Science.gov

Sample records for aerobic sequencing batch

  1. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product. PMID:26512862

  2. Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors.

    PubMed

    Shaw, C B; Carliell, C M; Wheatley, A D

    2002-04-01

    Conventional biological wastewater treatment plants do not easily degrade the dyes and polyvinyl alcohols (PVOH) in textile effluents. Results are reported on the possible advantages of anaerobic/aerobic cometabolism in sequenced redox reactors. A six phase anaerobic/aerobic sequencing laboratory scale batch reactor was developed to treat a synthetic textile effluent. The wastewater included PVOH from desizing and an azo dye (Remazol Black). The reactor removed 66% of the applied total organic carbon (load F: M 0.15) compared to 76% from a control reactor without dye. Colour removal was 94% but dye metabolites caused reactor instability. Aromatic amines from the anaerobic breakdown of the azo dyes were not completely mineralised by the aerobic phase. Breakdown of PVOH by the reactor (20-30%) was not as good as previous reports with entirely aerobic cultures. The anaerobic cultures were able to tolerate the oxygen and methane continued to be produced but there was a deterioration in settlement. PMID:12092574

  3. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater.

    PubMed

    Liu, Xiaodong; Chen, Yan; Zhang, Xin; Jiang, Xinbai; Wu, Shijing; Shen, Jinyou; Sun, Xiuyun; Li, Jiansheng; Lu, Lude; Wang, Lianjun

    2015-09-15

    Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5-1 mm, sludge volume index of 25.6 ± 3.6 mL g(-1) and settling velocity of 37.2 ± 2.7 m h(-1), were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (Vmax) varied between 1164.5 mg L(-1) h(-1) and 1867.4 mg L(-1) h(-1). High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule. PMID:25897697

  4. Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.

    PubMed

    Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein

    2012-01-01

    Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor. PMID:23393968

  5. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  6. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors.

    PubMed

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-08-01

    Micropowder (20-250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  7. Development and characterization of the partial nitrification aerobic granules in a sequencing batch airlift reactor.

    PubMed

    Song, Yanjun; Ishii, Satoshi; Rathnayake, Lashitha; Ito, Tsukasa; Satoh, Hisashi; Okabe, Satoshi

    2013-07-01

    In this study, partial nitrifying (PN) aerobic granules were developed in a sequencing batch airlift reactor by controlling the airflow rate and NH4(+) loading rate. The PN reactor produced an effluent with a NO2(-)/NH4(+) ratio of approximately one and with an NH4(+) conversion rate of 1.22 kg N m(-3)day(-1). More than 95% of the total organic carbon was removed during the process. On the basis of clone library analysis and fluorescence in situ hybridization, ammonia-oxidizing bacteria (AOB) closely related to Nitrosomonas eutropha and putative heterotrophic denitrifiers were mainly present near the surface of the PN aerobic granules. Microelectrode measurements revealed that both NH4(+) and NO2(-) were consumed near the surface (<200 μm), whereas no nitrate (NO3(-)) accumulation was observed throughout the granules. These results indicate that PN by AOB and nitrite denitrification by heterotrophs, but not nitrite oxidation, simultaneously occurred near the surface of the PN aerobic granules. PMID:23665689

  8. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect

    Wei Yanjie; Ji Min; Li Ruying; Qin Feifei

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  9. Nitrogen removal over nitrite by aeration control in aerobic granular sludge sequencing batch reactors.

    PubMed

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-07-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m-3·d-1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  10. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    PubMed Central

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-01-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  11. Effect of anoxic/aerobic phase fraction on N2O emission in a sequencing batch reactor under low temperature.

    PubMed

    Hu, Zhen; Zhang, Jian; Xie, Huijun; Li, Shanping; Wang, Jinhe; Zhang, Tingting

    2011-05-01

    Laboratory scale anoxic/aerobic sequencing batch reactor (A/O SBR) was operated around 15°C to evaluate the effect of anoxic/aerobic phase fraction (PF) on N(2)O emission. The ammonia removal exhibited a decrease trend with the increase of PF, while the highest total nitrogen removal was achieved at PF=0.5. Almost all the N(2)O was emitted during the aerobic phase, despite of the PF value. However, the net emission of N(2)O was affected by PF. Under the premise of completely aerobic nitrification, the lowest N(2)O emission was achieved at PF=0.5, with a N(2)O-N conversion rate of 9.8%. At lower PF (PF=0.2), N(2)O emission was stimulated by residual nitrite caused by uncompleted denitrification during the anoxic phase. On the other hand, the exhaustion of the easily degradable carbon was the major cause for the high N(2)O emission at higher PF (PF=0.5). The N(2)O emission increased with the decreasing temperature. The time-weighted N(2)O emission quantity at 15°C was 2.9 times higher than that at 25°C. PMID:21035326

  12. Formation of Aerobic Granular Sludge in Sequencing Batch Reactor: Comparison of Different Divalent Metal Ions as Cofactors

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Gao, Dawen; Zhang, Min

    2010-11-01

    The two sequencing batch reactors (SBRs) were operated to investigate the different effect of Ca2+ and Mg2+ augmentation on aerobic granulation. R1 was augmented with Ca2+ at 40 mg/L, while Mg+ was added to R2 with 40 mg/L. Results indicated that R1 had a faster granulation process, and aerobic granulation reached the steady state after 60 cycles in R1 but 80 cycles in R2. The mean diameter of the mature granules in R1 was 1.6 mm which was consistently larger than that (0.8 mm) in R2, and aerobic granules in R1 also showed a higher physical strength. However, the mature granules in R2 had the higher production yield of polysaccharides and proteins, and aerobic granules in R2 experienced a faster substrate biodegradation. Microbial and genetic characteristics in mature granules were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results revealed that Mg2+ addition led to higher microbial diversity in mature granules. In addition, the uncultured bacterium (AB447697) was major specie in R1, and β-proteobacterium was dominant in R2.

  13. Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor▿

    PubMed Central

    Ahn, Johwan; Schroeder, Sarah; Beer, Michael; McIlroy, Simon; Bayly, Ronald C.; May, John W.; Vasiliadis, George; Seviour, Robert J.

    2007-01-01

    All activated sludge systems for removing phosphate microbiologically are configured so the biomass is cycled continuously through alternating anaerobic and aerobic zones. This paper describes a novel aerobic process capable of decreasing the amount of phosphate from 10 to 12 mg P liter−1 to less than 0.1 mg P liter−1 (when expressed as phosphorus) over an extended period from two wastewaters with low chemical oxygen demand. One wastewater was synthetic, and the other was a clarified effluent from a conventional activated sludge system. Unlike anaerobic/aerobic enhanced biological phosphate removal (EBPR) processes where the organic substrates and the phosphate are supplied simultaneously to the biomass under anaerobic conditions, in this aerobic process, the addition of acetate, which begins the feed stage, is temporally separated from the addition of phosphate, which begins the famine stage. Conditions for establishing this process in a sequencing batch reactor are detailed, together with a description of the changes in poly-β-hydroxyalkanoate (PHA) and poly(P) levels in the biomass occurring under the feed and famine regimes, which closely resemble those reported in anaerobic/aerobic EBPR processes. Profiles obtained with denaturing gradient gel electrophoresis were very similar for communities fed both wastewaters, and once established, these communities remained stable over prolonged periods of time. 16S rRNA-based clone libraries generated from the two communities were also very similar. Fluorescence in situ hybridization (FISH)/microautoradiography and histochemical staining revealed that “Candidatus Accumulibacter phosphatis” bacteria were the dominant poly(P)-accumulating organisms (PAO) in both communities, with the phenotype expected for PAO. FISH also identified large numbers of betaproteobacterial Dechloromonas and alphaproteobacterial tetrad-forming organisms related to Defluviicoccus in both communities, but while these organisms assimilated

  14. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor.

    PubMed

    Kong, Qiang; Ngo, Huu Hao; Shu, Li; Fu, Rong-Shu; Jiang, Chun-Hui; Miao, Ming-sheng

    2014-08-30

    This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe(2+) dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation. PMID:25108827

  15. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment.

    PubMed

    Liu, Yali; Kang, Xiaorong; Li, Xin; Yuan, Yixing

    2015-08-01

    Lab-scale experiment was conducted to investigate the formation and characteristics of aerobic granular sludge for biological nutrient removal of slaughterhouse wastewater. Experimental results showed that removal performances of chemical oxygen demand (COD), ammonia and phosphate were enhanced with sludge granulation, and their removal efficiencies reached 95.1%, 99.3% and 83.5%, respectively. The aerobic granular sludge was matured after 90days cultivation, and protein-like substances were the main components. Simultaneously, the mass ratio of proteins and polysaccharides (PN/PS) was enhanced to 2.5 from 1.7. The granules with particle sizes of 0.6-1.2 and 1.2-1.8mm, accounting for 69.6%, were benefit for the growth of ammonia oxidizing bacteria (AOB) and nitrate oxidizing bacteria (NOB), and corresponding specific oxygen demand rates (SOUR) of AOB and NOB were 31.4 and 23.3mgO2/gMLSSh, respectively. PMID:25777064

  16. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor.

    PubMed

    Wang, Zichao; Gao, Mengchun; Wang, Zhe; She, Zonglian; Chang, Qingbo; Sun, Changqing; Zhang, Jian; Ren, Yun; Yang, Ning

    2013-11-01

    The effect of salinity on extracellular polymeric substances (EPS) of activated sludge was investigated in an anoxic-aerobic sequencing batch reactor (SBR). The contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were positively correlated with the salinity. The polysaccharide (PS) and protein (PN) contents in both LB-EPS and TB-EPS increased with the increase of salinity. With the increase of salinity from 0.5% to 6%, the PN/PS ratios in LB-EPS and TB-EPS decreased from 4.8 to 0.9 and from 2.9 to 1.4, respectively. The four fluorescence peaks in both LB-EPS and TB-EPS identified by three-dimensional excitation-emission matrix fluorescence spectroscopy are attributed to PN-like substances and humic acid-like substances. The Fourier transform infrared spectra of the LB-EPS and TB-EPS appeared to be very similar, but the differences across the spectra were apparent in terms of the relative intensity of some bands with the increase of salinity. The sludge volume index showed a linear correlation with LB-EPS (R(2)=0.9479) and TB-EPS (R(2)=0.9355) at different salinities, respectively. PMID:24134890

  17. The treatment of solvent recovery raffinate by aerobic granular sludge in a pilot-scale sequencing batch reactor.

    PubMed

    Long, Bei; Yang, Chang-zhu; Pu, Wen-hong; Yang, Jia-kuan; Jiang, Guo-sheng; Dan, Jing-feng; Zhang, Jing; Zhang, Li

    2015-09-01

    Mature aerobic granular sludge (AGS) was inoculated for the start-up of a pilot-scale sequencing batch reactor for the treatment of high concentration solvent recovery raffinate (SRR). The proportion of simulated wastewater (SW) (w/w) in the influent gradually decreased to zero during the operation, while volume of SRR gradually increased from zero to 10.84 L. AGS was successfully domesticated after 48 days, which maintained its structure during the operation. The domesticated AGS was orange, irregular, smooth and compact. Sludge volume index (SVI), SV30/SV5, mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS), extracellular polymeric substances, proteins/polysaccharides, average particle size, granulation rate, specific oxygen utilization rates (SOUR)H and (SOUR)N of AGS were about 38 mL/g, 0.97, 0.52, 39.73 mg/g MLVSS, 1.17, 1.51 mm, 96.66%, 47.40 mg O2/h g volatile suspended solids (VSS) and 8.96 mg O2/h g VSS, respectively. Good removal effect was achieved by the reactor. Finally, the removal rates of chemical oxygen demand (COD), total inorganic nitrogen (TIN), NH4+-N and total phosphorus (TP) were more than 98%, 96%, 97% and 97%, respectively. The result indicated gradually increasing the proportion of real wastewater in influent was a useful domestication method, and the feasibility of AGS for treatment of high C/N ratio industrial wastewater. PMID:26322760

  18. Effects of salinity on performance and microbial community structure of an anoxic-aerobic sequencing batch reactor.

    PubMed

    Wang, Zichao; Gao, Mengchun; Wang, Sen; Chang, Qingbo; Wang, Zhe

    2015-01-01

    The effects of salinity on the performance and microbial community structure of activated sludge were investigated in an anoxic-aerobic sequencing batch reactor (SBR). The removal efficiencies of chemical oxygen demand (COD) and [Formula: see text]-N decreased as the influent salinity increased from 0.5% to 6%. The specific oxygen utilization rate of activated sludge increased from 22.47 to 43.16 mg O2 g(-1) mixed liquid suspended solids (MLSS) h(-1) with the increase in salinity from 0.5% to 4% and subsequently decreased to 18.3 mg O2 g(-1) MLSS h(-1) at 6% salinity. The specific ammonium oxidation rate (SAOR) and specific nitrite oxidation rate (SNOR) decreased slowly at 0.5-1% salinity and then decreased rapidly with the increase in salinity from 1% to 6%. The SNOR diminished at a faster rate than the SAOR with the increase in salinity from 0.5% to 6%. The specific nitrate reduction rate (SNRR) decreased with the increase in salinity, whereas the SNRR was higher than the sum of SAOR and SNOR at 0.5-6% salinity. The denaturing gradient gel electrophoresis profiles revealed obvious changes in microbial community structure at different salinities. Some microbes were capable of tolerating up to 6% salinity in the SBR, such as Planomonospora sphaerica, Nitrosomonas sp. Is32, and Denitromonas sp. D2-1. PMID:25686658

  19. Effects of lead concentration and accumulation on the performance and microbial community of aerobic granular sludge in sequencing batch reactors.

    PubMed

    Tan, Guangcai; Xu, Nan; Liu, Yong; Hao, Hongshan; Sun, Weiling

    2016-11-01

    The present study investigated the effects of lead on the morphological structure, physical and chemical properties, wastewater treatment performance and microbial community structure of aerobic granular sludge (AGS) in sequencing batch reactors (SBRs). The results showed that at Pb(2+) concentration of 1 mg/L, the mixed liquid suspended solids decreased, the settling velocity increased and the sludge volume index increased sharply. Meanwhile, AGS began to disintegrate and show an irregular shape. In terms of wastewater treatment in an SBR, the phosphorus removal rate was affected only until the Pb(2+) concentration was up to 1 mg/L. The [Formula: see text] removal efficiency began to decline when the Pb(2+) concentration increased to 6 mg/L, while the removal of chemical oxygen demand increased slightly within the Pb(2+) concentration range of 1-6 mg/L. Significant changes were observed in the microbial community structure, especially the dominant bacteria. Compared to the Pb(2+) accumulation on the sludge, the Pb(2+) concentration in the aqueous phase played a more important role in the performance and microbial community of AGS in SBRs. PMID:27012589

  20. Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors.

    PubMed

    Wagner, Jamile; Weissbrodt, David Gregory; Manguin, Vincent; da Costa, Rejane Helena Ribeiro; Morgenroth, Eberhard; Derlon, Nicolas

    2015-11-15

    The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that

  1. Aerobic granulation and nitrogen removal with the effluent of internal circulation reactor in start-up of a pilot-scale sequencing batch reactor.

    PubMed

    Wei, Dong; Si, Wei; Zhang, Yongfang; Qiao, Zhuangming; Yao, Zhenxing; Zhao, Wei; Zhao, Jie; Chen, Guodong; Wei, Qin; Du, Bin

    2012-11-01

    Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO(2) (-)-N/NO (x) (-) -N) were between 84.6 and 99.1 %. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32 °C) and free ammonia (FA) concentration. After 50 days' running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96 %, respectively. The maximum nitrogen removal efficiency of 83.1 % was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0 mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater. PMID:22562444

  2. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors.

    PubMed

    Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun

    2010-09-01

    The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. PMID:20705321

  3. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    PubMed Central

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-01-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096

  4. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor.

    PubMed

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-01-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3(-)-N could be removed or reduced, some amount of NO2(-)-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096

  5. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  6. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs).

    PubMed

    Hu, Zhen; Zhang, Jian; Li, Shanping; Xie, Huijun; Wang, Jinhe; Zhang, Tingting; Li, Yiran; Zhang, Huayong

    2010-05-01

    Nitrous oxide (N(2)O) is a significant greenhouse gas, and biological nitrogen removal systems have been shown to be a significant N(2)O source. To evaluate the control parameters for N(2)O emission in the wastewater treatment process, N(2)O emissions were compared in the activated sludge from anoxic-aerobic sequencing batch reactors (A/O SBRs) acclimated under different aeration rates, and fed with synthetic wastewater. Results showed that a higher aeration rate led to a smaller N(2)O emission, while reactors acclimated under mild aeration performed the best in terms of nitrogen removal efficiency. Most of the N(2)O was produced during the aerobic phase, regardless of the aeration rate. Trace studies showed that incomplete denitrification appeared to be the major process responsible for high N(2)O emission at a low aeration rate (Run 1), while incomplete nitrification was the reason for N(2)O emission at a higher aeration rate (Run 2 and Run 3). For enhancing the efficiency of nitrogen removal while lowering energy consumption and reducing N(2)O emission, the optimal aeration rate would be 2.7 L(air)/(L(reactor) . h), in terms of the synthetic wastewater used. PMID:20347772

  7. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.

    PubMed

    Franca, Rita D G; Vieira, Anabela; Mata, Ana M T; Carvalho, Gilda S; Pinheiro, Helena M; Lourenço, Nídia D

    2015-11-15

    This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule

  8. Formation of aerobic granules by Mg2+ and Al3+ augmentation in sequencing batch airlift reactor at low temperature.

    PubMed

    Wang, Shuo; Shi, Wenxin; Yu, Shuili; Yi, Xuesong; Yang, Xu

    2012-09-01

    Aerobic granules technology (AGS) was difficult to cultivate at low temperature, and the treatment efficiency of domestic sewage was remarkably low because of low temperature, which greatly limits its development and application. AGS formation time significantly decreased for 43 days by adding 19.0 mg/L Mg(2+) and 21.0 mg/L Al(3+), moreover, AGS possessed better simultaneously chemical oxygen demand, NH(4) (+)-N, TP removal efficiencies at low temperature, which the respective removal efficiencies were 85.6, 88.8, and 91.9%. The content of total polysaccharides was 8.23 mg/gMLSS as well as the content of total protein was 8.52 mg/gMLSS, consequently, the total proteins/total polysaccharides ratio was 1.04, which the relatively high protein content induced by Mg(2+) and Al(3+) presented an essential feature for AGS formation. In addition, the affinity among Mg(2+), Al(3+) and -OH may drive the stretching vibration of -OH band which led to the infrared motion of functional groups in AGS and accelerate AGS formation as well. PMID:22451077

  9. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage.

    PubMed

    Aqeel, H; Basuvaraj, M; Hall, M; Neufeld, J D; Liss, S N

    2016-01-01

    Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage

  10. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  11. Denitrification accelerates granular sludge formation in sequencing batch reactors.

    PubMed

    Suja, E; Nancharaiah, Y V; Krishna Mohan, T V; Venugopalan, V P

    2015-11-01

    In this study, the role of denitrification on aerobic granular sludge formation in sequencing batch reactors (SBRs) was investigated. Formation of aerobic granular sludge was faster in SBRs fed with varying concentrations of nitrate or nitrite as compared to control, which received no nitrate or nitrite in the feed. The majority of the fed nitrate or nitrite was denitrified in the anoxic static fill phase, prior to aerobic reaction phase. Sludge characterization showed accumulation of calcium and chemical signature of calcium carbonate in the nitrate-fed SBRs. Feeding of sodium nitroprusside, a known nitric oxide (NO) donor, enhanced aggregation, production of extracellular polymeric substances and formation of aerobic granular sludge. The results support the hypothesis that denitrification facilitates cell aggregation and accelerates aerobic sludge granulation through NO signaling and CaCO3 formation. Nitrate or other intermediates of heterotrophic denitrification, therefore, have a positive effect on aerobic granulation in SBRs. PMID:26218539

  12. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions.

    PubMed

    Kruglova, Antonina; Kråkström, Matilda; Riska, Mats; Mikola, Anna; Rantanen, Pirjo; Vahala, Riku; Kronberg, Leif

    2016-08-01

    Four emerging micropollutants ibuprofen, diclofenac, estrone (E1) and 17α-ethinylestradiol (EE2) were studied in large laboratory-scale wastewater treatment plants (WWTPs) with high nitrifying activity. Activated sludge (AS) with sludge retention times (SRTs) of 12days and 14days in sequencing batch reactors (SBRs) and 30days, 60days and 90days in membrane bioreactors (MBRs) were examined at 8°C and 12°C. Concentrations of pharmaceuticals and their main metabolites were analysed in liquid phase and solid phase of AS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A remarkable amount of contaminants were detected in solids of AS, meaning the accumulation of micropollutants in bacterial cells. The biodegradation rate constants (Kbiol) were affected by SRT and temperature. MBR with a 90-day SRT showed the best results of removal. Conventional SBR process was inefficient at 8°C showing Kbiol values lower than 0.5lgSS(-1)d(-1) for studied micropollutants. PMID:27128192

  13. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure. PMID:23138064

  14. Missing aerobic-phase nitrogen: The potential for heterotrophic reduction of autotrophically generated nitrous oxide in a sequencing batch reactor wastewater treatment system.

    PubMed

    Shiskowskii, D M; Mavinic, D S

    2005-08-01

    Several biochemical pathways can induce nitrogen loss from aerated, aerobic wastewater treatment bioreactors. These pathways include "traditional" simultaneous nitrification-denitrification (SND) (i.e. autotrophic nitrification - heterotrophic denitrification), autotrophic denitrification, and anaerobic ammonia oxidation. An oxygen limitation, often expressed in terms of low dissolved oxygen (DO) concentration, is a common element of these pathways. The presented research investigated the effect of mixed liquor DO concentration and biomass slowly degradable carbon (SDC) utilization rate on the heterotrophic nitrous oxide (N2O) reduction rate, for biomass cultured in an anoxic/aerobic wastewater treatment bioreactor. Biomass oxygen and SDC availability-limitation, expressed in terms of DO concentration and SDC ultilization rate, respectively, were found to significantly impact the observed heterotrophic N2O reduction rate. The findings support the hypothesis that nitrogen lost from the mixed liquor of an aerobic bioreactor could result from simultaneous autotrophic N2O generation (i.e. autotrophic denitrification) and heterotrophic N2O reduction. The results also support the idea that autotrophic N2O generation could be occurring in a bioreactor, although N2O may not be measurable in the reactor off-gas. Therefore, this autotrophic N2O generation - heterotrophic N2O reduction mechanism provides an alternative explanation to nitrogen loss, when compared to "conventional" SND, where heterotrophic organisms are assumed to reduce autotrophically generated nitrite and nitrate to dinitrogen (N2). In addition, nitrogen loss speculatively attributed to N2 formation via anaerobic ammonia oxidation in oxygen-limited environments, again because of the absence of measurable N2O, may in fact be due to the autotrophic N2O generation - heterotrophic N2O reduction mechanism. PMID:16128383

  15. Influence of food colorant and initial COD concentration on the efficiencies of micro-aerobic sequencing batch reactor (micro-aerobic SBR) for casein recovery under non-sterile condition by Lactobacillus casei TISTR 1500.

    PubMed

    Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Sasaki, Ken; Techapun, Charin

    2009-09-01

    The acid biocoagulants produced from non-sterile lactic acid fermentation by Lactobacillus casei TISTR 1500 were used to settle colloidal protein, mainly casein, at the isoelectric point in dairy effluent prior to secondary treatment. High concentration of azo dye (Ponceau 4R) in the dairy wastewater and the stress of starvation decreased the efficiencies of the micro-aerobic SBR. Consequently, low casein recovery obtained and organic removal suffered a decline. The number of lactic acid bacteria (LAB) also declined from log 7.4 to log 5.30 in the system fed with 400 mg L(-1) of the dye containing wastewater. The recovery of the system, however, showed that 25,000 mg COD L(-1) influent with 200 mg L(-1) of the dye maintained the growth of LAB in the range of log 7.74-8.12, with lactic and acetic production (2597 and 197 mg L(-1)) and 83% protein removal. The results in this study suggested that the inhibitory effects were compensated with high organic content feeding. PMID:19423333

  16. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    NASA Astrophysics Data System (ADS)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  17. Variability of biological degradation of phenolic hydrocarbons in an aerobic aquifer determined by laboratory batch experiments

    NASA Astrophysics Data System (ADS)

    Nielsen, Per H.; Christensen, Thomas H.

    1994-11-01

    The biological aerobic degradation of 7 phenolic hydrocarbons (phenol, o-cresol, o-nitrophenol, p-nitrophenol, 2,6-dichlorophenol, 2,4-dichlorophenol, 4,6- o-dichlorocresol) and 1 aromatic hydrocarbon (nitrobenzene) was studied for 149 days in replicate laboratory batch microcosms with sediment and groundwater from 8 localities representing a 15 m × 30 m section of an aerobic aquifer. Three patterns of variation were found: (1) phenol, o-cresol and in most cases p-nitrophenol showed very fast degradation with no or only short lag phases and with very little variation among localities; (2) 2,4-dichlorophenol was degraded in all localities and showed large variability among localities with respect to lag phases (0-50 days) and some variation with respect to degradation periods (20-40 days); and (3) nitrobenzene, o-nitrophenol, 2,6-dichlorophenol and 4,6- o-dichlorocresol showed very large variability among localities ranging from no degradation within 149 days in some localities to degradation within 2 days in other localities. The degradation patterns were highly sequential, indicating a general sequence, for those compounds degradable, valid in all localities. The results are of importance in designing experimental determination of degradation rates and in assigning degradation parameters for use in solute transport models.

  18. Sequence-Based Identification of Aerobic Actinomycetes

    PubMed Central

    Patel, Jean Baldus; Wallace, Richard J.; Brown-Elliott, Barbara A.; Taylor, Tony; Imperatrice, Carol; Leonard, Deborah G. B.; Wilson, Rebecca W.; Mann, Linda; Jost, Kenneth C.; Nachamkin, Irving

    2004-01-01

    We investigated the utility of 500-bp 16S rRNA gene sequencing for identifying clinically significant species of aerobic actinomycetes. A total of 28 reference strains and 71 clinical isolates that included members of the genera Streptomyces, Gordonia, and Tsukamurella and 10 taxa of Nocardia were studied. Methods of nonsequencing analyses included growth and biochemical analysis, PCR-restriction enzyme analysis of the 439-bp Telenti fragment of the 65 hsp gene, susceptibility testing, and, for selected isolates, high-performance liquid chromatography. Many of the isolates were included in prior taxonomic studies. Sequencing of Nocardia species revealed that members of the group were generally most closely related to the American Type Culture Collection (ATCC) type strains. However, the sequences of Nocardia transvalensis, N. otitidiscaviarum, and N. nova isolates were highly variable; and it is likely that each of these species contains multiple species. We propose that these three species be designated complexes until they are more taxonomically defined. The sequences of several taxa did not match any recognized species. Among other aerobic actinomycetes, each group most closely resembled the associated reference strain, but with some divergence. The study demonstrates the ability of partial 16S rRNA gene sequencing to identify members of the aerobic actinomycetes, but the study also shows that a high degree of sequence divergence exists within many species and that many taxa within the Nocardia spp. are unnamed at present. A major unresolved issue is the type strain of N. asteroides, as the present one (ATCC 19247), chosen before the availability of molecular analysis, does not represent any of the common taxa associated with clinical nocardiosis. PMID:15184431

  19. Biodenitrification in Sequencing Batch Reactors. Final report

    SciTech Connect

    Silverstein, J.

    1996-01-23

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO{sub 3}{sub {minus}}) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995.

  20. IMPLEMENTATION OF SEQUENCING BATCH REACTORS FOR MUNICIPAL TREATMENT

    EPA Science Inventory

    Sequencing batch reactor technology is being implemented at various municipal sites in both the United States and abroad. Total life cycle cost savings, ease of operation, and reliability favor this technology at facilities sized up to 19,000 cu m per day (5 mgd). Batch treatment...

  1. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    PubMed Central

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  2. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment.

    PubMed

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  3. ORGANIC LOADING STUDY OF FULL-SCALE SEQUENCING BATCH REACTORS

    EPA Science Inventory

    The sequencing batch reactor (SBR) at Culver, Indiana, has two 440(sup 3) aeration basins that have received primary effluent on an alternating, fill-and-draw basis since May 1980. During normal SBR operation, liquid level variation and mixed liquor suspended solids (MLSS) concen...

  4. Treatment of Slaughter House Wastewater in a Sequencing Batch Reactor: Performance Evaluation and Biodegradation Kinetics

    PubMed Central

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath

    2013-01-01

    Slaughterhouse wastewater contains diluted blood, protein, fat, and suspended solids, as a result the organic and nutrient concentration in this wastewater is vary high and the residues are partially solubilized, leading to a highly contaminating effect in riverbeds and other water bodies if the same is let off untreated. The performance of a laboratory-scale Sequencing Batch Reactor (SBR) has been investigated in aerobic-anoxic sequential mode for simultaneous removal of organic carbon and nitrogen from slaughterhouse wastewater. The reactor was operated under three different variations of aerobic-anoxic sequence, namely, (4+4), (5+3), and (3+5) hr. of total react period with two different sets of influent soluble COD (SCOD) and ammonia nitrogen (NH4+-N) level 1000 ± 50 mg/L, and 90 ± 10 mg/L, 1000 ± 50 mg/L and 180 ± 10 mg/L, respectively. It was observed that from 86 to 95% of SCOD removal is accomplished at the end of 8.0 hr of total react period. In case of (4+4) aerobic-anoxic operating cycle, a reasonable degree of nitrification 90.12 and 74.75% corresponding to initial NH4+-N value of 96.58 and 176.85 mg/L, respectively, were achieved. The biokinetic coefficients (k, Ks, Y, kd) were also determined for performance evaluation of SBR for scaling full-scale reactor in future operation. PMID:24027751

  5. Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification

    SciTech Connect

    Pham, H.T.B.; Larsson, G.; Enfors, S.O.

    1998-11-20

    Some yeast species are classified as being glucose sensitive, which means that they may produce ethanol also under aerobic conditions when the sugar concentration is high. A kinetic model of overflow metabolism in Saccharomyces cerevisiae was used for simulation of aerobic fed-batch cultivations. An inhibitory effect of ethanol on the maximum respiration of the yeast was observed in the experiments and included in the model. The model predicts respiration, biomass, and ethanol formation and the subsequent ethanol consumption, and was experimentally validated in fed-batch cultivations. Oscillating sugar feed with resulting oscillating carbon dioxide production did not influence the maximum respiration rate, which indicates that the pyruvate dehydrogenase complex is not involved as a bottleneck causing aerobic ethanol formation.

  6. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors.

    PubMed

    Stadler, Lauren B; Su, Lijuan; Moline, Christopher J; Ernstoff, Alexi S; Aga, Diana S; Love, Nancy G

    2015-01-23

    We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss. PMID:25200120

  7. Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater.

    PubMed

    Fontenot, Q; Bonvillain, C; Kilgen, M; Boopathy, R

    2007-07-01

    In order to improve the water quality in the shrimp aquaculture, we tested a sequencing batch reactor (SBR) for the treatment of shrimp wastewater. A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system. The SBR accomplishes pH correction, aeration, and clarification in a timed sequence, in a single reactor basin. This is achieved in a simple tank, through sequencing stages, which includes fill, react, settle, decant, and idle. The wastewater from the Waddell Mariculture Center, South Carolina was successfully treated using a SBR. The wastewater contained high concentration of carbon and nitrogen. By operating the reactor sequentially, viz, aerobic, anaerobic, and aerobic modes, nitrification and denitrification were achieved as well as removal of carbon. We optimized various environmental parameters such as temperature, salinity, and carbon and nitrogen ratio (C:N ratio) for the best performance of SBR. The results indicated that the salinity of 28-40 parts per thousand (ppt), temperature range of 22-37 degrees C, and a C:N ratio of 10:1 produced best results in terms of maximum nitrogen and carbon removal from the wastewater. The SBR system showed promising results and could be used as a viable treatment alternative in the shrimp industry. PMID:16935499

  8. Wastewater treatment from biodiesel production via a coupled photo-Fenton-aerobic sequential batch reactor (SBR) system.

    PubMed

    Ramírez, Ximena María Vargas; Mejía, Gina Maria Hincapié; López, Kelly Viviana Patiño; Vásquez, Gloria Restrepo; Sepúlveda, Juan Miguel Marín

    2012-01-01

    A coupled system of the photo-Fenton advanced oxidation technique and an aerobic sequential batch reactor (SBR) was used to treat wastewater from biodiesel production using either palm or castor oil. The photo-Fenton reaction and biological process were evaluated individually and were effective at treating the wastewater; nevertheless, each process required longer degradation times for the wastewater pollutants compared with the coupled system. The proposed coupled photo-Fenton/aerobic SBR system obtained a 90% reduction of the chemical oxygen demand (COD) in half of the time required for the biological system individually. PMID:22766873

  9. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.

    PubMed

    Nissen, T L; Hamann, C W; Kielland-Brandt, M C; Nielsen, J; Villadsen, J

    2000-03-30

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass and secondary fermentation products, to NAD(+). The objective of this study was to evaluate whether introduction of a new pathway for reoxidation of NADH, in a yeast strain where glycerol synthesis had been impaired, would result in elimination of glycerol production and lead to increased yields of ethanol and biomass under anaerobic and aerobic growth conditions, respectively. This was done by deletion of GPD1 and GPD2, encoding two isoenzymes of glycerol 3-phosphate dehydrogenase, and expression of a cytoplasmic transhydrogenase from Azotobacter vinelandii, encoded by cth. In anaerobic batch fermentations of strain TN5 (gpd2-Delta1), formation of glycerol was significantly impaired, which resulted in reduction of the maximum specific growth rate from 0.41/h in the wild-type to 0.08/h. Deletion of GPD2 also resulted in a reduced biomass yield, but did not affect formation of the remaining products. The modest effect of the GPD1 deletion under anaerobic conditions on the maximum specific growth rate and product yields clearly showed that Gdh2p is the important factor in glycerol formation during anaerobic growth. Strain TN6 (gpd1-Delta1 gpd2-Delta1) was unable to grow under anaerobic conditions due to the inability of the strain to reoxidize NADH to NAD(+) by synthesis of glycerol. Also, strain TN23 (gpd1-Delta1 gpd2-Delta1 YEp24-PGKp-cth-PGKt) was unable to grow anaerobically, leading to the conclusion that the NAD(+) pool became limiting in biomass synthesis before the nucleotide levels favoured a transhydrogenase reaction that could convert NADH and NADP(+) to NADPH and NAD(+). Deletion of either GPD1 or GPD2 in the wild-type resulted in a dramatic reduction of the glycerol

  10. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor.

    PubMed

    He, Qiulai; Zhou, Jun; Wang, Hongyu; Zhang, Jing; Wei, Li

    2016-08-01

    The evolution of the bacterial population during formation of denitrifying phosphorus removal granular sludge was investigated using high-throughput pyrosequencing. As a result, mature granules with a compact structure were obtained in an anaerobic/aerobic/anoxic (A/O/A) sequencing batch reactor under an organic loading rate as low as 0.3kg COD/(m(3)·d). Rod-shaped microbes were observed to cover with the outer surface of granules. Besides, reliable COD and simultaneous nitrogen and phosphorus removal efficiencies were achieved over the whole operation period. MiSeq pyrosequencing analysis illustrated that both the microbial diversity and richness increased sharply during the granulation process, whereas they stayed stable after the presence of granules. Some microorganisms seemed to contribute to the formation of granules, and some were identified as functional bacterial groups responsible for constructing the biological reactor. PMID:27115745

  11. Effect of aeration on nitrous oxide (N2O) emission from nitrogen-removing sequencing batch reactors.

    PubMed

    Kim, Dong-Jin; Kim, Yuri

    2013-01-01

    In this study, nitrous oxide (N(2)O) emission was compared between the operations of two different sequencing batch reactors, conventional sequencing batch reactor (CNVSBR) and simultaneous nitrification and denitrification sequencing batch reactor (SND-SBR), using synthetic wastewater. The CNV-SBR consisted of anoxic (denitrification) and aerobic phases, whereas the SND-SBR consisted of a microaerobic (low dissolved oxygen concentration) phase, which was achieved by intermittent aeration for simultaneous nitrification and denitrification. The CNV-SBR emitted 3.9 mg of N(2)O-N in the denitrification phase and 1.6 mg of N2O-N in the nitrification phase, resulting in a total emission of 5.5 mg from 432 mg of NH(4)(+)-N input. In contrast, the SND-SBR emitted 26.2 mg of N(2)O-N under the microaerobic condition, which was about 5 times higher than the emission obtained with the CNV-SBR at the same NH(4)(+)-N input. From the N(2)O yield based on NH(4)(+)-N input, the microaerobic condition produced the highest yield (6.1%), followed by the anoxic (0.9%) and aerobic (0.4%) conditions. It is thought that an appropriate dissolved oxygen level is critical for reducing N(2)O emission during nitrification and denitrification at wastewater treatment plants. PMID:23314375

  12. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    PubMed

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. PMID:25499077

  13. Domestic wastewater treatment in a novel sequencing batch biofilm filter.

    PubMed

    Ji, Bin; Wei, Li; Chen, Dan; Wang, Hongyu; Li, Zhenhua; Yang, Kai

    2015-07-01

    Biological treatment of domestic sewage low C/N ratio was accomplished in a pilot-scale sequencing batch biofilm filter (SBBF). The novel hybrid bioreactor consisted of bio-band in the upper and anthracite filter media in the bottom, which combined a sequencing batch biofilm reactor (SBBR) with a biological filter. The average removal efficiency values of chemical oxygen demand (COD), ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), and total phosphorus (TP) were 89.4, 83.3, 62.9, and 48.7%, respectively. A 454-pyrosequencing technology was employed to investigate the microbial communities of the influent (J1) and the biofilm (J2) on the bio-band on day 40. Pyrosequencing analysis of the 16S rRNA gene revealed the community of the biofilm consisted of Gammaproteobacteria (48.6%), Planctomycetacia (18.0%), Alphaproteobacteria (13.7%), Clostridia (9.6%), Desulfonatronum (18.5%), Actinobacteria (1.9%), and Bacilli (1.7%), accounting for 93.6% of total operational taxonomic units at genera level. Acinetobacter tjernbergiae and Acinetobacter lwoffii were the most abundant species, suggesting that denitrifying phosphorus removal was achieved in the SBBF. PMID:25967659

  14. Hydrolyzed polyacrylamide biodegradation and mechanism in sequencing batch biofilm reactor.

    PubMed

    Yan, Miao; Zhao, Lanmei; Bao, Mutai; Lu, Jinren

    2016-05-01

    An investigation was performed to study the performance of a sequencing batch biofilm reactor (SBBR) to treat hydrolyzed polyacrylamides (HPAMs) and to determine the mechanisms of HPAM biodegradation. The mechanisms for the optimized parameters that significantly improved the degradation efficiency of the HPAMs were investigated by a synergistic effect of the co-metabolism in the sludge and the enzyme activities. The HPAM and TOC removal ratio reached 54.69% and 70.14%. A significant decrease in the total nitrogen concentration was measured. The carbon backbone of the HPAMs could be degraded after the separation of the amide group according to the data analysis. The HPLC results indicated that the HPAMs could be converted to polymer fragments without the generation of the acrylamide monomer intermediate. The results from high-throughput sequencing analysis revealed proteobacterias, bacteroidetes and planctomycetes were the key microorganisms involved in the degradation. PMID:26896716

  15. Growth characteristics of freeze-tolerant baker's yeast Saccharomyces cerevisiae AFY in aerobic batch culture.

    PubMed

    Ji, Meng; Miao, Yelian; Chen, Jie Yu; You, Yebing; Liu, Feilong; Xu, Lin

    2016-01-01

    Saccharomyces cerevisiae AFY is a novel baker's yeast strain with strong freeze-tolerance, and can be used for frozen-dough processing. The present study armed to clarify the growth characteristics of the yeast AFY. Aerobic batch culture experiments of yeast AFY were carried out using media with various initial glucose concentrations, and the culture process was analyzed kinetically. The growth of the yeast AFY exhibited a diauxic pattern with the first growth stage consuming glucose and the second growth stage consuming ethanol. The cell yield decreased with increasing initial glucose concentration in the first growth stage, and also decreased with increasing initial ethanol concentration in the second growth stage. In the initial glucose concentration range of 5.0-40.0 g/L, the simultaneous equations of Monod equation, Luedeking-Piret equation and pseudo-Luedeking-Piret equation could be used to describe the concentrations of cell, ethanol and glucose in either of the two exponential growth phases. At the initial glucose concentrations of 5.0, 10.0 and 40.0 g/L, the first exponential growth phase had a maximal specific cell growth rate of 0.52, 0.98 and 0.99 h(-1), while the second exponential growth phase had a maximal specific cell growth rate of 0.11, 0.06 and 0.07 h(-1), respectively. It was indicated that the efficiency of the yeast production could be improved by reducing the ethanol production in the first growth stage. PMID:27186467

  16. Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09

    SciTech Connect

    Boden, Rich; Cunliffe, Michael; Scanlan, Julie; Moussard, Helene; Kits, K. Dimitri; Klotz, Martin G; Jetten, MSM; Vuilleumier, Stephane; Han, James; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Tapia, Roxanne; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Cheng, Jan-Fang; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Pitluck, Sam; Woyke, Tanja; Stein, Lisa Y.; Murrell, Collin

    2011-01-01

    Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

  17. Molecular identification of the microbial diversity in two sequencing batch reactors with activated sludge.

    PubMed

    Denecke, Martin; Eilmus, Sascha; Röder, Nadine; Roesch, Christopher; Bothe, Hermann

    2012-02-01

    The diversity of the microbial community was identified in two lab-scale, ideally mixed sequencing batch reactors which were run for 115 days. One of the reactors was intermittently aerated (2 h aerobically/2 h anaerobically) whereas the other was consistently aerated. The amount of biomass as dry matter, the degradation of organic carbon determined by chemical oxygen demand and nitrogen-degradation activity were followed over the operation of the two reactors and did not show significant differences between the two approaches at the end of the experiment. At this point, the composition of the microbial community was determined by a terminal restriction fragment length polymorphism approach using multiple restriction enzymes by which organisms were retrieved to the lowest taxonomic level. The microbial composition was then significantly different. The species richness was at least five-fold higher in the intermittently aerated reactor than in the permanently kept aerobic approach which is in line with the observation that ecosystem disturbances result in higher diversity. PMID:21786107

  18. Ammonia and phenol removal in an internal-circulate sequencing batch airlift reactor.

    PubMed

    Liu, Qifeng; Du, Cong; Yang, Ting; Fu, Zhimin

    2015-01-01

    An internal-circulate sequencing batch airlift reactor (IC-SBAR) has been developed to evaluate the efficiency of phenol and ammonia removal in treating synthetic wastewater. This study examined the effect of operation cycle on this system. Results showed that above 97.0% removal efficiencies of ammonia and phenol were achieved, which indicated that ammonia and phenol removals were not related to operation cycle. The average removal efficiency of 91.7% for chemical oxygen demand (COD) was achieved when the static/aerobic/settling time was 240 min/440 min/40 min. It was found that COD removal efficiency increased due to the time of operation cycle being prolonged. The average removal efficiencies of total inorganic nitrogen (TIN) were 65.8, 69.3 and 68.9% when average TIN concentrations were 78.0, 97.6 and 88.4 mg/L, respectively, in the influent. A cycle study showed that most phenol was degraded by aerobic microbes. Increasing the static time from 120 to 240 min resulted in the accumulation of NO2(-)-N, which indicated that the structures of the nitrifying bacterial community were changed. PMID:26114272

  19. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor.

