Science.gov

Sample records for aerobic spore-forming bacteria

  1. Characterisation of aerobically grown non-spore-forming bacteria from paper mill pulps containing recycled fibres.

    PubMed

    Suihko, Maija-Liisa; Skyttä, Eija

    2009-01-01

    A total of 179 non-spore-forming bacteria aerobically growing on Nutrient Agar, Plate Count Agar or in specific enrichment conditions for salmonella, campylobacteria, listeria, yersinia or staphylococci, were isolated from 16 untreated paper mill pulps. After phenotypical screening the isolates were characterised by automated ribotyping and partial sequencing of the 16S rRNA gene. They could be divided into seven taxonomical classes representing 63 taxa (species): actinobacteria (11 species), bacilli (7), flavobacteria (3) alphaproteobacteria (10), betaproteobacteria (5), gammaproteobacteria (25) and sphingobacteria (2). Most of the gammaproteobacteria were enterobacteria, mainly species of the genera Enterobacter (7 species, 7 samples/3 mills) and Klebsiella (5 species, 6 samples/3 mills). Other commonly occurring bacteria were most closely related to Microbacterium barkeri (7 samples/3 mills), Cloacibacterium normanense (6 samples/2 mills), Pseudoxanthomonas taiwanensis (5 samples/2 mills) and Sphingobacterium composti (5 samples/1 mill). Sporadic isolates of Listeria innocua, L. monocytogenes, Enterococcus casseliflavus and Staphylococcus warneri were detected, from which only L. monocytogenes is considered to be a food pathogen. No isolates of the genera Campylobacter, Salmonella or Yersinia were detected. The detected bacteria may be harmful in process control, but the load of food pathogens with recycled fibres to paper machines is insignificant. Faecal contamination of the pulp samples was not indicated.

  2. Aerobic spore-forming bacteria for assessing quality of drinking water produced from surface water.

    PubMed

    Mazoua, Stephane; Chauveheid, Eric

    2005-12-01

    Cryptosporidium and Giardia represent a major microbiological issue for drinking water production from surface water. As their monitoring through a treatment process is rather tedious and as low-concentration goals should be reached for drinking water, aerobic spore-forming bacteria (ASFB) have been studied as an indicator microorganism for a drinking water treatment plant using surface water. The results reveal that monitoring naturally occurring ASFB better highlights daily achievable performances and identifies unusual process events for global disinfection, for both physical and chemical treatment steps in a multi-barrier drinking water treatment plant. Advantages of ASFB over usual process parameters are that these microorganisms are more sensitive to process fluctuations. The use of ASFB also showed that the efficiency of ozone disinfection is not as significantly influenced by the water temperature as reported, despite similar or higher CT values applied during warmer periods. Thus, the disinfection of resistant microorganisms with ozone can also be an efficient process at lower water temperature. ASFB have been shown to be a conservative indicator for Cryptosporidium and Giardia up to a 1st stage filtration and the ASFB Log removals can be used to estimate Log removals for Cryptosporidium and Giardia: compared to ASFB, the Log removals for Cryptosporidium or Giardia are at least equal or 50% higher, respectively. Thus, the monitoring of ASFB along a drinking water treatment process could be a useful tool for performing risk analysis for parasites such as Cryptosporidium and Giardia, and would further allow integration of daily variability into a risk analysis.

  3. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-02

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  4. Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms.

    PubMed

    Coorevits, An; De Jonghe, Valerie; Vandroemme, Joachim; Reekmans, Rieka; Heyrman, Jeroen; Messens, Winy; De Vos, Paul; Heyndrickx, Marc

    2008-06-01

    Bacterial contamination of raw milk can originate from different sources: air, milking equipment, feed, soil, faeces and grass. It is hypothesized that differences in feeding and housing strategies of cows may influence the microbial quality of milk. This assumption was investigated through comparison of the aerobic spore-forming flora in milk from organic and conventional dairy farms. Laboratory pasteurized milk samples from five conventional and five organic dairy farms, sampled in late summer/autumn and in winter, were plated on a standard medium and two differential media, one screening for phospholipolytic and the other for proteolytic activity of bacteria. Almost 930 isolates were obtained of which 898 could be screened via fatty acid methyl ester analysis. Representative isolates were further analysed using 16S rRNA gene sequencing and (GTG)(5)-PCR. The majority of aerobic spore-formers in milk belonged to the genus Bacillus and showed at least 97% 16S rRNA gene sequence similarity with type strains of Bacillus licheniformis, Bacillus pumilus, Bacillus circulans, Bacillus subtilis and with type strains of species belonging to the Bacillus cereus group. About 7% of all isolates may belong to possibly new spore-forming taxa. Although the overall diversity of aerobic spore-forming bacteria in milk from organic vs. conventional dairy farms was highly similar, some differences between both were observed: (i) a relatively higher number of thermotolerant organisms in milk from conventional dairy farms compared to organic farms (41.2% vs. 25.9%), and (ii) a relatively higher number of B. cereus group organisms in milk from organic (81.3%) and Ureibacillus thermosphaericus in milk from conventional (85.7%) dairy farms. One of these differences, the higher occurrence of B. cereus group organisms in milk from organic dairy farms, may be linked to differences in housing strategy between the two types of dairy farming. However, no plausible clarification was found for

  5. Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources.

    PubMed

    Alippi, Adriana M; Reynaldi, Francisco J

    2006-03-01

    The bacterium Paenibacillus larvae, the causative agent of American foulbrood disease of honeybee larvae, occurs throughout the world and is found in many beekeeping areas of Argentina. The potential as biocontrol agents of antagonic aerobic spore-forming bacteria isolated from honey samples and other apiarian sources were evaluated. Each isolate was screened against one strain of Paenibacillus larvae (ATCC 9545) by using a perpendicular streak technique. Ten randomly selected bacterial strains from the group that showed the best antagonistic effect to P. larvae ATCC 9545 were selected for further study. These were identified as Bacillus subtilis (m351), B. pumilus (m350), B. licheniformis (m347), B. cereus (mv33), B. cereus (m387), B. cereus (m6c), B. megaterium (m404), Brevibacillus laterosporus (BLAT169), B. laterosporus (BLAT170), and B. laterosporus (BLAT171). The antagonistic strains were tested against 17 P. larvae strains from different geographical origins by means of a spot test in wells. The analysis of variance and posterior comparison of means by Tukey method (P < 0.01) showed that the best antagonists were B. megaterium (m404), B. licheniformis (m347), B. cereus (m6c), B. cereus (mv33), and B. cereus (m387).

  6. Virulence Plasmids of Spore-Forming Bacteria.

    PubMed

    Adams, Vicki; Li, Jihong; Wisniewski, Jessica A; Uzal, Francisco A; Moore, Robert J; McClane, Bruce A; Rood, Julian I

    2014-12-01

    Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.

  7. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  8. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  9. Challenges in risk assessment and predictive microbiology of foodborne spore-forming bacteria.

