented foodstuffs. Two were isolated from cheonggukjang, a Korean fermented soybean food product. Multilocus sequencing analysis of the 16S rRNA gene and 5 protein coding genes indi...

  15. Chryseomicrobium aureum sp. nov., a bacterium isolated from activated sludge.

    PubMed

    Deng, Shi-Kai; Ye, Xiao-Mei; Chu, Cui-Wei; Jiang, Jin; He, Jian; Zhang, Jun; Li, Shun-Peng

    2014-08-01

    A Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, aerobic bacterial strain, designated BUT-2(T), was isolated from activated sludge of one herbicide-manufacturing wastewater-treatment facility in Kunshan, Jiangsu province, China, and subjected to polyphasic taxonomic studies. Analysis of the 16S rRNA gene sequence indicated that strain BUT-2(T) shared the highest similarity with Chryseomicrobium amylolyticum (98.98%), followed by Chryseomicrobium imtechense (98.88%), with less than 96% similarlity to members of the genera Paenisporosarcina, Planococcus, Sporosarcina and Planomicrobium. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BUT-2(T) clustered with C. amylolyticum JC16(T) and C. imtechense MW10(T), occupying a distinct phylogenetic position. The major fatty acid (>10% of total fatty acids) type of strain BUT-2(T) was iso-C(15 : 0). The quinone system comprised menaquinone MK-7 (77.8%), MK-6 (11.9%) and MK-8 (10.3%). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and some unidentified phospholipids. The cell-wall peptidoglycan type of strain BUT-2(T) was L-Orn-D-Glu. The genomic DNA G+C content of strain BUT-2(T) was 48.5 mol%. Furthermore, the DNA-DNA relatedness in hybridization experiments against the reference strain was lower than 70%, confirming that strain BUT-2(T) did not belong to previously described species of the genus Chryseomicrobium. On the basis of its morphological, physiological and chemotaxonomic characteristics as well as phylogenetic analysis, strain BUT-2(T) is considered to represent a novel species of the genus Chryseomicrobium, for which the name Chryseomicrobium aureum sp. nov. is proposed. The type strain is BUT-2(T) ( = CCTCC AB2013082(T) = KACC 17219(T)).

  16. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  17. Pontibacter diazotrophicus sp. nov., a Novel Nitrogen-Fixing Bacterium of the Family Cytophagaceae

    PubMed Central

    Xu, Linghua; Zeng, Xian-Chun; Nie, Yao; Luo, Xuesong; Zhou, Enmin; Zhou, Lingli; Pan, Yunfan; Li, Wenjun

    2014-01-01

    Few diazotrophs have been found to belong to the family Cytophagaceae so far. In the present study, a Gram-negative, rod-shaped bacterium that forms red colonies, was isolated from sands of the Takalamakan desert. It was designated H4XT. Phylogenetic and biochemical analysis indicated that the isolate is a new species of the genus Pontibacter. The 16S rRNA gene of H4XT displays 94.2–96.8% sequence similarities to those of other strains in Pontibacter. The major respiratory quinone is menaquinone-7 (MK-7). The DNA G+C content is 46.6 mol%. The major cellular fatty acids are iso-C15∶0, C16∶1ω5c, summed feature 3 (containing C16∶1ω6c and/or C16∶1ω7c) and summed feature 4 (comprising anteiso-C17∶1B and/or iso-C17∶1I). The major polar lipids are phosphatidylethanolamine (PE), one aminophospholipid (APL) and some unknown phospholipids (PLs). It is interesting to see that this bacterium can grow very well in a nitrogen-free medium. PCR amplification suggested that the bacterium possesses at least one type of nitrogenase gene. Acetylene reduction assay showed that H4XT actually possesses nitrogen-fixing activity. Therefore, it can be concluded that H4XT is a new diazotroph. We thus referred it to as Pontibacter diazotrophicus sp. nov. The type strain is H4XT ( = CCTCC AB 2013049T = NRRL B-59974T). PMID:24647674

  18. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov.

    PubMed

    Banat, Ibrahim M; Marchant, Roger; Rahman, Thahira J

    2004-11-01

    Several aerobic, motile, rod-shaped, thermophilic, spore-forming Geobacillus bacteria predominantly giving a Gram-positive staining reaction were isolated from a cool soil environment in Northern Ireland and taxonomically investigated. Two isolates, F10 and Tf(T), showed low 16S rRNA gene sequence similarity to recognized members of the genus Geobacillus. Phylogenetic tree investigation using neighbour-joining, maximum-likelihood and parsimony methods indicated that strains F10 and Tf(T) represent a single novel species, for which the name Geobacillus debilis sp. nov. is proposed, with type strain Tf(T) (=DSM 16016(T)=NCIMB 13995(T)) and which belongs to a subgroup of the genus Geobacillus comprising Geobacillus toebii and Geobacillus caldoxylosilyticus. However, G. debilis showed closest affinities to Bacillus pallidus, which we propose should become Geobacillus pallidus comb. nov.

  19. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9

    PubMed Central

    Liu, Jin-liang; Hu, Xiao-min

    2013-01-01

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus. PMID:23618713

  20. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9.

    PubMed

    Jiang, Bin-Hui; Liu, Jin-Liang; Hu, Xiao-Min

    2013-04-25

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus.

  1. Genome Sequence of a Strain of the Human Pathogenic Bacterium Pseudomonas alcaligenes That Caused Bloodstream Infection.

    PubMed

    Suzuki, Masato; Suzuki, Satowa; Matsui, Mari; Hiraki, Yoichi; Kawano, Fumio; Shibayama, Keigo

    2013-10-31

    Pseudomonas alcaligenes, a Gram-negative aerobic bacterium, is a rare opportunistic human pathogen. Here, we report the whole-genome sequence of P. alcaligenes strain MRY13-0052, which was isolated from a bloodstream infection in a medical institution in Japan and is resistant to antimicrobial agents, including broad-spectrum cephalosporins and monobactams.

  2. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  3. Anaerobranca californiensis sp. nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake.

    PubMed

    Gorlenko, Vladimir; Tsapin, Alexandre; Namsaraev, Zorigto; Teal, Tracy; Tourova, Tatyana; Engler, Diane; Mielke, Randy; Nealson, Kenneth

    2004-05-01

    A novel, obligately anaerobic, alkalithermophilic, chemo-organotrophic bacterium was isolated from the sediment of an alkaline hot spring located on Paoha Island in Mono Lake, California, USA. This rod-shaped bacterium was motile via peritrichous flagella. Isolated strains grew optimally in 5-25 g NaCl l(-1), at pH 9.0-9.5 and at a temperature of 58 degrees C and were fermentative and mainly proteolytic, utilizing peptone, Casamino acids and yeast extract. Optimal growth was seen in the presence of elemental sulfur, polysulfide or thiosulfate with concomitant reduction to hydrogen sulfide. Sulfite was also formed in an equal ratio to sulfide during reduction of thiosulfate. The novel isolate could also reduce Fe(III) and Se(IV) in the presence of organic matter. On the basis of physiological properties, 16S rRNA gene sequence and DNA-DNA hybridization data, strain PAOHA-1(T) (=DSM 14826(T)=UNIQEM 227(T)) belongs to the genus Anaerobranca and represents a novel species, Anaerobranca californiensis sp. nov.

  4. Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo.

    PubMed

    Miranda-Tello, Elizabeth; Fardeau, Marie-Laure; Joulian, Catherine; Magot, Michel; Thomas, Pierre; Tholozan, Jean-Luc; Ollivier, Bernard

    2007-01-01

    A novel thermophilic, moderately halophilic, rod-shaped bacterium, strain MET-B(T), with a sheath-like outer structure (toga) was isolated from an offshore oil-producing well in Congo, West Africa. Strain MET-B(T) was a Gram-negative bacterium with the ability to reduce elemental sulfur, but not sulfate, thiosulfate or sulfite into sulfide. The optimum growth conditions were 60 degrees C, pH 6.7-7.2 and 4-6 % NaCl. The DNA G+C content was 34.6 mol%. Strain MET-B(T) was phylogenetically related to members of the genus Petrotoga; Petrotoga miotherma, Petrotoga olearia and Petrotoga mexicana were the closest relatives, with type strains exhibiting more than 99 % identity in an analysis of small-subunit rRNA gene sequences. The values for DNA-DNA relatedness between the type strains of these three species and strain MET-B(T) were less than 42 %. As MET-B(T) was found to be genetically and physiologically different from other species of the genus Petrotoga, this strain is proposed as representing a novel species, for which the name Petrotoga halophila sp. nov. is proposed. The type strain is MET-B(T) (=DSM 16923(T)=CCUG 50214(T)).

  5. Sporosarcina antarctica sp. nov., a psychrophilic bacterium isolated from the Antarctic.

    PubMed

    Yu, Yong; Xin, Yu-Hua; Liu, Hong-Can; Chen, Bo; Sheng, Jun; Chi, Zhen-Ming; Zhou, Pei-Jin; Zhang, De-Chao

    2008-09-01

    A Gram-positive, psychrophilic, rod-shaped bacterium, designated strain N-05(T), was isolated from soil samples collected off King George Island, west Antarctica (6 degrees 13' 31'' S 5 degrees 57' 08'' W). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain N-05(T) was related to members of the genus Sporosarcina and had highest 16S rRNA gene sequence similarity with the type strain of Sporosarcina macmurdoensis (98.0%). The temperature range for growth of strain N-05(T) was 0-23 degrees C, with optimum growth occurring at 17-18 degrees C and approximately pH 6.0-8.0. Strain N-05(T) had MK-7 as the major menaquinone and anteiso-C(15:0) and C(16:1)omega7c alcohol as major fatty acids. The genomic DNA G+C content was 39.2 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain N-05(T) is considered to represent a novel species of the genus Sporosarcina, for which the name Sporosarcina antarctica is proposed. The type strain is N-05(T) (=CGMCC 1.6503(T)=JCM 14646(T)).

  6. Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine

    NASA Technical Reports Server (NTRS)

    Bhupathiraju, V. K.; McInerney, M. J.; Woese, C. R.; Tanner, R. S.

    1999-01-01

    Three strains, designated VS-751T, VS-511 and VS-732, of a strictly anaerobic, moderately halophilic, Gram-negative, rod-shaped bacterium were isolated from a highly saline (15-20%) brine from an oil reservoir in central Oklahoma, USA. The optimal concentration of NaCl for growth of these three strains was 2 M (12%), and the strains also grew in the presence of an additional 1 M MgCl2. The strains were mesophilic and grew at a pH range of 6-8. Carbohydrates used by all three strains included glucose, fructose, arabinose, galactose, maltose, mannose, cellobiose, sucrose and inulin. Glucose fermentation products included ethanol, acetate, H2 and CO2, with formate produced by two of the three strains. Differences were noted among strains in the optimal temperature and pH for growth, the maximum and minimum NaCl concentration that supported growth, substrate utilization and cellular fatty acid composition. Despite the phenotypic differences among the three strains, analysis of the 16S rRNA gene sequences and DNA-DNA hybridizations showed that these three strains were members of the same genospecies which belonged to the genus Haloanaerobium. The phenotypic and genotypic characteristics of strains VS-751T, VS-511 and VS-732 are different from those of previously described species of Haloanaerobium. It is proposed that strain VS-751T (ATCC 700103T) be established as the type strain of a new species, Haloanaerobium kushneri.

  7. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand.

    PubMed

    Khunthongpan, Suwannee; Bourneow, Chaiwut; H-Kittikun, Aran; Tanasupawat, Somboon; Benjakul, Soottawat; Sumpavapol, Punnanee

    2013-01-01

    A novel strain of Enterobacter, C2361(T), a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium with the capability to produce transglutaminase, was isolated from seafood processing wastewater collected from a treatment pond of a seafood factory in Songkhla Province, Thailand. Phylogenetic analyses and phenotypic characteristics, including chemotaxonomic characteristics, showed that the strain was a member of the genus Enterobacter. The 16S rRNA gene sequence similarities between strain C2361(T) and Enterobacter cloacae subsp. cloacae ATCC 13047(T) and Enterobacter cloacae subsp. dissolvens LMG 2683(T) were 97.5 and 97.5%, respectively. Strain C2361(T) showed a low DNA-DNA relatedness with the above-mentioned species. The major fatty acids were C16:0, C17:0cyclo and C14:0. The DNA G+C content was 53.0 mol%. On the basis of the polyphasic evidence gathered in this study, it should be classified as a novel species of the genus Enterobacter for which the name Enterobacter siamensis sp. nov. is proposed. The type strain is C2361(T) (= KCTC 23282(T) = NBRC 107138(T)).

  8. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment.

    PubMed

    Wu, Wen-Jie; Liu, Qian-Qian; Chen, Guan-Jun; Du, Zong-Jun

    2015-07-01

    A Gram-stain-negative, facultatively anaerobic, non-motile and pink-pigmented bacterium, designated strain HF08(T), was isolated from marine sediment of the coast of Weihai, China. Cells were rod-shaped, and oxidase- and catalase-positive. The isolate grew optimally at 33 °C, at pH 7.5-8.0 and with 2-3% (w/v) NaCl. The dominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Menaquinone 7 (MK-7) was the major respiratory quinone and the DNA G+C content was 44.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the class Bacteroidia, and shared 88-90% sequence similarity with the closest genera Sunxiuqinia, Prolixibacter, Draconibacterium, Mariniphaga and Meniscus. Based on the phylogenetic and phenotypic evidence presented, a novel species in a new genus of the family Prolixibacteraceae is proposed, with the name Roseimarinus sediminis gen. nov., sp. nov. The type strain of Roseimarinus sediminis is HF08(T) ( = KCTC 42261(T) = CICC 10901(T)).

  9. Brassicibacter thermophilus sp. nov., a thermophilic bacterium isolated from coastal sediment.

    PubMed

    Wang, Bing; Ji, Shi-Qi; Tian, Xin-Xin; Qu, Ling-Yun; Li, Fu-Li

    2015-09-01

    A novel thermophilic, obligately anaerobic bacterium, strain Cel2f(T), was isolated from a cellulolytic community enriched from coastal marine sediment. Cells were Gram-stain-negative, non-motile, non-spore-forming and rod-shaped. Optimal growth temperature and pH of strain Cel2f(T) were 55 °C and pH 7.0, respectively. NaCl was essential for the growth of strain Cel2f(T) and the strain showed enhanced growth in the presence of sea salt; the optimum sea salt concentration for growth was 7% (w/v). Thiosulfate, sulfate and sulfite were potential electron acceptors. The major fatty acids of strain Cel2f(T) were iso-C15 : 0, C16 : 0, and C18 : 0. Polar lipid analysis indicated the presence of phosphatidylethanolamine and phosphatidylglycerol. Strain Cel2f(T) contained menaquinone MK-7 as the isoprenoid quinone, and the DNA G+C content was 31.3 mol%. Phylogenetic analysis revealed that the nearest relative of strain Cel2f(T) was Brassicibacter mesophilus BM(T) with 93.8% 16S rRNA gene sequence similarity. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, strain Cel2f(T) represents a novel species of genus Brassicibacter, for which the name Brassicibacter thermophilus sp. nov. is proposed. The type strain is Cel2f(T) ( = JCM 30480(T) = CGMCC 1.5200(T)).

  10. Brevibacillus ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field.

    PubMed

    Baek, Sang-Hoon; Im, Wan-Taek; Oh, Hyun Woo; Lee, Jung-Sook; Oh, Hee-Mock; Lee, Sung-Taik

    2006-11-01

    A Gram-positive, rod-shaped, spore-forming bacterium, Gsoil 3088T, was isolated from soil from a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 3088T was shown to belong to the family Paenibacillaceae, being related to Brevibacillus centrosporus (96.6%), Brevibacillus borstelensis (96.3%), Brevibacillus parabrevis (96.1%), Brevibacillus formosus (96.1%), Brevibacillus brevis (96.1%) and Brevibacillus laterosporus (96.0%). The phylogenetic distances from other validly described species within the genus Brevibacillus were greater than 4.0% (i.e. there was less than 96.0% similarity). The G+C content of the genomic DNA was 52.1 mol%. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; fatty acid profile, iso-C15:0, iso-C14:0 and anteiso-C15:0) supported the affiliation of strain Gsoil 3088T to the genus Brevibacillus. The results of physiological and biochemical tests allowed strain Gsoil 3088T to be distinguished genotypically and phenotypically from Brevibacillus species with validly published names. Strain Gsoil 3088T, therefore, represents a novel species of the genus Brevibacillus, for which the name Brevibacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 3088T (=KCTC 13938T=LMG 23403T).

  11. Flavobacterium arsenatis sp. nov., a novel arsenic-resistant bacterium from high-arsenic sediment.

    PubMed

    Ao, Lian; Zeng, Xian-Chun; Nie, Yao; Mu, Yao; Zhou, Lingli; Luo, Xuesong

    2014-10-01

    A novel bacterial strain Z(T) was isolated from the high-arsenic sediment in Jianghan Plain, China. The strain was Gram-staining-negative, rod-shaped and formed yellow colonies. This bacterium is capable of tolerating arsenate and arsenite, with MICs of 40 mM and 20 mM, respectively. The strain also possesses catalase and does not produce oxidase. The nucleotide sequence of the 16S rRNA gene of the isolate showed the highest similarity (96.9%) to that of the type strain of Flavobacterium soli. On the basis of the 16S rRNA gene sequence analysis and the phenotypic properties of strain Z(T), it was assigned to the genus Flavobacterium. The major respiratory menaquinone was MK-6 and the predominant fatty acids were iso-C15:0, summed feature 3 (containing C16:1ω6c and/or C16:1ω7c) and iso-C15:1G. The major polar lipids were phosphatidylethanolamine, three uncharacterized aminophospholipids and four unidentified phospholipids. The DNA G+C content was 32.1 mol%. Based on the phenotypic and genotypic data presented in this article, it can be concluded that this isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium arsenatis sp. nov. is proposed. The type strain is Z(T) ( = CCTCC AB 2013048(T) = KCTC 32397(T)).

  12. Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil.

    PubMed

    Miwa, Hiroki; Ahmed, Iftikhar; Yoon, Jaewoo; Yokota, Akira; Fujiwara, Toru

    2008-01-01

    A non-spore-forming, Gram-negative, motile, rod-shaped, boron-accumulating bacterium isolated from soil was characterized by polyphasic taxonomy. The strain, designated BAM-48(T), was positive for catalase and oxidase activities and grew at 4-37 degrees C, 0-1% NaCl and pH 5-9. Comparative analysis of the 16S rRNA gene sequence demonstrated that the novel isolate BAM-48(T) was closely related to Variovorax paradoxus IAM 12373(T) (99.3% sequence similarity), Variovorax soli GH9-3(T) (98.3%) and Variovorax dokdonensis DS-43(T) (97.0%). DNA-DNA hybridization values between strain BAM-48(T) and V. paradoxus NBRC 15149(T), V. soli KACC 11579(T) and V. dokdonensis KCTC 12544(T) were only 49.1, 25.4 and 24.6%, respectively. The major respiratory quinone was ubiquinone 8 (Q-8). The DNA G+C content was 71.2 mol%. Strain BAM-48(T) contained C(16:0) (36.1%), C(16:1)omega7c (21.4%) and C(17:0) cyclo (19.0%) as the major fatty acids. Based on phenotypic, chemotaxonomic and phylogenetic data, strain BAM-48(T) should be classified as a member of a novel species in the genus Variovorax, for which the name Variovorax boronicumulans sp. nov. is proposed. The type strain is BAM-48(T) (=NBRC 103145(T) =KCTC 22010(T)).

  13. Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean.

    PubMed

    Kim, Hak Jun; Park, Soyoung; Lee, Jung Min; Park, Seungil; Jung, Woongsic; Kang, Jae-Shin; Joo, Hyung Min; Seo, Ki-Won; Kang, Sung-Ho

    2008-04-01

    An aerobic, motile, Gram-negative, ice-active substance-producing, rod-shaped psychrophile, designated strain ArB 0140T, was isolated from seawater collected from near a glacier in Kongsfjorden, Svalbard Archipelago, Norway. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain ArB 0140T showed a distinct phyletic line within the genus Moritella. Characteristic chemotaxonomic data [predominant isoprenoid quinone, Q8; major fatty acids, C14 : 0, C14 : 1, C16 : 0, C16 : 1 and C22 : 6 (docosahexaenoic acid; DHA)] also corroborated the affiliation of strain ArB 0140T to the genus Moritella. The maximal growth rate of the novel strain was observed at 9 degrees C, with a maximum temperature for growth of 18 degrees C. The genomic DNA G+C content was 46.9 mol%. Based on the data obtained from this polyphasic study, including DNA-DNA relatedness, physiological and biochemical tests and ice-controlling activity, strain ArB 0140T was found to be genetically and phenotypically different from other recognized species of the genus Moritella. Therefore strain ArB 0140T represents a novel species, for which the name Moritella dasanensis sp. nov. is proposed. The type strain is ArB 0140T (=KCTC 10814T=KCCM 42845T=JCM 14759T).

  14. Shimia sagamensis sp. nov., a marine bacterium isolated from cold-seep sediment.

    PubMed

    Nogi, Yuichi; Mori, Kozue; Uchida, Hiromi; Hatada, Yuji

    2015-09-01

    A novel marine bacterial strain designated JAMH 011(T) was isolated from the cold-seep sediment in Sagami Bay, Japan. Cells were Gram-stain-negative, rod-shaped, non-spore-forming, aerobic chemo-organotrophs and motile by means of a single polar flagellum. Growth occurred at temperatures below 31 °C, with the optimum at 25 °C. The major respiratory quinone was Q-10. The predominant fatty acid was C18 : 1ω7c. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Shimia in the class Alphaproteobacteria, and the 16S rRNA gene sequence similarity of the novel isolate with the type strain of the closest related species, Shimia haliotis WM35(T), was 98.1%. The DNA G+C content of the novel strain was 57.3 mol%. The hybridization values for DNA-DNA relatedness between strain JAMH 011(T) and reference strains belonging to the genus Shimia were less than 9.4 ± 0.7%. Based on differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Shimia, for which the name Shimia sagamensis sp. nov. is proposed. The type strain is JAMH 011(T) ( = JCM 30583(T) = DSM 29734(T)).

  15. Thalassobius abyssi sp. nov., a marine bacterium isolated from the cold-seep sediment.

    PubMed

    Nogi, Yuichi; Mori, Kozue; Makita, Hiroko; Hatada, Yuji

    2015-11-09

    A novel marine bacterial strain designated JAMH 043T was isolated from the cold-seep sediment in Sagami Bay, Japan. Cells were Gram-negative, rod-shaped, non-motile and aerobic chemo-organotrophs. The cells of the isolate grew optimally at 25 °C, pH 7.0-7.5, and with 3% (w/v) NaCl. The major respiratory quinone was Q-10. The predominant fatty acid was C18:1ω7c. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Thalassobius in the class Alphaproteobacteria, and the 16S rRNA gene sequence similarity of the novel isolate with the type strain of closest related species, Thalassobius aestuarii JC2049T, was 98.4 %. The DNA G+C content of the novel strain was 58.0 mol%. The hybridization values for DNA-DNA relatedness between strain JAMH043T and reference strains belonging to the genus Thalassobius were less than 14.1±2.2 %. Based on differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Thalassobius, for which the name Thalassobius abyssi sp. nov. is proposed. Type strain is JAMH 043T (=JCM 30900T =DSMZ 100673T).

  16. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    PubMed

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  17. Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga.

    PubMed

    Verma, Ashish; Ojha, Anup Kumar; Kumari, Parveen; Sundharam, Shiva S; Mayilraj, Shanmugam; Krishnamurthi, Srinivasan

    2016-12-01

    A Gram-stain-negative, rod-shaped bacterium, forming yellow colonies and designated CDR SL 15T, was isolated from the surface of Padina sp., a brown macroalga, which grows in the Western coastal regions of the state of Goa, India. The 16S rRNA gene sequence phylogeny placed the strain in the genus Luteimonas and it showed closest sequence similarity to Luteimonas terricola BZ92rT (97.6 %) and <97.0 % to other species of the genus Luteimonas. Chemotaxonomic features, such as having iso-C15 : 0 and summed feature 9 (C16 : 0 10-methyl/iso-C17 : 1ω9c) as the major fatty acids and Q-8 as the only ubiquinone further supported its placement within this genus. There were some critical differences in phenotypic properties between Luteimonas padinae sp. nov. CDR SL 15T and L. terricola DSM 22344T i.e. temperature range for growth and salinity range and optimum for growth (L. terricola is a psychrotolerant bacterium with a lower optimum temperature for growth), acid production and assimilation of substrates, enzyme activities and resistance to certain antibiotics. The DNA-DNA relatedness value of the novel strain with its closest phylogenetic relative was only 40 %, below the 70 % threshold value recommended for species delineation. All these characteristics are consistent with strain CDR SL 15T representing a novel species of the genus Luteimonas, for which the name Luteimonas padinae sp. nov. is proposed. The type strain is CDR SL 15T (=DSM 101536T=KCTC 52403T).

  18. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud.

    PubMed

    Viulu, Samson; Nakamura, Kohei; Okada, Yurina; Saitou, Sakiko; Takamizawa, Kazuhiro

    2013-02-01

    A novel species of Fe(III)-reducing bacterium, designated strain OSK6(T), belonging to the genus Geobacter, was isolated from lotus field mud in Japan. Strain OSK6(T) was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, gram-negative, motile, straight rod-shaped bacterium, 0.6-1.9 µm long and 0.2-0.4 µm wide. The growth of the isolate occurred at 20-40 °C with optima of 30-37 °C and pH 6.5-7.5 in the presence of up to 0.5 g NaCl l(-1). The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6(T) was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6(T) is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6(T) is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6(T) ( = DSM 24905(T) = JCM 17780(T)).

  19. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  20. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  1. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  2. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  3. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    PubMed

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13.

  4. [Isolation and identification of electrochemically active microorganism from micro-aerobic environment].

    PubMed

    Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng

    2014-10-01

    Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.

  5. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM.

    PubMed

    Shi, Zhuang; Zhang, Yu; Zhou, Jiti; Chen, Mingxiang; Wang, Xiaojun

    2013-11-01

    The bacterium isolated from sea sludge Paracoccus versutus LYM was characterized with the ability of aerobic denitrification. Strain LYM performs perfect activity in aerobically converting over 95% NO3(-)-N (approximate 400mg L(-1)) to gaseous products via nitrite with maximum reduction rate 33 mg NO3(-)-N L(-1) h(-1). Besides characteristic of aerobic denitrification, strain LYM was confirmed in terms of the ability to be heterotrophic nitrification and aerobic denitrification (HNAD) with few accumulations of intermediates. After the nitrogen balance and enzyme assays, the putative nitrogen pathway of HNAD could be NH4(+) → NH2OH → NO2(-)→ NO3(-), then NO3(-) was denitrified to gaseous products via nitrite. N2 was sole denitrification product without any detection of N2O by gas chromatography. Strain LYM could also simultaneously remove ammonium and additional nitrate. Meanwhile, the accumulated nitrite had inhibitory effect on ammonium reduction rate.

  6. Biodegradation of Asphalt Cement-20 by Aerobic Bacteria

    PubMed Central

    Pendrys, John P.

    1989-01-01

    Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-degrading bacterium, Acinetobacter calcoaceticus NAV2, excretes an emulsifier which is capable of emulsifying the saturate and naphthene aromatic fractions of asphalt cement-20. This emulsifier is not denatured by phenol. PMID:16347928

  7. Draft Genome Sequence of Pseudomonas frederiksbergensis SI8, a Psychrotrophic Aromatic-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Striebich, Richard C.; Mueller, Susan S.; Gunasekera, Thusitha S.

    2015-01-01

    Pseudomonas frederiksbergensis strain SI8 is a psychrotrophic bacterium capable of efficient aerobic degradation of aromatic hydrocarbons. The draft genome of P. frederiksbergensis SI8 is 6.57 Mb in size, with 5,904 coding sequences and 60.5% G+C content. The isopropylbenzene (cumene) degradation pathway is predicted to be present in P. frederiksbergensis SI8. PMID:26184950

  8. Draft Genome Sequence of Agarivorans albus Strain MKT 106T, an Agarolytic Marine Bacterium.

    PubMed

    Yasuike, Motoshige; Nakamura, Yoji; Kai, Wataru; Fujiwara, Atushi; Fukui, Youhei; Satomi, Masataka; Sano, Motohiko

    2013-07-18

    Agarivorans albus is a Gram-negative, strictly aerobic, and agar-hydrolyzing marine bacterium. We present the draft genome sequence of the A. albus strain MKT 106(T), which is composed of 67 contigs (>500 bp) totaling 4,734,285 bp and containing 4,397 coding DNA sequences (CDSs), four rRNAs, and 64 tRNA sequences.

  9. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  10. Characterization of an Obligate Intracellular Bacterium in the Midgut Epithelium of the Bulrush Bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae)▿

    PubMed Central

    Kuechler, Stefan Martin; Dettner, Konrad; Kehl, Siegfried

    2011-01-01

    Many members of the suborder Heteroptera have symbiotic bacteria, which are usually found extracellularly in specific sacs or tubular outgrowths of the midgut or intracellularly in mycetomes. In this study, we describe the second molecular characterization of a symbiotic bacterium in a monophagous, seed-sucking stink bug of the family Lygaeidae (sensu stricto). Chilacis typhae possesses at the end of the first section of the midgut a structure which is composed of circularly arranged, strongly enlarged midgut epithelial cells. It is filled with an intracellular endosymbiont. This “mycetocytic belt” might represent an evolutionarily intermediate stage of the usual symbiotic structures found in stink bugs. Phylogenetic analysis based on the 16S rRNA and the groEL genes showed that the bacterium belongs to the Gammaproteobacteria, and it revealed a phylogenetic relationship with a secondary bacterial endosymbiont of Cimex lectularius and free-living plant pathogens such as Pectobacterium and Dickeya. The distribution and ultrastructure of the rod-shaped Chilacis endosymbiont were studied in adults and nymph stages using fluorescence in situ hybridization (FISH) and electron microscopy. The detection of symbionts at the anterior poles of developing eggs indicates that endosymbionts are transmitted vertically. A new genus and species name, “Candidatus Rohrkolberia cinguli,” is proposed for this newly characterized clade of symbiotic bacteria. PMID:21378044

  11. Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia.

    PubMed

    Hedi, Abdeljabbar; Fardeau, Marie-Laure; Sadfi, Najla; Boudabous, Abdellatif; Ollivier, Bernard; Cayol, Jean-Luc

    2009-03-01

    A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20-22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7-1 x 4-13 microm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9-8.4). Optimum temperature for growth was 42 degrees C (range 30-50 degrees C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H(2), and CO(2). The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91-92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANG(T) (=DSM 19997(T)=JCM 15060(T)).

  12. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina.

    PubMed

    Olivera, Nelda; Siñeriz, Faustino; Breccia, Javier D

    2005-01-01

    A Gram-positive, rod-shaped, spore-forming bacterium (PAT 05T) was isolated from the rhizosphere of the perennial shrub Atriplex lampa in north-eastern Patagonia, Argentina. Its overall biochemical and physiological characteristics indicated that this strain should be placed in the alkaliphilic Bacillus group. Strain PAT 05T grew at pH 7-10 (optimum pH 8), but not at pH 6. Its DNA G+C content was 39.7 mol%. Sequence analysis of the 16S rRNA gene of PAT 05T revealed the closest match (99.6 % similarity) with Bacillus sp. DSM 8714. The highest level of DNA-DNA relatedness (88.6 %) was also found with this strain. On the basis of 16S rRNA gene sequence similarity and phylogenetic analysis, G+C content and DNA-DNA hybridization data, strain PAT 05T is related at the species level to Bacillus sp. DSM 8714, a member of a group referred as phenon 4a by Nielsen et al. [Nielsen, P., Fritze, D. & Priest, F. G. (1995). Microbiology 141, 1745-1761], which still lacks taxonomic standing. These results support the proposal of strain PAT 05T (=DSM 16117T=ATCC BAA-965T) as the type strain of Bacillus patagoniensis sp. nov.

  13. Virgibacillus ainsalahensis sp. nov., a Moderately Halophilic Bacterium Isolated from Sediment of a Saline Lake in South of Algeria.

    PubMed

    Amziane, Meriam; Darenfed-Bouanane, Amel; Abderrahmani, Ahmed; Selama, Okba; Jouadi, Lydia; Cayol, Jean-Luc; Nateche, Farida; Fardeau, Marie-Laure

    2017-02-01

    A Gram-positive, moderately halophilic, endospore-forming bacterium, designated MerV(T), was isolated from a sediment sample of a saline lake located in Ain Salah, south of Algeria. The cells were rod shaped and motile. Isolate MerV(T) grew at salinity interval of 0.5-25% NaCl (optimum, 5-10%), pH 6.0-12.0 (optimum, 8.0), and temperature between 10 and 40 °C (optimum, 30 °C).The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, a glycolipid, a phospholipid, and two lipids, and MK-7 is the predominant menaquinone. The predominant cellular fatty acids were anteiso C15:0 and anteiso C17:0. The DNA G+C content was 45.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain MerV(T) was most closely related to Virgibacillus halodenitrificans (gene sequence similarity of 97.0%). On the basis of phenotypic, chemotaxonomic properties, and phylogenetic analyses, strain MerV(T) (=DSM = 28944(T)) should be placed in the genus Virgibacillus as a novel species, for which the name Virgibacillus ainsalahensis is proposed.

  14. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 degrees N).

    PubMed

    Wartiainen, Ingvild; Hestnes, Anne Grethe; McDonald, Ian R; Svenning, Mette M

    2006-03-01

    A Gram-negative, rod-shaped, non-motile, non-spore-forming, pink-pigmented bacterium, SV97T, was isolated from a wetland soil near Ny-Alesund, Svalbard Islands, Norway (78 degrees N). On the basis of 16S rRNA gene sequence similarity, strain SV97T was shown to belong to the Alphaproteobacteria and was highly related to a number of non-characterized Methylocystis strains with GenBank accession nos AJ458507 and AJ458502 (100 %) and AF177299, AJ458510, AJ458467, AJ458471, AJ431384, AJ458475, AJ458484, AJ458501 and AJ458466 (99 %). The most closely related type strains were Methylocystis parvus OBBP(T) (97.2 %) and Methylocystis echinoides IMET 10491T (97%). The closest related recognized species within the genus Methylosinus was Methylosinus sporium NCIMB 11126T (96.0% similarity). Chemotaxonomic and phenotypic data (C(18:1)omega8 as the major fatty acid, non-motile, no rosette formation) supported the affiliation of strain SV97T to the genus Methylocystis. The results of DNA-DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain SV97(T) from the two recognized Methylocystis species. Strain SV97T therefore represents a novel species, for which the name Methylocystis rosea sp. nov. is proposed, with the type strain SV97T (= DSM 17261T = ATCC BAA-1196T).

  15. Desulfosporosinus burensis sp. nov., a spore-forming, mesophilic, sulfate-reducing bacterium isolated from a deep clay environment.