    PubMed

    Liu, Xiuhong; Peng, Yi; Wu, Changyong; Akio, Takigawa; Peng, Yongzhen

    2008-01-01

    The production of N2O during nitrogen removal from real domestic wastewater was investigated in a lab-scale aerobic-anoxic sequencing batch reactor with a working volume of 14 L. The results showed that the total N2O-N production reached higher than 1.87 mg/L, and up to 4% of removed nitrogen was converted into N2O. In addition, N2O led to a much higher greenhouse effect than CO2 during aerobic reaction phase, this proved that N2O production could not be neglected. The N2O-N production during nitrification was 1.85 mg/L, whereas, during denitrification, no N2O was produced, nitrification was the main source of N2O production during nitrogen removal. Furthermore, during denitrification, the dissolved N2O at the end of aeration was found to be further reduced to N2. Denitrification thus had the potential of controlling N2O production. PMID:18763555

  20. Aerobic degradation of ibuprofen in batch and continuous reactors by an indigenous bacterial community.

    PubMed

    Fortunato, María Susana; Fuentes Abril, Nancy Piedad; Martinefski, Manuela; Trípodi, Valeria; Papalia, Mariana; Rádice, Marcela; Gutkind, Gabriel; Gallego, Alfredo; Korol, Sonia Edith

    2016-10-01

    Water from six points from the Riachuelo-Matanza basin was analyzed in order to assess ibuprofen biodegradability. In four of them biodegradation of ibuprofen was proved and degrading bacterial communities were isolated. Biodegradation in each point could not be correlated with sewage pollution. The indigenous bacterial community isolated from the point localized in the La Noria Bridge showed the highest degradative capacity and was selected to perform batch and continuous degradation assays. The partial 16S rRNA gene sequence showed that the community consisted of Comamonas aquatica and Bacillus sp. In batch assays the community was capable of degrading 100 mg L(-1) of ibuprofen in 33 h, with a specific growth rate (μ) of 0.21 h(-1). The removal of the compound, as determined by High performance liquid chromatography (HPLC), exceeded 99% of the initial concentration, with a 92.3% removal of Chemical Oxygen Demand (COD). In a down-flow fixed-bed continuous reactor, the community shows a removal efficiency of 95.9% of ibuprofen and 92.3% of COD for an average inlet concentration of 110.4 mg. The reactor was kept in operation for 70 days. The maximal removal rate for the compound was 17.4 g m(-3) d(-1). Scanning electron microscopy was employed to observe biofilm development in the reactor. The ability of the isolated indigenous community can be exploited to improve the treatment of wastewaters containing ibuprofen. PMID:26905769

  1. 40 CFR 205.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Acceptance and rejection of batch....57-7 Acceptance and rejection of batch sequence. (a) The manufacturer will continue to inspect... rejection number appropriate for the cumulative number of batches inspected. The acceptance and...

  2. 40 CFR 205.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Acceptance and rejection of batch....57-7 Acceptance and rejection of batch sequence. (a) The manufacturer will continue to inspect... rejection number appropriate for the cumulative number of batches inspected. The acceptance and...

  3. Biological treatment of shrimp aquaculture wastewater using a sequencing batch reactor.

    PubMed

    Lyles, C; Boopathy, R; Fontenot, Q; Kilgen, M

    2008-12-01

    To improve the water quality in the shrimp aquaculture, a sequencing batch reactor (SBR) has been tested for the treatment of shrimp wastewater. A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor basin. This is achieved in a simple tank, through sequencing stages, which include fill, react, settle, decant, and idle. A laboratory scale SBR and a pilot scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentration of carbon and nitrogen. By operating the reactor sequentially, viz, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon in a laboratory scale SBR. To be specific, the initial chemical oxygen demand (COD) concentration of 1,593 mg/l was reduced to 44 mg/l within 10 days of reactor operation. Ammonia in the sludge was nitrified within 3 days. The denitrification of nitrate was achieved by the anaerobic process and 99% removal of nitrate was observed. Based on the laboratory study, a pilot scale SBR was designed and operated to remove excess nitrogen in the shrimp wastewater. The results mimicked the laboratory scale SBR. PMID:18561032

  4. Aerobic biodegradability of methyldiethanolamine (MDEA) used in natural gas sweetening plants in batch tests and continuous flow experiments.

    PubMed

    Fürhacker, M; Pressl, A; Allabashi, R

    2003-09-01

    Mixtures of different amines including tertiary amines (methyldiethanolamine, MDEA) are commonly used for the removal of CO2 from gas mixtures or in gas sweetening processes for the extraction of CO2 and H2S. The absorber solutions used can be released into the industrial waste water due to continuous substitution of degraded MDEA, periodically cleaning processes or an accidental spill. In this study, the aerobic biodegradability of MDEA was investigated in a standardised batch test and a continuous flow experiment (40 l/d). The results of the batch test indicated that the MDEA-solution was non-biodegradable during the test period of 28 days, whereas the continuous flow experiments showed biodegradation of more than 96% based on TOC-measurements. This was probably due to the adaptation of the microorganisms to this particular waste water contamination during continuous flow experiment. PMID:12871741

  5. 40 CFR 204.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Acceptance and rejection of batch... § 204.57-7 Acceptance and rejection of batch sequence. (a) The manufacturer will continue to inspect... number or greater than or equal to the sequence rejection number appropriate for the cumulative number...

  6. 40 CFR 204.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Acceptance and rejection of batch... § 204.57-7 Acceptance and rejection of batch sequence. (a) The manufacturer will continue to inspect... number or greater than or equal to the sequence rejection number appropriate for the cumulative number...

  7. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued. PMID:12188548

  8. Treatment of winery wastewater in a sequencing batch biofilm reactor.

    PubMed

    Andreottola, G; Foladori, P; Ragazzi, M; Villa, R

    2002-01-01

    Pilot-scale experiments were carried out applying the SBBR process (Sequencing Batch Biofilm Reactor) for the treatment of winery wastewater. The aim was the evaluation of the SBBR performance and the development of a control strategy based on dissolved oxygen (DO) for the optimisation of the SBBR treatment cycle and the minimisation of the energy supply. The results of the experimentation have confirmed the applicability of the SBBR process pointing out high COD removal efficiencies between 86% and 99%, with applied loads up to 29 gCOD m-2d-1, corresponding to 8.8 kgCOD m-3d-1. The on-line monitoring of DO concentration appeared as a good indicator of the progress in the COD biodegradation. The control strategy for the ending of the SBBR cycles was based on the time derivative of the DO concentration. The optimised control strategy makes it possible to obtain a steady quality of the effluent wastewater with an average daily applied load of 6.3 kgCOD m-3d-1 rather than 3.5 kgCOD m-3d-1 for the non-optimised SBBR cycle. The possibility of optimising the SBBR cycle through a simple control of the DO in the mixed liquor could be an interesting solution for the biological pre-treatment of winery wastewater to be discharged into sewerage or as a single-stage of a combined treatment plant for the discharge into surface water. PMID:12201122

  9. Anaerobic sequencing batch reactor treatment of coal conversion wastewaters

    SciTech Connect

    Ketchum, L.H. Jr.; Earley, J.P.; Shen, Yutao.

    1989-09-01

    The work proposed is a laboratory investigation of the AnSBR (Anaerobic Sequencing Batch Reactors) for treatment of a synthetic coal conversion wastewater. Two different strategies will be pursued. First, an AnSBR will be operated to simulate the Anaerobic Up-flow Sludge Blanket Reactor in an attempt to develop a readily settleable granular sludge. Second, operating strategies will be sought to optimize treatment, without attempting to develop settleable granular sludge. These systems will require development of more elaborate decanting mechanisms, probably including use of tube settler technology. We will use: (1) screening tests to identify compounds which are amenable to anaerobic degradation; (2) to determine those which are toxic or have an inhibitory effect; and (3) to identify the dilution required to achieve anaerobic degradation of the synthetic waste water; acclimation tests of organisms collected from different sources to the synthetic coal conversion wastewater; and Automatic Laboratory AnSBR studies. A 4-liter reactor will be operated to maintain a settleable granular anaerobic sludge when treating the synthetic coal conversion wastewater. 72 refs., 238 figs., 22 tabs.

  10. The stability of accumulating nitrite from Swine wastewater in a sequencing batch reactor.

    PubMed

    Wang, Liang; Zhu, Jun; Miller, Curtis

    2011-02-01

    Shortcut nitrification is the first step of shortcut nitrogen removal from swine wastewater. Stably obtaining an effluent with a significant amount of nitrite is the premise for the subsequent shortcut denitrification. In this paper, the stability of nitrite accumulation was investigated using a 1.5-day hydraulic retention time in a 10-L (working volume) activated sludge sequencing batch reactor (SBR) with an 8-h cycle consisted of 4 h 38 min aerobic feeding, 1 h 22 min aerobic reaction, 30 min settling, 24 min withdrawal, and 1 h 6 min idle. The nitrite production stability was tested using four different ammonium loading rates, 0.075, 0.062, 0.053, and 0.039 g NH(4)-N/g (mixed liquid suspended solid, MLSS) day in a 2-month running period. The total inorganic nitrogen composition in the effluent was not affected when the ammonium load was between 0.053 and 0.075 g NH(4)-N/g MLSS · day (64% NO(2)-N, 16% NO(3)-N, and 20% NH(4)-N). Under 0.039 g NH(4)-N/g MLSS · day, more NO(2)-N was transformed to NO(3)-N with an effluent of 60% NO(2)-N, 20% NO(3)-N, and 20% NH(4)-N. The reducing load test was able to show the relationship between a declining free nitrous acid (FNA) concentration and the decreasing nitrite production, indicating that the inhibition of FNA on nitrite oxidizing bacteria depends on its levels and an ammonium loading rate around 0.035 g NH(4)-N/g MLSS · day is the lower threshold for producing a nitrite dominance effluent in the activated sludge SBR under the current settings. PMID:20661783

  11. Protocol for early detection and evaluation of inhibitory wastewater using combined aerobic respirometric and anaerobic batch techniques.

    PubMed

    Koh, Sock-Hoon; Ellis, Timothy G

    2005-01-01

    Faced with the task of treating significant volumes of complex industrial wastewaters, the biological components of municipal wastewater treatment plants are operating under the risk of toxic or inhibitory contaminants from the industrial effluents that may be detrimental to their operation. This might lead to undesirable effluent toxicity and/or result in permit violations. Therefore, there is a need for upset early warning systems that can protect full-scale plants from toxic or inhibitory constituents in the incoming wastewaters. This study focused on the development of a protocol for rapid detection of potentially toxic inhibitory or toxic wastewaters using combined aerobic respirometric and anaerobic batch techniques. Aerobic respirometers equipped with automated data acquisition systems were used as potential early warning devices. The inhibition effect on carbon and nitrogen oxidation was assessed. The degree of inhibition was evaluated as the concentration causing 50% reduction in microbial activity, which was estimated by an inhibition model. Anaerobic toxicity assays were also conducted to evaluate the inhibitory effects of the toxic compounds to anaerobic inocula obtained from a master culture reactor fed with ethanol. The developed protocol for early detection of toxicity was validated using wastewater samples from a biotechnology industry and a food processing industry, and pure chemicals such as furfural and phenol. Varying degrees of sensitivity were observed in the study when different groups of microorganisms, wastewater samples, and chemicals were tested. The comparison of aerobic and anaerobic inhibition suggested the importance of using both aerobic and anaerobic cultures to maximize the necessary sensitivity of the protocol. PMID:16381158

  12. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  13. Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed cultures.

    PubMed

    Suneethi, S; Joseph, Kurian

    2011-01-01

    Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine. PMID:20729077

  14. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    PubMed Central

    Langone, Michela; Yan, Jia; Haaijer, Suzanne C. M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Andreottola, Gianni

    2014-01-01

    Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale sequencing batch reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8–8.0, respectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high NH3-N (1.9–10 mg NH3-N/L) and low nitrite (3–8 mg TNN/L) are required conditions during the whole SBR cycle. Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α–subunit (amoA) gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the “Ca. Brocadia fulgida” type, able to grow in presence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS) gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus Nitrobacter was detected

  15. Simultaneous removal of nutrients from milking parlor wastewater using an AO2 sequencing batch reactor (SBR) system.

    PubMed

    Wu, Xiao; Zhu, Jun

    2015-01-01

    The feasibility of using a lab-scale, anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR) to simultaneously remove biological organics, nitrogen and phosphorus from dairy milking parlor wastewater was investigated in this study. Three hydraulic retention times (HRT = 2.1, 2.7, and 3.5 days) and three mixing-to-process time ratios (TM/TP = 0.43, 0.57, and 0.68) were evaluated as two controlling factors using a 3 × 3 experimental design to determine the optimal combination. Results showed that the HRT of 2.7 days with TM/TP = 0.57 was the best to achieve simultaneous nutrients removal for the influent with initial soluble chemical oxygen demand (SCOD) of about 2000 mg L(-1) (only 0.55 mg L(-1) NH4-N, < 0.1 mg L(-1) nitrate, and 0.14 mg L(-1) soluble phosphorus in the effluent). Good correlations between pH and ORP, and ORP and DO, were also obtained with correlation coefficients all higher than or equal to 0.975. These relationships could be used to develop real-time control strategies to optimize the duration of each operating phase in the (AO)2 SBR system to save energy and enhance treatment efficiency. PMID:25723066

  16. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations. PMID:23639409

  17. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    PubMed

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process. PMID:27021584

  18. Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring.

    PubMed

    Pinho, Samantha Cristina; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Foresti, Eugenio; Zaiat, Marcelo

    2005-03-01

    This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters. PMID:15491835

  19. Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area.

    PubMed

    Chan, S Y; Tsang, Y F; Chua, H; Sin, S N; Cui, L H

    2008-06-01

    A practical and affordable wastewater treatment system serving small community in suburban areas was studied. The system was a vegetated sequencing batch coal slag bed integrated with the rhythmical movement of wastewater and air like that of a sequencing batch reactor. The removal mechanisms capitalized on the pollutant removal process in conventional constructed wetland. Cyperus alternifolius was planted into the coal slag bed to form a novel plant-soil-microbial interactive system. Nutrients in the domestic wastewater, which cause environmental nuisance like eutrophication, were targeted to be eliminated by the process design. Operated with the contact time of 18 h, the treatment systems achieved around 60% removal efficiency for carbonaceous matters. The removals of ammonia nitrogen and phosphorus were about 50% and 40%, respectively, while the removal of total suspended solids was approaching 80%. From the current study, the construction cost of the vegetated sequencing batch coal slag bed was 256 RMB/m3 and the operation cost was 0.13 RMB/m3. With the advantages of ease of operation, low costs, desirable treatment efficiency and aesthetic value, the vegetated sequencing batch coal slag bed is proposed to be an alternative for onsite domestic wastewater treatment in suburban areas. PMID:17709244

  20. 40 CFR 205.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... numbers listed in Appendix I, Table III at the appropriate code letter obtained according to § 205.57-2...) Acceptance or rejection of a batch sequence takes place when the decision that a vehicle is a failiing vehicle is made on the last vehicle required to make a decision under paragraph (a) of this section....

  1. 40 CFR 205.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... numbers listed in Appendix I, Table III at the appropriate code letter obtained according to § 205.57-2...) Acceptance or rejection of a batch sequence takes place when the decision that a vehicle is a failiing vehicle is made on the last vehicle required to make a decision under paragraph (a) of this section....

  2. 40 CFR 205.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Acceptance and rejection of batch sequence. 205.57-7 Section 205.57-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks §...

  3. Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale

    PubMed Central

    Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E.

    2012-01-01

    Summary Oxygen‐limited autotrophic nitrification/denitrification (OLAND) is a one‐stage combination of partial nitritation and anammox, which can have a challenging process start‐up. In this study, start‐up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l−1 day−1 with minimal nitrite and nitrate accumulation were considered a successful start‐up. SBR A and B were operated at 50% VER with 3 g NaCl l−1 in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start‐up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l−1). Start‐up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10–0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass‐specific nitrogen removal rates (141–220 mg N g−1 VSS day−1). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium‐oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start‐up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. PMID:22236147

  4. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR).

    PubMed

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2010-08-01

    The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit. PMID:20430515

  5. Effect of the C:N:P ratio on the denitrifying dephosphatation in a sequencing batch biofilm reactor (SBBR).

    PubMed

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Thornton, Arthur J; Jóźwiak, Tomasz; Szymczyk, Paula

    2015-12-01

    A series of investigations were conducted using sequencing batch biofilm reactor (SBBR) to explore the influence of C:N:P ratio on biological dephosphatation including the denitrifying dephosphatation and the denitrification process. Biomass in the reactor occurred mainly in the form of a biofilm attached to completely submerged disks. Acetic acid was used as the source of organic carbon. C:N:P ratios have had a significant effect on the profiles of phosphate release and phosphate uptake and nitrogen removal. The highest rates of phosphate release and phosphate uptake were recorded at the C:N:P ratio of 140:70:7. The C:N ratio of 2.5:1 ensured complete denitrification. The highest rate of denitrification was achieved at the C:N:P ratio of 140:35:7. The increase of nitrogen load caused an increase in phosphates removal until a ratio C:N:P of 140:140:7. Bacteria of the biofilm exposed to alternate conditions of mixing and aeration exhibited enhanced intracellular accumulation of polyphosphates. Also, the structure of the biofilm encouraged anaerobic-aerobic as well as anoxic-anaerobic and absolutely anaerobic conditions in a SBBR. These heterogeneous conditions in the presence of nitrates may be a significant factor determining the promotion of denitrifying polyphosphate accumulating organism (DNPAO) development. PMID:26702975

  6. Powdered ZELIAC augmented sequencing batch reactors (SBR) process for co-treatment of landfill leachate and domestic wastewater.

    PubMed

    Mojiri, Amin; Aziz, Hamidi Abdul; Zaman, Nastaein Q; Aziz, Shuokr Qarani; Zahed, Mohammad Ali

    2014-06-15

    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively. PMID:24662109

  7. Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate.

    PubMed

    Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Xue, Tonglai; Peng, Yongzhen

    2015-09-01

    A modified sequencing batch reactor (SBR) operated at the anaerobic-aerobic-anoxic mode was developed in this study to fully utilize the organics in landfill leachate (ammonia concentration of 1000 ± 50 mg N/L and COD/total nitrogen (TN) ratio of 1-4). The unique feature of modified SBR process was the addition of an anaerobic stage after feeding stage, so that microorganisms could store the organics during anaerobic stage and supply the carbon source for endogenous denitritation after aeration stage. The 70-day operational tests showed the effluent TN was below 10 mg N/L at C/N ratio of 4. The intracellular stored polymers were analyzed and the microorganisms were capable of storing the carbon source as polyhydroxybutyrate (PHB) and glycogen in anaerobic stage, which were the electron donors for endogenous denitritation. Fluorescence in situ hybridization (FISH) analysis showed that glycogen accumulating organisms (GAOs) account for 39.8% of microorganisms in SBR, and carried out advanced nitrogen removal. PMID:26056776

  8. Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor.

    PubMed

    Jiang, Yu; Wang, Hongyu; Shang, Yu; Yang, Kai

    2016-05-01

    The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater. PMID:26906036

  9. Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: effects of oil loading rate and cycle time.

    PubMed

    Pornsunthorntawee, Orathai; Maksung, Sasiwan; Huayyai, Onsiri; Rujiravanit, Ratana; Chavadej, Sumaeth

    2009-01-01

    In this present study, sequencing batch reactors (SBRs) were used for biosurfactant production from Pseudomonasaeruginosa SP4, which was isolated from petroleum-contaminated soil in Thailand. Two identical lab-scale aerobic SBR units were operated at a constant temperature of 37 degrees C, and a mineral medium (MM) with palm oil was used as the culture medium. The effects of oil loading rate (OLR) and cycle time on the biosurfactant production were studied. The results indicated that the optimum conditions for the biosurfactant production were at an OLR of 2 kg/m(3)days and a cycle time of 2 days/cycle, which provided a surface tension reduction of 59%, a chemical oxygen demand (COD) removal of 90%, and an oil removal of 97%. Under the optimum conditions, it was found that the biosurfactant production was maximized at an aeration time of 40 h. These preliminary results suggest that the SBR can potentially be adapted for biosurfactant production, and perhaps further developed, potentially for large-scale biosurfactant production. PMID:18672362

  10. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  11. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine

    PubMed Central

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches. PMID:26177093

  12. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine.

    PubMed

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches. PMID:26177093

  13. Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella silvestris BL2▿

    PubMed Central

    Chen, Yin; Crombie, Andrew; Rahman, M. Tanvir; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Theisen, Andreas R.; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Methylocella silvestris BL2 is an aerobic methanotroph originally isolated from an acidic forest soil in Germany. It is the first fully authenticated facultative methanotroph. It grows not only on methane and other one-carbon (C1) substrates, but also on some compounds containing carbon-carbon bonds, such as acetate, pyruvate, propane, and succinate. Here we report the full genome sequence of this bacterium. PMID:20472789

  14. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2014-06-01

    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). PMID:24725384

  15. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor.

    PubMed

    Zhao, Yuanyuan; Park, Hee-Deung; Park, Jeong-Hoon; Zhang, Fushuang; Chen, Chen; Li, Xiangkun; Zhao, Dan; Zhao, Fangbo

    2016-09-01

    The performance and microbial community profiles in a sequencing batch reactor (SBR) treating saline wastewater were studied over 300days from 0wt% to 3.0wt% salinity. The experimental results indicated that the activated sludge had high sensitivity to salinity variations in terms of pollutants removal and sedimentation. At 2.0wt% salinity, the system retained a good performance, and 95% removal rate of chemical oxygen demand (COD), biochemical oxygen demand (BOD), NH4(+)-N and total phosphorus (TP) could be achieved. Operation before addition salinity revealed the optimal performance and the most microbial diversity indicated by 16S rRNA gene clone library. Sequence analyses illustrated that Candidate_division_TM7 (TM7) was predominant at 2.0 wt% salinity; however, Actinobacteria was more abundant at 3.0wt% salinity. PMID:27318158

  16. Intelligent monitoring system for long-term control of Sequencing Batch Reactors.

    PubMed

    Marsili-Libelli, S; Spagni, A; Susini, R

    2008-01-01

    This paper discusses the application of artificial intelligence (AI) concepts to the monitoring of a lab-scale Sequencing Batch Reactor (SBR) treating nitrogen-rich wastewater (sanitary landfill leachate). The paper describes the implementation of a fuzzy inferential system to identify the correct switching sequence of the process and discusses the results obtained with six months of uninterrupted operation, during which the process conditions varied widely. The monitoring system proved capable of adjusting the process operation, in terms of phase length and external COD addition, to the varying environmental and loading conditions, with a percentage of correct phase recognition in excess of 95%. In addition, the monitoring system could be remotely operated through the internet via TCP/IP protocol. PMID:18309223

  17. Simultaneous removal of nanosilver and fullerene in sequencing batch reactors for biological wastewater treatment.

    PubMed

    Yang, Yu; Wang, Yifei; Hristovski, Kiril; Westerhoff, Paul

    2015-04-01

    Increasing use of engineered nanomaterials (ENMs) inevitably leads to their potential release to the sewer system. The co-removal of nano fullerenes (nC60) and nanosilver as well as their impact on COD removal were studied in biological sequencing batch reactors (SBR) for a year. When dosing nC60 at 0.07-2mgL(-1), the SBR removed greater than 95% of nC60 except for short-term interruptions occurred (i.e., dysfunction of bioreactor by nanosilver addition) when nC60 and nanosilver were dosed simultaneously. During repeated 30-d periods of adding both 2 mg L(-1) nC60 and 2 mg L(-1) nanosilver, short-term interruption of SBRs for 4d was observed and accompanied by (1) reduced total suspended solids in the reactor, (2) poor COD removal rate as low as 22%, and (3) decreased nC60 removal to 0%. After the short-term interruption, COD removal gradually returned to normal within one solids retention time. Except for during these "short-term interruptions", the silver removal rate was above 90%. A series of bottle-point batch experiments was conducted to determine the distribution coefficients of nC60 between liquid and biomass phases. A linear distribution model on nC60 combined with a mass balance equation simulated well its removal rate at a range of 0.07-0.76 mg L(-1) in SBRs. This paper illustrates the effect of "pulse" inputs (i.e., addition for a short period of time) of ENMs into biological reactors, demonstrates long-term capability of SBRs to remove ENMs and COD, and provides an example to predict the removal of ENMs in SBRs upon batch experiments. PMID:25532763

  18. Effects of the antimicrobial tylosin on the microbial community structure of an anaerobic sequencing batch reactor.

    PubMed

    Shimada, Toshio; Li, Xu; Zilles, Julie L; Morgenroth, Eberhard; Raskin, Lutgarde

    2011-02-01

    The effects of the antimicrobial tylosin on a methanogenic microbial community were studied in a glucose-fed laboratory-scale anaerobic sequencing batch reactor (ASBR) exposed to stepwise increases of tylosin (0, 1.67, and 167 mg/L). The microbial community structure was determined using quantitative fluorescence in situ hybridization (FISH) and phylogenetic analyses of bacterial 16S ribosomal RNA (rRNA) gene clone libraries of biomass samples. During the periods without tylosin addition and with an influent tylosin concentration of 1.67 mg/L, 16S rRNA gene sequences related to Syntrophobacter were detected and the relative abundance of Methanosaeta species was high. During the highest tylosin dose of 167 mg/L, 16S rRNA gene sequences related to Syntrophobacter species were not detected and the relative abundance of Methanosaeta decreased considerably. Throughout the experimental period, Propionibacteriaceae and high GC Gram-positive bacteria were present, based on 16S rRNA gene sequences and FISH analyses, respectively. The accumulation of propionate and subsequent reactor failure after long-term exposure to tylosin are attributed to the direct inhibition of propionate-oxidizing syntrophic bacteria closely related to Syntrophobacter and the indirect inhibition of Methanosaeta by high propionate concentrations and low pH. PMID:20830676

  19. Nitrogen removal from medium-age landfill leachate via post-denitrification driven by PHAs and glycogen in a single sequencing batch reactor.

    PubMed

    Li, Zhongming; Wang, Shuying; Zhang, Weitang; Miao, Lei; Cao, Tianhao; Peng, Yongzhen

    2014-10-01

    An anaerobic/aerobic/anoxic (AOA) process in a sequencing batch reactor (SBR) was proposed to treat typical medium-age landfill leachate without extra carbon addition. In a steady-state, the average removal efficiencies of NH4(+)-N, total nitrogen (TN) and COD were 99.7 ± 0.1%, 98.3 ± 0.3% and 89.8 ± 1.4%, when influent NH4(+)-N, TN and COD were 1025-1327 mg/L, 1346-1854 mg/L and 6430-9372 mg/L, respectively. In the anaerobic stage, dissolved organic matter was taken up partially and stored as polyhydroxyalkanoates (PHAs) with concomitant consumption of glycogen. In the aerobic stage, PHAs was oxidized and glycogen was replenished in the bacterial cells, when TN of 75.4 mg/L was removed via simultaneous nitrification and denitrification (SND). The residual nitrate and nitrite were denitrified completely by utilizing residual PHAs and glycogen as electron donors in the anoxic phase. Denitrifying glycogen accumulating organisms (GAOs) were considered to be playing the major role in the process. PMID:25066902

  20. Bacteria of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch Reactors

    PubMed Central

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear. PMID:25241805

  1. Photosynthetic bacteria production from food processing wastewater in sequencing batch and membrane photo-bioreactors.

    PubMed

    Chitapornpan, S; Chiemchaisri, C; Chiemchaisri, W; Honda, R; Yamamoto, K

    2012-01-01

    Application of photosynthetic process could be highly efficient and surpass anaerobic treatment in releasing less greenhouse gas and odor while the biomass produced can be utilized. The combination of photosynthetic process with membrane separation is possibly effective for water reclamation and biomass production. In this study, cultivation of mixed culture photosynthetic bacteria from food processing wastewater was investigated in a sequencing batch reactor (SBR) and a membrane bioreactor (MBR) supplied with infrared light. Both photo-bioreactors were operated at a hydraulic retention time (HRT) of 10 days. Higher MLSS concentration achieved in the MBR through complete retention of biomass resulted in a slightly improved performance. When the system was operated with MLSS controlled by occasional sludge withdrawal, total biomass production of MBR and SBR photo-bioreactor was almost equal. However, 64.5% of total biomass production was washed out with the effluent in SBR system. Consequently, the higher biomass could be recovered for utilization in MBR. PMID:22258682

  2. Chloro-Organics in Papermill Effluent: Identification and Removal by Sequencing Batch Biofilm Reactor

    NASA Astrophysics Data System (ADS)

    Abd. Rahman, Rakmi; Zahrim, A. Y.; Abu Bakar, Azizah

    Effluents from paper mills are among major sources of aquatic pollution and may be toxic since they contain chlorinated phenolic compounds which are measured as adsorbable organic halides (AOX). In this work, removal of chlorophenol was investigated using a Sequencing Batch Biofilm Reactor (SBBR) with Granular Activated Carbon (GAC) as a growth media. Wastewater for this study was obtained from treated effluent outlet of a papermill in Selangor. Treatment of the papermill secondary effluent shows that SBBR process, with a combination of adsorption and biodegradation, gave a good removal of pentachlorophenol (PCP), on average, about 70%. The growth kinetic parameters obtained were: YH = 0.6504 mg biomass/mg PCP, dH = 6.50x10-5 h-1, μh = 0.00315 h-1 and Ks = 5.82 mg PCP L-1. These show that the SBBR system is suitable to be operated at long SRTs.

  3. Effect of COD/N ratio and salinity on the performance of sequencing batch reactors.

    PubMed

    Rene, Eldon R; Kim, Sung Joo; Park, Hung Suck

    2008-03-01

    The effects of COD/N ratio (3-6) and salt concentration (0.5-2%) on organics and nitrogen removal efficiencies in three bench top sequencing batch reactors (SBRs) with synthetic wastewater and one SBR with fish market wastewater were investigated under different operating schedules. The solids retention time (SRT, 20-100 days) and aeration time (4-10h) was also varied to monitor the performance. For synthetic wastewater, chemical oxygen demand (COD) removal efficiencies were consistently greater than 95%, irrespective of changes in COD/N ratio, aeration time and salt concentrations. Increasing the salt concentrations decreased the nitrification efficiency, while high COD/N ratio's favored better nitrogen removal (>90%). The treatment of real saline wastewater ( approximately 3.2%) from a fish market showed high COD (>80%) and nitrogen (>40%) removal efficiencies despite high loading rate and COD/N fluctuations, which is due to the acclimatization of the biomass within the SBR. PMID:17383178

  4. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater.

    PubMed

    Jiang, Yu; Wei, Li; Zhang, Huining; Yang, Kai; Wang, Hongyu

    2016-10-01

    Hypersaline phenol-rich wastewater is hard to be treated by traditional biological systems. In this work, a sequencing batch reactor was used to remove phenol from hypersaline wastewater. The removal performance was evaluated in response to the variations of operating parameters and the microbial diversity was investigated by 454 pyrosequencing. The results showed that the bioreactor had high removal efficiency of phenol and was able to keep stable with the increase of initial phenol concentration. DO, pH, and salinity also affected the phenol removal rate. The most abundant bacterial group was phylum Proteobacteria in the two working conditions, and class Gammaproteobacteria as well as Alphaproteobacteria was predominant subgroup. The abundance of bacterial clusters was notably different along with the variation of operation conditions, resulting in changes of phenol degradation rates. The high removal efficiency of phenol suggested that the reactor might be promising in treating phenol-laden industrial wastewater in high-salt condition. PMID:27359064

  5. Treatment of anaerobic digester supernatant and filter press filtrate sidestreams with a sequencing batch reactor

    SciTech Connect

    Bowen, R.B.; Ketchum, L.H. Jr.

    1998-07-01

    The Elkhart, Indiana publicly owned treatment works (POTW) occasionally experiences periods of high effluent ammonia. The POTW currently treats 61,000 m{sup 3}/d (16 MGD), which includes a large industrial component of 15,000 m{sup 3}/d (4 MGD). This industrial component includes frequent periods of high ammonia levels resulting in plant influent ammonia concentrations exceeding 40 mg/L as nitrogen which can upset plant nitrification. The anaerobic digester supernatant and filter press filtrate are returned to the head of the plant. These recycled streams also contain high ammonia, 475 mg/L as nitrogen, and contribute to the influent ammonia problem. This study is an investigation of the use of a sequencing batch reactor (SBR) to biologically nitrify these recycle streams to help mitigate the problem of high effluent ammonia.

  6. Modelling the effect of the antimicrobial tylosin on the performance of an anaerobic sequencing batch reactor.

    PubMed

    Shimada, T; Zilles, J L; Morgenroth, E; Raskin, L

    2008-01-01

    A laboratory-scale anaerobic sequencing batch reactor (ASBR) was fed a synthetic wastewater containing glucose to study the effects of the antimicrobial tylosin on treatment performance. Measurements of methane, volatile fatty acids, and COD concentrations suggested that the addition of 1.67 mg/L and 167 mg/l of tylosin to the synthetic wastewater inhibited propionate oxidizing syntrophic bacteria and aceticlastic methanogens. The latter is presumed to be an indirect effect. A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for microbial storage and hydrolysis of reserve carbohydrates, and tylosin liquid-solid mass transfer and inhibition adequately described the dynamic profiles observed in the ASBR. PMID:18547919

  7. Performance of intermittently aerated up-flow sludge bed reactor and sequencing batch reactor treating industrial estate wastewater: a comparative study.

    PubMed

    Asadi, A; Zinatizadeh, A A L; Hasnain Isa, M

    2012-11-01

    In this study, an innovative aerobic/anoxic sludge bed bioreactor with two feeding regimes, continuous-fed (an up-flow sludge bed reactor (USBR)) and batch fed (sequencing batch reactor (SBR)), was evaluated for the treatment of an industrial estate wastewater with low BOD(5)/COD ratio. The process performance in the two regimes was compared. Two numerical independent variables (retention/react time and aeration time) were selected to analyze, model and optimize the process. Response surface methodology with central composite design (CCD) was used with five levels of hydraulic retention time (HRT)/react time (12-36h) and aeration time (40-60min/h). In order to analyze the process, ten dependent parameters as the process responses were studied. As a result, HRT/react time showed a decreasing impact on the responses measured in both hydraulic regimes, USBR and SBR. The USBR showed better performance than the SBR in removal of total COD, slowly biodegradable COD, total nitrogen and total Kjeldahl nitrogen. PMID:22940360

  8. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    SciTech Connect

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  9. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  10. BatchPrimer3: A high throughput web application for PCR and sequencing primer design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricte...

  11. Evaluation of leachate treatment by trickling filter and sequencing batch reactor processes in Ibadan, Nigeria.

    PubMed

    Aluko, Olufemi Oludare; Sridhar, Mynepalli K C

    2013-07-01

    Strong and highly polluting leachate is continuously discharged into Omi stream and its tributaries in Ibadan, southwest Nigeria, from a municipal solid waste landfill. Previous studies have targeted physical and chemical treatment methods, which could not be implemented on site as stand-alone treatment systems. This study explored the bench-scale, trickling filter (TF) and sequencing batch reactor (SBR) treatment processes and assessed the quality of effluents produced. Leachate treatment using TF produced effluents with significant reductions (%) in suspended solids (SS) (73.17%), turbidity (71.96%), biochemical oxygen demand (BOD5) (76.69%) and ammonia (NH3) (59.50%), while SBR produced effluents with reductions in SS (62.28%), BOD5 (84.06%) and NH3 (64.83%). The dissolved oxygen of the reactors was 4.7 and 6.1mg/l, respectively, in TF and SBR. Also, NH3 values reduced marginally; however, nitrification took place significantly, but within permissible limits. The effluents produced by biological treatment processes were better in quality though the mean residual concentrations for colour, SS and dissolved solids; BOD5 and iron were above the national regulatory standards for discharge into surface water bodies. SBR gave a better effluent quality and should be combined with other treatment methods in sequence to produce quality effluents. PMID:23628902

  12. Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: influence of temperature and pH on the progress and efficiency of the process.

    PubMed

    Cibis, Edmund; Ryznar-Luty, Agnieszka; Krzywonos, Małgorzata; Lutosławski, Krzysztof; Miśkiewicz, Tadeusz

    2011-07-01

    The key issue in achieving a high extent of biodegradation of beet molasses vinasse is to establish the conditions for the assimilation of betaine, which is the main pollutant in this high-strength industrial effluent. In the present study, aerobic batch biodegradation was conducted over the temperature range of 27-63°C (step 9°C), at a pH of 6.5 and 8.0, using a mixed culture of bacteria of the genus Bacillus. Betaine was assimilated at 27-54°C and the pH of 8.0, as well as at 27-45°C and the pH of 6.5. The processes where betaine was assimilated produced a high BOD(5) removal, which exceeded 99.40% over the temperature range of 27-45°C at the pH of 8.0, as well as at 27°C and the pH of 6.5. Maximal COD removal (88.73%) was attained at 36°C and the pH of 6.5. The results indicate that the process can be applied on an industrial scale as the first step in the treatment of beet molasses vinasse. PMID:21367516

  13. Study of nitrogen and organics removal in sequencing batch reactor (SBR) using hybrid media.

    PubMed

    Thuan, Tran-Hung; Chung, Yun-Chul; Ahn, Dae-Hee

    2003-03-01

    The removal of nitrogen and organics in a sequencing batch reactor (SBR) using hybrid media were investigated in this work. The hybrid media was made by the use of polyurethane foam (PU) cubes and powdered activated carbon (PAC). The function of activated carbon of hybrid media was to offer a suitable active site, which was able to absorb organic substances and ammonia, as well as that of PU was to provide an appropriated surface onto which biomass could be attached and grown. A laboratory-scale moving-bed sequencing batch reactor (SBR) was used for investigating the efficiency of hybrid media. The removal of nitrogen and organics for synthetic wastewater (COD; 490-1,627 mg/L, NH4(+)-N; 180-210 mg/L) were evaluated at different COD/N ratio and different anoxic phase conditions, respectively. The system was operated with the organic loading rate (OLR) of 0.1, 0.16, 0.24, and 0.28 kg COD/m3 day, respectively. Each mode based on OLR was divided as the periods of 45 days of operation time, except for third mode that was operated during 30 days. After acclimatization period, effluent total COD concentrations slightly decreased and the removal efficiency of organics increased to about 90% (COD; 70 mg/L) after 60 days and achieved 98% (COD; 30 mg/L) at the end of experiments. The organics reduction seemed to be less affected by shock loading since high organic loads did not affect the removal efficiency. The NIH4(+)-N concentrations in effluent showed almost lower than 1 mg/L and NO3(-)-N concentrations were high (150 mg/L) during a very low C/N ratio (C/N=2). Over 90% of T-N removal efficiency (T-N; 16 mg/L) was obtained during the last 20 days of the operation after controlling the COD/N ratio (C/N=7). The mixing condition and COD/N ratio at anoxic phase were determined as a main operating factors. In future, the optimal operating conditions of SBR system with hybrid media will be investigated from the view of maintaining a sufficient biomass to the hybrid media under

  14. Effect of carbon to nitrogen (C:N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor.

    PubMed

    Roy, Dhiriti; Hassan, Komi; Boopathy, Raj

    2010-10-01

    The United States Marine Shrimp Farming Program (USMSFP) introduced a new technology for shrimp farming called recirculating raceway system. This is a zero-water exchange system capable of producing high-density shrimp yields. However, this system produces wastewater characterized by high levels of ammonia, nitrite, and nitrate due to 40% protein diet for the shrimp at a high density of 1,000 shrimp per square meter. The high concentrations of nitrate and nitrite (greater than 25 ppm) are toxic to shrimp and cause high mortality. So treatment of this wastewater is imperative in order to make shrimp farming viable. One simple method of treating high-nitrogen wastewater is the use of a sequencing batch reactor (SBR). An SBR is a variation of the activated sludge process, which accomplishes many treatment events in a single reactor. Removal of ammonia and nitrate involved nitrification and denitrification reactions by operating the SBR aerobically and anaerobically in sequence. Initial SBR operation successfully removed ammonia, but nitrate concentrations were too high because of carbon limitation in the shrimp production wastewater. An optimization study revealed the optimum carbon to nitrogen (C:N) ratio of 10:1 for successful removal of all nitrogen species from the wastewater. The SBR operated with a C:N ratio of 10:1 with the addition of molasses as carbon source successfully removed 99% of ammonia, nitrate, and nitrite from the shrimp aquaculture wastewater within 9 days of operation. PMID:20835881

  15. The investigation of different pollutants and operation processes on sludge toxicity in sequencing batch bioreactors.

    PubMed

    Chen, Xiurong; Zhao, Jianguo; Bao, Linlin; Wang, Lu; Zhang, Yuying

    2016-08-01

    The influence of different target pollutants and operation modes in sequencing batch bioreactors (SBRs) on sludge toxicity was compared in this study. Sludge toxicity was characterized by the inhibiting luminosity through using luminescent bacterium Photobacterium phosphoreum (P. phosphoreum) during either gradual acclimation or impaction processes with synthetic wastewater containing high-strength bisphenol A (BPA) or N, N-dimethylformamide (DMF). When the activated sludge was first acclimated with either 120 mg/L DMF or 20 mg/L BPA, and then respectively increased to 200 mg/L DMF and 40 mg/L BPA it was defined as gradual acclimation process, whereas when the activated sludge was, respectively, injected with 200 mg/L DMF and 40 mg/L BPA directly it was defined as impaction process. Results showed that the toxicity of the impacted sludge was greater than that of the gradual acclimated sludge, especially in the initial stage before 10 d. Activated sludge treating BPA synthetic wastewater exhibited higher toxicity due to the more inhibition of BPA to sludge activity compared to that of DMF. The proteomics analysis indicated that the stress responses of activated sludge to DMF and BPA stimulation were both significant. In turn, the secretions from two kinds of sludge under stress conditions contributed to sludge toxicity. PMID:26914341

  16. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor

    PubMed Central

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-01-01

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m2. With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes. PMID:26538350

  17. Effects of idle time on biological phosphorus removal by sequencing batch reactors.

    PubMed

    Gao, Dawen; Yin, Hang; Liu, Lin; Li, Xing; Liang, Hong

    2013-12-01

    Three identical sequencing batch reactors (SBRs) were operated to investigate the effects of various idle times on the biological phosphorus (P) removal. The idle times were set to 3 hr (R1), 10 hr (R2) and 17 hr (R3). The results showed that the idle time of a SBR had potential impact on biological phosphorus removal, especially when the influent phosphorus concentration increased. The phosphorus removal efficiencies of the R2 and R3 systems declined dramatically compared with the stable R1 system, and the P-release and P-uptake rates of the R3 system in particular decreased dramatically. The PCR-DGGE analysis showed that uncultured Pseudomonas sp. (GQ183242.1) and beta-Proteobacteria (AY823971) were the dominant phosphorus removal bacteria for the R1 and R2 systems, while uncultured gamma-Proteobacteria were the dominant phosphorus removal bacteria for the R3 system. Glycogen-accumulating organisms (GAOs), such as uncultured Sphingomonas sp. (AM889077), were found in the R2 and R3 systems. Overall, the R1 system was the most stable and exhibited the best phosphorus removal efficiency. It was found that although the idle time can be prolonged to allow the formation of intracellular polymers when the phosphorus concentration of the influent is low, systems with a long idle time can become unstable when the influent phosphorus concentration is increased. PMID:24649669

  18. Performance and microbial community of simultaneous anammox and denitrification (SAD) process in a sequencing batch reactor.