    PubMed

    Augustin, Jean-Christophe

    2011-04-01

    Mathematical description of the behavior of bacterial foodborne pathogens and concepts of risk assessment were first applied to spore-forming bacteria and specially to Clostridium botulinum with numerous works dealing with spores heat destruction to ensure the safety of canned foods or with their germination and growth probability in foods. This paper discusses two aspects which appear specific to pathogenic sporeformers in comparison to vegetative microorganisms, that is, firstly, the extreme intra-species biodiversity of spore-forming bacteria and its consequences for risk assessment and, secondly, the modeling of spore germination and outgrowth processes. The intra-species biodiversity of spore-forming bacteria has a great impact on hazard identification, exposure assessment and hazard characterization leading thus to an extremely variable individual poisoning risk for consumers. The germination and outgrowth processes were shown independent at the single cell level and although numerous studies were performed to study the effect of spores treatments and growth conditions on these two events, the mathematical modeling and the prediction of these processes is still challenging today. The difficulties to accurately assess the biodiversity and the germination and outgrowth processes of spore-forming bacteria lead to a substantial uncertainty in risk estimates related to the exposure to these microorganisms. Nevertheless, significant progress have been made these last years improving the relevance of quantitative risk assessments for spore-forming bacteria and decreasing the risk uncertainty. Despite these difficulties, risk assessment still constitutes a valuable tool to justify the implementation of management options.

  10. Genome Sequences of Three Spore-Forming Bacteria Isolated from the Feces of Organically Raised Chickens

    PubMed Central

    Kennedy, Victoria; Van Laar, Tricia A.; Aleru, Omoshola; Thomas, Michael; Ganci, Michelle

    2016-01-01

    Antibiotic feed supplements have been implicated in the rise of multidrug-resistant bacteria. An alternative to antibiotics is probiotics. Here, we report the genome sequences of two Bacillus and one Solibacillus species, all spore-forming, Gram-positive bacteria, isolated from the feces organically raised chicken feces, with potential to serve as probiotics. PMID:27587809

  11. The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry

    PubMed Central

    Gopal, Nidhi; Hill, Colin; Ross, Paul R.; Beresford, Tom P.; Fenelon, Mark A.; Cotter, Paul D.

    2015-01-01

    Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry. PMID:26733963

  12. Sterilization Efficiency of Spore forming Bacteria in Powdery Food by Atmospheric Pressure Plasmas Sterilizer

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Tanaka, Masashi; Kikuchi, Yusuke

    2015-09-01

    To provide food sterilization method capable of killing highly heat resistant spore forming bacteria, we have studied effects of plasma treatment method at atmospheric pressure in order to develop a new high speed plasma sterilization apparatus with a low cost and a high efficiency. It is also difficult even for the plasma treatment to sterilize powdery food including spices such as soybean, basil and turmeric. This paper describes that an introduction of mechanical rotation of a treatment space increases the efficiency so that perfect inactivation of spore forming bacteria in these materials by a short treatment time has been demonstrated in our experiments. We also will discuss the sterilization mechanism by dielectric barrier discharge.

  13. PHYLOGENETIC ANALYSIS AND AUTECOLOGY OF SPORE-FORMING BACTERIA FROM HYPERSALINE ENVIRONMENTS.

    PubMed

    Gladka, G V; Romanovskaya, V A; Tashyreva, H O; Tashyrev, O B

    2015-01-01

    Multi-resistant to extreme factors spore-forming bacteria of Bacillus genus are isolated from hypersaline environments of the Crimea (Ukraine) and the Dead Sea (Israel). Phylogenetic analysis showed distinction of dominating extremophilic culturable species in studied regions. In Crimean environments they are B. mojavensis and B. simplex, in the Dead Sea ecosystem--B. subtilis subsp. spizizenii, B. subtilis subsp. subtilis, B. licheniformis and B. simplex. Isolates are simultaneously halotolerant and resistant to UV radiation. Strains isolated from the Dead Sea and the Crimea environments were resistant to UV: LD90 and LD99.99 made 100-170 J/m2 and 750-1500 J/m2 respectively. Spores showed higher UV-resistance (LD99.99-2500 J/m2) than the vegetative cells. However the number of spores made 0.02-0.007% of the whole cell population, and should not significantly affect the UV LD99.99 value. Isolates of both environments were halotolerant in the range of 0.1-10% NaCl and thermotolerant in the range of 20-50 °C, and didn't grow at 15 °C. Survival strategy of spore-forming bacteria from hypersaline environments under high UV radiation level can be performed by spore formation which minimize cell damage as well as efficient DNA-repair systems that remove damages.

  14. Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters

    PubMed Central

    Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1991-01-01

    Thermophilic sulfate-reducing bacteria were isolated from oil field waters from oil production platforms in the Norwegian sector of the North Sea. Spore-forming rods dominated in the enrichments when lactate, propionate, butyrate, or a mixture of aliphatic fatty acids (C4 through C6) was added as a carbon source and electron donor. Representative strains were isolated and characterized. The isolates grew autotrophically on H2-CO2 and heterotrophically on fatty acids such as formate, propionate, butyrate, caproate, valerate, pyruvate, and lactate and on alcohols such as methanol, ethanol, and propanol. Sulfate, sulfite, and thiosulfate but not nitrate could be used as an electron acceptor. The temperature range for growth was 43 to 78°C; the spores were extremely heat resistant and survived 131°C for 20 min. The optimum pH was 7.0. The isolates grew well in salt concentrations ranging from 0 to 800 mmol of NaCl per liter. Sulfite reductase P582 was present, but cytochrome c and desulfoviridin were not found. Electron micrographs revealed a gram-positive cell organization. The isolates were classified as a Desulfotomaculum sp. on the basis of spore formation, general physiological characteristics, and submicroscopic organization. To detect thermophilic spore-forming sulfate-reducing bacteria in oil field water, polyvalent antisera raised against antigens from two isolates were used. These bacteria were shown to be widespread in oil field water from different platforms. The origin of thermophilic sulfate-reducing bacteria in the pore water of oil reservoirs is discussed. Images PMID:16348538

  15. Effectiveness of high energy electron beam against spore forming bacteria and viruses in slurry

    NASA Astrophysics Data System (ADS)

    Skowron, Krzysztof; Paluszak, Zbigniew; Olszewska, Halina; Wieczorek, Magdalena; Zimek, Zbigniew; Śrutek, Mścisław

    2014-08-01

    The aim of this study was to evaluate the efficacy of high energy electron beam effect against the most resistant indicators - spore forming bacteria (Clostridium sporogenes) and viruses (BPV) - which may occur in slurry. The applied doses of electron beam were 0, 1, 2, 3, 5, 7, 10 and 12 kGy. The theoretic inactivating dose of high energy electron beam for Clostridium sporogenes spores calculated based on the polynomial curve equation was 11.62 kGy, and determined on the basis of regression line equation for BPV virus was equal 23.49 kGy. The obtained results showed a quite good effectiveness of irradiation in bacterial spores inactivation, whereas relatively poor against viruses.

  16. The structural bases of long-term anabiosis in non-spore-forming bacteria

    NASA Astrophysics Data System (ADS)

    Suzina, Natalia E.; Mulyukin, Andrey L.; Dmitriev, Vladimir V.; Nikolaev, Yury A.; Shorokhova, Anna P.; Bobkova, Yulia S.; Barinova, Ekaterina S.; Plakunov, Vladimir K.; El-Registan, Galina I.; Duda, Vitalii I.