    PubMed

    Mayeux, Bruno; Fardeau, Marie-Laure; Bartoli-Joseph, Manon; Casalot, Laurie; Vinsot, Agnès; Labat, Marc

    2013-02-01

    A novel anaerobic, gram-positive, spore-forming, curved rod-shaped, mesophilic and sulfate-reducing bacterium was isolated from pore water collected in a borehole at -490 m in Bure (France). This strain, designated BSREI1(T), grew at temperatures between 5 °C and 30 °C (optimum 25 °C) and at a pH between 6 and 8 (optimum 7). It did not require NaCl for growth, but tolerated it up to 1.5 % NaCl. Sulfate, thiosulfate and elemental sulfur were used as terminal electron acceptors. Strain BSREI1(T) used crotonate, formate, lactate, pyruvate, fructose, glycerol and yeast extract as electron donors in the presence of sulfate. The sole quinone was MK-7. The G+C content of the genomic DNA was 43.3 mol%. Strain BSREI1(T) had the type strains of Desulfosporosinus lacus (16S rRNA gene sequence similarity of 96.83 %), Desulfosporosinus meridiei (96.31 %) and Desulfosporosinus hippei (96.16 %) as its closest phylogenetic relatives. On the basis of phylogenetic and physiological properties, strain BSREI1(T) is proposed as a representative of a novel species of the genus Desulfosporosinus, Desulfosporosinus burensis sp. nov.; the type strain is BSREI1(T) ( = DSM 24089(T) = JCM 17380(T)).

  16. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  18. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  19. Algivirga pacifica gen. nov., sp. nov., a novel agar-degrading marine bacterium of the family Flammeovirgaceae isolated from Micronesia.

    PubMed

    Kim, Jennifer Jooyoun; Kim, Ji Hyung; Kwon, Young-Kyung; Kwon, Kae Kyoung; Yang, Sung-Hyun; Jang, Jiyi; Heo, Soo-Jin; Park, Heung-Sik; Jung, Won-Kyo; Lee, Youngdeuk; Kang, Do-Hyung; Oh, Chulhong

    2013-12-01

    An aerobic, Gram-negative, coccoid to short rod-shaped and non-flagellated marine bacterial strain S354(T) was isolated from seawater of Micronesia. The strain was capable to degrade agar-forming slight depression into agar plate. Growth occurred at a temperature range of 12-44 °C, a pH range of 5-9, and a salinity range of 1-7 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences suggested that S354(T) belongs to the family Flammeovirgaceae. The novel strain was most closely related to Limibacter armeniacum YM 11-185(T) with similarity of 92.5 %. The DNA G+C content was 43.8 mol%. The major fatty acids (>10 %) were iso-C15:0 and C16:1 ω5c. The predominant isoprenoid quinone was determined to be MK-7. Polar lipid profile of S354(T) consisted of phosphatidylethanolamine, unknown polar lipid, and unknown glycolipids. Based on the phenotypic, phylogenetic, biochemical, and physiological tests conducted in this study, S354(T) is proposed to represent a type strain of a novel genus and species. The 16S rRNA gene sequence of S354(T) is registered in GenBank under the accession number JQ639084. The type of strain Algivirga pacifica gen. nov., sp. nov. is S354(T) (=KCCM 90107(T)=JCM 18326(T)).

  20. Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Lee, Jung-Sook; Saravanan, Venkatakrishnan Sivaraj; Lee, Keun-Chul; Santhanakrishnan, Palani

    2010-07-01

    A methylotrophic nitrogen-fixing bacterial strain, Ah-143(T), isolated from the rhizosphere soil of field-grown groundnut was analysed by a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis combined with rpoB gene sequence analysis allocated strain Ah-143(T) to the family Enterobacteriaceae, with Enterobacter radicincitans and Enterobacter cowanii as the closest relatives. The strain is Gram-stain-negative, non-spore-forming, aerobic and motile, having straight rod-shaped cells with a DNA G+C content of approximately 53.2 mol%. The strain utilizes methanol as a carbon source and the mxaF gene was closely related to the mxaF gene of members of the genus Methylobacterium. The fatty acid profile consisted of C(16 : 0), C(17 : 0) cyclo, C(18 : 1)omega7c, summed feature 2 (iso-C(16 : 1) I and/or C(14 : 0) 3-OH) and summed feature 3 (iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c) as the major components. DNA-DNA relatedness of strain Ah-143(T) with its close relatives was less than 20 %. On the basis of the phylogenetic analyses, DNA-DNA hybridization data, and unique physiological and biochemical characteristics, it is proposed that the strain represents a novel species of the genus Enterobacter and should be named Enterobacter arachidis sp. nov. The type strain is Ah-143(T) (=NCIMB 14469(T) =KCTC 22375(T)).

  1. Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.).

    PubMed

    Anandham, Rangasamy; Indiragandhi, Pandiyan; Kwon, Soon Wo; Sa, Tong Min; Jeon, Che Ok; Kim, Yong Ki; Jee, Hyeong Jin

    2010-01-01

    A facultatively chemolithoautotrophic, thiosulfate-oxidizing, Gram-negative, aerobic, motile, rod-shaped bacterial strain, designated ATSB16(T), was isolated from rhizosphere soils of sesame (Sesamum indicum L.). 16S rRNA gene sequence analysis demonstrated that this strain was closely related to Pandoraea pnomenusa LMG 18087(T) (96.7 % similarity), P. pulmonicola LMG 18016(T) (96.5 %), P. apista LMG 16407(T) (96.2 %), P. norimbergensis LMG 18379(T) (96.1 %) and P. sputorum LMG 18819(T) (96.0 %). Strain ATSB16(T) shared 96.0-96.4 % sequence similarity with four unnamed genomospecies of Pandoraea. The major cellular fatty acids of the strain ATSB16(T) were C(17 : 0) cyclo (33.0 %) and C(16 : 0) (30.6 %). Q-8 was the predominant respiratory quinone. The major polar lipids were phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified aminophospholipids. Hydroxyputrescine and putrescine were the predominant polyamines. The genomic DNA G+C content of the strain was 64.0 mol%. On the basis of the results obtained from this study, strain ATSB16(T) represents a novel species of the genus Pandoraea, for which the name Pandoraea thiooxydans sp. nov. is proposed. The type strain is ATSB16(T) (=KACC 12757(T) =LMG 24779(T)).

  2. Anaerobic Degradation of Cyanuric Acid, Cysteine, and Atrazine by a Facultative Anaerobic Bacterium

    PubMed Central

    Jessee, J. A.; Benoit, R. E.; Hendricks, A. C.; Allen, G. C.; Neal, J. L.

    1983-01-01

    A facultative anaerobic bacterium that rapidly degrades cyanuric acid (CA) was isolated from the sediment of a stream that received industrial wastewater effluent. CA decomposition was measured throughout the growth cycle by using a high-performance liquid chromatography assay, and the concomitant production of ammonia was also measured. The bacterium used CA or cysteine as a major, if not the sole, carbon and energy source under anaerobic, but not aerobic, conditions in a defined medium. The cell yield was greatly enhanced by the simultaneous presence of cysteine and CA in the medium. Cysteine was preferentially used rather than CA early in the growth cycle, but all of the CA was used without an apparent lag after the cysteine was metabolized. Atrazine was also degraded by this bacterium under anaerobic conditions in a defined medium. PMID:16346187

  3. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  4. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  5. Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost.

    PubMed

    Guo, Junhui; Wang, Yue Qiang; Yang, Guiqin; Chen, Yunqi; Zhou, Shungui; Zhao, Yong; Zhuang, Li

    2016-05-01

    A Gram-staining-positive, facultative anaerobic, motile and rod-shaped bacterium, designated GSS08(T), was isolated from a windrow compost pile and characterized by means of a polyphasic approach. Growth occurred with 0-4 % (w/v) NaCl (optimum 1 %), at pH 6.5-9.5 (optimum pH 7.5) and at 20-45 °C (optimum 37 °C). Anaerobic growth occurred with anthraquinone-2,6-disulphonate, fumarate and NO3 (-) as electron acceptor. The main respiratory quinone was MK-7. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) were iso-C15:0 (43.1 %), anteiso-C15:0 (27.4 %) and iso-C16:0 (8.3 %). The DNA G + C content was 39.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS08(T) formed a phyletic lineage with the type strain of Bacillus humi DSM 16318(T) with a high sequence similarity of 97.5 %, but it displayed low sequence similarity with other valid species in the genus Bacillus (<96.0 %). The DNA-DNA relatedness between strains GSS08(T) and B. humi DSM 16318(T) was 50.8 %. The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS08(T) represents a novel species, for which the name Bacillus nitroreducens sp. nov. is proposed. The type strain is GSS08(T) (=KCTC 33699(T) = MCCC 1K01091(T)).

  6. Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine.

    PubMed

    Kläring, Karoline; Hanske, Laura; Bui, Nam; Charrier, Cédric; Blaut, Michael; Haller, Dirk; Plugge, Caroline M; Clavel, Thomas

    2013-12-01

    A Gram-positive, spore-forming, non-motile, strictly anaerobic rod-shaped bacterium was isolated from the caecal content of a TNF(deltaARE) mouse. The isolate, referred to as strain SRB-521-5-I(T), was originally cultured on a reduced agar medium containing yeast extract, rumen fluid and lactic acid as main energy and carbon sources. Phylogenetic analysis of partial 16S rRNA genes revealed that the species most closely related to strain SRB-521-5-I(T) were Flavonifractor plautii and Pseudoflavonifractor capillosus (<95 % sequence similarity; 1436 bp). In contrast to F. plautii and P. capillosus, strain SRB-521-5-I(T) contained a substantial amount of C18 : 0 dimethylacetal. Additional major fatty acids were C14 : 0 methyl ester, C16 : 0 dimethylacetal and C18 : 0 aldehyde. Strain SRB-521-5-I(T) differed in its enzyme profile from F. plautii and P. capillosus by being positive for dextrin, maltotriose, turanose, dl-lactic acid and d-lactic acid methyl ester but negative for d-fructose. In reduced Wilkins-Chalgren-Anaerobe broth, strain SRB-521-5-I(T) produced approximately 8 mM butyrate and 4 mM acetate. In contrast to F. plautii, the strain did not metabolize flavonoids. It showed intermediate resistance towards the antibiotics ciprofloxacin, colistin and tetracycline. Based on genotypic and phenotypic characteristics, we propose the name Intestinimonas butyriciproducens gen. nov., sp. nov. to accommodate strain SRB-521-5-I(T) ( = DSM 26588(T) = CCUG 63529(T)) as the type strain.

  7. Halobacillus mangrovi sp. nov., a moderately halophilic bacterium isolated from the black mangrove Avicennia germinans.

    PubMed

    Soto-Ramírez, Nelís; Sánchez-Porro, Cristina; Rosas-Padilla, Soniris; Almodóvar, Karinna; Jiménez, Gina; Machado-Rodríguez, Marlene; Zapata, Magaly; Ventosa, Antonio; Montalvo-Rodríguez, Rafael

    2008-01-01

    A moderately halophilic, spore-forming, Gram-positive, short-rod-shaped bacterium, designated strain MS10(T), was isolated from the surface of leaves of the black mangrove Avicennia germinans and was subjected to a polyphasic taxonomic study. Strain MS10(T) was able to grow at NaCl concentrations in the range 5-20% (w/v) with optimum growth at 10% (w/v) NaCl. Growth occurred at temperatures of 10-50 degrees C (optimal growth at 33-35 degrees C) and pH 6.0-9.0 (optimal growth at pH 7.0). Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain MS10(T) fell within the branch encompassing members of the genus Halobacillus and was most closely related to Halobacillus dabanensis JCM 12772(T) (99.2% 16S rRNA gene sequence similarity). The DNA G+C content of strain MS10(T) was 45.7 mol%, the major respiratory isoprenoid quinone was MK-7 and the cell-wall peptidoglycan was of the L-Orn-D-Asp type, characteristics consistent with its affiliation to the genus Halobacillus. Strain MS10(T) showed a level of DNA-DNA hybridization with H. dabanensis JCM 12772(T) of 29% and levels below 70% were also obtained with respect to other recognized members of the genus Halobacillus. The major fatty acids of strain MS10(T) were iso-C(16:0), anteiso-C(15:0), iso-C(14:0) and iso-C(15:0). Overall, the phenotypic, genotypic and phylogenetic results presented in this study demonstrate that strain MS10(T) represents a novel species of the genus Halobacillus, for which the name Halobacillus mangrovi sp. nov. is proposed. The type strain is MS10(T) (=CECT 7206(T)=CCM 7397(T)).

  8. Haloimpatiens lingqiaonensis gen. nov., sp. nov., an anaerobic bacterium isolated from paper-mill wastewater.

    PubMed

    Wu, Dildar; Zhang, Nai-Fang; Sun, Cong; Zhang, Wen-Wu; Han, Shuai-Bo; Pan, Jie; Wu, Min; Th, Dilbar; Zhu, Xu-Fen

    2015-11-11

    An anaerobic bacterium, strain ZC-CMC3T, was isolated from a wastewater sample in Zhejiang, China. Cells were Gram-positive, peritrichous, non-spore-forming and rod-shaped (0.6-1.2 × 2.9-5.1 μm). Strain ZC-CMC3T was able to grow at 25-48 °C (optimum 43 °C), and pH 5.5-8.0 (optimum pH 7.0). NaCl concentration range of growth was 0-3 % (w/v) with the optimum 0 %. Catalase- and Oxidase- negative. The major polar lipids of the isolate were diphosphatidylglycerol, phosphatidylglycerol, several phospholipids and glycolipids. Main fermentation products from PYG medium were formate, acetate, lactate and ethanol. Substrates which could be utilized were peptone, tryptone, yeast extract and beef extract. No respiratory quinone was detected. The mainly fatty acids were C14:0, C16:0, C16:1 cis 7 and C16:1 cis 9. The DNA G+C content was 30.0 mol%. The 16S rRNA gene sequence analysis revealed that the isolate belonged to the family Clostridiaceae. The most closely phylogenetic related species was Oceanirhabdus sediminicola NH-JN4T (with 92.8 % sequence similarity) and Clostridium tepidiprofundi SG 508T (with 92.6 % sequence similarity). On the basis of phylogenetic, chemotaxonomic and phenotypic characteristics, we propose that strain ZC-CMC3T as a novel species of a novel genus in the family Clostridiaceae, for which the name Haloimpatiens lingqiaonensis gen. nov., sp. nov. is proposed. The type strain of type species is ZC-CMC3T (KCTC 15321T = JCM 19210T= CCTCC AB 2013104T).

  9. Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil.

    PubMed

    Zhou, Shungui; Yang, Guiqin; Lu, Qin; Wu, Min

    2014-11-01

    A novel Fe(III)-reducing bacterium, designated GSS01(T), was isolated from a forest soil sample using a liquid medium containing acetate and ferrihydrite as electron donor and electron acceptor, respectively. Cells of strain GSS01(T) were strictly anaerobic, Gram-stain-negative, motile, non-spore-forming and slightly curved rod-shaped. Growth occurred at 16-40 °C and optimally at 30 °C. The DNA G+C content was 60.9 mol%. The major respiratory quinone was MK-8. The major fatty acids were C(16:0), C(18:0) and C(16:1)ω7c/C(16:1)ω6c. Strain GSS01(T) was able to grow with ferrihydrite, Fe(III) citrate, Mn(IV), sulfur, nitrate or anthraquinone-2,6-disulfonate, but not with fumarate, as sole electron acceptor when acetate was the sole electron donor. The isolate was able to utilize acetate, ethanol, glucose, lactate, butyrate, pyruvate, benzoate, benzaldehyde, m-cresol and phenol but not toluene, p-cresol, propionate, malate or succinate as sole electron donor when ferrihydrite was the sole electron acceptor. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GSS01(T) was most closely related to Geobacter sulfurreducens PCA(T) (98.3% sequence similarity) and exhibited low similarities (94.9-91.8%) to the type strains of other species of the genus Geobacter. The DNA-DNA relatedness between strain GSS01(T) and G. sulfurreducens PCA(T) was 41.4 ± 1.1%. On the basis of phylogenetic analysis, phenotypic characterization and physiological tests, strain GSS01(T) is believed to represent a novel species of the genus Geobacter, and the name Geobacter soli sp. nov. is proposed. The type strain is GSS01(T) ( =KCTC 4545(T) =MCCC 1K00269(T)).

  10. Gracilibacillus boraciitolerans sp. nov., a highly boron-tolerant and moderately halotolerant bacterium isolated from soil.

    PubMed

    Ahmed, Iftikhar; Yokota, Akira; Fujiwara, Toru

    2007-04-01

    A motile, Gram-positive, boron-tolerant and moderately halotolerant rod-shaped bacterium was isolated from a soil naturally high in boron minerals found in the Hisarcik area of Turkey. The novel isolate, designated T-16X(T), produced spherical or ellipsoidal endospores in a non-bulging or slightly swollen sporangium in a terminal position and survived in a medium containing up to 450 mM boron. Whereas it tolerated 11 % (w/v) NaCl, it also grew without NaCl or boron. The temperature range for growth was 16-37 degrees C (optimum 25-28 degrees C) and the pH range for growth was 6.0-10.0 (optimum pH 7.5-8.5). The DNA G+C content was 35.8 mol% and the major cellular fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0) at 18.2 and 45.7 % of the total fatty acids, respectively. MK-7 (90 %) was the predominant respiratory quinone system and meso-diaminopimelic acid was the predominant diamino acid of the cell-wall peptidoglycan. Phylogenetic analysis of the 16S rRNA gene sequence revealed that the novel strain is closely related to the type strains of Gracilibacillus orientalis (96.7 % similarity), G. halotolerans (95.5 %) and G. dipsosauri (95.4 %). However, the maximum DNA hybridization value for this strain with these closely related strains was less than 26.2 %. On the basis of 16S rRNA gene sequence data and chemotaxonomic and physiological features, the organism T-16X(T) (=DSM 17256(T)=IAM 15263(T)=ATCC BAA-1190(T)) is proposed to be a member of the genus Gracilibacillus as the type strain of the novel species Gracilibacillus boraciitolerans sp. nov.

  11. Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud.

    PubMed

    Song, Geun Cheol; Yasir, Muhammad; Bibi, Fehmida; Chung, Eu Jin; Jeon, Che Ok; Chung, Young Ryun

    2011-01-01

    A Gram-staining-positive, coccoid to rod-shaped bacterium, designated strain YC6903(T), was isolated from a halophytic plant (Carex scabrifolia Steud.) collected from sand dunes at Namhae Island, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC6903(T) grew optimally at 30 °C and at pH 8.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC6903(T) belongs to the genus Nocardioides in the family Nocardioidaceae. Strain YC6903(T) was related most closely to Nocardioides pyridinolyticus OS4(T) (97.0 % 16S rRNA gene sequence similarity), Nocardioides dokdonensis FR1436(T) (96.6 %), Nocardioides aquiterrae GW-9(T) (96.6 %) and Nocardioides hankookensis DS-30(T) (96.6 %). The cell-wall peptidoglycan contained LL-diaminopimelic acid and MK-8(H(4)) was the major respiratory quinone. The mean (±SD) level of DNA-DNA relatedness between strain YC6903(T) and N. pyridinolyticus OS4(T) was 53.5±5.5 %. The predominant cellular fatty acid of strain YC6903(T) was iso-C(16 : 0) (28.9 %). The DNA G+C content was 71.7 mol%. Phenotypic, phylogenetic and chemotaxonomic data indicated that strain YC6903(T) represents a novel species of the genus Nocardioides, for which the name Nocardioides caricicola sp. nov. is proposed. The type strain is YC6903(T) (=KACC 13778(T) =DSM 22177(T)).

  12. Mobilisporobacter senegalensis gen. nov., sp. nov., an anaerobic bacterium isolated from tropical shea cake.

    PubMed

    Mbengue, Malick; Thioye, Abdoulaye; Labat, Marc; Casalot, Laurence; Joseph, Manon; Samb, Abdoulaye; Ben Ali Gam, Zouhaier

    2016-01-08

    A new Gram-stain positive, endospore-forming, strictly anaerobic bacterium, designated strain Gal1T was isolated from shea cake, a waste material from the production of shea-butter originating from Saraya, Senegal. The cells were rod-shaped slightly curved, motile with peritrichous flagella. The strain is oxidase negative and catalase-negative. Growth was observed at temperatures ranging from 15 to 45 °C (optimum 30 °C) and at pH 6.5-9.3 (optimum pH 7.8). The salinity range for growth was 0-3.5% of NaCl (optimum 1%). Yeast extract is required for growth. Strain Gal1T fermented various carbohydrates such as mannose, mannitol, arabinose, cellobiose, fructose, glucose, maltose, sucrose, trehalose and lactose as positive reactions and the major end products were ethanol and acetate. The only major cellular fatty acid was C16:0 (19.5%). The DNA base G+C content of strain Gal1T was 33.8 mol%. Analysis of the 16S rRNA gene sequence of the isolate indicated that this strain was related respectively to Mobilitalea sibirica DSM 26468T with 94.27% similarity, Clostridium populeti ATTC 3225T with 93.94%, Clostridium aminovalericum DSM 1283T and Anaerosporobacter mobilis DSM 15930T with 93.63%. On the basis of phenotypic characteristics, phylogenetic analysis and the results of biochemical and physiological tests, strain Gal1T was clearly distinguished from closely related genera, and the strain Gal1T can be assigned to a new genus for which the name Mobilisporobacter senegalensis gen. nov., sp. nov. is proposed. The type strain is Gal1T (= DSM 26537T, = JCM 18753T).

  13. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)).

  14. Cecembia rubra sp. nov., a thermophilic bacterium isolated from a hot spring sediment.

    PubMed

    Duan, Yan-Yan; Ming, Hong; Dong, Lei; Yin, Yi-Rui; Meng, Xiao-Lin; Zhou, En-Min; Zhang, Jian-Xin; Nie, Guo-Xing; Li, Wen-Jun

    2015-07-01

    A Gram-staining negative, rod-shaped bacterium, designated strain YIM 78110(T), was isolated from a sediment sample collected from Hehua hot spring in Tengchong, Yunnan province, south-west China. The taxonomic status of strain YIM 78110(T) was confirmed by a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain YIM 78110(T) belongs to the genus Cecembia, displaying 96.8% and 94.7% sequence similarity with the two most closely related type strains, Cecembia calidifontis RQ-33(T) and Cecembia lonarensis LW9T, respectively. The low value of DNA-DNA hybridization (52.3 ± 2.3%) between strain YIM 78110(T) and its closest neighbour, Cecembia calidifontis RQ-33(T), indicated that this new isolate represented a different genomic species in the genus Cecembia. The temperature for growth ranged from 30 to 50 °C. The pH for growth ranged from pH 4.0 to 10.0, with NaCl tolerance of 0.5-6.0% (w/v). The predominant menaquinone of strain YIM 78110(T) was MK-7 and the major polar lipid was phosphatidylethanolamine. The major fatty acids were iso-C15:0 and C15:0. The DNA G+C content was 47.1 mol%. On the basis of physiological, biochemical and phylogenetic analyses, it is proposed that strain YIM 78110(T) represents a novel species of the genus Cecembia, for which the name Cecembia rubra sp. nov. is proposed. The type strain is YIM 78110(T) ( = CCTCC AB2013287(T) = DSM 28057(T)).

  15. Chitinivorax tropicus gen. nov., sp. nov., a chitinolytic bacterium isolated from a freshwater lake.

    PubMed

    Chen, Wen-Ming; Yang, Shwu-Harn; Huang, Wei-Cheng; Cheng, Chih-Yu; Sheu, Shih-Yi

    2012-05-01

    A facultatively anaerobic, chitinolytic bacterium, strain KL-9(T), was isolated from a freshwater lake in Taiwan and characterized by using a polyphasic taxonomic approach. Cells of strain KL-9(T) were gram-negative, rod-shaped, motile by means of a single polar flagellum and non-spore-forming. Growth occurred at 15-40 °C (optimum, 30-37 °C), at pH 7.0-9.0 (optimum, pH 8.0) and with 0-1.0 % NaCl (optimum, 0 %). The predominant fatty acids were summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c) and C(16 : 0). The major isoprenoid quinone was Q-8. The DNA G+C content of strain KL-9(T) was 64.6 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine and several uncharacterized phospholipids and aminolipids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KL-9(T) formed a distinct lineage with respect to closely related genera within the class Betaproteobacteria, being most closely related to members of the genera Leeia, Chitinimonas, Silvimonas and Andreprevotia. Levels of 16S rRNA gene sequence similarity with respect to the type strains of type species of these genera were below 91 %. On the basis of genotypic and phenotypic data, strain KL-9(T) is thus considered to represent a novel species of a new genus within the class Betaproteobacteria, for which the name Chitinivorax tropicus gen. nov., sp. nov. is proposed. The type strain of Chitinivorax tropicus is KL-9(T) ( = BCRC 80168(T) = LMG 25530(T)).

  16. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater.

    PubMed

    Bhumika, V; Srinivas, T N R; Kumar, P Anil

    2013-07-01

    A novel Gram-negative, rod-shaped, non-motile bacterium, designated strain N1(T), was isolated from a marine water sample collected from the sea shore, Bay of Bengal, Visakhapatnam, India. The strain was positive for starch hydrolysis, nitrate reduction and ornithine decarboxylase activities and negative for citrate utilization, urease, oxidase, catalase and DNase activities. The predominant fatty acids were C16 : 0 3-OH, iso-C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH, anteiso-C15 : 0, C16 : 0, C15 : 0 3-OH, and C16 : 1ω7c and/or iso-C15 : 0 2-OH (summed feature 3). Strain N1(T) contained menaquinone 6 (MK-6) as the sole respiratory quinone. The only polyamine was homospermidine and the major polar lipids were phosphatidylethanolamine (PE), three unidentified aminolipids (AL1-AL3) and two unidentified lipids (L1, L2). The DNA G+C content of the strain was 36.3 mol%. 16S rRNA gene sequence analysis indicated that strain N1(T) was a member of the genus Flavobacterium and closely related to Flavobacterium resistens with pairwise sequence similarity of 96.5 %. Phylogenetic analysis showed that strain N1(T) clustered with Flavobacterium glycines and Flavobacterium daejeonense with a distance of 4.8 and 6.0 % (95.2 and 94.0 % similarity), respectively. Based on the phenotypic characteristics and on phylogenetic inference, strain N1(T) represents a novel species of the genus Flavobacterium, for which the name Flavobacterium nitratireducens sp. nov. is proposed. The type strain is N1(T) ( = MTCC 11155(T) = JCM 17678(T)).

  17. Fusibacter fontis sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring.

    PubMed

    Fadhlaoui, Khaled; Ben Hania, Wajdi; Postec, Anne; Fauque, Guy; Hamdi, Moktar; Ollivier, Bernard; Fardeau, Marie-Laure

    2015-10-01

    Strain KhalAKB1T, a mesophilic, anaerobic, rod-shaped bacterium, was isolated from water collected from a mesothermic Tunisian spring. Cells were Gram-staining-positive rods, occurring singly or in pairs and motile by one lateral flagellum. Strain KhalAKB1T grew at 15-45 °C (optimum 30 °C), at pH 5.5-8.5 (optimum pH 7.0) and in the presence of 0-35 g NaCl l- 1 (optimum 1 g NaCl l- 1). It fermented yeast extract and a wide range of carbohydrates including cellobiose, d-glucose, d-ribose, sucrose, d-xylose, maltose, d-galactose and starch as electron donors. Acetate, ethanol, CO2 and H2 were end products of glucose metabolism. It reduced elemental sulfur, but not sulfate, thiosulfate or sulfite, into sulfide. The DNA G+C content was 37.6 mol%. The predominant cellular fatty acids were C14 : 0 and C16 : 0. Phylogenetic analysis of the 16S rRNA gene sequence suggested Fusibacter bizertensis as the closest relative of this isolate (identity of 97.2 % to the type strain). Based on phenotypic, phylogenetic and genotypic taxonomic characteristics, strain KhalAKB1T is proposed to be assigned to a novel species within the genus Fusibacter, order Clostridiales, Fusibacter fontis sp. nov. The type strain is KhalAKB1T ( = DSM 28450T = JCM 19912T).

  18. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava.

    PubMed

    Kim, Ji-Young; Park, So-Hyun; Seo, Ga-Young; Kim, Young-Ju; Oh, Duck-Chul

    2015-09-01

    A novel bacterial strain, designated EC29(T), was isolated from the brown alga Ecklonia cava collected on Jeju Island, Republic of Korea. Cells of strain EC29(T) were Gram-stain-negative, aerobic, rod-shaped and motile by gliding. Growth was observed at 10-30 °C (optimum, 20-25 °C), at pH 6.0-9.5 (optimum, pH 7.5) and in the presence of 1-5% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain belonged to the genus Winogradskyella. Strain EC29(T) exhibited the highest 16S rRNA gene sequence similarities, of 96.5-97.8%, to the type strains of Winogradskyella pulchriflava EM106(T), Winogradskyella echinorum KMM 6211(T) and Winogradskyella ulvae KMM 6390(T). Strain EC29(T) exhibited < 27% DNA-DNA relatedness with Winogradskyella pulchriflava EM106(T) and Winogradskyella echinorum KMM 6211(T). The predominant fatty acids of strain EC29(T) were iso-C15 : 0, iso-C15 : 1 G, C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and anteiso-C15 : 0. The DNA G+C content was 31.1 mol% and the major respiratory quinone was menaquinone-6 (MK-6). Based on a polyphasic study, strain EC29(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella eckloniae sp. nov. is proposed. The type strain is EC29(T) ( = KCTC 32172(T) = JCM 18703(T)).

  19. Tibeticola sediminis gen. nov., sp. nov., a thermophilic bacterium isolated from hot spring.

    PubMed

    Khan, Inam Ullah; Hussain, Firasat; Tian, Ye; Habib, Neeli; Xian, Wen-Dong; Jiang, Zhao; Amin, Arshia; Yuan, Chang-Guo; Zhou, En-Min; Zhi, Xiao-Yang; Li, Wen-Jun

    2017-01-06

    Two closely related thermophilic bacterial strains, designated YIM 73013T and YIM 73008 were isolated from a sediment sample collected from a hot spring in Tibet, western Tibet province, China. Taxonomic positions of the two isolates were investigated using a polyphasic approach. The novel isolates were Gram-staining negative, aerobic, short rod shaped and motile by means of a polar flagellum. They were oxidase and catalase positive and were able to grow at 30-55 °C (optimum, 37-45 °C), pH 6.0-8.0 (optimum, pH 7.0) and with NaCl tolerance up to 1 % (w/v). Phylogenetic analyses based on 16S rRNA gene sequences showed that strains YIM 73013T and YIM 73008 formed a distinct lineage with respect to closely related genera in the family Comamonadaceae and shared highest 16S rRNA gene sequences similarities with Acidovorax caeni R-24608T (96.3 % and 96.4 %, respectively). The respiratory quinone was ubiquinone-8 (Q-8) and the major cellular fatty acids observed were C17:1ω6c, C16:0 and Summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The genomic DNA G+C contents of strains YIM 73013T and YIM 73008 were 68.7 mol% and 68.3 mol%, respectively. Based on the morphological, phylogenetic and chemotaxonomic results, the two isolates merit representation of a novel species in a new genus, for which the name Tibeticola sediminis gen. nov., sp. nov. is proposed. The type strain is YIM 73013T (=DSM 101684T =KCTC 42873T).

  20. Winogradskyella multivorans sp. nov., a polysaccharide-degrading bacterium isolated from seawater of an oyster farm.

    PubMed

    Yoon, Jung-Hoon; Lee, Soo-Young

    2012-08-01

    A novel bacterial strain, designated T-Y1(T), capable of degrading a variety of polysaccharides was isolated from seawater of an oyster farm in the South Sea, Korea. It was found to be aerobic, Gram-negative, non-flagellated, non-gliding and rod-shaped. Strain T-Y1(T) grew optimally at 25 °C, at pH 7.0-7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain T-Y1(T) belonged to the genus Winogradskyella. Strain T-Y1(T) exhibited 16S rRNA gene sequence similarity values of 95.0-96.8 % to the type strains of recognized Winogradskyella species and less than 94.5 % to other validly named species. The chemotaxonomic data concurred with the phylogenetic inference. Strain T-Y1(T) contained MK-6 as the predominant menaquinone and anteiso-C(15:0), iso-C(15:0), iso-C(15:1) G and iso-C(16:0) 3-OH as the major fatty acids. The major polar lipids of strain T-Y1(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 36.2 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, enabled strain T-Y1(T) to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain T-Y1(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella multivorans sp. nov. is proposed. The type strain is T-Y1(T) (=KCTC 23891(T) = CCUG 62216(T)).

  1. Lentibacillus kimchii sp. nov., an extremely halophilic bacterium isolated from kimchi, a Korean fermented vegetable.

    PubMed

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Lee, Jong Hee; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Roh, Seong Woon; Choi, Hak-Jong

    2016-06-01

    A Gram-positive, aerobic, non-motile and extremely halophilic bacterial strain, designated K9(T), was isolated from kimchi, a Korean fermented food. The strain was observed as endospore-forming rod-shaped cells showing oxidase and catalase activity. It was found to grow at 10.0-30.0 % (w/v) NaCl (optimum, 15.0-20.0 %), pH 7.0-8.0 (optimum, pH 7.5) and 15-40 °C (optimum, 30 °C). The polar lipids of strain K9(T) were identified as phosphatidylglycerol, three unidentified phospholipids and an unidentified glycolipid. The isoprenoid quinone was identified as menaquinone-7. The major cellular fatty acids (>20 % of the total) were found to be anteisio-C15:0 and anteisio-C17:0. The cell wall peptidoglycan composition was determined to contain meso-diaminopimelic acid. The G + C content of genomic DNA was determined to be 48.2 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolated strain is closely related to Lentibacillus salinarum AHS-1(T) (96.7 % sequence similarity). Based on its phenotypic, chemotaxonomic and phylogenetic data, strain K9(T) is considered to represent a novel species of the genus Lentibacillus, for which the name Lentibacillus kimchii sp. nov., is proposed. The type strain is K9(T) (=KACC 18490(T) = JCM 30234(T)).

  2. Chitinophaga longshanensis sp. nov., a mineral-weathering bacterium isolated from weathered rock.

    PubMed

    Gao, Shan; Zhang, Wen-Bin; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi

    2015-02-01

    A Gram-stain-negative, aerobic, yellow-pigmented, non-motile, non-spore-forming, rod-shaped bacterial strain, Z29(T), was isolated from the surface of weathered rock (potassic trachyte) from Nanjing, Jiangsu Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences suggested that strain Z29(T) belongs to the genus Chitinophaga in the family Chitinophagaceae. Levels of 16S rRNA gene sequence similarity between strain Z29(T) and the type strains of recognized species of the genus Chitinophaga ranged from 92.7 to 98.2 %. The main fatty acids of strain Z29(T) were iso-C15 : 0, C16 : 1ω5c and iso-C17 : 0 3-OH. It also contained menaquinone 7 (MK-7) as the respiratory quinone and homospermidine as the main polyamine. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids, unknown phospholipids and unknown lipids. The total DNA G+C content of strain Z29(T) was 51.3 mol%. Phenotypic properties and chemotaxonomic data supported the affiliation of strain Z29(T) with the genus Chitinophaga. The low level of DNA-DNA relatedness (ranging from 14.6 to 29.8 %) to the type strains of other species of the genus Chitinophaga and differential phenotypic properties demonstrated that strain Z29(T) represents a novel species of the genus Chitinophaga, for which the name Chitinophaga longshanensis sp. nov. is proposed. The type strain is Z29(T) ( = CCTCC AB 2014066(T) = LMG 28237(T)).