    PubMed

    Li, Jin; Qiang, Zhimin; Yu, Deshuang; Wang, Dan; Zhang, Peiyu; Li, Yue

    2016-10-01

    A sequencing batch reactor (SBR) was used to test the simultaneous anammox and denitrification process. Optimal nitrogen removal was achieved with chemical oxygen demand (COD) of 150mg/L, during which almost all of ammonia, nitrite and nitrate could be removed. Organic matter was a key factor to regulate the synergy of anammox and denitrification. Both experimental ΔNO2(-)-N/ΔNH4(+)-N and ΔNO3(-)-N/ΔNH4(+)-N values deviated from their theoretical values with increasing COD. Denitrifying bacteria exhibited good diversity and abundance, but the diversity of anammox bacteria was less abundant. Brocadia sinica was able to grow in the presence of organic matter and tolerate high nitrite concentration. Anammox bacteria were predominant at low COD contents, while denitrifying bacteria dominated the microbial community at high COD contents. Anammox and denitrifying bacteria could coexist in one reactor to achieve the simultaneous carbon and nitrogen removal through the synergy of anammox and denitrification. PMID:27459683

  19. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    PubMed

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions. PMID:20933327

  20. Cometabolic degradation of lincomycin in a Sequencing Batch Biofilm Reactor (SBBR) and its microbial community.

    PubMed

    Li, Yancheng; Zhou, Jian; Gong, Benzhou; Wang, Yingmu; He, Qiang

    2016-08-01

    Cometabolism technology was employed to degrade lincomycin wastewater in Sequencing Batch Biofilm Reactor (SBBR). In contrast with the control group, the average removal rate of lincomycin increased by 56.0% and Total Organic Carbon (TOC) increased by 52.5% in the cometabolic system with glucose as growth substrate. Under the same condition, Oxidation-Reduction Potential (ORP) was 85.1±7.3mV in cometabolic system and 198.2±8.4mV in the control group, indicating that glucose changed the bulk ORP and created an appropriate growing environment for function bacteria. Functional groups of lincomycin were effectively degraded in cometabolic system proved by FTIR and GC-MS. Meanwhile, results of DGGE and 16S rDNA showed great difference in dominant populations between cometabolic system and the control group. In cometabolic system, Roseovarius (3.35%), Thiothrix (2.74%), Halomonas (2.49%), Ignavibacterium (2.02%), and TM7_genus_incertae_sedis (1.93%) were verified as dominant populations at genus level. Cometabolism may be synergistically caused by different functional dominant bacteria. PMID:27183234

  1. Rapid formation of nitrifying granules treating high-strength ammonium wastewater in a sequencing batch reactor.

    PubMed

    Chen, Fang-Yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2015-05-01

    Short initial settling time and rapidly increased ammonium nitrogen loading were employed to cultivate nitrifying granular sludge treating inorganic wastewater with 1000 mg/L ammonium nitrogen. It was found that the nitrifying granule-dominant sludge was formed in a sequencing batch reactor (SBR) with influent ammonium concentration increased from 200 to 1000 mg N/L within 55 days. During the following 155-day operation period, nitrifying granules exhibited good performance with an ammonium removal efficiency of 99%. In the meantime, sludge volume index (SVI) decreased from 92 to 15 mL/g and the mean size of the nitrifying granules increased from 106 to 369 μm. Mixed liquor suspended solids (MLSS) decreased from the initial 6.4 to around 3 g/L during the granulation period and increased to over 10 g/L at the end of the operation. The long-term stability of nitrifying granules and the reactor performance were not negatively affected by inhibition from free ammonia (FA) and free nitrous acid (FNA) in this study. This makes the granule sludge technology promising in treating high-strength ammonium wastewater in practice. PMID:25573473

  2. Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors.

    PubMed

    Van Den Hende, Sofie; Carré, Erwan; Cocaud, Elodie; Beelen, Veerle; Boon, Nico; Vervaeren, Han

    2014-06-01

    Microalgal bacterial flocs in sequencing batch reactors (MaB-floc SBRs) represent a novel approach to wastewater treatment. In this approach, mechanical aeration is replaced by photosynthetic aeration and MaB-floc settling separates the treated wastewater from the produced biomass. However, its technical potential for industrial wastewaters needs to be shown. Therefore, wastewaters of aquaculture, manure treatment, food-processing and chemical industry were treated in MaB-floc SBRs. This treatment resulted in significantly different nutrient removal rates and effluent qualities among wastewaters. A high MaB-floc production was obtained for all wastewaters, ranging from 0.14 to 0.26g total suspended solids Lreactor(-1)day(-1). A major advantage of MaB-flocs is the harvesting via a filter press with a large pore size of 200μm, resulting in MaB-floc recoveries of 79-99% and cakes containing 12-21% dry matter. These results may contribute to evolving MaB-floc SBRs as a valuable remediation strategy, especially for aquaculture and food-processing wastewaters. PMID:24709538

  3. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    PubMed

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. PMID:25708409

  4. Feasibility study of sequencing batch reactor system for upgrading wastewater treatment in Malaysia.

    PubMed

    Al-Shididi, S; Henze, M; Ujang, Z

    2003-01-01

    The objective of this study was to assess the feasibility of the Sequencing Batch Reactor (SBR) system for implementation in Malaysia. Theoretical, field, laboratory investigations, and modelling simulations have been carried out. The results of the study indicated that the SBR system was robust, relatively cost-effective, and efficient under Malaysian conditions. However, the SBR system requires highly skilled operators and continuous monitoring. This paper also attempted to identify operating conditions for the SBR system, which optimise both the removal efficiencies and the removal rates. The removal efficiencies could reach 90-96% for COD, up to 92% for TN, and 95% for SS. An approach to estimate a full operational cycle time, to estimate the de-sludging rate, and to control the biomass in the sludge has also been developed. About 4 hours react time was obtained, as 2.25 hours of nitrification with aerated slow fill and 1.75 hour of denitrification with HAc addition as an additional carbon source. Inefficient settling was one of the problems that affect the SBR effluent quality. The settling time was one hour for achieving Standard B (effluent quality) and 2 hours for Standard A. PMID:14753553

  5. Effect of cycle changes on simultaneous biological nutrient removal in a sequencing batch reactor (SBR).

    PubMed

    Coma, M; Puig, S; Monclús, H; Balaguer, M D; Colprim, J

    2010-03-01

    The destabilization of a microbial population is sometimes hard to solve when different biological reactions are coupled in the same reactor as in sequencing batch reactors (SBRs). This paper will try to guide through practical experiences the recovery of simultaneous nitrogen and phosphorus removal in an SBR after increasing the demand of wastewater treatment by taking advantage of its flexibility. The results demonstrate that the length of phases and the optimization of influent distribution are key factors in stabilizing the system for long-term periods with high nutrient removal (88%, 93% and 99% of carbon, nitrogen and phosphorus, respectively). In order to recover a biological nutrient removal (BNR) system, different interactions such as simultaneous nitrification and denitrification and also phosphorus removal must be taken into account. As a general conclusion, it can be stated there is no such thing as a perfect SBR operation, and that much will depend on the state of the BNR system. Hence, the SBR operating strategy must be based on a dynamic cycle definition in line with process efficiency. PMID:20426270

  6. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. PMID:26134447

  7. Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor.

    PubMed

    Liao, Dexiang; Li, Xiaoming; Yang, Qi; Zeng, Guangming; Guo, Liang; Yue, Xiu

    2008-01-01

    The present lab-scale research reveals the enrichment of anaerobic ammonium oxidation microorganism from methanogenic anaerobic granular sludge and the effect of inorganic carbon (sodium bicarbonate) on anaerobic ammonium oxidation. The enrichment of anammox bacteria was carried out in a 7.0-L sequencing batch reactor (SBR) and the effect of bicarbonate on anammox was conducted in a 3.0-L SBR. Research results, especially the biomass, showed first signs of anammox activity after 54 d cultivation with synthetic wastewater, when the pH was controlled between 7.5 and 8.3, the temperature was 35 degrees C. The anammox activity increased as the influent bicarbonate concentration increased from 1.0 to 1.5 g/L, and then, was inhibited as the bicarbonate concentration approached 2.0 g/L. However, the activity could be restored by the reduction of bicarbonate concentration to 1.0 g/L, as shown by rapid conversion of ammonium, and nitrite and nitrate production with normal stoichiometry. The optimization of the bicarbonate concentration in the reactor could increase the anammox rate up to 66.4 mgN/(L x d). PMID:18817072

  8. Removal of typical endocrine disrupting chemicals by membrane bioreactor: in comparison with sequencing batch reactor.

    PubMed

    Zhou, Yingjun; Huang, Xia; Zhou, Haidong; Chen, Jianhua; Xue, Wenchao

    2011-01-01

    The removal of endocrine disrupting chemicals (EDCs) by a laboratory-scale membrane bioreactor (MBR) fed with synthetic sewage was evaluated and moreover, compared with that by a sequencing batch reactor (SBR) operated under same conditions in parallel. Eight kinds of typical EDCs, including 17β-estradiol (E2), estrone (E1), estriol (E3), 17α-ethynilestradiol (EE2), 4-octylphenol (4-OP), 4-nonylphenol (4-NP), bisphenol A (BPA) and nonylphenol ethoxylates (NPnEO), were spiked into the feed. Their concentrations in influent, effluent and supernatant were determined by gas chromatography-mass spectrometry method. The overall estrogenecity was evaluated as 17β-estradiol equivalent quantity (EEQ), determined via yeast estrogen screen (YES) assay. E2, E3, BPA and 4-OP were well removed by both MBR and SBR, with removal rates more than 95% and no significant differences between the two reactors. However, with regard to the other four EDCs, of which the removal rates were lower, MBR performed better. Comparison between supernatant and effluent of the two reactors indicated that membrane separation of sludge and effluent, compared with sedimentation, can relatively improve elimination of target EDCs and total estrogenecity. By applying different solids retention times (SRTs) (5, 10, 20 and 40 d) to the MBR, 10 and 5 d were found to be the lower critical SRTs for efficient target EDCs and EEQ removal, respectively. PMID:22105134

  9. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor

    NASA Astrophysics Data System (ADS)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-01

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m2. With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  10. A comparative study on thermomechanical pulping pressate treatment using thermophilic and mesophilic sequencing batch reactors.

    PubMed

    Zheng, Meiru; Liao, B Q

    2014-01-01

    A comparative study on the treatment of thermomechanical pulping (TMP) pressate was conducted under thermophilic (55 degrees C) and mesophilic (30 degrees C) temperatures to explore in-mill biological treatment, with the intention to operate under heat-efficient conditions. The experimental study involved sequencing batch reactors (SBRs) operated over 114 days. Receiving a total influent chemical oxygen demand (COD) of 3700-4100 mg L(-1), the COD removal efficiencies of 80-90% and 75-85% were achieved for the mesophilic and thermophilic SBRs, respectively, at a hydraulic retention time (HRT) of 12 and 24h. Excellent sludge settleability (sludge volume index < 100 mL g(-1) mixed liquor suspended solids) was obtained at both thermophilic and mesophilic SBRs. A higher level of effluent suspended solids was observed under thermophilic conditions. The results support the feasibility of applying thermophilic biological treatment of TMP pressate. The treated effluent has the potential for subsequent reuse as process water after polishing, thus addressing the long-standing desire to develop water system closure for the pulp and paper mill operation. PMID:24701939

  11. Effects of extracellular polymeric substances on granulation of anoxic sludge in sequencing batch reactor.

    PubMed

    Wang, Binbin; Liu, Shunlian; Zhao, Hongmei; Zhang, Xinyan; Peng, Dangcong

    2012-01-01

    Variations of extracellular polymeric substances (EPS) and its components with sludge granulation were examined in a lab-scale sequencing batch reactor (SBR) which was fed with sodium nitrate and sodium acetate. Ultrasonication plus cation exchange resin (CER) were used as the EPS extraction method. Results showed that after approximately 90 d cultivation, the sludge in the reactor was almost granulated. The content of extracellular polysaccharides increased from 10.36 mg/g-VSS (volatile suspended solids) at start-up with flocculent sludge to 23.18 mg/g-VSS at 91 d with matured granular sludge, while the content of extracellular proteins were almost unchanged. Polysaccharides were the major components of EPS in anoxic granular sludge, accounting for about 70.6-79.0%, while proteins and DNA accounted for about 16.5-18.9% and 4.6-9.9%, respectively. It is proposed that EPS play a positive role in anoxic sludge granulation and polysaccharides might be strongly involved in aggregation of flocs into granules. PMID:22744684

  12. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part I. Optimal condition for lactic acid fermentation using a microaerobic sequencing batch reactor (microaerobic SBR) with immobilized Lactobacillus plantarum TISTR 2265 and microbial communities.

    PubMed

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-05-18

    Cheese whey contains a high organic content and causes serious problems if it is released into the environment when untreated. This study aimed to investigate the optimum condition of lactic acid production using the microaerobic sequencing batch reactor (microaerobic SBR) in a nonsterile system. The high production of lactic acid was achieved by immobilized Lactobacillus plantarum TISTR 2265 to generate an acidic pH condition below 4.5 and then to support single-cell protein (SCP) production in the second aerobic sequencing batch reactor (aerobic SBR). A hydraulic retention time (HRT) of 4 days and a whey concentration of 80% feeding gave a high lactic acid yield of 12.58 g/L, chemical oxygen demand (COD) removal of 62.38%, and lactose utilization of 61.54%. The microbial communities in the nonsterile system were dominated by members of lactic acid bacteria, and it was shown that the inoculum remained in the system up to 330 days. PMID:26178366

  13. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    PubMed Central

    Mohn, W W

    1995-01-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793937

  14. 40 CFR 204.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... batches inspected. The acceptance and rejection numbers listed in Appendix I, Table III at the appropriate... when the decision is made on the last compressor required to make a decision under paragraph (a)...

  15. 40 CFR 204.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... batches inspected. The acceptance and rejection numbers listed in Appendix I, Table III at the appropriate... when the decision is made on the last compressor required to make a decision under paragraph (a)...

  16. [Influence of organic loading rate on the start-up of a sequencing airlift aerobic granular reactor].

    PubMed

    Liu, Meng-Yuan; Zhou, Dan-Dan; Gao, Lin-Lin; Ma, De-Fang; Zhang, Yu-Meng; Li, Ke-Yu

    2012-10-01

    The cultivation and stability of aerobic granular sludge in a three sequencing airlift internal-loop aerobic granular fluidized beds (R1-R3) under different organic loading rates (OLR) were investigated, where the selective pressure was un-controlled. R1 and R2 were start-up at the COD loading of 7 kg x (m3 x d)(-1) and 3 kg x (m3 x d)(-1) respectively, and R3 was start-up at an increasing COD loading rates of 1.5-3 kg x (m3 x d)(-1). The results showed that the aerobic granules could be formed successfully in all the reactors, however, filamentous bulking happened as the reactor was start-up at an aimed OLR (R1 and R2). It seems the overgrowth of filamentous could be controlled effectively by means of increasing OLR gradually. The granular development characteristics, the physical characteristics and extracellular polymeric substances contents were analyzed especially during the aerobic granules cultivation. Compared with the granules in R1 and R2, aerobic granules formed in R3 presented clearer outer morphology and compact structure, advanced COD removal efficiency and a significant increase in polysaccharides, resulted an enhanced stability. PMID:23233984

  17. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study.

    PubMed

    Azizi, A; Alavi Moghaddam, M R; Maknoon, R; Kowsari, E

    2015-12-15

    The purpose of this research was to compare three combined sequencing batch reactor (SBR) - Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD=3270 mg/L) at the end of alternating anaerobic-aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV-vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater. PMID:26143197

  18. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.

    PubMed

    Dries, Jan

    2016-01-01

    On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality. PMID:26901715

  19. Exploration of rapid start-up of the CANON process from activated sludge inoculum in a sequencing biofilm batch reactor (SBBR).

    PubMed

    Deng, Yangfan; Zhang, Xiaoling; Miao, Ying; Hu, Bo

    2016-01-01

    In this study, a laboratory-scale sequencing biofilm batch reactor (SBBR) was employed to explore a fast start-up of completely autotrophic nitrogen removal over nitrite (CANON) process. Partial nitrification was achieved by controlling free ammonia concentration and operating at above 30 °C; then the reactor was immediately operated with alternating periods of aerobiosis and anaerobiosis to start the anammox process. The CANON process was successfully achieved in less than 50 d, and the total-nitrogen removal efficiency and the nitrogen removal rate were 81% and 0.14 kg-N m(-3) d(-1) respectively. Afterwards, with the increasing of ammonium loading rate a maximum nitrogen removal rate of 0.39 kg-N m(-3) d(-1) was achieved on day 94. DNA analysis showed that 'Candidatus Brocadia' was the dominant anammox species and Nitrosomonas was the dominant aerobic ammonium-oxidizing bacteria in the CANON reactor. This study revealed that due to shortening the persistent and stable nitrite accumulation period the long start-up time of the CANON process can be significantly reduced. PMID:26877035

  20. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor.

    PubMed

    Lek Noophan, Pongsak; Sripiboon, Siriporn; Damrongsri, Mongkol; Munakata-Marr, Junko

    2009-02-01

    A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok. PMID:18423965

  1. Performance evaluation of hybrid and conventional sequencing batch reactor and continuous processes.

    PubMed

    Tam, H L S; Tang, D T W; Leung, W Y; Ho, K M; Greenfield, P F

    2004-01-01

    Bench-scale systems, using conventional and compact hybrid activated sludge configurations, were set up to evaluate the systems' nitrification-denitrification performance, operating sludge age/MLSS concentration and sludge settleability at a Hong Kong municipal STW. Configurations tested were the continuous clarifier modified Ludzack Ettinger (MLE) and the sequencing batch reactor (SBR) with and without hybrid suspended biofilm carriers. Results demonstrated that the hybrid SBR and MLE systems consistently achieved close to complete nitrification (effluent NH4-N = 2.4 and 6.9 mg/L) and 75% and 67% removal of nitrogen (N) (effluent NO3-N < 10 mg/L) with an overall hydraulic retention time of only 7.5 hours, operating sludge age as short as 5.2 days, and mixed liquor suspended solids concentration of approximately 1,300 mg/L with a sludge volume index of 109 and 229 mL/g, respectively. The most sensitive and slowest growing nitrifiers attached to the hybrid biofilm carriers. This allowed the hybrid processes to be operated at a sludge age shorter than the critical nitrifying sludge age while still retaining near complete nitrification. In contrast, to achieve complete nitrification, the conventional MLE system needed to be operated at 1.5 to 2.5 times the critical sludge age. These results indicate that the hybrid MLE configuration is a suitable process for use in upgrading existing conventional works for N removal and for increasing hydraulic capacity of existing N removal works, without major civil works modifications, in Hong Kong. For new works, consideration might be given to the use of the hybrid SBR, which shows a more stable N removal performance than the MLE process due to its inherent in-basin equalization capacity and better reaction conditions for nitrification in terms of higher initial NH4-N level. It was also observed that the conventional SBR produced better nitrification performance than the hybrid MLE process tested. Design parameters and operating

  2. Complete Genome Sequence of the Aerobic CO-Oxidizing Thermophile Thermomicrobium roseum

    PubMed Central

    Wu, Dongying; Raymond, Jason; Wu, Martin; Chatterji, Sourav; Ren, Qinghu; Graham, Joel E.; Bryant, Donald A.; Robb, Frank; Colman, Albert; Tallon, Luke J.; Badger, Jonathan H.; Madupu, Ramana; Ward, Naomi L.; Eisen, Jonathan A.

    2009-01-01

    In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an “Assembling the Tree of Life” project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain

  3. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  4. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    PubMed

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs). PMID:19923760

  5. 40 CFR 204.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors... when the decision is made on the last compressor required to make a decision under paragraph (a) of... any additional testing on compressors from subsequent batches pursuant to the initiating test...

  6. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  7. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew Amis; Liu, Yan-Hua

    2002-08-01

    Eighteen anaerobic/aerobic batch experiments were conducted with a variety of volatile fatty acids (VFAs) on a sequencing batch reactor (SBR) population displaying enhanced biological phosphorus removal (EBPR). A statistically significant (P < 0.01 for all variables) correlation between aerobic phosphorus uptake and polyhydroxyalkanoates (PHAs) quantity and form was observed. The results suggest that poly-3-hydroxy-butyrate (3HB) results in significantly higher aerobic phosphorus (P) uptake per unit mmoles as carbon (mmoles-C) than poly-3-hydroxy-valerate (3HV). The results showed that acetic and isovaleric acids resulted in higher P removals (relative to propionic and valeric acids) during EBPR batch experiments not because of higher PHAs quantity, but largely because the predominant type was 3HB rather than 3HV. In contrast propionic and valeric acids resulted in 3HV, and showed much lower aerobic P uptake per unit PHAs. PMID:12230192

  8. Comparison of biological and chemical phosphorus removals in continuous and sequencing batch reactors

    SciTech Connect

    Ketchum, L.H.; Irvine, R.L. Jr.; Breyfogle, R.E.; Manning, J.F. Jr.

    1987-01-01

    A full-scale study of phosphorus removal has been conducted at Culver using continuous-flow operation, SBR operation, and several different chemical treatment schemes. A full-scale demonstration of SBR biological phosphorus removal also has been shown to be effective. Four contributing groups of organisms and their roles in biological SBR phosphorus removal have been described: denitrifying organisms, fermentation product-manufacturing organisms, phosphorus- accumulating organisms, and aerobic autotrophs and heterotrophs. The SBR can provide the proper balance of anoxic, anaerobic, and aerobic conditions to allow these group of organisms to successfully remove phosphorus biologically, without chemical addition. Treatment results using various chemicals for phosphorus removal, both during conventional, continuous-flow operation and after the plant was converted for SBR operation, have also been provided for comparison. Effluent phosphorus concentrations were almost identical for each period, except for the period when phosphorus was removed biologically and without any chemical addition when effluent phosphorus concentrations were the lowest. These removals were made as a result of settling alone; no tertiary rapid stand filter was used or required.

  9. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    PubMed

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%. PMID:26298401

  10. Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use.

    PubMed

    Fakhru'l-Razi, A; Pendashteh, Alireza; Abidin, Zurina Zainal; Abdullah, Luqman Chuah; Biak, Dayang Radiah Awang; Madaeni, Sayed Siavash

    2010-09-01

    Oil and gas field wastewater or produced water is a significant waste stream in the oil and gas industries. In this study, the performance of a membrane sequencing batch reactor (MSBR) and membrane sequencing batch reactor/reverse osmosis (MSBR/RO) process treating produced wastewater were investigated and compared. The MSBR was operated in different hydraulic residence time (HRT) of 8, 20 and 44 h. Operation results showed that for a HRT of 20 h, the combined process effluent chemical oxygen demand (COD), total organic carbon (TOC) and oil and grease (O&G) removal efficiencies were 90.9%, 92% and 91.5%, respectively. The MSBR effluent concentration levels met the required standard for oil well re-injection. The RO treatment reduced the salt and organic contents to acceptable levels for irrigation and different industrial re-use. Foulant biopsy demonstrated that the fouling on the membrane surface was mainly due to inorganic (salts) and organic (microorganisms and their products, hydrocarbon constituents) matters. PMID:20434905

  11. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode.

    PubMed

    Nam, Joo-Youn; Kim, Dong-Hoon; Kim, Sang-Hyoun; Lee, Wontae; Shin, Hang-Sik; Kim, Hyun-Woo

    2016-04-01

    Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge. PMID:26150291

  12. Ecological significance of Synergistetes in the biological treatment of tuna cooking wastewater by an anaerobic sequencing batch reactor.

    PubMed

    Militon, Cécile; Hamdi, Olfa; Michotey, Valerie; Fardeau, Marie-Laure; Ollivier, Bernard; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia

    2015-11-01

    Lab-scale 2L-anaerobic sequencing batch reactor was operated under mesothermic conditions. The degradation of protein-rich organic matter was determined by chemical oxygen demand, biogas production, and protein-removal activity over the operation. The structure of the microbial community was determined by qPCR and next-generation sequencing on 16S rRNA genes. At the steady state, a very efficient removal of protein (92%) was observed. Our results demonstrate a decrease of archaeal and bacterial abundance over time. Members of the phylum Synergistetes, with a peculiar emphasis for those pertaining to families Dethiosulfovibrionaceae and Aminiphilaceae, are of major ecological significance regarding the treatment of this industrial wastewater. The prominent role to be played by members of the phylum Synergistetes regarding protein and/or amino acid degradation is discussed. PMID:26194235

  13. Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: Case study of propranolol.

    PubMed

    Popple, T; Williams, J B; May, E; Mills, G A; Oliver, R

    2016-01-01

    Pharmaceuticals are frequently detected in the aquatic environment, and have potentially damaging effects. Effluents from sewage treatment plants (STPs) are major sources of these substances. The use of sequencing batch reactor (SBR) STPs, involving cycling between aerobic and anoxic conditions to promote nitrification and denitrification, is increasing but these have yet to be understood in terms of removal of pharmaceutical residues. This study reports on the development of a laboratory rig to simulate a SBR. The rig was used to investigate the fate of radiolabelled propranolol. This is a commonly prescribed beta blocker, but with unresolved fate in STPs. The SBR rig (4.5 L) was operated on an 8 h batch cycle with settled sewage. Effective treatment was demonstrated, with clearly distinct treatment phases and evidence of nitrogen removal. Radiolabelled (14)C-propranolol was dosed into both single (closed) and continuous (flow-through) simulations over 13 SBR cycles. Radioactivity in CO2 off-gas, biomass and liquid was monitored, along with the characteristics of the sewage. This allowed apparent rate constants and coefficients for biodegradation and solid:water partitioning to be determined. Extrapolation from off-gas radioactivity measurements in the single dose 4-d study suggested that propranolol fell outside the definitions of being readily biodegradable (DegT50 = 9.1 d; 60% biodegradation at 12.0 d). During continuous dosing, 63-72% of propranolol was removed in the rig, but less than 4% of dose recovered as (14)CO2, suggesting that biodegradation was a minor process (Kbiol(M) L kg d(-1) = 22-49) and that adsorption onto solids dominated, giving rise to accumulations within biomass during the 17 d solid retention time in the SBR. Estimations of adsorption isotherm coefficients were different depending on which of three generally accepted denominators representing sorption sites was used (mixed liquor suspended solids, reactor COD or mass of waste

  14. Saline storage of aerobic granules and subsequent reactivation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Lin, Lin

    2014-11-01

    Loss of structural stability and bioactivity during long-term storage and operation is primary challenge to field applications of aerobic granular processes. This study for the first time stored aerobic granules in 5%w/w NaCl solution at 4°C for 187d. The stored granules were then successfully reactivated and used for 85d in sequencing batch reactors (SBR) and continuous-flow reactors (CFR) at varying levels of chemical oxygen demand (COD). High-throughput sequencing results reveal that Thauera sp., Paracoccus sp., and Nitrosomonas sp. were the predominant in the stored aerobic granules, and Pseudoxanthomonas sp. accumulated during the reactivation process. Saline storage, in which cells are in an unculturable state by saline stress, is a promising storage process for aerobic granules. PMID:25270079

  15. Genome Sequence of "Pedosphaera parvula" Ellin514, an Aerobic Verrucomicrobial Isolate from Pasture Soil

    SciTech Connect

    Kant, Ravi; Van Passel, Mark W.J.; Palva, Airi; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Chertkov, Olga; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; Brettin, Thomas S; Detter, J. Chris; Han, Cliff; De Vos, Willem M.; Janssen, Peter H.; Smidt, Hauke

    2011-01-01

    Pedosphaera parvula Ellin514 is an aerobically grown verrucomicrobial isolate from pasture soil. In contrast to the high abundance of members of Verrucomicrobia subdivision 3 based on molecular surveys in terrestrial environments, Ellin514 is one of the few cultured representatives of this group.

  16. Ribosomal DNA Sequencing for Identification of Aerobic Gram-Positive Rods in the Clinical Laboratory (an 18-Month Evaluation)

    PubMed Central

    Bosshard, P. P.; Abels, S.; Zbinden, R.; Böttger, E. C.; Altwegg, M.

    2003-01-01

    We have evaluated over a period of 18 months the use of 16S ribosomal DNA (rDNA) sequence analysis as a means of identifying aerobic gram-positive rods in the clinical laboratory. Two collections of strains were studied: (i) 37 clinical strains of gram-positive rods well identified by phenotypic tests, and (ii) 136 clinical isolates difficult to identify by standard microbiological investigations, i.e., identification at the species level was impossible. Results of molecular analyses were compared with those of conventional phenotypic identification procedures. Good overall agreement between phenotypic and molecular identification procedures was found for the collection of 37 clinical strains well identified by conventional means. For the 136 clinical strains which were difficult to identify by standard microbiological investigations, phenotypic characterization identified 71 of 136 (52.2%) isolates at the genus level; 65 of 136 (47.8%) isolates could not be discriminated at any taxonomic level. In comparison, 16S rDNA sequencing identified 89 of 136 (65.4%) isolates at the species level, 43 of 136 (31.6%) isolates at the genus level, and 4 of 136 (2.9%) isolates at the family level. We conclude that (i) rDNA sequencing is an effective means for the identification of aerobic gram-positive rods which are difficult to identify by conventional techniques, and (ii) molecular identification procedures are not required for isolates well identified by phenotypic investigations. PMID:12958237

  17. GeneInfoMiner--a web server for exploring biomedical literature using batch sequence ID.

    PubMed

    Xuan, Weijian; Watson, Stanley J; Meng, Fan

    2005-08-15

    GeneInfoMiner is a web-based system for searching Medline abstracts using sequence ID lists such as GenBank accession numbers derived from high-throughput experiments. It will map query results to MeSH topics to facilitate the exploration of the biological significance of the sequence ID lists. GeneInfoMiner is based on a custom gene and protein name identification engine that can map gene and protein names to important molecular biology databases. PMID:15994195

  18. Effect of Sludge Type on Enhanced Biological Phosphorus Removal in Sequencing Batch Reactors

    NASA Astrophysics Data System (ADS)

    Li, Xing; Gao, Dawen; Zhang, Baihui

    2010-11-01

    Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the study of distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in EBPR. Two SBRs were concurrently operated to investigate the different phosphorus removal characteristics between granules (R1) and flocculate sludge (R2). Results indicated that R2 had a faster progress for enriching phosphorus-accumulating organisms compared with R1, and the phosphorus removal reached the steady state after 40 days in R1 but only 30 days in R2. The moisture content of granules (85.63%) was smaller than that (91.36%) in R2, and the granules had a higher removal efficiency of NH4+-N. However, flocculent sludge could release and take up more phosphorus. The special phosphorus release rate (SPRR) and special phosphorus uptake rate (SPUR) were 8.818 mg/gVSSṡh and 9.921 mg/gVSSṡh in R2 which were consistently larger than that (0.999 mg/gVSSṡh and 0.754 mg/gVSSṡh) in R1. The results of DGGE of PCR-amplified 16SrDNA fragments revealed that the diversity and the amount of phosphorus accumulating microbial of bacteria in flocculent sludge were much more than that in the granules. It can be concluded that the flocculent sludge showed a better phosphorus removal.

  19. Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime.

    PubMed

    Li, Xiao-ming; Chen, Hong-bo; Yang, Qi; Wang, Dong-bo; Luo, Kun; Zeng, Guang-ming

    2014-06-01

    Previous researches have demonstrated that biological phosphorus removal from wastewater could be induced by oxic/extended-idle (O/EI) regime. In this study, an anoxic period was introduced after the aeration to realize biological nutrient removal. High nitrite accumulation ratio and polyhydroxyalkanoates biosynthesis were obtained in the aeration and biological nutrient removal could be well achieved in oxic/anoxic/extended-idle (O/A/EI) regime for the wastewater used. In addition, nitrogen and phosphorus removal performance in O/A/EI regime was compared with that in conventional anaerobic/anoxic/aerobic (A(2)/O) and O/EI processes. The results showed that O/A/EI regime exhibited higher nitrogen and phosphorus removal than A(2)/O and O/EI processes. More ammonium oxidizing bacteria and polyphosphate accumulating organisms and less glycogen accumulating organisms containing in the biomass might be the principal reason for the better nitrogen and phosphorus removal in O/A/EI regime. Furthermore, biological nutrient removal with O/A/EI regime was demonstrated with municipal wastewater. The average TN, SOP and COD removal efficiencies were 93%, 95% and 87%, respectively. PMID:24393562

  20. Nitrogen and sulfide removal from effluent of UASB reactor in a sequencing fed-batch biofilm reactor under intermittent aeration.

    PubMed

    Moraes, B S; Orrú, J G T; Foresti, E

    2013-04-10

    Simultaneous nitrification/denitrification (SND) coupled with sulfide oxidation may be suitable for the post treatment of effluents from anaerobic reactors. These effluents contain ammonium, which must be nitrified, and sulfide, which could be used as an endogenous electron donor for autotrophic denitrification. The SND process occurred in a sequencing fed-batch biofilm reactor of 8h cycles, operated under intermittent aeration. The effect of the start-up period and the feeding strategy were evaluated. The previous establishment of nitrification process with subsequent application of sulfide in low concentrations was the best start-up strategy to enable the occurrence of SDN. The fed-batch mode with sulfide application in excess only in the anoxic periods was the best feeding strategy, providing average efficiencies of 85.7% and 53.0% for nitrification and denitrification, respectively. However, the low overall nitrogen removal efficiency and some operational constraints indicated that autotrophic denitrification using sulfide in a single SBR was not suitable for SND under the assayed conditions. PMID:22789473

  1. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    PubMed

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX

  2. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. PMID:25804501

  3. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR).

    PubMed

    Wang, Meng; Yang, Han; Ergas, Sarina J; van der Steen, Peter

    2015-12-15

    Removal of nitrogen from anaerobically digested swine manure centrate was investigated in a photo-sequencing batch reactor (PSBR) with alternating light and dark periods. Microalgal photosynthesis was shown to provide enough oxygen for complete nitritation during the light period. With addition of an organic carbon source during the dark period, the reactor removed over 90% total nitrogen (TN) without aeration other than by mixing. Overall, 80% of the TN removal was through nitritation/denitritation and the rest was due to biomass uptake. The high concentrations of ammonia and nitrite and low dissolved oxygen concentration in the PSBR effectively inhibited nitrite oxidizing bacteria, resulting in stable nitritation. The hybrid microalgal photosynthesis and shortcut nitrogen removal process has the potential to substantially reduce aeration requirements for treatment of anaerobic digestion side streams. The PSBR also produced well settling biomass with sludge volume index of 62 ± 16 mL mg(-1). PMID:26378730

  4. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time.

    PubMed

    Bagchi, Samik; Tellez, Berenice G; Rao, Hari Ananda; Lamendella, Regina; Saikaly, Pascal E

    2015-03-01

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media. PMID:25326778

  5. Influence of the agitation rate on the treatment of partially soluble wastewater in anaerobic sequencing batch biofilm reactor.

    PubMed

    Pinho, Samantha Cristina; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Foresti, Eugenio; Zaiat, Marcelo

    2004-11-01

    This work reports on the influence of the agitation rate on the organic matter degradation in an anaerobic sequencing batch reactor, containing biomass immobilized on 3 cm cubic polyurethane matrices, stirred mechanically and fed with partially soluble soymilk substrate with mean chemical oxygen demand (COD) of 974+/-70 mg l(-1). Hydrodynamic studies informed on the homogenization time under agitagion rates from 500 to 1100 rpm provided by three propeller impellers. It occurred very quickly compared to the total cycle time. The results showed that agitation provided good mixing and improved the overall organic matter consumption rates. A modified first-order kinetic model represented adequately the data in the entire range of agitation rate. The apparent first-order kinetic constant for suspended COD rose approximately 360% when the agitation rate was changed from 500 to 900 rpm, whereas the apparent first-order kinetic constant for soluble COD did not vary significantly. PMID:15491659

  6. Analysis of denitrifier community in a bioaugmented sequencing batch reactor for the treatment of coking wastewater containing pyridine and quinoline.

    PubMed

    Bai, Yaohui; Sun, Qinghua; Xing, Rui; Wen, Donghui; Tang, Xiaoyan

    2011-05-01

    The denitrifier community and associated nitrate and nitrite reduction in the bioaugmented and general sequencing batch reactors (SBRs) during the treatment of coking wastewater containing pyridine and quinoline were investigated. The efficiency and stability of nitrate and nitrite reduction in SBR was considerably improved after inoculation with four pyridine- or quinoline-degrading bacterial strains (including three denitrifying strains). Terminal restriction fragment length polymorphism (T-RFLP) based on the nosZ gene revealed that the structures of the denitrifier communities in bioaugmented and non-bioaugmented reactors were distinct and varied during the course of the experiment. Bioaugmentation protected indigenous denitrifiers from disruptions caused by pyridine and quinoline. Clone library analysis showed that one of the added denitrifiers comprised approximately 6% of the denitrifier population in the bioaugmented sludge. PMID:21327410

  7. Comparison of dissolved-organic-carbon residuals from air- and pure-oxygen-activated-sludge sequencing-batch reactors.

    PubMed

    Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul

    2006-03-01

    Literature shows that full-scale pure-oxygen activated sludge (O2-AS) wastewater treatment plants (WWTPs) generate effluents with higher dissolved-organic carbon (DOC) concentrations and larger high-molecular-weight fractions compared to air-activated-sludge (Air-AS) WWTP effluents. The purpose of this paper was to evaluate how gas supplied (air vs. pure oxygen) to sequencing-batch reactors affected DOC transformations. The main conclusions of this paper are (a) O2-AS effluent DOC is more refractory than air-AS effluent DOC; and (b) O2-AS systems may have higher five-day biochemical oxygen demand removals than air-AS systems; however, in terms of COD and DOC removal, air-AS systems are better than O2-AS systems. Analysis of a database from side-by-side O2- and air-AS pilot tests from literature supported these observations. PMID:16629273

  8. Study of performances, stability and microbial characterization of a Sequencing Batch Biofilter Granular Reactor working at low recirculation flow.

    PubMed

    De Sanctis, Marco; Beccari, Mario; Di Iaconi, Claudio; Majone, Mauro; Rossetti, Simona; Tandoi, Valter

    2013-02-01

    The Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied. Both the microbial components of the granules, and their main metabolic activities were evaluated (heterotrophic oxidation, nitrification, denitrification, fermentation, sulphate reduction and methanogenesis). The results indicate that despite reduced recirculation, the SBBGR system maintained many of its advantageous characteristics. PMID:23313178

  9. Correlation between microbial diversity and toxicity of sludge treating synthetic wastewater containing 4-chlorophenol in sequencing batch reactors.

    PubMed

    Zhao, Jianguo; Chen, Xiurong; Bao, Linlin; Bao, Zheng; He, Yixuan; Zhang, Yuying; Li, Jiahui

    2016-06-01

    The relationship between microbial diversity and sludge toxicity in the biotreatment of refractory wastewater was investigated. Synthetic wastewater containing 4-chlorophenol (4-CP) was treated by an activated sludge using a sequencing batch bioreactor (SBR). At the end of a single SBR cycle, a stable operation stage was reached when the 4-CP was not detected both in aqueous and sludge phases and the effluent COD was maintained at approximately 70 mg L(-1) for the blank and control sludge groups. Then, the diversity of the microorganisms and the sludge toxicity were measured. The results showed that the Microtox acute toxicity of the control sludge was higher than those of the blank sludge. The difference analysis of the microbial diversity between the blank and control sludge indicated that the sludge toxicity was closely related to microbial diversity. PMID:27016808

  10. Contributions of biofilm and suspended sludge to nitrogen transformation and nitrous oxide emission in hybrid sequencing batch system.

    PubMed

    Lo, Ingwei Wayne; Lo, Kwang Victor; Mavinic, Don S; Shiskowski, Dean; Ramey, William

    2010-01-01

    Hybrid system combines the nature of suspended growth and attached growth has been widely applied to wastewater treatment. In this research, the contributions to N transformation and N2O emission by biofilm and suspended sludge in the hybrid sequencing-batch reactor for a simultaneous nitrification, denitrification and phosphorus removal process were investigated. For the hybrid system, nitrification occurred mostly in the suspended sludge, while the biofilm played the major role in denitrification. The interaction of the biofilm and the suspended sludge in the same reactor resulted in a better overall nitrogen removal performance with simultaneous nitrification and denitrification. However, N2O emission was the main end product of nitrogen removal for the hybrid system; while it was N2 for the biofilm. The relative low N2O emissions from the pure biofilm and the pure suspended sludge corresponded to the relatively high nitrate at the end of the aeration period compared with the hybrid system. PMID:21174983

  11. N2O emission from nitrogen removal via nitrite in oxic-anoxic granular sludge sequencing batch reactor.

    PubMed

    Liang, Hong; Yang, Jiaoling; Gao, Dawen

    2014-03-01

    Bionitrification is considered to be a potential source of nitrous oxide (N2O) emissions, which are produced as a by-product during the nitrogen removal process. To investigate the production of N2O during the process of nitrogen removal via nitrite, a granular sludge was studied using a lab-scale sequence batch reactor operated with real-time control. The total production of N2O generated during the nitrification and denitrification processes were 1.724 mg/L and 0.125 mg/L, respectively, demonstrating that N2O is produced during both processes, with the nitrification phase generating larger amount. In addition, due to the N2O-N mass/oxidized ammonia mass ratio, it can be concluded that nitrite accumulation has a positive influence on N2O emissions. Results obtained from PCR-DGGE analysis demonstrate that a specific Nitrosomonas microorganism is related to N2O emission. PMID:25079265

  12. A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning.

    PubMed

    Mang, Cameron S; Snow, Nicholas J; Campbell, Kristin L; Ross, Colin J D; Boyd, Lara A

    2014-12-01

    The objectives of the present study were to evaluate the impact of a single bout of high-intensity aerobic exercise on 1) long-term potentiation (LTP)-like neuroplasticity via response to paired associative stimulation (PAS) and 2) the temporal and spatial components of sequence-specific implicit motor learning. Additionally, relationships between exercise-induced increases in systemic brain-derived neurotrophic factor (BDNF) and response to PAS and motor learning were evaluated. Sixteen young healthy participants completed six experimental sessions, including the following: 1) rest followed by PAS; 2) aerobic exercise followed by PAS; 3) rest followed by practice of a continuous tracking (CT) task and 4) a no-exercise 24-h retention test; and 5) aerobic exercise followed by CT task practice and 6) a no-exercise 24-h retention test. The CT task included an embedded repeated sequence allowing for evaluation of sequence-specific implicit learning. Slope of motor-evoked potential recruitment curves generated with transcranial magnetic stimulation showed larger increases when PAS was preceded by aerobic exercise (59.8% increase) compared with rest (14.2% increase, P = 0.02). Time lag of CT task performance on the repeated sequence improved under the aerobic exercise condition from early (-100.8 ms) to late practice (-75.2 ms, P < 0.001) and was maintained at retention (-79.2 ms, P = 0.004) but did not change under the rest condition (P > 0.16). Systemic BDNF increased on average by 3.4-fold following aerobic exercise (P = 0.003), but the changes did not relate to neurophysiological or behavioral measures (P > 0.42). These results indicate that a single bout of high-intensity aerobic exercise can prime LTP-like neuroplasticity and promote sequence-specific implicit motor learning. PMID:25257866

  13. Sequenced anaerobic-aerobic treatment of high strength, strong nitrogenous landfill leachates.

    PubMed

    Kalyuzhnyi, S V; Gladchenko, M A

    2004-01-01

    As a first step in treatment of high strength, strong nitrogenous landfill leachates (total COD--9.66-20.56 g/l, total nitrogen 780-1,080 mg/l), the performance of laboratory UASB reactors has been investigated under sub-mesophilic (19+/-3 degrees C) and psychrophilic (10+/-2 degrees C) conditions. Under hydraulic retention time (HRT) of around 1.2 days, when the average organic loading rate (OLR) was around 8.5 g COD/l/day, the total COD removal accounted for 71% (on average) for sub-mesophilic regime. The psychrophilic treatment conducted under the average HRT of 2.44 days and the average OLR of 4.2 g COD/l/day showed an average total COD removal of 58% giving effluents more suitable for subsequent biological nitrogen removal. Both anaerobic regimes were quite efficient for elimination of heavy metals by concomitant precipitation in the form of insoluble sulphides inside the sludge. The subsequent submesophilic aerobic-anoxic treatment of submesophilic anaerobic effluents led to only 75% of total inorganic N removal due to COD deficiency for denitrification created by too efficient anaerobic step. On the contrary, psychrophilic anaerobic effluents (richer in COD compared to the submesophilic ones) were more suitable for subsequent aerobic-anoxic treatment giving the total N removal of 95 and 92% at 19 and 10 degrees C, respectively. PMID:15137438

  14. Performance evaluation and microbial community of a sequencing batch biofilm reactor (SBBR) treating mariculture wastewater at different chlortetracycline concentrations.