    2006-01-01

    Peculiarities of the structural organization in non-spore-forming bacteria associated with long-term anabiosis were revealed both in laboratory cultures and in natural populations isolated from 1 3-Myr-old Eastern Siberian permafrost and tundra soil. Different advanced methods were used, including (a) high-resolution electron microscopy; (b) simulation of in situ conditions in the laboratory by varying the composition of growth medium and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural soils; (d) comparative morphological analysis of microbial cells in model cultures and natural soils (in situ). Under laboratory conditions, the intense formation of resting cells by representatives of various taxa of eubacteria and halophilic archaea occurred in 2 9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-limited media, in starved cell suspensions in the presence of sodium silicate, or on soil agar. Among resting cells, we revealed cystlike forms having a complicated structure and common features. These included a thick capsule; a thickened and multiprofile cell wall; the presence of large intramembrane particles on PF- and EF-fracture surfaces; fine-grained or lumpy cytoplasm; and a condensed nucleoid. The general morphological properties, ultrastructural organization, physiological features of cystlike cells, and their ability to germinate under the appropriate conditions suggest the existence of constitutive dormancy in non-spore-forming bacteria. It was found that the majority of microorganisms in permafrost and tundra soil are cystlike cells, very similar to those in laboratory cultures. Anabiotic (resting) cystlike cells are responsible for the survival of non-spore-formers in extreme Earth habitats and may be regarded as possible analogs of extraterrestrial forms of microbial life.

  17. Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products

    PubMed Central

    McHugh, Aoife J.; Feehily, Conor; Hill, Colin; Cotter, Paul D.

    2017-01-01

    With the abolition of milk quotas in the European Union in 2015, several member states including Ireland, Luxembourg, and Belgium have seen year on year bi-monthly milk deliveries to dairies increase by up to 35%. Milk production has also increased outside of Europe in the past number of years. Unsurprisingly, there has been a corresponding increased focus on the production of dried milk products for improved shelf life. These powders are used in a wide variety of products, including confectionery, infant formula, sports dietary supplements and supplements for health recovery. To ensure quality and safety standards in the dairy sector, strict controls are in place with respect to the acceptable quantity and species of microorganisms present in these products. A particular emphasis on spore-forming bacteria is necessary due to their inherent ability to survive extreme processing conditions. Traditional microbiological detection methods used in industry have limitations in terms of time, efficiency, accuracy, and sensitivity. The following review will explore the common spore-forming bacterial contaminants of milk powders, will review the guidelines with respect to the acceptable limits of these microorganisms and will provide an insight into recent advances in methods for detecting these microbes. The various advantages and limitations with respect to the application of these diagnostics approaches for dairy food will be provided. It is anticipated that the optimization and application of these methods in appropriate ways can ensure that the enhanced pressures associated with increased production will not result in any lessening of safety and quality standards. PMID:28197144

  18. UV-Resistant Non-Spore-Forming Bacteria From Spacecraft-Assembly Facilities

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri

    2008-01-01

    Four species of non-spore-forming bacteria collected from clean-room surfaces in spacecraft-assembly facilities could survive doses of ultraviolet (UV) radiation that would suffice to kill most known cultivable bacterial species. In a previous study, high UV resistance was found in spores of the SAFR-032 strain of Bacillus pumilus, as reported in "Ultraviolet- Resistant Bacterial Spores," NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 94. These studies are parts of a continuing effort to understand the survival of hardy species of bacteria under harsh conditions, and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could in turn interfere with future life detection missions. The four species investigated were Arthrobacter sp. KSC_Ak2i, Microbacterium schleiferi LMA_AkK1, Brevundimonas diminuta KSC_Ak3a, and Sphingomonas trueperi JSC_Ak7-3. In the study, cells of these species were mixed into Atacama Desert soil (to elucidate the shadowing effect of soil particles) and the resulting mixtures were tested both in solution and in a desiccated state under simulated Martian atmospheric and UV conditions. The UV-survival indices of Arthrobacter sp. and Microbacterium schleiferi were found to be comparable to those of Bacillus pumilus spores.

  19. The structural bases of long-term anabiosis in non-spore-forming bacteria

    NASA Astrophysics Data System (ADS)

    Suzina, N. E.; Mulyukin, A. L.; Dmitriev, V. V.; Nikolaev, Yu. A.; Plakunov, V. K.; El-Registan, G. I.; Duda, V. I.

    Peculiarities of the structural and functional organization related to extended and long-term anabiosis were revealed for non-spore-forming bacteria both in stored laboratory cultures and natural substrates: (1) 1-3-Myr-old Eastern Siberian permafrost, (2) tundra soils, and (3) oil slurry. Different advanced or specially designed methods were used such as (a) high-resolution electron microscopy; (b) simulation of in situ conditions in laboratory by varying of growth composition media and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural substrates; (d) specimen selection and preparation; (e) comparative ultrastructural and morphometric analysis of microbial cells in model cultures and natural substrates (in situ). Under laboratory conditions, the intense formation of anabiotic (resting) cells by representatives of various taxa of eubacteria and halophilic archaea were observed in 2-9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-deficient media, in starved cell suspensions in the presence of sodium silicate at environmentally occurring concentrations, or on soil agar. Among resting cells were revealed cyst-like forms possessing the complicated structure. The most common peculiarities of cyst-like resting cells were thick and distinguishable capsule; thickened and multilamellar cell wall with 1 to 3 de novo synthesized murein layers; large intramembrane particles on PF- and EF-fractures; finely granulated or coarse textured cytoplasm; condensed nucleoid. The data of morphological and ultrastructural analyses of cyst-like cells, as well as their experimentally proved resistance to prolonged desiccation, heat shock, etc. and the ability to germinate under the effect of lysozyme, gives an evidence for constitutive dormancy in the studied non-spore-forming bacteria at least. Noteworthy, it was found that the majority of microorganisms in permafrost, tundra soils, and oil slurry was presented

  20. Toxigenic potential and heat survival of spore-forming bacteria isolated from bread and ingredients.

    PubMed

    De Bellis, Palmira; Minervini, Fiorenza; Di Biase, Mariaelena; Valerio, Francesca; Lavermicocca, Paola; Sisto, Angelo

    2015-03-16

    . cereus group III with high values of log-cycle reductions. In conclusion, our results indicate that spore-forming bacteria contaminating bread ingredients and bread could represent a source of concern for consumer health related to the presence of strains, such as strains of B. cereus group III and single strains of other species, showing the ability to produce toxic substances associated to a thermal resistance enough to survive the bread cooking conditions.

  1. Infections with spore-forming bacteria in persons who inject drugs, 2000-2009.

    PubMed

    Palmateer, Norah E; Hope, Vivian D; Roy, Kirsty; Marongiu, Andrea; White, Joanne M; Grant, Kathie A; Ramsay, Colin N; Goldberg, David J; Ncube, Fortune

    2013-01-01

    Since 2000 in the United Kingdom, infections caused by spore-forming bacteria have been associated with increasing illness and death among persons who inject drugs (PWID). To assess temporal and geographic trends in these illnesses (botulism, tetanus, Clostridium novyi infection, and anthrax), we compared rates across England and Scotland for 2000-2009. Overall, 295 infections were reported: 1.45 per 1,000 PWID in England and 4.01 per 1,000 PWID in Scotland. The higher rate in Scotland was mainly attributable to C. novyi infection and anthrax; rates of botulism and tetanus were comparable in both countries. The temporal and geographic clustering of cases of C. novyi and anthrax into outbreaks suggests possible contamination of specific heroin batches; in contrast, the more sporadic nature of tetanus and botulism cases suggests that these spores might more commonly exist in the drug supply or local environment although at varying levels. PWID should be advised about treatment programs, injecting hygiene, risks, and vaccinations.