  3. Tenacibaculum xiamenense sp. nov., an algicidal bacterium isolated from coastal seawater.

    PubMed

    Li, Yi; Wei, Jun; Yang, Caiyun; Lai, Qiliang; Chen, Zhangran; Li, Dong; Zhang, Huajun; Tian, Yun; Zheng, Wei; Zheng, Tianling

    2013-09-01

    A Gram-stain-negative, elongated rod-shaped, yellow-pigmented, aerobic bacterial strain, designated WJ-1(T), was isolated from coastal seawater in Xiamen, Fujian province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain WJ-1(T) fell within the genus Tenacibaculum and was most closely associated with Tenacibaculum aestuarii SMK-4(T) (96.7% 16S rRNA gene sequence similarity); lower similarities were shown to other members of the genus Tenacibaculum (<96.2%). The strain formed a distinct lineage with Tenacibaculum litopenaei B-I(T) (96.0%), Tenacibaculum geojense YCS-6(T) (94.5%) and Tenacibaculum jejuense CNURIC 013(T) (95.4%). Growth was observed at temperatures from 16 to 38 °C, at salinities from 2 to 4% and at pH 6-9. The major fatty acids were summed feature 3 (C(16:1)ω6c and/or C(16 1)ω7c), iso-C(17:0) 3-OH, iso-C(15:0) and iso-C(15:0) 3-OH. The DNA G+C content of strain WJ-1(T) was 33.2 mol% and the major respiratory quinone was menaquinone-6 (MK-6). Differential phenotypic properties and phylogenetic distinctiveness in this study distinguished strain WJ-1(T) from all other members of the genus Tenacibaculum. According to the morphology, physiology, fatty acid composition and 16S rRNA gene sequence data, strain WJ-1(T) represents a novel species of the genus Tenacibaculum, for which the name Tenacibaculum xiamenense sp. nov. is proposed. The type strain is WJ-1(T) ( =CGMCC 1.12378(T) =LMG 27422(T)).

  4. Meiothermus roseus sp. nov., a thermophilic bacterium isolated from a geothermal area.

    PubMed

    Ming, Hong; Duan, Yan-Yan; Guo, Qian-Qian; Yin, Yi-Rui; Zhou, En-Min; Liu, Lan; Li, Shuai; Nie, Guo-Xing; Li, Wen-Jun

    2015-10-01

    Two closely related thermophilic bacterial strains, designated YIM 71031(T) and YIM 71039, were isolated from a hot spring in Tengchong county, Yunnan province, south-western China. The novel isolates were observed to be Gram-negative, aerobic, rod-shaped and yellow-pigmented bacteria. The strains were found to be able to grow at 37-65 °C, pH 6.0-9.0 and with a NaCl tolerance up to 1.0 % (w/v). Phylogenetic analysis based on 16S rRNA gene sequences placed these two isolates in the genus Meiothermus. They were found to be closely related to Meiothermus timidus DSM 17022(T) (98.6 % similarity), and formed a cluster with this species. The predominant menaquinone was identified as MK-8 and the major fatty acids (>10 %) as anteiso-C15:0, iso-C15:0, anteiso-C17:0, iso-C16:0 and C16:0. The genomic DNA G+C contents of strains YIM 71031(T) and YIM 71039 were determined to be 64.0 and 65.4 mol%, respectively. DNA-DNA hybridizations showed low values between strains YIM 71031(T) and YIM 71039 and their closely related neighbour M. timidus DSM 17022(T). Morphological phylogenetic and chemotaxonomic results suggest that strains YIM 71031(T) and YIM 71039 are representatives of a new species within the genus Meiothermus, for which the name Meiothermus roseus sp. nov. is proposed. The type strain is YIM 71031(T) (=KCTC 42495(T) =NBRC 110900(T)).

  5. Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters.

    PubMed

    Ntougias, S; Russell, N J

    2001-05-01

    A novel Gram-positive, obligately alkaliphilic, non-sporulating, rod-shaped, flagellated bacterium is described. Three different strains of the bacterium were isolated from the wash-waters of edible-olive production. The strains are motile, psychrotolerant, halotolerant, facultatively anaerobic bacteria with a pH optimum of 9.0-9.4 for two strains and 9.8-10.2 for the third. They are catalase- and oxidase-negative. A range of hexoses and some disaccharides composed of hexoses, but not pentoses are metabolized by the bacterial strains: D(+)-glucose, D(+)-glucose 6-phosphate, D(+)-cellobiose, starch or sucrose are the carbohydrates best utilized. No common amino acids are utilized by the three alkaliphilic strains, but yeast extract can serve as sole carbon and energy source. The major membrane phospholipids are diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid, all containing saturated and unsaturated, even-carbon-numbered fatty acyl chains with hexadecanoic and hexadecen(7)oic as the predominant components. The G+C content of the DNA in all three strains is 39.7+/-1.0 mol% and the DNA relatedness by hybridization is >88% for all pairings of the three strains. The results of 16S rRNA sequence comparisons revealed that the strains represent a new alkaliphilic linkage in the order Bacillales, belonging to the Carnobacterium/Aerococcus-like spectrum. It is proposed that the strains should be assigned to a new genus and species, Alkalibacterium olivoapovliticus. The three strains, designated WW2-SN4aT, WW2-SN4c and WW2-SN5, have been deposited with Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) as DSM 13175T, DSM 12937 and DSM 12938 respectively, and in the National Collection of Industrial and Marine Bacteria as NCIMB 13710T, NCIMB 13711 and NCIMB 13712, respectively. The type species of this genus is Alkalibacterium olivoapovliticus and the type strain is WW2-SN4aT.

  6. Genome sequence of Corynebacterium nuruki S6-4 T, isolated from alcohol fermentation starter.

    PubMed

    Shin, Na-Ri; Whon, Tae Woong; Roh, Seong Woon; Kim, Min-Soo; Jung, Mi-Ja; Lee, Jina; Bae, Jin-Woo

    2011-08-01

    Corynebacterium nuruki S6-4(T), isolated from Korean alcohol fermentation starter, is a strictly aerobic, nonmotile, Gram-positive, and rod-shaped bacterium belonging to the genus Corynebacterium and the actinomycete group. We report here the draft genome sequence of C. nuruki strain S6-4(T) (3,106,595 bp, with a G+C content of 69.5%).

  7. Genome Sequence of Corynebacterium nuruki S6-4T, Isolated from Alcohol Fermentation Starter▿

    PubMed Central

    Shin, Na-Ri; Whon, Tae Woong; Roh, Seong Woon; Kim, Min-Soo; Jung, Mi-Ja; Lee, Jina; Bae, Jin-Woo

    2011-01-01

    Corynebacterium nuruki S6-4T, isolated from Korean alcohol fermentation starter, is a strictly aerobic, nonmotile, Gram-positive, and rod-shaped bacterium belonging to the genus Corynebacterium and the actinomycete group. We report here the draft genome sequence of C. nuruki strain S6-4T (3,106,595 bp, with a G+C content of 69.5%). PMID:21685278

  8. Desulfuromonas carbonis sp. nov., an Fe(III)-, S0- and Mn(IV)-reducing bacterium isolated from an active coalbed methane gas well.

    PubMed

    An, Thuy T; Picardal, Flynn W

    2015-05-01

    A novel, mesophilic, obligately anaerobic, acetate-oxidizing, dissimilatory iron-, sulfur-, and manganese-reducing bacterium, designated strain ICBM(T), was obtained from an active, coalbed methane gas well in Indiana, USA. Strain ICBM(T) was a Gram-stain-negative, non-spore-forming, rod-shaped, non-motile bacterium that was rich in c-type cytochromes and formed red colonies in solid medium. Strain ICBM(T) conserved energy to support growth from the oxidation of acetate, propionate, pyruvate, malate, fumarate, succinate and dl-lactate, concomitant with dissimilatory iron reduction. Strain ICBM(T) fermented fumarate yielding succinate and acetate. Strain ICBM(T) was able to grow in the temperature range of 10 °C to 37 °C, NaCl concentration range of 0 to 1.2 M, and pH range of 6.5 to 8.0. The physiological characteristics of strain ICBM(T) indicated that it belongs to the Desulfuromonas cluster. The G+C content of its genomic DNA was 61.2 mol%. The predominant cellular fatty acids were C16 : 0 (39.3%), C16 : 1ω7c and/or iso-C15 : 0 2-OH (36.6%). The closest cultured phylogenetic relative of strain ICBM(T) was Desulfuromonas michiganensis BB1(T) with only 95% 16S rRNA gene sequence similarity. This confirmed that strain ICBM(T) is affiliated with the genus Desulfuromonas . On the basis of phenotypic and genotypic differences between strain ICBM(T) and other taxa of the genus Desulfuromonas , strain ICBM(T) represents a novel species for which the name Desulfuromonas carbonis sp. nov. is proposed (type strain ICBM(T) = DSM 29759(T) = JCM 30471(T)). Strain ICBM(T) is the first Fe(III)-, S(0)-, and Mn(IV)-reducing bacterium that was isolated from a coal bed.

  9. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    PubMed Central

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. PMID:27284131

  10. Granular gases of rod-shaped grains in microgravity.

    PubMed

    Harth, K; Kornek, U; Trittel, T; Strachauer, U; Höme, S; Will, K; Stannarius, R

    2013-04-05

    Granular gases are convenient model systems to investigate the statistical physics of nonequilibrium systems. In the literature, one finds numerous theoretical predictions, but only few experiments. We study a weakly excited dilute gas of rods, confined in a cuboid container in microgravity during a suborbital rocket flight. With respect to a gas of spherical grains at comparable filling fraction, the mean free path is considerably reduced. This guarantees a dominance of grain-grain collisions over grain-wall collisions. No clustering was observed, unlike in similar experiments with spherical grains. Rod positions and orientations were determined and tracked. Translational and rotational velocity distributions are non-Gaussian. Equipartition of kinetic energy between translations and rotations is violated.

  11. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    PubMed

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment.

  12. Draft Genome Sequence of Nocardioides luteus Strain BAFB, an Alkane-Degrading Bacterium Isolated from JP-7-Polluted Soil

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.

    2017-01-01

    ABSTRACT Nocardioides luteus strain BAFB is a Gram-positive bacterium that efficiently degrades C8 to C11 alkanes aerobically. The draft genome of N. luteus BAFB is 5.76 Mb in size, with 5,358 coding sequences and 69.9% G+C content. The genes responsible for alkane degradation are present in this strain. PMID:28126947

  13. Isolation, Free-Living Capacities, and Genome Structure of “Candidatus Glomeribacter gigasporarum,” the Endocellular Bacterium of the Mycorrhizal Fungus Gigaspora margarita

    PubMed Central

    Jargeat, P.; Cosseau, C.; Ola'h, B.; Jauneau, A.; Bonfante, P.; Batut, J.; Bécard, G.

    2004-01-01

    “Candidatus Glomeribacter gigasporarum” is an endocellular β-proteobacterium present in the arbuscular mycorrhizal (AM) fungus Gigaspora margarita. We established a protocol to isolate “Ca. Glomeribacter gigasporarum” from its host which allowed us to carry out morphological, physiological, and genomic investigations on purified bacteria. They are rod shaped, with a cell wall typical of gram-negative bacteria and a cytoplasm rich in ribosomes, and they present no flagella or pili. Isolated bacteria could not be grown in any of the 19 culture media tested, but they could be kept alive for up to 4 weeks. PCR-based investigations of purified DNA from isolated bacteria did not confirm the presence of all genes previously assigned to “Ca. Glomeribacter gigasporarum.” In particular, the presence of nif genes could not be detected. Pulsed-field gel electrophoresis analyses allowed us to estimate the genome size of “Ca. Glomeribacter gigasporarum” to approximately 1.4 Mb with a ca. 750-kb chromosome and a 600- to 650-kb plasmid. This is the smallest genome known for a β-proteobacterium. Such small genome sizes are typically found in endocellular bacteria living permanently in their host. Altogether, our data suggest that “Ca. Glomeribacter gigasporarum” is an ancient obligate endocellular bacterium of the AM fungus G. margarita. PMID:15466041

  14. Controlled Biomineralization of Magnetite (Fe(inf3)O(inf4)) and Greigite (Fe(inf3)S(inf4)) in a Magnetotactic Bacterium

    PubMed Central

    Bazylinski, D. A.; Frankel, R. B.; Heywood, B. R.; Mann, S.; King, J. W.; Donaghay, P. L.; Hanson, A. K.

    1995-01-01

    A slowly moving, rod-shaped magnetotactic bacterium was found in relatively large numbers at and below the oxic-anoxic transition zone of a semianaerobic estuarine basin. Unlike all magnetotactic bacteria described to date, cells of this organism produce single-magnetic-domain particles of an iron oxide, magnetite (Fe(inf3)O(inf4)), and an iron sulfide, greigite (Fe(inf3)S(inf4)), within their magnetosomes. The crystals had different morphologies, being arrowhead or tooth shaped for the magnetite particles and roughly rectangular for the greigite particles, and were coorganized within the same chain(s) in the same cell with their long axes along the chain direction. Because the two crystal types have different crystallochemical characteristics, the findings presented here suggest that the formation of the crystal types is controlled by separate biomineralization processes and that the assembly of the magnetosome chain is controlled by a third ultrastructural process. In addition, our results show that in some magnetotactic bacteria, external environmental conditions such as redox and/or oxygen or hydrogen sulfide concentrations may affect the composition of the nonmetal part of the magnetosome mineral phase. PMID:16535116

  15. Candidatus "Thiodictyon syntrophicum", sp. nov., a new purple sulfur bacterium isolated from the chemocline of Lake Cadagno forming aggregates and specific associations with Desulfocapsa sp.

    PubMed

    Peduzzi, Sandro; Storelli, Nicola; Welsh, Allana; Peduzzi, Raffaele; Hahn, Dittmar; Perret, Xavier; Tonolla, Mauro

    2012-05-01

    Strain Cad16(T) is a small-celled purple sulfur bacterium (PSB) isolated from the chemocline of crenogenic meromictic Lake Cadagno, Switzerland. Long term in situ observations showed that Cad16(T) regularly grows in very compact clumps of cells in association with bacteria belonging to the genus Desulfocapsa in a cell-to-cell three dimensional structure. Previously assigned to the genus Lamprocystis, Cad16(T), was here reclassified and assigned to the genus Thiodictyon. Based on comparative 16S rRNA gene sequences analysis, isolate Cad16(T) was closely related to Thiodictyon bacillosum DSM234(T) and Thiodictyon elegans DSM232(T) with sequence similarities of 99.2% and 98.9%, respectively. Moreover, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis separated Cad16(T) from other PSB genera, Lamprocystis and Thiocystis. Major differences in cell morphology (oval-sphere compared to rod-shaped) and arrangement (no netlike cell aggregates), carotenoid group (presence of okenone instead of rhodopinal), chemolithotrophic growth as well as the ability to form syntrophic associations with a sulfate-reducing bacteria of the genus Desulfocapsa suggested a different species within the genus Thiodictyon. This isolate is therefore proposed and described as Candidatus "Thiodictyon syntrophicum" sp. nov., a provisionally novel species within the genus Thiodictyon.

  16. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source.

    PubMed

    Azabou, Samia; Mechichi, Tahar; Patel, Bharat K C; Sayadi, Sami

    2007-02-09

    A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20g/L phosphogypsum to sulfide with reduction of sulfate contained in 2g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125ppm Zn and 100ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC(50) values, was Cu, Te>Cd>Fe, Co, Mn>F, Se>Ni, Al, Li>Zn.

  17. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms

    NASA Technical Reports Server (NTRS)

    Jackson, B. E.; Bhupathiraju, V. K.; Tanner, R. S.; Woese, C. R.; McInerney, M. J.

    1999-01-01

    Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 +/- 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the delta-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus.

  18. Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78 degrees N).

    PubMed

    Wartiainen, Ingvild; Hestnes, Anne Grethe; McDonald, Ian R; Svenning, Mette M

    2006-01-01

    A Gram-negative, rod-shaped, non-motile, non-spore forming bacterium (SV96T) was isolated from wetland soil near Ny-Alesund, Svalbard. On the basis of 16S rRNA gene sequence similarity, strain SV96T was shown to belong to the Gammaproteobacteria, related to Methylobacter psychrophilus Z-0021T (99.1 %), Methylobacter luteus ATCC 49878T (97.3 %), Methylobacter marinus A45T (97.0 %) and Methylobacter whittenburyi ATCC 51738T (95.8 %); the closest related species within the genus Methylomicrobium with a validly published name was Methylomicrobium album ATCC 33003T (95.0 %). Chemotaxonomic data (including the major fatty acids: 16 : 1omega8, 16 : 1omega7 and 16 : 1omega5t) supported the affiliation of strain SV96T to the genus Methylobacter. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain SV96T from the four Methylobacter species mentioned above. Strain SV96T therefore represents a novel species, for which the name Methylobacter tundripaludum sp. nov. is proposed (type strain SV96T = DSM 17260T = ATCC BAA-1195T).

  19. Alicyclobacillus pohliae sp. nov., a thermophilic, endospore-forming bacterium isolated from geothermal soil of the north-west slope of Mount Melbourne (Antarctica).

    PubMed

    Imperio, Tatiana; Viti, Carlo; Marri, Laura

    2008-01-01

    Gram-positive, rod-shaped, endospore-forming, thermophilic bacteria were isolated from a geothermal soil collected on the north-west slope of Mount Melbourne in Antarctica. They grew aerobically at 42-60 degrees C (optimum 55 degrees C) and at pH 4.5-7.5 (optimum pH 5.5). Phylogenetic analysis of 16S rRNA gene sequences showed that these isolates were related most closely to the type strain of Alicyclobacillus pomorum (91% similarity). Growth occurred in the presence of ferrous iron at micromolar concentrations and acid was produced from various sugars. Iso-branched fatty acids C(15:0) (45.56%) and C(17:0) (35.81%) were the most abundant cellular fatty acids. The DNA G+C content was 55.1 mol%. On the basis of phenotypic and phylogenetic characteristics, it is concluded that these strains represent a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus pohliae sp. nov. is proposed. The type strain is MP4(T) (=CIP 109385(T) =NCIMB 14276(T)).

  20. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  1. "Bacillus hackensackii" sp. nov., a novel carbon dioxide sensitive bacterium isolated from blood culture.

    PubMed

    Hong, Tao; Heibler, Nueda; Tang, Y i-Wei

    2003-02-01

    An endospore-forming, gram-positive bacillus was isolated from a patient's blood culture. This bacillus did not grow in the presence of 5% carbon dioxide although it grew well in ambient air at 37 degrees C. Although the organism thus is an aerobic bacterium, its sensitivity to increased carbon dioxide concentration places it in a distinct category of gaseous atmospheric requirement: capnophobic. Based on its morphology, growth characteristics, biochemical reactions and a complete 16S rRNA gene nucleotide sequence analysis, this microorganism represents a novel Bacillus species. The clinical significance of this isolate is unknown. It is proposed that the bacterium be classified in the genus Bacillus as "Bacillus hackensackii".

  2. Study on EDTA-degrading bacterium Burkholderia cepacia YL-6 for bioaugmentation.

    PubMed

    Chen, Shih-Chin; Chen, Szu-Lin; Fang, Hung-Yuan

    2005-11-01

    Bioaugmentation production of EDTA-degrading bacterium Burkholderia cepacia YL-6 was carried out in an aerobic fermentor. Three different carbon sources (ferric-ethylenediaminetetraacetate (Fe-EDTA), potassium acetate, and ethylamine) were used. The bacterium cultivated with Fe-EDTA and maintained in the growth phase could reach the maximum cell concentration on the 38th day. Whereas, the bacterium cultivated with potassium acetate and ethylamine reach the maximum cell concentration at the 76th and 100th hour. The viable-cell counts of the augmentation agents made by feeding Fe-EDTA, potassium acetate, and ethylamine were 8.2x10(10), 6.8x10(11), and 4.3x10(11) CFU/g agent, respectively. The EDTA-degradation time required for the afore-mentioned bioaugmentation agents made by feeding various carbon sources lay in the following order: ethylaminebacterium B. cepacia YL-6.

  3. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  4. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell.

    PubMed

    Huang, Jianjian; Zhu, Nengwu; Cao, Yanlan; Peng, Yue; Wu, Pingxiao; Dong, Wenhao

    2015-02-01

    An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.

  5. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff; Hauser, Loren John; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Sam; Pierson, Beverly K

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  6. Sphingobium barthaii sp. nov., a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil.

    PubMed

    Maeda, Allyn H; Kunihiro, Marie; Ozeki, Yasuhiro; Nogi, Yuichi; Kanaly, Robert A

    2015-09-01

    A Gram-stain-negative, yellow, rod-shaped bacterium, designated strain KK22(T), was isolated from a microbial consortium that grew on diesel fuel originally recovered from cattle pasture soil. Strain KK22(T) has been studied for its ability to biotransform high molecular weight polycyclic aromatic hydrocarbons. On the basis of 16S rRNA gene sequence phylogeny, strain KK22(T) was affiliated with the genus Sphingobium in the phylum Proteobacteria and was most closely related to Sphingobium fuliginis TKP(T) (99.8%) and less closely related to Sphingobium quisquiliarum P25(T) (97.5%). Results of DNA-DNA hybridization (DDH) revealed relatedness values between strain KK22(T) and strain TKP(T) and between strain KK22(T) and strain P25(T) of 21 ± 4% (reciprocal hybridization, 27 ± 2%) and 15 ± 2% (reciprocal hybridization, 17 ± 1%), respectively. Chemotaxonomic analyses of strain KK22(T) showed that the major respiratory quinone was ubiquinone Q-10, that the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidyl-N-methylethylethanolamine and sphingoglycolipid, and that C18 : 1ω7c and C14 : 0 2-OH were the main fatty acid and hydroxylated fatty acids, respectively. This strain was unable to reduce nitrate and the genomic DNA G+C content was 64.7 mol%. Based upon the results of the DDH analyses, the fact that strain KK22(T) was motile, and its biochemical and physiological characteristics, strain KK22(T) could be separated from recognized species of the genus Sphingobium. We conclude that strain KK22(T) represents a novel species of this genus for which the name Sphingobium barthaii sp. nov. is proposed; the type strain is KK22(T) ( = DSM 29313(T) = JCM 30309(T)).

  7. Desulfomicrobium thermophilum sp. nov., a novel thermophilic sulphate-reducing bacterium isolated from a terrestrial hot spring in Colombia.

    PubMed

    Thevenieau, France; Fardeau, Marie-Laure; Ollivier, Bernard; Joulian, Catherine; Baena, Sandra

    2007-03-01

    A moderately thermophilic, sulphate-reducing bacterium, designated strain P6-2(T), was isolated from a terrestrial hot spring located at a height of 2,500 m in the Andean region, Colombia (5 degrees 43'69''N, 73 degrees 6'10''W). Cells of strain P6-2(T) were rod-shaped, stained Gram-negative and were motile by means of a single polar flagellum. The strain grew lithotrophically with H(2) as the electron donor and organotrophically on lactate, pyruvate, ethanol, malate, fumarate, n-propanol and succinate in the presence of sulphate as the terminal electron acceptor. Fumarate and pyruvate was fermented. Strain P6-2(T) grew optimally at 55 degrees C (range 37-60 degrees C), pH 6.6 (range 5.8-8.8) in the presence of 0.5% NaCl (range 0-4.5%) with lactate and sulphate and produced acetate, CO(2) and H(2)S as the major end-products. Sulphate, sulphite and thiosulphate could be used as electron acceptors but not elemental sulphur or nitrate. The G + C content of the genomic DNA was 58.7 mol%. The 16S rRNA sequence analysis indicated that strain P6-2(T) was a member of the class Deltaproteobacteria, domain Bacteria with Desulfomicrobium baculatum being the closest relative (similarity value of 94%). Phylogeny of genes encoding alpha- and beta-subunits of the dissimilatory sulphite reductase (dsrAB genes) supported its affiliation to members of the genus Desulfomicrobium. On the basis of this evidence, we propose to assign strain P6-2(T) as new species of the genus Desulfomicrobium, D. thermophilum sp. nov., with strain P6-2(T) as the type strain (= DSM 16697(T) = CCUG 49732(T)).

  8. Taxonomic characterization and metabolic analysis of the Halomonas sp. KM-1, a highly bioplastic poly(3-hydroxybutyrate)-producing bacterium.

    PubMed

    Kawata, Yoshikazu; Shi, Lian-Hua; Kawasaki, Kazunori; Shigeri, Yasushi

    2012-04-01

    In a brief previous report, the gram-negative moderately halophilic bacterium, Halomonas sp. KM-1, that was isolated in our laboratory was shown to produce the bioplastic, poly(3-hydroxybutyrate) (PHB), using biodiesel waste glycerol (Kawata and Aiba, Biosci. Biotechnol. Biochem., 74, 175-177, 2010). Here, we further characterized this KM-1 strain and compared it to other Halomonas strains. Strain KM-1 was subjected to a polyphasic taxonomic study. Strain KM-1 was rod-shaped and formed colonies on a plate that were cream-beige in color, smooth, opaque, and circular with entire edges. KM-1 grew under environmental conditions of 0.1%-10% (w/v) NaCl, pH 6.5-10.5 and at temperatures between 10°C and 45°C. The G+C content of strain KM-1 was 63.9 mol%. Of the 16 Halomonas strains examined in this study, the strain KM-1 exhibited the highest production of PHB (63.6%, w/v) in SOT medium supplemented with 10% glycerol, 10.0 g/L sodium nitrate and 2.0 g/L dipotassium hydrogen phosphate. The intracellular structures within which PHB accumulated had the appearance of intracellular granules with a diameter of approximately 0.5 μm, as assessed by electron microscopy. The intra- and extra-cellular metabolites of strain KM-1 were analyzed by capillary electrophoresis mass spectrometry. In spite of the high amount of PHB stored intra-cellularly, as possible precursors for PHB only a small quantity of 3-hydroxybutyric acid and acetyl CoA, and no quantity of 3-hydroxybutyl CoA, acetoacetyl CoA and acetoacetate were detected either intra- or extra-cellularly, suggesting highly efficient conversion of these precursors to PHB.

  9. Geobacter sulfurreducens subsp. ethanolicus, subsp. nov., an ethanol-utilizing dissimilatory Fe(III)-reducing bacterium from a lotus field.

    PubMed

    Viulu, Samson; Nakamura, Kohei; Kojima, Akihiro; Yoshiyasu, Yuki; Saitou, Sakiko; Takamizawa, Kazuhiro

    2013-01-01

    An ethanol-utilizing Fe(III)-reducing bacterial strain, OSK2A(T), was isolated from a lotus field in Aichi, Japan. Phylogenetic analysis of the 16S rRNA gene sequences of OSK2A(T) and related strains placed it within Geobacter sulfurreducens PCA(T). Strain OSK2A(T) was shown to be a Gram-negative, motile, rod-shaped bacterium, strictly anaerobic, 0.76-1.65 µm long and 0.28-0.45 μm wide. Its growth occurred at 20-40℃, pH 6.0-8.1, and it tolerated up to 1% NaCl. The G+C content of the genomic DNA was 61.2 mol% and DNA-DNA hybridization value with Geobacter sulfurreducens PCA(T) was 60.7%. The major respiratory quinone was MK-8. The major fatty acids were 16:1 ω7c, 16:0, 14:0, 15:0 iso, 16:1 ω5c, and 18:1 ω7c. Strain OSK2A(T) could utilize H2, ethanol, acetate, lactate, pyruvate, and formate as substrates with Fe(III)-citrate as electron acceptor. Amorphous Fe(III) hydroxide, Fe(III)-NTA, fumarate, malate, and elemental sulfur were utilized as electron acceptors with either acetate or ethanol as substrates. Results obtained from physiological, DNA-DNA hybridization, and chemotaxonomic tests support genotypic and phenotypic differentiation of strain OSK2A(T) from its closest relative. The isolate is assigned as a novel subspecies with the name Geobacter sulfurreducens subsp. ethanolicus, subsp. nov. (type strain OSK2A(T)=DSMZ 26126(T)=JCM 18752(T)).

  10. Chimaereicella boritolerans sp. nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil.

    PubMed

    Ahmed, Iftikhar; Yokota, Akira; Fujiwara, Toru

    2007-05-01

    A non-motile, Gram-negative, boron-tolerant and alkaliphilic bacterium was isolated from soil of the Hisarcik area in the Kutahya Province of Turkey that was naturally high in boron minerals. The novel isolate, designated T-22(T), formed rod-shaped cells, was catalase- and oxidase-positive and tolerated up to 300 mM boron. The strain also survived on agar medium containing up to 3 % (w/v) NaCl. The pH range for growth of this strain was 6.5-10.0 (optimum pH 8.0-9.0) and the temperature range was 16-37 degrees C (optimum 28-30 degrees C). Phylogenetic analysis based on 16S rRNA gene sequences revealed a clear affiliation with the genus Chimaereicella, with 97.4 % sequence similarity to Chimaereicella alkaliphila AC-74(T), which was the highest similarity among cultivated bacteria. The DNA-DNA relatedness with C. alkaliphila AC-74(T) was 28.3 %. The major respiratory quinone system was MK-7 and the predominant cellular fatty acids were iso-C(15 : 0), iso-C(17 : 1)omega9c, iso-C(17 : 0) 3-OH and summed feature 3 (iso-C(15 : 0) 2-OH and/or iso-C(16 : 1)omega7c). The DNA G+C content was 42.5 mol%. Based on the phylogenetic analysis and physiological, chemotaxonomic and genetic data, we concluded that strain T-22(T) should be classified in the genus Chimaereicella, and we propose the name Chimaereicella boritolerans sp. nov. for this novel species. The type strain is strain T-22(T) (=DSM 17298(T)=NBRC 101277(T)=ATCC BAA-1189(T)).

  11. Lutibacter litoralis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment.

    PubMed

    Choi, Dong H; Cho, Byung C

    2006-04-01

    A rod-shaped marine bacterium, designated strain CL-TF09T, isolated from a tidal flat in Ganghwa, Korea, was characterized based on its physiological and biochemical features, fatty acid profile and phylogenetic position. 16S rRNA gene sequence analysis revealed a clear affiliation with the family Flavobacteriaceae. Strain CL-TF09T showed the closest phylogenetic relationship with the genera Tenacibaculum and Polaribacter; sequence similarities between CL-TF09T and the type strains of Tenacibaculum and Polaribacter species ranged from 90.7 to 91.8 %. Cells of strain CL-TF09T were non-motile and grew on solid media as yellow colonies. The strain grew in the presence of 1-5 % sea salts, within a temperature range of 5-30 degrees C and at pH 7-8. The strain had iso-C(15 : 0) 3-OH (17.4 %), iso-C(15 : 0) (16.7 %), anteiso-C(15 : 0) (15.1 %) and iso-C(16 : 0) 3-OH (13.4 %) as predominant fatty acids. The DNA G+C content was 33.9 mol%. Based on the physiological, fatty acid composition and phylogenetic data presented, strain CL-TF09T is considered to represent a novel genus and species of the family Flavobacteriaceae, for which the name Lutibacter litoralis gen. nov., sp. nov. is proposed. The type strain is CL-TF09T (=KCCM 42118T = JCM 13034T).

  12. Stability and Comparative Transport Capacity of Cells, Mureinoplasts, and True Protoplasts of a Gram-Negative Bacterium12

    PubMed Central

    De Voe, I. W.; Thompson, J.; Costerton, J. W.; MacLeod, Robert A.

    1970-01-01

    The outer layers of the cell envelope of a pseudomonad of marine origin were removed by washing the cells in 0.5 m NaCl followed by suspension in 0.5 m sucrose. The term mureinoplast has been suggested for the rod-shaped forms which resulted from this treatment. As previously established, these forms lacked the outer cell wall layers but still retained a rigid peptidoglycan structure. Mureinoplasts remained stable if suspended in a balanced salt solution containing 0.3 m NaCl, 0.05 m MgSO4, and 0.01 m KCl but, unlike whole cells, lost ultraviolet (UV)-absorbing material if suspended in 0.5 m NaCl or 0.05 m MgCl2. Sucrose added to the balanced salt solution also enhanced the loss of UV-absorbing material. Addition of lysozyme to suspensions of mureinoplasts in the balanced salt solution produced spherical forms which, by electron microscopy and the analysis of residual cell wall material, appeared to be true protoplasts. Only undamaged mureinoplasts, as judged by their capacity to fully retain α-aminoisobutyric acid, were capable of being converted to protoplasts. Protoplasts and undamaged mureinoplasts retained 100% transport capacity when compared to an equal number of whole cells. The Na+ requirement for transport of α-aminoisobutyric acid and the sparing action of Li+ on this Na+ requirement were the same for both protoplasts and whole cells. These observations indicate that, in this gram-negative bacterium, the cell wall does not participate in the transport process though it does stabilize the cytoplasmic membrane against changes in porosity produced by unbalanced salt solutions. The results also indicate that the requirements for Na+ for transport and for the retention of intracellular solutes are manifested at the level of the cytoplasmic membrane. Images PMID:4908775

  13. Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha.

    PubMed

    Abdeljabbar, Hedi; Cayol, Jean-Luc; Ben Hania, Wajdi; Boudabous, Abdellatif; Sadfi, Najla; Fardeau, Marie-Laure

    2013-06-01

    A strictly anaerobic, extremely halophilic, Gram-positive, rod-shaped bacterium was isolated from the hypersaline (>20% NaCl) surface sediments of Sehline Sebkha in Tunisia. The strain, designated 1Sehel(T), was strictly halophilic and proliferated at NaCl concentrations of between 5% and 30% (saturation), with optimal growth at 20% NaCl. Strain 1Sehel(T) was non-spore-forming, non-motile, appearing singly or in pairs, or occasionally as long chains and measured 0.5-0.8 µm by 3-10 µm. Strain 1Sehel(T) grew optimally at pH values of 7.4 but had a very broad pH range for growth (pH 5.2-9.4). It grew at temperatures between 20 and 50 °C with an optimum at 43 °C. Strain 1Sehel(T) required yeast extract for growth. The isolate fermented glucose, galactose, fructose, glycerol, mannose, maltose, ribose, pyruvate and sucrose. The fermentation products from glucose utilization were lactate, acetate, formate, ethanol, CO2 and H2. The G+C ratio of the DNA was 32.7 mol%. The major fatty acids were C15:1ω6c/7c, C16:1ω7c, C16:0 and C15:0. On the basis of phylogenetic and physiological properties, strain 1Sehel(T) (=DSM 25582(T)=JCM 18213(T)) is proposed as the type strain of Halanaerobium sehlinense sp. nov., within the family Halanaerobiaceae.