    PubMed

    Zheng, Dong; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Wang, Sen; Wang, Xuejiao

    2016-11-01

    The effects of chlortetracycline (CTC) on the performance, microbial activity, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater. Low CTC concentration (less than 6 mg/L) had no obvious effect on the SBBR performance, whereas high CTC concentration could inhibit the chemical oxygen demand (COD) and nitrogen removal of the SBBR. The microbial activity of the biofilm in the SBBR decreased with the increase of CTC concentration from 0 to 35 mg/L. The protein (PN) contents were always higher than the PS contents in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) at different CTC concentrations. The chemical compositions of LB-EPS and TB-EPS had obvious variations with the increase of CTC concentration from 0 to 35 mg/L. The high-throughput sequencing revealed the effects of CTC on the microbial communities of the biofilm at phylum, class and genus level. The relative abundances of some genera displayed a decreasing tendency with the increase of CTC concentration from 0 to 35 mg/L, such as Nitrospira, Paracoccus, Hyphomicrobium, Azospirillum. However, the relative abundances of the genera Flavobacterium, Aequorivita, Buchnera, Azonexus and Thioalbus increased with the increase of CTC concentration. PMID:27526087

  15. Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine ▿†

    PubMed Central

    Bürgmann, Helmut; Jenni, Sarina; Vazquez, Francisco; Udert, Kai M.

    2011-01-01

    The microbial population and physicochemical process parameters of a sequencing batch reactor for nitrogen removal from urine were monitored over a 1.5-year period. Microbial community fingerprinting (automated ribosomal intergenic spacer analysis), 16S rRNA gene sequencing, and quantitative PCR on nitrogen cycle functional groups were used to characterize the microbial population. The reactor combined nitrification (ammonium oxidation)/anammox with organoheterotrophic denitrification. The nitrogen elimination rate initially increased by 400%, followed by an extended period of performance degradation. This phase was characterized by accumulation of nitrite and nitrous oxide, reduced anammox activity, and a different but stable microbial community. Outwashing of anammox bacteria or their inhibition by oxygen or nitrite was insufficient to explain reactor behavior. Multiple lines of evidence, e.g., regime-shift analysis of chemical and physical parameters and cluster and ordination analysis of the microbial community, indicated that the system had experienced a rapid transition to a new stable state that led to the observed inferior process rates. The events in the reactor can thus be interpreted to be an ecological regime shift. Constrained ordination indicated that the pH set point controlling cycle duration, temperature, airflow rate, and the release of nitric and nitrous oxides controlled the primarily heterotrophic microbial community. We show that by combining chemical and physical measurements, microbial community analysis and ecological theory allowed extraction of useful information about the causes and dynamics of the observed process instability. PMID:21724875

  16. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.

    PubMed

    Rodriguez-Caballero, A; Aymerich, I; Marques, Ricardo; Poch, M; Pijuan, M

    2015-03-15

    A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O-N/Kg [Formula: see text] consumed or 6.8% of the influent [Formula: see text] load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20-30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale. PMID:25577689

  17. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation. PMID:24211486

  18. Plasticicumulans acidivorans gen. nov., sp. nov., a polyhydroxyalkanoate-accumulating gammaproteobacterium from a sequencing-batch bioreactor.

    PubMed

    Jiang, Yang; Sorokin, Dimitry Yu; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark

    2011-09-01

    Here, we describe a novel bacterium, strain TUD-YJ37(T), which can accumulate polyhydroxybutyrate (PHB) to more than 85 % (w/w) dry cell weight. The bacterium was isolated from a mixed-culture bioreactor by using a feast-famine regime and its properties were characterized. Phylogenetic analysis based on full 16S rRNA gene sequences revealed that the isolate is a member of the Gammaproteobacteria, forming an independent, deep phylogenetic lineage. It is most closely related to members of the genera Methylocaldum, Methylococcus and Natronocella, with sequence similarities below 91 %. Strain TUD-YJ37(T) was an obligately aerobic, ovoid, Gram-negative bacterium, motile by means of a polar flagellum. It utilized C₂-C₁₀ fatty acids as carbon and energy sources. The temperature range for growth was 20-35 °C, with an optimum of 30 °C; the pH range was 6.0-8.0, without a clear optimum. The major respiratory quinone was Q-8. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids, an unidentified aminolipid and another unidentified lipid. The predominant fatty acids in the membrane polar lipids were C₁₆:₁ω7c, C₁₆:₀ and C₁₈:₁ω7c. The G+C content of the genomic DNA was 67.4 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, the isolate is proposed to represent a novel genus and species, for which the name Plasticicumulans acidivorans gen. nov., sp. nov. is proposed. The type strain of Plasticicumulans acidivorans is TUD-YJ37(T) ( = DSM 23606(T)  = CBS 122990(T)). PMID:20971833

  19. An acute bout of aerobic exercise can protect immediate offline motor sequence gains.

    PubMed

    Rhee, Joohyun; Chen, Jing; Riechman, Steven M; Handa, Atul; Bhatia, Sanjeev; Wright, David L

    2016-07-01

    The present study examined the efficacy of a short bout of moderately intensive exercise to protect knowledge of a newly acquired motor sequence. Previous work revealed that sleep-dependent offline gains in motor sequence performance are reduced by practicing an alternative motor sequence in close temporal proximity to the original practice with the target motor sequence. In the present work, a brief bout of exercise was inserted at two different temporal locations between practice of a to-be-learned motor sequence and the interfering practice that occurred 2 h later. At issue was whether exposure to exercise could reduce the impact of practice with the interfering task which was expected to be manifest as reemergence of offline gain observed in the case in which the learner is not exposed to the interfering practice. Acute exercise did influence the interfering quality of practice with an alternative motor sequence resulting in the return of broad offline gain. However, this benefit was immediate, emerging on the initial test trial, only when exercise was experienced some time after the original period of motor sequence practice and just prior to practice with the interfering motor sequence. Thus, while exercise can contribute to post-practice consolidation, there appears to be a fragile interplay between spontaneous memory consolidation occurring after task practice and the consolidation processes induced via exercise. PMID:26115758

  20. Effects of antibiotic resistance genes on the performance and stability of different microbial aggregates in a granular sequencing batch reactor.

    PubMed

    Zou, Wenci; Xue, Bin; Zhi, Weijia; Zhao, Tianyu; Yang, Dong; Qiu, Zhigang; Shen, Zhiqiang; Li, Junwen; Zhang, Bin; Wang, Jingfeng

    2016-03-01

    Antibiotic resistance genes (ARGs) have emerged as key factors in wastewater environmental contaminants and continue to pose a challenge for wastewater treatment processes. With the aim of investigating the performance of granular sludge system when treating wastewater containing a considerable amount of ARGs, a lab-scale granular sequencing batch reactor (GSBR) where flocculent and granular sludge coexisted was designed. The results showed that after inoculation of donor strain NH4(+)-N purification efficiency diminished from 94.7% to 32.8% and recovered to 95.2% after 10 days. Meanwhile, RP4 plasmid had varying effects on different forms of microbial aggregates. As the size of aggregates increased, the abundance of RP4 in sludge decreased. The residence time of RP4 in granules with particle size exceeding 0.9 mm (14 days) was far shorter than that in flocculent sludge (26 days). Therefore, our studies conclude that with increasing number of ARGs being detected in wastewater, the use of granular sludge system in wastewater treatment processes will allow the reduction of ARGs transmissions and lessen potential ecological threats. PMID:26590870

  1. Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater.

    PubMed

    Mizzouri, Nashwan Sh; Shaaban, Md Ghazaly

    2013-04-15

    This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSSd at 12.8h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value. PMID:23474407

  2. Bioaugmentation of a sequencing batch biofilm reactor with Comamonas testosteroni and Bacillus cereus and their impact on reactor bacterial communities.

    PubMed

    Cheng, Zhongqin; Chen, Mei; Xie, Liqun; Peng, Lin; Yang, Maohua; Li, Mengying

    2015-02-01

    The immobilization of microorganisms is essential for efficient bioaugmentation systems. The performance of Bacillus cereus G5 as biofilm-forming bacteria and Comamonas testosteroni A3 a 3,5 dinitrobenzoic acid (DNB)-degrading strain] in laboratory-scale sequencing batch biofilm reactors (SBBRs) treating DNB synthetic wastewater has been examined. The microbial diversity in the reactors was also explored. The reactor R3 inoculated with B. cereus G5 and C. testosteroni A3 together not only improved the removal of contaminants, but also exhibited obvious resistance to shock loading with DNB during later operations. Pyrosequencing was used to evaluate bacterial communities in three reactors. Comamonas was predominant in the reactor R3, indicating the effect of G5 in promoting immobilization of A3 cells in biofilms. Those microbial resources, e.g.G5, which can stimulate the self-immobilization of the degrading bacteria offer a novel strategy for immobilization of degraders in bioaugmentation systems and show broader application prospects. PMID:25257599

  3. Performance comparison of biofilm and suspended sludge from a sequencing batch biofilm reactor treating mariculture wastewater under oxytetracycline stress.

    PubMed

    Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo

    2016-09-01

    The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge. PMID:26854088

  4. Effects of CeO2 nanoparticles on system performance and bacterial community dynamics in a sequencing batch reactor.

    PubMed

    Qiu, Guanglei; Neo, Sin-Yi; Ting, Yen-Peng

    2016-01-01

    The effects of CeO2 nanoparticles (NPs) on the system performance and the bacterial community dynamics in a sequencing batch reactor (SBR) were investigated, along with the fate and removal of CeO2 NPs within the SBR. Significant impact was observed on nitrification; NH4+-N removal efficiency decreased from almost 100% to around 70% after 6 days of continuous exposure to 1.0 mg/L of CeO2 NPs, followed by a gradual recovery until a stable value of around 90% after 20 days. Additionally, CeO2 NPs also led to a significant increase in the protein content in the soluble microbial products, showing the disruptive effects of CeO2 NPs on the extracellular polymeric substance matrix and related activated sludge structure. Denaturing gradient gel electrophoresis analysis showed remarkable changes in the bacterial community structure in the activated sludge after exposure to CeO2 NPs. CeO2 NPs were effectively removed in the SBR mainly via sorption onto the sludge. However, the removal efficiency decreased from 95 to 80% over 30 days. Mass balance evaluation showed that up to 50% of the NPs were accumulated within the activated sludge and were removed with the waste sludge. PMID:26744939

  5. Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors.

    PubMed

    Alito, Christina L; Gunsch, Claudia K

    2014-01-21

    Consumer products such as clothing and medical products are increasingly integrating silver and silver nanoparticles (AgNPs) into base materials to serve as an antimicrobial agent. Thus, it is critical to assess the effects of AgNPs on wastewater microorganisms essential to biological nutrient removal. In the present study, pulse and continuous additions of 0.2 and 2 ppm gum arabic and citrate coated AgNPs as well as Ag as AgNO3 were fed into sequencing batch reactors (SBRs) inoculated with nitrifying sludge. Treatment efficiency (chemical oxygen demand (COD) and ammonia removal), Ag dissolution measurements, and 16S rRNA bacterial community analyses (terminal restriction fragment length polymorphism, T-RFLP) were performed to evaluate the response of the SBRs to Ag addition. Results suggest that the AgNPs may have been precipitating in the SBRs. While COD and ammonia removal decreased by as much as 30% or greater directly after spikes, SBRs were able to recover within 24 h (3 hydraulic retention times (HRTs)) and resume removal near 95%. T-RFLP results indicate Ag spiked SBRs were similar in a 16s rRNA bacterial community. The results shown in this study indicate that wastewater treatment could be impacted by Ag and AgNPs in the short term but the amount of treatment disruption will depend on the magnitude of influent Ag. PMID:24364625

  6. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.

    PubMed

    Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir

    2014-12-01

    This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR. PMID:25127066

  7. Effects of adsorbents and copper(II) on activated sludge microorganisms and sequencing batch reactor treatment process.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2003-10-31

    Wastewater treatment systems employing simultaneous adsorption and biodegradation processes have proven to be effective in treating toxic pollutants present in industrial wastewater. The objective of this study is to evaluate the effect of Cu(II) and the efficacy of the powdered activated carbon (PAC) and activated rice husk (ARH) in reducing the toxic effect of Cu(II) on the activated sludge microorganisms. The ARH was prepared by treatment with concentrated nitric acid for 15 h at 60-65 degrees C. The sequencing batch reactor (SBR) systems were operated with FILL, REACT, SETTLE, DRAW and IDLE modes in the ratio of 0.5:3.5:1:0.75:0.25 for a cycle time of 6 h. The Cu(II) and COD removal efficiency were 90 and 85%, respectively, in the SBR system containing 10 mg/l Cu(II) with the addition of 143 mg/l PAC or 1.0 g PAC per cycle. In the case of 715 mg/l ARH or 5.0 g ARH per cycle addition, the Cu(II) and COD removal efficiency were 85 and 92%, respectively. ARH can be used as an alternate adsorbent to PAC in the simultaneous adsorption and biodegradation wastewater treatment process for the removal of Cu(II). The specific oxygen uptake rate (SOUR) and kinetic studies show that the addition of PAC and ARH reduce the toxic effect of Cu(II) on the activated sludge microorganisms. PMID:14573344

  8. The use of sequencing batch reactor technology for the treatment of high-strength dairy processing waste

    SciTech Connect

    Kolarski, R.; Nyhuis, G.

    1996-11-01

    Mueller Milch, a German dairy, discharged process wastewater to a local municipal treatment plant. However, increasing user fees for industrial discharges and overloading of the local treatment plant forced Mueller Milch to evaluate alternatives for a new wastewater treatment facility. In 1992, after the evaluation of treatment alternatives, Mueller Milch dairy discharged effluent from Europe`s first full scale 0.4 mgd Sequencing Batch Reactor (SBR). In a similar situation was Westmilch dairy, another German milk processor unable to meet new stringent effluent limits requiring nutrient removal with their conventional activated sludge system. Following a construction period of only six weeks, the existing treatment facility was retrofitted to a dual basin 0.19 mgd SBR system with sludge digester, eliminating the need for additional tanks. This paper focuses on the design and performance of the SBR process for the treatment of high-strength dairy process wastewater, and describes the success both Mueller Milch and Westmilch dairy have achieved by utilizing this technology.

  9. Enhancing digestion efficiency of POME in anaerobic sequencing batch reactor with ozonation pretreatment and cycle time reduction.

    PubMed

    Chaiprapat, Sumate; Laklam, Tanyaluk

    2011-03-01

    Ozonation pretreatment was applied to palm oil mill effluent (POME) prior to anaerobic digestion using the anaerobic sequencing batch reactor (ASBR). Ozonation increased BOD/COD by 37.9% with a COD loss of only 3.3%. At organic loads of 6.48-12.96 kg COD/m(3)/d, feeding with non-ozonated POME caused a system failure. The ozonated POME gave significantly higher TCOD removal at loadings 6.52 and 9.04 kg COD/m(3)/d but failed to sustain the operation at loading 11.67 kg COD/m(3)/d. Effects of cycle time (CT) and hydraulic retention time (HRT) were determined using quadratic regression model. The generated response surface and contour plot showed that at this high load conditions (6.52-11.67 kg COD/m(3)/d), longer HRT and shorter CT gave the ASBR higher organic removal efficiency and methane yield. The model was able to satisfactorily describe the relationship of these two key operating parameters. PMID:21215615

  10. Effect of continuously dosing Cu(II) on pollutant removal and soluble microbial products in a sequencing batch reactor.

    PubMed

    Yan, YangWei; Wang, YuWen; Liu, Yan; Liu, Xiang; Yao, ChenChao; Ma, LuMing

    2015-01-01

    The effects of synthetic wastewater that contained 20 mg/L Cu(II) on the removal of organic pollutants in a sequencing batch reactor were investigated. Results of continuous 20 mg/L Cu(II) exposure for 120 days demonstrated that the chemical oxygen demand (COD) removal efficiency decreased to 42% initially, followed by a subsequent gradual recovery, which peaked at 78% by day 97. Effluent volatile fatty acid (VFA) concentration contributed 67 to 89% of the influent COD in the experimental reactor, which indicated that the degradation of the organic substances ceased at the VFA production step. Meanwhile, the varieties of soluble microbial products (SMP) content and main components (protein, polysaccharide, and DNA) were discussed to reveal the response of activated sludge to the toxicity of 20 mg/L Cu(II). The determination of Cu(II) concentrations in extracellular polymeric substances (EPS) and SMP throughout the experiment indicated an inverse relationship between extracellular Cu(II) concentration and COD removal efficiency. PMID:26524458

  11. Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment.

    PubMed

    Kaewsuk, Jutamas; Thorasampan, Worachat; Thanuttamavong, Monthon; Seo, Gyu Tae

    2010-05-01

    This experimental study was conducted to evaluate a membrane sequencing batch reactor (MSBR) with mixed culture photosynthetic bacteria for dairy wastewater treatment. The study was undertaken in two steps: laboratory and pilot scale experiments. In the first step, kinetics analysis of the MSBR was carried out in a laboratory scale experiment with influent COD concentration of 2500 mg/L. The pilot scale experiment was conducted to investigate the performance of the MSBR and checked the suitability of the kinetics for an engineering design. The kinetic coefficients K(s), k, k(d), Y and mu(m) were found to be 174-mg-COD/L, 7.42/d, 0.1383/d, 0.2281/d and 1.69/d, respectively. There were some deviations of COD removal efficiency between the design value and the actual value. From the kinetics estimation, COD effluent from the design was 27 mg/L while the average actual COD effluent from the experiment was 149 mg/L. Due to the different light source condition, the factors relating to light energy (i.e. L(f) and IR(%)) must be incorporated into engineering design and performance prediction with these kinetic coefficients of the photosynthetic MSBR. PMID:20149520

  12. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology.

    PubMed

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions. PMID:21420786

  13. Sequence and batch language programs and alarm-related ``C`` programs for the 242-A MCS. Revision 2

    SciTech Connect

    Berger, J.F.

    1995-03-01

    A Distributive Process Control system was purchased by Project B-534, ``242-A Evaporator/Crystallizer Upgrades``. This control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict the overall process. To do this, WTSE developed a second alarm scheme which uses special programs, annunciator keys, and process graphics. The special programs are written in two languages; Sequence and Batch Language (SABL), and ``C`` language. The WTSE-developed alarm scheme works as described below: SABL relates signals and alarms to the annunciator keys, called SKID keys. When an alarm occurs, a SABL program causes a SKID key to flash, and if the alarm is of yellow or white priority then a ``C`` program turns on an audible horn (the D/3 system uses a different audible horn for the red priority alarms). The horn and flashing key draws the attention of the operator.

  14. Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: effect of pH and temperature.

    PubMed

    Arreola-Vargas, J; Jaramillo-Gante, N E; Celis, L B; Corona-González, R I; González-Álvarez, V; Méndez-Acosta, H O

    2016-01-01

    In recent years, anaerobic digestion has been recognized as a suitable alternative for tequila vinasses treatment due to its high energy recovery and chemical oxygen demand (COD) removal efficiency. However, key factors such as the lack of suitable monitoring schemes and the presence of load disturbances, which may induce unstable operating conditions in continuous systems, have limited its application at full scale. Therefore, the aim of this work was to evaluate the anaerobic sequencing batch reactor (AnSBR) configuration in order to provide a low cost and easy operation alternative for the treatment of these complex effluents. In particular, the AnSBR was evaluated under different pH-temperature combinations: 7 and 32 °C; 7 and 38 °C; 8 and 32 °C and 8 and 38 °C. Results showed that the AnSBR configuration was able to achieve high COD removal efficiencies (around 85%) for all the tested conditions, while the highest methane yield was obtained at pH 7 and 38 °C (0.29 L/g COD added). Furthermore, high robustness was found in all the AnSBR experiments. Therefore, the full-scale application of the AnSBR technology for the treatment of tequila vinasses is quite encouraging, in particular for small and medium size tequila industries that operate under seasonal conditions. PMID:26877037

  15. Characteristics of pellets with immobilized activated sludge and its performance in increasing nitrification in sequencing batch reactors at low temperatures.

    PubMed

    Dong, Wenjie; Lu, Guang; Yan, Li; Zhang, Zhenjia; Zhang, Yalei

    2016-04-01

    Immobilized pellets obtained by means of entrapping activated sludge in waterborne polyurethane were successfully adapted in ammonium (NH4(+)-N) synthetic wastewater. Its physicochemical characteristics were determined using scanning electron microscope, pyrosequencing, and microelectrodes, and its influence on the nitrification process in sequencing batch reactors (SBRs) at low temperatures was evaluated. A large number of rod-shaped bacteria were observed on the surface of the immobilized pellet, in which Rudaea spp. (Xanthomonadaceae family) was an important bacterial component (23.44% of the total bacteria). The oxygen uptake rate of immobilized pellets reached 240.83±15.59mgO2/(L·hr), and the oxygen was primarily consumed by the bacteria on the pellet surfaces (0-600μm). The dosing of the pellets (30mL/L) into an SBR significantly improved the nitrification efficiency at low temperatures of 7-11°C, achieving an average NH4(+)-N removal of 84.09%, which is higher than the removal of 67.46% observed for the control group. PMID:27090712

  16. Efficiency influence of exogenous betaine on anaerobic sequencing batch biofilm reactor treating high salinity mustard tuber wastewater.

    PubMed

    He, Qiang; Kong, Xiang-Juan; Chai, Hong-Xiang; Fan, Ming-Yu; Du, Jun

    2012-01-01

    When treating a composite mustard tuber wastewater with high concentrations of salt (about 20 g Cl(-) L(-1)) and organics (about 8000 mg L(-1) COD) by an anaerobic sequencing batch biofilm reactor (ASBBR) in winter, both high salinity and low temperature will inhibit the activity of anaerobic microorganisms and lead to low treatment efficiency. To solve this problem, betaine was added to the influent to improve the activity of the anaerobic sludge, and an experimental study was carried to investigate the influence of betaine on treating high salinity mustard tuber wastewater by the ASBBR. The results show that, when using anaerobic acclimated sludge in the ASBBR, and controlling biofilm density at 50% and water temperature at 8-12 degrees C, the treatment efficiency of the reactor could be improved by adding the betaine at different concentrations. The efficiency reached the highest when the optimal dosage ofbetaine was 0.5 mmol L(-1). The average effluent COD, after stable acclimation, was 4461 mg L(-1). Relative to ASBBR without adding betaine, the activity of the sludge increased significantly. Meanwhile, the dehydrogenase activity of anaerobic microorganisms and the COD removal efficiency were increased by 18.6% and 18.1%, respectively. PMID:22988630

  17. Effect of inorganic carbon on the completely autotrophic nitrogen removal over nitrite (CANON) process in a sequencing batch biofilm reactor.

    PubMed

    Chen, You-Peng; Li, Shan; Fang, Fang; Guo, Jin-Song; Zhang, Qiang; Gao, Xu

    2012-12-01

    Ammonia-oxidizing bacteria (AOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) are autotrophic microorganisms. Inorganic carbon (IC) is their main carbon source. The effects of IC limitation on AOB and AnAOB in the completely autotrophic nitrogen removal over nitrite (CANON) process in a sequencing batch biofilm reactor (SBBR) were examined. The optimal IC concentration in the influent was investigated. The start-up time of the CANON process from the activated sludge in the SBBR was 80 d under controlled free ammonia (FA) conditions and sufficient IC source. The AOB and AnAOB activities were limited by an IC concentration of 50 mg-C-L(-1) in the influent, whilst the nitrogen loading rate (NLR) was 200 mg-N x L(-1) x d(-1). The experiment on recovering the influent IC showed that AOB and AnAOB activities were affected by the IC limitation, and not by the pH or FA, at 200mg-N x L(-1) x d(-1) NLR and 50mg-C x L(-1) IC in the CANON process. The activities were recovered by increasing the IC concentration in the influent. From an economic point of view, the optimal IC concentration in the influent was 250mg-C x L(-1) at 200mg-N x L(-1) x d(-1) NLR in this CANON system. PMID:23437661

  18. Population dynamics in controlled unsteady-state systems: An application to the degradation of glyphosate in a sequencing batch reactor

    SciTech Connect

    Devarakonda, M.S.

    1988-01-01

    Control over population dynamics and organism selection in a biological waste treatment system provides an effective means of engineering process efficiency. Examples of applications of organism selection include control of filamentous organisms, biological nutrient removal, industrial waste treatment requiring the removal of specific substrates, and hazardous waste treatment. Inherently, full scale biological waste treatment systems are unsteady state systems due to the variations in the waste streams and mass flow rates of the substrates. Some systems, however, have the capacity to impose controlled selective pressures on the biological population by means of their operation. An example of such a system is the Sequencing Batch Reactor (SBR) which was the experimental system utilized in this research work. The concepts of organism selection were studied in detail for the biodegradation of a herbicide waste stream, with glyphosate as the target compound. The SBR provided a reactor configuration capable of exerting the necessary selective pressures to select and enrich for a glyphosate degrading population. Based on results for bench scale SBRs, a hypothesis was developed to explain population dynamics in glyphosate degrading systems.

  19. Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms.

    PubMed

    Pendashteh, A R; Fakhru'l-Razi, A; Chuah, T G; Radiah, A B Dayang; Madaeni, S S; Zurina, Z A

    2010-10-01

    Produced water or oilfield wastewater is the largest volume ofa waste stream associated with oil and gas production. The aim of this study was to investigate the biological pretreatment of synthetic and real produced water in a sequencing batch reactor (SBR) to remove hydrocarbon compounds. The SBR was inoculated with isolated tropical halophilic microorganisms capable of degrading crude oil. A total sequence of 24 h (60 min filling phase; 21 h aeration; 60 min settling and 60 min decant phase) was employed and studied. Synthetic produced water was treated with various organic loading rates (OLR) (0.9 kg COD m(-3) d(-1), 1.8 kg COD m(-3) d(-1) and 3.6 kg COD m(-3) d(-1)) and different total dissolved solids (TDS) concentration (35,000 mg L(-1), 100,000 mg L(-1), 150,000 mg L(-1), 200,000 mg L(-1) and 250,000 mg L(-1)). It was found that with an OLR of 0.9 kg COD m(-3) d(-1) and 1.8 kg COD m(-3) d(-1), average oil and grease (O&G) concentrations in the effluent were 7 mg L(-1) and 12 mg L(-1), respectively. At TDS concentration of 35,000 mg L(-1) and at an OLR of 1.8 kg COD m(-3)d(-1), COD and O&G removal efficiencies were more than 90%. However, with increase in salt content to 250,000 mg L(-1), COD and O&G removal efficiencies decreased to 74% and 63%, respectively. The results of biological treatment of real produced water showed that the removal rates of the main pollutants of wastewater, such as COD, TOC and O&G, were above 81%, 83%, and 85%, respectively. PMID:21046953

  20. [Stability of Short-cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor].

    PubMed

    Song, Xiao-yan; Liu, Rui; Shui, Yong; Kawagishi, Tomoki; Zhan, Xin-min; Chen, Lu-jun

    2016-05-15

    Stability of short-cut nitrification nitrogen removal performance was studied in a step-feeding, intermittently aerated sequencing batch reactor (IASBR) at 30°C to treat digested piggery wastewater. Results showed that the nitrogen removal was greatly influenced by the ratio of chemical oxygen demand (COD) to total nitrogen (TN) in the influent. Nitrite nitrogen kept accumulating up to 800 mg · L⁻1 when the influent COD/TN ratio was 0.8 ± 0.2, and the removal rates of TN, ammonium nitrogen and total organic carbon (TOC) were only 18.3% ± 12.2%, 84.2% ± 10.3% and 60.7% ± 10.7%, respectively. By contrast, as the influent COD/ TN ratio was increased to 2.4 ± 0.5, the accumulated concentration of nitrite nitrogen sharply decreased from 800 mg · L⁻¹ to below 10 mg-L⁻¹, and the removal rates of TN, ammonium nitrogen and TOC were increased to over 90%, 95% and 85%, respectively. Gradually shortened hydraulic retention time ( HRT) reveales that the ammonia load is a restricting factor for nitrogen removal. The ammonia load should be controlled at no more than 0.30 kg · (m³ · d) ⁻¹, or else, the removal rates of TN, ammonium and TOC would be greatly decreased. The nitrite accumulation rate over the whole run was 74.6%-97.8% and the TN removal rate in the stable phase was over 90%. With efficient and stable short-cut nitrification-denitrification in a low COD/TN, moreover, and unnecessary for addition of alkaline, IASBR shows great advantage for treating wastewater with high concentration of ammonia while low COD/TN ratio. PMID:27506043

  1. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively. PMID:25773978

  2. Dynamics of a microbial community exposed to several concentrations of 2-chlorophenol in an anaerobic sequencing batch reactor.

    PubMed

    Beristain-Montiel, Lizeth; Martínez-Hernández, Sergio; de María Cuervo-López, Flor; Ramírez-Vives, Florina

    2015-01-01

    The aim of this study was to contribute to the knowledge on the dynamic of the microbial community involved in anaerobic degradation of different concentrations of 2-chlorophenol (2CP, from 28 to 196 mg 2CP-C/L) and a mixture of 2CP and phenol (from 28 to 196 mg phenol-C/L) and its relationship with the respiratory process in two anaerobic sequencing batch reactors (ASBR). The dynamic of the microbial community was evaluated by denaturant gradient gel electrophoresis (DGGE) and ecological indices (S and J indices). The respiratory process was evaluated by means of substrate consumption efficiency, biogas yield, and specific consumption rates as response variables. The high consumption efficiency (90%) and the constant biogas yields obtained at concentrations up to 140 mg C/L may be related with the evenness of microbial populations (J index=0.97±0.2) present in both reactors. Pseudomonas genus was present in all concentrations tested, suggesting a possible relationship with the dehalogenation observed in both reactors. The decrease in specific consumption rate and biogas yield as well as the accumulation of phenol and volatile fatty acids observed in both reactors at 196 mg 2CP-C/L might be associated with the disappearance of the bands related to Caulobacter and Bacillus. At these conditions, the disappearance of fermentative or acetogenic bacteria resulted in reduction of substrates required to carry out methanogenesis, which eventually might cause the declination in methanogenic populations present in the reactors. PMID:25666400

  3. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system.

    PubMed

    Kim, Hyun-Woo; Nam, Joo-Youn; Shin, Hang-Sik

    2011-08-01

    Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH(4)) production rate, CH(4) yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2m(3)CH(4)/m(3)(system)/d (0.2m(3)CH(4)/kgVS(added)) at organic loading rate of 6.1gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization. PMID:21600764

  4. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  5. Batch- and Continuous-Flow Aerobic Oxidation of 14-Hydroxy Opioids to 1,3-Oxazolidines-A Concise Synthesis of Noroxymorphone.

    PubMed

    Gutmann, Bernhard; Weigl, Ulrich; Cox, D Phillip; Kappe, C Oliver

    2016-07-18

    14-Hydroxymorphinone is converted to noroxymorphone, the immediate precursor of important opioid antagonists, such as naltrexone and naloxone, in a three-step reaction sequence. The initial oxidation of the N-methyl group in 14-hydroxymorphinone with in situ generated colloidal palladium(0) as the catalyst and molecular oxygen as the terminal oxidant constitutes the key transformation in this new route. This oxidation results in the formation of an unexpected oxazolidine ring structure. Subsequent hydrolysis of the oxazolidine under reduced pressure followed by hydrogenation in a packed-bed flow reactor using palladium(0) as the catalyst provides noroxymorphone in high purity and good overall yield. To overcome challenges associated with gas-liquid reactions with molecular oxygen, the key oxidation reaction was translated to a continuous-flow process. PMID:27172347

  6. On-line monitoring for control of a pilot-scale sequencing batch reactor using a submersible UV/VIS spectrometer.

    PubMed

    Langergraber, G; Gupta, J K; Pressl, A; Hofstaedter, F; Lettl, W; Weingartner, A; Fleischmann, N

    2004-01-01

    A submersible UV/VIS spectrometer was used to monitor a pilot-scale sequencing batch reactor (SBR). The instrument utilises the whole UV/VIS range between 200 and 750 nm. With just one single instrument nitrate, organic matter and suspended solids can be measured simultaneously. The spectrometer is installed directly in the reactor, measures in real-time, and is equipped with an auto-cleaning system using pressured air. The paper shows the calibration results for measurements in the SBR tank, time series for typical SBR cycles, and proposes possible ways for optimisation of the operation by using these measurements. PMID:15656298

  7. Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1T) from a deep-sea hydrothermal vent chimney

    SciTech Connect

    Copeland, A; Gu, Wei; Yasawong, Montri; Lapidus, Alla L.; Lucas, Susan; Deshpande, Shweta; Pagani, Ioanna; Tapia, Roxanne; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Tindall, Brian; Sikorski, Johannes; Goker, Markus; Detter, J. Chris; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2012-01-01

    Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1 T was the first isolate within the phylum ThermusDeinococcus to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1 T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Genome sequence of the free-living aerobic spirochete Turneriella parva type strain (HT), and emendation of the species Turneriella parva

    SciTech Connect

    Stackebrandt, Erko; Chertkov, Olga; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Pan, Chongle; Rohde, Manfred; Gronow, Sabine; Goker, Markus; Detter, J. Chris; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Woyke, Tanja; Kyrpides, Nikos C; Klenk, Hans-Peter

    2013-01-01

    Turneriella parva Levett et al. 2005 is the only species of the genus Turneriella which was es- tablished as a result of the reclassification of Leptospira parva Hovind-Hougen et al. 1982. Together with Leptonema and Leptospira, Turneriella constitutes the family Leptospiraceae, within the order Spirochaetales. Here we describe the features of this free-living aerobic spi- rochete together with the complete genome sequence and annotation. This is the first com- plete genome sequence of a member of the genus Turneriella and the 13th member of the family Leptospiraceae for which a complete or draft genome sequence is now available. The 4,409,302 bp long genome with its 4,169 protein-coding and 45 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Membrane biofouling mechanism in an aerobic granular reactor degrading 4-chlorophenol.

    PubMed

    Buitrón, Germán; Moreno-Andrade, Iván; Arellano-Badillo, Víctor M; Ramírez-Amaya, Víctor

    2014-01-01

    The membrane fouling of an aerobic granular reactor coupled with a submerged membrane in a sequencing batch reactor (SBR) was evaluated. The fouling analysis was performed by applying microscopy techniques to determine the morphology and structure of the fouling layer on a polyvinylidene fluoride membrane. It was found that the main cause of fouling was the polysaccharide adsorption on the membrane surface, followed by the growth of microorganisms to form a biofilm. PMID:24759539

  10. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    PubMed

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds. PMID:25480510

  11. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    PubMed Central

    Lin, Chiu-Yue

    2014-01-01

    We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L∗d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L∗d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR. PMID:24672398

  12. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal.

    PubMed

    Lemaire, Romain; Meyer, Rikke; Taske, Annelies; Crocetti, Gregory R; Keller, Jürg; Yuan, Zhiguo

    2006-03-01

    The recently described process of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) has a great potential to save capital and operating costs for wastewater treatment plants. However, the presence of glycogen-accumulating organisms (GAOs) and the accumulation of nitrous oxide (N(2)O) can severely compromise the advantages of this process. In this study, these two issues were investigated using a lab-scale sequencing batch reactor performing SNDPR over a 5-month period. The reactor was highly enriched in polyphosphate-accumulating organisms (PAOs) and GAOs representing around 70% of the total microbial community. PAOs were the dominant population at all times and their abundance increased, while GAOs population decreased over the study period. Anoxic batch tests demonstrated that GAOs rather than denitrifying PAOs were responsible for denitrification. N(2)O accumulated from denitrification and more than half of the nitrogen supplied in a reactor cycle was released into the atmosphere as N(2)O. After mixing SNDPR sludge with other denitrifying sludge, N(2)O present in the bulk liquid was reduced immediately if external carbon was added. We therefore suggest that the N(2)O accumulation observed in the SNDPR reactor is an artefact of the low microbial diversity facilitated by the use of synthetic wastewater with only a single carbon source. PMID:16198439

  13. Biogenic hydrogen conversion of de-oiled jatropha waste via anaerobic sequencing batch reactor operation: process performance, microbial insights, and CO2 reduction efficiency.

    PubMed

    Kumar, Gopalakrishnan; Lin, Chiu-Yue

    2014-01-01

    We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L ∗ d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55 °C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L ∗ d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30 °C, and pH 7.0. PCR-DGGE analysis revealed that combination of cellulolytic and fermentative bacteria were present in the hydrogen producing ASBR. PMID:24672398

  14. Influence of an aniline supplement on the stability of aerobic granular sludge.

    PubMed

    Dai, Yajie; Jiang, Yixin; Su, Haijia

    2015-10-01

    In order to evaluate the stability of aerobic granules in a toxic environment, this study discussed the influence of an aniline supplement on the properties and microbial community of aerobic granules. In the early stages of sequencing batch reactor (SBR) operation, an aniline supplement slightly affected the properties of the aerobic granules (strength, growth rate, SVI and so on). This effect was thereafter removed because of a change in the microbial community and the structure of aerobic granules: with the present of aniline, microbes with biodegradation ability appeared and gathered in the aerobic granules and the aerobic granules densified and settled faster as their SVI decreased to 35 mL/g and settling velocity increased to 41.56 m/h. When a synthetic waste water containing acetate as carbon source was used as influent, aniline (10-500 mg/L) could be degraded in 6 h, at a rate as high as 37.5 mg aniline/(L·h), with a removal rate in excess of 90%, while the effluent COD fell below 100 mg/L from the initial about 2000 mg/L. The aerobic granules cultured by acetate were compact, stable and resistant to aniline. PMID:26233584

  15. Tracing isolates from domestic human Campylobacter jejuni infections to chicken slaughter batches and swimming water using whole-genome multilocus sequence typing.

    PubMed

    Kovanen, Sara; Kivistö, Rauni; Llarena, Ann-Katrin; Zhang, Ji; Kärkkäinen, Ulla-Maija; Tuuminen, Tamara; Uksila, Jaakko; Hakkinen, Marjaana; Rossi, Mirko; Hänninen, Marja-Liisa

    2016-06-01

    Campylobacter jejuni is the leading cause of bacterial gastroenteritis and chicken is considered a major reservoir and source of human campylobacteriosis. In this study, we investigated temporally related Finnish human (n=95), chicken (n=83) and swimming water (n=20) C. jejuni isolates collected during the seasonal peak in 2012 using multilocus sequence typing (MLST) and whole-genome MLST (wgMLST). Our objective was to trace domestic human C. jejuni infections to C. jejuni isolates from chicken slaughter batches and swimming water. At MLST level, 79% of the sequence types (STs) of the human isolates overlapped with chicken STs suggesting chicken as an important reservoir. Four STs, the ST-45, ST-230, ST-267 and ST-677, covered 75% of the human and 64% of the chicken isolates. In addition, 50% of the swimming water isolates comprised ST-45, ST-230 and ST-677. Further wgMLST analysis of the isolates within STs, accounting their temporal relationship, revealed that 22 of the human isolates (24%) were traceable back to C. jejuni positive chicken slaughter batches. None of the human isolates were traced back to swimming water, which was rather sporadically sampled. The highly discriminatory wgMLST, together with the patient background information and temporal relationship data with possible sources, offers a new, accurate approach to trace back the origin of domestic campylobacteriosis. Our results suggest that potentially a substantial proportion of campylobacteriosis cases during the seasonal peak most probably are due to other sources than chicken meat consumption. These findings warrant further wgMLST-based studies to reassess the role of other reservoirs in the Campylobacter epidemiology both in Finland and elsewhere. PMID:27041390

  16. Understanding of aerobic granulation enhanced by starvation in the perspective of quorum sensing.

    PubMed

    Liu, Xiang; Sun, Supu; Ma, Buyun; Zhang, Chen; Wan, Chunli; Lee, Duu-Jong

    2016-04-01

    Three sequencing batch reactors (M1, M2, and M3) were set up to investigate the influence of different lengths of starvation time (3, 5, and 7 h) on aerobic granulation in the perspective of quorum sensing (QS). Autoinducer-2 (AI-2) level was quantified to evaluate the QS ability of aerobic granules. The results indicated that AI-2 level increased steadily during a cycle of sequencing batch reactors, suggesting that starvation was closely related to AI-2 secretion. In the long-term operation, aerobic granules cultivated using a prolonged starvation period had a better integrity and a higher level of cell adhesiveness despite a slower formation speed. With the extension of the starvation period, the total amount of extracellular polymeric substances (EPS) displayed an increasing tendency. EPS with large molecular weight (MW) also reached a higher level using a prolonged starvation period. However, a higher level of AI-2 and cell adhesiveness was observed in M2, which might be related to more stable granules. The results implied that the starvation period could trigger AI-2 secretion and promoted the production of large MW EPS, leading to cell adhesiveness enhancement and granule formation. Therefore, a combination of different starvation periods was proposed in this study in order to improve aerobic granulation. PMID:26695156

  17. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP.

    PubMed

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-06-01

    This paper investigated the biodegradation kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) separately in batch reactors and mixed in sequencing batch reactors (SBRs). Batch reactor experiments showed that both 4-CP and 2,4-DCP began to inhibit their own degradation at 53 and 25 mg l(-1), respectively, and that the Haldane equation gave a good fit to the experimental data because r(2) values were higher than 0.98. The maximum specific degradation rates (q(m)) were 130.3 and 112.4 mg g(-1) h for 4-CP and 2,4-DCP, respectively. The values of the half saturation (K(s)) and self-inhibition constants (K(i)) were 34.98 and 79.74 mg l(-1) for 4-CP, and 13.77 and 44.46 mg l(-1) for 2,4-DCP, respectively. The SBR was fed with a mixture of 220 mg l(-1) of 4-CP, 110 mg l(-1) of 2,4-DCP, and 300 mg l(-1) of peptone as biogenic substrate at varying feeding periods (0-8h) to evaluate the effect of feeding time on the performance of the SBR. During SBR operation, in addition to self-inhibition, 4-CP degradation was strongly and competitively inhibited by 2,4-DCP. The inhibitory effects were particularly pronounced during short feeding periods because of higher chlorophenol peak concentrations in the reactor. The competitive inhibition constant (K(ii)) of 2,4-DCP on 4-CP degradation was 0.17 mg l(-1) when the reactor was fed instantaneously (0 h feeding). During longer feedings, increased removal/loading rates led to lower chlorophenol peak concentrations at the end of feeding. Therefore, in multi-substrate systems feeding time plus reaction time should be determined based on both degradation kinetics and substrate interaction. During degradation, the meta cleavage of 4-chlorocatechol resulted in accumulation of a yellowish color because of the formation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which was further metabolized. Isolation and enrichment of the chlorophenols-degrading culture suggested Pseudomonas sp. and Pseudomonas stutzeri to be the

  18. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage.

    PubMed

    Ghasimi, Dara S M; Tao, Yu; de Kreuk, Merle; Abbas, Ben; Zandvoort, Marcel H; van Lier, Jules B

    2015-12-15

    This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature. PMID:25976021

  19. Formation of filamentous aerobic granules: role of pH and mechanism.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Zhang, Qinlan; Li, Jieni; Liu, Xiang

    2014-10-01

    Filamentous overgrowth in aerobic granular sludge processes can cause reactor failure. In this work, aerobic granules were cultivated in five identical sequencing batch reactors with acetate or glucose as the carbon source with various values of influent pH (4.5-8). Microscopic observations revealed that acidic pH, rather than the species of carbon source, epistatically controls the aerobic granules with filamentous structure. An acidic pH shifted the structure of the microbial community in the granules, such that the fungus Geotrichum fragrans was the predominant filamentous microorganism therein. The acidic pH reduced the intracellular cyclic diguanylate (c-di-GMP) content for increasing the motility of the bacteria to washout and increase the growth rate of G. fragrans on glucose or acetate, together causing overgrowth of the fungus. Maintaining the suspension under alkaline condition is proposed as an effective way to suppress filamentous overgrowth and maintain granule stability. PMID:24928656

  20. Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge.