  2. Farm level survey of spore-forming bacteria on four dairy farms in the Waikato region of New Zealand.

    PubMed

    Gupta, Tanushree B; Brightwell, Gale

    2017-03-03

    The aim of our study was to determine the occurrence and diversity of economically important spore-forming bacteria in New Zealand dairy farm systems. Farm dairy effluent (FDE) collected from Waikato dairy farms were tested for the presence of spore-forming bacteria, using a new culture-based methodology followed by genomic analysis. An enrichment step in which samples were inoculated in cooked meat glucose starch broth under anaerobic conditions, aided in the differential isolation of Bacillus and Clostridium species. Furthermore, the use of molecular methods such as ERIC genotyping, 16S rRNA gene sequence analysis identified different spore-forming bacteria present in FDE. C. sporogenes signature PCR gave further information on the phylogenetic relationship of the different Clostridium spp. isolated in this study. In total 19 Bacillus spp., 5 Paenibacillus spp. and 17 Clostridium spp. were isolated from farm dairy effluent. Sequence types similar to economically important food spoilage bacteria viz: C. butyricum, C. sporogenes and members of the Paenibacillus Genus were isolated from all four farms, whereas, sequence types similar to potential toxigenic, B. cereus, C. perfringens, C. butyricum, and C. botulinum were found on at least three of the farms. Sampling of farm dairy effluent provides a good indicator of farm level prevalence of bacterial load as it is used to irrigate dairy pasture in New Zealand. This study highlights the presence of various spore-forming bacteria in dairy waste water and indicates the implementation of good hygienic farm practices and dairy waste effluent management.

  3. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    PubMed Central

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  4. [Survival of Gram-positive spore-forming bacteria including Bacillus cereus after hand washing using alcohol-based handrub].

    PubMed

    Ogawa, Midori; Takada, Shinichiro; Takahashi, Masao; Yasuda, Etsuko; Watase, Mariko; Taniguchi, Hatsumi

    2006-12-01

    Hand washing is the most fundamental method for preventing infection. Currently, hand washing with an alcohol-based handrub is the international gold standard method. However, in our study we found many samples of ineffective hand washing using an alcohol-based handrub. The rates of ineffective samples were 10.4% (5/48) in 2004 and 34.3% (12/35) in 2005. We examined the morphology by Gram staining and biochemical properties of the bacteria which remained after hand washing in 2005. Their colonies were divided into 3 groups (round colonies, irregular-shaped and diffusive colonies). The round colonies were considered Staphylococcus spp., and the irregular-shaped colonies or diffusive colonies were considered Gram-positive spore-forming bacteria. In the 12 ineffective hand washing samples (more than the same number of bacteria colonies as before hand washing, or > or = 300), there were 3 samples considered to be the result of the survival of Staphylococcus spp., and 9 samples considered to be the result of the survival of Gram-positive spore-forming bacteria including Bacillus cereus. Based on these results, we should take careful measures, such as wearing sterile gloves if necessary. We should never be overconfident regarding the effect of hand washing.

  5. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    PubMed

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  6. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    PubMed Central

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  7. Aerobic deterioration stimulates outgrowth of spore-forming Paenibacillus in corn silage stored under oxygen-barrier or polyethylene films.

    PubMed

    Borreani, Giorgio; Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca

    2013-08-01

    The occurrence of Bacillus and Paenibacillus spores in silage is of great concern to dairy producers because their spores can survive pasteurization and some strains are capable of subsequently germinating and growing under refrigerated conditions in pasteurized milk. The objectives of this study were to verify the role of aerobic deterioration of corn silage on the proliferation of Paenibacillus spores and to evaluate the efficacy of oxygen-barrier films used to cover silage during fermentation and storage to mitigate these undesirable bacterial outbreaks. The trial was carried out on whole-crop maize (Zea mays L.) inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium. A standard polyethylene film and a polyethylene-polyamide film with an enhanced oxygen barrier were used to produce the silage bags for this experiment. The silos were stored indoors at ambient temperature (18 to 22°C) and opened after 110 d. The silage was sampled after 0, 2, 5, 7, 9, and 14 d of aerobic exposure to quantify the growth of endospore-forming bacteria during the exposure of silages to air. Paenibacillus macerans (gram-positive, facultatively anaerobic bacteria) was able to develop during the aerobic exposure of corn silage. This species was present in the herbage at harvesting, together with clostridial spores, and survived ensiling fermentation; it constituted more than 60% of the anaerobic spore formers at silage opening. During silage spoilage, the spore concentration of P. macerans increased to values greater than 7.0 log10 cfu/g of silage. The use of different plastic films to seal silages affected the growth of P. macerans and the number of spores during aerobic exposure of silages. These results indicate that the number of Paenibacillus spores could greatly increase in silage after exposure to air, and that oxygen-barrier films could help to reduce the potential for silage contamination of this important group of milk spoilage

  8. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    PubMed

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  9. The influence of fat and monoacylglycerols on growth of spore-forming bacteria in processed cheese.

    PubMed

    Hauerlandová, Iva; Lorencová, Eva; Buňka, František; Navrátil, Jan; Janečková, Kristýna; Buňková, Leona

    2014-07-16

    Highly undesirable microbial contaminants of processed cheese are endospore-forming bacteria of the genera Bacillus and Clostridium. Survival of Bacillus subtilis, B. cereus, Clostridium butyricum and C. sporogenes was examined in model processed cheese samples supplemented with monoacylglycerols. In processed cheese samples, monoacylglycerols of undecanoic, undecenoic, lauric and adamantane-1-carboxylic acid at concentration of 0.15% w/w prevented the growth and multiplication of both Bacillus species throughout the storage period. The two species of Clostridium were less affected by monoacylglycerols in processed cheese samples and only partial inhibition was observed. The effect of milk fat content on microbial survival in processed cheese was also evaluated. The growth of Bacillus sp. was affected by the fat level of processed cheese while population levels of Clostridium sp. did not differ in processed cheese samples with 30, 40 and 50% fat in dry matter.

  10. Isolation and genetic identification of spore-forming bacteria associated with concentrated-milk processing in Nebraska.

    PubMed

    Martinez, Bismarck A; Stratton, Jayne; Bianchini, Andreia

    2017-02-01

    Spore-forming bacteria are heat-resistant microorganisms capable of surviving and germinating in milk after pasteurization. They have been reported to affect the quality of dairy products by the production of enzymes (lipolytic and proteolytic) under low-temperature conditions in fluid milk, and have become a limiting factor for milk powder in reaching some selective markets. The objective of this research was to isolate and identify the population of spore-forming bacteria (psychrotrophic and thermophilic strains) associated with concentrated milk processing in Nebraska. During 2 seasons, in-process milk samples from a commercial plant (raw, pasteurized, and concentrated) were collected and heat-treated (80°C/12 min) to recover only spore-formers. Samples were spread-plated using standard methods agar and incubated at 32°C to enumerate mesophilic spore counts. Heat-treated samples were also stored at 7°C and 55°C to recover spore-formers that had the ability to grow under those temperature conditions. Isolates obtained from incubation or storage conditions were identified using molecular techniques (16S or rpoB sequencing). Based on the identification of the isolates and their relatedness, strains found in raw, pasteurized, and concentrated milk were determined to be similar. Paenibacillus spp. were associated with both raw and concentrated milk. Due to their known ability to cause spoilage under refrigeration, this shows the potential risk associated with the transferring of these problematic organisms into other dairy products. Other Bacillus species found in concentrated milk included Bacillus clausii, Bacillus subtilis, Lysinibacillus sp., Bacillus safensis, Bacillus licheniformis, Bacillus sonorensis, and Brevibacillus sp., with the last 3 organisms being capable of growing at thermophilic temperatures. These strains can also be translocated to other dairy products, such as milk powder, representing a quality problem. The results of this research

  11. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes.