  14. Cellulosibacter alkalithermophilus gen. nov., sp. nov., an anaerobic alkalithermophilic, cellulolytic-xylanolytic bacterium isolated from soil of a coconut garden.

    PubMed

    Watthanalamloet, Amornrat; Tachaapaikoon, Chakrit; Lee, Yun Sik; Kosugi, Akihiko; Mori, Yutaka; Tanasupawat, Somboon; Kyu, Khin Lay; Ratanakhanokchai, Khanok

    2012-10-01

    An obligately anaerobic, cellulolytic-xylanolytic bacterium, designated strain A6(T), was isolated from soil of a coconut garden in the Bangkuntien district of Bangkok, Thailand. The strain was Gram-stain positive, catalase-negative, endospore-forming, motile and rod-shaped with a cell size of 0.2-0.3×2.0-3.0 µm. Optimal growth of strain A6(T) occurred at pH(55 °C) 9.5, 55 °C. Strain A6(T) fermented various carbohydrates, and the end products from the fermentation of cellobiose were acetate, ethanol, propionate and a small amount of butyrate. The major cellular fatty acids were iso-C(14:0) 3-OH, iso-C(15:0), iso-C(16:0) and C(16:0). The cell-wall peptidoglycan contained meso-diaminopimelic acid. No respiratory quinones were detected. The DNA G+C content was 30.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain represented a new phyletic sublineage within the family Clostridiaceae, with <93.0% 16S rRNA gene sequence similarity to recognized species of this family. On the basis of phenotypic, genotypic and physiological evidence, strain A6(T) represents a novel species of a new genus, for which the name Cellulosibacter alkalithermophilus gen. nov., sp. nov. is proposed. The type strain of the type species is A6(T) ( = TISTR 1915(T) = KCTC 5874(T)).

  15. A "MICROTUBULE" IN A BACTERIUM

    PubMed Central

    van Iterson, Woutera; Hoeniger, Judith F. M.; van Zanten, Eva Nijman

    1967-01-01

    A study of the anchorage of the flagella in swarmers of Proteus mirabilis led to the incidental observation of microtubules. These microtubules were found in thin sections and in whole mount preparations of cells from which most of the content had been released by osmotic shock before staining negatively with potassium phosphotungstate (PTA). The microtubules are in negatively stained preparations about 200 A wide, i.e. somewhat thicker than the flagella (approximately 130 A). They are thus somewhat thinner than most microtubules recorded for other cells. They are referred to as microtubules because of their smooth cylindrical wall, or cortex, surrounding a hollow core which is readily filled with PTA when stained negatively. Since this is probably the first time that such a structure is described inside a bacterium, we do not know for certain whether it represents a normal cell constituent or an abnormality, for instance of the type of "polysheaths" (16). PMID:10976198

  16. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  17. Sabulilitoribacter multivorans gen. nov., sp. nov., a polysaccharide-degrading bacterium of the family Flavobacteriaceae isolated from seashore sand.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Lee, Jung-Sook; Lee, Kenu-Chul; Yoon, Jung-Hoon

    2013-12-01

    A Gram-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacterial strain, designated M-M16(T), was isolated from seashore sand around a seaweed farm on the South Sea, South Korea, and its taxonomic position was investigated by using a polyphasic study. Strain M-M16(T) grew optimally at 30 °C, at pH 7.0-8.0 and in the presence of 2 % (w/v) NaCl. Strain M-M16(T) exhibited the highest 16S rRNA gene sequence similarity values to the type strains of Gaetbulibacter lutimaris (96.5 %) and Flaviramulus basaltis (95.8 %). Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M16(T) clustered with the type strains of Gaetbulibacter species and F. basaltis. Strain M-M16(T) contained MK-6 as the predominant menaquinone and iso-C15:1 G, iso-C15:0 and iso-C17:0 3-OH as the major fatty acids. The major polar lipids detected in strain M-M16(T) were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain M-M16(T) was 37.4 mol%. The phylogenetic and chemotaxonomic data and other phenotypic properties revealed that strain M-M16(T) represents a novel genus and species within the family Flavobacteriaceae, for which the name Sabulilitoribacter multivorans gen. nov., sp. nov. is proposed. The type strain of S. multivorans is M-M16(T) (= KCTC 32326(T) = CCUG 63831(T)).

  18. Formosa haliotis sp. nov., a brown-alga-degrading bacterium isolated from the gut of the abalone Haliotis gigantea.

    PubMed

    Tanaka, Reiji; Cleenwerck, Ilse; Mizutani, Yukino; Iehata, Shunpei; Shibata, Toshiyuki; Miyake, Hideo; Mori, Tetsushi; Tamaru, Yutaka; Ueda, Mitsuyoshi; Bossier, Peter; Vandamme, Peter

    2015-12-01

    Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).

  19. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla.

    PubMed

    Yoon, Jaewoo; Oku, Naoya; Kasai, Hiroaki

    2015-06-01

    A Gram-negative, strictly aerobic, beige-pigmented, non-motile, rod-shaped bacterial strain designated N5DB13-4(T) was isolated from the red alga Gracilaria vermiculophylla (Rhodophyta) collected at Sodegaura Beach, Chiba, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate is affiliated with the family Flavobacteriaceae within the phylum Bacteroidetes and that it showed highest sequence similarity (97.3 %) to Wenyingzhuangia heitensis H-MN17(T). The hybridization values for DNA-DNA relatedness between the strains N5DB13-4(T) and W. heitensis H-MN17(T) were 34.1 ± 3.5 %, which is below the threshold accepted for the phylogenetic definition of a novel prokaryotic species. The DNA G+C content of strain N5DB13-4(T) was determined to be 31.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. A complex polar lipid profile was present consisting of phosphatidylethanolamine, two unidentified glycolipids and four unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Wenyingzhuangia for which the name Wenyingzhuangia gracilariae sp. nov. is proposed. The type strain of W. gracilariae sp. nov. is N5DB13-4(T) (=KCTC 42246 (T)=NBRC 110602(T)).

  20. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure.

  1. Mathematic Modeling for Optimum Conditions on Aflatoxin B1 Degradation by the Aerobic Bacterium Rhodococcus erythropolis

    PubMed Central

    Kong, Qing; Zhai, Cuiping; Guan, Bin; Li, Chunjuan; Shan, Shihua; Yu, Jiujiang

    2012-01-01

    Response surface methodology was employed to optimize the degradation conditions of AFB1 by Rhodococcus erythropolis in liquid culture. The most important factors that influence the degradation, as identified by a two-level Plackett-Burman design with six variables, were temperature, pH, liquid volume, inoculum size, agitation speed and incubation time. Central composite design (CCD) and response surface analysis were used to further investigate the interactions between these variables and to optimize the degradation efficiency of R. erythropolis based on a second-order model. The results demonstrated that the optimal parameters were: temperature, 23.2 °C; pH, 7.17; liquid volume, 24.6 mL in 100-mL flask; inoculum size, 10%; agitation speed, 180 rpm; and incubation time, 81.9 h. Under these conditions, the degradation efficiency of R. erythropolis could reach 95.8% in liquid culture, which was increased by about three times as compared to non-optimized conditions. The result by mathematic modeling has great potential for aflatoxin removal in industrial fermentation such as in food processing and ethanol production. PMID:23202311

  2. Genome sequence of the aerobic bacterium Bacillus sp. strain FJAT-13831.

    PubMed

    Liu, Guohong; Liu, Bo; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-12-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%.

  3. Genome Sequence of the Aerobic Bacterium Bacillus sp. Strain FJAT-13831

    PubMed Central

    Liu, Guohong; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-01-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%. PMID:23144388

  4. Genome Sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil bacterium

    SciTech Connect

    Kant, Ravi; Van Passel, Mark W.J.; Palva, Airi; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; De Vos, Willem M.; Janssen, Peter H.; Smidt, Hauke

    2011-01-01

    Chthoniobacter flavusis Ellin428 is the first isolate from subdivision 2 of the bacterial phylum Verrucomicrobia. C. flavusis Ellin428 can metabolize many of the saccharide components of plant biomass but does not grow with amino acids or organic acids other than pyruvate.

  5. Anoxybacillus calidus sp. nov., a thermophilic bacterium isolated from soil near a thermal power plant.

    PubMed

    Cihan, Arzu Coleri; Cokmus, Cumhur; Koc, Melih; Ozcan, Birgul

    2014-01-01

    A novel thermophilic, Gram-stain-positive, facultatively anaerobic, endospore-forming, motile, rod-shaped bacterium, strain C161ab(T), was isolated from a soil sample collected near Kizildere, Saraykoy-Buharkent power plant in Denizli. The isolate could grow at temperatures between 35 and 70 °C (optimum 55 °C), at pH 6.5-9.0 (optimum pH 8.0-8.5) and with 0-2.5 % NaCl (optimum 0.5 %, w/v). The strain formed cream-coloured, circular colonies and tolerated up to 70 mM boron. Its DNA G+C content was 37.8 mol%. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. Strain C161ab(T) contained menaquinones MK-7 (96 %) and MK-6 (4 %). The major cellular fatty acids were iso-branched fatty acids: iso-C15 : 0 (52.2 %) and iso-C17 : 0 (28.0 %,) with small amounts of C16 : 0 (7.4 %). Phylogenetic analysis based on the 16S rRNA gene revealed 94.6-96.8 % sequence similarity with all recognized species of the genus Anoxybacillus. Strain C161ab(T) showed the greatest sequence similarity to Anoxybacillus rupiensis DSM 17127(T) and Anoxybacillus voinovskiensis DSM 17075(T), both had 96.8 % similarity to strain C161ab(T), as well as to Anoxybacillus caldiproteolyticus DSM 15730(T) (96.6 %). DNA-DNA hybridization revealed low levels of relatedness with the closest relatives of strain C161ab(T), A. rupiensis (21.2 %) and A. voinovskiensis (16.5 %). On the basis of the results obtained from phenotypic, chemotaxonomic, genomic fingerprinting, phylogenetic and hybridization analyses, the isolate is proposed to represent a novel species, Anoxybacillus calidus sp. nov. (type strain C161ab(T) = DSM 25520(T) = NCIMB 14851(T)).

  6. Structural and mechanistic characterization of 6S RNA from the hyperthermophilic bacterium Aquifex aeolicus.

    PubMed

    Köhler, Karen; Duchardt-Ferner, Elke; Lechner, Marcus; Damm, Katrin; Hoch, Philipp G; Salas, Margarita; Hartmann, Roland K

    2015-10-01

    Bacterial 6S RNAs competitively inhibit binding of RNA polymerase (RNAP) holoenzymes to DNA promoters, thereby globally regulating transcription. RNAP uses 6S RNA itself as a template to synthesize short transcripts, termed pRNAs (product RNAs). Longer pRNAs (approx. ≥ 10 nt) rearrange the 6S RNA structure and thereby disrupt the 6S RNA:RNAP complex, which enables the enzyme to resume transcription at DNA promoters. We studied 6S RNA of the hyperthermophilic bacterium Aquifex aeolicus, representing the thermodynamically most stable 6S RNA known so far. Applying structure probing and NMR, we show that the RNA adopts the canonical rod-shaped 6S RNA architecture with little structure formation in the central bulge (CB) even at moderate temperatures (≤37 °C). 6S RNA:pRNA complex formation triggers an internal structure rearrangement of 6S RNA, i.e. formation of a so-called central bulge collapse (CBC) helix. The persistence of several characteristic NMR imino proton resonances upon pRNA annealing demonstrates that defined helical segments on both sides of the CB are retained in the pRNA-bound state, thus representing a basic framework of the RNA's architecture. RNA-seq analyses revealed pRNA synthesis from 6S RNA in A. aeolicus, identifying 9 to ∼17-mers as the major length species. A. aeolicus 6S RNA can also serve as a template for in vitro pRNA synthesis by RNAP from the mesophile Bacillus subtilis. Binding of a synthetic pRNA to A. aeolicus 6S RNA blocks formation of 6S RNA:RNAP complexes. Our findings indicate that A. aeolicus 6S RNA function in its hyperthermophilic host is mechanistically identical to that of other bacterial 6S RNAs. The use of artificial pRNA variants, designed to disrupt helix P2 from the 3'-CB instead of the 5'-CB but preventing formation of the CBC helix, indicated that the mechanism of pRNA-induced RNAP release has been evolutionarily optimized for transcriptional pRNA initiation in the 5'-CB.

  7. Oceanirhabdus sediminicola gen. nov., sp. nov., an anaerobic bacterium isolated from sea sediment.

    PubMed

    Pi, Ruo-Xi; Zhang, Wen-Wu; Fang, Ming-Xu; Zhang, Yan-Zhou; Li, Tian-Tian; Wu, Min; Zhu, Xu-Fen

    2013-11-01

    A novel anaerobic bacterium, designated NH-JN4(T) was isolated from a sediment sample collected in the South China Sea. Cells were Gram-stain-positive, spore-forming, peritrichous and rod-shaped (0.5-1.2×2.2-7 µm). The temperature and pH ranges for growth were 22-42 °C and pH 6.0-8.5. Optimal growth occurred at 34-38 °C and pH 6.5-7.0. The NaCl concentration range for growth was 0.5-6 % (w/v) with an optimum of 2.5 %. Catalase and oxidase were not produced. Substrates which could be utilized were peptone, tryptone, yeast extract, beef extract and glycine. Main fermentation products from PYG medium were formate, acetate, butyrate and ethanol. Strain NH-JN4(T) could utilize sodium sulfite as an electron acceptor. No respiratory quinone was detected. The predominant fatty acids were anteiso-C15 : 0, C16 : 0, iso-C15 : 0, anteiso-C17 : 0 and C16 : 0 DMA. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and glycolipids. The DNA G+C content was 35.8 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain NH-JN4(T) was a member of family Clostridiaceae, and was most closely related to Clostridium limosum ATCC 25620(T), Clostridium proteolyticum DSM 3090(T), Clostridium histolyticum ATCC 19401(T) and Clostridium tepidiprofundi SG 508(T), showing 94.0, 93.0, 92.9 and 92.3 % sequence similarity, respectively. On the basis of phenotypic, genotypic and chemotaxonomic properties, strain NH-JN4(T) represents a novel species of a new genus in the family Clostridiaceae, for which the name Oceanirhabdus sediminicola gen. nov., sp. nov. is proposed. The type strain of the type species is NH-JN4(T) ( = JCM 18501(T) = CCTCC AB 2013103(T) = KCTC 15322(T)).

  8. Bacillus oleivorans sp. nov., a diesel oil-degrading and solvent-tolerant bacterium.

    PubMed

    Azmatunnisa, M; Rahul, K; Subhash, Y; Sasikala, Ch; Ramana, Ch V

    2015-04-01

    Two Gram-stain-positive, diesel oil-degrading, solvent-tolerant, aerobic, endospore-forming, rod-shaped bacteria were isolated from a contaminated laboratory plate. Based on 16S rRNA gene sequence analysis, strains JC228(T) and JC279 were identified as belonging to the genus Bacillus within the family Bacillaceae of the phylum Firmicutes and were found to be most closely related to Bacillus carboniphilus JCM 9731(T) (98.1% 16S rRNA gene sequence similarity) and shared <96.0% 16S rRNA gene sequence similarity with other members of the genus Bacillus . The DNA-DNA hybridization value between the two strains was 88±2%. Strain JC228(T) showed 23.4±1% reassociation (based on DNA-DNA hybridization) with B. carboniphilus LMG 18001(T). The DNA G+C content of strains JC228(T) and JC279 was 39 and 38.4 mol%, respectively. Both strains were positive for catalase and oxidase activities, and negative for hydrolysis of starch and Tween 80. Strains JC228(T) and JC279 grew chemoorganoheterotrophically with optimum growth at pH 7 (range pH 7-9.5) and 35 °C (range 25-40 °C). Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid (PL2) were the major polar lipids. Major cellular fatty acids were iso-C(15 : 0), anteiso-C(15 : 0), iso-C(17 : 0) and C(16 : 0). Whole-cell hydrolysates contained l-alanine, d-alanine, d-glutamic acid and meso-diaminopimelic acid. Both strains utilized diesel oil as sole carbon and energy source. The results of physiological, biochemical, chemotaxonomic and molecular analyses allowed clear differentiation of strains JC228(T) and JC279 from their closest phylogenetic neighbours. Therefore strains JC228(T) and JC279 represent a novel species of the genus Bacillus , for which the name Bacillus oleivorans sp. nov. is proposed. The type strain is JC228(T) ( = LMG 28084(T) = CCTCC AB 2013353(T)).

  9. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp.

    PubMed

    Qi, Feng; Huang, Zhaobin; Lai, Qiliang; Li, Dengfeng; Shao, Zongze

    2016-04-20

    A novel bacterial strain SC2T was isolated from Ulva sp. a green marine algae. Strain SC2T was Gram-negative, aerobic, rod-shaped and had no flagellum. Oxidase and catalase were positive. Strain SC2T can degrade skim milk, agar, soluble starch, Tween 20 and Tween 80. The optimal salinity and temperature of strain SC2T were 2% and 30 °C, respectively. Phylogenetic analysis based on the 16S rRNA gene indicated that strain SC2T was affiliated to the genus Kordia, with highest sequence similarity to Kordia algicida OT-1T (97.23%), Kordia antarctica IMCC3317T (97.23%) and Kordia jejudonensis SSK3-3T (97.02%); other species of the genus Kordia shared 93.98%-95.78% sequence similarity. The ANI value and the DNA-DNA hybridization estimated value between strain SC2T and three type strains (K. algicida OT-1T, K. antarctica IMCC3317T and K. jejudonensis SSK3-3T) were found to be 79.4%-82.4% and 24.2%-27.0%, respectively. The predominant fatty acids (>5.0%) were C16:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, summed feature 3 (comprised C16:1 ω7c/C16:1 ω6c), summed feature 8 (comprised C18:1 ω7c/C18:1 ω6c) and summed feature 9 (comprised iso-C17:1 ω9c/C16:0 10-methyl). The respiratory quinone was Menaquinone-6 (MK-6). The polar lipid profile consisted of four unknown lipids, three unidentified phospholipids, one unidentified aminolipid and one phosphatidylethanolamine. The G+C content of the genomic DNA was 34.5 mol%. The combined genotypic and phenotypic data showed that strain SC2T represents a novel species within the genus Kordia, for which the name Kordia ulvae sp. nov. is proposed, with the type strain SC2T (= KCTC 42872T = MCCC 1A01772T = LMG 29123T).

  10. Blastomonas aquatica sp. nov., a bacteriochlorophyll-containing bacterium isolated from lake water.

    PubMed

    Xiao, Na; Liu, Yongqin; Liu, Xiaobo; Gu, Zhengquan; Jiao, Nianzhi; Liu, Hongcan; Zhou, Yuguang; Shen, Liang

    2015-05-01

    Yellow or orange-to-brown pigmented, ovoid or rod-shaped, Gram-negative staining, aerobic strains PE 4-5(T) and N5-10 m-1 were isolated from brackish water in Lake Peng Co and fresh to brackish water in Lake Namtso on the Tibetan Plateau, China. Bacteriochlorophyll a was produced by the isolates. The predominant cellular fatty acids were C16 : 1, C17 : 1 and C18 : 1 unsaturated fatty acids, C17 : 1ω6c (55.3%), C17 : 1ω8c (13.0%) and C18 : 1ω7c (10.4%) for PE 4-5(T) and C18 : 1ω7c (54.7%) and C16 : 1ω7c (18.0%) for N5-10 m-1. The polar lipid profiles of strains PE 4-5(T) and N5-10 m-1 were composed of diphosphatidylglycerol, phosphatidylcholine (not detected in N5-10 m-1), phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unknown phospholipid. The predominant respiratory quinone was ubiquinone Q10 and the DNA G+C content was 66.0 mol% for both strains. The16S rRNA gene sequence of strain PE 4-5(T) shared 99.0% similarity with that of N5-10 m-1, and 97.56% similarity with those of Blastomonas natatoria LMG 17322(T) and Blastomonas ursincola DSM 9006(T), respectively. The DNA-DNA hybridization relatedness between strains PE 4-5(T) and N5-10 m-1 was 79.0 ± 1.0%, but below 70% with the type strains in the genus Blastomonas . Based on the variability of phylogenetic and phenotypic characteristics, the isolates should be classified as representatives of a novel species of the genus Blastomonas; the name Blastomonas aquatica sp. nov. is proposed. The type strain is PE 4-5(T) ( =JCM 30179(T) =CGMCC 1.12851(T)).

  11. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system.

    PubMed

    Frijters, C T M J; Vos, R H; Scheffer, G; Mulder, R

    2006-03-01

    The wastewater originating from the bleaching and dyeing processes in the textile factory Ten Cate Protect in Nijverdal (the Netherlands) was successfully treated in a sequential anaerobic/aerobic system. In the system, a combination of an anaerobic 70-m3 fluidized bed reactor and a 450-m3 aerobic basin with integrated tilted plate settlers, 80-95% of the color was removed. The color was largely removed in the preacidification basin and the anaerobic reactor. Color, deriving from both reactive as well as disperse, was anaerobically removed, indicating that these type of dyes were reduced to colorless products. Interestingly, the vat dyes, the anthraquinones and indigoids, which were thought to be removed mainly aerobically, were largely anaerobically decolorized. Apparently the anaerobic system is capable of effectively removing the color of both soluble as insoluble dyes. The treated effluent of the sequential anaerobic/aerobic treatment showed no toxicity towards the bioluminescent bacterium Vibrio fisheri (EC20 (95%) > 45%). Partially bypassing the anaerobic stage resulted in increased toxicity (EC20 (95%) of 9% and 14%) in the effluent of the aerobic treatment and caused significant decrease of color removal. The results of this study show a main contribution of anaerobic treatment in decolorizing and detoxifying the textile wastewater in the sequential anaerobic/aerobic system.

  12. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  13. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  14. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  15. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  16. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  17. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.

    PubMed

    Finnegan, Lucy; Garcia-Melgares, Manuel; Gmerek, Tomasz; Huddleston, W Ryan; Palmer, Alexander; Robertson, Andrew; Shapiro, Sarah; Unkles, Shiela E

    2011-10-01

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.

  18. Microbial community analysis of an aerobic nitrifying-denitrifying MBR treating ABS resin wastewater.

    PubMed

    Chang, Chia-Yuan; Tanong, Kulchaya; Xu, Jia; Shon, Hokyong

    2011-05-01

    A two-stage aerobic membrane bioreactor (MBR) system for treating acrylonitrile butadiene styrene (ABS) resin wastewater was carried out in this study to evaluate the system performance on nitrification. The results showed that nitrification of the aerobic MBR system was significant and the highest TKN removal of approximately 90% was obtained at hydraulic retention time (HRT) 18 h. In addition, the result of nitrogen mass balance revealed that the percentage of TN removal due to denitrification was in the range of 8.7-19.8%. Microbial community analysis based on 16s rDNA molecular approach indicated that the dominant ammonia oxidizing bacteria (AOB) group in the system was a β-class ammonia oxidizer which was identified as uncultured sludge bacterium (AF234732). A heterotrophic aerobic denitrifier identified as Thauera mechernichensis was found in the system. The results indicated that a sole aerobic MBR system for simultaneous removals of carbon and nitrogen can be designed and operated for neglect with an anaerobic unit.

  19. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    PubMed

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se(0)) under both aerobic and anaerobic conditions. The biogenic nano-Se(0) converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg(0)) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg(0) remediation, probably owing to the release of intracellular nano-Se(0) from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se(0) and Hg(0). Biosynthesis of nano-Se(0) both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg(0)-contaminated surface and subsurface soils, where the redox potential often changes dramatically.

  20. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  1. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    PubMed

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  2. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum 'Acidobacteria'.

    PubMed

    Fukunaga, Yukiyo; Kurahashi, Midori; Yanagi, Kensuke; Yokota, Akira; Harayama, Shigeaki

    2008-11-01

    Strain FYK2218(T) was isolated from a specimen of the chiton Acanthopleura japonica, which had been collected from a beach on the Boso peninsula in Japan. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strain belonged to the phylum 'Acidobacteria'. The most closely related type strains to strain FYK2218(T) were Holophaga foetida TMBS4(T) (83.6 % 16S rRNA gene sequence similarity) and Geothrix fermentans H-5(T) (83.6 %) in subdivision 8 of the 'Acidobacteria'. Cells of FYK2218(T) were motile, rod-shaped, Gram-negative, mesophilic and strictly aerobic. The G+C content of the strain was 56.7 mol%. The strain had isoprenoid quinones MK-6 and MK-7 as major components. Major fatty acids of the strain were iso-C(15 : 0), iso-C(17 : 0), C(16 : 0) and C(20 : 5)omega3c (cis-5,8,11,14,17-eicosapentaenoic acid). From the taxonomic data obtained in this study, it is proposed that the new marine isolate be placed into a novel genus and species named Acanthopleuribacter pedis gen. nov., sp. nov. within the new family, order and class Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov. and Holophagae classis nov. The family Holophagaceae fam. nov. is also described. The type strain of Acanthopleuribacter pedis is FYK2218(T) (=NBRC 101209(T) =KCTC 12899(T)).

  3. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  4. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  5. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  6. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  7. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  8. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  9. Isolation and identification of Sphingomonas sp. that yields tert-octylphenol monoethoxylate under aerobic conditions.

    PubMed

    Nishio, Eriko; Yoshikawa, Hiromichi; Wakayama, Manabu; Tamura, Hiroto; Morita, Shiro; Tomita, Yoshifumi

    2005-07-01

    Topsoil samples were collected from eight golf courses in Yamaguchi Prefecture, Japan, and enrichment cultures were carried out with a basal-salt medium containing 0.2% 4-tert-octylphenol polyethoxylate (OPPEO) as sole carbon source. OPPEO-degrading activity was detected in one of the samples, from which a strain of OPPEO-degrading bacterium was isolated. The isolated bacterium grew on a nutritionally enriched medium (NE medium) containing 0.2% OPPEO as sole carbon source, and accumulated 4-tert-octylphenol diethoxylate (OP2EO) (63%), 4-tert-octylphenol triethoxylate (OP3EO) (14%), and 4-tert-octylphenol monoethoxylate (OP1EO) (2%) after 7 d cultivation under aerobic conditions. The addition of clay mineral (vermiculite) to the medium accelerated the degradation of OP2EO (40%) and OP3EO (4%) to OP1EO (23%). This is the first report about bacteria that can degrade OPPEO to OP1EO under aerobic conditions. The strain was identified as Sphingomonas macrogoltabidus, based on the homology of a 16S rDNA sequence.

  10. Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus.

    PubMed

    Willows, Robert D; Lake, Vanessa; Roberts, Thomas Hugh; Beale, Samuel I

    2003-06-01

    The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzyme that diverts protoporphyrin IX from heme biosynthesis toward the bacteriochlorophyll biosynthetic pathway by inserting Mg(2+) to form Mg-protoporphyrin IX. Mg chelatase is composed of three subunits that are encoded by the bchI, bchD, and bchH genes in R. capsulatus. We report that BchH is the rate-limiting component of Mg chelatase activity in cell extracts. BchH binds protoporphyrin IX, and BchH that has been expressed and purified from Escherichia coli is red in color due to the bound protoporphyrin IX. Recombinant BchH is rapidly inactivated by light in the presence of O(2), and the inactivation results in the formation of a covalent adduct between the protein and the bound protoporphyrin IX. When photosynthetically growing R. capsulatus cells are transferred to aerobic conditions, Mg chelatase is rapidly inactivated, and BchH is the component that is most rapidly inactivated in vivo when cells are exposed to aerobic conditions. The light- and O(2)-stimulated inactivation of BchH could account for the rapid inactivation of Mg chelatase in vivo and provide a mechanism for inhibiting the synthesis of bacteriochlorophyll during adaptation of photosynthetically grown cells to aerobic conditions while still allowing heme synthesis to occur for aerobic respiration.

  11. Aerobic fitness testing: an update.

    PubMed

    Stevens, N; Sykes, K

    1996-12-01

    This study confirms that all three tests are reliable tools for the assessment of cardiorespiratory fitness and the prediction of aerobic capacity. While this particular study consisted of active, youthful subjects, subsequent studies at University College Chester have found similar findings with larger databases and a wider cross-section of subjects. The Astrand cycle test and Chester step test are submaximal tests with error margins of 5-15 per cent and therefore, not as precise as maximal testing. However, they still give a reasonably accurate reflection of an individual's fitness without the cost, time, effort and risk on the part of the subject. The bleep test is a low-cost maximal test designed for well-motivated, active individuals who are used to running to physical exhaustion. Used on other groups, results will not accurately reflect cardiorespiratory fitness values. While all three tests have inherent advantages and disadvantages, perhaps the most important factors are the knowledge and skills of the tester. Without a sound understanding of the physiological principles underlying these tests, and the ability to conduct an accurate assessment and evaluation of results in a knowledgeable and meaningful way, then the credibility of the tests and the results become suspect. However, used correctly, aerobic capacity tests can provide valuable baseline data about the fitness levels of individuals and data from which exercise programmes may be developed. The tests also enable fitness improvements to be monitored, help to motivate participants by establishing reasonable and achievable goals, assist in risk stratification and facilitate participants' education about the importance of physical fitness for work and for life. Since this study was completed, further tests have been repeated on 140 subjects of a wider age and ability range. This large database confirms the results found in this study.

  12. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  13. Bacillus mesophilus sp. nov., an alginate-degrading bacterium isolated from a soil sample collected from an abandoned marine solar saltern.

    PubMed

    Zhou, Yan-Xia; Liu, Guo-Hong; Liu, Bo; Chen, Guan-Jun; Du, Zong-Jun

    2016-07-01

    A novel Gram-stain positive, endospore-forming bacterium, designated SA4(T), was isolated from a soil sample collected from an abandoned marine solar saltern at Wendeng, Shandong Province, PR China. Cells were observed to be rod shaped, alginase positive, catalase positive and motile. The strain was found to grow at temperatures ranging from 15 to 40 °C (optimum 35 °C), and pH 5.0-11.0 (optimum pH 8.0) with 0-7.0 % (w/v) NaCl concentration (optimum NaCl 3.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SA4(T) belongs to the genus Bacillus and exhibits 16S rRNA gene sequence similarities of 96.6, 96.5, 96.3 and 96.2 % with Bacillus horikoshii DSM 8719(T), Bacillus acidicola 105-2(T), Bacillus shackletonii LMG 18435(T) and Bacillus pocheonensis Gsoil 420(T), respectively. The menaquinone was identified as MK-7 and the major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids detected were anteiso-C15:0 (22.3 %), iso-C15:0 (22.6 %), iso-C16:0 (14.8 %) and iso-C14:0 (14.7 %). The DNA G+C content was determined to be 42.4 mol %. Phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate SA4(T) represents a novel species within the genus Bacillus, for which the name Bacillus mesophius sp. nov. is proposed. The type strain is SA4(T) (=DSM 101000(T)=CCTCC AB 2015209(T)).

  14. Proteus cibarius sp. nov., a swarming bacterium from Jeotgal, a traditional Korean fermented seafood, and emended description of the genus Proteus.

    PubMed

    Hyun, Dong-Wook; Jung, Mi-Ja; Kim, Min-Soo; Shin, Na-Ri; Kim, Pil Soo; Whon, Tae Woong; Bae, Jin-Woo

    2016-06-01

    A novel Proteus-like, Gram-stain-negative, facultatively anaerobic, rod-shaped bacterium, designated strain JS9T, was isolated from Korean fermented seafood, Jeotgal. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain JS9T belonged to the genus Proteus in the family Enterobacteriaceae. The highest 16S rRNA gene sequence similarity of strain JS9T was to Proteus vulgaris KCTC 2579T (98.98 %) and the genomic DNA G+C content is 39.0 mol%. DNA-DNA hybridization values were measured and strain JS9T showed <20.8 % genomic relatedness with closely-related members of the genus Proteus. The isolate showed bacterial motility and swarming activity similar to those of pathogenic Proteus mirabilis but distinct from those of other species of the genus Proteus. The isolate grows optimally at 30 °C, at pH 7, and in the presence of 2 % (w/v) NaCl. The main respiratory quinones are ubiquinone Q-8 and Q-10, and the major cellular fatty acids are C16 : 0, summed feature 3 and summed feature 8. The polar lipids comprise phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unidentified amino lipid, two unidentified amino-phospholipids, and three unidentified lipids. Based on phylogenetic, phenotypic, chemotaxonomic and genotypic analyses, strain JS9T represents a novel species of the genus Proteus, for which the name Proteus cibarius sp. nov. is proposed. The type strain is JS9T (=KACC 18404T=JCM 30699T). An emended description of the genus Proteus is also provided.

  15. Seonamhaeicola algicola sp. nov., a complex-polysaccharide-degrading bacterium isolated from Gracilaria blodgettii, and emended description of the genus Seonamhaeicola.

    PubMed

    Zhou, Yan-Xia; Du, Zong-Jun; Chen, Guan-Jun

    2016-05-01

    A novel Gram-stain-negative, yellow, rod-shaped, facultatively anaerobic, gliding bacterial strain, designated Gy8T, was isolated from the surface of Gracilaria blodgettii. This bacterium was able to degrade various polysaccharides, especially agar and alginate. The major cellular fatty acids (>10 % of the total fatty acids) were C15 : 0, iso-C15 : 0, C15 : 0 3-OH and iso-C15 : 1. The major menaquinone was MK-6. The DNA G+C content was 35.3 mol%. The major polar lipids consisted of phosphatidylethanolamine and two unknown polar lipids. Strain Gy8T showed highest 16S rRNA gene sequence similarity to Seonamhaeicola aphaedonensis AH-M5T (95.6 %), and these two strains formed a distinct branch in phylogenetic trees generated with the neighbour-joining, maximum-likelihood and maximum-parsimony algorithms. The novel strain and the reference type strain of the single species described to date in the genus Seonamhaeicola contained MK-6 as the major menaquinone, iso-C15 : 0 and iso-C15 : 1 as the major fatty acids, and phosphatidylethanolamine and an unknown lipid as the major polar lipids. Based on phenotypic, chemotaxonomic and phylogenetic analysis, strain Gy8T is considered to represent a novel species within the genus Seonamhaeicola in the family Flavobacteriaceae, phylum Bacteroidetes, for which the name Seonamhaeicola algicola sp. nov. is proposed. The type strain is Gy8T ( = KCTC 42396T = CICC 23816T).

  16. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum 'Synergistetes', isolated from an anaerobic sludge digester.