    PubMed

    Mihciokur, Hamdi; Oguz, Merve

    2016-09-01

    This study investigates biosorption of Oxytetracycline, a broad-spectrum antibiotic, using aerobic granular sludge as an adsorbent in aqueous solutions. A sequencing batch reactor fed by a synthetic wastewater was operated to create aerobic granular sludge. Primarily, the pore structure and surface area of granular sludge, the chemical structure and the molecular sizes of the pharmaceutical, operating conditions, such as pH, stirring rate, initial concentration of Oxytetracycline, during adsorption process was verified. Subsequently, thermodynamic and kinetic aspects of the adsorption were examined and adsorption isotherm studies were carried out. It was shown that the aerobic granular sludge was a good alternative for biosorption of this pharmaceutical. The pharmaceutical was adsorbed better at pH values of 6-8. The adsorption efficiency increased with rising ionic strength. Also, it was seen that the adsorption process was an exothermic process in terms of thermodynamics. The adsorption can be well explained by Langmuir isotherm model. PMID:27485178

  1. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater.

    PubMed

    Guo, Jianhua; Peng, Yongzhen; Huang, Huijun; Wang, Shuying; Ge, Shijian; Zhang, Jingrong; Wang, Zhongwei

    2010-07-15

    Partial nitrification to nitrite has been frequently obtained at high temperatures, but has proved difficult to achieve at low temperatures when treating low strength domestic wastewater. In this study, the long-term effects of temperature on partial nitrification were investigated by operating a sequencing bath reactor with the use of aeration duration control. The specific ammonia oxidation rate decreased by 1.5 times with the temperature decreasing from 25 to 15 degrees C. However, low temperature did not deteriorate the stable partial nitrification performance. Nitrite accumulation ratio was always above 90%, even slightly higher (above 95%) at low temperatures. The nitrifying sludge accumulated with ammonia-oxidizing bacteria (AOB), but washout of nitrite-oxidizing bacteria (NOB) was used to determine the short-term effects of temperature on ammonia oxidation process. The ammonia oxidation rate depended more sensitively on lower temperatures; correspondingly the temperature coefficient theta was 1.172 from 5 to 20 degrees C, while theta was 1.062 from 20 to 35 degrees C. Moreover, the larger activation energy (111.5 kJ mol(-1)) was found at lower temperatures of 5-20 degrees C, whereas the smaller value (42.0 kJ mol(-1)) was observed at higher temperatures of 20-35 degrees C. These findings might be contributed to extend the applicability of the partial nitrification process in wastewater treatment plants operated under cold weather conditions. It is suggested that the selective enrichment of AOB as well as the washout of NOB be obtained by process control before making the biomass slowly adapt to low temperatures for achieving partial nitrification to nitrite at low temperatures. PMID:20381239

  2. High-throughput RNA sequencing profiles and transcriptional evidence of aerobic respiratory enzymes in sporulating oocysts and sporozoites of Eimeria tenella.

    PubMed

    Matsubayashi, Makoto; Hatta, Takeshi; Miyoshi, Takeharu; Anisuzzaman; Sasai, Kazumi; Shimura, Kameo; Isobe, Takashi; Kita, Kiyoshi; Tsuji, Naotoshi

    2013-08-01

    Seven species of Eimeria are responsible for coccidiosis in chickens. Eimeria tenella is one of the most pathogenic parasites since it is associated with high mortality and great economic impact. The life cycle of the parasite includes development in the environment and in the intestinal tract. We conducted RNA sequencing using a next generation sequencer to obtain transcriptome information from the sporulating oocysts, and sporozoites. We collected 2.8 million 75 bp reads of a short-tag sequence, and 25,880 contigs were generated by the Oases assembler. A Blastx search of GenBank databases revealed that 7780 contigs (30.1%) had significant homology with deposited sequence data (E-value <1e-6); among these contigs, 6051 contigs were similar to those of Toxoplasma gondii while only 513 contigs (6.6%) were similar to those of E. tenella. After an orthological analysis conducted with the UniProt database of T. gondii, 6661 contigs were distributed within the categories of cellular components (1528 gene categories), biological processes (861 gene categories), and molecular functions (241 gene categories). The significantly matched contigs contained high numbers of enzymes associated with glycolysis, TCA, and the pentose-phosphate pathway. Most of the enzymes, measured by quantitative reverse transcription-PCR, were up-regulated in sporulating stage. These results suggest that the intracellular carbohydrate amylopectin could be used as an energy source for ATP production including glycolysis and the pentose-phosphate pathway, which generates NADPH and pentoses. Our data also suggest that Eimeria might possess a partial or similar pathway to the TCA cycle essential for aerobic respiration. Furthermore, the newly annotated and non-annotated contigs might contain E. tenella-specific or novel sequences. PMID:23770269

  3. A start-up of psychrophilic anaerobic sequence batch reactor digesting a 35 % total solids feed of dairy manure and wheat straw.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-12-01

    Zero liquid discharge is currently an objective in livestock manure management to minimize water pollution. This paper reports the start-up phase of a novel psychrophilic (20 °C) dry anaerobic digestion of dairy manure with bedding fed at 35 % total solids and an organic loading rate of 3.0 g total chemical oxygen demand kg(-1) inoculum day(-1) in anaerobic sequence batch reactors. The specific methane (CH4) yield ranged from 165.4 ± 9.8 to 213.9 ± 13.6 NL CH4 kg(-1) volatile solids (VS) with an overall average of 188 ± 17 NL CH4 kg(-1) VS during 11 successive start-up cycles (231 days) and a maximum CH4 production rate of 10.2 ± 0.6 NL CH4 kg(-1) VS day(-1). The inoculum-to-substrate (VS-based) ratio ranged from 4.06 to 4.47. Although methanogenesis proceeded fairly well the hydrolysis seemed to be the rate limiting step. It is possible start up psychrophilic dry anaerobic digestion of cow feces and wheat straw at feed TS of 35 % within 7-10 successive cycles (147-210 days). PMID:26289773

  4. Sludge reduction by direct addition of chlorine dioxide into a sequencing batch reactor under operational mode of repeatedly alternating aeration/non-aeration.

    PubMed

    Peng, Hong; Liu, Weiyi; Li, Yuanmei; Xiao, Hong

    2015-01-01

    The effect of direct addition of chlorine dioxide (ClO2) into a repeatedly alternating aeration/non-aeration sequencing batch reactor (SBR) on its sludge reduction and process performance was investigated. The experimental results showed that the sludge reduction efficiency was 32.9% and the observed growth yield (Yobs) of SBR was 0.11 kg VSS (volatile suspended solids) /kg COD (chemical oxygen demand) for 80 days' operation at the optimum ClO2 dosage of 2.0 mg/g TSS (total suspended solids). It was speculated that cell lysis and cryptic growth, uncoupled metabolism and endogenous metabolism were jointly responsible for the sludge reduction in this study. COD, NH3-N, total nitrogen (TN) and total phosphorus (TP) in the effluent increased on average 29.47, 4.44, 1.97 and 0.05 mg/L, respectively. However, the effluent quality still satisfied the first-class B discharge standards for municipal wastewater treatment plants in China. In that case, the sludge maintained fine viability with the specific oxygen uptake rate (SOUR) being 14.47 mg O2/(g VSS·h) and demonstrated good settleability with the sludge volume index (SVI) being 116 mL/g. The extra cost of sludge reduction at the optimum ClO2 dosage was estimated to be 2.24 CNY (or 0.36 dollar)/kg dry sludge. PMID:26524444

  5. Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors.

    PubMed

    Moralejo-Gárate, Helena; Palmeiro-Sánchez, Tania; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; van Loosdrecht, Mark C M

    2013-12-01

    PHA, a naturally occurring biopolymer produced by a wide range of microorganisms, is known for its applications as bioplastic. In recent years the use of agro-industrial wastewater as substrate for PHA production by bacterial enrichments has attracted considerable research attention. Crude glycerol as generated during biodiesel production is a waste stream that due to its high organic matter content and low price could be an interesting substrate for PHA production. Previously we have demonstrated that when glycerol is used as substrate in a feast-famine regime, PHA and polyglucose are simultaneously produced as storage polymers. The work described in this paper aimed at understanding the effect of the cycle length on the bacterial enrichment process with emphasis on the distribution of glycerol towards PHA and polyglucose. Two sequencing batch reactors where operated with the same hydraulic and biomass retention time. A short cycle length (6 h) favored polyglucose production over PHA, whereas at long cycle length (24 h) PHA was more favored. In both communities the same microorganism appeared dominating, suggesting a metabolic rather than a microbial competition response. Moreover, the presence of ammonium during polymer accumulation did not influence the maximum amount of PHA that was attained. PMID:23835920

  6. Effects of CeO2 nanoparticles on biological nitrogen removal in a sequencing batch biofilm reactor and mechanism of toxicity.

    PubMed

    Hou, Jun; You, Guoxiang; Xu, Yi; Wang, Chao; Wang, Peifang; Miao, Lingzhan; Ao, Yanhui; Li, Yi; Lv, Bowen

    2015-09-01

    The effects of CeO2 nanoparticles (CeO2 NPs) exposure on biological nitrogen removal in a sequencing batch biofilm reactor (SBBR) were investigated. At low concentration (1 mg/L), no significant effect was observed on total nitrogen (TN) removal. However, at high concentrations (10 and 50 mg/L), the TN removal efficiency reduced from 74.09% to 64.26% and 55.17%, respectively. Scanning electron microscope imaging showed large amounts of CeO2 NPs adsorbed on the biofilm, which increased the production of reactive oxygen species. The exposure at only 50 mg/L CeO2 NPs measurably affected the lactate dehydrogenase release. Confocal laser scanning microscopy showed that high concentrations of CeO2 NPs reduced bacterial viability. Moreover, after a short-term exposure, extracellular polymeric substances (EPS) were observed to increase, forming a compact matrix to protect the bacteria. The activities of nitrate reductase and ammonia monooxygenase were inhibited, but there was no significant impact on the activity of nitrite oxidoreductase. PMID:25983225

  7. Start-up of simultaneous partial nitrification, anammox and denitrification (SNAD) process in sequencing batch biofilm reactor using novel biomass carriers.

    PubMed

    Daverey, Achlesh; Chen, Yi-Chian; Dutta, Kasturi; Huang, Yu-Tzu; Lin, Jih-Gaw

    2015-08-01

    Simultaneous partial nitrification, anammox and denitrification (SNAD) process was started-up in a 2.5L sequencing batch biofilm reactor (SBBR) using novel biomass carriers. The SNAD process took only 51d for start-up at nitrogen loading rate (NLR) and organic loading rate (OLR) of 120 and 60g/m(3)-d, respectively. Long-term stable operation of SNAD process was observed at NLR and OLR of 360 and 180g/m(3)-d with average total nitrogen and COD removal efficiencies of >88% and >90%, respectively. The values of conversion ratio [Formula: see text] remained below 0.11 after the start-up period, which further confirmed the long-term stability of SNAD process. Results of polymerase chain reaction (PCR), qualitative PCR, and scanning electron microscopic (SEM) analysis of sludge samples confirmed the co-existence and enrichment of AOB, anammox bacteria and denitrifying bacteria in the reactor and biofilm formation on to the carriers. PMID:25794809

  8. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics.

    PubMed

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-08-01

    Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader's fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds. PMID:17091347

  9. Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor

    SciTech Connect

    Selvaratnam, S.; Schoedel, B.A.; Kulpa, C.F.

    1995-11-01

    A modified freeze-thaw method in combination with reverse transcriptase PCR was developed for monitoring gene expression in activated sludge. The sensitivity of the methodology was determined by inoculating non-sterile activated sludge samples with 3-chlorobenzoate-degrading Pseudomonas putida PPO301 (pRO103), which contains the catabolic tfdB gene. tfdB mRNA was detected in 10 mg of activated sludge inoculated with 10{sup 4} CFU of the target organism. This techniques was subsequently utilized to analyze the in situ expression of the catabolic dmpN gene in a sequencing batch reactor (SBR) bioaugmented with phenol-degrading P. putida ATCC 11172. Greatest dmpN expression was observed 15 min after maximum phenol concentration was reached in the reactor and 15 min after the start of aeration. Decreased phenol concentrations in the reactor corresponded to reduced levels of dmpN expression, although low levels of dmpN mRNA were observed throughout the SBR cycle. These results indicate that concentration of phenol in the reactor and the onset of aeration stimulated transcriptional activity of the dmpN gene. The information obtained from this study can be used to alter SBR operational strategies so as to lead to more effective bioaugmentation practices. 20 refs., 6 figs.

  10. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment.

    PubMed

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan

    2016-05-01

    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5h for effluent standardization of 500, 1000, 1500 and 2500mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings. PMID:26943932

  11. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron.

    PubMed

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-08-30

    A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p<0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H(2)O(2), were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate. PMID:22771343

  12. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor.

    PubMed

    Wang, Sen; Gao, Mengchun; She, Zonglian; Zheng, Dong; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Li, Zhiwei; Wang, Xuejiao

    2016-09-01

    The performance, microbial activity, and microbial community of a sequencing batch reactor (SBR) were investigated under the long-term exposure of ZnO nanoparticles (ZnO NPs). Low ZnO NPs concentration (less than 5mg/L) had no obvious effect on the SBR performance, whereas the removals of COD, NH4(+)-N, and phosphorus were affected at 10-60mg/L ZnO NPs. The variation trend of nitrogen and phosphorus removal rate was similar to that of microbial enzymatic activity with the increase of ZnO NPs concentrations. The richness and diversity of microbial community showed obvious variations at different ZnO NPs concentrations. ZnO NPs appeared on the surface and cell interior of activated sludge, and the Zn contents in the effluent and activated sludge increased with the increase of ZnO NPS concentration. The present results provide use information to understand the effect of ZnO NPS on the performance of wastewater biological treatment systems. PMID:27262098

  13. Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment.

    PubMed

    Ivanov, Volodymyr; Wang, Xiao-Hui; Tay, Stephen Tiong-Lee; Tay, Joo-Hwa

    2006-04-01

    Microbial aggregates of an aerobic granular sludge can be used for the treatment of industrial or municipal wastewater, but their formation from a microbial activated sludge requires several weeks. Therefore, the aim of this research was the selection of microbial cultures to shorten the granule-forming period from several weeks to a few days. An enrichment culture with the ability to accelerate granulation was obtained by repeating the selection and batch cultivation of fast-settling microbial aggregates isolated from the aerobic granular sludge. Bacterial cultures of Klebsiella pneumoniae strain B and Pseudomonas veronii strain F, with self-aggregation indexes of 65 and 51%, respectively, and a coaggregation index of 58%, were isolated from the enrichment culture. A mixture of these strains with the activated sludge was used as an inoculum in an experimental sequencing batch reactor to start up an aerobic granulation process. Aerobic granules with a mean diameter of 446+/-76 microm were formed in an experiment after 8 days of cultivation, but microbial granules were absent in controls. Considering biosafety issues, K. pneumoniae strain B was excluded from further studies, but P. veronii strain F was selected for larger-scale testing. PMID:16091930

  14. Effect of biogenic substrate concentration on the performance of sequencing batch reactor treating 4-CP and 2,4-DCP mixtures.

    PubMed

    Sahinkaya, Erkan; Dilek, Filiz B

    2006-02-01

    Effect of a biogenic substrate (peptone) concentration on the performance of sequencing batch reactor (SBR) treating 220 mg/l 4-chlorophenol (4-CP) and 110 mg/l 2,4-dichlorophenol (2,4-DCP) mixtures was investigated. In this context, peptone concentration was gradually decreased from 300 mg/l to null in which chlorophenols were fed to the reactor as sole carbon and energy sources. By this way, the effect of peptone concentration on observed yield coefficient (Y), biomass concentration, chlorophenols and COD removal performances were investigated. Decreasing peptone concentration accompanied with lower biomass concentration led to increase in peak chlorophenol and COD concentrations within the reactor during each SBR cycle. This, in turn, caused noteworthy declines in the removal rates as chlorophenol degradations followed Haldane substrate inhibition model. Also, increased peak chlorophenol concentrations led to the accumulation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which is -meta cleavage product of 4-CP. Despite the decreased removal rates, complete chlorophenols and CHMS degradation, in addition to high COD removal efficiencies (>90%), were observed for all studied conditions, even chlorophenols were added as sole carbon and energy sources. Another significant point is that 2,4-DCP at slightly elevated concentrations (>20 mg/l) within the reactor caused a strong competitive inhibition on 4-CP degradation. In SBR, feeding the influent to the reactor within a certain period (i.e. filling period) provided dilution of coming wastewater, which decreased the chlorophenols concentrations to which microorganisms were exposed. Therefore, use of SBR may help to avoid both self and competitive inhibitions in the treatment of 4-CP and 2,4-DCP mixture especially in the presence high biogenic substrate concentrations. In addition, isolation and identification studies have indicated that Pseudomonas sp. and Pseudomonas stutzeri were dominant species in the

  15. Effect of high levels of the rotifer Lecane inermis on the ciliate community in laboratory-scale sequencing batch bioreactors (SBRs).

    PubMed

    Fyda, Janusz; Babko, Roman; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kocerba-Soroka, Wioleta; Sobczyk, Mateusz; Sobczyk, Łukasz

    2015-10-01

    Due to its ability to feed on filamentous bacteria, the rotifer Lecane inermis has already been recognized as a potential control agent of activated sludge bulking, which is usually caused by the excessive growth of filamentous microorganisms. However, their effectiveness depends, in part, on their abundance. We studied the influence of high densities of L. inermis on the protozoan community in activated sludge from a wastewater treatment plant (WWTP) in 4 laboratory-scale sequencing batch bioreactors (SBRs). Two treatments and two controls were subjected to nutrient removal system in process similar to that used in a WWTP. The experiment lasted 9 days and was repeated in 24-h cycles, including phases of agitation with feeding, aeration and agitation and sedimentation with decantation at the end of the cycle. In total, 32 taxa were identified, among which 25 were ciliated protozoa, 4 were amoebae, 2 were flagellates, and one was a nematode. Rotifers were then introduced to 2 bioreactors at a final concentration of 500ind.mL(-1), and the taxonomic composition and abundance of the activated sludge microfauna were assessed 2, 5 and 8 days thereafter. The mean density of ciliates on the first day of experiment was 12,610ind.mL(-1) and diminished to 4868±432ind.mL-±432ind.mL(-1) in the control and 5496±638ind.mL(-1) in the rotifer-treated group on the last day. Thus, even extremely high densities of artificially introduced rotifers did not negatively affect the protozoan community. On the contrary, the protozoan community was more diverse in the treatment group than in the control. PMID:26465372

  16. Enhancement of biohydrogen production from sweet sorghum syrup by anaerobic seed sludge in an anaerobic sequencing batch reactor by nutrient and vitamin supplementations.

    PubMed

    Saraphirom, P; Reungsang, A

    2013-01-01

    This study attempted to enhance biohydrogen production from sweet sorghum syrup by anaerobic seed sludge in a 1.3 L (1 L working volume) anaerobic sequencing batch reactor (ASBR) by supplementation with nutrients and vitamins. Four treatments, i.e. nutrient and vitamin supplementation, only nutrient supplementation, no supplements and only vitamin supplementation, were conducted using 30 g/L sweet sorghum syrup as the substrate with 1.45 g/L FeSO4 in ASBR. The ASBR was operated at 24 hour hydraulic retention time at a controlled pH of 5.0. Results indicated that nutrient and vitamin supplementations could increase hydrogen production rate (HPR; 3.2 L H2/L-d) and hydrogen yield (HY; 1.6 mol H2/mol hexose) up to 5 fold in comparison to the control (0.6 L H2/L-d and 0.34 mol H2/mol hexose, respectively). The polymerase chain reaction-denatured gradient gel electrophoresis analysis indicated that the predominant hydrogen producers were Clostridia species. The higher hydrogen production obtained from the treatments with nutrient supplementation might be due to the presence of Clostridia species together with Klebsiella sp. and Desulfovibrio sp. Lack of nutrients in treatments without the supplementation and in treatment where only vitamin solution was added could lead to the reduction of hydrogen production efficiency of Clostridia species. The presence of lactic acid bacteria, i.e. Enterococcus sp. and Lactobacillus sp., caused an adverse effect on hydrogen-producing bacteria, resulting in a low HPR and HY in these two treatments. PMID:24527611

  17. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process.

    PubMed

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue

    2016-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal. PMID:27155411

  18. [Phosphorus removal characteristics by aerobic granules in normal molasses wastewater after anaerobic treatment].

    PubMed

    Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng

    2012-04-01

    COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate. PMID:22724155

  19. Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: Batch, modeling, EPR and XAS studies

    NASA Astrophysics Data System (ADS)

    Yang, Shitong; Ren, Xuemei; Zhao, Guixia; Shi, Weiqun; Montavon, Gilles; Grambow, Bernd; Wang, Xiangke

    2015-10-01

    Heavy metal ions that leach from various industrial and agricultural processes are simultaneously present in the contaminated soil and water systems. The competitive sorption of these toxic metal ions on the natural soil components and sediments significantly influences their migration, bioavailability and ecotoxicity in the geochemical environment. In this study, the competitive sorption and selectivity order of Cu(II) and Ni(II) on montmorillonite are investigated by combining the batch experiments, X-ray diffraction (XRD), electron paramagnetic resonance (EPR), surface complexation modeling and X-ray Absorption Spectroscopy (XAS). The batch experimental data show that the coexisting Ni(II) exhibits a negligible influence on the sorption behavior of Cu(II), whereas the coexisting Cu(II) reduces the Ni(II) sorption percentage and changes the shape of the Ni(II) sorption isotherm. The sorption species of Cu(II) and Ni(II) on montmorillonite over the acidic and near-neutral pH range are well simulated by the surface complexation modeling. However, this model cannot identify the occurrence of surface nucleation and the co-precipitation processes at a highly alkaline pH. Based on the results of the EPR and XAS analyses, the microstructures of Cu(II) on montmorillonite are identified as the hydrated free Cu(II) ions at pH 5.0, inner-sphere surface complexes at pH 6.0 and the surface dimers/Cu(OH)2(s) precipitate at pH 8.0 in the single-solute and the binary-solute systems. For the Ni(II) sorption in the single-solute system, the formed microstructure varies from the hydrated free Ni(II) ions at the pH values of 5.0 and 6.0 to the inner-sphere surface complexes at pH 8.0. For the Ni(II) sorption in the binary-solute system, the coexisting Cu(II) induces the formation of the inner-sphere complexes at pH 6.0. In contrast, Ni(II) is adsorbed on montmorillonite via the formation of Ni phyllosilicate co-precipitate/α-Ni(OH)2(s) precipitate at pH 8.0. The selective sequence

  20. Performance evaluation of a granular activated carbon-sequencing batch biofilm reactor pilot plant system used in treating real wastewater from recycled paper industry.

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan

    2012-01-01

    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed. PMID:22720416

  1. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    PubMed

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. PMID:25261626

  2. Aerobic granular sludge formation for high strength agro-based wastewater treatment.

    PubMed

    Abdullah, Norhayati; Ujang, Zaini; Yahya, Adibah

    2011-06-01

    The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m(-3) d(-1). The biomass concentration was 7600 mg L(-1) while the sludge volume index (SVI) was 31.3 mL g SS(-1) indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment. PMID:21524907

  3. Aerobic sludge granulation at high temperatures for domestic wastewater treatment.

    PubMed

    Ab Halim, Mohd Hakim; Nor Anuar, Aznah; Azmi, Siti Izaidah; Jamal, Nur Syahida Abdul; Wahab, Norhaliza Abdul; Ujang, Zaini; Shraim, Amjad; Bob, Mustafa M

    2015-06-01

    With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1). The COD/N ratio of the influent wastewater was 8. The results revealed that granules developed at 50°C have the highest average diameter, (3.36mm) with 98.17%, 94.45% and 72.46% removal efficiency observed in the system for COD, ammonia and phosphate, respectively. This study also demonstrated the capabilities of AGS formation at high temperatures which is suitable to be applied for hot climate conditions. PMID:25851807

  4. Enhancing aerobic granulation for biological nutrient removal from domestic wastewater.

    PubMed

    Coma, M; Verawaty, M; Pijuan, M; Yuan, Z; Bond, P L

    2012-01-01

    This study focuses on the enhancement of aerobic granulation and biological nutrient removal maintenance treating domestic wastewater. Two sequencing batch reactors (SBRs) were inoculated with either only floccular sludge (100%-floc SBR) or supplemented with 10% crushed granules (90%-floc SBR). Granules developed in both reactors. The 100%-floc SBR achieved 75% of nitrogen and 93% of phosphorus removal at the end of the performance, but some floccular sludge remained in the system. The 90%-floc SBR became fully granulated and finished with 84% and 99% of nitrogen and phosphorus removal, respectively. Regarding biological phosphorus removal, nitrite was identified as an inhibitor of the process. Nitrite levels lower than 5 mg N-NO2-L(-1) were used for anoxic phosphate uptake while higher concentrations inhibited the process. PMID:22050837

  5. Aerobic granular sludge mediated biodegradation of an organophosphorous ester, dibutyl phosphite.

    PubMed

    Kiran Kumar Reddy, G; Nancharaiah, Yarlagadda Venkata; Venugopalan, Vayalam Purath

    2014-10-01

    Dibutyl phosphite, an organophosphorous compound, finds applications in different chemical industries and processes. Here, we report an efficient approach of biodegradation to be eventually used in bioremediation of dibutyl phosphite. Aerobic granules capable of dibutyl phosphite biodegradation were cultivated in a sequencing batch reactor (SBR). The SBR was operated with a 24-h cycle by feeding with dibutyl phosphite as a cosubstrate along with acetate. During the course of the SBR operation, aerobic granules of 0.9 ± 0.3 mm size were developed. Complete biodegradation of 1.4, 2 and 3 mM of dibutyl phosphite was achieved in 4, 5 and 8 h, respectively, accompanied by stoichiometric release of phosphite (H3 PO3). Phosphatase activity in the dibutyl phosphite-degrading granular biomass was 3- and 1.5-fold higher as compared to the activated sludge (seed biomass) and acetate-fed aerobic granules, respectively, indicating involvement in the hydrolysis of dibutyl phosphite. Microbial community analysis by t-RFLP showed the presence of 12 different bacterial types. Two bacterial strains capable of growth on dibutyl phosphite as sole carbon source were isolated and characterized as Acidovorax sp. and Sphingobium sp. The results show that aerobic microbial granules based process is suitable for the treatment of dibutyl phosphite contaminated water. PMID:25135363

  6. Biodegradation of o-nitrophenol by aerobic granules with glucose as co-substrate.

    PubMed

    Basheer, Farrukh; Isa, M H; Farooqi, I H

    2012-01-01

    Aerobic granules to treat wastewater containing o-nitrophenol were successfully developed in a sequencing batch reactor (SBR) using activated sludge as inoculum. Stable aerobic granules were obtained with a clearly defined shape and diameters ranging from 2 to 6 mm after 122 days of operation. The integrity coefficient (IC) and granules density was found to be 98% and 1,054 kg m(-3) respectively. After development of aerobic granules, o-nitrophenols were successfully degraded to an efficiency of 78% at a concentration of 70 mg L(-1). GC-MS study revealed that the biodegradation of o-nitrophenol occurred via catechol via nitrobenzene pathway. Specific o-nitrophenol biodegradation rates followed the Haldane model and the associated kinetic parameters were found as follows: V(max) = 3.96 g o-nitrophenol g(-1)VSS(-1)d(-1), K(s) = 198.12 mg L(-1), and K(i) = 31.16 mg L(-1). The aerobic granules proved to be a feasible and effective way to degrade o-nitrophenol containing wastewater. PMID:22643407

  7. Batch-to-batch reproducibility of Transferon™.

    PubMed

    Medina-Rivero, Emilio; Merchand-Reyes, Giovanna; Pavón, Lenin; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Velasco-Velázquez, Marco; Pérez-Tapia, Sonia Mayra

    2014-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that modulate immune responses in various diseases. Due their complexity, standardized methods to identify their physicochemical properties and determine that production batches are biologically active must be established. We aimed to develop and validate a size exclusion ultra performance chromatographic (SE-UPLC) method to characterize Transferon™, a DLE that is produced under good manufacturing practices (GMPs). We analyzed an internal human DLE standard and 10 representative batches of Transferon™, all of which had a chromatographic profile characterized by 8 main peaks and a molecular weight range between 17.0 and 0.2kDa. There was high homogeneity between batches with regard to retention times and area percentages, varying by less than 0.2% and 30%, respectively, and the control chart was within 3 standard deviations. To analyze the biological activity of the batches, we studied the ability of Transferon™ to stimulate IFN-γ production in vitro. Transferon™ consistently induced IFN-γ production in Jurkat cells, demonstrating that this method can be included as a quality control step in releasing Transferon™ batches. Because all analyzed batches complied with the quality attributes that were evaluated, we conclude that the DLE Transferon™ is produced with high homogeneity. PMID:24099727

  8. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems

    PubMed Central

    Ma, Qiao; Qu, Yuanyuan; Zhang, Xuwang; Liu, Ziyan; Li, Huijie; Zhang, Zhaojing; Wang, Jingwei; Shen, Wenli; Zhou, Jiti

    2015-01-01

    Indole is widely spread in various environmental matrices. Indole degradation by bacteria has been reported previously, whereas its degradation processes driven by aerobic microbial community were as-yet unexplored. Herein, eight sequencing batch bioreactors fed with municipal and coking activated sludges were constructed for aerobic treatment of indole. The whole operation processes contained three stages, i.e. stage I, glucose and indole as carbon sources; stage II, indole as carbon source; and stage III, indole as carbon and nitrogen source. Indole could be completely removed in both systems. Illumina sequencing revealed that alpha diversity was reduced after indole treatment and microbial communities were significantly distinct among the three stages. At genus level, Azorcus and Thauera were dominant species in stage I in both systems, while Alcaligenes, Comamonas and Pseudomonas were the core genera in stage II and III in municipal sludge system, Alcaligenes and Burkholderia in coking sludge system. In addition, four strains belonged to genera Comamonas, Burkholderia and Xenophilus were isolated using indole as sole carbon source. Burkholderia sp. IDO3 could remove 100 mg/L indole completely within 14 h, the highest degradation rate to date. These findings provide novel information and enrich our understanding of indole aerobic degradation processes. PMID:26657581

  9. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  10. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  11. Investigation of the use of aerobic granules for the treatment of sugar beet processing wastewater.

    PubMed

    Kocaturk, Irem; Erguder, Tuba Hande

    2015-01-01

    The treatment of sugar beet processing wastewater in aerobic granular sequencing batch reactor (SBR) was examined in terms of chemical oxygen demand (COD) and nitrogen removal efficiency. The effect of sugar beet processing wastewater of high solid content, namely 2255 ± 250 mg/L total suspended solids (TSS), on granular sludge was also investigated. Aerobic granular SBR initially operated with the effluent of anaerobic digester treating sugar beet processing wastewater (Part I) achieved average removal efficiencies of 71 ± 30% total COD (tCOD), 90 ± 3% total ammonifiable nitrogen (TAN), 76 ± 24% soluble COD (sCOD) and 29 ± 4% of TSS. SBR was further operated with sugar beet processing wastewater (Part II), where the tCOD, TAN, sCOD and TSS removal efficiencies were 65 ± 5%, 61 ± 4%, 87 ± 1% and 58 ± 10%, respectively. This study indicated the applicability of aerobic granular SBRs for the treatment of both sugar beet processing wastewater and anaerobically digested processing wastewater. For higher solids removal, further treatment such as a sedimentation tank is required following the aerobic granular systems treating solid-rich wastewaters such as sugar beet processing wastewater. It was also revealed that the application of raw sugar beet processing wastewater slightly changed the aerobic granular sludge properties such as size, structure, colour, settleability and extracellular polymeric substance content, without any drastic and negative effect on treatment performance. PMID:25851439

  12. Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms.

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-04-01

    The use of saline water in urban areas for non-potable purposes to cope with fresh water scarcity, intrusion of saline water, and disposal of industrial saline wastewater into the sewerage lead to elevated salinity levels in wastewaters. Consequently, saline wastewater is generated, which needs to be treated before its discharge into surface water bodies. The objective of this research was to study the effects of salinity on the aerobic metabolism of phosphate-accumulating organisms (PAO), which belong to the microbial populations responsible for enhanced biological phosphorus removal (EBPR) in activated sludge systems. In this study, the short-term impact (hours) of salinity (as NaCl) was assessed on the aerobic metabolism of a PAO culture, enriched in a sequencing batch reactor (SBR). All aerobic PAO metabolic processes were drastically affected by elevated salinity concentrations. The aerobic maintenance energy requirement increased, when the salinity concentration rose up to a threshold concentration of 2 % salinity (on a W/V basis as NaCl), while above this concentration, the maintenance energy requirements seemed to decrease. All initial rates were affected by salinity, with the NH4- and PO4-uptake rates being the most sensitive. A salinity increase from 0 to 0.18 % caused a 25, 46, and 63 % inhibition of the O2, PO4, and NH4-uptake rates. The stoichiometric ratios of the aerobic conversions confirmed that growth was the process with the highest inhibition, followed by poly-P and glycogen formation. The study indicates that shock loads of 0.18 % salt, which corresponds to the use or intrusion of about 5 % seawater may severely affect the EBPR process already in wastewater treatment plants not exposed regularly to high salinity concentrations. PMID:25524698

  13. 12 Batch coalescing studies

    SciTech Connect

    Kourbanis, I.; Wildman, D.; /Fermilab

    1995-01-01

    The purpose of the study was to identify and correct the problems in the 12 batch coalescing. The final goal is to be able to coalesce 12 booster batches of 11 bunches each into 12 bunches spaced at 21 buckets apart with an average intensity of 200 E9 ppb.

  14. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite. PMID:23771179

  15. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms.

    PubMed

    Nancharaiah, Y V; Kiran Kumar Reddy, G; Krishna Mohan, T V; Venugopalan, V P

    2015-01-01

    Tributyl phosphate (TBP) is commercially used in large volumes for reprocessing of spent nuclear fuel. TBP is a very stable compound and persistent in natural environments and it is not removed in conventional wastewater treatment plants. In this study, cultivation of aerobic granular biofilms in a sequencing batch reactor was investigated for efficient biodegradation of TBP. Enrichment of TBP-degrading strains resulted in efficient degradation of TBP as sole carbon or along with acetate. Complete biodegradation of 2mM of TBP was achieved within 5h with a degradation rate of 0.4 μmol mL(-1) h(-1). TBP biodegradation was accompanied by release of inorganic phosphate in stoichiometric amounts. n-Butanol, hydrolysed product of TBP was rapidly biodegraded. But, dibutyl phosphate, a putative intermediate of TBP degradation was only partially degraded pointing to an alternative degradation pathway. Phosphatase activity was 22- and 7.5-fold higher in TBP-degrading biofilms as compared to bioflocs and acetate-fed aerobic granules. Community analysis by terminal restriction length polymorphism revealed presence of 30 different bacterial strains. Seven bacterial stains, including Sphingobium sp. a known TBP degrader were isolated. The results show that aerobic granular biofilms are promising for treatment of TBP-bearing wastes or ex situ bioremediation of TBP-contaminated sites. PMID:25464313

  16. Role of ammonia-oxidizing bacteria in micropollutant removal from wastewater with aerobic granular sludge.

    PubMed

    Margot, Jonas; Lochmatter, Samuel; Barry, D A; Holliger, Christof

    2016-01-01

    Nitrifying wastewater treatment plants (WWTPs) are more efficient than non-nitrifying WWTPs to remove several micropollutants such as pharmaceuticals and pesticides. This may be related to the activity of nitrifying organisms, such as ammonia-oxidizing bacteria (AOBs), which could possibly co-metabolically oxidize micropollutants with their ammonia monooxygenase (AMO). The role of AOBs in micropollutant removal was investigated with aerobic granular sludge (AGS), a promising technology for municipal WWTPs. Two identical laboratory-scale AGS sequencing batch reactors (AGS-SBRs) were operated with or without nitrification (inhibition of AMOs) to assess their potential for micropollutant removal. Of the 36 micropollutants studied at 1 μg l(-1) in synthetic wastewater, nine were over 80% removed, but 17 were eliminated by less than 20%. Five substances (bisphenol A, naproxen, irgarol, terbutryn and iohexol) were removed better in the reactor with nitrification, probably due to co-oxidation catalysed by AMOs. However, for the removal of all other micropollutants, AOBs did not seem to play a significant role. Many compounds were better removed in aerobic condition, suggesting that aerobic heterotrophic organisms were involved in the degradation. As the AGS-SBRs did not favour the growth of such organisms, their potential for micropollutant removal appeared to be lower than that of conventional nitrifying WWTPs. PMID:26877039

  17. Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and Xanthorhodopsin.

    PubMed

    Kang, Ilnam; Oh, Hyun-Myung; Lim, Seung-Il; Ferriera, Steve; Giovannoni, Stephen J; Cho, Jang-Cheon

    2010-09-01

    Fulvimarina pelagi is a Mn(II)-oxidizing marine heterotrophic bacterium in the order Rhizobiales. Here we announce the draft genome sequence of F. pelagi HTCC2506(T), which was isolated from the Sargasso Sea by using dilution-to-extinction culturing. The genome sequence contained a xanthorhodopsin gene as well as a photosynthetic gene cluster, which suggests the coexistence of two different phototrophic mechanisms in a single microorganism. PMID:20639329

  18. Removal of chemical oxygen demand, nitrogen, and heavy metals using a sequenced anaerobic-aerobic treatment of landfill leachates at 10-30 degrees C.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu

    2003-01-01

    As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater. PMID:12794293

  19. Software for batch farms

    SciTech Connect

    Ian Bird; Bryan Hess; Andy Kowalski

    2000-02-01

    Over the past few years, LSF has become a standard for job management on batch farms. However, there are many instances where it cannot be deployed for a variety of reasons. In large farms the cost may be prohibitive for the set of features actually used; small university groups who wish to clone the farms and software of larger laboratories often have constraints which preclude the use of LSF. This paper discusses a generic interface developed at Jefferson Lab to provide a set of common services to the user, while using any one of a variety of underlying batch management software products. Initially the system provides an interface to LSF and an alternative--Portable Batch System (PBS) developed by NASA and freely available in source form. It is straightforward to extend this to other systems. Such a generic interface allows users to move from one location to another and run their jobs with no modification, and by extension provides a framework for a ''global'' batch system where jobs submitted at one site may be transparently executed at another. The interface also provides additional features not found in the underlying batch software. Being written in Java, the client can be easily installed anywhere and allows for authenticated remote job submission and manipulation, including a web interface. This paper will also discuss the problem of keeping a large batch farm occupied with work without waiting for slow tape access. The use of file caching, pre-staging of files from tape and the interconnection with the batch system will be discussed. As well as automated techniques, the provision of appropriate information to the user to allow optimization should not be overlooked.

  20. Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate.

    PubMed

    Lin, Jun; Zhang, Xingwang; Li, Zhongjian; Lei, Lecheng

    2010-01-01

    Pseudomonas sp. strain L1 capable of degrading the azo textile dye Reactive blue 13, was isolated from activated sludge in a sequencing batch reactor. A continuous two-stage anaerobic/aerobic biological fluidized bed system was used to decolorize and mineralize Reactive blue 13. The key factors affecting decolorization were investigated and the efficiency of degradation was also optimized. An overall color removal of 83.2% and COD removal of 90.7% was achieved at pH 7, a residence time of 70 h and a glucose concentration of 2 g/L, HRT=70 h and C(glucose)=2000 mg/L. Oxygen was contributing to blocking the azo bond cleavage. Consequently, decolorization occurred in the anaerobic reactor while partial mineralization was achieved in the aerobic reactor. A possible degradation pathway based on the analysis of intermediates and involving azoreduction, desulfonation, deamination and further oxidation reactions is presented. PMID:19713103

  1. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively. PMID:23542216

  2. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    PubMed

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. PMID:26773951

  3. Effects of loading rate and aeration on nitrogen removal and N2O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 °C.

    PubMed

    Pan, Min; Hu, Zhenhu; Liu, Rui; Zhan, Xinmin

    2015-04-01

    This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification-denitrification (PND), "DO elbow" point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates. PMID:25348656

  4. Strengthening aerobic granule by salt precipitation.

    PubMed

    Chen, Yu-You; Pan, Xiangliang; Li, Jun; Lee, Duu-Jong

    2016-10-01

    Structural stability of aerobic granules is generally poor during long-term operation. This study precipitated seven salts inside aerobic granules using supersaturated solutions of (NH4)3PO4, CaCO3, CaSO4, MgCO3, Mg3(PO4)2, Ca3(PO4)2 or SiO2 to enhance their structural stability. All precipitated granules have higher interior strength at ultrasonic field and reveal minimal loss in organic matter degradation capability at 160-d sequential batch reactor tests. The strength enhancement followed: Mg3(PO4)2=CaSO4>SiO2>(NH4)3PO4>MgCO3>CaCO3=Ca3(PO4)2>original. Also, the intra-granular solution environment can be buffered by the precipitate MgCO3 to make the aerobic granules capable of degradation of organic matters at pH 3. Salt precipitation is confirmed a simple and cost-effective modification method to extend the applicability of aerobic granules for wastewater treatments. PMID:27377228

  5. Debiasing Crowdsourced Batches

    PubMed Central

    Zhuang, Honglei; Parameswaran, Aditya; Roth, Dan; Han, Jiawei

    2015-01-01

    Crowdsourcing is the de-facto standard for gathering annotated data. While, in theory, data annotation tasks are assumed to be attempted by workers independently, in practice, data annotation tasks are often grouped into batches to be presented and annotated by workers together, in order to save on the time or cost overhead of providing instructions or necessary background. Thus, even though independence is usually assumed between annotations on data items within the same batch, in most cases, a worker's judgment on a data item can still be affected by other data items within the batch, leading to additional errors in collected labels. In this paper, we study the data annotation bias when data items are presented as batches to be judged by workers simultaneously. We propose a novel worker model to characterize the annotating behavior on data batches, and present how to train the worker model on annotation data sets. We also present a debiasing technique to remove the effect of such annotation bias from adversely affecting the accuracy of labels obtained. Our experimental results on both synthetic data and real-world data demonstrate the effectiveness of our proposed method. PMID:26713175

  6. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%. PMID:17251012

  7. Characteristics of Biological Nitrogen Removal in a Multiple Anoxic and Aerobic Biological Nutrient Removal Process

    PubMed Central

    Wang, Huoqing; Guan, Yuntao; Li, Li; Wu, Guangxue

    2015-01-01

    Two sequencing batch reactors, one with the conventional anoxic and aerobic (AO) process and the other with the multiple AO process, were operated to examine characteristics of biological nitrogen removal, especially of the multiple AO process. The long-term operation showed that the total nitrogen removal percentage of the multiple AO reactor was 38.7% higher than that of the AO reactor. In the multiple AO reactor, at the initial SBR cycle stage, due to the occurrence of simultaneous nitrification and denitrification, no nitrite and/or nitrate were accumulated. In the multiple AO reactor, activities of nitrite oxidizing bacteria were inhibited due to the multiple AO operating mode applied, resulting in the partial nitrification. Denitrifiers in the multiple AO reactor mainly utilized internal organic carbon for denitrification, and their activities were lower than those of denitrifiers in the AO reactor utilizing external organic carbon. PMID:26491676

  8. Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge.