    PubMed

    Postollec, Florence; Mathot, Anne-Gabrielle; Bernard, Muriel; Divanac'h, Marie-Laure; Pavan, Sonia; Sohier, Danièle

    2012-08-01

    Sporeforming bacteria are ubiquitous in the environment and exhibit a wide range of diversity leading to their natural prevalence in foodstuff. The state of the art of sporeformer prevalence in ingredients and food was investigated using a multiparametric PCR-based tool that enables simultaneous detection and identification of various genera and species mostly encountered in food, i.e., Alicyclobacillus, Anoxybacillus flavithermus, Bacillus, B. cereus group, B. licheniformis, B. pumilus, B. sporothermodurans, B. subtilis, Brevibacillus laterosporus, Clostridium, Geobacillus stearothermophilus, Moorella and Paenibacillus species. In addition, 16S rDNA sequencing was used to extend identification to other possibly present contaminants. A total of 90 food products, with or without visible trace of spoilage were analysed, i.e., 30 egg-based products, 30 milk and dairy products and 30 canned food and ingredients. Results indicated that most samples contained one or several of the targeted genera and species. For all three tested food categories, 30 to 40% of products were contaminated with both Bacillus and Clostridium. The percentage of contaminations associated with Clostridium or Bacillus represented 100% in raw materials, 72% in dehydrated ingredients and 80% in processed foods. In the last two product types, additional thermophilic contaminants were identified (A. flavithermus, Geobacillus spp., Thermoanaerobacterium spp. and Moorella spp.). These results suggest that selection, and therefore the observed (re)-emergence of unexpected sporeforming contaminants in food might be favoured by the use of given food ingredients and food processing technologies.

  12. Soft tissue infections caused by spore-forming bacteria in injecting drug users in the United Kingdom.

    PubMed

    Brett, M M; Hood, J; Brazier, J S; Duerden, B I; Hahné, S J M

    2005-08-01

    From 2000 to May 2004 there has been a marked increase in illness resulting from spore-forming bacteria in injecting heroin users in the United Kingdom. Clostridium novyi caused 63 cases of severe illness in 2000 and seven further cases from 2001. Wound botulism first occurred in 2000 (six cases) with 51 further cases to March 2004. Tetanus occurred in 20 cases between late 2003 and March 2004. Infections with C. histolyticum (nine cases), C. sordellii (one case) and Bacillus cereus (one case) were also reported. The reasons for the increase in illness are unclear. The major risk factor was skin- or muscle-popping. The problem appears to be here to stay. This review describes the causative organisms, pathogenesis, clinical presentation, epidemiology and treatment of cases. Clinical vigilance and a high standard of anaerobic microbiology are essential. Clinicians and laboratories must report such cases (or likely cases) rapidly so that clusters can be rapidly identified, in order to control disease. Prevention relies on tetanus immunization.

  13. Soft tissue infections caused by spore-forming bacteria in injecting drug users in the United Kingdom.

    PubMed Central

    Brett, M. M.; Hood, J.; Brazier, J. S.; Duerden, B. I.; Hahné, S. J. M.

    2005-01-01

    From 2000 to May 2004 there has been a marked increase in illness resulting from spore-forming bacteria in injecting heroin users in the United Kingdom. Clostridium novyi caused 63 cases of severe illness in 2000 and seven further cases from 2001. Wound botulism first occurred in 2000 (six cases) with 51 further cases to March 2004. Tetanus occurred in 20 cases between late 2003 and March 2004. Infections with C. histolyticum (nine cases), C. sordellii (one case) and Bacillus cereus (one case) were also reported. The reasons for the increase in illness are unclear. The major risk factor was skin- or muscle-popping. The problem appears to be here to stay. This review describes the causative organisms, pathogenesis, clinical presentation, epidemiology and treatment of cases. Clinical vigilance and a high standard of anaerobic microbiology are essential. Clinicians and laboratories must report such cases (or likely cases) rapidly so that clusters can be rapidly identified, in order to control disease. Prevention relies on tetanus immunization. PMID:16050501

  14. Identification by Quantitative Carrier Test of Surrogate Spore-Forming Bacteria To Assess Sporicidal Chemicals for Use against Bacillus anthracis▿

    PubMed Central

    Majcher, Miles R.; Bernard, Kathryn A.; Sattar, Syed A.

    2008-01-01

    The spores of six strains of Bacillus anthracis (four virulent and two avirulent) were compared with those of four other types of spore-forming bacteria for their resistance to four liquid chemical sporicides (sodium hypochlorite at 5,000 ppm available chlorine, 70,000 ppm accelerated H2O2, 1,000 ppm chlorine dioxide, and 3,000 ppm peracetic acid). All test bacteria were grown in a 1:10 dilution of Columbia broth (with manganese) incubated at 37°C for 72 h. The spore suspensions, heat treated at 80°C for 10 min to rid them of any viable vegetative cells, contained 1 × 108 to 3 × 108 CFU/ml. The second tier of the quantitative carrier test (QCT-2), a standard of ASTM International, was used to assess for sporicidal activity, with disks (1 cm in diameter) of brushed and magnetized stainless steel as spore carriers. Each carrier, with 10 μl (≥106 CFU) of the test spore suspension in a soil load, was dried and then overlaid with 50 μl of the sporicide being evaluated. The contact time at room temperature ranged from 5 to 20 min, and the arbitrarily set criterion for acceptable sporicidal activity was a reduction of ≥106 in viable spore count. Each test was repeated at least three times. In the final analysis, the spores of Bacillus licheniformis (ATCC 14580T) and Bacillus subtilis (ATCC 6051T) proved to be generally more resistant than the spores of the strains of B. anthracis tested. The use of one or both of the safe and easy-to-handle surrogates identified here should help in developing safer and more-effective sporicides and also in evaluating the field effectiveness of existing and newer formulations in the decontamination of objects and surfaces suspected of B. anthracis contamination. PMID:18083869

  15. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  16. Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost.

    PubMed

    Steven, Blaire; Chen, Min Qun; Greer, Charles W; Whyte, Lyle G; Niederberger, Thomas D

    2008-06-01

    A Gram-positive, aerobic, rod-shaped bacterium (strain Eur1 9.5(T)) was isolated from a 9-m-deep permafrost sample from the Canadian high Arctic. Strain Eur1 9.5(T) could not be cultivated in liquid medium and grew over the temperature range 5-37 degrees C; no growth was observed at 42 degrees C and only slow growth was observed at 5 degrees C following 1 month of incubation. Eur1 9.5(T) grew over the pH range 5.5-8.9 and tolerated NaCl concentrations of 0-0.5 % (w/v). Eur1 9.5(T) grew heterotrophically on complex carbon substrates and chemolithoautotrophically on inorganic sulfur compounds, as demonstrated by growth on sodium thiosulfate and sulfite as sole electron donors. Eur1 9.5(T) contained iso-C(15 : 0) as the major cellular fatty acid and menaquinone 7 (MK-7) as the major respiratory quinone. The cell-wall peptidoglycan was of type A1gamma. The DNA G+C content was 53.1 mol%. The 16S rRNA gene sequence of strain Eur1 9.5(T) was only distantly related (

  17. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma

    SciTech Connect

    Zhao Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-05-09

    In this letter, the etching phenomena of the spore-forming bacteria by oxygen plasma were investigated by using quadrupole mass spectrometry. The etching by-products of H{sub 2}O and CO{sub 2} were obviously detected during the oxygen plasma irradiation by the multiple ion detection measurement. Inactivation of roughly 10{sup 6} spores population was achieved under almost the same reduced spore shapes for three different incident microwave powers. It is considered from the present results that the oxygen radical etching could cause damage to the germinant receptors located in the inner membrane inevitable for germination of spores, without any damage of the DNA in the cores.