    PubMed

    Ganesan, Akila; Chaussonnerie, Sébastien; Tarrade, Anne; Dauga, Catherine; Bouchez, Théodore; Pelletier, Eric; Le Paslier, Denis; Sghir, Abdelghani

    2008-09-01

    A novel anaerobic, mesophilic, amino-acid-utilizing bacterium, strain 158T, was isolated from an anaerobic digester of a wastewater treatment plant. Cells of strain 158T were non-motile, rod-shaped (2.0-3.0 x 0.8-1.0 microm) and stained Gram-negative. Optimal growth occurred at 37 degrees C and pH 7.0 in an anaerobic basal medium containing 1 % Casamino acids. Strain 158T fermented arginine, histidine, lysine and serine and showed growth on yeast extract, brain-heart infusion (BHI) medium and tryptone, but not on carbohydrates, organic acids or alcohols. The end products of degradation were: acetate, butyrate, H2 and CO2 from arginine; acetate, propionate, butyrate, H2 and CO2 from lysine; and acetate, propionate, butyrate, valerate, H2 and CO2 from histidine, serine, BHI medium, Casamino acids and tryptone. The DNA G+C content was 55.8 mol%. The 16S rRNA gene sequence of strain 158T showed only 92.6 % sequence similarity with that of Synergistes jonesii, the only described species of the 'Synergistes' group. The major cellular fatty acids were iso-C(15:0) (16.63 %), iso-C(15:0) 3-OH (12.41 %) and C(17:1)omega6c (9.46 %) and the polar fatty acids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylamine; these fatty acid profiles did not resemble those of any recognized bacterial species. Due to the considerable differences in genotypic, phenotypic and phylogenetic characteristics between strain 158T and those of its nearest relative, it is proposed that strain 158T represents a novel species in a new genus, Cloacibacillus evryensis gen. nov., sp. nov., in the phylum 'Synergistetes'. The type strain is 158T (=DSM 19522T=JCM 14828T).

  17. Cecembia lonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from a haloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella.

    PubMed

    Anil Kumar, P; Srinivas, T N R; Madhu, S; Sravan, R; Singh, Shashi; Naqvi, S W A; Mayilraj, S; Shivaji, S

    2012-09-01

    A novel Gram-staining-negative, rod-shaped, non-motile bacterium, designated strain LW9(T), was isolated from a water sample collected from Lonar Lake of Buldhana district, Maharashtra, India. Colonies and broth cultures were reddish orange due to the presence of carotenoid pigments. Strain LW9(T) was positive for catalase, ornithine decarboxylase and lysine decarboxylase activities and negative for gelatinase, oxidase, urease and lipase activities. The predominant fatty acids were iso-C(15 : 0) (31.3 %), iso-C(16 : 0) (9.3 %), anteiso-C(15 : 0) (7.3 %), iso-C(16 : 1) H (6.1 %), summed feature 3 (comprising C(16 : 1)ω7c/C(16 : 1)ω6c; 5.9 %), iso-C(17 : 1)ω9c (5.4 %) and iso-C(17 : 0) 3-OH (5.0 %). Strain LW9(T) contained MK-7 as the major respiratory quinone. The polar lipids consisted of phosphatidylethanolamine, two unidentified aminolipids and seven unidentified lipids. The DNA G+C content of strain LW9(T) was 40.5 mol%. 16S rRNA gene sequence analysis indicated that the type strains of Indibacter alkaliphilus and Aquiflexum balticum, two members of the family Cyclobacteriaceae (phylum 'Bacteroidetes') were the most closely related strains with sequence similarities of 93.0 and 94.0 %, respectively. Other members of the family Cyclobacteriaceae showed sequence similarities <93.0 %. Based on these phenotypic characteristics and on phylogenetic inference, strain LW9(T) is proposed as the representative of novel species in a new genus, Cecembia lonarensis gen. nov., sp. nov. The type strain of the type species, Cecembia lonarensis, is LW9(T) (= CCUG 58316(T) = KCTC 22772(T)). Emended descriptions of the genera Indibacter, Nitritalea and Belliella are also proposed.

  18. Vibrio algivorus sp. nov., an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail.

    PubMed

    Doi, Hidetaka; Chinen, Akito; Fukuda, Hiroo; Usuda, Yoshihiro

    2016-08-01

    An agarose- and alginate-assimilating, Gram-reaction-negative, non-motile, rod-shaped bacterium, designated strain SA2T, was isolated from the gut of a turban shell sea snail (Turbo cornutus) collected near Noto Peninsula, Ishikawa Prefecture, Japan. The 16S rRNA gene sequence of strain SA2T was 99.59 % identical to that of Vibrio rumoiensis DSM 19141T and 98.19 % identical to that of Vibrio litoralis DSM 17657T. This suggested that strain SA2T could be a subspecies of V. rumoiensis or V. litoralis. However, DNA-DNA hybridization results showed only 37.5 % relatedness to DSM 19141T and 44.7 % relatedness to DSM 17657T, which was far lower than the 70 % widely accepted to define common species. Strain SA2T could assimilate agarose as a sole carbon source, whereas strains DSM 19141T and DSM 17657T could not assimilate it at all. Furthermore, results using API 20NE and API ZYM kits indicated that their enzymic and physiological phenotypes were also different. These results suggested that strain SA2T represented a novel species within the genus Vibrio. The major isoprenoid quinone in SA2T was Q-8, and its major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major fatty acids were summed feature 3, (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0, and summed feature 8 (comprising C18 : 1ω6c and/or C18 : 1ω7c). The DNA G+C content of SA2T was 40.7 mol%. The name proposed for this novel species of the genus Vibrio is Vibrio algivorus sp. nov., with the type strain designated SA2T (=DSM 29824T=NBRC 111146T).

  19. Gelatiniphilus marinus gen. nov., sp. nov., a bacterium from the culture broth of a microalga, Picochlorum sp. 122, and emended description of the genus Hwangdonia.

    PubMed

    Tang, Mingxing; Tan, Li; Wu, Hualian; Dai, Shikun; Li, Tao; Chen, Chenghao; Li, Jiaying; Fan, Jiewei; Xiang, Wenzhou; Li, Xiang; Wang, Guanghua

    2016-08-01

    A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped bacterium, designated strain GYP-24T, was isolated from the culture broth of a marine microalga, Picochlorum sp. 122. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain GYP-24T forms a robust cluster with H.wangdoniaseohaensis KCTC 32177T (95.8 % sequence similarity) in the family Flavobacteriaceae. Growth of strain GYP-24T was observed at 15, 22, 28, 30, 33 and 37 °C (optimal 30-33 °C), pH 6.0-10.0 (optimal pH 7.0-8.0) and in the presence of 0.5-4 % (w/v) NaCl (optimal 2-3 %). The only menaquinone of strain GYP-24T was MK-6, and the G+C content of the genomic DNA was 36.9 mol%. The major fatty acid profile comprised iso-C17 : 0 3-OH, summed feature 3 (C16 : 1 ω7c/ω6c), iso-C15 : 1 G and iso-C15 : 0. The major polar lipids of strain GYP-24T were phosphatidylethanolamine, one unidentified phospholipid, three unidentified aminolipids and three unidentified lipids. Comprehensive analyses based on polyphasic characterization of GYP-24T indicated that it represents a novel species of a new genus, for which the name Gelatiniphilus marinus gen. nov., sp. nov. is proposed. The type strain is GYP-24T (=KCTC 42903T=MCCC 1K01730T). An emended description of the genus Hwangdonia is also given.

  20. Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes.

    PubMed

    Shiratori, Hatsumi; Ohiwa, Hitomi; Ikeno, Hironori; Ayame, Shohei; Kataoka, Naoaki; Miya, Akiko; Beppu, Teruhiko; Ueda, Kenji

    2008-04-01

    A novel anaerobic, moderately thermophilic, spore-forming, rod-shaped bacterium (strain EBR46T) was isolated from an enrichment culture derived from an anaerobic thermophilic (55 degrees C) methanogenic bioreactor treating artificial solid wastes. Phylogeny based on 16S rRNA gene sequence analysis placed strain EBR46T within a distinct lineage between Clostridium clusters II and III. The closest recognized relative of strain EBR46T was Gracilibacter thermotolerans DSM 17427T (85.3 % 16S rRNA gene sequence similarity). The DNA G+C content of strain EBR46T was 36.2 mol%. The novel strain grew optimally at 55-58 degrees C and at pH 7.5-8.0 and was able to grow on peptone, tryptone, Casamino acids, casein hydrolysate, methionine, threonine, tryptophan, cysteine, lysine and serine in the presence of 0.2 % yeast extract. Carbohydrates were not utilized. The main products from tryptone utilization were acetate, iso-butyrate, propionate and iso-valerate. Strain EBR46T produced hydrogen sulfide from cysteine. The major fatty acids were iso-C15 : 0, C14 : 0, C16 : 0 DMA (dimethyl acetal) and iso-C15 : 0 DMA. Based on its unique phylogenetic and physiological features, strain EBR46T is considered to represent a novel species of a new genus, for which the name Lutispora thermophila gen. nov., sp. nov. is proposed. The type strain of the type species is EBR46T (=NBRC 102133T=DSM 19022T).

  1. Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough.

    PubMed

    Toffin, Laurent; Zink, Klaus; Kato, Chiaki; Pignet, Patricia; Bidault, Adeline; Bienvenu, Nadège; Birrien, Jean-Louis; Prieur, Daniel

    2005-01-01

    A piezotolerant, mesophilic, marine lactic acid bacterium (strain LT20T) was isolated from a deep sub-seafloor sediment core collected at Nankai Trough, off the coast of Japan. Cells were Gram-positive, rod-shaped, non-sporulating and non-motile. The NaCl concentration range for growth was 0-120 g l(-1), with the optimum at 10-20 g l(-1). The temperature range for growth at pH 7.0 was 4-50 degrees C, with the optimum at 37-40 degrees C. The optimum pH for growth was 7.0-8.0. The optimum pressure for growth was 0.1 MPa with tolerance up to 30 MPa. The main cellular phospholipids were phosphatidylglycerols (25 %), diphosphatidylglycerols (34 %) and a group of compounds tentatively identified as ammonium-containing phosphatidylserines (32 %); phosphatidylethanolamines (9 %) were minor components. The fatty acid composition was dominated by side chains of 16 : 0, 14 : 0 and 16 : 1. The G+C content of the genomic DNA was 42 mol%. On the basis of 16S rRNA gene sequence analysis and the secondary structure of the V6 region, this organism was found to belong to the genus Marinilactibacillus and was closely related to Marinilactibacillus psychrotolerans M13-2(T) (99 %), Marinilactibacillus sp. strain MJYP.25.24 (99 %) and Alkalibacterium olivapovliticus strain ww2-SN4C (97 %). Despite the high similarity between their 16S rRNA gene sequences (99 %), the DNA-DNA hybridization levels were less than 20 %. On the basis of physiological and genetic characteristics, it is proposed that this organism be classified as a novel species, Marinilactibacillus piezotolerans sp. nov. The type strain is LT20T (=DSM 16108T=JCM 12337T).

  2. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring.

    PubMed

    Yoneda, Yasuko; Yoshida, Takashi; Kawaichi, Satoshi; Daifuku, Takashi; Takabe, Keiji; Sako, Yoshihiko

    2012-07-01

    A novel anaerobic, Fe(III)-reducing, hydrogenogenic, carboxydotrophic bacterium, designated strain Ug1(T), was isolated from a volcanic acidic hot spring in southern Kyushu Island, Japan. Cells of the isolate were rod-shaped (1.0-3.0 µm long) and motile due to peritrichous flagella. Strain Ug1(T) grew chemolithoautotrophically on CO (100% in the gas phase) with reduction of ferric citrate, amorphous iron (III) oxide, 9,10-anthraquinone 2,6-disulfonate, thiosulfate or elemental sulfur. No carboxydotrophic growth occurred with sulfate, sulfite, nitrate or fumarate as electron acceptor. During growth on CO, H(2) and CO(2) were produced. Growth occurred on molecular hydrogen as an energy source and carbon dioxide as a sole carbon source. Growth was observed on various organic compounds under an N(2) atmosphere with the reduction of ferric iron. The temperature range for carboxydotrophic growth was 50-70 °C, with an optimum at 65 °C. The pH(25 °C) range for growth was 4.6-8.6, with an optimum between 6.0 and 6.5. The doubling time under optimum conditions using CO with ferric citrate was 1.5 h. The DNA G+C content was 42.2 mol%. Analysis of 16S rRNA gene sequences demonstrated that this strain belongs to the thermophilic carboxydotrophic bacterial genus Carboxydothermus, with sequence similarities of 94.1-96.6% to members of this genus. The isolate can be distinguished from other members of the genus Carboxydothermus by its ability to grow with elemental sulfur or thiosulfate coupled to CO oxidation. On the basis of phylogenetic analysis and unique physiological features, the isolate represents a novel species of the genus Carboxydothermus for which the name Carboxydothermus pertinax sp. nov. is proposed; the type strain of the novel species is Ug1(T) (=DSM 23698(T)=NBRC 107576(T)).

  3. Lutibacter holmesii sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius, and emended description of the genus Lutibacter.

    PubMed

    Nedashkovskaya, Olga I; Van Trappen, Stefanie; Zhukova, Natalia V; De Vos, Paul

    2015-11-01

    Seven Gram-staining-negative, strictly aerobic, pale-yellow-pigmented, rod-shaped and non-motile strains were isolated from the sea urchin Strongylocentrotus intermedius collected from Troitsa Bay, Sea of Japan. Phylogenetic analyses based on 16S rRNA gene sequences showed that these isolates were affiliated with the family Flavobacteriaceae. The novel isolates showed 99.9-100 % 16S rRNA gene sequence similarity to each other and were closely related to the type strains of the recognized members of the genus Lutibacter with sequence similarities of 95.8-98.4 %. The G+C content of the genomic DNA was 35-36 mol%. DNA-DNA relatedness among the sea urchin isolates was 95-99 % and between strain KMM 6277T and its most closely related type strains, Lutibacter agarilyticus KCTC 23842T and Lutibacter litoralis JCM 13034T, was 38 and 27 %, respectively. The prevalent fatty acids were iso-C15 : 0, anteiso-C15 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c fatty acids), iso-C15 : 1 and C15 : 0. The polar lipid profile was composed of the phosphatidylethanolamine, one unknown aminolipid and one unknown lipid. The main respiratory isoprenoid quinone was MK-6.The results of phylogenetic, phenotypic and genotypic analyses indicated that the novel strains represent a novel species within the genus Lutibacter, for which the name Lutibacter holmesii sp. nov. is proposed. The type strain is KMM 6277T ( = CCUG 62221T = LMG 26737T).

  4. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  5. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  6. Volatile dimethyl polonium produced by aerobic marine microorganisms.

    PubMed

    Bahrou, Andrew S; Ollivier, Patrick R L; Hanson, Thomas E; Tessier, Emmanuel; Amouroux, David; Church, Thomas M

    2012-10-16

    The production of volatile polonium (Po(v)), a naturally occurring radioactive element, by pure cultures of aerobic marine tellurite-resistant microorganisms was investigated. Rhodotorula mucilaginosa, a carotogenic yeast, and a Bacillus sp. strain, a Gram-positive bacterium, generated approximately one and 2 orders of magnitude, respectively, greater amounts of Po(v) compared to the other organisms tested. Gas chromatography-inductively coupled plasma-mass spectrometry (GC-ICP-MS) analysis identified dimethyl polonide (DMPo) as the predominant volatile Po compound in culture headspace of the yeast. This species assignment is based on the exact relation between GC retention times and boiling points of this and other Group VI B analogues (S, Se, and Te). The extent of the biotic Po(v) production correlates exponentially with elevated particulate Po (Po(p)): dissolved Po (Po(aq)) ratios in the cultures, consistent with efficient Po bioaccumulation. Further experimentation demonstrated that some abiotic Po(v) generation is possible. However, high-level Po(v) generation in these cultures is predominantly biotic.

  7. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions.

    PubMed

    Kuhn, M; Steinbüchel, A; Schlegel, H G

    1984-08-01

    When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2.

  8. Anaerobic growth of a "strict aerobe" (Bacillus subtilis).

    PubMed

    Nakano, M M; Zuber, P

    1998-01-01

    There was a long-held belief that the gram-positive soil bacterium Bacillus subtilis is a strict aerobe. But recent studies have shown that B. subtilis will grow anaerobically, either by using nitrate or nitrite as a terminal electron acceptor, or by fermentation. How B. subtilis alters its metabolic activity according to the availability of oxygen and alternative electron acceptors is but one focus of study. A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, occupies an early stage in the regulatory pathway governing anaerobic respiration. One of the essential roles of ResD and ResE in anaerobic gene regulation is induction of fnr transcription upon oxygen limitation. FNR is a transcriptional activator for anaerobically induced genes, including those for respiratory nitrate reductase, narGHJI.B. subtilis has two distinct nitrate reductases, one for the assimilation of nitrate nitrogen and the other for nitrate respiration. In contrast, one nitrite reductase functions both in nitrite nitrogen assimilation and nitrite respiration. Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate.

  9. The metabolic impact of extracellular nitrite on aerobic metabolism of Paracoccus denitrificans.

    PubMed

    Hartop, K R; Sullivan, M J; Giannopoulos, G; Gates, A J; Bond, P L; Yuan, Z; Clarke, T A; Rowley, G; Richardson, D J

    2017-02-07

    Nitrite, in equilibrium with free nitrous acid (FNA), can inhibit both aerobic and anaerobic growth of microbial communities through bactericidal activities that have considerable potential for control of microbial growth in a range of water systems. There has been much focus on the effect of nitrite/FNA on anaerobic metabolism and so, to enhance understanding of the metabolic impact of nitrite/FNA on aerobic metabolism, a study was undertaken with a model denitrifying bacterium Paracoccus denitrificans PD1222. Extracellular nitrite inhibits aerobic growth of P. denitrificans in a pH-dependent manner that is likely to be a result of both nitrite and free nitrous acid (pKa = 3.25) and subsequent reactive nitrogen oxides generated from the intracellular passage of FNA into P. denitrificans. Increased expression of a gene encoding a flavohemoglobin protein (Fhp) (Pden_1689) was observed in response to extracellular nitrite. Construction and analysis of a deletion mutant established Fhp to be involved in endowing nitrite/FNA resistance at high extracellular nitrite concentrations. Global transcriptional analysis confirmed nitrite-dependent expression of fhp and indicated that P. denitrificans expressed a number of stress response systems associated with protein, DNA and lipid repair. It is therefore suggested that nitrite causes a pH-dependent stress response that is due to the production of associated reactive nitrogen species, such as nitric oxide from the internalisation of FNA.

  10. Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes

    SciTech Connect

    Callister, Stephen J.; Nicora, Carrie D.; Zeng, Xiaohua; Roh, Jung Hyeob; Dominguez, Migual; Tavano, Christine; Monroe, Matthew E.; Kaplan, Samuel; Donohue, Timothy; Smith, Richard D.; Lipton, Mary S.

    2006-07-05

    Proteomes from aerobic and photosynthetic grown Rhodobacter sphaeroides 2.4.1 cell cultures were characterized using liquid chromatography-mass spectrometry in conjunction with an accurate mass and elution time (AMT) tag approach. Roughly 8000 high quality peptides were detected that represented 1,445 gene products and 34% of the predicted proteins. The identified proteins corresponded primarily to open reading frames (ORFs) contained within the two chromosomal elements of this bacterium, but a significant number were also observed from ORFs associated with 5 naturally occurring plasmids. Data mining of peptides revealed a number of proteins uniquely detected within the photosynthetic cell culture. Proteins observed in both aerobic respiratory and photosynthetic grown cultures were analyzed semi-quantitatively by comparing their estimated abundances to provide insights into bioenergetic models for aerobic respiration and photosynthesis. Additional emphasis was placed on gene products annotated as hypothetical to gain information as to their potential roles within these two growth conditions. Where possible, transcriptome data for R. sphaeroides obtained under the same culture conditions were compared with these results. This comparative study demonstrated the applicability of the AMT tag approach for high-throughput proteomic analyses of pathways associated with the photosynthetic lifestyle.

  11. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  12. Lacinutrix himadriensis sp. nov., a psychrophilic bacterium isolated from a marine sediment, and emended description of the genus Lacinutrix.

    PubMed

    Srinivas, T N R; Prasad, S; Manasa, P; Sailaja, B; Begum, Z; Shivaji, S

    2013-02-01

    A novel gram-negative, rod-shaped, non-motile, psychrophilic bacterium, designated strain E4-9a(T), was isolated from a marine sediment sample collected at a depth of 276 m from Kongsfjorden, Svalbard, in the Arctic Ocean. The colony colour was golden yellow. Strain E4-9a(T) was positive for amylase activity at 5 °C. The predominant fatty acids were iso-C(15 : 1) G (21.8 %), anteiso-C(15 : 0) (19.1 %), anteiso-C(15 : 1) A (18.6 %), iso-C(15 : 0) (13.8 %) and iso-C(16 : 1) H (6.4 %). Strain E4-9a(T) contained MK-6 as the major respiratory quinone. The polar lipids consisted of phosphatidylethanolamine, three unidentified aminolipids (AL1, AL4 and AL5), an unidentified phospholipid and four unidentified lipids (L1, L4 to L6). Based on 16S rRNA gene sequence similarity, it was ascertained that the closest related species to E4-9a(T) were Lacinutrix copepodicola, L. algicola and L. mariniflava, with sequence similarity to the respective type strains of 98.5, 96.5 and 95.8 %. Phylogenetic analysis showed that strain E4-9a(T) clustered with the type strain of L. copepodicola and with those of L. algicola and L. mariniflava at distances of 1.5 and 4.8 % (98.5 and 95.2 % similarity), respectively. However, DNA-DNA hybridization with L. copepodicola DJ3(T) showed 59 % relatedness with respect to strain E4-9a(T). The DNA G+C content of strain E4-9a(T) was 29 mol%. Based on the results of DNA-DNA hybridization and phenotypic data, it appears that strain E4-9a(T) represents a novel species of the genus Lacinutrix, for which the name Lacinutrix himadriensis sp. nov. is proposed. The type strain is E4-9a(T) ( = CIP 110310(T)  = KCTC 23612(T)).

  13. Utilization of Phenylpropanoids by Newly Isolated Bacterium Pseudomonas sp. TRMK1.

    PubMed

    T R, Monisha; I, Mukram; B, Kirankumar; Reddy, Pooja V; Nayak, Anand S; Karegoudar, T B

    2017-01-25

    A bacterium Pseudomonas sp. TRMK1 capable of utilizing various phenylpropanoids was isolated from agro-industrial waste by enrichment culture technique. It is gram-negative, motile, aerobic, and able to utilize three different phenolic acids such as p-coumaric, ferulic, and caffeic acids at concentrations of 5, 10, and 15 mM in 18 h of incubation. The residual concentration of phenolic acids was analyzed by HPLC. The catabolic pathway of p-coumaric, ferulic, and caffeic acids is suggested based on the characterization of metabolic intermediates by GC, GC-HRMS, and different enzymatic assays. Further, Pseudomonas sp. TRMK1 utilizes a wide range of mixture of phenolic acids present in the synthetic effluent.

  14. Ultrastructure of the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera," a novel polygon-shaped bacterium.

    PubMed

    Wu, Ming L; van Teeseling, Muriel C F; Willems, Marieke J R; van Donselaar, Elly G; Klingl, Andreas; Rachel, Reinhard; Geerts, Willie J C; Jetten, Mike S M; Strous, Marc; van Niftrik, Laura

    2012-01-01

    "Candidatus Methylomirabilis oxyfera" is a newly discovered denitrifying methanotroph that is unrelated to previously known methanotrophs. This bacterium is a member of the NC10 phylum and couples methane oxidation to denitrification through a newly discovered intra-aerobic pathway. In the present study, we report the first ultrastructural study of "Ca. Methylomirabilis oxyfera" using scanning electron microscopy, transmission electron microscopy, and electron tomography in combination with different sample preparation methods. We observed that "Ca. Methylomirabilis oxyfera" cells possess an atypical polygonal shape that is distinct from other bacterial shapes described so far. Also, an additional layer was observed as the outermost sheath, which might represent a (glyco)protein surface layer. Further, intracytoplasmic membranes, which are a common feature among proteobacterial methanotrophs, were never observed under the current growth conditions. Our results indicate that "Ca. Methylomirabilis oxyfera" is ultrastructurally distinct from other bacteria by its atypical cell shape and from the classical proteobacterial methanotrophs by its apparent lack of intracytoplasmic membranes.

  15. Characterization of a halotolerant-psychroloterant bacterium from dry valley Antarctic soil.

    PubMed

    Miller, K J; Leschine, S B; Huguenin, R L

    1983-01-01

    The saline soils of the ice free dry valleys of Victoria Land, Antarctica may provide the closest analog on Earth to Martian conditions. We have initiated a study aimed at examining microbial adaptations to the harsh environment of these dry valley soils. In this report we describe the characterization of one bacterium, strain A4a, isolated from Taylor Valley soil. Strain A4a was an obligately aerobic, orange-pigmented, Gram-positive coccus that grew over wide ranges of both temperature (0 degrees C-40 degrees C) and sodium chloride concentration (0-2.0M). The optimal temperature for growth at all NaCl concentrations was 25 degrees C. Phospholipid composition and guanine plus cytosine content of the DNA of the isolate indicate a close relation to the genus Planococcus.

  16. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  17. The rise of oxygen and aerobic biochemistry.

    PubMed

    Saito, Mak A

    2012-01-11

    Analysis of conserved protein folding domains across extant genomes by Kim et al. in this issue of Structure provides insights into the timing of some of the earliest aerobic metabolisms to arise on Earth.

  18. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  19. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  20. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  1. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  2. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  3. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    PubMed

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  4. Evidence of Carbon Fixation Pathway in a Bacterium from Candidate Phylum SBR1093 Revealed with Genomic Analysis

    PubMed Central

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere. PMID:25310003

  5. Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine.

    PubMed

    Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar

    2017-05-01

    Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL(-1)h(-1), ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL(-1)h(-1) respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater.

  6. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.

  7. Pneumonia caused by a previously undescribed bacterium.

    PubMed Central

    Hopfer, R L; Mills, K; Fainstein, V; Fischer, H E; Luna, M P

    1982-01-01

    A new and as yet unidentified bacterium was isolated from the lung tissue of a cancer patient with bilateral pneumonia. Clinically, the pneumonia was consistent with legionellosis; the organism cultured from the lung grew only on the charcoal-yeast extract agar routinely used for Legionella isolation. Subsequent testing, however, showed the organism to be quite distinct from the known Legionella species in its biochemical, antigenic, and growth characteristics. Images PMID:7130363

  8. System-level approach to studying oxygen stress and acclimation of Shewanella oneidensis to growth under aerobic conditions

    NASA Astrophysics Data System (ADS)

    Beliaev, A.

    2008-12-01

    Systems-level approaches have been proven extremely useful in elucidating the mechanisms involved in stress response and acclimation of microorganisms to different environments. Recent studies of Shewanella oneidensis, a dissimilatory metal reducer catalyzing biogeochemical cycling of Fe and Mn, demonstrate that this facultatively aerobic bacterium is inhibited by high concentrations of oxygen. Physiological and genomic studies demonstrated that growth under aerobic conditions triggers autoaggregation of S. oneidensis leading to significant physiological and morphological changes which are consistent with biofilm mode of growth. Global transcriptome profiling of the aggregates revealed coordinated upregulation of various attachment and adhesion factors which is governed through coordinate regulation by the RpoS, SpoIIA, and Crp transcription factors. The aerobic aggregated cells also revealed increased expression of putative anaerobic electron transfer and homologs of metal reduction genes. The experimental evidence indicates that aggregate formation in S. oneidensis may serve as an alternative or an addition to biochemical detoxification to reduce the oxidative stress associated with production of reactive oxygen species during aerobic metabolism while facilitating the development of hypoxic conditions within the aggregate interior.

  9. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium

    NASA Astrophysics Data System (ADS)

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300 μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1 d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater.

  10. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    PubMed

    Vasilyeva, Lina V; Omelchenko, Marina V; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N; Zavarzin, George A

    2006-09-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at low temperature. This prosthecate bacterium was a psychrotolerant, moderately acidophilic organism capable of growth between 4 and 28 degrees Celsius (optimum 15-20 degrees Celsius) and between pH 4.5 and 8.0 (optimum 5.6-6.0). The major phospholipid fatty acid was 18 : 1omega7c and the major phospholipids were phosphatidylglycerols. The G+C content of the DNA was 60.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain Z-0023(T) was most closely related to Asticcacaulis biprosthecium (98 % similarity), Asticcacaulis taihuensis (98 %) and Asticcacaulis excentricus (95 %). However, low levels of DNA-DNA relatedness to these organisms and a number of distinctive features of the tundra wetland isolate indicated that it represented a novel species of the genus Asticcacaulis, for which the name Asticcacaulis benevestitus sp. nov. is proposed. The type strain is Z-0023(T) (=DSM 16100(T)=ATCC BAA-896(T)).

  11. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403

    PubMed Central

    Bolotin, Alexander; Wincker, Patrick; Mauger, Stéphane; Jaillon, Olivier; Malarme, Karine; Weissenbach, Jean; Ehrlich, S. Dusko; Sorokin, Alexei

    2001-01-01

    Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus Streptococcus and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire genome and a shotgun polishing step. The genome contains 2,365,589 base pairs and encodes 2310 proteins, including 293 protein-coding genes belonging to six prophages and 43 insertion sequence (IS) elements. Nonrandom distribution of IS elements indicates that the chromosome of the sequenced strain may be a product of recent recombination between two closely related genomes. A complete set of late competence genes is present, indicating the ability of L. lactis to undergo DNA transformation. Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration. It also indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of Salmonella-Escherichia group. [The sequence data described in this paper has been submitted to the GenBank data library under accession no. AE005176.] PMID:11337471

  12. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    PubMed

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria.

  13. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA.

    PubMed

    Simbahan, Jessica; Drijber, Rhae; Blum, Paul

    2004-09-01

    A thermo-acidophilic Gram-positive bacterium, strain CsHg2T, which grows aerobically at 35-65 degrees C (optimum 55 degrees C) and at pH 2.0-6.0 (optimum 4.0), was isolated from a geothermal pool located in Coso Hot Springs in the Mojave Desert, California, USA. Phylogenetic analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to the type strains of Alicyclobacillus acidocaldarius (97.8 % identity) and Alicyclobacillus sendaiensis (96.9 %), three Japanese strains denoted as UZ-1, KHA-31 and MIH 332 (96.1-96.5 %) and Alicyclobacillus genomic species FR-6 (96.3 %). Phenotypic characteristics including temperature and pH optima, G+C composition, acid production from a variety of carbon sources and sensitivity to different metal salts distinguished CsHg2T from A. acidocaldarius, A. sendaiensis and FR-6. The cell lipid membrane was composed mainly of omega-cyclohexyl fatty acid, consistent with membranes from other Alicyclobacillus species. Very low DNA-DNA hybridization values between CsHg2T and the type strains of Alicyclobacillus indicate that CsHg2T represents a distinct species. On the basis of these results, the name Alicyclobacillus vulcanalis sp. nov. is proposed for this organism. The type strain is CsHg2T (ATCC BAA-915T = DSM 16176T).

  14. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    PubMed Central

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway. PMID:24116023

  15. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    PubMed Central

    Abdallah, Rehab Z.; Adel, Mustafa; Ouf, Amged; Sayed, Ahmed; Ghazy, Mohamed A.; Alam, Intikhab; Essack, Magbubah; Lafi, Feras F.; Bajic, Vladimir B.; El-Dorry, Hamza; Siam, Rania

    2014-01-01

    The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces. PMID:25295031

  16. Isolation and characterization of comprehensive polychlorinated biphenyl degrading bacterium, Enterobacter sp. LY402.

    PubMed

    Jia, Ling-Yun; Zheng, Ai-Ping; Xu, Li; Huang, Xiao-Dong; Zhang, Qing; Yang, Feng-Lin

    2008-05-01

    A Gram-negative bacterium, named LY402, was isolated from contaminated soil. 16S rDNA sequencing and measurement of the physiological and biochemical characteristics identified it as belonging to the genus Enterobacter. Degradation experiments showed that LY402 had the ability to aerobically transform 79 of the 91 major congeners of Aroclor 1242, 1254, and 1260. However, more interestingly, the strain readily degraded certain highly chlorinated and recalcitrant polychlorinated biphenyls (PCBs). Almost all the tri- and tetra-chlorobiphenyls (CBs), except for 3,4,3',4'-CB, were degraded in 3 days, whereas 73% of 3,4,3',4'-, 92% of the penta-, 76% of the hexa-, and 37% of the hepta-CBs were transformed after 6 days. In addition, among 12 octa-CBs, 2,2',3,3',5,5',6,6- CB was obviously degraded, and 2,2',3,3',4,5,6,6'- and 2,2',3,3',4,5,5',6'-CB were slightly transformed. In a metabolite analysis, mono- and di-chlorobenzoic acids (CBAs) were identified, and parts of them were also transformed by strain LY402. Analysis of PCB degradation indicated that strain LY402 could effectively degrade PCB congeners with chlorine substitutions in both ortho- and para-positions. Consequently, this is the first report of an Enterobacteria that can efficiently degrade both low and highly chlorinated PCBs under aerobic conditions.

  17. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  18. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  19. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil.

    PubMed

    Zhang, Jun; Zhou, Wuxian; Liu, Bingbing; He, Jian; Shen, Qirong; Zhao, Fang-Jie

    2015-05-19

    Microbe-mediated arsenic (As) redox reactions play an important role in the biogeochemical cycling of As. Reduction of arsenate [As(V)] generally leads to As mobilization in paddy soils and increased As availability to rice plants, whereas oxidation of arsenite [As(III)] results in As immobilization. A novel chemoautotrophic As(III)-oxidizing bacterium, designated strain SY, was isolated from an As-contaminated paddy soil. The isolate was able to derive energy from the oxidation of As(III) to As(V) under both aerobic and anaerobic conditions using O2 or NO3(-) as the respective electron acceptor. Inoculation of the washed SY cells into a flooded soil greatly enhanced As(III) oxidation to As(V) both in the solution and adsorbed phases of the soil. Strain SY is phylogenetically closely related to Paracoccus niistensis with a 16S rRNA gene similarity of 96.79%. The isolate contains both the denitrification and ribulose 1,5-bisphosphate carboxylase/oxygenase gene clusters, underscoring its ability to denitrify and to fix CO2 while coupled to As(III) oxidation. Deletion of the aioA gene encoding the As(III) oxidase subunit A abolished the As(III) oxidation ability of strain SY and led to increased sensitivity to As(III), suggesting that As(III) oxidation is a detoxification mechanism in this bacterium under aerobic and heterotrophic growth conditions. Analysis of the aioA gene clone library revealed that the majority of the As(III)-oxidizing bacteria in the soil were closely related to the genera Paracoccus of α-Proteobacteria. Our results provide direct evidence for As(III) oxidation by Paracoccus species and suggest that these species may play an important role in As(III) oxidation in paddy soils under both aerobic and denitrifying conditions.

  20. Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteriodetes/Chlorobi group.

    PubMed

    Kadnikov, Vitaly V; Mardanov, Andrey V; Podosokorskaya, Olga A; Gavrilov, Sergey N; Kublanov, Ilya V; Beletsky, Alexey V; Bonch-Osmolovskaya, Elizaveta A; Ravin, Nikolai V

    2013-01-01

    Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2(T). A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi.

  1. Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106).