    PubMed

    Mañas, A; Spérandio, M; Decker, F; Biscans, B

    2012-01-01

    This work focuses on combined scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) applied to granular sludge used for biological treatment of high-strength wastewater effluents. Mineral precipitation is shown to occur in the core of microbial granules under different operating conditions. Three dairy wastewater effluents, from three different upflow anaerobic sludge blanket (UASB) reactors and two aerobic granular sequenced batch reactors (GSBR) were evaluated. The relationship between the solid phase precipitation and the chemical composition of the wastewater was investigated with PHREEQC software (calculation of saturation indexes). Results showed that pH, Ca:P ratios and biological reactions played a major role in controlling the biomineralization phenomena. Thermodynamics calculations can be used to foresee the nature of bio-precipitates, but the location of the mineral concretions will need further investigation as it is certainly due to local microbial activity. PMID:23393959

  9. Calcium accumulation characterization in the aerobic granules cultivated in a continuous-flow airlift bioreactor.

    PubMed

    Zhou, Dandan; Liu, Mengyuan; Gao, Linlin; Shao, Chunyan; Yu, Jie

    2013-06-01

    Limited work has been done on the accumulation characterization of Ca(2+) in aerobic granules that are cultivated in a continuous-flow bioreactor. In this work, the contribution of Ca(2+) to the biogranulation in a continuous flow airlift fluidized bed (CAFB) reactor has been studied. The spatial distribution and form of calcium in the granules were investigated by scanning electron microscopy-mapping, energy dispersive X-ray and X-ray diffraction (XRD). Calcium was located throughout the Ca-rich granules, rather than accumulating in the center of the granules of the sequencing batch reactor. Furthermore, CaCO3 was detected as the main crystalline mineral form of the calcium. Calcium augmentation of the inflow promoted the accumulation of magnesium in the granules in the CAFB. The magnesium was presented as Ca7Mg2P6O24 according to XRD analyses. PMID:23436127

  10. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. PMID:21051843

  11. Aerobic degradation of olive mill wastewaters.

    PubMed

    Benitez, J; Beltran-Heredia, J; Torregrosa, J; Acero, J L; Cercas, V

    1997-02-01

    The degradation of olive mill wastewater by aerobic microorganisms has been investigated in a batch reactor, by conducting experiments where the initial concentration of organic matter, quantified by the chemical oxygen demand, and the initial biomass were varied. The evolution of the chemical oxygen demand, biomass and the total contents of phenolic and aromatic compounds were followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constants are evaluated. This final predicted equation agrees well with all the experimental data. PMID:9077005

  12. Acute oxygen uptake and resistance exercise performance using different rest interval lengths: the influence of maximal aerobic capacity and exercise sequence.

    PubMed

    Ratamess, Nicholas A; Rosenberg, Joseph G; Kang, Jie; Sundberg, Samantha; Izer, Kerrie A; Levowsky, Jaclyn; Rzeszutko, Christina; Ross, Ryan E; Faigenbaum, Avery D

    2014-07-01

    The purpose of this study was to examine the relationship between VO2max and acute resistance exercise performance and the acute metabolic effects of exercise sequencing. Seventeen resistance-trained men were tested for VO2max and 1 repetition maximum (1RM) strength. Subjects were randomly assigned to either a group that performed the squat first in sequence followed by the bench press (S; n = 8) or a group that performed the bench press first followed by the squat (BP; n = 9). Each group performed 3 protocols (using 1-, 2-, or 3-minute rest intervals [RIs] between sets in random order) consisting of 5 sets of each exercise with 75% of their 1RM for up to 10 repetitions while oxygen consumption was measured. Total repetitions completed were highest with 3-minute RI and lowest with 1-minute RI. Mean VO2 was significantly highest with 1-minute RI and lowest using 3-minute RI. Analysis of each exercise revealed a tendency (p = 0.07) for mean bench press VO2 to be higher when it was performed after the squat using 1- and 2-minute RIs. VO2max was significantly negatively correlated to 1RM bench press and squat (r = -0.79 and -0.60, respectively) and was significantly correlated to squat repetitions (r = 0.43-0.57) but did not correlate to bench press performance. It seems that VO2max is related to lower-body resistance exercise performance when short RIs are used, and the metabolic response to the bench press is augmented when it follows the squat in sequence using short RIs. PMID:24714546

  13. GIDEP Batching Tool

    NASA Technical Reports Server (NTRS)

    Fong, Danny; Odell,Dorice; Barry, Peter; Abrahamian, Tomik

    2008-01-01

    This software provides internal, automated search mechanics of GIDEP (Government- Industry Data Exchange Program) Alert data imported from the GIDEP government Web site. The batching tool allows the import of a single parts list in tab-delimited text format into the local JPL GIDEP database. Delimiters from every part number are removed. The original part numbers with delimiters are compared, as well as the newly generated list without the delimiters. The two lists run against the GIDEP imports, and output any matches. This feature only works with Netscape 2.0 or greater, or Internet Explorer 4.0 or greater. The user selects the browser button to choose a text file to import. When the submit button is pressed, this script will import alerts from the text file into the local JPL GIDEP database. This batch tool provides complete in-house control over exported material and data for automated batch match abilities. The batching tool has the ability to match capabilities of the parts list to tables, and yields results that aid further research and analysis. This provides more control over GIDEP information for metrics and reports information not provided by the government site. This software yields results quickly and gives more control over external data from the government site in order to generate other reports not available from the external source. There is enough space to store years of data. The program relates to risk identification and management with regard to projects and GIDEP alert information encompassing flight parts for space exploration.

  14. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste

    NASA Astrophysics Data System (ADS)

    Smet, Erik; Van Langenhove, Herman; De Bo, Inge

    Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of

  15. Continuous flow aerobic granular sludge reactor for dairy wastewater treatment.

    PubMed

    Bumbac, C; Ionescu, I A; Tiron, O; Badescu, V R

    2015-01-01

    The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100-500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81-93% and 85-94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH(+)(4) was nitrified with removal efficiencies of 83-99% while the nitrate produced was simultaneously denitrified - highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3-76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L. PMID:25714645

  16. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source.

    PubMed

    Vital-Jacome, Miguel; Buitrón, Germán; Moreno-Andrade, Ivan; Garcia-Rea, Victor; Thalasso, Frederic

    2016-08-01

    In this study, a microrespirometric method was used, i.e., pulse respirometry in microreactors, to characterize mass transfer and biodegradation kinetics in aerobic granules. The experimental model was an aerobic granular sludge in a sequencing batch reactor (SBR) degrading synthetic wastewater containing 4-chlorophenol as the sole carbon source. After 15 days of acclimation, the SBR process degraded 4-chlorophenol at a removal rate of up to 0.9kg CODm(-3)d(-1), and the degradation kinetics were well described by the Haldane model. The microrespirometric method consisted of injecting pulses of 4-chlorophenol into the 24 wells of a microreactor system containing the SBR samples. From the respirograms obtained, the following five kinetic parameters were successfully determined during reactor operation: (i) Maximum specific oxygen uptake rate, (ii) substrate affinity constant, (iii) substrate inhibition constant, (iv) maximum specific growth rate, and (v) cell growth yield. Microrespirometry tests using granules and disaggregated granules allowed for the determination of apparent and intrinsic parameters, which in turn enabled the determination of the effectiveness factor of the granular sludge. It was concluded that this new high-throughput method has the potential to elucidate the complex biological and physicochemical processes of aerobic granular biosystems. PMID:27054670

  17. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  18. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  19. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  20. Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.

    PubMed

    Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang

    2013-08-01

    This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. PMID:23751489

  1. Rapid cultivation of aerobic granular sludge by bone glue augmentation and contaminant removal characteristics.

    PubMed

    Wang, Shuo; Shi, Wenxin; Yu, Shuili; Yi, Xuesong

    2013-01-01

    To achieve a quick start-up and stable operation, aerobic granular sludge (AGS) was cultivated in a sequencing batch airlift reactor (SBAR) with the addition of bone glue augmentation. Adding an amount of bone glue (40 mg L(-1)) can accelerate granulation, which advanced by 10 d on average. Aerobic granules of size 0.5-3.0 mm were dominant in the SBAR and the settling velocity acquired a better correlation with the size of the AGS. In addition, the content of total polysaccharides was 19.54 mg gMLSS(-1) (grams of mixed liquor suspended solids) (an increase of 34.0%), the content of total protein was 60.59 mg gMLSS(-1) (an increase of a factor of 33) and the total proteins/total polysaccharides ratio was 3.3. The relatively high protein content was an essential feature for cultivation of AGS, which may indicate that extracellular polymeric substance was the mechanism for granulation due to the adhesion of microorganisms by bone glue. AGS possessed better chemical oxygen demand, NH4(+)-N and PO4(3-)-P removal efficiency (of 86.7, 90.6 and 93.8%, respectively) and no nitrite accumulation was observed in the whole process. PMID:23552254

  2. Long-term storage of aerobic granules in liquid media: viable but non-culturable status.

    PubMed

    Wan, Chunli; Zhang, Qinlan; Lee, Duu-Jong; Wang, Yayi; Li, Jieni

    2014-08-01

    Long-term storage and successful reactivation after storage are essential for practical applications of aerobic granules on wastewater treatment. This study cultivated aerobic granules (SI) in sequencing batch reactors and then stored the granules at 4 °C in five liquid media (DI water (SW), acetone (SA), acetone/isoamyl acetate mix (SAA), saline water (SS), and formaldehyde (SF)) for over 1 year. The first four granules were then successfully reactivated in 24h cultivation. The specific oxygen uptake rates (SOUR) of the granules followed SI>SS>SA>SAA>SW>SF; and the corresponding granular strengths (10 min ultrasound) followed SI>SA=SS>SAA>SW>SF. During storage the granular cells secreted excess quantities of cyclic-diguanylate (c-di-GMP) and pentaphosphate (ppGpp) as responses to the stringent challenges. We proposed that to force cells in granules (Alphaproteobacteria, Flavobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Sphingobacteria, and Clostridia) entering viable but non-culturable (VBNC) status is the key of success for extended period storage of granules. PMID:24950091

  3. Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed.

    PubMed

    Rocktäschel, T; Klarmann, C; Helmreich, B; Ochoa, J; Boisson, P; Sørensen, K H; Horn, H

    2013-11-01

    Two different anaerobic feeding strategies were compared to optimize the development and performance of aerobic granules. A stable aerobic granulation of activated sludge was achieved with an anaerobic plug flow operation (PI) and a fast influent step followed by an anaerobic mixing phase (PII). Two lab scale sequencing batch reactors (SBRs) were operated to test the different operation modes. PI with plug flow and a reactor H/D (height/diameter) ratio of 9 achieved a biomass concentration of 20 g(TSS)/L and an effluent TSS concentration of 0.10 g(TSS)/L. PII with the mixed anaerobic phase directly after feeding and a reactor H/D ratio of 2 achieved a biomass concentration of 9 g(TSS)/L and an effluent quality of 0.05 g(TSS)/L. Furthermore, it is shown that the plug flow regime during anaerobic feeding together with the lower H/D ratio of 2 led to channeling effects, which resulted in lower storage of organic carbon and a general destabilization of the granulation process. Compared to the plug flow regime (PI), the anaerobic mixing (PII) provided lower substrate gradients within the biofilm. However, these disadvantages could be compensated by higher mass transfer coefficients in PII (k(L) = 0.3 m/d for PI; k(L) = 86 m/d for PII) during the anaerobic phase. PMID:24103394

  4. Nitrogen Removal in Aerobic Granular Sludge SBR: Real-time Control Strategies

    NASA Astrophysics Data System (ADS)

    Yuan, Xiangjuan; Gao, Dawen

    2010-11-01

    A sequencing batch reactor (SBR) with aerobic granules was operated to determine the effect of different DO concentration on biological nitrogen removal for synthetic sewage treatment, and the spatial profiles of DO, ORP and pH as on-line control parameters in such systems were investigated. The results showed that DO concentrations had significant effect on nitrification efficiencies and the profiles of DO, ORP and pH. High DO concentration improved the nitrification causing volumetric NH4+-N removal increased and shortened the nitrification duration. Also there existed a good correlation between on-line control parameters (ORP, pH) and nutrients (COD, NH4+-N, NO2--N, NO3--N) variations in aerobic granules when DO was 2.5 mg/L, 3.5 mg/L and 4.5 mg/L. However it is difficult to identify the end of nitrification and denitrification when DO was 1.0 mg/L, due to no apparent bending points on ORP and pH curves. In conclusion the optimal DO concentration was suggested at 2.5 mg/L as it not only achieved high nitrogen removal efficiency and decreased the reaction duration, but also saved operation cost by aeration and mixing.

  5. Impact of influent COD/N ratio on disintegration of aerobic granular sludge.

    PubMed

    Luo, Jinghai; Hao, Tianwei; Wei, Li; Mackey, Hamish R; Lin, Ziqiao; Chen, Guang-Hao

    2014-10-01

    Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure. PMID:24950459

  6. Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater.

    PubMed

    Li, Yongmei; Zou, Jinte; Zhang, Lili; Sun, Jing

    2014-02-01

    Lab-scale experiments were conducted to investigate the aerobic granular sludge process for simultaneous phosphorus (P) accumulation by chemical precipitation and biological nitrogen removal via nitrite. The P-rich granules were successfully incubated in a sequencing batch reactor, in which simultaneous nitrification-denitrification occurred via nitrite. The average diameter of the P-rich granules was 2.47 mm and the P content in granules was much higher than that in other granular systems with enhanced biological phosphorus removal process. Filamentous bacteria (genus Thiothrix) in the granules and the long sludge retention time (30 d) of the granular system played a crucial role in accumulation of precipitated phosphate. X-ray diffraction analysis, scanning electron microscopy coupled with energy dispersive X-ray and the experimental design using response surface methodology confirmed that the main mineral patterns in P-rich granules were Ca-Mg phosphate and whitlockite. PMID:24388958

  7. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  8. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  9. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  10. Managing for Improved Aerobic Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic deterioration or spoilage of silage is the result of aerobic microorganisms metabolizing components of the silage using oxygen. In the almost 40 years over which these silage conferences have been held, we have come to recognize the typical pattern of aerobic microbial development by which s...

  11. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  12. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  13. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding.

    PubMed

    Dionisi, Davide; Majone, Mauro; Papa, Viviana; Beccari, Mario

    2004-03-20

    This article describes a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. Enrichment was obtained through the selective pressure established by feeding the carbon source in a periodic mode (feast and famine regime) in a sequencing batch reactor. A concentrated mixture of acetic, lactic, and propionic acids (overall concentration of 8.5 gCOD L(-1)) was fed every 2 h at 1 day(-1) overall dilution rate. Even at such high organic load (8.5 gCOD L(-1) day(-1)), the selective pressure due to periodic feeding was effective in obtaining a biomass with a storage ability much higher than activated sludges. The immediate biomass response to substrate excess (as determined thorough short-term batch tests) was characterized by a storage rate and yield of 649 mgPHA (as COD) g biomass (as COD)(-1) h(-1) and 0.45 mgPHA (as COD) mg removed substrates (as COD(-1)), respectively. When the substrate excess was present for more than 2 h (long-term batch tests), the storage rate and yield decreased, whereas growth rate and yield significantly increased due to biomass adaptation. A maximum polymer fraction in the biomass was therefore obtained at about 50% (on COD basis). As for the PHA composition, the copolymer poly(beta-hydroxybutyrate/beta-hydroxyvalerate) with 31% of hydroxyvalerate monomer was produced from the substrate mixture. Comparison of the tests with individual and mixed substrates seemed to indicate that, on removing the substrate mixture for copolymer production, propionic acid was fully utilized to produce propionylCoA, whereas the acetylCoA was fully provided by acetic and lactic acid. PMID:14966798

  14. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  15. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  16. Interaction between phosphorus removal and hybrid granular sludge formation under low hydraulic selection pressure at alternating anaerobic/aerobic conditions.

    PubMed

    Lang, Longqi; Wan, Junfeng; Zhang, Jing; Wang, Jie; Wang, Yan

    2015-01-01

    The hybrid granular sludge (HGS) formation and its performances on phosphorus removal were investigated in a sequencing batch airlift reactor. Under conditions of low superficial air velocity (SAV = 0.68 cm s(-1)) and relatively long settling time (15-30 min), aerobic granules appeared and coexisted with bio-flocs after 120 days operation. At the stable phase, 54% of total suspended solid (m/m) was granular sludge with the two typical sizes (D(mean) = 1.77 ± 0.33 and 0.89 ± 0.11 mm) in the reactor, where the settling velocity was 98.7 ± 12.4 and 37.8 ± 0.9 m h(-1) for the big and small granules. With progressive extension of anaerobic time from 15 to 60 min before aerobic condition per cycle during the whole experiment, the HGS system can be maintained at a high total phosphorus removal efficiency (ca. 99%) since Day-270. The phosphorus content (wt %) in biomass was respectively 9.54 ± 0.29, 7.60 ± 0.48 and 6.15 ± 0.59 for the big granules, small granules and flocs. PMID:25921951

  17. Data-driven batch schuduling

    SciTech Connect

    Bent, John; Denehy, Tim; Arpaci - Dusseau, Remzi; Livny, Miron; Arpaci - Dusseau, Andrea C

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  18. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  19. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  20. Batch compositions for cordierite ceramics

    DOEpatents

    Hickman, David L.

    1994-07-26

    Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

  1. Self-tuning GMV control of glucose concentration in fed-batch baker's yeast production.

    PubMed

    Hitit, Zeynep Yilmazer; Boyacioglu, Havva; Ozyurt, Baran; Ertunc, Suna; Hapoglu, Hale; Akay, Bulent

    2014-04-01

    A detailed system identification procedure and self-tuning generalized minimum variance (STGMV) control of glucose concentration during the aerobic fed-batch yeast growth were realized. In order to determine the best values of the forgetting factor (λ), initial value of the covariance matrix (α), and order of the Auto-Regressive Moving Average with eXogenous (ARMAX) model (n a, n b), transient response data obtained from the real process wereutilized. Glucose flow rate was adjusted according to the STGMV control algorithm coded in Visual Basic in an online computer connected to the system. Conventional PID algorithm was also implemented for the control of the glucose concentration in aerobic fed-batch yeast cultivation. Controller performances were examined by evaluating the integrals of squared errors (ISEs) at constant and random set point profiles. Also, batch cultivation was performed, and microorganism concentration at the end of the batch run was compared with the fed-batch cultivation case. From the system identification step, the best parameter estimation was accomplished with the values λ = 0.9, α = 1,000 and n a = 3, n b = 2. Theoretical control studies show that the STGMV control system was successful at both constant and random glucose concentration set profiles. In addition, random effects given to the set point, STGMV control algorithm were performed successfully in experimental study. PMID:24569909

  2. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    PubMed Central

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s−1) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s−1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  3. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  4. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  5. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  6. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge.

    PubMed

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-09-15

    Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1-0.2 mgL(-1)) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH4/hg VSS) and aerobic activity (SOUR: 2.21 mMO2/hg VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and PCP on microbial community. Furthermore, nucleotide sequencing indicated that the main microorganisms for PCP degradation might be related to Actinobacterium and Sphingomonas. These results provided insights into situ bioremediation of environments contaminated by PCP and had practical implications for the strategies of PCP degradation. PMID:25151236

  7. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  8. Teaching Aerobic Cell Respiration Using the 5Es

    ERIC Educational Resources Information Center

    Patro, Edward T.

    2008-01-01

    The 5E teaching model provides a five step method for teaching science. While the sequence of the model is strictly linear, it does provide opportunities for the teacher to "revisit" prior learning before moving on. The 5E method is described as it relates to the teaching of aerobic cell respiration.

  9. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    PubMed

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  10. MBASIC batch processor architectural overview

    NASA Technical Reports Server (NTRS)

    Reynolds, S. M.

    1978-01-01

    The MBASIC (TM) batch processor, a language translator designed to operate in the MBASIC (TM) environment is described. Features include: (1) a CONVERT TO BATCH command, usable from the ready mode; and (2) translation of the users program in stages through several levels of intermediate language and optimization. The processor is to be designed and implemented in both machine-independent and machine-dependent sections. The architecture is planned so that optimization processes are transparent to the rest of the system and need not be included in the first design implementation cycle.

  11. Excessive precipitation of CaCO₃ as aragonite in a continuous aerobic granular sludge reactor.

    PubMed

    Liu, Yong-Qiang; Lan, Gui-Hong; Zeng, Ping

    2015-10-01

    A hybrid airlift reactor was adopted to retain aerobic granules in the reactor successfully for continuous operation. It was found that aerobic granules maintained excellent physical structure stability in the continuous-flow reactor with reactor performance as good as batch operation. However, flocs appeared after batch operation was switched to continuous operation, and chemical oxygen demand (COD) in the wastewater was thus removed by co-existed granules and flocs in the reactor. Furthermore, excessive precipitation of CaCO3 as needled shaped aragonite in the continuous aerobic granular sludge reactor was observed, which led to the further enhancement of settling ability of granules with sludge volume index (SVI) reduction from 32 to 2 ml g(-1) but specific oxygen utilization rate (SOUR) decrease from 61 to 23 mg O2 g(-1) MLVSS h(-1). Thus, apart from the physical structure stability, bioactivity stability of granules should be also considered as an important parameter to evaluate the continuous operation of aerobic granular sludge. Furthermore, the decrease in granule polysaccharide content implied that protein was more important for aragonite precipitation. The excessive aragonite precipitation in the continuous-flow reactor could be due to the competition between flocs and granules. In addition, the degradation of polysaccharide in aerobic granules under a continuous-flow mode may also contribute to excessive aragonite precipitation. PMID:26051674

  12. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity.

    PubMed

    Shi, Xueqing; Lefebvre, Olivier; Ng, Kok Kwang; Ng, How Yong

    2014-02-01

    In this study, pharmaceutical wastewater with high total dissolved solids (TDSs) and chemical oxygen demand (COD) content was treated through a sequential anaerobic-aerobic treatment process. For the anaerobic process, an up-flow anaerobic sludge blanket (UASB) was applied, and a COD removal efficiency of 41.3±2.2% was achieved with an organic loading rate of 8.11±0.31gCOD/L/d and a hydraulic retention time of 48h. To evaluate the salinity effect on the anaerobic process, salts in the wastewater were removed by ion exchange resin, and adverse effect of salinity was observed with a TDS concentration above 14.92g/L. To improve the anaerobic effluent quality, the UASB effluent was further treated by a membrane bioreactor (MBR) and a sequencing batch reactor (SBR). Both the UASB+MBR and UASB+SBR systems achieved excellent organic removal efficiency, with respective COD removal of 94.7% and 91.8%. The UASB+MBR system showed better performance in both organic removal and nitrification. PMID:24355500

  13. Temperature influence on biological phosphorus removal induced by aerobic/extended-idle regime.

    PubMed

    Chen, Hong-Bo; Wang, Dong-Bo; Li, Xiao-Ming; Yang, Qi; Luo, Kun; Zeng, Guang-Ming

    2014-05-01

    Previous researches have demonstrated that biological phosphorus removal (BPR) from wastewater could be driven by the aerobic/extended-idle (A/EI) regime. This study further investigated temperature effects on phosphorus removal performance in six A/EI sequencing batch reactors (SBRs) operated at temperatures ranging from 5 to 30 °C. The results showed that phosphorus removal efficiency increased with temperature increasing from 5 to 20 °C but slightly decreased when temperature continually increased to 30 °C. The highest phosphorus removal rate of 97.1 % was obtained at 20 °C. The biomass cultured at 20 °C contained more polyphosphate accumulating organisms (PAO) and less glycogen accumulating organisms (GAO) than that cultured at any other temperatures investigated. The mechanism studies revealed that temperature affected the transformations of glycogen and polyhydroxyalkanoates, and the activities of exopolyphosphatase and polyphosphate kinase activities. In addition, phosphorus removal performances of the A/EI and traditional anaerobic/oxic (A/O) SBRs were compared at 5 and 20 °C, respectively. The results showed the A/EI regime drove better phosphorus removal than the A/O regime at both 5 and 20 °C, and more PAO and less GAO abundances in the biomass might be the principal reason for the higher BPR in the A/EI SBRs as compared with the A/O SBRs. PMID:24464081

  14. Characteristics of nitrogen transformation and microbial community in an aerobic composting reactor under two typical temperatures.

    PubMed

    Li, Q; Wang, X C; Zhang, H H; Shi, H L; Hu, T; Ngo, H H

    2013-06-01

    Batch experiments were conducted for feces composting using an aerobic composting reactor with sawdust as bulky matrix. In the 14-day composting processes at 35±2 and 55±2°C, compost samples were collected daily and chemical analyses and PCR-DGGE were carried out for investigating the influence of composting temperature on organic decomposition, nitrogen transformation, and microbial communities. At 55±2°C, in addition to a slightly higher COD removal, nitrogen loss was greatly restrained. As organic nitrogen took about 85% of the total nitrogen originated from human feces, the suppression of ammonification process under thermophilic environment might be the main reason for less nitrogen loss at 55±2°C. By PCR-DGGE analysis, the microbial community was found to undergo successions differently at 35±2 and 55±2°C. Certain sequences identified from the compost at 55±2°C represented the microbial species which could perform nitrogen-fixation or sustain a lower pH in the compost so that gaseous ammonia emission was suppressed. PMID:23587829

  15. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    SciTech Connect

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  16. Physicochemical Characteristics of Transferon™ Batches.

    PubMed

    Medina-Rivero, Emilio; Vallejo-Castillo, Luis; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Favari, Liliana; Velasco-Velázquez, Marco; Estrada-Parra, Sergio; Pavón, Lenin; Pérez-Tapia, Sonia Mayra

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes. PMID:27525277

  17. NDA BATCH 2002-02

    SciTech Connect

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  18. Batching System for Superior Service

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  19. Simulated Batch Production of Penicillin

    ERIC Educational Resources Information Center

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  20. Physicochemical Characteristics of Transferon™ Batches

    PubMed Central

    Pérez-Sánchez, Gilberto; Favari, Liliana; Estrada-Parra, Sergio

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes. PMID:27525277

  1. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays.

    PubMed

    Weissbrodt, David G; Maillard, Julien; Brovelli, Alessandro; Chabrelie, Alexandre; May, Jonathan; Holliger, Christof

    2014-12-01

    Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC. PMID:24975745

  2. Dynamics of Microbial Community Structure of and Enhanced Biological Phosphorus Removal by Aerobic Granules Cultivated on Propionate or Acetate▿

    PubMed Central

    Gonzalez-Gil, Graciela; Holliger, Christof

    2011-01-01

    Aerobic granules are dense microbial aggregates with the potential to replace floccular sludge for the treatment of wastewaters. In bubble-column sequencing batch reactors, distinct microbial populations dominated propionate- and acetate-cultivated aerobic granules after 50 days of reactor operation when only carbon removal was detected. Propionate granules were dominated by Zoogloea (40%), Acidovorax, and Thiothrix, whereas acetate granules were mainly dominated by Thiothrix (60%). Thereafter, an exponential increase in enhanced biological phosphorus removal (EBPR) activity was observed in the propionate granules, but a linear and erratic increase was detected in the acetate ones. Besides Accumulibacter and Competibacter, other bacterial populations found in both granules were associated with Chloroflexus and Acidovorax. The EBPR activity in the propionate granules was high and stable, whereas EBPR in the acetate granules was erratic throughout the study and suffered from a deterioration period that could be readily reversed by inducing hydrolysis of polyphosphate in presumably saturated Accumulibacter cells. Using a new ppk1 gene-based dual terminal-restriction fragment length polymorphism (T-RFLP) approach revealed that Accumulibacter diversity was highest in the floccular sludge inoculum but that when granules were formed, propionate readily favored the dominance of Accumulibacter type IIA. In contrast, acetate granules exhibited transient shifts between type I and type II before the granules were dominated by Accumulibacter type IIA. However, ppk1 gene sequences from acetate granules clustered separately from those of propionate granules. Our data indicate that the mere presence of Accumulibacter is not enough to have consistently high EBPR but that the type of Accumulibacter determines the robustness of the phosphate removal process. PMID:21926195

  3. Towards Batched Linear Solvers on Accelerated Hardware Platforms

    SciTech Connect

    Haidar, Azzam; Dong, Tingzing Tim; Tomov, Stanimire; Dongarra, Jack J

    2015-01-01

    As hardware evolves, an increasingly effective approach to develop energy efficient, high-performance solvers, is to design them to work on many small and independent problems. Indeed, many applications already need this functionality, especially for GPUs, which are known to be currently about four to five times more energy efficient than multicore CPUs for every floating-point operation. In this paper, we describe the development of the main one-sided factorizations: LU, QR, and Cholesky; that are needed for a set of small dense matrices to work in parallel. We refer to such algorithms as batched factorizations. Our approach is based on representing the algorithms as a sequence of batched BLAS routines for GPU-contained execution. Note that this is similar in functionality to the LAPACK and the hybrid MAGMA algorithms for large-matrix factorizations. But it is different from a straightforward approach, whereby each of GPU's symmetric multiprocessors factorizes a single problem at a time. We illustrate how our performance analysis together with the profiling and tracing tools guided the development of batched factorizations to achieve up to 2-fold speedup and 3-fold better energy efficiency compared to our highly optimized batched CPU implementations based on the MKL library on a two-sockets, Intel Sandy Bridge server. Compared to a batched LU factorization featured in the NVIDIA's CUBLAS library for GPUs, we achieves up to 2.5-fold speedup on the K40 GPU.

  4. Respirometric assessment of aerobic sludge stabilization.

    PubMed

    Tas, Didem Okutman

    2010-04-01

    Aerobic sludge stabilization was assessed respirometrically with the sludge taken from the secondary settling tank of a domestic wastewater treatment facility in Istanbul, Turkey. Zero-order removal rates of 178, 127 and 44 mg/L day were found for Suspended Solids (SS), Volatile Suspended Solids (VSS) and Total Organic Carbon (TOC) at the end of 18 days sludge stabilization, respectively. Significant nutrient release was observed by the mineralized nitrogen and phosphorus from the death and lysis of microorganisms. The model simulations for the batch respirometric assays for initial, 7th and 18th days of the stabilization agree reasonably well with the experimental data. The maximum storage rates (k(sto)) as well as maximum growth rates on stored products (micro(H2)) decrease with increasing stabilization period. Respirometric assays indicated the presence of microorganisms that started to compete with the dominant microorganisms as a result of the stabilization. As such, these findings have significance in terms of the efforts related to the sludge management and application processes. PMID:19942430

  5. Nitrogen removal by Providencia rettgeri strain YL with heterotrophic nitrification and aerobic denitrification.

    PubMed

    Ye, Jun; Zhao, Bin; An, Qiang; Huang, Yuan-Sheng

    2016-09-01

    Providencia rettgeri strain YL shows the capability of nitrogen removal under sole aerobic conditions. By using isotope ratio mass spectrometry, (15)N-labelled N2O and N2 were detected in aerobic batch cultures containing [Formula: see text], [Formula: see text] or [Formula: see text]. Strain YL converted [Formula: see text], [Formula: see text] and [Formula: see text] to produce more N2O than N2 in the presence of [Formula: see text]. An (15)N isotope tracing experiment confirmed that the nitrogen removal pathway of strain YL was heterotrophic nitrification-aerobic denitrification. The optimal treatment conditions for nitrogen removal were pH of 8, C/N ratio of 12, temperature of 25°C and shaking speed of 105 rpm. A continuous aerobic bioreactor inoculated with strain YL was developed. With an influent [Formula: see text] concentration of 90-200 mg/L, the [Formula: see text] removal efficiency ranged from 80% to 97% and the total nitrogen removal efficiency ranged from 72% to 95%. The nitrogen balance in the continuous bioreactor revealed that approximately 35-52% of influent [Formula: see text] was denitrified aerobically to form gaseous nitrogen. These findings show that the P. rettgeri strain YL has potential application in wastewater treatment for nitrogen removal under sole aerobic conditions. PMID:26824874

  6. NDA Batch 2002-13

    SciTech Connect

    Hollister, R

    2009-09-17

    QC sample results (daily background check drum and 100-gram SGS check drum) were within acceptance criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on drum LL85501243TRU. Replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. HWM NCAR No. 02-1000168 issued on 17-Oct-2002 regarding a partially dislodged Cd sheet filter on the HPGe coaxial detector. This physical geometry occurred on 01-Oct-2002 and was not corrected until 10-Oct-2002, during which period is inclusive of the present batch run of drums. Per discussions among the Independent Technical Reviewer, Expert Reviewer and the Technical QA Supervisor, as well as in consultation with John Fleissner, Technical Point of Contact from Canberra, the analytical results are technically reliable. All QC standard runs during this period were in control. Data packet for SGS Batch 2002-13 generated using passive gamma-ray spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with establiShed control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable.

  7. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  8. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2015-01-01

    The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal. PMID:25719420

  9. [Long-Term Inhibition of FNA on Aerobic Phosphate Uptake and Variation of Phosphorus Uptake Properties of the Sludge].

    PubMed

    Ma, Juan; Li, Lu; Yu, Xiao-jun; Sun, Lei-jun; Sun, Hong-wei; Chen, Yong-zhi

    2015-10-01

    An alternating anaerobic/oxic ( An/O) sequencing batch reactor (SBR) was employed to investigate the long-term inhibitory effect of free nitrous acid (FNA) on aerobic phosphorus uptake performance and variation of phosphorus uptake properties of the sludge by adding nitrite. The reactor was started up under the condition of 21-23 degrees C. The results showed that FNA had no impact on phosphate release and uptake capacities of the sludge. However, the specific phosphate release/uptake rates was found to be higher. As FNA concentration (measure by HNO2-N) was lower than 0.53 x 10(-3) mg x L(-1), phosphorus removal efficiency of the system was higher than 96.9%. When the FNA concentration was increased to 0.99 x 10(-3) mg x L(-1), 1.46 x 10(-3) mg x L(-1) and 1.94 x 10(-3) mg x L(-1), the phosphorus removal performance deteriorated rapidly. The phosphorus removal efficiency was recovered to 64.42%, 67.33% and 44.14% after 50, 12 and 30 days, respectively, which implied the deterioration of phosphorus removal performance caused by FNA inhibition could be recovered and long-term acclimation could shorten the recovery process. Notably, increasing nitrite consumption appeared during aerobic phase with the concentration of FNA below 1.46 x 10(-3) mg x L(-1). It was also observed that the phosphorus uptake properties of the sludge varied after long-term inhibition. Nitrate and nitrite type anoxic phosphorus uptake capacity was increased by 3.35 and 3.86 times, respectively, suggesting long-term dosing FNA may facilitate the denitrifying of polyphosphate in organisms utilizing nitrite as electron acceptor. Moreover, long-term acclimation favored sludge settling. PMID:26841613

  10. "Aerobic" Writing: A Writing Practice Model.

    ERIC Educational Resources Information Center

    Crisp, Sally Chandler

    "Aerobic writing" is a writing center strategy designed to keep students in writing "shape." Like aerobic exercise, aerobic writing is sustained for a certain length of time and done on a regular basis at prescribed time intervals. The program requires students to write at least two times a week for approximately an hour each time. Students write,…

  11. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  12. The painkiller for batch control headaches

    SciTech Connect

    Haxthausen, N.

    1995-10-01

    The world of batch control is a complicated one, containing many of the issues common to continuous processes, as well as such concerns as complex sequential control, product variation, dynamic scheduling and lot tracking. Many different and poorly structured approaches have been taken to these problems, and communication between vendors and users has been troublesome. The newly defined ISA standard, ``SP88, Part 1: Batch Control Terminology,`` brings a large degree of order to the batch control process. SP88 provides definitions of many of the common elements of batch process equipment and recipe steps. In addition, it provides a methodology for logically arranging batch process control, so that the process is understandable and, most importantly, verifiable. Part 1 of this article introduces the important terms and concepts of SP88 along with recommendations for their implementation. In Part 2, a method is proposed to streamline the process of designing and constructing batch manufacturing facilities.

  13. Microbial degradation of polyacrylamide by aerobic granules.

    PubMed

    Liu, Lili; Wang, Zhiping; Lin, Kuangfei; Cai, Weimin

    2012-01-01

    To deal with polyacrylamide (PAM) wastewater, granular sludge formed in glucose-fed sequencing batch reactors (SBR) was employed to cultivate PAM-degrading granules. Three replicated SBRs were operated with increasing PAM concentration in the influent from 67 to 670 mg L(-1), and the hydraulic retention time was increased at the same time from 1 d to 6 d during the six-phase of the 43 d acclimation period. The well-acclimated PAM-degrading granules were different from the seeding granules in colour, mean diameter, biomass density and settle ability, and could use PAM as the sole carbon and nitrogen source. In the batch experiments, PAM degradation rate by granules was determined as 2.23 mg PAM g(-1) MLSS h(-1). According to the analysis of the intermediates of PAM biodegradation, PAM was degraded initially through hydrolysis of the amide group, and no acrylamide monomer was detected. With the help of LC/MS, the main intermediate was identified as polyacrylic acid with a low molecular weight. Therefore, the PAM-degrading granular sludge may be employed for removing PAM in the wastewater produced from tertiary oil recovery that uses polymeric flooding technology. PMID:22720433

  14. Adding coal dust to coal batch

    SciTech Connect

    V.S. Shved; A.V.Berezin

    2009-05-15

    The granulometric composition of coke dust from the dry-slaking machine is determined. The influence of additions of 3-7% coke dust on the quality of industrial coking batch and the coke obtained by box coking is estimated. Adding 1% coke dust to coking batch does not markedly change the coke quality. Industrial equipment for the supply of dry-slaking dust to the batch is described.

  15. Spectroscopic characterization of organic matter of a soil and vinasse mixture during aerobic or anaerobic incubation

    SciTech Connect

    Doelsch, Emmanuel Masion, Armand; Cazevieille, Patrick

    2009-06-15

    Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO{sub 2} production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2 h, 1 d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a 'soil effect' which increased organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mg kg{sup -1} of C remained after aerobic incubation, as compared to 4000 mg kg{sup -1} at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2 h and 1 d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions ({nu}(C-O)) disappeared at 1000 and 1200 cm{sup -1}, as also confirmed by the {sup 13}C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.

  16. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  17. Biosorption of Malachite Green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies.

    PubMed

    Sun, Xue-Fei; Wang, Shu-Guang; Liu, Xian-Wei; Gong, Wen-Xin; Bao, Nan; Gao, Bao-Yu; Zhang, Hua-Yong

    2008-06-01

    Batch experiments were conducted to study the biosorption characteristics of a cationic dye, Malachite Green (MG), onto aerobic granules. Effects of pH, aerobic granule dosage, contact time and solution temperature on MG biosorption by aerobic granules were evaluated. Simultaneity the thermodynamic analysis was also performed. The results showed that alkaline pH was favorable for the biosorption of MG and chemisorption seemed to play a major role in the biosorption process. Kinetic studies indicate that MG biosorption on aerobic granules in the system follows the pseudo-second order kinetics. The equilibrium time was 60 min for both 50 and 60 mg/L and 120 min for both 70 and 80 mg/L MG concentrations, respectively. Moreover, the experimental equilibrium data have been analyzed using the linearized forms of Langmuir, Freundlich, and Redlich-Peterson isotherms and the Langmuir isotherm was found to provide the best theoretical correlation of the experimental data for the biosorption of MG. The monolayer biosorption (saturation) capacities were determined to be 56.8 mg of MG per gram of aerobic granules at 30 degrees C. Thermodynamic analysis show that biosorption follows an endothermic path of the positive value of Delta H( composite function) and spontaneous with negative value of Delta G( composite function). PMID:17855080

  18. Plutonium immobilization feed batching system concept report

    SciTech Connect

    Erickson, S.

    2000-07-19

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

  19. Azeotropic distillation in a middle vessel batch column. 2: Nonlinear separation boundaries

    SciTech Connect

    Cheong, W.; Barton, P.I.

    1999-04-01

    On the basis of the analytical tools developed for the middle vessel column (MVC) operated under limiting conditions, analysis of the qualitative dynamics of the MVC in separating an azeotropic mixture is extended to the more realistic case in which the separation boundaries are nonlinear. The differences between batch stripper pot composition boundaries and batch rectifier pot composition being able to cross these pot composition boundaries. On the basis of these insights, operating procedures are developed in which ternary azeotropic mixtures of acetone, benzene, and chloroform can be separated into their constituent pure components, a separation not achievable with either the batch stripper or the batch rectifier. The operating procedures suggested for separating the ternary azeotropic mixture of acetone, benzene, and chloroform in the MVC are then shown to be the time analogues of sequences of continuous distillation columns that achieve the same separation. On the basis of this space-time analogy, further analogies are developed between the MVC and a continuous column, and it is postulated that many complex separations currently achieved with sequences of continuous columns can also be achieved with a single MVC. Thus, the MVC represents the ultimate multipurpose solvent recovery technology, as it can handle, in a batch multipurpose mode. separations that will otherwise require a dedicated continuous distillation sequence. Finally, the characteristics of perfect MVC batch entrainers, which allow the complete separation of any azeotrope into its constituent pure components in a single MVC, are discussed.

  20. An order-picking operations system for managing the batching activities in a warehouse

    NASA Astrophysics Data System (ADS)

    Lam, Cathy H. Y.; Choy, K. L.; Ho, G. T. S.; Lee, C. K. M.

    2014-06-01

    Nowadays, customer orders with high product variety in small quantities are often received and requested for timely delivery. However, the order-picking process is a labour-intensive and costly activity to handle those small orders separately. In such cases, small orders are often grouped into batches so that two or more orders can be served at once to increase the picking efficiency and thus reduce the travel distance. In this paper, an order-picking operations system (OPOS) is proposed to assist the formulation of an order-picking plan and batch-handling sequence. The study integrates a mathematical model and fuzzy logic technique to divide the receiving orders into batches and prioritise the batch-handling sequence for picking, respectively. Through the proposed system, the order-picking process can be managed as batches with common picking locations to minimise the travel distance, and the batch-picking sequence can be determined as well. To demonstrate the use of the system, a case study in a third-party logistics warehouse is presented, and the result shows that both the order-picking activity and labour utilisation can be better organised.

  1. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment. PMID:26841606

  2. Acetate favors more phosphorus accumulation into aerobic granular sludge than propionate during the treatment of synthetic fermentation liquor.

    PubMed

    Cai, Wei; Huang, Wenli; Li, Huifang; Sun, Beina; Xiao, Huasheng; Zhang, Zhenya; Lei, Zhongfang

    2016-08-01

    Anaerobic digestion (AD) is an efficient biotechnology widely applied for energy and resource recovery from organic waste and wastewater treatment. The effluent from AD or fermentation liquor containing organic substances like volatile fatty acids (VFAs) and mineral nutrients (such as N and P), however, will trigger serious environmental issues if not properly dealt with. In this study two identical sequencing batch reactors (SBRs), namely Ra and Rp were used to cultivate aerobic granules for P recovery from synthetic fermentation liquor, respectively using acetate and propionate as additional carbon source. Larger and more stable granules were achieved in Ra with higher P removal capability (9.4mgP/g-VSS·d) and higher anaerobic P release (6.9mgP/g-VSS·h). In addition to much higher P content (78mgP/g-SS), bioavailable P in Ra-granules increased to 45mgP/g-SS, approximately 2-times those of seed sludge and Rp-granules. Microbial community analysis indicated that more GAOs were accumulated in Rp-granules. PMID:27183235

  3. Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission.