  18. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-05-01

    In this letter, the etching phenomena of the spore-forming bacteria by oxygen plasma were investigated by using quadrupole mass spectrometry. The etching by-products of H2O and CO2 were obviously detected during the oxygen plasma irradiation by the multiple ion detection measurement. Inactivation of roughly 106 spores population was achieved under almost the same reduced spore shapes for three different incident microwave powers. It is considered from the present results that the oxygen radical etching could cause damage to the germinant receptors located in the inner membrane inevitable for germination of spores, without any damage of the DNA in the cores.

  19. [Synthesis of anabiosis autoinducers in non-spore-forming bacteria as a mechanism regulating their activity in soil and subsoil sedimentary rocks].

    PubMed

    Muliukin, A L; Demkina, E V; Kozlova, A N; Soina, V S; El'-Registan, G I

    2001-01-01

    Non-spore-forming bacteria of the genera Arthrobacter and Micrococcus, isolated from permafrost subsoil, were found to produce greater amounts of the d1 extracellular factor than closely related collection strains isolated from soil. The effect of this factor, responsible for cell transition to anabiosis, was not species-specific. Thus, the d1 crude preparation isolated from the culture liquid of the permafrost isolate Arthrobacter globiformis 245 produced an effect on the collection strain Arthrobacter globiformis B-1112 and also on Micrococcus luteus and Bacillus cereus. The crude d1 preparation from the permafrost isolate of Arthrobacter differed from the chemical analogue of this factor, 4n-hexylresorcinol, in the level of the induced cell response, which may have resulted from different cell sensitivity to various homologs of alkylhydroxybenzenes contained in the d1 preparation. Thus, additional evidence was obtained indicating that autoregulation of bacterial growth and development is implemented at the level of intercellular interactions in microbial communities. Abundant production of the d1 anabiosis-inducing factors by bacteria isolated from permafrost subsoil is probably a result of special antistress mechanisms responsible for the survival of these bacteria under extreme conditions of natural deep cooling.

  20. Effect of Essential Oils on Germination and Growth of Some Pathogenic and Spoilage Spore-Forming Bacteria.

    PubMed

    Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier

    2015-06-01

    The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097 mg/mL on vegetative cells and 0.001 to 0.002 mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25 mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63 mg/mL on vegetative growth and from 0.75 to 0.09 mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out.

  1. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline.

    PubMed

    Robertson, W J; Franzmann, P D; Mee, B J

    2000-02-01

    Previous studies on the geochemistry of a shallow unconfined aquifer contaminated with hydrocarbons suggested that the degradation of some hydrocarbons was linked to bacterial sulphate reduction. There was attenuation of naphthalene, 1,3,5-trimethylbenzene (TMB), toluene, p-xylene and ethylbenzene in the groundwater with concomitant loss of sulphate. Here, the recovery of eight strains of sulphate-reducing bacteria (SRB) from the contaminated site is reported. All were straight or curved rod-shaped cells which formed endospores. Amplification and sequencing of the 16S rDNA indicated that the strains were all sulphate reducers of the Gram-positive line of descent, and were most closely related to Desulfosporosinus (previously Desulfotomaculum) orientis DSM 8344 (97-98.9% sequence similarity). The strains clustered in three phylogenetic groups based on 16S rRNA sequences. Whole cell fatty acid compositions were similar to those of D. orientis DSM 8344, and were consistent with previous studies of fatty acids in soil and groundwater from the site. Microcosms containing groundwater from this aquifer indicated a role for sulphate reduction in the degradation of [ring-UL-14C]toluene, but not for the degradation of [UL-14C]benzene which could also be degraded by the microcosms. Adding one of the strains that was isolated from the groundwater (strain T2) to sulphate-enriched microcosms increased the rate of toluene degradation four- to 10-fold but had no effect on the rate of benzene degradation. The addition of molybdate, an inhibitor of sulphate reduction, to the groundwater samples decreased the rate of toluene mineralization. There was no evidence to support the mineralization of [UL-14C]benzene, [ring-UL-14C]toluene or unlabelled m-xylene, p-xylene, ethylbenzene, TMB or naphthalene by any of the strains in pure culture. Growth of all the strains was completely inhibited by 100 micromol l-1 TMB.

  2. [Saprophytic and opportunistic non spore-forming anaerobic microflora of the vagina (author's transl)].

    PubMed

    Cavazzini, G; Folegatti, M R; Segala, V; Cenci, P

    1980-01-01

    A microbiological survey has been carried out on 179 healthy, child-bearing aged, non-pregnant women, with the aim to evaluate the incidence of anaerobic non-spore forming bacteria in the normal vaginal flora. This group of bacteria has been isolated in 50.3% of women, with a clear prevalence of "anaerobic Streptococci " and Bacteroides, followed by Fusobacterium and Veillonella. No Propionibacterium, Eubacterium or Bifidobacterium have been isolated. According to many Authors the non-spore forming anaerobes must be considered opportunistic bacteria, responsible of many infections of the female genital tract, especially when associated with other aerobic or facultative bacteria. Antibiograms have demonstrated a wide spectrum of activity of chloramphenicol and clindamycin; although not widely distributed, antibacterial activity have also shown metronidazole, penicillins, cephalosporins and lincomycin.

  3. Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications.

    PubMed

    Ghosh, Indro Neil; Patil, Supriya Deepak; Sharma, Tarun Kumar; Srivastava, Santosh Kumar; Pathania, Ranjana; Navani, Naveen Kumar

    2013-01-01

    Silver has long been advocated as an effective antimicrobial. However, toxicity issues with silver have led to limited use of silver in nanoform, especially for food preservation. With the aim of exploring combinatorial options that could increase the antibacterial potency of silver nanoparticles and reduce the effective dosage of silver, we evaluated the extent of synergy that a combination of silver nanoparticles and an essential oil representative (cinnamaldehyde) could offer. A battery of gram-positive and gram-negative bacterial strains was utilized for antibacterial assays, and extents of synergism were calculated from fractional inhibitory concentration indices. The activity of nanoparticles was greatly enhanced when utilized in the presence of cinnamaldehyde. We observed combinatorial effects that were strongly additive against all the bacterial strains tested, and genuine synergy was found against spore forming Bacillus cereus and Clostridium perfringens - bacterial strains associated with release of cytotoxins in contaminated food and known for their persistence. Bacterial kill curve analysis revealed a very fast bactericidal action when a combination of two agents was used. The electron and atomic force microscopy also revealed extensive damage to the bacterial cell envelop in the presence of both agents. We also performed hemolysis assays to investigate and approximate the extent of toxicity exhibited by the two agents, and observed no adverse effect at the concentrations required for synergy. This study shows that safe levels of silver in nanoform in combination with essential oil component cinnamaldehyde can be effectively used for controlling the spore-forming bacterial species.