    SciTech Connect

    Temperton, B.; Thomas, S.; Tait, K.; Parry, H.; Emery, M.; Allen, M.; Quinn, J.; McGrath, J.; Gilbert, J.

    2011-01-01

    Vibrio tubiashii NCIMB 1337 is a major and increasingly prevalent pathogen of bivalve mollusks, and shares a close phylogenetic relationship with both V. orientalis and V. coralliilyticus. It is a Gram-negative, curved rod-shaped bacterium, originally isolated from a moribund juvenile oyster, and is both oxidase and catalase positive. It is capable of growth under both aerobic and anaerobic conditions. Here we describe the features of this organism, together with the draft genome and annotation. The genome is 5,353,266 bp long, consisting of two chromosomes, and contains 4,864 protein-coding and 86 RNA genes.

  2. Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov.

    PubMed Central

    Kokcha, Sahare; Ramasamy, Dhamodharan; Lagier, Jean-Christophe; Robert, Catherine; Raoult, Didier

    2012-01-01

    Brevibacterium senegalense strain JC43T sp. nov. is the type strain of Brevibacterium senegalense sp. nov., a new species within the Brevibacterium genus. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. B. senegalense is an aerobic rod-shaped Gram-positive bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,425,960 bp long genome (1 chromosome but no plasmid) contains 3,064 protein-coding and 49 RNA genes. PMID:23408786

  3. Non-contiguous finished genome sequence and description of Brevibacillus massiliensis sp. nov.

    PubMed Central

    Hugon, Perrine; Mishra, Ajay Kumar; Lagier, Jean-Christophe; Nguyen, Thi Thien; Couderc, Carine; Raoult, Didier; Fournier, Pierre-Edouard

    2013-01-01

    Brevibacillus massiliensis strain phRT sp. nov. is the type strain of B. massiliensis sp. nov., a new species within the genus Brevibacillus. This strain was isolated from the fecal flora of a woman suffering from morbid obesity. B. massiliensis is a Gram-positive aerobic rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,051,018 bp long genome (1 chromosome but no plasmid) contains 5,051 protein-coding and 84 RNA genes, and exhibits a G+C content of 53.1%. PMID:23961307

  4. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  5. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  6. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  7. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  8. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  9. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  10. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  11. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  12. Aerobic exercise in fibromyalgia: a practical review.

    PubMed

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  13. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  14. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  15. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  16. [The new bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda Mono Lake (California, United States)].

    PubMed

    Boldareva, E N; Briantseva, I A; Tsapin, A; Nelson, K; Sorokin, D Iu; Turova, T P; Boĭchenko, V A; Stadnichuk, I N; Gorlenko, V M

    2007-01-01

    Two strains of pink-colored aerobic bacteriochlorophyll a-containing bacteria were isolated from aerobic (strain ROS 10) and anaerobic (strain ROS 35) zones of the water column of Mono Lake (California, United States). Cells of the bacteria were nonmotile oval gram-negative rods multiplying by binary fission by means of a constriction. No intracellular membranes were detected. Polyphosphates and poly-1-hydroxybutyric acid were the storage compounds. Pigments were represented by bacteriochlorophyll a and carotenoids of the spheroidene series. The strains were obligately aerobic, mesophilic (temperature optimum of 25-30 degrees C), alkaliphilic (pH optimum of 8.5-9.5), and halophilic (optimal NaCl concentration of 40-60 g/l). They were obligately heterotrophic and grew aerobically in the dark and in the light. Respiration was inhibited by light at wavelengths corresponding to the absorption of the cellular pigments. The substrate utilization spectra were strain-specific. In the course of organotrophic growth, the bacteria could oxidize thiosulfate to sulfate; sulfide and polysulfide could also be oxidized. The DNA G+C content was 59.4 mol % in strain ROS 10 and 59 mol % in strain ROS 35. In their phenotypic properties, the new strains were close but not identical to the alkaliphilic bacterium Roseinatronobacter thiooxidans. The distinctions in the nucleotide sequences of the 16S rRNA genes (2%) and low DNA-DNA hybridization level with Rna. thiooxidans (22-25%) allow the new strains to be assigned to a new species of the genus Roseinatronobacter, Roseinatronobacter monicus sp. nov.

  17. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    PubMed

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  18. Draft Genome Sequence of the Suttonella ornithocola Bacterium

    PubMed Central

    Waldman Ben-Asher, Hiba; Yerushalmi, Rebecca; Wachtel, Chaim; Barbiro-Michaely, Efrat

    2017-01-01

    ABSTRACT   We report here the draft genome sequence of the Suttonella ornithocola bacterium. To date, this bacterium, found in birds, passed only phylogenetic and phenotypic analyses. To our knowledge, this is the first publication of the Suttonella ornithocola genome sequence. The genetic profile provides a basis for further analysis of its infection pathways. PMID:28209820

  19. Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes▿ †

    PubMed Central

    Setubal, João C.; dos Santos, Patricia; Goldman, Barry S.; Ertesvåg, Helga; Espin, Guadelupe; Rubio, Luis M.; Valla, Svein; Almeida, Nalvo F.; Balasubramanian, Divya; Cromes, Lindsey; Curatti, Leonardo; Du, Zijin; Godsy, Eric; Goodner, Brad; Hellner-Burris, Kaitlyn; Hernandez, José A.; Houmiel, Katherine; Imperial, Juan; Kennedy, Christina; Larson, Timothy J.; Latreille, Phil; Ligon, Lauren S.; Lu, Jing; Mærk, Mali; Miller, Nancy M.; Norton, Stacie; O'Carroll, Ina P.; Paulsen, Ian; Raulfs, Estella C.; Roemer, Rebecca; Rosser, James; Segura, Daniel; Slater, Steve; Stricklin, Shawn L.; Studholme, David J.; Sun, Jian; Viana, Carlos J.; Wallin, Erik; Wang, Baomin; Wheeler, Cathy; Zhu, Huijun; Dean, Dennis R.; Dixon, Ray; Wood, Derek

    2009-01-01

    Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins. PMID:19429624

  20. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process.

    PubMed

    Tang, Shaoyu; Yin, Hua; Chen, Shuona; Peng, Hui; Chang, Jingjing; Liu, Zehua; Dang, Zhi

    2016-05-05

    Decabromodiphenyl ether (BDE-209) is one of the most commonly used brominated flame retardants that have contaminated the environment worldwide. Microbial bioremediation has been considered as an effective technique to remove these sorts of persistent organic pollutants. Enterococcus casseliflavus, a gram-positive bacterium capable of aerobically transforming BDE-209, was isolated by our team from sediments in Guiyu, an e-waste dismantling area in Guangdong Province, China. To promote microbial bioremediation of BDE-209 and elucidate the mechanism behind its aerobic degradation, the effects of BDE-209 on the cell changes of E. casseliflavus were examined in this study. The experimental results demonstrated that the high cell surface hydrophobicity (CSH) of E. casseliflavus made the bacteria absorb hydrophobic BDE-209 more easily. E. casseliflavus responded to BDE-209 stress, resulting in an increase in cell membrane permeability and accumulation of BDE-209 inside the cell. The differential expression of intracellular protein was analyzed through two-dimensional gel electrophoresis (2-DE). More than 50 differentially expressed protein spots were reproducibly detected, including 25 up, and 25 down regulated after a 4 days exposure. Moreover, the apoptotic-like cell changes were observed during E. casseliflavus mediated degradation of BDE-209 by means of flow cytometry.

  1. Effects of hexavalent chromium on performance and microbial community of an aerobic granular sequencing batch reactor.

    PubMed

    Wang, Zichao; Gao, Mengchun; She, Zonglian; Jin, Chunji; Zhao, Yangguo; Yang, Shiying; Guo, Liang; Wang, Sen

    2015-03-01

    The performance and microbial community of an aerobic granular sequencing batch reactor (GSBR) were investigated at different hexavalent chromium (Cr(VI)) concentrations. The COD and NH4 (+)-N removal efficiencies decreased with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific oxygen utilization rate (SOUR) decreased from 34.86 to 12.18 mg/(g mixed liquor suspended sludge (MLSS)·h) with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR) decreased with the increase in Cr(VI) concentration, whereas the SNRR was always higher than the sum of SAOR and SNOR at 0-30 mg/L Cr(VI). The scanning electron micrographs (SEM) showed some undefined particles on the surface of filamentous bacteria that might be the chelation of chromium and macromolecular organics at 30 mg/L Cr(VI). The denaturing gradient gel electrophoresis (DGGE) profiles revealed that some microorganisms adapting to high Cr(VI) concentration gradually became the predominant bacteria, while others without Cr(VI)-tolerance capacity tended to deplete or weaken. Some bacteria could tolerate the toxicity of high Cr(VI) concentration in the aerobic GSBR, such as Propionibacteriaceae bacterium, Ochrobactrum anthropi, and Micropruina glycogenica.

  2. Wukongibacter baidiensis gen. nov., sp. nov., an anaerobic bacterium isolated from hydrothermal sulfides, and proposal for the reclassification of the closely related Clostridium halophilum and Clostridium caminithermale within Maledivibacter gen. nov. and Paramaledivibacter gen. nov., respectively.

    PubMed

    Li, Guangyu; Zeng, Xiang; Liu, Xiupian; Zhang, Xiaobo; Shao, Zongze

    2016-11-01

    An anaerobic, Gram-stain-positive, spore-forming bacterium, designated DY30321T, was isolated from a sample of mixed hydrothermal sulfides collected during cruise DY30 of R/V Da Yang Yi Hao. Cells of strain DY30321T were rod-shaped with rounded ends, and were not motile. Strain DY30321T grew optimally at pH 8.0, at 30 °C and at a salinity (sea salts) of 30-40 g l-1. The principal fatty acids of strain DY30321T were C14 : 0 and summed feature 1 (comprising iso H-C15 : 1/C13 : 0 3-OH). The predominant polar lipids of strain DY30321T were diphosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. No respiratory quinone was detected. The G+C content of the genomic DNA of strain DY30321T was 33.4 mol%. Phylogenetically, strain DY30321T branched within the family Peptostreptococcaceae, with (misclassified) Clostridium halophilum M1T being its closest phylogenetic relative (94.6 % 16S rRNA gene sequence similarity), followed by (misclassified) Clostridium caminithermale DVird3T (92.1 %). These strains showed very low 16S rRNA gene sequence similarity (<84 %) to Clostrdium butyricum ATCC 19398T, the type species of the genus Clostridium sensu stricto. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain DY30321T (=KCTC 15549T=MCCC 1A01532T) is considered as the type strain of a novel species of a new genus in the family Peptostreptococcaceae, for which the name Wukongibacterbaidiensis gen. nov., sp. nov. is proposed. Maledivibacter gen. nov. is proposed to accommodate Clostridium halophilum as Maledivibacter halophilus comb. nov. (type species of the genus), and Paramaledivibacter gen. nov. to accommodate Clostridium caminithermale as Paramaledivibacter caminithermalis comb. nov. (type species of the genus).

  3. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H/sub 2/-CO/sub 2/

    SciTech Connect

    Lee, M.J.; Zinder, S.H.

    1988-01-01

    The authors previously described a thermophilic (60/sup 0/C), syntrophic, two-membered culture which converted acetate to methane via a two-step mechanism in which acetate was oxidized to H/sub 2/ and CO/sub 2/. While the hydrogenotrophic methanogen Methanobacterium sp. strain THF in the biculture was readily isolated, we were unable to find a substrate that was suitable for isolation of the acetate-oxidizing member of the biculture. In this study, we found that the biculture grew on ethylene glycol, and an acetate-oxidizing, rod-shape bacterium (AOR) was isolated from the biculture by dilution into medium containing ethylene glycol as the growth substrate. When the axenic culture of the AOR was recombined with a pure culture of Methanobacterium sp. strain THF, the reconstituted biculture grew on acetate and converted it to CH/sub 4/. The AOR used ethylene glycol, 1,2-propanediol, formate, pyruvate, glycine-betaine, and H/sub 2/-CO/sub 2/ as growth substrates. Acetate was the major fermentation product detected from these substrates, except for 1,2-propanediol, which was converted to 1-propanol and propionate. N,N-Dimethylglycine was also formed from glycine-betaine. Acetate was formed in stoichiometric amounts during growth on H/sub 2/-CO/sub 2/, demonstrating that the AOR is an acetogen. This reaction, which was carried out by the pure culture of the AOR in the presence of high partial pressures of H/sub 2/, was the reverse of the acetate oxidation reaction carried out by the AOR when hydrogen partial pressures were kept low by coculturing it with Methanobacterium sp. strain THF. The DNA base composition of the AOR was 47 mol% guanine plus cytosine, and no cytochromes were detected.

  4. FtsZ-Dependent Elongation of a Coccoid Bacterium

    PubMed Central

    Pereira, Ana R.; Hsin, Jen; Król, Ewa; Tavares, Andreia C.; Flores, Pierre; Hoiczyk, Egbert; Ng, Natalie; Dajkovic, Alex; Brun, Yves V.; VanNieuwenhze, Michael S.; Roemer, Terry; Carballido-Lopez, Rut; Huang, Kerwyn Casey

    2016-01-01

    ABSTRACT A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZG193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZG193D filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. PMID:27601570

  5. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  6. Molecular and Cellular Fundamentals of Aerobic Cometabolism

    DTIC Science & Technology

    1998-10-01

    1 99 1 ) Butane Pseudomonas butane monooxygenase (Hamamura, et al . , butanovorars (BMO) 1 997) 2,4-Dichloro Alcaligenes eutrophus...Leadbetter and Foster, 1 960). These studies initially revealed that the methane-utilizing bacterium Pseudomonas (Methylomonas) methanica could not grow...enzyme is required for each insertion. Pseudomonas mendocina KR 1 toluene-4-monooxygenase (T4MO) produces p-cresol ; Pseudomonas picketii toluene

  7. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice.

    PubMed

    Vance, Tyler D R; Olijve, Luuk L C; Campbell, Robert L; Voets, Ilja K; Davies, Peter L; Guo, Shuaiqi

    2014-07-04

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches.

  8. Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology

    PubMed Central

    Knabe, Nicole; Siedler, Frank; Scheffer, Beatrix; Pflüger-Grau, Katharina; Pfeiffer, Friedhelm; Oesterhelt, Dieter; Marin-Sanguino, Alberto

    2017-01-01

    Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain compatible solute towards an understanding of how the metabolic network as a whole addresses the problem. Metabolic reconstruction based on genomic data together with Flux Balance Analysis (FBA) is a promising tool to gain insight into this problem. However, as more of these reconstructions become available, it becomes clear that processes predicted by genome annotation may not reflect the processes that are active in vivo. As a case in point, E. coli is unable to grow aerobically on citrate in spite of having all the necessary genes to do it. It has also been shown that the realization of this genetic potential into an actual capability to metabolize citrate is an extremely unlikely event under normal evolutionary conditions. Moreover, many marine bacteria seem to have the same pathways to metabolize glucose but each species uses a different one. In this work, a metabolic network inferred from genomic annotation of the halophilic bacterium Halomonas elongata and proteomic profiling experiments are used as a starting point to motivate targeted experiments in order to find out some of the defining features of the osmoregulatory strategies of this bacterium. This new information is then used to refine the network in order to describe the actual capabilities of H. elongata, rather than its genetic potential. PMID:28081159

  9. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice

    PubMed Central

    Vance, Tyler D. R.; Olijve, Luuk L. C.; Campbell, Robert L.; Voets, Ilja K.; Davies, Peter L.; Guo, Shuaiqi

    2014-01-01

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches. PMID:24892750

  10. Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5

    NASA Astrophysics Data System (ADS)

    Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce

    2012-07-01

    The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.

  11. Sulfuriferula thiophila sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium, and correction of the name Sulfuriferula plumbophilusWatanabe, Kojima and Fukui 2015 to Sulfuriferula plumbiphila corrig.

    PubMed

    Watanabe, Tomohiro; Kojima, Hisaya; Fukui, Manabu

    2016-05-01

    A novel sulfur-oxidizing bacterium designated strain mst6T was isolated from spring water of Masutomi hot spring in Japan. The cells were rod-shaped (1.2-4.0 × 0.5-0.7 μm) and Gram-stain-negative. The G+C content of genomic DNA was around 52.6 mol%. The isolate possessed summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C12 : 0 as major cellular fatty acids. Strain mst6T grew by inorganic carbon fixation and oxidation of inorganic sulfur compounds with oxygen as an electron acceptor. The isolate grew over a temperature range of 5-34 °C, a NaCl concentration range of 0-110 mM and a pH range of 4.6-8.1. Optimum growth occurred at 32 °C, in the absence of NaCl and at pH 5.9-6.2. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain mst6T belongs to the family Sulfuricellaceae in the class Betaproteobacteria. The closest cultured relative was Sulfuriferula multivorans TTNT with a 16S rRNA gene sequence similarity of 97.0 %. On the basis of the data obtained in this study, strain mst6T represents a novel species of the genus Sulfuriferula, for which the name Sulfuriferula thiophila sp. nov. is proposed. The type strain is mst6T ( = NBRC 111150T = DSM 101871T). In addition, we propose correcting the name Sulfuriferula plumbophilus Watanabe, Kojima and Fukui 2015 to Sulfuriferula plumbiphila corrig. based on Rule 12c, Rule 61 and Appendix 9 of the International Code of Nomenclature of Prokaryotes.

  12. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  13. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  14. Complete genome of Streptomyces hygroscopicus subsp. limoneus KCTC 1717 (=KCCM 11405), a soil bacterium producing validamycin and diverse secondary metabolites.

    PubMed

    Lee, Sang-Heon; Choe, Hanna; Bae, Kyung Sook; Park, Doo-Sang; Nasir, Arshan; Kim, Kyung Mo

    2016-02-10

    Streptomyces hygroscopicus subsp. limoneus is a Gram-positive, aerobic, aerial mycelial, spore-forming bacterium that was first isolated from a soil sample in Akashi City, Hyogo Prefecture, Japan. We here report the complete genome of S. hygroscopicus subsp. limoneus KCTC 1717 (=KCCM 11405=IFO 12704=ATCC 21432), which consists of 10,537,932 bp (G+C content of 71.96%) with two linear chromosomes, 8983 protein-coding genes, 67 tRNAs and 6 rRNA operons. Genes related to biosynthesis of validamycin, valienamine and diverse secondary metabolites were detected in this genome. Genomic data is thus expected to considerably improve our understanding of how industrially important aminocyclitols are biosynthesized by microbial cells.

  15. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut

    PubMed Central

    Khelaifia, S.; Croce, O.; Lagier, J.-C.; Robert, C.; Couderc, C.; Di Pinto, F.; Davoust, B.; Djossou, F.; Raoult, D.; Fournier, P.-E.

    2015-01-01

    Strain Vm-5T was isolated from the stool specimen of a 10-year-old Amazonian boy. This bacterium is a Gram-positive, strictly aerobic rod, motile by a polar flagellum. Here we describe its phenotypic characteristics and complete genome sequence. The 4 353 177 bp long genome exhibits a G + C content of 36.87% and contains 4394 protein-coding and 125 predicted RNA genes. Phylogenetically and genetically, strain Vm-c is a member of the genus Virgibacillus but is distinct enough to be classified as a new species. We propose the creation of V. massiliensis sp. nov., whose type strain is strain Vm-5T (CSUR P971 = DSM 28587). PMID:26649181

  16. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  17. [Rhodobaculum claviforme gen. nov., sp. nov., a New Alkaliphilic Nonsulfur Purple Bacterium].

    PubMed

    Bryantseva, I A; Gaisin, V A; Gorlenko, V M

    2015-01-01

    Two alkaliphilic strains of nonsulfur purple bacteria (NPB), B7-4 and B8-2, were isolated from southeast Siberia moderately saline alkaline steppe lakes with pH values above 9.0. The isolates were motile, polymorphous cells (from short rods to long spindly cells) 2.0-3.2 x 9.6-20.0 μm. Intracellular membranes of vesicular type were mostly located at the cell periphery. The microorganisms contained bacteriochlorophyll a and carotenoids of the spheroidene and spirilloxanthin series. The photosynthetic apparatus was represented by LH2 and LH1 light-harvesting complexes. In the presence of organic compounds, the strains grew aerobically in the dark or anaerobically in the light. Capacity for photo- and chemoautotrophic growth was not detected. The cbbl gene encoding RuBisCO was not revealed. Optimal growth of both strains occurred at 2% NaCl (range from 0.5 to 4%), pH 8.0-8.8 (range from 7.5 to 9.7), and 25-35 degrees C. The DNA G+C content was 67.6-69.8 mol %. Pairwise comparison of the nucleotides of the 16S rRNA genes revealed that strains B7-4 and B8-2 belonged to the same species (99.9% homology) and were most closely related to the aerobic alkaliphilic bacteriochlorophyll a-containing anoxygenic phototrophic bacterium (APB) Roseibacula alcaliphilum De (95.2%) and to NPB strains Rhodobaca barguzinensis VKM B-2406(T) (94.2%) and Rbc. bogoriensis LBB1(T) (93.9%). The isolates were closely related to the NPB Rhodobacter veldkampii DSM 11550(T) (94.8%) and to aerobic bacteriochlorophyll a-containing bacteria Roseinatronobacter monicus ROS 35(T) and Roseicitreum antarcticul ZS2-28(T) (93.5 and 93.9%, respectively). New strains were described as a new NPB genus and species of the family Rhodobacteriaceae, Rhodobaculum claviforme gen. nov., sp. nov., with B7-4(T) (VKM B-2708, LMG 28126) as the type strain.

  18. Bacillus coreaensis sp. nov.: a xylan-hydrolyzing bacterium isolated from the soil of Jeju Island, Republic of Korea.

    PubMed

    Chi, Won-Jae; Youn, Young Sang; Park, Jae-Seon; Hong, Soon-Kwang

    2015-07-01

    A xylan-degrading bacterium, designated as MS5(T) strain, was isolated from soil collected from the Jeju Island, Republic of Korea. Strain MS5(T) was Gram-stain-positive, aerobic, and motile by polar flagellum. The major fatty acids identified in this bacterium were iso-C15:0 (32.3%), C16:0 (27.3%), and anteiso-C15:0 (10.2%). A similarity search based on the 16S rRNA gene sequence revealed that the strain belongs to the class Bacilli and shared the highest similarity with the type strains Bacillus beringensis BR035(T) (98.7%) and Bacillus korlensis ZLC-26(T) (98.6%) which form a coherent cluster in a neighbor-joining phylogenetic tree. The DNA G+C content of strain MS5(T) was 43.0 mol%. The major menaquinone was MK-7 and the diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The DNADNA relatedness values between strain MS5(T) and two closely related species, B. beringensis BR035(T) and B. korlensis ZLC-26(T), were less than 70%. DNA-DNA relatedness analysis and 16S rRNA sequence similarity, as well as phenotypic and chemotaxonomic characteristics suggest that the strain MS5(T) constitutes a novel Bacillus species, for which the name Bacillus coreaensis sp. nov. is proposed. The type strain is MS5(T) (=DSM25506(T) =KCTC13895(T)).

  19. Gene function analysis in environmental isolates: The nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans

    PubMed Central

    Parro, Víctor; Moreno-Paz, Mercedes

    2003-01-01

    A random genomic library from an environmental isolate of the Gram-negative bacterium Leptospirillum ferrooxidans has been printed on a microarray. Gene expression analysis was carried out with total RNA extracted from L. ferrooxidans cultures in the presence or absence of ammonium as nitrogen source under aerobic conditions. Although practically nothing is known about the genome sequence of this bacterium, this approach allowed us the selection and sequencing of only those clones bearing genes that showed an altered expression pattern. By sequence comparison, we have identified most of the genes of nitrogen fixation regulon in L. ferrooxidans, like the nifHDKENX operon, encoding the structural components of Mo-Fe nitrogenase; nifSU-hesB-hscBA-fdx operon, for Fe-S cluster assembly; the amtB gene (ammonium transporter); modA (molybdenum ABC type transporter); some regulatory genes like ntrC, nifA (the specific activator of nif genes); or two glnB-like genes (encoding the PII regulatory protein). Our results show that shotgun DNA microarrays are very powerful tools to accomplish gene expression studies with environmental bacteria whose genome sequence is still unknown, avoiding the time and effort necessary for whole genome sequencing projects. PMID:12808145

  20. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor.

    PubMed

    Rehfuss, Marc; Urban, James

    2005-07-01

    A Gram (-) coccobacillary bacterium, J(T), was isolated from a graywater bioprocessor. 16S rRNA and biochemical analysis has revealed strain J(T) closely resembles Alcaligenes faecalis ATCC 8750T and A. faecalis subsp. parafaecalis DSM 13975T, but is a distinct, previously uncharacterized isolate. Strain J(T), along with the type strain of A. faecalis and its previously described subspecies share the ability to aerobically degrade phenol. The degradation rates of phenol for strain J(T) and reference phenol degrading bacteria were determined by photometrically measuring the change in optical density when grown on 0.1% phenol as the sole carbon source, followed by addition of Gibb's reagent to measure depletion of substrate. The phenol degradation rates of strain J(T) was found to exceed that of the phenol hydroxylase group III bacterium Pseudomonas pseudoalcaligenes, with isolate J(T) exhibiting a doubling time of 4.5 h. The presence of the large subunit of the multicomponent phenol hydroxylase gene in strain J(T) was confirmed by PCR. The presence of the nirK nitrite reductase gene as demonstrated by PCR as well as results obtained from nitrite media indicated denitrification at least to N2O. Based on phenotypic, phylogenetic, fatty acid analysis and results from DNA DNA hybridization, we propose assigning a novel subspecies of Alcaligenes faecalis, to be named Alcaligenes faecalis subsp. phenolicus with the type strain J(T) (= DSM 16503) (= NRRL B-41076).

  1. Isolation and characterization of a bacterium capable of removing taste- and odor-causing 2-methylisoborneol from water.

    PubMed

    Lauderdale, Chance V; Aldrich, Henry C; Lindner, Angela S

    2004-11-01

    2-Methylisoborneol (MIB), a metabolite of blue-green algae, has been implicated in causing unpalatable drinking water throughout the world. Current non-biological water treatment technologies are ineffective in removing MIB from potable water or are cost-prohibitive, and biological applications may address these problems. We have isolated and characterized a bacterium derived from lake water and capable of aerobically degrading MIB. Light microscopy and transmission electron microscopy revealed that this strain is a spore-forming, flagellated bacterium that is bacilloid in shape, and 16S rRNA phylogenetic analysis determined that it is most closely related to Bacillus fusiformis and Bacillus sphaericus, both members of the Bacillus sphaericus senso lato taxon. While the growth and oxidation potential of this strain was shown to be affected beyond certain MIB concentrations in the mg/l range, it was capable of depleting MIB at mg/l and ng/l concentrations and of removing MIB to concentrations yielding no observed odor.

  2. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  3. [Cardiovascular protection and mechanisms of actions of aerobic exercise].

    PubMed

    Hou, Zuo-Xu; Zhang, Yuan; Gao, Feng

    2014-08-01

    It is well established that aerobic exercise exerts beneficial effect on cardiovascular system, but the underlying mechanisms are yet to be elucidated. Recent studies have shown that aerobic exercise ameliorates insulin resistance, inflammation and mitochondrial dysfunction which play important roles in the development of cardiovascular disease. In this review, we discussed the underlying mechanisms of the cardioprotective role of aerobic exercise, especially the latest progress in this field.

  4. Rhizobium yantingense sp. nov., a mineral-weathering bacterium.

    PubMed

    Chen, Wei; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi

    2015-02-01

    A Gram-stain-negative, rod-shaped bacterial strain, H66(T), was isolated from the surfaces of weathered rock (purple siltstone) found in Yanting, Sichuan Province, PR China. Cells of strain H66(T) were motile with peritrichous flagella. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain H66(T) belongs to the genus Rhizobium. It is closely related to Rhizobium huautlense SO2(T) (98.1 %), Rhizobium alkalisoli CCBAU 01393(T) (98.0 %) and Rhizobium cellulosilyticum ALA10B2(T) (98.0 %). Analysis of the housekeeping genes, recA, glnII and atpD, showed low levels of sequence similarity (<92.0 %) between strain H66(T) and other recognized species of the genus Rhizobium. The predominant components of the cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The G+C content of strain H66(T) was 60.3 mol%. Strain H66(T) is suggested to be a novel species of the genus Rhizobium based on the low levels of DNA-DNA relatedness (ranging from 14.3 % to 40.0 %) with type strains of species of the genus Rhizobium and on its unique phenotypic characteristics. The namehttp://dx.doi.org/10.1601/nm.1279Rhizobium yantingense sp. nov. is proposed for this novel species. The type strain is H66(T) ( = CCTCC AB 2014007(T) = LMG 28229(T)).

  5. Chitinophaga jiangningensis sp. nov., a mineral-weathering bacterium.

    PubMed

    Wang, Qi; Cheng, Cheng; He, Lin-Yan; Huang, Zhi; Sheng, Xia-Fang

    2014-01-01

    A Gram-stain-negative, rod-shaped bacterial strain, JN53(T), was isolated from the surfaces of weathered rock (potassic trachyte) from Nanjing, Jiangsu Province, PR China. Strain JN53(T) grew optimally at 30 °C, pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JN53(T) belonged to the genus Chitinophaga in the family Chitinophagaceae. It was most closely related to Chitinophaga terrae KP01(T) (97.3 % 16S rRNA gene sequence similarity), Chitinophaga eiseniae YC6729(T) (96.3 %). Strain JN53(T) contained MK-7 as the major menaquinone and homospermidine as the major polyamine. The main fatty acids of strain JN53(T) were iso-C15 : 0, C16 : 1ω5c, C16 : 1ω7c and/or C16 : 1ω6c (summed feature 3), iso-C17 : 0 3-OH, C16 : 0, iso-C15 : 0 3-OH and C16 : 0 3-OH. The polar lipid profile contained phosphatidylethanolamine, unknown aminolipids and unknown lipids. The total DNA G+C content of strain JN53(T) was 49.7 mol%. The low level of DNA-DNA relatedness to other species of the genus Chitinophaga and the many phenotypic properties that distinguished strain JN53(T) from recognized species of this genus demonstrated that isolate JN53(T) should be classified as representing a novel species of the genus Chitinophaga, for which the name Chitinophaga jiangningensis sp. nov. is proposed. The type strain is JN53(T) ( = CCTCC AB 2013166(T) = JCM 19354(T)).

  6. Caldanaerovirga acetigignens gen. nov., sp. nov., an anaerobic xylanolytic, alkalithermophilic bacterium isolated from Trego Hot Spring, Nevada, USA.

    PubMed

    Wagner, Isaac D; Ahmed, Sibtain; Zhao, Weidong; Zhang, Chuanlun L; Romanek, Christopher S; Rohde, Manfred; Wiegel, Juergen

    2009-11-01

    An anaerobic thermophilic bacterium, designated strain JW/SA-NV4(T), was isolated from a xylan-supplemented enrichment culture from Trego hot spring located within the Black Rock Desert (NV, USA). Cells were generally straight or slightly bent rod-shaped, 0.4-0.8 microm in width and 3-6 microm in length during exponential growth. Cells from stationary phase were variable in size and shape, showing curved or bent morphology. Motility was not seen and flagella were not observed in electron micrographs. Sporulation was not observed. Strain JW/SA-NV4(T) stained Gram-negative but is phylogenetically Gram-type positive. Growth occurred at pH(25 degrees C) 6.8-8.8, with optimum growth at pH 8.4; no growth occurred at pH 9.0 or above or at 6.5 or below. With glucose or xylose as the carbon source, strain JW/SA-NV4(T) grew at 44-74 degrees C; no growth occurred at 76 degrees C or above or at 42 degrees C or below. However, the optimum temperature was 62 and 66 degrees C when grown on glucose and xylose, respectively. The shortest doubling time observed with glucose was approximately 4 h, and with xylose approximately 3.4 h. Strain JW/SA-NV4(T) tolerated an atmosphere containing up to 0.1 % O(2); no growth occurred at a gas atmosphere of 0.2 % O(2). Chemo-organotrophic growth occurred with xylose, glucose, mannose, xylan, pyruvate, fructose, ribose, Casamino acids, mannitol, tryptone, peptone, cellobiose and yeast extract. When grown in mineral media containing 1 g yeast extract l(-1) as an electron donor, thiosulfate and sulfur were reduced to sulfide. The G+C content of the DNA was 38.6 mol% (HPLC). 16S rRNA gene sequence analysis placed strain JW/SA-NV4(T) within the order Thermoanaerobacterales and within the Thermoanaerobacterales Incertae Sedis Family III, specifically between taxa classified within the genera Thermosediminibacter and Thermovenabulum. The closest phylogenetic neighbours were Thermosediminibacter oceani JW/IW-1228P(T) (94.2 % 16S rRNA gene sequence

  7. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  8. Aerobic Capacity and Postprandial Flow Mediated Dilation.

    PubMed

    Ballard, Kevin D; Miller, James J; Robinson, James H; Olive, Jennifer L

    The consumption of a high-fat meal induces transient vascular dysfunction. Aerobic exercise enhances vascular function in healthy individuals. Our purpose was to determine if different levels of aerobic capacity impact vascular function, as measured by flow mediated dilation, following a high-fat meal. Flow mediated dilation of the brachial artery was determined before, two- and four-hours postprandial a high-fat meal in young males classified as highly trained (n = 10; VO2max = 74.6 ± 5.2 ml·kg·min(-1)) or moderately active (n = 10; VO2max = 47.3 ± 7.1 ml·kg·min(-1)). Flow mediated dilation was reduced at two- (p < 0.001) and four-hours (p < 0.001) compared to baseline for both groups but was not different between groups at any time point (p = 0.108). Triglycerides and insulin increased at two- (p < 0.001) and four-hours (p < 0.05) in both groups. LDL-C was reduced at four-hours (p = 0.05) in highly trained subjects, and two- and four-hours (p ≤ 0.01) in moderately active subjects. HDL-C decreased at two- (p = 0.024) and four-hours (p = 0.014) in both groups. Glucose increased at two-hours postprandial for both groups (p = 0.003). Our results indicate that a high-fat meal results in reduced endothelium-dependent vasodilation in highly trained and moderately active individuals with no difference between groups. Thus, high aerobic capacity does not protect against transient reductions in vascular function after the ingestion of a single high-fat meal compared to individuals who are moderately active.

  9. Pangenome Evolution in the Marine Bacterium Alteromonas

    PubMed Central

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7–83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9–5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  10. Lysinibacillus tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves.