    PubMed

    Zhu, Shuangyue; Zheng, Maosheng; Li, Can; Gui, Mengyao; Chen, Qian; Ni, Jinren

    2015-06-01

    Much effort has been made for reducing nitrous oxide (N2O) emission in wastewater treatment processes. This paper presents an interesting way to minimize N2O in aerobic denitrification by strain Pseudomonas stutzeri PCN-1 with help of corn flour as cheaper additional carbon source. Experimental results showed that maximal N2O accumulation by strain PCN-1 was only 0.02% of removed nitrogen if corn flour was used as sole carbon source, which was significantly reduced by 52.07-99.81% comparing with others such as succinate, glucose, acetate and citrate. Sustained release of reducing sugar from starch and continuous expression of nosZ coding for N2O reductase contributed to the special role of corn flour as the ideal carbon source for strain PCN-1. Further experiments in sequencing batch reactors (SBRs) demonstrated similarly efficient nitrogen removal with much less N2O emission due to synergy of the novel strain and activated sludge, which was then confirmed by quantitative PCR analysis. PMID:25802047

  4. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  5. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  6. Method and apparatus for melting glass batch

    DOEpatents

    Fassbender, Alexander G.; Walkup, Paul C.; Mudge, Lyle K.

    1988-01-01

    A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.

  7. Computer Batch Files Shorten Many Complicated Procedures.

    ERIC Educational Resources Information Center

    Deppa, Joan

    1987-01-01

    Defines "batch files," claiming that they can shorten many complicated computer procedures. Describes how batch file was created using the computer program "PC-Write" to streamline the process of creating a work disk and increase students' computer literacy. Lists and discusses each element in the file. Provides references for more information.…

  8. Characterization of a marine origin aerobic nitrifying-denitrifying bacterium.

    PubMed

    Zheng, Hai-Yan; Liu, Ying; Gao, Xi-Yan; Ai, Guo-Min; Miao, Li-Li; Liu, Zhi-Pei

    2012-07-01

    The bacterial strain F6 was isolated from a biological aerated filter that is used for purifying recirculating water in a marine aquaculture system and was identified as Marinobacter sp. based on the analysis of its 16S rRNA gene sequence. Strain F6 showed efficient aerobic denitrifying ability. One hundred percent of nitrates and 73.10% of nitrites were removed, and the total nitrogen (TN) removal rates reached 50.08% and 33.03% under a high nitrate and nitrite concentration in the medium, respectively. N(2)O and (15)N(2), as revealed by GC-MS and GC-IRMS, were the products of aerobic denitrification. Factors affecting the growth and aerobic denitrifying performance of strain F6 were investigated. The results showed that the optimum aerobic denitrification conditions for strain F6 were the presence of sodium succinate as a carbon source, a C/N ratio of 15, salinity ranging from 32-35 g/L of NaCl, incubation temperature of 30°C, an initial pH of 7.5, and rotation speed of 150 rpm [dissolved oxygen (DO) 6.75 mg/L]. In addition, strain F6 was confirmed to be a heterotrophic nitrifier through its NO(2)(-) generation and 25.96% TN removal when NH(4)(+) was used as the sole N source. Therefore, strain F6, the first reported member of genus Marinobacter with aerobic heterotrophic nitrifying-denitrifying ability, is an excellent candidate for facilitating simultaneous nitrification and denitrification (SND) in industry and aquaculture wastewater. PMID:22578593

  9. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    PubMed

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. PMID:23317554

  10. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions.

    PubMed

    Bordeleau, Geneviève; Martel, Richard; Bamba, Abraham N'Valoua; Blais, Jean-François; Ampleman, Guy; Thiboutot, Sonia

    2014-10-01

    The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities. PMID:25086776

  11. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  12. Batch Scheduling a Fresh Approach

    NASA Technical Reports Server (NTRS)

    Cardo, Nicholas P.; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    The Network Queueing System (NQS) was designed to schedule jobs based on limits within queues. As systems obtain more memory, the number of queues increased to take advantage of the added memory resource. The problem now becomes too many queues. Having a large number of queues provides users with the capability to gain an unfair advantage over other users by tailoring their job to fit in an empty queue. Additionally, the large number of queues becomes confusing to the user community. The High Speed Processors group at the Numerical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a new approach to batch job scheduling. This new method reduces the number of queues required by eliminating the need for queues based on resource limits. The scheduler examines each request for necessary resources before initiating the job. Also additional user limits at the complex level were added to provide a fairness to all users. Additional tools which include user job reordering are under development to work with the new scheduler. This paper discusses the objectives, design and implementation results of this new scheduler

  13. 27 CFR 19.748 - Dump/batch records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dump/batch records. 19.748.../batch records. (a) Format of dump/batch records. Proprietor's dump/batch records shall contain, as... ingredients used; (10) Formula number; (11) Quantity of ingredients used in the batch that have...

  14. Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup on Gas-Evolving Reactions

    SciTech Connect

    Pierce, David A.; Hrma, Pavel R.; Marcial, Jose

    2013-01-21

    Batches made with a variety of precursors were subjected to thermo-gravimetric analysis. The baseline modifications included all-nitrate batch with sucrose addition, all-carbonate batch, and batches with different sources of alumina. All batches were formulated for a single glass composition (a vitrified simulated high-alumina high-level waste). Batch samples were heated from the ambient temperature to 1200°C at constant heating rates ranging from 1 K/min to 50 K/min. Major gas evolving reactions began at temperatures just above 100°C and were virtually complete by 650°C. Activation energies for major reactions were obtained with the Kissinger’s method. A rough model for the overall kinetics of the batch-conversion was developed to be eventually applied to a mathematical model of the cold cap.

  15. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  16. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production. PMID:27262722

  17. Batch gravitational sedimentation of slurries.

    PubMed

    Chu, C P; Ju, S P; Lee, D J; Mohanty, K K

    2002-01-01

    We investigated the batch settling behavior of the kaolin slurry and the UK ball clay slurry at various initial solids fractions (phi(0)s) using a computerized axial tomography scanner (CATSCAN). The spatio-temporal evolutions of solids fractions in the consolidating sediments were continuously monitored. Since the interface between the sediment and the supernatant of the investigated slurries was blurred, an averaging procedure was employed to estimate their null-stress solids fractions (phi(g)s). Besides the rather slow settling for the high-phi(0) slurries, the basic settling characteristics resemble each other regardless of whether phi(0)>phi(g) or vice versa. The above-mentioned experimental data reveal that the investigated slurries are neither purely elastic nor purely plastic in rheological behavior. On contrary to most model works a blurred supernatant-sediment interface makes difficulty in the gel point determination. During initial settling the high-phi(0) slurries clearly exhibit a finite yield stress to resist deformation. That is, the slurries are plastic fluids. However, the network structure in the slurries deteriorates gradually in the subsequent settling stage while the final, equilibrated sediment reveals a continuous distribution in solids fraction. Restated, the final sediment possesses as a purely elastic characteristic. The model parameters of theory by Buscall and White were regressed by the dynamic consolidating sediment data, while those by Tiller and Leu were obtained using the final equilibrated sediment data. Calculations from both models reveal that ball clay slurry is more compressible than is the kaolin slurry. The high-phi(S0) slurry would yield the less compressible sediment. PMID:16290348

  18. Batch Proving and Proof Scripting in PVS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2007-01-01

    The batch execution modes of PVS are powerful, but highly technical, features of the system that are mostly accessible to expert users. This paper presents a PVS tool, called ProofLite, that extends the theorem prover interface with a batch proving utility and a proof scripting notation. ProofLite enables a semi-literate proving style where specification and proof scripts reside in the same file. The goal of ProofLite is to provide batch proving and proof scripting capabilities to regular, non-expert, users of PVS.

  19. An Integer Batch Scheduling Model for a Single Machine with Simultaneous Learning and Deterioration Effects to Minimize Total Actual Flow Time

    NASA Astrophysics Data System (ADS)

    Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.

    2016-02-01

    In the manufacturing industry, several identical parts can be processed in batches, and setup time is needed between two consecutive batches. Since the processing times of batches are not always fixed during a scheduling period due to learning and deterioration effects, this research deals with batch scheduling problems with simultaneous learning and deterioration effects. The objective is to minimize total actual flow time, defined as a time interval between the arrival of all parts at the shop and their common due date. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. This research proposes a heuristic algorithm based on the Lagrange Relaxation. The effectiveness of the proposed algorithm is determined by comparing the resulting solutions of the algorithm to the respective optimal solution obtained from the enumeration method. Numerical experience results show that the average of difference among the solutions is 0.05%.

  20. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  1. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  2. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  3. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  4. Maximal aerobic exercise following prolonged sleep deprivation.

    PubMed

    Goodman, J; Radomski, M; Hart, L; Plyley, M; Shephard, R J

    1989-12-01

    The effect of 60 h without sleep upon maximal oxygen intake was examined in 12 young women, using a cycle ergometer protocol. The arousal of the subjects was maintained by requiring the performance of a sequence of cognitive tasks throughout the experimental period. Well-defined oxygen intake plateaus were obtained both before and after sleep deprivation, and no change of maximal oxygen intake was observed immediately following sleep deprivation. The endurance time for exhausting exercise also remained unchanged, as did such markers of aerobic performance as peak exercise ventilation, peak heart rate, peak respiratory gas exchange ratio, and peak blood lactate. However, as in an earlier study of sleep deprivation with male subjects (in which a decrease of treadmill maximal oxygen intake was observed), the formula of Dill and Costill (4) indicated the development of a substantial (11.6%) increase of estimated plasma volume percentage with corresponding decreases in hematocrit and red cell count. Possible factors sustaining maximal oxygen intake under the conditions of the present experiment include (1) maintained arousal of the subjects with no decrease in peak exercise ventilation or the related respiratory work and (2) use of a cycle ergometer rather than a treadmill test with possible concurrent differences in the impact of hematocrit levels and plasma volume expansion upon peak cardiac output and thus oxygen delivery to the working muscles. PMID:2628360

  5. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions. PMID:26573667

  6. Detection and isolation of Bluetongue virus from commercial vaccine batches.

    PubMed

    Bumbarov, Velizar; Golender, Natalia; Erster, Oran; Khinich, Yevgeny

    2016-06-14

    In this report we describe the detection and identification of Bluetongue virus (BTV) contaminations in commercial vaccines. BTV RNA was detected in vaccine batches of Lumpy skin disease (LSD) and Sheep pox (SP) using quantitative PCR (qPCR) for VP1 and NS3 genes. Both batches were positive for VP1 and NS3 in qPCR. The LSD vaccine-derived sample was positive for VP1 and VP2 in conventional PCR. The SP vaccine-derived sample was examined by amplification of VP1, VP4, VP6, VP7, NS2 and NS3 gene segments in conventional PCR. The SP vaccine-derived sample was further propagated in embryonated chicken eggs (ECE) and Vero cells. Preliminary sequence analysis showed that the LSD vaccine-derived sequence was 98-99% similar to BTV9. Analysis of the six genomic segments from the SP vaccine-derived isolate showed the highest similarity to BTV26 (66.3-97.8%). These findings are particularly important due to the effect of BTV on cattle and sheep, for which the vaccines are intended. They also demonstrate the necessity of rigorous vaccine inspection and strict vaccine production control. PMID:27171751

  7. Application of high OLR-fed aerobic granules for the treatment of low-strength wastewater: performance, granule morphology and microbial community.

    PubMed

    Ma, Jingyun; Quan, Xiangchun; Li, Huai

    2013-08-01

    Aerobic granules, pre-cultivated at the organic loading rate (OLR) of 3.0 kg COD/(m3 x day), were used to treat low-strength wastewater in two sequencing batch reactors at low OLRs of 1.2 and 0.6 kg COD/(m3 x day), respectively. Reactor performance, evolution of granule morphology, structure and microbial community at low OLRs under long-term operation (130 days) were investigated. Results showed that low OLRs did not cause significant damage to granule structure as a dominant granule morphology with size over 540 microm was maintained throughout the operation. Aerobic granules at sizes of about 750 microm were finally obtained at the low OLRs. The granule reactors operated at low OLRs demonstrated effective COD and ammonia removals (above 90%), smaller granule sizes and less biomass. The contents of extracellular polymeric substances in the granules were decreased while the ratios of exopolysaccharide/exoprotein were increased (above 1.0). The granules cultivated at the low OLRs showed a smoother surface and more compact structure than the seeded granules. A significant shift in microbial community was observed but the microbial diversity remained relatively stable. Confocal Laser Scanning Microscopy observation showed that the live cells were spread throughout the whole granule, while the dead cells were mainly concentrated in the outer layer of the granule, and the proteins, polysaccharides and lipids were mainly located in the central regime of the granule. In conclusion, granules cultivated at high OLRs show potential for treating low-strength organic wastewater steadily under long-term operation. PMID:24520692

  8. Enhanced performance of the aerobic landfill reactor by augmentation of manganese peroxidase.

    PubMed

    Bartholameuz, E M; Hettiaratchi, J P A; Kumar, S

    2016-10-01

    The aim of the work discussed in this article was to determine the ability of an MnP augmented aerobic waste cell to reach stable conditions rapidly in terms of gas production, nutrient content and cellulose and hemicellulose to lignin ratio (C+H/L). Two types of experiments were conducted; small batch and laboratory scale lysimeter experiments. Results from batch experiments showed that enzyme added treatments have the capability to reach a stable C+H/L and lower gas production rates, faster than the treatments without enzyme addition. Enzyme enhancement of the lysimeter increased the rate of biodegradability of the waste; gas production increased more than two times and there was clear evidence of increase in nutrients (nitrogen, dissolved carbon, biological oxygen demand) in the lysimeter ​leachate. PMID:27347797

  9. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process.

    PubMed

    Alfenore, S; Cameleyre, X; Benbadis, L; Bideaux, C; Uribelarrea, J-L; Goma, G; Molina-Jouve, C; Guillouet, S E

    2004-02-01

    In order to identify an optimal aeration strategy for intensifying bio-fuel ethanol production in fermentation processes where growth and production have to be managed simultaneously, we quantified the effect of aeration conditions--oxygen limited vs non limited culture (micro-aerobic vs aerobic culture)--on the dynamic behaviour of Saccharomyces cerevisiae cultivated in very high ethanol performance fed-batch cultures. Fermentation parameters and kinetics were established within a range of ethanol concentrations (up to 147 g l(-1)), which very few studies have addressed. Higher ethanol titres (147 vs 131 g l(-1) in 45 h) and average productivity (3.3 vs 2.6 g l(-1) h(-1)) were obtained in cultures without oxygen limitation. Compared to micro-aerobic culture, full aeration led to a 23% increase in the viable cell mass as a result of the concomitant increase in growth rate and yield, with lower ethanol inhibition. The second beneficial effect of aeration was better management of by-product production, with production of glycerol, the main by-product, being strongly reduced from 12 to 4 g l(-1). We demonstrate that aeration strategy is as much a determining factor as vitamin feeding (Alfenore et al. 2002) in very high ethanol performance (147 g l(-1) in 45 h) in order to achieve a highly competitive dynamic process. PMID:12879304

  10. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from all aggregate batch vent streams in the compliance demonstration required for reactor batch... comply with the mass emission limit for reactor batch process vents. ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Aggregate batch vent stream...

  11. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females. PMID:22080322

  12. A Batch Feeder for Inhomogeneous Bulk Materials

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.

    2016-04-01

    The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.

  13. Kinetics of enzymatic hydrolysis of olive oil in batch and fed-batch systems.

    PubMed

    Cabral, Paloma Souza; Filho, Arion Zandoná; Voll, Fernando Augusto Pedersen; Corazza, Marcos Lúcio

    2014-07-01

    This work reports experimental data, kinetic modeling, and simulations of enzyme-catalyzed hydrolysis of olive oil. This reaction was performed in batch system and an ordered-sequential Bi Bi model was used to model the kinetic mechanism. A fed-batch system was proposed and experimental data were obtained and compared to the simulated values. The kinetic model used was able to correlate the experimental data, in which a satisfactory agreement between the experimental data and modeling results was obtained under different enzyme concentration and initial free water content. Therefore, the modeling allowed a better understanding of the reaction kinetics and affords a fed-batch simulation for this system. From the results obtained, it was observed that the fed-batch approach showed to be more advantageous when compared to the conventional batch system. PMID:24793196

  14. Quality and Batch-to-Batch Consistency of Original and Biosimilar Epoetin Products.

    PubMed

    Halim, Liem Andhyk; Brinks, Vera; Jiskoot, Wim; Romeijn, Stefan; Haselberg, Rob; Burns, Chris; Wadhwa, Meenu; Schellekens, Huub

    2016-02-01

    Comprehensive physicochemical characterization and biological assays are essential parts in assessing quality attributes of biologicals. Here, we compared the quality of different marketed recombinant human erythropoietin (epoetin) products: originators, Eprex and NeoRecormon as well as 2 biosimilars, Retacrit and Binocrit. In addition, assessment of batch-to-batch variability was included by collecting 2 or more batches of each product. Common assays which included sodium dodecyl sulfate-polyacrylamide gel electrophoresis, high-performance size-exclusion chromatography, asymmetrical flow field-flow fractionation, capillary zone electrophoresis, and potency testing were used. Of the tested products and among batches of single products, variations in epoetin content, isoform profiles, and potency were found. Ultimately, this study demonstrated the high quality of epoetin products with some degree of variation among products and batches, confirming the "similar but not identical" paradigm of biologicals. PMID:26869417

  15. Sample displacement batch chromatography of proteins.

    PubMed

    Kotasinska, Marta; Richter, Verena; Kwiatkowski, Marcel; Schlüter, Hartmut

    2014-01-01

    In downstream processing large scale chromatography plays an important role. For its development screening experiments followed by pilot plant chromatography are mandatory steps. Here we describe fast, simple, and inexpensive methods for establishing a preparative chromatography for the separation of complex protein mixtures, based on sample displacement batch chromatography. The methods are demonstrated by anion-exchange chromatography of a human plasma protein fraction (Cohn IV-4), including the screening step and scaling up of the chromatography by a factor of 100. The results of the screening experiments and the preparative chromatography are monitored by SDS-PAGE electrophoresis. In summary we provide a protocol which should be easily adaptable for the chromatographic large scale purification of other proteins, in the laboratory as well as in industry for commercial manufacturing. For the latter these protocols cover the initial piloting steps for establishing a sample batch chromatography based on packed columns rather than batch chromatography. PMID:24648085

  16. Intracellular azo decolorization is coupled with aerobic respiration by a Klebsiella oxytoca strain.

    PubMed

    Yu, Lei; Zhang, Xiao-Yu; Xie, Tian; Hu, Jin-Mei; Wang, Shi; Li, Wen-Wei

    2015-03-01

    Reduction of azo dye methyl red coupled with aerobic respiration by growing cultures of Klebsiella oxytoca GS-4-08 was investigated. In liquid media containing dye and 0.6 % glucose in a mineral salts base, 100 mg l(-1) of the dye are completely removed in 3 h under shaking conditions. The dye cannot be aerobically decolorized by strain GS-4-08 without extra carbon sources, indicating a co-metabolism process. Higher initial dye concentration prolonged the lag phase of the cell growth, but final cell concentrations of each batches reached a same level with range from 6.3 to 7.6 mg l(-1) after the dye adaption period. This strain showed stronger dye tolerance and decolorization ability than many reported strains. Furthermore, a new intracellular oxygen-insensitive azoreductase was isolated from this strain, and the specific activity of enzyme was 0.846 and 0.633 U mg(-1) protein in the presence of NADH and NADPH, respectively. N,N dimethyl-p-phenylenediamine and anthranilic acid were stoichiometrically released from MR dye, indicating the breakage of azo bonds accounts for the intracellular decolorization. Combining the characteristics of azoreductase, the stoichiometry of EMP, and TCA cycle, the electron transfer chain theory of aerobic respiration, and the possible mechanism of aerobic respiration coupled with azo reduction by K. oxytoca GS-4-08 are proposed. This study is expected to provide a sound theoretical basis for the development of the K. oxytoca strain in aerobic process for azo dye containing wastewaters. PMID:25343980

  17. Granulation of Non-filamentous Bulking Sludge Directed by pH, ORP and DO in an Anaerobic/Aerobic/Anoxic SBR.

    PubMed

    Zhang, Cuiya; Zhang, Hanmin; Yang, Fenglin

    2016-01-01

    In an anaerobic/aerobic/anoxic (A/O/A) sequencing batch reactor (SBR), non-filamentous bulking sludge granulated after the adjustment of cycle duration and influent composition directed by pH, oxidation-reduction potential (ORP) and dissolved oxygen (DO). The turning points and plateaux of pH, ORP and DO profiles indicated the end of biochemical reactions, such as chemical oxygen demand (COD) consumption, P release, ammonium oxidation, P uptake and denitrification. The difference of nutrient concentration between the beginning and turning points represented the actual treatment capability of the sludge. Non-filamentous bulking with SVI30 of 255 mL g(-1) resulted in a huge biomass loss. After regulation, the cycle duration was shortened from 310 to 195 min without unnecessary energy input. In addition, the settling ability was obviously improved as SVI30 reduced to 28 mL g(-1). Moreover, matured granules with an average diameter of 600 μm were obtained after 45 days, and simultaneous COD, ammonium and phosphate (P) removal was also realized after granulation. PMID:26552917

  18. The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge.

    PubMed

    Liu, Changli; Liu, Di; Qi, Yingjie; Zhang, Ying; Liu, Xi; Zhao, Min

    2016-07-01

    The main objective of this work was to investigate the influence of different oxygen supply patterns on poly-β-hydroxybutyrate (PHB) yield and bacterial community diversity. The anaerobic-aerobic (A/O) sequencing batch reactors (SBR1) and feast-famine (F/F) SBR2 were used to cultivate activated sludge to produce PHB. The mixed microbial communities were collected and analyzed after 3 months cultivation. The PHB maximum yield was 64 wt% in SBR1 and 53 wt% in SBR2. Pyrosequencing analysis 16S rRNA gene of two microbial communities indicated there were nine and four bacterial phyla in SBR1 and SBR2, respectively. Specifically, Proteobacteria (36.4 % of the total bacterial community), Actinobacteria (19.7 %), Acidobacteria (14.1 %), Firmicutes (4.4 %), Bacteroidetes (1.7 %), Cyanobacteria/Chloroplast (1.5 %), TM7 (0.8 %), Gemmatimonadetes (0.2 %), and Nitrospirae (0.1 %) were present in SBR1. Proteobacteria (94.2 %), Bacteroidetes (2.9 %), Firmicutes (1.9 %), and Actinobacteria (0.7 %) were present in SBR2. Our results indicated the SBR1 fermentation system was more stable than that of SBR2 for PHB accumulation. PMID:26996908

  19. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater.

    PubMed

    Li, Bing; Huang, Wenli; Zhang, Chao; Feng, Sisi; Zhang, Zhenya; Lei, Zhongfang; Sugiura, Norio

    2015-01-01

    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7. PMID:25855527

  20. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  1. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  2. Aerobic Dance for Children: Resources and Recommendations.

    ERIC Educational Resources Information Center

    Wood, Denise A.

    1986-01-01

    Aerobic dance classes may be safe for older children, but are inappropriate for children in the fourth grade and under. Programs for these children should emphasize creativity. Resources for program development are given. (MT)

  3. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  4. Physiological responses during aerobic dance of individuals grouped by aerobic capacity and dance experience.

    PubMed

    Thomsen, D; Ballor, D L

    1991-03-01

    This study examined the effects of aerobic capacity (peak oxygen uptake) and aerobic dance experience on the physiological responses to an aerobic dance routine. The heart rate (HR) and VO2 responses to three levels (intensities) of aerobic dance were measured in 27 women. Experienced aerobic dancers (AD) (mean peak VO2 = 42 ml.kg-1.min-1) were compared to subjects with limited aerobic dance experience of high (HI) (peak VO2 greater than 35 ml.kg-1.min-1) and low (LO) (peak VO2 less than 35 ml.kg-1.min-1) aerobic capacities. The results indicated the LO group exercised at a higher percentage of peak heart rate and peak VO2 at all three dance levels than did either the HI or AD groups (HI = AD). Design of aerobic dance routines must consider the exercise tolerance of the intended audience. In mixed groups, individuals with low aerobic capacities should be shown how and encouraged to modify the activity to reduce the level of exertion. PMID:2028095

  5. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  6. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    PubMed

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. PMID:20541632

  7. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source.

    PubMed

    Wang, Dongbo; Li, Xiaoming; Yang, Qi; Zheng, Wei; Wu, Yan; Zeng, Tianjing; Zeng, Guangming

    2012-08-01

    Our previous studies proved that biological phosphorus removal (BPR) could be achieved in an aerobic/extended-idle (AEI) process employing two typical substrates of glucose and acetate as the carbon sources. This paper further evaluated the feasibility of another important substrate, propionate, serving as the carbon source for BPR in the AEI process, and compared the BPR performance between the AEI and anaerobic/oxic (A/O) processes. Two sequencing batch reactors (SBRs) were operated, respectively, as the AEI and A/O regimes for BPR using propionate as the sole substrate. The results showed that the AEI-reactor removed 2.98 ± 0.04-4.06 ± 0.06 mg of phosphorus per g of total suspended solids during the course of the steady operational trial, and the phosphorus content of the dried sludge was reached 8.0 ± 0.4% after 56-day operation, demonstrating the good performance of phosphorus removal. Then, the efficiencies of BPR and the transformations of the intracellular storages were compared between two SBRs. It was observed that the phosphorus removal efficiency was maintained around 95% in the AEI-reactor, and about 83% in the A/O-reactor, although the latter showed much greater transformations of both polyhydroxyalkanoates and glycogen. The facts clearly showed that BPR could be enhanced by the AEI regime using propionate as the carbon source. Finally, the mechanisms for the propionate fed AEI-reactor improving BPR were investigated. It was found that the sludge cultured by the AEI regime had more polyphosphate containing cells than that by the A/O regime. Further investigation revealed that the residual nitrate generated in the last aerobic period was readily deteriorated BPR in the A/O-SBR, but a slight deterioration was observed in the AEI-SBR. Moreover, the lower glycogen transformation measured in the AEI-SBR indicated that the biomass cultured by the AEI regime contained less glycogen accumulating organisms activities than that by the A/O regime. PMID

  8. JOB BUILDER remote batch processing subsystem

    NASA Technical Reports Server (NTRS)

    Orlov, I. G.; Orlova, T. L.

    1980-01-01

    The functions of the JOB BUILDER remote batch processing subsystem are described. Instructions are given for using it as a component of a display system developed by personnel of the System Programming Laboratory, Institute of Space Research, USSR Academy of Sciences.

  9. RLIN Product Batch: Fundamental Design Concepts.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1984-01-01

    Considers fundamental decisions that shaped the output products of Research Libraries Information Network. Product Batch was designed using single data definition (RMARC) combined with standard PL/I, modular programing techniques, program documentation. Choice of software and programing languages, other design aspects (accountability, count…

  10. A phaseguided passive batch microfluidic mixing chamber for isothermal amplification.

    PubMed

    Hakenberg, Sydney; Hügle, Matthias; Weidmann, Manfred; Hufert, Frank; Dame, Gregory; Urban, Gerald A

    2012-11-01

    With a view to developing a rapid pathogen detection system utilizing isothermal nucleic acid amplification, the necessary micro-mixing step is innovatively implemented on a chip. Passive laminar flow mixing of two 6.5 μl batches differing in viscosity is performed within a microfluidic chamber. This is achieved with a novel chip space-saving phaseguide design which allows, for the first time, the complete integration of a passive mixing structure into a target chamber. Sequential filling of batches prior to mixing is demonstrated. Simulation predicts a reduction of diffusive mixing time from hours down to one minute. A simple and low-cost fabrication method is used which combines dry film resist technology and direct wafer bonding. Finally, an isothermal nucleic acid detection assay is successfully implemented where fluorescence results are measured directly from the chip after a one minute mixing sequence. In combination with our previous work, this opens up the way towards a fully integrated pathogen detection system in a lab-on-a-chip format. PMID:22952055

  11. Chemotactic Motility of Pseudomonas fluorescens F113 under Aerobic and Denitrification Conditions

    PubMed Central

    Redondo-Nieto, Miguel; Rivilla, Rafael; Martín, Marta

    2015-01-01

    The sequence of the genome of Pseudomonas fluorescens F113 has shown the presence of multiple traits relevant for rhizosphere colonization and plant growth promotion. Among these traits are denitrification and chemotactic motility. Besides aerobic growth, F113 is able to grow anaerobically using nitrate and nitrite as final electron acceptors. F113 is able to perform swimming motility under aerobic conditions and under anaerobic conditions when nitrate is used as the electron acceptor. However, nitrite can not support swimming motility. Regulation of swimming motility is similar under aerobic and anaerobic conditions, since mutants that are hypermotile under aerobic conditions, such as gacS, sadB, kinB, algU and wspR, are also hypermotile under anaerobic conditions. However, chemotactic behavior is different under aerobic and denitrification conditions. Unlike most pseudomonads, the F113 genome encode three complete chemotaxis systems, Che1, Che2 and Che3. Mutations in each of the cheA genes of the three Che systems has shown that the three systems are functional and independent. Mutation of the cheA1 gene completely abolished swimming motility both under aerobic and denitrification conditions. Mutation of the cheA2 gene, showed only a decrease in swimming motility under both conditions, indicating that this system is not essential for chemotactic motility but is necessary for optimal motility. Mutation of the cheA3 gene abolished motility under denitrification conditions but only produced a decrease in motility under aerobic conditions. The three Che systems proved to be implicated in competitive rhizosphere colonization, being the cheA1 mutant the most affected. PMID:26161531

  12. Variation of RNA Quality and Quantity Are Major Sources of Batch Effects in Microarray Expression Data

    PubMed Central

    Fasold, Mario; Binder, Hans

    2014-01-01

    The great utility of microarrays for genome-scale expression analysis is challenged by the widespread presence of batch effects, which bias expression measurements in particular within large data sets. These unwanted technical artifacts can obscure biological variation and thus significantly reduce the reliability of the analysis results. It is largely unknown which are the predominant technical sources leading to batch effects. We here quantitatively assess the prevalence and impact of several known technical effects on microarray expression results. Particularly, we focus on important factors such as RNA degradation, RNA quantity, and sequence biases including multiple guanine effects. We find that the common variation of RNA quality and RNA quantity can not only yield low-quality expression results, but that both factors also correlate with batch effects and biological characteristics of the samples.

  13. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    PubMed

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. PMID:24784454

  14. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. PMID:24045213

  15. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures.

    PubMed

    Winkler, M-K H; Kleerebezem, R; van Loosdrecht, M C M

    2012-01-01

    Anaerobic ammonium oxidation, nitrification and removal of COD was studied at ambient temperature (18 °C ± 3) in an anoxic/aerobic granular sludge reactor during 390 days. The reactor was operated in a sequencing fed batch mode and was fed with acetate and ammonium containing medium with a COD/N ratio of 0.5 [g COD/gN]. During influent addition, the medium was mixed with recycled effluent which contained nitrate in order to allow acetate oxidation and nitrate reduction by anammox bacteria. In the remainder of the operational cycle the reactor was aerated and controlled at a dissolved oxygen concentration of 1.5 mg O(2)/l in order to establish simultaneous nitritation and Anammox. Fluorescent in-situ hybridization (FISH) revealed that the dominant Anammox bacterial population shifted toward Candidatus "Brocadia fulgida" which is known to be capable of organotrophic nitrate reduction. The reactor achieved stable volumetric removal rates of 900 [g N(2)-N/m(3)/day] and 600 [g COD/m(3)/day]. During the total experimental period Anammox bacteria remained dominant and the sludge production was 5 fold lower than what was expected by heterotrophic growth suggesting that consumed acetate was not used by heterotrophs. These observations show that Anammox bacteria can effectively compete for COD at ambient temperatures and can remove effectively nitrate with a limited amount of acetate. This study indicates a potential successful route toward application of Anammox in granular sludge reactors on municipal wastewater with a limited amount of COD. PMID:22094002

  16. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems.

    PubMed

    Flynn, James D; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F; Klotz, Martin G; Knief, Claudia; Op den Camp, Huub J M; Jetten, Mike S M; Khmelenina, Valentina N; Trotsenko, Yuri A; Murrell, J Colin; Semrau, Jeremy D; Svenning, Mette M; Stein, Lisa Y; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A; Kalyuzhnaya, Marina G

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  17. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems

    PubMed Central

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Khmelenina, Valentina N.; Trotsenko, Yuri A.; Murrell, J. Colin; Semrau, Jeremy D.; Svenning, Mette M.; Stein, Lisa Y.; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A.

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  18. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon.

    PubMed

    Hernández-Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2011-04-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100-1600 μgL(-1)) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL(-1), reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100-1600 μgL(-1) at a PAC dose of 1.25 gL(-1) and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1-10 μgL(-1) at a flow of 0.5 bed volumes (BV)h(-1) showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh(-1). Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10-100 μgL(-1), efficient removal to below limits of quantification

  19. Taxonomy of Aerobic Marine Eubacteria

    PubMed Central

    Baumann, Linda; Baumann, Paul; Mandel, M.; Allen, Richard D.

    1972-01-01

    Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are

  20. Taxonomy of aerobic marine eubacteria.

    PubMed

    Baumann, L; Baumann, P; Mandel, M; Allen, R D

    1972-04-01

    Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are

  1. Sorption and degradation of bisphenol A by aerobic activated sludge.

    PubMed

    Zhao, Junming; Li, Yongmei; Zhang, Chaojie; Zeng, Qingling; Zhou, Qi

    2008-06-30

    Laboratory-scale batch experiments were conducted to investigate the sorption and degradation of bisphenol A (BPA) at microg/L range in an aerobic activated sludge system. The sorption isotherms and thermodynamics indicated that the sorption of BPA on sludge was mainly a physical process in which partitioning played a dominating role. The values of sorption coefficient Koc were between 621 and 736 L/kg in the temperature range of 10-30 degrees C. Both mixed liquor suspended solid (MLSS) and temperature influenced BPA sorption on sludge. The degradation of BPA by acclimated activated sludge could be described by first-order reaction equation with the first-order degradation rate constant of 0.80 h(-1) at 20 degrees C. The decrease of initial COD concentration and the increase of MLSS concentration and temperature enhanced BPA degradation rate. The removal of BPA in the activated sludge system was characterized by a quick sorption on the activated sludge and subsequent biodegradation. PMID:18179868

  2. Concentrations and fate of sugars, proteins and lipids during domestic and agro-industrial aerobic treatment.

    PubMed

    Gorini, Dominique; Choubert, Jean-Marc; le Pimpec, Paul; Heduit, Alain

    2011-01-01

    This work investigates the composition and the fate of sugars, lipids, proteins, amino acids under aerobic conditions for 13 domestic and 4 agro-industrial wastewaters, sampled before and after treatment. The rates of aerobic degradation were moreover studied with a 21-day continuous aeration batch test. It is shown that the sum of the biochemical forms represented 50 to 85% of the total chemical oxygen demand (COD). Lipids represented the half of the identified COD; sugars and proteins correspond to a quarter of the identified COD. Aerobic processes provided an increase of the relative fractions for proteins, whereas the ones of lipids decreased and sugars fraction remains stable. For the wastewaters released from cheese dairy (lipid-rich) and slaughterhouses (protein/lipid-rich), the dissolved phase after biological treatment is composed of proteins whereas the particulate one is composed of lipids. After the 21-day test, the concentration in proteins was nearby 10 mg/L. The results should be used for operations of WWTP to detect when a dysfunction is about to occur. They can be used to predict the concentrations in the treated water when upgrading an existing municipal plant that will admit agro-industrial discharge. PMID:21866767

  3. Aerobic thermophilic treatment of sewage sludge at pilot plant scale. 1. Operating conditions.

    PubMed

    Ponti, C; Sonnleitner, B; Fiechter, A

    1995-01-15

    The aerobic thermophilic treatment process of sewage sludge was studied at different bioreactor scales in a pilot plant installation. Since, for a satisfactory sludge disinfection, the Swiss legislation requires minimal incubation times of all volume elements, the bioreactors were operated in repetitive batch mode (draw and fill). Different retention times and frequencies of the volume changes were applied in order to prove the capability of the particular operation modes in assuring high degradative potential. The main enzymatic activity involved during the aerobic treatment was proteolysis: the RQ values ranged between 0.8 and 0.9 depending on the applied operating conditions. Although not in a linear manner, the efficiency of the microflora decreased as the bioreactor scale increased, when this increase corresponded with a reduction of the specific power input. The sludge oxidation rates can be tuned by some process operating conditions such as the volume change frequency, the changed volume quantities and the retention times. It was possible to improve the microbial degradative efficiency by an increased frequency of the changes, while the mean retention time influenced in particular the ultimate product quality, described as residual organic matter content of the sludge. The microflora present was also satisfactorily active at mean hydraulic retention times of less than 10 h. The organic matter concentration of the inlet sewage sludge plays an important role: it influences the aerobic degradation process positively. PMID:7765808

  4. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  5. Production of fructosyltransferase by Aureobasidium sp. ATCC 20524 in batch and two-step batch cultures.

    PubMed

    Salinas, Martín A; Perotti, Nora I

    2009-01-01

    A comparison of fructosyltransferase (EC 2.4.1.9) production by Aureobasidium sp. ATCC 20524 in batch and two step batch cultures was investigated in a 1-l stirred tank reactor using a sucrose supply of 200 g/l. Results showed that the innovative cultivation in two step of Aureobasidium sp. produced more fructosyltransferase (FFase) than the single batch culture at the same sucrose concentration with a maximal enzyme production of 523 U/ml, which was 80.5% higher than the one obtained in the batch culture. The production of fructooligosaccharides (FOSs) was also analyzed; their concentration reached a maximum value of 160 g/l the first day in the two-step culture and 127 g/l in the single-batch mode. The use of the two-step batch culture with Aureobasidium sp. ATCC 20524 in allowing the microorganism to grow up prior to the induction of sucrose (second step), proved to be a powerful method for producing fructosyltransferase and FOSs. PMID:18810518

  6. Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate.

    PubMed

    Vu, Khanh Dang; Tyagi, Rajeshwar Dayal; Valéro, José R; Surampalli, Rao Y

    2010-08-01

    Bacillus thuringiensis var. kurstaki biopesticide was produced in batch and fed-batch fermentation modes using starch industry wastewater as sole substrate. Fed-batch fermentation with two intermittent feeds (at 10 and 20 h) during the fermentation of 72 h gave the maximum delta-endotoxin concentration (1,672.6 mg/L) and entomotoxicity (Tx) (18.5 x 10(6) SBU/mL) in fermented broth which were significantly higher than maximum delta-endotoxin concentration (511.0 mg/L) and Tx (15.8 x 10(6) SBU/mL) obtained in batch process. However, fed-batch fermentation with three intermittent feeds (at 10, 20 and 34 h) of the fermentation resulted in the formation of asporogenous variant (Spo-) from 36 h to the end of fermentation (72 h) which resulted in a significant decrease in spore and delta-endotoxin concentration and finally the Tx value. Tx of suspended pellets (27.4 x 10(6) SBU/mL) obtained in fed-batch fermentation with two feeds was the highest value as compared to other cases. PMID:19888605

  7. Using Forensics to Untangle Batch Effects in TCGA Data - TCGA

    Cancer.gov

    Rehan Akbani, Ph.D., and colleagues at the University of Texas MD Anderson Cancer Center developed a tool called MBatch to detect, diagnose, and correct batch effects in TCGA data. Read more about batch effects in this Case Study.

  8. 21 CFR 80.38 - Treatment of batch after certification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Treatment of batch after certification. 80.38... COLOR ADDITIVE CERTIFICATION Certification Procedures § 80.38 Treatment of batch after certification. (a... cosmetic....

  9. Job Scheduling Under the Portable Batch System

    NASA Technical Reports Server (NTRS)

    Henderson, Robert L.; Woodrow, Thomas S. (Technical Monitor)

    1995-01-01

    The typical batch queuing system schedules jobs for execution by a set of queue controls. The controls determine from which queues jobs may be selected. Within the queue, jobs are ordered first-in, first-run. This limits the set of scheduling policies available to a site. The Portable Batch System removes this limitation by providing an external scheduling module. This separate program has full knowledge of the available queued jobs, running jobs, and system resource usage. Sites are able to implement any policy expressible in one of several procedural language. Policies may range from "bet fit" to "fair share" to purely political. Scheduling decisions can be made over the full set of jobs regardless of queue or order. The scheduling policy can be changed to fit a wide variety of computing environments and scheduling goals. This is demonstrated by the use of PBS on an IBM SP-2 system at NASA Ames.

  10. A New Dynamic Accumulator for Batch Updates

    NASA Astrophysics Data System (ADS)

    Wang, Peishun; Wang, Huaxiong; Pieprzyk, Josef

    A dynamic accumulator is an algorithm, which gathers together a large set of elements into a constant-size value such that for a given element accumulated, there is a witness confirming that the element was indeed included into the value, with a property that accumulated elements can be dynamically added and deleted into/from the original set such that the cost of an addition or deletion operation is independent of the number of accumulated elements. Although the first accumulator was presented ten years ago, there is still no standard formal definition of accumulators. In this paper, we generalize formal definitions for accumulators, formulate a security game for dynamic accumulators so-called Chosen Element Attack (CEA), and propose a new dynamic accumulator for batch updates based on the Paillier cryptosystem. Our construction makes a batch of update operations at unit cost. We prove its security under the extended strong RSA (es-RSA) assumption.

  11. Capacitated max -Batching with Interval Graph Compatibilities

    NASA Astrophysics Data System (ADS)

    Nonner, Tim

    We consider the problem of partitioning interval graphs into cliques of bounded size. Each interval has a weight, and the weight of a clique is the maximum weight of any interval in the clique. This natural graph problem can be interpreted as a batch scheduling problem. Solving a long-standing open problem, we show NP-hardness, even if the bound on the clique sizes is constant. Moreover, we give a PTAS based on a novel dynamic programming technique for this case.

  12. Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater.

    PubMed

    Lee, Chung-Seop; Le Thanh, Thao; Kim, Eun-Ju; Gong, Jianyu; Chang, Yoon-Young; Chang, Yoon-Seok

    2014-11-01

    Oxygen-releasing alginate beads (ORABs), a new concept of oxygen-releasing compounds (ORCs) designed to overcome some limitations regarding the fast oxygen release rate and the high pH equilibrium of ORCs, were fabricated to promote the stimulation of aerobic biodegradation in anaerobic groundwater. Slow oxygen-releasing rate and maintenance of constant pH were achieved by changing the parameters (ionic radius and valence) related to the cross-linking ions composing ORABs, and the best results were obtained for ORABs cross-linked with Al (Al-ORABs). Furthermore, the mechanism of the improved aerobic biodegradation using Al-ORABs under oxygen-limiting groundwater conditions was elucidated in batch and column studies with 1,4-dioxane and Mycrobacterium sp. PH-06 as a model contaminant and aerobic microbes, respectively. Maximum 1,4-dioxane degradations of 99% and 68.1% were achieved when Al-ORABs were applied in batch and column conditions, respectively, whereas 34.3% and 18% of 1,4-dioxane were degraded without Al-ORABs in batch and column conditions, respectively. PMID:25189509

  13. Analytical model of batch magnetophoretic separation

    NASA Astrophysics Data System (ADS)

    Kashevsky, S. B.; Kashevsky, B. E.

    2013-06-01

    Magnetophoresis (the motion of magnetic particles driven by the nonuniform magnetic field), that for a long time has been used for extracting magnetically susceptible objects in diverse industries, now attracts interest to develop more sophisticated microfluidic and batch techniques for separation and manipulation of biological particles, and magnetically assisted absorption and catalysis in organic chemistry, biochemistry, and petrochemistry. A deficiency of magnetic separation science is the lack of simple analytical models imitating real processes of magnetic separation. We have studied the motion of superparamagnetic (generally, soft magnetic) particles in liquid in the three-dimensional field of the diametrically polarized permanent cylindrical magnet; this geometry is basically representative of the batch separation mode. In the limit of the infinite-length magnet, we found the particle magnetophoresis proceeds independently of the magnet polarization direction, following the simple analytical relation incorporating all the relevant physical and geometrical parameters of the particle-magnet system. In experiments with a finite-length magnet we have shown applicability of the developed theory as to analyze the performance of the real batch separation systems in the noncooperative mode, and finally, we have presented an example of such analysis for the case of immunomagnetic cell separation and developed a criterion of the model limitation imposed by the magnetic aggregation of particles.