  4. Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications

    PubMed Central

    Ghosh, Indro Neil; Patil, Supriya Deepak; Sharma, Tarun Kumar; Srivastava, Santosh Kumar; Pathania, Ranjana; Navani, Naveen Kumar

    2013-01-01

    Silver has long been advocated as an effective antimicrobial. However, toxicity issues with silver have led to limited use of silver in nanoform, especially for food preservation. With the aim of exploring combinatorial options that could increase the antibacterial potency of silver nanoparticles and reduce the effective dosage of silver, we evaluated the extent of synergy that a combination of silver nanoparticles and an essential oil representative (cinnamaldehyde) could offer. A battery of gram-positive and gram-negative bacterial strains was utilized for antibacterial assays, and extents of synergism were calculated from fractional inhibitory concentration indices. The activity of nanoparticles was greatly enhanced when utilized in the presence of cinnamaldehyde. We observed combinatorial effects that were strongly additive against all the bacterial strains tested, and genuine synergy was found against spore forming Bacillus cereus and Clostridium perfringens – bacterial strains associated with release of cytotoxins in contaminated food and known for their persistence. Bacterial kill curve analysis revealed a very fast bactericidal action when a combination of two agents was used. The electron and atomic force microscopy also revealed extensive damage to the bacterial cell envelop in the presence of both agents. We also performed hemolysis assays to investigate and approximate the extent of toxicity exhibited by the two agents, and observed no adverse effect at the concentrations required for synergy. This study shows that safe levels of silver in nanoform in combination with essential oil component cinnamaldehyde can be effectively used for controlling the spore-forming bacterial species. PMID:24376352

  5. Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78.

    PubMed

    Segarra, Guillem; Puopolo, Gerardo; Giovannini, Oscar; Pertot, Ilaria

    2015-12-20

    The formulation is a significant step in biopesticide development and is an efficient way to obtain consistency in terms of biological control under field conditions. Nonetheless, there is still a lack of information regarding the processes needed to achieve efficient formulation of non spore-forming bacterial biological control agents. In response to this, we propose a flow diagram made up of six steps including selection of growth parameters, checking of minimum shelf life, selection of protective additives, checking that the additives have no adverse effects, validation of the additive mix under field conditions and choosing whether to use additives as co-formulants or tank mix additives. This diagram is intended to provide guidance and decision-making criteria for the formulation of non spore-forming bacterial biological control agents against foliar pathogens. The diagram was then validated by designing an efficient formulation for a Gram-negative bacterium, Lysobacter capsici AZ78, to control grapevine downy mildew caused by Plasmopara viticola. A harvest of 10(10)L. capsici AZ78cellsml(-1) was obtained in a bench top fermenter. The viability of cells decreased by only one order of magnitude after one year of storage at 4°C. The use of a combination of corn steep liquor, lignosulfonate, and polyethyleneglycol in the formulation improved the survival of L. capsici AZ78 cells living on grapevine leaves under field conditions by one order of magnitude. Furthermore, the use of these additives also guaranteed a reduction of 71% in P. viticola attacks. In conclusion, this work presents a straightforward stepwise flow diagram to help researchers develop formulations for biological control agents that are easy to prepare, stable, not phytotoxic and able to protect the microorganims under field conditions.

  6. Genome Diversity of Spore-Forming Firmicutes

    PubMed Central

    Galperin, Michael Y.

    2015-01-01

    Summary Formation of heat-resistant endospores is a specific property of the members of the phylum Firmicutes (low-G+C Gram-positive bacteria). It is found in representatives of four different classes of Firmicutes: Bacilli, Clostridia, Erysipelotrichia, and Negativicutes, which all encode similar sets of core sporulation proteins. Each of these classes also includes non-spore-forming organisms that sometimes belong to the same genus or even species as their spore-forming relatives. This chapter reviews the diversity of the members of phylum Firmicutes, its current taxonomy, and the status of genome sequencing projects for various subgroups within the phylum. It also discusses the evolution of the Firmicutes from their apparently spore-forming common ancestor and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, ruminococci) in the course of their adaptation to the saprophytic lifestyle in nutrient-rich environment. It argues that systematics of Firmicutes is a rapidly developing area of research that benefits from the evolutionary approaches to the ever-increasing amount of genomic and phenotypic data and allows arranging these data into a common framework. Later the Bacillus filaments begin to prepare for spore formation. In their homogenous contents strongly refracting bodies appear. From each of these bodies develops an oblong or shortly cylindrical, strongly refracting, dark-rimmed spore. Ferdinand Cohn. 1876. Untersuchungen über Bacterien. IV. Beiträge zur Biologie der Bacillen. Beiträge zur Biologie der Pflanzen, vol. 2, pp. 249–276. (Studies on the biology of the bacilli. In: Milestones in Microbiology: 1546 to 1940. Translated and edited by Thomas D. Brock. Prentice-Hall, Englewood Cliffs, NJ, 1961, pp. 49–56). PMID:26184964

  7. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor.

    PubMed

    Fang, Jiasong; Kato, Chiaki; Runko, Gabriella M; Nogi, Yuichi; Hori, Tomoyuki; Li, Jiangtao; Morono, Yuki; Inagaki, Fumio

    2017-01-01

    Phylogenetically diverse microorganisms have been observed in marine subsurface sediments down to ~2.5 km below the seafloor (kmbsf). However, very little is known about the pressure-adapted and/or pressure-loving microorganisms, the so called piezophiles, in the deep subseafloor biosphere, despite that pressure directly affects microbial physiology, metabolism, and biogeochemical processes of carbon and other elements in situ. In this study, we studied taxonomic compositions of microbial communities in high-pressure incubated sediment, obtained during the Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula, Japan. Analysis of 16S rRNA gene-tagged sequences showed that members of spore-forming bacteria within Firmicutes and Actinobacteria were predominantly detected in all enrichment cultures from ~1.5 to 2.4 km-deep sediment samples, followed by members of Proteobacteria, Acidobacteria, and Bacteroidetes according to the sequence frequency. To further study the physiology of the deep subseafloor sedimentary piezophilic bacteria, we isolated and characterized two bacterial strains, 19R1-5 and 29R7-12, from 1.9 and 2.4 km-deep sediment samples, respectively. The isolates were both low G+C content, gram-positive, endospore-forming and facultative anaerobic piezophilic bacteria, closely related to Virgibacillus pantothenticus and Bacillus subtilis within the phylum Firmicutes, respectively. The optimal pressure and temperature conditions for growth were 20 MPa and 42°C for strain 19R1-5, and 10 MPa and 43°C for strain 29R7-12. Bacterial (endo)spores were observed in both the enrichment and pure cultures examined, suggesting that these piezophilic members were derived from microbial communities buried in the ~20 million-year-old coal-bearing sediments after the long-term survival as spores and that the deep biosphere may host more abundant gram-positive spore-forming bacteria and their spores than hitherto recognized.