    PubMed

    Duan, Yan-Qing; He, Song-Tao; Li, Qing-Qing; Wang, Ming-Feng; Wang, Wen-Yuan; Zhe, Wei; Cao, Yong-Hong; Mo, Ming-He; Zhai, Yu-Long; Li, Wen-Jun

    2013-06-01

    A Gram-positive, catalase- and oxidase-positive, strictly aerobic, endospore-forming rod bacterium, designated K3514(T), was isolated from the leaves of Nicotiana tabacum. The strain was able to grow at temperatures of 8-40°C, pH 5.0-10.0 and NaCl concentrations of 0-7%. The predominant quinones (>30%) of this strain were MK-7(H2) and MK-7. Phylogenetic analysis of 16S rRNA gene sequence showed that strain K3514(T) was affiliated to the genus Lysinibacillus, with its closest relatives being Lysinibacillus mangiferihumi (98.3% sequence similarity), Lysinibacillus sphaericus (97.9% sequence similarity), Lysinibacillus fusiformis (97.4% sequence similarity), and Lysinibacillus xylanilyticus (97.3% sequence similarity). However, low levels of DNA-DNA relatedness values suggested that the isolate was distinct from the other closest Lysinibacillus species. Additionally, based on analysis of morphological, physiological, and biochemical characteristics, the isolate could be differentiated from the closest known relatives. Therefore, based on polyphasic taxonomic data, the novel isolate likely represents a novel species, for which the name Lysinibacillus tabacifolii sp. nov. and the type strain K3514(T) (=KCTC 33042(T) =CCTCC AB 2012050(T)) are proposed.

  11. Genome reduction in an abundant and ubiquitous soil bacterium 'Candidatus Udaeobacter copiosus'.

    PubMed

    Brewer, Tess E; Handley, Kim M; Carini, Paul; Gilbert, Jack A; Fierer, Noah

    2016-10-31

    Although bacteria within the Verrucomicrobia phylum are pervasive in soils around the world, they are under-represented in both isolate collections and genomic databases. Here, we describe a single verrucomicrobial group within the class Spartobacteria that is not closely related to any previously described taxa. We examined more than 1,000 soils and found this spartobacterial phylotype to be ubiquitous and consistently one of the most abundant soil bacterial phylotypes, particularly in grasslands, where it was typically the most abundant. We reconstructed a nearly complete genome of this phylotype from a soil metagenome for which we propose the provisional name 'Candidatus Udaeobacter copiosus'. The Ca. U. copiosus genome is unusually small for a cosmopolitan soil bacterium, estimated by one measure to be only 2.81 Mbp, compared to the predicted effective mean genome size of 4.74 Mbp for soil bacteria. Metabolic reconstruction suggests that Ca. U. copiosus is an aerobic heterotroph with numerous putative amino acid and vitamin auxotrophies. The large population size, relatively small genome and multiple putative auxotrophies characteristic of Ca. U. copiosus suggest that it may be undergoing streamlining selection to minimize cellular architecture, a phenomenon previously thought to be restricted to aquatic bacteria. Although many soil bacteria need relatively large, complex genomes to be successful in soil, Ca. U. copiosus appears to use an alternative strategy, sacrificing metabolic versatility for efficiency to become dominant in the soil environment.

  12. Melghiribacillus thermohalophilus gen. nov., sp. nov., a novel filamentous, endospore-forming, thermophilic and halophilic bacterium.

    PubMed

    Addou, Nariman Ammara; Schumann, Peter; Spröer, Cathrin; Ben Hania, Wajdi; Hacene, Hocine; Fauque, Guy; Cayol, Jean-Luc; Fardeau, Marie-Laure

    2015-04-01

    A novel filamentous, endospore-forming, thermophilic and moderately halophilic bacterium designated strain Nari2A(T) was isolated from soil collected from an Algerian salt lake, Chott Melghir. The novel isolate was Gram-staining-positive, aerobic, catalase-negative and oxidase-positive. Optimum growth occurred at 50-55 °C, 7-10% (w/v) NaCl and pH 7-8. The strain exhibited 95.4, 95.4 and 95.2% 16S rRNA gene sequence similarity to Thalassobacillus devorans G19.1(T), Sediminibacillus halophilus EN8d(T) and Virgibacillus kekensis YIM-kkny16(T), respectively. The major menaquinone was MK-7. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three unknown phosphoglycolipids and two unknown phospholipids. The predominant cellular fatty acids were iso-C(15 : 0) and iso-C(17 : 0). The DNA G+C content was 41.9 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain Nari2A(T) is considered to represent a novel species of a new genus in the family Bacillaceae , order Bacillales , for which the name Melghiribacillus thermohalophilus gen. nov., sp. nov. is proposed. The type strain of Melghiribacillus thermohalophilus is Nari2A(T) ( = DSM 25894(T) = CCUG 62543(T)).

  13. Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium

    PubMed Central

    Payne, Rayford B; May, Harold D; Sowers, Kevin R

    2011-01-01

    Anaerobic reductive dehalogenation of commercial PCBs such as Aroclor 1260 has a critical role of transforming highly chlorinated congeners to less chlorinated congeners that are then susceptible to aerobic degradation. The efficacy of bioaugmentation with the dehalorespiring bacterium “Dehalobium chlorocoercia” DF1 was tested in 2-liter laboratory mesocosms containing sediment contaminated with weathered Aroclor 1260 (1.3 ppm) from Baltimore Harbor, MD. Total penta- and higher chlorinated PCBs decreased by approximately 56% (by mass) in bioaugmented mesocosms after 120 days compared with no activity observed in unamended controls. Bioaugmentation with DF-1 enhanced the dechlorination of doubly flanked chlorines and stimulated the dechlorination of single flanked chlorines as a result of an apparent synergistic effect on the indigenous population. Addition of granulated activated carbon had a slight stimulatory effect indicating that anaerobic reductive dechlorination of PCBs at low concentrations was not inhibited by a high background of inorganic carbon that could affect bioavailability. The total number of dehalorespiring bacteria was reduced by approximately half after 60 days. However, a steady state level was maintained that was greater than the indigenous population of putative dehalorespiring bacteria in untreated sediments and DF1 was maintained within the indigenous population after 120 days. The results of this study demonstrate that bioaugmentation with dehalorespiring bacteria has a stimulatory effect on the dechlorination of weathered PCBs and supports the feasibility of using in situ bioaugmentation as an environmentally less invasive and lower cost alternate to dredging for treatment of PCB impacted sediments. PMID:21902247

  14. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  15. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  16. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  17. Aerobic treatment of wine-distillery wastewaters

    SciTech Connect

    Sales, D.; Valcarcel, M.J.; Perez, L.; de la Ossa, E.M.

    1987-01-01

    Waste from food-processing and allied industries is largely made up of organic compounds which can be metabolized by aerobic or anaerobic means. However, these wastes present a series of problems to biological depuration plants, such as the need for prior treatment to establish conditions suitable for the development of the microorganisms responsible for the process; and the long retention time of the biomass if acceptable effluents are to be obtained. Again, the seasonal nature of many of these industries makes for very heterogeneous waste. This means that treatment plant must be versatile and are subject to rapid successions of close-down and start-up interspersed with long intervals of inactivity. All these difficulties oblige the industries in the sector to adapt depurative technology to their particular needs. Wine distilleries fall into this general category. Their waste (called vinasses) is acidic, has a high organic content and varies widely according to the raw matter distilled: wine, lies, etc. This paper studies the start-up of digestors for aerobic treatment of vinasses and the establishment of optimum operating conditions for an adequate depurative performance.

  18. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  19. Second virial coefficient of rod-shaped molecules and molecular dynamics simulations of the isotropic phase

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.; Turner, P.; English, R. J.; Williams, R.; Brańka, A. C.

    2015-04-01

    The second virial coefficient, B2 is computed of linear rigid rods composed of m equally spaced sites interacting with sites on other rods via the hard-sphere or Weeks-Chandler-Andersen (WCA) pair potentials. The dependence of B2 on a wide range of separation distance between the sites L and m for both types of potential is computed. Molecular dynamics simulations were carried out of the thermodynamic, static, and percolation properties of the WCA rigid rods in the isotropic phase as a function of rod number density ρ . Simple scaling relationships are discovered between thermodynamic and other static properties as a function of ρ and m , which extend well into the semidilute density range. The percolation threshold distance (PTD) between the centers of mass of the rods complies well with a mean-field random orientation approximation from low density well into the semidilute regime. The corresponding site-site PTD proved more problematic to represent by simple functions, but at high rod density, scales better with the number of sites density rather than the rod number density.

  20. Second virial coefficient of rod-shaped molecules and molecular dynamics simulations of the isotropic phase.

    PubMed

    Heyes, D M; Turner, P; English, R J; Williams, R; Brańka, A C

    2015-04-01

    The second virial coefficient, B(2) is computed of linear rigid rods composed of m equally spaced sites interacting with sites on other rods via the hard-sphere or Weeks-Chandler-Andersen (WCA) pair potentials. The dependence of B(2) on a wide range of separation distance between the sites L and m for both types of potential is computed. Molecular dynamics simulations were carried out of the thermodynamic, static, and percolation properties of the WCA rigid rods in the isotropic phase as a function of rod number density ρ. Simple scaling relationships are discovered between thermodynamic and other static properties as a function of ρ and m, which extend well into the semidilute density range. The percolation threshold distance (PTD) between the centers of mass of the rods complies well with a mean-field random orientation approximation from low density well into the semidilute regime. The corresponding site-site PTD proved more problematic to represent by simple functions, but at high rod density, scales better with the number of sites density rather than the rod number density.

  1. Phase transfer of oleic acid stabilized rod-shaped anatase TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wilkerson, Rachel J.; Elder, Theresa; Sowinksi, Olivia; Fostvedt, Jade I.; Hoefelmeyer, James D.

    2016-06-01

    Three methods were evaluated for phase transfer of oleic acid stabilized TiO2 nanorods from non-polar phase to an aqueous phase. Three alkyltrimethylammonium bromide (C6, C8, C12) surfactants were tested and compared with an amphiphilic polymer as interdigitation agents. Ligand substitutions with catechol derivatives with polar functional groups para to the -enediol were evaluated as well. The molecular surfactants were ineffective compared to the amphiphilic polymer in the interdigitation phase transfer approach. Ligand substitution with catechols proceeded efficiently with phase transfer. The ligand substitution reactions were accompanied by gas evolution, which was found to result from decarboxylation of oleic acid in alkaline aqueous conditions.

  2. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles

    PubMed Central

    Wang, Wei; Duan, Wentao; Sen, Ayusman; Mallouk, Thomas E.

    2013-01-01

    Nano- and microscale motors powered by catalytic reactions exhibit collective behavior such as swarming, predator–prey interactions, and chemotaxis that resemble those of biological microorganisms. A quantitative understanding of the catalytically generated forces between particles that lead to these behaviors has so far been lacking. Observations and numerical simulations of pairwise interactions between gold-platinum nanorods in hydrogen peroxide solutions show that attractive and repulsive interactions arise from the catalytically generated electric field. Electrokinetic effects drive the assembly of staggered doublets and triplets of nanorods that are moving in the same direction. None of these behaviors are observed with nanorods composed of a single metal. The motors also collect tracer microparticles at their head or tail, depending on the charge of the particles, actively assembling them into close-packed rafts and aggregates of rafts. These motor–tracer particle interactions can also be understood in terms of the catalytically generated electric field around the ends of the nanorod motors. PMID:24127603

  3. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    PubMed Central

    He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626

  4. Aerobic Physical Activity and the Leadership of Principals

    ERIC Educational Resources Information Center

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  5. The Effectiveness of Aerobic Exercise Instruction for Totally Blind Women.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.; And Others

    1992-01-01

    A multifaceted method (involving verbal and hands-on training) was used to teach aerobic exercises to 3 totally blind women (ages 24-37). All three women demonstrated positive gains in their performance, physical fitness, and attitudes toward participating in future mainstream aerobic exercise classes. (DB)

  6. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  7. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  8. p53 aerobics: the major tumor suppressor fuels your workout.

    PubMed

    Kruse, Jan-Philipp; Gu, Wei

    2006-07-01

    In addition to its role as the central regulator of the cellular stress response, p53 can regulate aerobic respiration via the novel transcriptional target SCO2, a critical regulator of the cytochrome c oxidase complex (Matoba et al., 2006). Loss of p53 results in decreased oxygen consumption and aerobic respiration and promotes a switch to glycolysis, thereby reducing endurance during physical exercise.

  9. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  10. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  11. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  12. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  13. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  14. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  15. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  16. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  17. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  18. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    PubMed Central

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  19. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.

    PubMed

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Panico, Antonio; Lens, Piet N L; Esposito, Giovanni; Fontana, Angelo

    2015-06-04

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  20. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  1. Magnesium carbonate precipitate strengthened aerobic granules.

    PubMed

    Lee, Duu-Jong; Chen, Yu-You

    2015-05-01

    Aerobic granules were precipitated internally with magnesium carbonate to enhance their structural stability under shear. The strengthened granules were tested in continuous-flow reactors for 220 days at organic loadings of 6-39 kg/m(3)/day, hydraulic retention times of 0.44-19 h, and temperatures of 10 or 28°C. The carbonate salt had markedly improved the granule strength without significant changes in granule morphology or microbial communities (with persistent strains Streptomyces sp., Rhizobium sp., Brevundimonas sp., and Nitratireductor sp.), or sacrifice in biological activity for organic degradation. MgCO3 precipitated granules could be used in continuous-flow reactor for wastewater treatment at low cost and with easy processing efforts.

  2. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  3. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  4. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  5. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  6. Effects of Kettlebell Training on Aerobic Capacity.

    PubMed

    Falatic, J Asher; Plato, Peggy A; Holder, Christopher; Finch, Daryl; Han, Kyungmo; Cisar, Craig J

    2015-07-01

    This study examined the effects of a kettlebell training program on aerobic capacity. Seventeen female National Collegiate Athletic Association Division I collegiate soccer players (age: 19.7 ± 1.0 years, height: 166.1 ± 6.4 cm, weight: 64.2 ± 8.2 kg) completed a graded exercise test to determine maximal oxygen consumption (V̇O2max). Participants were assigned to a kettlebell intervention group (KB) (n = 9) or a circuit weight-training (CWT) control group (n = 8). Participants in the KB group completed a kettlebell snatch test to determine individual snatch repetitions. Both groups trained 3 days a week for 4 weeks in addition to their off-season strength and conditioning program. The KB group performed the 15:15 MVO2 protocol (20 minutes of kettlebell snatching with 15 seconds of work and rest intervals). The CWT group performed multiple free-weight and dynamic body-weight exercises as part of a continuous circuit program for 20 minutes. The 15:15 MVO2 protocol significantly increased V̇O2max in the KB group. The average increase was 2.3 ml·kg⁻¹·min⁻¹, or approximately a 6% gain. There was no significant change in V̇O2max in the CWT control group. Thus, the 4-week 15:15 MVO2 kettlebell protocol, using high-intensity kettlebell snatches, significantly improved aerobic capacity in female intercollegiate soccer players and could be used as an alternative mode to maintain or improve cardiovascular conditioning.

  7. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  8. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775(T), a plant pathogen of French bean pods.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, Tbk; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Halpern, Malka

    2016-01-01

    Phaseolibacter flectens strain ATCC 12775(T) (Halpern et al., Int J Syst Evol Microbiol 63:268-273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.

  9. Biodegradation of Phenol by Bacteria Strain Acinetobacter Calcoaceticus PA Isolated from Phenolic Wastewater

    PubMed Central

    Liu, Zhenghui; Xie, Wenyu; Li, Dehao; Peng, Yang; Li, Zesheng; Liu, Shusi

    2016-01-01

    A phenol-degrading bacterium strain PA was successfully isolated from the effluent of petrochemical wastewater. Based on its morphological, physiological and biochemical characteristics, the strain PA was characterized as a Gram-negative, strictly aerobic, nonmotile and short rod-shaped bacterium that utilizes phenol as a sole carbon and energy source. 16S rDNA sequence analysis revealed that this strain is affiliated to Acinetobacter calcoaceticus in the group of Gammaproteobacteria. The strain was efficient in removing 91.6% of the initial 800 mg∙L−1 phenol within 48 h, and had a tolerance of phenol concentration as high as 1700 mg∙L−1. These results indicated that A. calcoaceticus possesses a promising potential in treating phenolic wastewater. PMID:27005648

  10. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods

    DOE PAGES

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; ...

    2016-01-13

    We report that the Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp.more » It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.« less

  11. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods

    SciTech Connect

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, TBK; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C.; Halpern, Malka

    2016-01-13

    We report that the Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.

  12. A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus

    PubMed Central

    Ganuza, Eneko; Sellers, Charles E.; Bennett, Braden W.; Lyons, Eric M.; Carney, Laura T.

    2016-01-01

    The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The “crash” of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The p

  13. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  14. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  15. Role of Aerobic Microbial Populations in Cellulose Digestion by Desert Millipedes

    PubMed Central

    Taylor, Elsa C.

    1982-01-01

    I examined the role of aerobic microbial populations in cellulose digestion by two sympatric species of desert millipedes, Orthoporus ornatus and Comanchelus sp. High numbers of bacteria able to grow on media containing cellulose, carboxymethyl cellulose, or cellobiose as the substrate were found in the alimentary tracts of the millipedes. Enzyme assays indicated that most cellulose and hemicellulose degradation occurred in the midgut, whereas the hindgut was an important site for pectin degradation. Hemicellulase and β-glucosidase in both species and possibly Cx-cellulase and pectinase in O. ornatus were of possible microbial origin. Degradation of [14C]cellulose by millipedes whose gut floras were reduced by antibiotic treatment and starvation demonstrated a reduction in 14CO2 release and 14C assimilation and an increase in 14C excretion over values for controls. It appears that the millipede-bacterium association is mutualistic and makes available to millipedes an otherwise mostly unutilizable substrate. Such an association may be an important pathway for decomposition in desert ecosystems. Images PMID:16346074

  16. Strategies of aerobic microbial Fe acquisition from Fe-bearing montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Kuhn, Keshia M.; DuBois, Jennifer L.; Maurice, Patricia A.

    2013-09-01

    This research investigated strategies used by the common aerobic soil bacterium Pseudomonas mendocina to acquire Fe associated with Fe(III)-bearing montmorillonite (MMT) clay. Given the known importance of Fe(III)-chelating siderophores, Fe-limited batch experiments were conducted using a wild-type (WT) strain that produces siderophores and a ΔpmhA mutant with a siderophore(-) phenotype. Growth measurements were coupled with a transcriptional biosensor assay that monitors the siderophore biosynthesis gene pmhA, measurements of cells' reducing ability, and quantification of exopolymeric substance (EPS) production. WT cells actively grow when MMT is the sole Fe source, but sorption to MMT may decrease the concentration of dissolved Fe-siderophore complex accessible to cells. Cells also obtain Fe by reducing MMT-associated Fe(III), but because P. mendocina lacks a secreted/diffusible reductant, direct physical contact is required. Dual strategies for Fe acquisition—a reducing mechanism that requires contact and that is likely facilitated by biofilm production and a siderophore related mechanism that does not require contact—provide flexibility to address the environmental Fe challenge.

  17. Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions.

    PubMed

    Kawata, Yoshikazu; Nishimura, Taku; Matsushita, Isao; Tsubota, Jun

    2016-03-01

    The alkaliphilic, halophilic bacterium Halomonas sp. KM-1 can utilize both hexose and pentose sugars for the intracellular storage of bioplastic poly-(R)-3-hydroxybutyric acid (PHB) under aerobic conditions. In this study, we investigated the effects of the sodium nitrate concentration on PHB accumulation in the KM-1 strain. Unexpectedly, we observed the secretion of pyruvate, a central intermediate in carbon- and energy-metabolism processes in all organisms; therefore, pyruvate is widely used as a starting material in the industrial biosynthesis of pharmaceuticals and is employed for the production of crop-protection agents, polymers, cosmetics, and food additives. We then further analyzed pyruvate productivity following changes in culture temperature and the buffer concentration. In 48-h batch-cultivation experiments, we found that wild-type Halomonas sp. KM-1 secreted 63.3 g/L pyruvate at a rate of 1.32 g/(L·h), comparable to the results of former studies using mutant and recombinant microorganisms. Thus, these data provided important insights into the production of pyruvate using this novel strain.

  18. Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions.

    PubMed

    Narancic, Tanja; Scollica, Elisa; Kenny, Shane T; Gibbons, Helena; Carr, Eibhlin; Brennan, Lorraine; Cagney, Gerard; Wynne, Kieran; Murphy, Cormac; Raberg, Matthias; Heinrich, Daniel; Steinbüchel, Alexander; O'Connor, Kevin E

    2016-10-01

    Polyhydroxybutyrate (PHB) is an important biopolymer accumulated by bacteria and associated with cell survival and stress response. Here, we make two surprising findings in the PHB-accumulating species Rhodospirillum rubrum S1. We first show that the presence of PHB promotes the increased assimilation of acetate preferentially into biomass rather than PHB. When R. rubrum is supplied with (13)C-acetate as a PHB precursor, 83.5 % of the carbon in PHB comes from acetate. However, only 15 % of the acetate ends up in PHB with the remainder assimilated as bacterial biomass. The PHB-negative mutant of R. rubrum assimilates 2-fold less acetate into biomass compared to the wild-type strain. Acetate assimilation proceeds via the ethylmalonyl-CoA pathway with (R)-3-hydroxybutyrate as a common intermediate with the PHB pathway. Secondly, we show that R. rubrum cells accumulating PHB have reduced ribulose 1,5-bisphosphate carboxylase (RuBisCO) activity. RuBisCO activity reduces 5-fold over a 36-h period after the onset of PHB. In contrast, a PHB-negative mutant maintains the same level of RuBisCO activity over the growth period. Since RuBisCO controls the redox potential in R. rubrum, PHB likely replaces RuBisCO in this role. R. rubrum is the first bacterium found to express RuBisCO under aerobic chemoheterotrophic conditions.

  19. Complete Genome of the Cellulolytic Ruminal Bacterium Ruminococcus albus 7

    SciTech Connect

    Suen, Garret; Stevenson, David M; Bruce, David; Chertkov, Olga; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Ovchinnikova, Galina; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Boyum, Julie; Mead, David; Weimer, Paul J

    2011-01-01

    Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.

  20. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminococcus albus 7 is a highly cellulolytic rumen bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome for this microbe. This genome will be useful for rumen microbiology, cellulosome biology, and in biofuel production, as one of its major fermentation product...

  1. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity.

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Piersiak, Tomasz D; Wróbel, Marek; Pawelec, Jarosław

    2010-09-01

    The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa.

  2. Molecular characterization and bioactivity profile of the tropical sponge-associated bacterium Shewanella algae VCDB

    NASA Astrophysics Data System (ADS)

    Rachanamol, R. S.; Lipton, A. P.; Thankamani, V.; Sarika, A. R.; Selvin, J.

    2014-06-01

    The pigmented, rod-shaped, Gram-negative, motile bacteria isolated from marine sponge Callyspongia diffusa exhibiting bioactivity was characterized as Shewanella algae (GenBank: KC623651). The 16S rRNA gene sequence-based phylogenetic analysis showed its similarity with the member of Shewanella and placed in a separate cluster with the recognized bacteria S. algae (PSB-05 FJ86678) with which it showed 99.0 % sequence similarity. Growth of the strain was optimum at temperature 30 °C, pH 8.0 in the presence of 2.0-4.0 % of NaCl. High antibiotic activity against microbes such as Escherichia coli (MTCC 40), S. typhii (MTCC 98), P. vulgaris (MTCC 426), V. fluvialis, V. anguillarum, E. cloacae, and L. lactis was recorded. The growth of fungal pathogens such as Aspergillus niger, Aspergillus fumigatus, Saccharomyces cerevisiae, and Colletotrichum gloeosporioides was effectively controlled.

  3. A pigment-producing spoilage bacterium responsible for violet discoloration of refrigerated market milk and cream.

    PubMed

    SEITZ, E W; ELLIKER, P R; SANDINE, W E

    1961-07-01

    A psychrophilic strain of bacteria identified as Chromobacterium lividum was established as the causative agent of an outbreak of violet discoloration in refrigerated, pasteurized retail milk and cream. The organism was rod-shaped, gram-negative, and produced viscid colonies with abundant violet pigment on Tryptone glucose yeast extract agar. Growth was abundant at 4 C but none occurred at 37 C. Growth in milk was characterized by a dark violet ring at the surface after a few days, and the deep violet color gradually extended through the product in older cultures. Some proteolysis occurred. The pigment appeared to be similar to that of other known species of Chromobacterium and assisted in identification of the genus of the causative organism. The isolated strain of C. lividum was destroyed by exposure to 56 C for 5 min which suggested postpasteurization contamination as the source of the spoilage organism in commercial milk and cream.

  4. Effects of a Rebound Exercise Training Program on Aerobic Capacity and Body Composition.

    ERIC Educational Resources Information Center

    Tomassoni, Teresa L.; And Others

    1985-01-01

    This study was designed to determine if aerobic dancing on rebound exercise equipment (minitrampolines) is an effective way to improve aerobic capacity and body composition. Although aerobic capacity improved, percent body fat did not change. Results were similar to those produced by conventional aerobic dance programs of like intensity. (MT)

  5. Issues of Health, Appearance and Physical Activity in Aerobic Classes for Women

    ERIC Educational Resources Information Center

    D'Abundo, Michelle Lee

    2009-01-01

    The purpose of this research was to explore what appearance-focused messages were conveyed by aerobic instructors in aerobic classes for women. This qualitative research was influenced by the concept of wellness and how feminist pedagogy can be applied to promote individuals' well-being in aerobic classes. The practices of five aerobic instructors…

  6. Prediction of Maximum Aerobic Power in Untrained Females

    ERIC Educational Resources Information Center

    Dolgener, Forrest A.

    1978-01-01

    The author presents an equation for predicting maximum aerobic power in untrained females from values of percent body fat, weight, and submaximal values of heart rate, respiratory quotient, and expired gas. (MJB)

  7. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation.

  8. Algoriella xinjiangensis gen. nov., sp. nov., a new psychrotolerant bacterium of the family Flavobacteriaceae.

    PubMed

    Yang, Na; Zhang, Lixin; Sun, Chaomin

    2015-11-01

    An aerobic, Gram-stain negative, non-spore-forming and psychrotolerant bacterium, designated strain XJ109(T), was isolated from a sewage water sample collected from Xinjiang Uigur Autonomous Region, China. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XJ109(T) represents a novel member of the family Flavobacteriaceae. The strain showed 95.5 % similarity with the 16S rRNA gene sequence of Empedobacter brevis LMG 4011(T), 95.4% with Chishuiella changwenlii BY4(T), 95.3% with Empedobacter falsenii NF 993(T) and 92.3% with Weeksella virosa DSM 16922(T). Strain XJ109(T) showed the common phenotypic and chemotaxonomic characteristics of the family Flavobacteriaceae, containing menaquinone-6 (MK-6) as the predominant respiratory quinone and iso-C17:0 3OH and iso-C15:0 as the major fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, one unidentified phospholipid and two unidentified lipids. The genomic DNA G+C content was 38.0 mol%. Strain XJ109(T) was positive for catalase and oxidase activities, and it was observed to grow at 4-30 °C (optimal 16-20 °C), pH 6.5-10.0 (optimal 7.0-7.5) and in media containing 0-2.0% (w/v) NaCl (optimal 0.5 %). On the basis of the polyphasic evidence presented, strain XJ109(T) is considered to represent a novel genus and species of the family Flavobacteriaceae, for which the name Algoriella xinjiangensis gen. nov., sp. nov. is proposed. The type strain is XJ109(T) (=CGMCC 1.10229(T)=JCM 16590(T)).

  9. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans.

    SciTech Connect

    Beller, H R; Larimer, Frank W

    2006-02-01

    The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, {beta}-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by {beta}-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration.

  10. Marinospirillum celere sp. nov., a novel haloalkaliphilic, helical bacterium isolated from Mono Lake.

    PubMed

    Namsaraev, Zorigto; Akimov, Vladimir; Tsapin, Alexandre; Barinova, Ekaterina; Nealson, Kenneth; Gorlenko, Vladimir

    2009-09-01

    Two strains of a Gram-negative, helical, haloalkaliphilic bacterium were isolated from Mono Lake (USA). Both strains were mesophilic and grew between 13 and 55 degrees C, with optimum growth at 35-45 degrees C. The optimum pH for growth was 9.5. Growth was observed at NaCl concentrations of 0.5-12% (w/v), with optimum growth at 2% NaCl. Both isolates were motile by means of bipolar tuft flagella, coccoid body-forming and strictly aerobic. It was concluded that they belong to the same species, based on DNA-DNA hybridization values (95% DNA relatedness). DNA G+C contents of the novel strains were 52.1 and 52.3 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were shown to be related closely to the members of the genus Marinospirillum (family Oceanospirillaceae, class Gammaproteobacteria). Sequence similarity of strain v1c_Sn-redT to the type strains of Marinospirillum alkaliphilum, Marinospirillum minutulum, Marinospirillum megaterium and Marinospirillum insulare was 95.0, 92.7, 91.8 and 91.8%, respectively. Chemotaxonomic data [major ubiquinone, Q8; major fatty acids, C18:1(n-7) and C16:0] and physiological and biochemical tests supported the affiliation of the novel strains to the genus Marinospirillum as members of a novel species, for which the name Marinospirillum celere sp. nov. is proposed, with the type strain v1c_Sn-redT (=LMG 24610T=VKM 2416T).

  11. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments

    PubMed Central

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m2 (1000Ω) was generated (power density 131.65 ± 10 mW/m2) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m2; power density 720 ± 7 μW/m2, 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS. PMID:27462307

  12. Cyclobacterium halophilum sp. nov., a marine bacterium isolated from a coastal-marine wetland.

    PubMed

    Shahinpei, Azadeh; Amoozegar, Mohammad Ali; Sepahy, Abbas Akhavan; Schumann, Peter; Ventosa, Antonio

    2014-03-01

    A novel Gram-stain-negative, slightly halophilic bacterium, designated strain GASx41(T), was isolated from soil of the coastal-marine wetland Gomishan in Iran. Cells of strain GASx41(T) were curved, ring-like or horseshoe-shaped rods and non-motile. Strain GASx41(T) was strictly aerobic, and catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 1-10% (w/v), with optimum growth occurring at 2.5-3% (w/v) NaCl. The optimum temperature and pH for growth were 25-30 °C and pH 7.5-8.0. On the basis of 16S rRNA gene sequence analysis, strain GASx41(T) was shown to belong to the genus Cyclobacterium within the phylum Bacteroidetes and showed closest phylogenetic similarity to 'Cyclobacterium jeungdonense' HMD3055 (98.0%). The DNA G+C content of strain GASx41(T) was 48.1 mol%. The major cellular fatty acids of strain GASx41(T) were iso-C15 : 0, summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), anteiso-C15 : 0 2-OH, anteiso-C15 : 0 and iso-C17 : 0 3-OH, and its polar lipid pattern consisted of phosphatidylethanolamine, phosphatidylcholine and 12 unknown lipids. The only quinone present was menaquinone 7 (MK-7). All these features confirmed the placement of isolate GASx41(T) within the genus Cyclobacterium. On the basis of evidence from this study, a novel species of the genus Cyclobacterium, Cyclobacterium halophilum sp. nov., is proposed, with strain GASx41(T) ( = IBRC-M 10761(T) = CECT 8341(T)) as the type strain.

  13. Chloroflexus islandicus sp. nov., a thermophilic filamentous anoxygenic phototrophic bacterium from geyser Strokkur (Iceland).

    PubMed

    Gaisin, Vasil A; Kalashnikov, Alexander M; Grouzdev, Denis S; Sukhacheva, Marina V; Kuznetsov, Boris B; Gorlenko, Vladimir M

    2017-01-23

    A novel, thermophilic filamentous anoxygenic phototrophic bacterium, strain isl-2T, was isolated from the Strokkur Geyser, Iceland. Strain isl-2T formed unbranched multicellular filaments with gliding motility. The cells formed no spores and stained Gram-negative. The existence of pili was described in Chloroflexus spp. for the first time. Optimal growth occurred in a pH range of 7.5-7.7 and at a temperature of 55°C. Strain isl-2T grew photoheterotrophically under anaerobic conditions in the light and chemoheterotrophically under aerobic conditions in the dark. The major cellular fatty acids were C18:1ω9, C16:0, C18:0, and C18:0-OH. The major quinone was menaquinone-10. The photosynthetic pigments were bacteriochlorophylls c and a as well as β- and γ-carotenes. Phylogenetic analysis of the 16S rRNA gene sequences placed strain isl-2T into the genus Chloroflexus of the phylum Chloroflexi with Chloroflexus aggregans DSM 9485T as the closest relative (97.0% identity). The whole-genome sequence of strain isl-2T was determined. Average nucleotide identity values obtained for strain isl-2T in comparison to available genomic sequences of other strains of Chloroflexus spp. were ≤81.4% and digital DNA-DNA hybridisation values ≤ 22.8%. Additional phylogenetic analysis of the PufLM and BchG amino acid sequences supported the separate position of the isl-2T phylotype from other Chloroflexus phylotypes. Based on physiological and phylogenetic data as well as on genomic data, it was suggested that strain isl-2T represents a novel species within the genus Chloroflexus, with the proposed name Chloroflexus islandicus sp. nov. The type strain of the species is isl-2T (=VKM B-2978T, =DSM 29225T, =JCM 30533T).

  14. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae.

    PubMed

    Ambrosio, Rafael; Ortiz-Marquez, Juan Cesar Federico; Curatti, Leonardo

    2017-03-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N2 and CO2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N2 from the air into crops.

  15. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus.

    PubMed

    Yang, Guiqin; Zhou, Xuemei; Zhou, Shungui; Yang, Dehui; Wang, Yueqiang; Wang, Dingmei

    2013-10-01

    A novel thermotolerant bacterium, designated SgZ-8(T), was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20-65 °C (optimum 50 °C) and pH 6.0-9.0 (optimum 6.5-7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO3(-) as electron acceptors. Phylogenetic analysis based on the16S rRNA and gyrB genes grouped strain SgZ-8(T) into the genus Bacillus, with the highest similarity to Bacillus badius JCM 12228(T) (96.2 % for 16S rRNA gene sequence and 83.5 % for gyrB gene sequence) among all recognized species in the genus Bacillus. The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C16 : 0. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8(T) ( = CCTCC AB 2012108(T) = KACC 16706(T)) was designated the type strain of a novel species of the genus Bacillus, for which the name Bacillus thermotolerans sp. nov. is proposed.

  16. Bacillus mesophilum sp. nov., strain IITR-54T, a novel 4-chlorobiphenyl dechlorinating bacterium.

    PubMed

    Manickam, Natesan; Singh, Nitin Kumar; Bajaj, Abhay; Kumar, Rajendran Mathan; Kaur, Gurwinder; Kaur, Navjot; Bala, Monu; Kumar, Anand; Mayilraj, Shanmugam

    2014-07-01

    The taxonomic position of a Gram-positive, endospore-forming bacterium isolated from soil sample collected from an industrial site was analyzed by a polyphasic approach. The strain designated as IITR-54T matched most of the phenotypic and chemical characteristics of the genus Bacillus and represents a novel species. It was found to biodegrade 4-chlorobiphenyl through dechlorination and was isolated through enrichment procedure from an aged polychlorinated biphenyl-contaminated soil. Both resting cell assay and growth under aerobic liquid conditions using 4-chlorobiphenyl as sole source of carbon along with 0.01% yeast extract, formation of chloride ions was measured. 16S rRNA (1,489 bases) nucleotide sequence of isolated strain was compared with those of closely related Bacillus type strains and confirmed that the strain belongs to the genus Bacillus. Strain IITR-54T differs from all other species of Bacillus by at least 2.1% at the 16S rRNA level, and the moderately related species are Bacillus oceanisediminis (97.9%) followed by Bacillus infantis (97.7%), Bacillus firmus (97.4%), Bacillus drentensis (97.3%), Bacillus circulans (97.2%), Bacillus soli (97.1%), Bacillus horneckiae (97.1%), Bacillus pocheonensis (97.1%) and Bacillus bataviensis (97.1%), respectively. The cell wall peptidoglycan contained meso-diaminopimelic acid and the major isoprenoid quinone was MK-7. Major fatty acids are iso-C15:0 (32.4%) and anteiso-C15:0 (27.4%). Predominant polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The results of physiological and biochemical tests allowed the genotypic and phenotypic distinctiveness of strain IITR-54T with its phylogenetic relatives and suggest that the strain IITR-54T should be recognized as a novel species, for which the name Bacillus mesophilum sp. nov. is proposed. The type strain is IITR-54T (=MTCC 11060T=JCM 19208T).