  14. The synthesis of a bifunctional copper metal organic framework and its application in the aerobic oxidation/Knoevenagel condensation sequential reaction.

    PubMed

    Miao, Zongcheng; Luan, Yi; Qi, Chao; Ramella, Daniele

    2016-09-21

    A novel one-pot aerobic oxidation/Knoevenagel condensation reaction system was developed employing a Cu(ii)/amine bifunctional, basic metal-organic framework (MOF) as the catalyst. The sequential aerobic alcohol oxidation/Knoevenagel condensation reaction was efficiently promoted by the Cu3TATAT MOF catalyst in the absence of basic additives. The benzylidenemalononitrile product was produced in high yield and selectivity from an inexpensive benzyl alcohol starting material under an oxygen atmosphere. The role of the basic functionality was studied to demonstrate its role in the aerobic oxidation and Knoevenagel condensation reactions. The reaction progress was monitored in order to identify the reaction intermediate and follow the accumulation of the desired product. Lastly, results showed that the yield was not significantly compromised by the reuse of a batch of catalyst, even after more than five cycles. PMID:27523776

  15. Recent volcanic history of Irazu volcano, Costa Rica: alternation and mixing of two magma batches, and pervasive mixing

    USGS Publications Warehouse

    Alvarado, Guillermo E.; Carr, Michael J.; Turrin, Brent D.; Swisher, Carl C., III; Schmincke, Hans-Ulrich; Hudnut, Kenneth W.

    2006-01-01

    40Ar/39Ar dates, field observations, and geochemical data are reported for Irazú volcano, Costa Rica. Volcanism dates back to at least 854 ka, but has been episodic with lava shield construction peaks at ca. 570 ka and 136–0 ka. The recent volcanic record on Irazú volcano comprises lava flows and a variety of Strombolian and phreatomagmatic deposits, with a long-term trend toward more hydrovolcanic deposits. Banded scorias and hybridized rocks reflect ubiquitous magma mixing and commingling. Two distinct magma batches have been identified. One magma type or batch, Haya, includes basalt with higher high field strength (HFS) and rare-earth element contents, suggesting a lower degree melt of a subduction modified mantle source. The second batch, Sapper, has greater enrichment of large ion lithophile elements (LILE) relative to HFS elements and rare-earth elements, suggesting a higher subduction signature. The recent volcanic history at Irazú records two and one half sequences of the following pattern: eruptions of the Haya batch; eruptions of the Sapper batch; and finally, an unusually clear unconformity, indicating a pause in eruptions. In the last two sequences, strongly hybridized magma erupted after the eruption of the Haya batch. The continuing presence of two distinct magma batches requires two active magma chambers. The common occurrence of hybrids is evidence for a small, nearer to the surface chamber for mixing the two batches. Estimated pre-eruptive temperatures based on two-pyroxene geothermometry range from ∼1000–1176 °C in basalts to 922 °C in hornblende andesites. Crystallization occurred mainly between 4.6 and 3 kb as measured by different geobarometers. Hybridized rocks show intermediate pressures and temperatures. High silica magma occurs in very small volumes as banded scorias but not as lava flows. Although eruptions at Irazú are not often very explosive, the pervasiveness of magma mixing presents the danger of larger, more explosive

  16. EMISSIONS REDUCTION OF COMMERCIAL GLASSMAKING USING SELECTIVE BATCHING

    EPA Science Inventory

    The vertical bubble populations of selectively batched melts were compared to the vertical bubble populations of conventionally batched melts. “Conventional” refers to the use of a powdered batch. Bubble position and diameter measurements were taken on 24 crucibles...

  17. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Reactor batch process vent provisions... Resins § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor batch process vents located at new or existing affected sources shall comply with paragraph...

  18. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions...

  19. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions...

  20. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions...

  1. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Reactor batch process vent provisions... Resins § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor batch process vents located at new or existing affected sources shall comply with paragraph...

  2. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  3. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  4. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  5. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  6. 7 CFR 58.728 - Cooking the batch.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the...

  7. 7 CFR 58.728 - Cooking the batch.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the...

  8. 7 CFR 58.728 - Cooking the batch.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the...

  9. 7 CFR 58.728 - Cooking the batch.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the...

  10. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  11. 21 CFR 80.38 - Treatment of batch after certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Treatment of batch after certification. 80.38... COLOR ADDITIVE CERTIFICATION Certification Procedures § 80.38 Treatment of batch after certification. (a) Immediately upon notification that a batch of color additive has been certified, the person...

  12. 21 CFR 80.37 - Treatment of batch pending certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Treatment of batch pending certification. 80.37... COLOR ADDITIVE CERTIFICATION Certification Procedures § 80.37 Treatment of batch pending certification. Immediately after the sample that is to accompany a request for certification of a batch of color additive...

  13. 40 CFR 63.1321 - Batch process vents provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents provisions. 63.1321... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1321 Batch process vents provisions. (a) Batch process vents. Except as specified in paragraphs (b) through (d) of this...

  14. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  15. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  16. [Anaerobic-aerobic infection in acute appendicitis].

    PubMed

    Mamchich, V I; Ulitovskiĭ, I V; Savich, E I; Znamenskiĭ, V A; Beliaeva, O A

    1998-01-01

    362 patients with acute appendicitis (AA) were examined. For microbiological diagnosis of aerobic and anaerobic nonclostridial microflora we used complex accelerated methods (including evaluation of gram-negative microorganisms in comparison with tinctorial-fermentative method of differential staining according to oxygen sensitivity of catalasopositive together with aerobic and cathalasonegative anaerobic microorganisms) as well as complete bacteriologic examination with determination of sensitivity of the above microorganism to antimicrobial remedies. High rate of aerobic-anaerobic microbial associations and substantial identity of microflora from appendicis and exudate from abdominal cavity was revealed, which evidenced the leading role of endogenous microorganisms in etiology and pathogenesis of AA and peritonitis i. e. autoinfection. In patients with destructive forms of AA, complicated by peritonitis it is recommended to use the accelerated method of examination of pathologic material as well as the complete scheme of examination with the identification of the isolated microorganisms and the correction of antibiotic treatment. PMID:9511291

  17. Aerobic biodegradation of trichloroethene without auxiliary substrates.

    PubMed

    Schmidt, Kathrin R; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas

    2014-08-01

    Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites. PMID:24793109

  18. Semiautomated, Reproducible Batch Processing of Soy

    NASA Technical Reports Server (NTRS)

    Thoerne, Mary; Byford, Ivan W.; Chastain, Jack W.; Swango, Beverly E.

    2005-01-01

    A computer-controlled apparatus processes batches of soybeans into one or more of a variety of food products, under conditions that can be chosen by the user and reproduced from batch to batch. Examples of products include soy milk, tofu, okara (an insoluble protein and fiber byproduct of soy milk), and whey. Most processing steps take place without intervention by the user. This apparatus was developed for use in research on processing of soy. It is also a prototype of other soy-processing apparatuses for research, industrial, and home use. Prior soy-processing equipment includes household devices that automatically produce soy milk but do not automatically produce tofu. The designs of prior soy-processing equipment require users to manually transfer intermediate solid soy products and to press them manually and, hence, under conditions that are not consistent from batch to batch. Prior designs do not afford choices of processing conditions: Users cannot use previously developed soy-processing equipment to investigate the effects of variations of techniques used to produce soy milk (e.g., cold grinding, hot grinding, and pre-cook blanching) and of such process parameters as cooking times and temperatures, grinding times, soaking times and temperatures, rinsing conditions, and sizes of particles generated by grinding. In contrast, the present apparatus is amenable to such investigations. The apparatus (see figure) includes a processing tank and a jacketed holding or coagulation tank. The processing tank can be capped by either of two different heads and can contain either of two different insertable mesh baskets. The first head includes a grinding blade and heating elements. The second head includes an automated press piston. One mesh basket, designated the okara basket, has oblong holes with a size equivalent to about 40 mesh [40 openings per inch (.16 openings per centimeter)]. The second mesh basket, designated the tofu basket, has holes of 70 mesh [70 openings

  19. Effect of temperature on solids reductions and on degradation kinetics during thermophilic aerobic digestion of a simulated sludge.

    PubMed

    Toki, C J

    2008-07-01

    Laboratory-scale experiments were conducted to determine the influence of higher thermophilic temperatures on thermophilic aerobic digestion treatment of a simulated sludge. The efficiency of the process was evaluated in respect of solids removal and degradation rate constants at four thermophilic temperatures. Batch runs were operated at a retention time of one day and temperatures of 65, 70, 72 and 75 degrees C. The results indicated that temperature increase did not impart any significant benefits to the digestion operation in terms of suspended solids and biochemichal oxygen demand reduction. The findings from this research also suggested that the treatment would not appear to benefit from temperatures higher than 65 degrees C, as classically suggested by Van't Hoff-Arrhenius. Therefore, increase of thermophilic temperature in the tested 65-75 degrees C range does not enhance the efficiency of thermophilic, aerobic sludge digestion treatment. PMID:18697516

  20. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    PubMed Central

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  1. SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

    SciTech Connect

    Lambert, D; Michael Stone, M; Bradley Pickenheim, B; David Best, D; David Koopman, D

    2008-10-03

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass. Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering. There are several parameters that are noteworthy concerning SB5 sludge: (1) This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution. (2) The sludge is high in mercury

  2. [Analysis on Diversity of Denitrifying Microorganisms in Sequential Batch Bioreactor Landfill].

    PubMed

    Li, Wei-Hua; Sun, Ying-Jie; Liu, Zi-Liang; Ma, Qiang; Yang, Qiang

    2016-01-15

    A denitrification functional microorganism gene clone library (amoA, nosZ) and the PCR-RFLP technology was constructed to investigate the microbial diversity of denitrifying microorganisms in the late period of stabilization of sequential batch bioreactor landfill. The results indicated that: the bacterial diversity of ammonia oxidizing bacteria in the aged refuse reactor was very high, and most of them were unknown groups, also, all bacteria were unculturable or had not been isolated. The phylogenetic analysis suggested that the dominant ammonia oxidizing bacteria were presumably Nitrosomonas of 6-Proteobacteria. The diversity of denitrifying bacteria in fresh refuse reactor was abundant, which mainly included Thauera and Thiobacillus of 6-Proteobacteria. As Thauera sp. has the denitrification characteristics under the condition of aerobic while Thiobacillus denitrificans has the autotrophic denitrification characteristics, it was speculated that aerobic denitrification and autotrophic denitrification might be the main pathways for nitrogen removal in the fresh refuse reactor at the late period of stabilization. Additionally, another group in the gene clone library of denitrifying bacteria may be classified as Bradyrhizobiaceae of alpha-Proteobacteria. PMID:27078976

  3. INACTIVATION OF ENTERIC PATHOGENS DURING AEROBIC DIGESTION OF WASTEWATER SLUDGE

    EPA Science Inventory

    The effects of aerobic and anaerobic digestion on enteric viruses, enteric bacteria, total aerobic bacteria, and intestinal parasites were studied under laboratory and field conditions. Under laboratory conditions, the temperature of the sludge digestion was the major factor infl...

  4. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities. PMID:24973773

  5. Simultaneous nitrification and denitrification by EPSs in aerobic granular sludge enhanced nitrogen removal of ammonium-nitrogen-rich wastewater.

    PubMed

    Yan, Lilong; Zhang, Shaoliang; Hao, Guoxin; Zhang, Xiaolei; Ren, Yuan; Wen, Yan; Guo, Yihan; Zhang, Ying

    2016-02-01

    In this study, role of extracellular polymeric substances (EPSs) in enhancing nitrogen-removal from ammonium-nitrogen-rich wastewater using aerobic granular sludge (AGS) technology were analyzed. AGS enabled ammonium oxidation and denitrification to occur simultaneously. Air stripping and simultaneous nitrification-denitrification contributed to total-nitrogen removal. Clone-library analysis revealed that close relatives of Nitrosomonas eutropha and heterotrophic denitrifiers were dominant in the AGS, whereas anammox bacteria were not detected. EPSs adsorption of ammonium, nitrite, and nitrate nitrogen results in improved removal of nitrogen in batch experiments. PMID:26706722

  6. Anaerobic/aerobic treatment of selected azo dyes in wastewater

    SciTech Connect

    Seshadri, S.; Bishop, P.L. . Dept. of Civil and Environmental Engineering); Agha, A.M. . Faculty of Civil Engineering)

    1994-01-01

    Azo dyes represent the largest class of dyes in use today. Current environmental concern with these dyes revolves around the potential carcinogenic health risk presented by these dyes or their intermediate biodegradation products when exposed to microflora in the human digestive tract. These dyes may build up in the environment, since many wastewater treatment plants allow these dyes to pass through the system virtually untreated. The initial step in the degradation of these dyes is the cleavage of the Azo bond. This cleavage is often impossible under aerobic conditions, but has been readily demonstrated under anaerobic conditions. The focus of the study was to determine the feasibility of using an anaerobic fluidized-bed reactor to accomplish this cleavage. The effects of typical process variables such as hydraulic retention time (HRT), influent dye concentration levels, and degree of bed fluidization on removal efficiencies were also studied. The four dyes selected for this study were Acid-Orange 7, Acid-Orange 8, Acid-Orange 10, and Acid-Red 14. The effectiveness of using a bench-scale-activated sludge reactor as a sequenced second stage was also examined. Results indicate that nearly complete cleavage of the Azo bond is easily accomplished for each of the four dyes under hydraulic retention times of either 12 or 24 h. Initial results indicate, though, that aromatic amine by-products remain. The sequenced second stage was able to remove the remaining Chemical Oxygen Demand (COD) load to acceptable levels. Work is presently underway to determine the face of the anaerobic by-products in the aerobic second stage.

  7. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  8. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  9. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  10. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  11. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  12. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  13. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  14. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

  15. A proposed aerobic granules size development scheme for aerobic granulation process.

    PubMed

    Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini

    2015-04-01

    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme. PMID:25661308

  16. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    PubMed

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-01

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct. PMID:26698150

  17. Batch and continuous recrystallization of secondary explosives

    SciTech Connect

    Moodie, W.J.; Bennett, J.E.

    1984-03-09

    Explosive powders are recrystallized at Mound for use in development and production programs of the US Department of Energy. Batch and continuous precipitation units are operated on a small scale to produce powders of different crystal morphology over a wide range of specific surface areas. The equipment and procedures are described for both methods of operation. Safety aspects, and features designed to optimize product purity and freedom from contamination, are discussed. Experimental studies are conducted to determine the effects of varying the process parameters. The results are used to select the operating conditions to make powders for specific applications.

  18. Characterization of Three LYSO Crystal Batches

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Mao, Rihua; Zhang, Liyuan; Zhu, Ren-Yuan

    2015-02-01

    We report on three LYSO crystal batches characterized at the Caltech crystal laboratory for future HEP experiments: Twenty-five 20 cm long crystals for the SuperB experiment; twelve 13 cm long crystals for the Mu2e experiment and 623 14×14×1.5 mm plates with five holes for a LYSO/W Shashlik matrix for a beam test at Fermilab. Optical and scintillation properties measured are longitudinal Transmittance, light output and FWHM energy resolution. Correlations between these properties are also investigated.

  19. Characterization of three LYSO crystal batches

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Mao, Rihua; Zhang, Liyuan; Zhu, Ren-Yuan

    2015-06-01

    We report on three LYSO crystal batches characterized at the Caltech crystal laboratory for future HEP experiments: 25 20 cm long crystals for the SuperB experiment; 12 13 cm long crystals for the Mu2e experiment and 623 14×14×1.5 mm3 plates with five holes for a LYSO/W Shashlik matrix for a beam test at Fermilab. Optical and scintillation properties measured are longitudinal transmittance, light output and FWHM energy resolution. Correlations between these properties are also investigated.

  20. Medication Waste Reduction in Pediatric Pharmacy Batch Processes

    PubMed Central

    Veltri, Michael A.; Hamrock, Eric; Mollenkopf, Nicole L.; Holt, Kristen; Levin, Scott

    2014-01-01

    OBJECTIVES: To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. METHODS: A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. RESULTS: Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. CONCLUSIONS: The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste. PMID:25024671

  1. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  2. [Research advances in denitrogenation characteristics of aerobic denitrifiers].

    PubMed

    Liang, Shu-Cheng; Zhao, Min; Lu, Lei; Zhao, Li-Yan

    2010-06-01

    The discovery of aerobic denitrifiers is the enrichment and breakthrough of traditional denitrification theory. Owing to their unique superiority in denitrogenation, aerobic denitrifiers have become a hotspot in the study of bio-denitrogenation of waste water. Under aerobic conditions, the aerobic denitrifiers can utilize organic carbon sources for their growth, and produce N2 from nitrate and nitrite. Most of the denitrifiers can also proceed with heterotrophic nitrification simultaneously, transforming NH4(+)-N to gaseous nitrogen. In this paper, the denitrogenation characteristics and action mechanisms of some isolated aerobic denitrifiers were discussed from the aspects of electron theory and denitrifying enzyme system. The effects of the environmental factors DO, carbon sources, and C/N on the denitrogenation process of aerobic denitrifiers were analyzed, and the screening methods as well as the present and potential applications of aerobic denitrifiers in wastewater treatment were described and discussed. PMID:20873638

  3. Batch-to-batch pharmacokinetic variability confounds current bioequivalence regulations: A dry powder inhaler randomized clinical trial.

    PubMed

    Burmeister Getz, E; Carroll, K J; Jones, B; Benet, L Z

    2016-09-01

    Current pharmacokinetic (PK) bioequivalence guidelines do not account for batch-to-batch variability in study design or analysis. Here we evaluate the magnitude of batch-to-batch PK variability for Advair Diskus 100/50. Single doses of fluticasone propionate and salmeterol combinations were administered by oral inhalation to healthy subjects in a randomized clinical crossover study comparing three different batches purchased from the market, with one batch replicated across two treatment periods. All pairwise comparisons between different batches failed the PK bioequivalence statistical test, demonstrating substantial PK differences between batches that were large enough to demonstrate bio-inequivalence in some cases. In contrast, between-replicate PK bioequivalence was demonstrated for the replicated batch. Between-batch variance was ∼40-70% of the estimated residual error. This large additional source of variability necessitates re-evaluation of bioequivalence assessment criteria to yield a result that is both generalizable and consistent with the principles of type I and type II error rate control. PMID:27037630

  4. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Zamri, Mohd Faiz Muaz Ahmad; Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Aziz, Hamidi Abdul; Foo, Keng Yuen

    2015-03-01

    This study was carried out to investigate the treatability of ion exchange resin (Indion MB 6 SR) for the removal of chromium (VI), aluminium (III), zinc (II), copper (II), iron (II), and phosphate (PO4)3-, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and colour from semi-aerobic stabilized leachate by batch test. A range of ion exchange resin dosage was tested towards the removal efficiency of leachate parameters. It was observed that equilibrium data were best represented by the Langmuir model for metal ions and Freundlich was ideally fit for COD, NH3-N and colour. Intra particle diffusion model, pseudo first-order and pseudo second-order isotherm models were found ideally fit with correlation of the experimental data. The findings revealed that the models could describe the ion exchange kinetic behaviour efficiently, which further suggests comprehensive outlook for the future research in this field.

  5. Improving phosphorus removal in aerobic granular sludge processes through selective microbial management.

    PubMed

    Henriet, Olivier; Meunier, Christophe; Henry, Paul; Mahillon, Jacques

    2016-07-01

    This study aimed to improve phosphorus removal in aerobic granular sludge sequential batch reactors (AGS-SBR) by a differential selection of the granules containing the highest proportion of phosphate accumulating organisms (PAOs). The abundance of PAOs in granules with different density was analyzed by PCR-DGGE, pyrosequencing and qPCR. Dense granules contained a higher proportion of Candidatus Accumulibacter (PAO) with a 16S rRNA gene frequency up to 45%. Starting with an AGS-SBR with low height/diameter ratio performing unstable P removal, two strategies of biomass removal were assessed. First, a high selective pressure (short settling time) was applied and second, an increase of the settling time was combined with a homogeneous purge of the sludge bed. The first strategy resulted in a reduction of P removal efficiency while the second improved and stabilized P removal over 90%. This study offers a new approach of biomass management in AGS-SBR. PMID:27023385

  6. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Wei, Li; Wei, Chao; Chang, Chein-Chi; You, Shao-Hong

    2015-10-01

    This is a literature review for the year 2014 and contains information specifically associated with suspended growth processes including activated sludge and sequencing batch reactors. This review is a subsection of the treatment systems section of the annual literature review. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2014. These include, nitrogen and phosphorus control, fate and effect of xenobiotics, industrial wastes treatment, and some new method for the determination of activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology of activated sludge, modeling and kinetics. Many of the subsections in the industrial wastes: converting sewage sludge into fuel gases, thermos-alkali hydrolysis of Waste Activated Sludge (WAS), sludge used as H2 S adsorbents were also mentioned in this review. PMID:26420077

  7. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. PMID:24284260

  8. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    SciTech Connect

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  9. Reactive Scheduling in Multipurpose Batch Plants

    NASA Astrophysics Data System (ADS)

    Narayani, A.; Shaik, Munawar A.

    2010-10-01

    Scheduling is an important operation in process industries for improving resource utilization resulting in direct economic benefits. It has a two-fold objective of fulfilling customer orders within the specified time as well as maximizing the plant profit. Unexpected disturbances such as machine breakdown, arrival of rush orders and cancellation of orders affect the schedule of the plant. Reactive scheduling is generation of a new schedule which has minimum deviation from the original schedule in spite of the occurrence of unexpected events in the plant operation. Recently, Shaik & Floudas (2009) proposed a novel unified model for short-term scheduling of multipurpose batch plants using unit-specific event-based continuous time representation. In this paper, we extend the model of Shaik & Floudas (2009) to handle reactive scheduling.

  10. Batch sequential designs for computer experiments

    SciTech Connect

    Moore, Leslie M; Williams, Brian J; Loeppky, Jason L

    2009-01-01

    Computer models simulating a physical process are used in many areas of science. Due to the complex nature of these codes it is often necessary to approximate the code, which is typically done using a Gaussian process. In many situations the number of code runs available to build the Guassian process approximation is limited. When the initial design is small or the underlying response surface is complicated this can lead to poor approximations of the code output. In order to improve the fit of the model, sequential design strategies must be employed. In this paper we introduce two simple distance based metrics that can be used to augment an initial design in a batch sequential manner. In addition we propose a sequential updating strategy to an orthogonal array based Latin hypercube sample. We show via various real and simulated examples that the distance metrics and the extension of the orthogonal array based Latin hypercubes work well in practice.

  11. Reducing variance in batch partitioning measurements

    SciTech Connect

    Mariner, Paul E.

    2010-08-11

    The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.

  12. Acoustic microstreaming applied to batch micromixing

    NASA Astrophysics Data System (ADS)

    Manasseh, Richard; Petkovic-Duran, Karolina; Tho, Paul; Zhu, Yonggang; Ooi, Andrew

    2006-01-01

    Experiments are presented in which acoustic microstreaming is investigated and applied to a batch micromixing case appropriate to a point-of-care pathology screening test. The flows presented can be created without complex engineering of contacts or surfaces in the microdevice, which could thus be made disposable. Fundamental flow patterns are measured with a micro-Particle-Image Velocimetry (micro-PIV) system, enabling a quantification of the fluiddynamical processes causing the flows. The design of micromixers based on this principle requires a quantification of the mixing. A simple technique based on digital image processing is presented that enables an assessment of the improvement in mixing due to acoustic microstreaming. The digital image processing technique developed was shown to be non-intrusive, convenient and able to generate useful quantitative data. Preliminary indications are that microstreaming can at least halve the time required to mix quantities of liquid typical of a point-of-care test, and significantly greater improvements seem feasible.

  13. Aerobic workout and bone mass in females.

    PubMed

    Alfredson, H; Nordström, P; Lorentzon, R

    1997-12-01

    This cross-sectional study aimed to investigate bone mass in females participating in aerobic workout. Twenty-three females (age 24.1 +/- 2.7 years), participating in aerobic workout for about 3 hours/week, were compared with 23 age-, weight- and height-matched non-active females. Areal bone mineral density (BMD) was measured in total body, head, whole dominant humerus, lumbar spine, right femoral neck, Ward's triangle, trochanter femoris, in specific sites in right femur diaphysis, distal femur, proximal tibia and tibial diaphysis, and bone mineral content (BMC) was measured in the whole dominant arm and right leg, using dual energy X-ray absorptiometry. The aerobic workout group had significantly (P < 0.05-0.01) higher BMD in total body (3.7%), lumbar spine (7.8%), femoral neck (11.6%), Ward's triangle (11.7%), trochanter femoris (9.6%), proximal tibia (6.8%) and tibia diaphysis (5.9%) compared to the non-active controls. There were no differences between the groups concerning BMD of the whole dominant humerus, femoral diaphysis, distal femur and BMC and lean mass of the whole dominant arm and right leg. Leaness of the whole dominant arm and leg was correlated to BMC of the whole dominant arm and right leg in both groups. In young females, aerobic workout containing alternating high and low impact movements for the lower body is associated with a higher bone mass in clinically important sites like the lumbar spine and hip, but muscle strengthening exercises like push-ups and soft-glove boxing are not associated with a higher bone mass in the dominant humerus. It appears that there is a skeletal adaptation to the loads of the activity. PMID:9458499

  14. A Framework for Batched and GPU-Resident Factorization Algorithms Applied to Block Householder Transformations

    SciTech Connect

    Dong, Tingzing Tim; Tomov, Stanimire Z; Luszczek, Piotr R; Dongarra, Jack J

    2015-01-01

    As modern hardware keeps evolving, an increasingly effective approach to developing energy efficient and high-performance solvers is to design them to work on many small size and independent problems. Many applications already need this functionality, especially for GPUs, which are currently known to be about four to five times more energy efficient than multicore CPUs. We describe the development of one-sided factorizations that work for a set of small dense matrices in parallel, and we illustrate our techniques on the QR factorization based on Householder transformations. We refer to this mode of operation as a batched factorization. Our approach is based on representing the algorithms as a sequence of batched BLAS routines for GPU-only execution. This is in contrast to the hybrid CPU-GPU algorithms that rely heavily on using the multicore CPU for specific parts of the workload. But for a system to benefit fully from the GPU's significantly higher energy efficiency, avoiding the use of the multicore CPU must be a primary design goal, so the system can rely more heavily on the more efficient GPU. Additionally, this will result in the removal of the costly CPU-to-GPU communication. Furthermore, we do not use a single symmetric multiprocessor(on the GPU) to factorize a single problem at a time. We illustrate how our performance analysis, and the use of profiling and tracing tools, guided the development and optimization of our batched factorization to achieve up to a 2-fold speedup and a 3-fold energy efficiency improvement compared to our highly optimized batched CPU implementations based on the MKL library(when using two sockets of Intel Sandy Bridge CPUs). Compared to a batched QR factorization featured in the CUBLAS library for GPUs, we achieved up to 5x speedup on the K40 GPU.

  15. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    PubMed

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils. PMID:26037076

  16. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  17. Aerobic and anaerobic microbial degradation of crude (4-methylcyclohexyl)methanol in river sediments.

    PubMed

    Yuan, Li; Zhi, Wei; Liu, Yangsheng; Smiley, Elizabeth; Gallagher, Daniel; Chen, Xi; Dietrich, Andrea; Zhang, Husen

    2016-03-15

    Cyclohexane and some of its derivatives have been a major concern because of their significant adverse human health effects and widespread occurrence in the environment. The 2014 West Virginia chemical spill has raised public attention to (4-methylcyclohexyl)methanol (4-MCHM), one cyclohexane derivative, which is widely used in coal processing but largely ignored. In particular, the environmental fate of its primary components, cis- and trans-4-MCHM, remains largely unexplored. This study aimed to investigate the degradation kinetics and mineralization of cis- and trans-4-MCHM by sediment microorganisms under aerobic and anaerobic conditions. We found the removal of cis- and trans-4-MCHM was mainly attributed to biodegradation with little contribution from sorption. A nearly complete aerobic degradation of 4-MCHM occurred within 14 days, whereas the anaerobic degradation was reluctant with residual percentages of 62.6% of cis-4-MCHM and 85.0% of trans-4-MCHM after 16-day incubation. The cis-4-MCHM was degraded faster than the trans under both aerobic and anaerobic conditions, indicating an isomer-specific degradation could occur during the 4-MCHM degradation. Nitrate addition enhanced 4-MCHM mineralization by about 50% under both aerobic and anaerobic conditions. Both cis- and trans-4-MCHM fit well with the first-order kinetic model with respective degradation rates of 0.46-0.52 and 0.19-0.31 day(-)(1) under aerobic condition. Respective degradation rates of 0.041-0.095 and 0.013-0.052 day(-)(1) occurred under anaerobic condition. One bacterial strain capable of effectively degrading 4-MCHM isomers was isolated from river sediments and identified as Bacillus pumilus at the species level based on 16S rRNA gene sequence and 97% identity. Our findings will provide critical information for improving the prediction of the environmental fate of 4-MCHM and other cyclohexane derivatives with similar structure as well as enhancing the development of feasible treatment

  18. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    PubMed

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture. PMID:25259503

  19. Evaluation of nitrate removal by continuous culturing of an aerobic denitrifying bacterium, Paracoccus pantotrophus.

    PubMed

    Hasegawa-Kurisu, K; Otani, Y; Hanaki, K

    2006-01-01

    Nitrate removal under aerobic conditions was investigated using pure cultures of Paracoccus pantotrophus, which is a well-known aerobic-denitrifying (AD) bacterium. When a high concentration of cultures with a high carbon/nitrogen (C/N) ratio was preserved at the beginning of batch experiments, subsequently added nitrate was completely removed. When continuous culturing was perpetuated, a high nitrate removal rate (66.5%) was observed on day 4 post-culture, although gradual decreases in AD ability with time were observed. The attenuation in AD ability was probably caused by carbon limitation, because when carbon concentration of inflow water was doubled, nitrate removal efficiency improved from 18.1% to 59.6%. Bacterial community analysis using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method showed that P. pantotrophus disappeared in the suspended medium on day 8 post-culture, whereas other bacterial communities dominated by Acidovorax sp. appeared. Interestingly, this replaced bacterial community also showed AD ability. As P. pantotrophus was detected as attached colonies around the membrane and bottom of the reactor, this bacterium can therefore be introduced in a fixed form for treatment of wastewater containing nitrate with a high C/N ratio. PMID:17163031

  20. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments

    NASA Astrophysics Data System (ADS)

    D'Hondt, Steven; Inagaki, Fumio; Zarikian, Carlos Alvarez; Abrams, Lewis J.; Dubois, Nathalie; Engelhardt, Tim; Evans, Helen; Ferdelman, Timothy; Gribsholt, Britta; Harris, Robert N.; Hoppie, Bryce W.; Hyun, Jung-Ho; Kallmeyer, Jens; Kim, Jinwook; Lynch, Jill E.; McKinley, Claire C.; Mitsunobu, Satoshi; Morono, Yuki; Murray, Richard W.; Pockalny, Robert; Sauvage, Justine; Shimono, Takaya; Shiraishi, Fumito; Smith, David C.; Smith-Duque, Christopher E.; Spivack, Arthur J.; Steinsbu, Bjorn Olav; Suzuki, Yohey; Szpak, Michal; Toffin, Laurent; Uramoto, Goichiro; Yamaguchi, Yasuhiko T.; Zhang, Guo-Liang; Zhang, Xiao-Hua; Ziebis, Wiebke

    2015-04-01

    The depth of oxygen penetration into marine sediments differs considerably from one region to another. In areas with high rates of microbial respiration, O2 penetrates only millimetres to centimetres into the sediments, but active anaerobic microbial communities are present in sediments hundreds of metres or more below the sea floor. In areas with low sedimentary respiration, O2 penetrates much deeper but the depth to which microbial communities persist was previously unknown. The sediments underlying the South Pacific Gyre exhibit extremely low areal rates of respiration. Here we show that, in this region, microbial cells and aerobic respiration persist through the entire sediment sequence to depths of at least 75 metres below sea floor. Based on the Redfield stoichiometry of dissolved O2 and nitrate, we suggest that net aerobic respiration in these sediments is coupled to oxidation of marine organic matter. We identify a relationship of O2 penetration depth to sedimentation rate and sediment thickness. Extrapolating this relationship, we suggest that oxygen and aerobic communities may occur throughout the entire sediment sequence in 15-44% of the Pacific and 9-37% of the global sea floor. Subduction of the sediment and basalt from these regions is a source of oxidized material to the mantle.

  1. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    PubMed

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2015-09-01

    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective. PMID:25998816

  2. Enrichment of Denitrifying Methane-Oxidizing Microorganisms Using Up-Flow Continuous Reactors and Batch Cultures

    PubMed Central

    Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi

    2014-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L−1·day−1 was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89–91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia. PMID:25545013

  3. Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge.

    PubMed

    Wei, Dong; Li, Mengting; Wang, Xiaodong; Han, Fei; Li, Lusheng; Guo, Jie; Ai, Lijie; Fang, Lulu; Liu, Ling; Du, Bin; Wei, Qin

    2016-01-15

    The aim of this study was to evaluate the interaction between extracellular polymeric substances (EPS) and Zn (II) during the sorption process of Zn (II) onto aerobic granular sludge. Batch results showed that the adsorption rate of Zn (II) onto aerobic granular sludge was better fitted with pseudo-second order kinetics model, and the adsorption isotherm data agreed well with Freundlich equation. Extracellular polymeric substances (EPS) for Zn (II) binding during sorption process was investigated by using a combination of three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence spectra, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FTIR). Results implied that the main composes of EPS, including polysaccharide (PS) and protein (PN), decreased from 5.92±0.13 and 23.55±0.76 mg/g SS to 4.11±0.09 and 9.55±0.68 mg/g SS after the addition of different doses of Zn (II). 3D-EEM showed that the intensities of PN-like substances and humic-like substances were obviously decreased during the sorption process. According to synchronous fluorescence spectra, the quenching mechanism between PN-like substances and Zn (II) was mainly caused by a static quenching process. Additionally, 2D-COS indicated that PN-like substances were more susceptible to Zn (II) binding than humic-like substances. It was also found that the main functional groups for complexation of Zn (II) and EPS were OH groups, N-H groups and C=O stretching vibration. The findings of this study are significant to reveal the fate of heavy metal during its sorption process onto aerobic granular sludge through EPS binding, and provide useful information on the interaction between EPS and heavy metal. PMID:26410269

  4. Temperature-induced changes in treatment efficiency and microbial structure of aerobic granules treating landfill leachate.

    PubMed

    Mieczkowski, Dorian; Cydzik-Kwiatkowska, Agnieszka; Rusanowska, Paulina; Świątczak, Piotr

    2016-06-01

    This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and Azoarcus-Thauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C. PMID:27116957

  5. Influence of Oxygen and Glucose on Primary Metabolism and Astaxanthin Production by Phaffia rhodozyma in Batch and Fed-Batch Cultures: Kinetic and Stoichiometric Analysis

    PubMed Central

    Yamane, Y.; Higashida, K.; Nakashimada, Y.; Kakizono, T.; Nishio, N.

    1997-01-01

    The influence of the oxygen and glucose supply on primary metabolism (fermentation, respiration, and anabolism) and astaxanthin production in the yeast Phaffia rhodozyma was investigated. When P. rhodozyma grew under fermentative conditions with limited oxygen or high concentrations of glucose, the astaxanthin production rate decreased remarkably. On the other hand, when the yeast grew under aerobic conditions, the astaxanthin production rate increased with increasing oxygen uptake. A kinetic analysis showed that the respiration rate correlated positively with the astaxanthin production rate, whereas there was a negative correlation with the ethanol production rate. The influence of glucose concentration at a fixed nitrogen concentration with a high level of oxygen was then investigated. The results showed that astaxanthin production was enhanced by an initial high carbon/nitrogen ratio (C/N ratio) present in the medium, but cell growth was inhibited by a high glucose concentration. A stoichiometric analysis suggested that astaxanthin production was enhanced by decreasing the amount of NADPH required for anabolism, which could be achieved by the repression of protein biosynthesis with a high C/N ratio. Based on these results, we performed a two-stage fed-batch culture, in which cell growth was enhanced by a low C/N ratio in the first stage and astaxanthin production was enhanced by a high C/N ratio in the second stage. In this culture system, the highest astaxanthin production, 16.0 mg per liter, was obtained. PMID:16535733

  6. Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task.

    PubMed

    Audiffren, Michel; Tomporowski, Phillip D; Zagrodnik, James

    2008-11-01

    The immediate and short-term after effects of a bout of aerobic exercise on young adults' information processing were investigated. Seventeen participants performed an auditory two-choice reaction time (RT) task before, during, and after 40 min of ergometer cycling. In a separate session, the same sequence of testing was completed while seated on an ergometer without pedalling. Results indicate that exercise (1) improves the speed of reactions by energizing motor outputs; (2) interacts with the arousing effect of a loud auditory signal suggesting a direct link between arousal and activation; (3) gradually reduces RT and peaks between 15 and 20 min; (4) effects on RT disappear very quickly after exercise cessation; and (5) effects on motor processes cannot be explained by increases in body temperature caused by exercise. Taken together, these results support a selective influence of acute aerobic exercise on motor adjustment stage. PMID:18930445

  7. Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common

    PubMed Central

    2013-01-01

    Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes. PMID:23889694

  8. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor. PMID:25267355

  9. Searching CA Condensates, On-Line and Batch.

    ERIC Educational Resources Information Center

    Kaminecki, Ronald M.; And Others

    Batch mode processing is compared, using cost-effectiveness, with on-line processing for computer-aided searching of chemical abstracts. Consideration for time, need, coverage, and adaptability are found to be the criteria by which a searcher selects a method, and sometimes both methods are used. There is a tradeoff between batch mode's slower…

  10. INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH SIX DIFFERENT MATERIALS. MIX SIFTED DOWN FROM SILOS ABOVE. INGREDIENTS: SAND, SODA ASH, DOLOMITE LIMESTONE, NEPHELINE SYENITE, SALT CAKE. - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  11. 40 CFR Table 1 to Subpart H of... - Batch Processes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Batch Processes 1 Table 1 to Subpart H... Standards for Organic Hazardous Air Pollutants for Equipment Leaks Pt. 63, Subpt. H, Table 1 Table 1 to Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors...

  12. 40 CFR Table 1 to Subpart H of... - Batch Processes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Batch Processes 1 Table 1 to Subpart H... Standards for Organic Hazardous Air Pollutants for Equipment Leaks Pt. 63, Subpt. H, Table 1 Table 1 to Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors...

  13. 40 CFR Table 1 to Subpart H of... - Batch Processes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Batch Processes 1 Table 1 to Subpart H... Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors Operating time (% of year) Equivalent continuous process monitoring frequency time in use Monthly...

  14. 40 CFR Table 1 to Subpart H of... - Batch Processes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch Processes 1 Table 1 to Subpart H... Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors Operating time (% of year) Equivalent continuous process monitoring frequency time in use Monthly...

  15. 40 CFR Table 1 to Subpart H of... - Batch Processes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Batch Processes 1 Table 1 to Subpart H... Standards for Organic Hazardous Air Pollutants for Equipment Leaks Pt. 63, Subpt. H, Table 1 Table 1 to Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors...

  16. System Requirements for On-Line and Batch Retrieval.

    ERIC Educational Resources Information Center

    American Society for Information Science, Washington, DC. Special Interest Group on Computerized Retrieval Services.

    Three papers on system requirements for on-line and batch retrieval presented at the American Society for Information Science (ASIS) annual meeting are included here. At G.D. Searle, data for records related to pharmacology screening are used in a batch system, and an on-line system is used to search information on mutagenic, carcinogenic, and…

  17. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Dump/batch records. 19.598 Section 19.598 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Records and Reports Processing Records § 19.598 Dump/batch records. A proprietor...

  18. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2.

    PubMed

    Yao, Shuo; Ni, Jinren; Ma, Tao; Li, Can

    2013-07-01

    A psychrotrophic heterotrophic nitrifying-aerobic denitrifying bacterium was newly isolated and identified as Acinetobacter sp. with phenotypic and phylogenetic analysis. The strain possessed excellent tolerance to low temperature with 20°C as its optimum and 4°C as viable. Moreover, ammonium, nitrite and nitrate could be removed efficiently under low-temperature, solely aerobic conditions with little accumulation of intermediates. The average removal rate at 10°C reached as high as 3.03, 2.51 and 1.88 mg NL(-1)h(-1) for ammonium, nitrite and nitrate respectively. N2 was produced through heterotrophic nitrification and aerobic denitrification via nitrite but N2O was never detected in the whole process. Nitrogen balance analysis indicated that N2 and intracellular nitrogen were two major fates of the initial ammonium, accounting for 32.4 and 49.2%, respectively. Further aerated batch test demonstrated efficient removal of COD and TN from synthetic wastewater, which implied promising practical application of the present strain. PMID:23644073

  19. The aerobic and anaerobic bacteriology of perirectal abscesses.

    PubMed Central

    Brook, I; Frazier, E H

    1997-01-01

    The microbiology of perirectal abscesses in 144 patients was studied. Aerobic or facultative bacteria only were isolated in 13 (9%) instances, anaerobic bacteria only were isolated in 27 (19%) instances, and mixed aerobic and anaerobic flora were isolated in 104 (72%) instances. A total of 325 anaerobic and 131 aerobic or facultative isolates were recovered (2.2 anaerobic isolates and 0.9 aerobic isolates per specimen). The predominant anaerobes were as follows: Bacteroides fragilis group (85 isolates), Peptostreptococcus spp. (72 isolates), Prevotella spp. (71 isolates), Fusobacterium spp. (21 isolates), Porphyromonas spp. (20 isolates), and Clostridium spp. (15 isolates). The predominant aerobic and facultative bacteria were as follows: Staphylococcus aureus (34 isolates), Streptococcus spp. (28 isolates), and Escherichia coli (19 isolates). These data illustrate the polymicrobial aerobic and anaerobic microbiology of perirectal abscesses. PMID:9350771

  20. Specific Training Effects of Concurrent Aerobic and Strength Exercises Depend on Recovery Duration.

    PubMed

    Robineau, Julien; Babault, Nicolas; Piscione, Julien; Lacome, Mathieu; Bigard, André X

    2016-03-01

    This study aimed to determine whether the duration (0, 6, or 24 hours) of recovery between strength and aerobic sequences influences the responses to a concurrent training program. Fifty-eight amateur rugby players were randomly assigned to control (CONT), concurrent training (C-0h, C-6h, or C-24h), or strength training (STR) groups during a 7-week training period. Two sessions of each quality were proposed each week with strength always performed before aerobic training. Neuromuscular and aerobic measurements were performed before and immediately after the overall training period. Data were assessed for practical significance using magnitude-based inference. Gains in maximal strength for bench press and half squat were lower in C-0h compared with that in C-6h, C-24h, and STR. The maximal voluntary contraction (MVC) during isokinetic knee extension at 60°·s(-1) was likely higher for C-24h compared with C-0h. Changes in MVC at 180°·s(-1) was likely higher in C-24h and STR than in C-0h and C-6h. Training-induced gains in isometric MVC for C-0h, C-6h, C-24h, and STR were unclear. V[Combining Dot Above]O2peak increased in C-0h, C-6h, and C-24h. Training-induced changes in V[Combining Dot Above]O2peak were higher in C-24h than in C-0h and C-6h. Our study emphasized that the interference on strength development depends on the recovery delay between the 2 sequences. Daily training without a recovery period between sessions (C-0h) and, to a lesser extent, training twice a day (C-6h), is not optimal for neuromuscular and aerobic improvements. Fitness coaches should avoid scheduling 2 contradictory qualities, with less than 6-hour recovery between them to obtain full adaptive responses to concurrent training. PMID:25546450