  17. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments.

    PubMed

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m(2) (1000Ω) was generated (power density 131.65 ± 10 mW/m(2)) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m(2); power density 720 ± 7 μW/m(2), 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l(-1) of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS.

  18. Concomitant aerobic biodegradation of benzene and thiophene

    SciTech Connect

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1998-05-01

    The concomitant aerobic biodegradation of benzene and thiophene was investigated in microcosm experiments using a groundwater enrichment culture. Benzene was biodegraded within 1 d, whereas thiophene could not be biodegraded as the sole source of carbon and energy. Some interesting phenomena were observed when both benzene and thiophene were present. In most cases, removal of thiophene was observed, and the removal occurred concomitantly with the biodegradation of benzene, suggesting that benzene was used as a primary substrate in the cometabolic biodegradation of thiophene. No biodegradation of the two compounds was observed for some combinations of concentrations, suggesting that thiophene could act as an inhibitor to benzene biodegradation. However, this effect could be overcome if more benzene was added to the microcosm. Residual concentrations of benzene and thiophene were observed in some microcosms and the data indicated that the biodegradation of the two compounds stopped when a critical threshold ratio between the concentrations of thiophene and benzene was reached. This ratio varied between 10 and 20. Results from modeling the biodegradation data suggested that thiophene was cometabolized concomitantly with the biodegradation of benzene and that the biodegradation may be described by a modified model based on a traditional model with an inhibition term incorporated.

  19. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  20. Dancing the aerobics ''hearing loss'' choreography

    NASA Astrophysics Data System (ADS)

    Pinto, Beatriz M.; Carvalho, Antonio P. O.; Gallagher, Sergio

    2002-11-01

    This paper presents an overview of gymnasiums' acoustic problems when used for aerobics exercises classes (and similar) with loud noise levels of amplified music. This type of gymnasium is usually a highly reverberant space, which is a consequence of a large volume surrounded by hard surfaces. A sample of five schools in Portugal was chosen for this survey. Noise levels in each room were measured using a precision sound level meter, and analyzed to calculate the standardized daily personal noise exposure levels (LEP,d). LEP,d values from 79 to 91 dB(A) were found to be typical values in this type of room, inducing a health risk for its occupants. The reverberation time (RT) values were also measured and compared with some European legal requirements (Portugal, France, and Belgium) for nearly similar situations. RT values (1 kHz) from 0.9 s to 2.8 s were found. These reverberation time values clearly differentiate between good and acoustically inadequate rooms. Some noise level and RT limits for this type of environment are given and suggestions for the improvement of the acoustical environment are shown. Significant reductions in reverberation time values and noise levels can be obtained by simple measures.

  1. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  2. Aerobic nitroreduction of dehydrochloramphenicol by bone marrow.

    PubMed

    Isildar, M; Abou-Khalil, W H; Jimenez, J J; Abou-Khalil, S; Yunis, A A

    1988-06-30

    It has been previously demonstrated that dehydrochloramphenicol (DH-CAP), a bacterial metabolite of chloramphenicol, induces DNA single strand breaks in intact cells and is profoundly more cytotoxic than chloramphenicol (CAP). In view of previous observations relating genotoxicity of nitrocompounds to their nitroreduction by the target tissue, we studied the nitroreduction of DH-CAP by human and rabbit bone marrow. Nitroreduction by tissue homogenates was determined by the Bratton Marshall colorimetric assay and by high-performance liquid chromatography (HPLC). Nitroreduction of DH-CAP by bone marrow cell homogenates was observed under aerobic conditions and the reduction was both cell concentration- and time-dependent. The formation of the amino product aminodehydrochloramphenicol was confirmed by HPLC. Reduction by other tissues including human liver, Raji cells, and HL-60 tumors was also observed. These results suggest that genotoxicity of DH-CAP may be related to its nitroreduction by the target tissue with in situ production of toxic intermediates. Together with previous studies, these observations lend support to the thesis that the p-NO2 group may be the structural feature underlying aplastic anemia from CAP.

  3. The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners

    PubMed Central

    GILLEN, ZACHARY M.; WYATT, FRANK B.; WINCHESTER, JASON B.; SMITH, DALTON A.; GHETIA, VIDHI

    2016-01-01

    Research has indicated that combined aerobic and anaerobic training (concurrent training) may improve aerobic performance greater than aerobic training alone. The purpose of this investigation was to establish any associations between aerobic and anaerobic performance. Eleven participants (n = 11, age = 34.1 ± 13 years, VO2max = 58.4 ± 7.8) volunteered for this study. Participants were asked for endurance training experience (4.7 ± 3.7 years) and resistance training experience (4.1 ± 4.6 years). To meet training status, participants were to have a VO2max in the 80th percentile as per ACSM guidelines. The Bruce treadmill test was used to measure aerobic performance. In order to measure anaerobic performance, several tests were completed utilizing a force platform. A Pearson Product R Correlation Coefficient was calculated to determine correlations between variables. The results show significant correlation between VO2max and RFD (r = 0.68). Further analyses utilizing Cohen’s effect size indicated a strong association between VO2max and peak force, as well as running efficiency and peak power, relative peak power, and power endurance. These results indicate an existing possibility that anaerobic performance measures such as RFD may have a positive relationship with aerobic performance measures such as VO2max. Therefore, it may be beneficial to integrate specific training components which focus on improving RFD as a method of improving running performance. PMID:27990224

  4. Aerobic Exercise Preserves Olfaction Function in Individuals with Parkinson's Disease

    PubMed Central

    Rosenfeldt, Anson B.; Dey, Tanujit

    2016-01-01

    Introduction. Based on anecdotal reports of improved olfaction following aerobic exercise, the aim of this study was to evaluate the effects of an 8-week aerobic exercise program on olfaction function in individuals with Parkinson's disease (PD). Methods. Thirty-eight participants with idiopathic PD were randomized to either an aerobic exercise group (n = 23) or a nonexercise control group (n = 15). The aerobic exercise group completed a 60-minute cycling session three times per week for eight weeks while the nonexercise control group received no intervention. All participants completed the University of Pennsylvania Smell Identification Test (UPSIT) at baseline, end of treatment, and a four-week follow up. Results. Change in UPSIT scores between the exercise and nonexercise groups from baseline to EOT (p = 0.01) and from baseline to EOT+4 (p = 0.02) favored the aerobic exercise group. Individuals in the nonexercise group had worsening olfaction function over time, while the exercise group was spared from decline. Discussion. The difference in UPSIT scores suggested that aerobic exercise may be altering central nervous system pathways that regulate the physiologic or cognitive processes controlling olfaction in individuals with PD. While these results provide promising preliminary evidence that exercise may modify the disease process, further systematic evaluation is necessary. PMID:27999706

  5. Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke

    PubMed Central

    Rosenfeldt, Anson B.; Dey, Tanujit; Alberts, Jay L.

    2017-01-01

    OBJECTIVE. To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. METHOD. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. RESULTS. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice–only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. CONCLUSION. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. PMID:28218596

  6. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  7. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  8. Biodegradation of 17alpha-methyltestosterone and isolation of MT-degrading bacterium from sediment of Nile tilapia masculinization pond.

    PubMed

    Homklin, Supreeda; Wattanodorn, Theerachit; Ong, Say Kee; Limpiyakorn, Tawan

    2009-01-01

    The fast growing and highly tolerant fish Nile tilapia is one of the most commonly raised fish in the aquaculture industry. To produce an all-male population, a common practice is to feed the Nile tilapia fry with 17alpha-methyltestosterone (MT)-impregnated food. Uneaten fish food with MT may accumulate in the masculinization ponds and be released into the receiving waters. Not much is known about the fate of MT in the fish farms and in the receiving streams. The objective of this study is to investigate the biodegradation of MT under aerobic condition and to isolate responsible microorganisms. Aerobic biodegradation tests were conducted with MT concentrations of 0.3, 1.0, 5.0, 7.0, and 10.0 mg/L using sediment from the masculinization pond as microbial seed. The results suggested that MT is biodegradable. Lag phase was not observed in all cases. With initial concentrations of 0.3, 1.0, 5.0, 7.0, and 10.0 mg/l, the first-order degradation rates were 0.52, 0.23, 0.17, 0.13 and 0.10 day(-1), respectively. Degradation rates were found to decrease with an increase in the initial MT concentration. Analysis of 16S rRNA gene sequences of a strain isolated from the sediment indicated that the strain was highly similar to Pimelobacter simplex strain S151 (100%) which is in the genus Nocardioidaceae. Using this strain, MT is degraded with a first-order degradation rate of 0.044 h(-1) excluding the lag phase. This is the first work reporting biodegradation of MT and isolation of MT-degrading bacterium from environment.

  9. Isolation of a bacterium capable of degrading peanut hull lignin

    SciTech Connect

    Kerr, T.A.; Kerr, R.D.; Benner, R.

    1983-11-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter species, was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled (/sup 14/C) lignin-labeled lignocellulose and (/sup 14/C)cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade (/sup 14/C) Kraft lignin from slash pine. After 10 days of incubation with (/sup 14/C) cellulose-labeled lignocellulose or (/sup 14/C) lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. (Refs. 24).

  10. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    SciTech Connect

    Elias, Dwayne A; Wall, Judy D.; Mormile, Dr. Melanie R.; Begemann, Matthew B

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  11. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  12. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  13. Initiation of Chromosomal Replication in Predatory Bacterium Bdellovibrio bacteriovorus

    PubMed Central

    Makowski, Łukasz; Donczew, Rafał; Weigel, Christoph; Zawilak-Pawlik, Anna; Zakrzewska-Czerwińska, Jolanta

    2016-01-01

    Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase) and replicating cells (the intracellular-growth phase). The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although, we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC) is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box [5′-NN(A/T)TCCACA-3′]. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus). We compared the architecture of the DnaA–oriC complexes (orisomes) in homologous (oriC and DnaA from B. bacteriovorus) and heterologous (BdoriC and DnaA from prey, Escherichia coli or Pseudomonas aeruginosa) systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium. PMID:27965633

  14. [Fractionation of sulfur isotopes by phototrophic sulfur bacterium Ectothiorhodospira shaposhnikovii].

    PubMed

    Ivanov, M V; Gogotova, G I; Matrosov, A G; Ziakun, A M

    1976-01-01

    Two processes of sulphur isotope fractionation have been found in experiments with the sulphur purple bacterium Ectothiorhodospira shaposhnikovii. As a result, a light isotope, 32S, is concentrated in residual hydrogen sulphide, and a heavy isotope, 34S, in elementary suphur which is deposited outside the cell. The sulphate produced is lighter than elementary sulphur. Fractionation of sulphur isotopes is observed in natural conditions and is confined to places of mass growth of photosynthetic sulphur bacteria.

  15. The UbiI (VisC) Aerobic Ubiquinone Synthase Is Required for Expression of Type 1 Pili, Biofilm Formation, and Pathogenesis in Uropathogenic Escherichia coli

    PubMed Central

    Floyd, Kyle A.; Mitchell, Courtney A.; Eberly, Allison R.; Colling, Spencer J.; Zhang, Ellisa W.; DePas, William; Chapman, Matthew R.; Conover, Matthew; Rogers, Bridget R.; Hultgren, Scott J.

    2016-01-01

    ABSTRACT Uropathogenic Escherichia coli (UPEC), which causes the majority of urinary tract infections (UTI), uses pilus-mediated adherence to initiate biofilm formation in the urinary tract. Oxygen gradients within E. coli biofilms regulate expression and localization of adhesive type 1 pili. A transposon mutant screen for strains defective in biofilm formation identified the ubiI (formerly visC) aerobic ubiquinone synthase gene as critical for UPEC biofilm formation. In this study, we characterized a nonpolar ubiI deletion mutant and compared its behavior to that of wild-type bacteria grown under aerobic and anoxic conditions. Consistent with its function as an aerobic ubiquinone-8 synthase, deletion of ubiI in UPEC resulted in reduced membrane potential, diminished motility, and reduced expression of chaperone-usher pathway pili. Loss of aerobic respiration was previously shown to negatively impact expression of type 1 pili. To determine whether this reduction in type 1 pili was due to an energy deficit, wild-type UPEC and the ubiI mutant were compared for energy-dependent phenotypes under anoxic conditions, in which quinone synthesis is undertaken by anaerobic quinone synthases. Under anoxic conditions, the two strains exhibited wild-type levels of motility but produced diminished numbers of type 1 pili, suggesting that the reduction of type 1 pilus expression in the absence of oxygen is not due to a cellular energy deficit. Acute- and chronic-infection studies in a mouse model of UTI revealed a significant virulence deficit in the ubiI mutant, indicating that UPEC encounters enough oxygen in the bladder to induce aerobic ubiquinone synthesis during infection. IMPORTANCE The majority of urinary tract infections are caused by uropathogenic E. coli, a bacterium that can respire in the presence and absence of oxygen. The bladder environment is hypoxic, with oxygen concentrations ranging from 4% to 7%, compared to 21% atmospheric oxygen. This work provides evidence

  16. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres.

    PubMed

    Sorokin, Dimitry Y; Rakitin, Andrey L; Gumerov, Vadim M; Beletsky, Alexey V; Sinninghe Damsté, Jaap S; Mardanov, Andrey V; Ravin, Nikolai V

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5-10.5 and total Na(+) concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres.

  17. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres

    PubMed Central

    Sorokin, Dimitry Y.; Rakitin, Andrey L.; Gumerov, Vadim M.; Beletsky, Alexey V.; Sinninghe Damsté, Jaap S.; Mardanov, Andrey V.; Ravin, Nikolai V.

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5–10.5 and total Na+ concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres. PMID:27065971

  18. Complete Genome Sequence of the Mosquitocidal Bacterium Bacillus sphaericus C3-41 and Comparison with Those of Closely Related Bacillus Species▿ †

    PubMed Central

    Hu, Xiaomin; Fan, Wei; Han, Bei; Liu, Haizhou; Zheng, Dasheng; Li, Qibin; Dong, Wei; Yan, Jianping; Gao, Meiying; Berry, Colin; Yuan, Zhiming

    2008-01-01

    Bacillus sphaericus strain C3-41 is an aerobic, mesophilic, spore-forming bacterium that has been used with great success in mosquito control programs worldwide. Genome sequencing revealed that the complete genome of this entomopathogenic bacterium is composed of a chromosomal replicon of 4,639,821 bp and a plasmid replicon of 177,642 bp, containing 4,786 and 186 potential protein-coding sequences, respectively. Comparison of the genome with other published sequences indicated that the B. sphaericus C3-41 chromosome is most similar to that of Bacillus sp. strain NRRL B-14905, a marine species that, like B. sphaericus, is unable to metabolize polysaccharides. The lack of key enzymes and sugar transport systems in the two bacteria appears to be the main reason for this inability, and the abundance of proteolytic enzymes and transport systems may endow these bacteria with exclusive metabolic pathways for a wide variety of organic compounds and amino acids. The genes shared between B. sphaericus C3-41 and Bacillus sp. strain NRRL B-14905, including mobile genetic elements, membrane-associated proteins, and transport systems, demonstrated that these two species are a biologically and phylogenetically divergent group. Knowledge of the genome sequence of B. sphaericus C3-41 thus increases our understanding of the bacilli and may also offer prospects for future genetic improvement of this important biological control agent. PMID:18296527

  19. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  20. Haemoglobin, blood volume, cardiac function, and aerobic power.

    PubMed

    Gledhill, N; Warburton, D; Jamnik, V

    1999-02-01

    Alterations in [Hb], which are mediated through changes in arterial oxygen content, and alterations in BV, which are mediated through changes in cardiac output (Q), have a significant effect on both VO2max and aerobic performance. If BV is held constant, a decrease in [Hb] (anaemia) causes a decrease in VO2max and aerobic performance, while an increase in [Hb] (blood doping) causes an increase in VO2max and aerobic performance. If [Hb] is held constant, an increase in BV can cause and increase in both VO2max and aerobic performance, while a decrease in BV can cause a decrease in VO2max and aerobic performance. In addition, an increase in BV can compensate for moderate reductions in [Hb] through increase in Q, allowing VO2max to remain unchanged or even increase. Also, a large portion of the difference in the enhanced cardiovascular function of endurance athletes is due to their high BV and the resultant enhancement of diastolic function. Hence, optimizing both [Hb] and BV is a very important consideration for endurance performance.

  1. Gender difference in anaerobic capacity: role of aerobic contribution.

    PubMed

    Hill, D W; Smith, J C

    1993-03-01

    The purpose of this study was to evaluate effects of gender on anaerobic and aerobic contributions to high-intensity exercise. A group of 38 subjects (22 women, 16 men) performed modified Wingate tests against resistances of 0.086 kg kg-1 body mass (0.844 N kg-1) for women and 0.095 kg kg-1 body mass (0.932 N kg-1) for men. The aerobic contribution to total work performed was determined from breath-by-breath analyses of expired gases during each test. Total work in 30 s was 30% lower (Student's t test; P < 0.01) in women than men (211 +/- 5 J kg-1 versus 299 +/- 14 J kg-1). Aerobic contribution was only 7% lower (P = 0.12) in women than men (53 +/- 1 J kg-1 versus 57 +/- 2 J kg-1). The anaerobic component of the work performed, determined by subtraction of the aerobic component from total work in 30 s, was 35% lower (P < 0.01) in women than men (158 +/- 5 J kg-1 versus 242 +/- 15 J kg-1). It is concluded that, because women provide a relatively higher (P < 0.01) portion of the energy for a 30-s test aerobically than men (25% versus 20%), total work during a Wingate test actually underestimates the gender difference in anaerobic capacity between women and men.

  2. Mood alterations in mindful versus aerobic exercise modes.

    PubMed

    Netz, Yael; Lidor, Ronnie

    2003-09-01

    The results of most recent studies have generally indicated an improvement in mood after participation in aerobic exercise. However, only a few researchers have compared mindful modes of exercise with aerobic exercise to examine the effect of 1 single session of exercise on mood. In the present study, the authors assessed state anxiety, depressive mood, and subjective well-being prior to and following 1 class of 1 of 4 exercise modes: yoga, Feldenkrais (awareness through movement), aerobic dance, and swimming; a computer class served as a control. Participants were 147 female general curriculum and physical education teachers (mean age = 40.15, SD = 0.2) voluntarily enrolled in a 1-year enrichment program at a physical education college. Analyses of variance for repeated measures revealed mood improvement following Feldenkrais, swimming, and yoga but not following aerobic dance and computer lessons. Mindful low-exertion activities as well as aerobic activities enhanced mood in 1 single session of exercise. The authors suggest that more studies assessing the mood-enhancing benefits of mindful activities such as Feldenkrais and yoga are needed.

  3. Strength and aerobic training in overweight females in Gdansk, Poland

    PubMed Central

    Sawczyn, Stanisław; Mishchenko, Viktor; Moska, Waldemar; Sawczyn, Michał; Jagiełło, Marina; Kuehne, Tatiana; Nowak, Robert; Cięszczyk, Paweł

    2015-01-01

    We compared the effects of 16-week-training on rest metabolic rate, aerobic power, and body fat, and the post-exercise effects upon rest oxygen uptake and respiratory exchange ratio in overweight middle-aged females. Twenty nine overweight women (BMI 29.9 ± 1.2 kg*m−2) participated in training (3 days a week). The subjects were divided onto groups of aerobic (AT) and strength (ST) training. The results showed that the total body mass decrease and VO2 max increase did not differ in both groups. Decrease in waist circumference after 16 weeks was higher in the ST group. In the ST group fat-free mass increased during the first 8 weeks. Rest metabolic rate was increased significantly at 16th week compared to initial value in ST group only. Significant increase in post-exercise resting VO2 and respiratory exchange ratio at 12 and 36 h was observed after the strength training session only. Increase in rest metabolic rate and post-exercise rest energy expenditure occurred after strength training but not after aerobic training despite the similar increase in aerobic power. The effect of 8–16 weeks of strength training on body mass decrease was higher in comparison to aerobic training. PMID:28352690

  4. Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah.

    PubMed

    Møller, Mette Fogh; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2010-11-01

    A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15(T), was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl cellulose and galactomannan. The strain grew at salinities ranging from 2 to 22% NaCl (w/v). Optimal growth occurred in the presence of 7-11% NaCl (w/v) at a temperature of 35°C and a pH of 6.7-8.2. Major whole-cell fatty acids were C16:0 (30.5%), C18:0 (14.8%), C18:1ω7c (13.1%) and C12:0 (7.8%). The G+C content of the DNA was 60 ± 0.5 mol%. By 16S rRNA gene sequence analysis, strain SX15(T) was shown to be affiliated to members of the gammaproteobacterial genus Marinimicrobium with pair wise identity values of 92.9-94.6%. The pheno- and genotypic properties suggest that strain SX15(T) represents a novel species of the genus Marinimicrobium for which the name Marinimicrobium haloxylanilyticum is proposed. The type strain is SX15(T) (= DSM 23100(T) = CCUG 59572(T)).

  5. Chromohalobacter salarius sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almeria, southern Spain.

    PubMed

    Aguilera, Margarita; Cabrera, Antonio; Incerti, Claudia; Fuentes, Susana; Russell, Nick J; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2007-06-01

    A moderately halophilic, Gram-negative bacterium (strain CG4.1(T)), which was isolated from a solar saltern at Cabo de Gata, a wildlife reserve located in the province of Almería, southern Spain, was subjected to a polyphasic taxonomic study. This organism was an aerobic, motile rod that produced colonies with a yellow pigment. Strain CG4.1(T) grew at salinities of 3-25 % (w/v), at 15-45 degrees C and at pH 5-9. The organism reduced nitrate, hydrolysed starch and had phenylalanine deaminase activity. The major fatty acids were C(18 : 1)omega7c, C(16 : 0) and C(19 : 0) cyclo omega8c. The DNA G+C content was 63.6 mol%. On the basis of phenotypic and phylogenetic data, strain CG4.1(T) appears to be a member of the genus Chromohalobacter and clustered closely with Chromohalobacter species, with 95-96 % similarity between their 16S rRNA gene sequences. However, DNA-DNA relatedness between the isolate and the type strains of Chromohalobacter species was low. Therefore, it is proposed that strain CG4.1(T) represents a novel species, Chromohalobacter salarius sp. nov. The type strain is strain CG4.1(T) (=CECT 5903(T)=LMG 23626(T)).

  6. Keratinase production and biodegradation of whole chicken feather keratin by a newly isolated bacterium under submerged fermentation.

    PubMed

    Sahoo, Dipak K; Das, Arpan; Thatoi, Hrudayanath; Mondal, Keshab C; Mohapatra, Pradeep K Das

    2012-07-01

    A new feather-degrading bacterium PKD 5 was isolated from feather dumping soil and identified as Bacillus weihenstephanensis based on morphological and physiochemical characteristics as well as 16S rRNA gene analysis. Extracellular keratinase was produced during submerged aerobic cultivation in a medium containing chicken feather as sole carbon and energy source and supplemented with salt solutions (NaCl 5.0, MgSO₄ 1.0, K₂HPO₄ 1.0, (NH₄)₂SO₄, 2.0 g/l). The optimal conditions for keratinase production include initial pH of 7.0, inoculum size of 2% (v/v), and cultivation at 40 °C. The maximum keratinase production and keratinolytic activity of PKD 5 was achieved after 7 days of fermentation under shaking condition (120 rpm). The enzyme has found application in developing cost-effective feather by-products for feeds and fertilizers. The manuscript first time describes B. weihenstephanensis PKD 5-mediated keratinase production under submerged fermentation and whole chicken feather biodegradation.

  7. Methylobacillus rhizosphaerae sp. nov., a novel plant-associated methylotrophic bacterium isolated from rhizosphere of red pepper.

    PubMed

    Madhaiyan, M; Poonguzhali, S; Senthilkumar, M; Pragatheswari, D; Lee, K-C; Lee, J-S

    2013-03-01

    A novel plant-associated obligate methylotrophic bacterium, designated strain Ca-68(T), was isolated from the rhizosphere soil of field-grown red pepper from India. The isolates are strictly aerobic, Gram negative, motile rods multiplying by binary fission and formaldehyde is assimilated via the ribulose monophosphate pathway. A comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacillus flagellatus, Methylobacillus glycogens and Methylobacillus pratensis, with which it showed pairwise similarity of 97.8, 97.4 and 96.2 %, respectively. The major fatty acids are C(16:0), C(10:0) 3OH and C(16:1) ω7c. The G+C content of the genomic DNA is 59.7 mol%. The major ubiquinone is Q-8. Dominant phospholipids are phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on 16S rRNA gene sequence analysis and DNA-DNA relatedness (14-19 %) with type strains of the genus Methylobacillus, the novel isolate was classified as a new species of this genus and named Methylobacillus rhizosphaerae Ca-68(T) (=KCTC 22383(T) = NCIMB 14472(T)).

  8. Effects of 12 weeks of aerobic training on autonomic modulation, mucociliary clearance, and aerobic parameters in patients with COPD

    PubMed Central

    Leite, Marceli Rocha; Ramos, Ercy Mara Cipulo; Kalva-Filho, Carlos Augusto; Freire, Ana Paula Coelho Figueira; de Alencar Silva, Bruna Spolador; Nicolino, Juliana; de Toledo-Arruda, Alessandra Choqueta; Papoti, Marcelo; Vanderlei, Luiz Carlos Marques; Ramos, Dionei

    2015-01-01

    Introduction Patients with chronic obstructive pulmonary disease (COPD) exhibit aerobic function, autonomic nervous system, and mucociliary clearance alterations. These parameters can be attenuated by aerobic training, which can be applied with continuous or interval efforts. However, the possible effects of aerobic training, using progressively both continuous and interval sessions (ie, linear periodization), require further investigation. Aim To analyze the effects of 12-week aerobic training using continuous and interval sessions on autonomic modulation, mucociliary clearance, and aerobic function in patients with COPD. Methods Sixteen patients with COPD were divided into an aerobic (continuous and interval) training group (AT) (n=10) and a control group (CG) (n=6). An incremental test (initial speed of 2.0 km·h−1, constant slope of 3%, and increments of 0.5 km·h−1 every 2 minutes) was performed. The training group underwent training for 4 weeks at 60% of the peak velocity reached in the incremental test (vVO2peak) (50 minutes of continuous effort), followed by 4 weeks of sessions at 75% of vVO2peak (30 minutes of continuous effort), and 4 weeks of interval training (5×3-minute effort at vVO2peak, separated by 1 minute of passive recovery). Intensities were adjusted through an incremental test performed at the end of each period. Results The AT presented an increase in the high frequency index (ms2) (P=0.04), peak oxygen uptake (VO2peak) (P=0.01), vVO2peak (P=0.04), and anaerobic threshold (P=0.02). No significant changes were observed in the CG (P>0.21) group. Neither of the groups presented changes in mucociliary clearance after 12 weeks (AT: P=0.94 and CG: P=0.69). Conclusion Twelve weeks of aerobic training (continuous and interval sessions) positively influenced the autonomic modulation and aerobic parameters in patients with COPD. However, mucociliary clearance was not affected by aerobic training. PMID:26648712

  9. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  10. Anaerobic and aerobic treatment of chlorinated, aliphatic compounds

    SciTech Connect

    Long, J.L.; Stensel, H.D.; Ferguson, J.F.; Strand, S.E.; Ongerth, J.E.

    1993-01-01

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). The anaerobic culture degraded seven of the feed CACs. The specialized aerobic cultures degraded all but three of the highly chlorinated CACs. The sequential system outperformed either of the other systems alone by degrading 10 of the feed CACs: chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,1,1-trichloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, perchloroethylene, and 1,2,3-trichloropropane, plus the anaerobic metabolites: dichloromethane and cis-1,2-dichloroethylene.

  11. High-intensity aerobic interval exercise in chronic heart failure.

    PubMed

    Meyer, Philippe; Gayda, Mathieu; Juneau, Martin; Nigam, Anil

    2013-06-01

    Aerobic exercise training is strongly recommended in patients with heart failure (HF) and reduced left ventricular ejection fraction (LVEF) to improve symptoms and quality of life. Moderate-intensity aerobic continuous exercise (MICE) is the best established training modality in HF patients. For about a decade, however, another training modality, high-intensity aerobic interval exercise (HIIE), has aroused considerable interest in cardiac rehabilitation. Originally used by athletes, HIIE consists of repeated bouts of high-intensity exercise interspersed with recovery periods. The rationale for its use is to increase exercise time spent in high-intensity zones, thereby increasing the training stimulus. Several studies have demonstrated that HIIE is more effective than MICE, notably for improving exercise capacity in patients with HF. The aim of the present review is to describe the general principles of HIIE prescription, the acute physiological effects, the longer-term training effects, and finally the future perspectives of HIIE in patients with HF.

  12. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    PubMed

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.

  13. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  14. Vocal parameters of aerobic instructors with and without voice problems.

    PubMed

    Wolfe, Virginia; Long, Joanne; Youngblood, Heather Conner; Williford, Henry; Olson, Michelle Scharff

    2002-03-01

    Aerobic instructors frequently experience vocal fatigue and are at risk for the development of vocal fold pathology. Six female aerobic instructors, three with self-reported voice problems and three without, served as subjects. Measures of vocal function (perturbation and EGG) were obtained before and after a 30-minute exercise session. Results showed that the group with self-reported voice problems had greater amounts of jitter, lower harmonic-to-noise ratios, and less periodicity in sustained vowels overall, but no significant differences in measures of perturbation and EGG were found before and immediately after instruction. Measures of vocal parameters showed that subjects with self-reported voice problems projected with relatively greater vocal intensity and phonated for a greater percentage of time across beginning, middle, and ending periods of aerobic instruction than subjects with no reported voice problems.

  15. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration

    PubMed Central

    Lopez, Christopher A.; Miller, Brittany M.; Rivera-Chávez, Fabian; Velazquez, Eric; Byndloss, Mariana X.; Chávez-Arroyo, Alfredo; Lokken, Kristen L.; Tsolis, Renée M.; Winter, Sebastian E.; Bäumler, Andreas J.

    2016-01-01

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration. PMID:27634526

  16. General review of maximal aerobic velocity measurement at laboratory. Proposition of a new simplified protocol for maximal aerobic velocity assessment.

    PubMed

    Berthon, P; Fellmann, N

    2002-09-01

    The maximal aerobic velocity concept developed since eighties is considered as either the minimal velocity which elicits the maximal aerobic consumption or as the "velocity associated to maximal oxygen consumption". Different methods for measuring maximal aerobic velocity on treadmill in laboratory conditions have been elaborated, but all these specific protocols measure V(amax) either during a maximal oxygen consumption test or with an association of such a test. An inaccurate method presents a certain number of problems in the subsequent use of the results, for example in the elaboration of training programs, in the study of repeatability or in the determination of individual limit time. This study analyzes 14 different methods to understand their interests and limits in view to propose a general methodology for measuring V(amax). In brief, the test should be progressive and maximal without any rest period and of 17 to 20 min total duration. It should begin with a five min warm-up at 60-70% of the maximal aerobic power of the subjects. The beginning of the trial should be fixed so that four or five steps have to be run. The duration of the steps should be three min with a 1% slope and an increasing speed of 1.5 km x h(-1) until complete exhaustion. The last steps could be reduced at two min for a 1 km x h(-1) increment. The maximal aerobic velocity is adjusted in relation to duration of the last step.

  17. Assessment of Aerobic Exercise Adverse Effects during COPD Exacerbation Hospitalization

    PubMed Central

    Mesquita, Carolina Bonfanti; Caram, Laura M. O.; Dourado, Victor Zuniga; de Godoy, Irma; Tanni, Suzana Erico

    2017-01-01

    Introduction. Aerobic exercise performed after hospital discharge for exacerbated COPD patients is already recommended to improve respiratory and skeletal muscle strength, increase tolerance to activity, and reduce the sensation of dyspnea. Previous studies have shown that anaerobic activity can clinically benefit patients hospitalized with exacerbated COPD. However, there is little information on the feasibility and safety of aerobic physical activity performed by patients with exacerbated COPD during hospitalization. Objective. To evaluate the effects of aerobic exercise on vital signs in hospitalized patients with exacerbated COPD. Patients and Methods. Eleven COPD patients (63% female, FEV1: 34.2 ± 13.9% and age: 65 ± 11 years) agreed to participate. Aerobic exercise was initiated 72 hours after admission on a treadmill; speed was obtained from the distance covered in a 6-minute walk test (6MWT). Vital signs were assessed before and after exercise. Results. During the activity systolic blood pressure increased from 125.2 ± 13.6 to 135.8 ± 15.0 mmHg (p = 0.004) and respiratory rate from 20.9 ± 4.4 to 24.2 ± 4.5 rpm (p = 0.008) and pulse oximetry (SpO2) decreased from 93.8 ± 2.3 to 88.5 ± 5.7% (p < 0.001). Aerobic activity was considered intense, heart rate ranged from 99.2 ± 11.5 to 119.1 ± 11.1 bpm at the end of exercise (p = 0.092), and patients reached on average 76% of maximum heart rate. Conclusion. Aerobic exercise conducted after 72 hours of hospitalization in patients with exacerbated COPD appears to be safe. PMID:28265180

  18. Chemical characterization of some aerobic liquids in CELSS

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1993-01-01

    Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.

  19. (An)aerobic bacteria found in secondary-cataract material. A SEM/TEM study.

    PubMed

    Kalicharan, D; Jongebloed, W L; Los, L I; Worst, J G

    1992-01-01

    Twenty four patients, who had marked reduction of vision due to secondary-cataract developed after an ECCE, were treated by surgical cleaning of the posterior lens capsule. During this procedure globular secondary-cataract material was removed and collected for morphological examination by SEM and TEM. Fragments of various sizes and shapes, including some with a 'golf ball' structure, were seen; these closely resembled particles frequently found in cataractous lenses. In addition, in 18 patients micro-organisms were found: rod-shaped bacteria, cocci, and in 2 cases yeasts. These findings were the more remarkable because these were clinically quiet eyes with no signs of intra-ocular inflammation and cultures have been persistently negative. We imagine that these bacteria must have entered the eye during the cataract extraction and have settled there without causing an infection.

  20. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.