  8. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor

    PubMed Central

    Fang, Jiasong; Kato, Chiaki; Runko, Gabriella M.; Nogi, Yuichi; Hori, Tomoyuki; Li, Jiangtao; Morono, Yuki; Inagaki, Fumio

    2017-01-01

    Phylogenetically diverse microorganisms have been observed in marine subsurface sediments down to ~2.5 km below the seafloor (kmbsf). However, very little is known about the pressure-adapted and/or pressure-loving microorganisms, the so called piezophiles, in the deep subseafloor biosphere, despite that pressure directly affects microbial physiology, metabolism, and biogeochemical processes of carbon and other elements in situ. In this study, we studied taxonomic compositions of microbial communities in high-pressure incubated sediment, obtained during the Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula, Japan. Analysis of 16S rRNA gene-tagged sequences showed that members of spore-forming bacteria within Firmicutes and Actinobacteria were predominantly detected in all enrichment cultures from ~1.5 to 2.4 km-deep sediment samples, followed by members of Proteobacteria, Acidobacteria, and Bacteroidetes according to the sequence frequency. To further study the physiology of the deep subseafloor sedimentary piezophilic bacteria, we isolated and characterized two bacterial strains, 19R1-5 and 29R7-12, from 1.9 and 2.4 km-deep sediment samples, respectively. The isolates were both low G+C content, gram-positive, endospore-forming and facultative anaerobic piezophilic bacteria, closely related to Virgibacillus pantothenticus and Bacillus subtilis within the phylum Firmicutes, respectively. The optimal pressure and temperature conditions for growth were 20 MPa and 42°C for strain 19R1-5, and 10 MPa and 43°C for strain 29R7-12. Bacterial (endo)spores were observed in both the enrichment and pure cultures examined, suggesting that these piezophilic members were derived from microbial communities buried in the ~20 million-year-old coal-bearing sediments after the long-term survival as spores and that the deep biosphere may host more abundant gram-positive spore-forming bacteria and their spores than hitherto recognized. PMID:28220112

  9. [Distribution of strains of spore-forming bacteria of the genus Bacillus in the bottom sediments of Lake Khubsugul in Northern Mongolia as an indication of paleoclimate].

    PubMed

    Suslova, M Iu; Parfenova, V V; Ziborova, G A; Fedotov, A P

    2009-01-01

    Data on the distribution and abundance of bacteria of the genus Bacillus in the bottom sediments of Lake Khubsugul have shown the predominance of strains that preferred low temperatures. This indicates fairly cold temperature conditions on the territory of the Khubsugul drainage area. On the whole, the dynamics of interchange of minimums and maximums of abundance of bacteria of the genus Bacillus is similar to the global climate fluctuations. Study of the enzymatic activity of pure cultures revealed that most strains studied possessed proteolytic activity; consequently, the dynamics of bacteria development is correlated with the supply of organic nitrogen-containing compositions.

  10. Discrimination of Spore-Forming Bacilli Using spoIVA

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; LaDuc, Myron; Stuecker, Tara

    2009-01-01

    A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions). In some environments, spore-forming bacteria constitute small fractions of the total bacterial populations. The use of sporulation-specific primers in Q-PCR affords the ability to assess the spore-forming fraction of a bacterial population present in an environment of interest. This assessment can provide a more thorough and accurate understanding of the bacterial contamination in the environment, thereby making it possible to focus contamination- testing, contamination-prevention, sterilization, and decontamination resources more economically and efficiently. The method includes the use of sporulation-specific primers in the form of designed, optimized deoxyribonucleic acid (DNA) oligonucleotides specific for the bacterial spoIVA gene (see table). [In "spoIVA," "IV" signifies Roman numeral four and the entire quoted name refers to gene A for the fourth stage of sporulation.] These primers are mixed into a PCR cocktail with a given sample of bacterial cells. A control PCR cocktail into which are mixed universal 16S rRNA primers is also prepared. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] Following several cycles of heating and cooling according to the PCR protocol to amplify amounts of DNA molecules, the amplification products can be analyzed to determine the types of bacterial cells present within the samples. If the amplification product is strong

  11. Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination

    PubMed Central

    Doll, Etienne V.; Scherer, Siegfried; Wenning, Mareike

    2017-01-01

    Premature spoilage and varying product quality due to microbial contamination still constitute major problems in the production of microfiltered and pasteurized extended shelf life (ESL) milk. Spoilage-associated bacteria may enter the product either as part of the raw milk microbiota or as recontaminants in the dairy plant. To identify spoilage-inducing bacteria and their routes of entry, we analyzed end products for their predominant microbiota as well as the prevalence and biodiversity of psychrotolerant spores in bulk tank milk. Process analyses were performed to determine the removal of psychrotolerant spores at each production step. To detect transmission and recontamination events, strain typing was conducted with isolates obtained from all process stages. Microbial counts in 287 ESL milk packages at the end of shelf life were highly diverse ranging from <1 to 7.9 log cfu/mL. In total, 15% of samples were spoiled. High G+C Gram-positive bacteria were the most abundant taxonomic group, but were responsible for only 31% of spoilage. In contrast, psychrotolerant spores were isolated from 55% of spoiled packages. In 90% of samples with pure cultures of Bacillus cereus sensu lato and Paenibacillus spp., counts exceeded 6 log cfu/mL. In bulk tank milk, the concentration of psychrotolerant spores was low, accounting for merely 0.5 ± 0.8 MPN/mL. Paenibacillus amylolyticus/xylanexedens was by far the most dominant species in bulk tank milk (48% of all isolates), but was never detected in ESL milk, pointing to efficient removal during manufacturing. Six large-scale process analyses confirmed a high removal rate for psychrotolerant spores (reduction by nearly 4 log-units). B. cereus sensu lato, on the contrary, was frequently found in spoiled end products, but was rarely detected in bulk tank milk. Due to low counts in bulk tank samples and efficient spore removal during production, we suggest that shelf life is influenced only to a minor extent by raw

  12. Sporolactobacillus shoreae sp. nov. and Sporolactobacillus spathodeae sp. nov., two spore-forming lactic acid bacteria isolated from tree barks in Thailand.

    PubMed

    Thamacharoensuk, Tanatip; Kitahara, Maki; Ohkuma, Moriya; Thongchul, Nuttha; Tanasupawat, Somboon

    2015-04-01

    Two Gram-stain-positive, endospore-forming lactic acid bacteria, designated BK92(T) and BK117-1(T), were isolated from tree barks in Thailand. Cells were catalase-negative and facultatively anaerobic rods. 16S rRNA gene sequence analysis indicated that these strains belonged to the genus Sporolactobacillus . Strains BK92(T) and BK117-1(T) showed the highest 16S rRNA gene sequence similarity to Sporolactobacillus putidus QC81-06(T) with 97.7% and 97.1% similarity, respectively. Analysis of phylogenetic relationships based on 16S rRNA and gyrB gene sequencing revealed that the positions of strains BK92(T) and BK117-1(T) were clearly separated from all related species of the genus Sporolactobacillus . Strains BK92(T) and BK117-1(T) had low DNA-DNA relatedness between each other and also with S. putidus QC81-06(T) and Sporolactobacillus vineae SL153(T). The DNA G+C content of strains BK92(T) and BK117-1(T) was 46.6 mol% and 47.4 mol%, respectively. The major fatty acids of strains BK92(T) and BK117-1(T) were anteiso-C(17 : 0) and anteiso-C(15 : 0). They contained meso-diaminopimelic acid in cell-wall peptidoglycan and had menaquinone with seven isoprene units (MK-7) as the predominant menaquinone. Based on evidence including phenotypic, genotypic and chemotaxonomic studies, strains BK92(T) and BK117-1(T) should be classified as representatives of novel species of the genus Sporolactobacillus , for which the names Sporolactobacillus shoreae sp. nov. and Sporolactobacillus spathodeae sp. nov. are proposed, respectively. The type strains are BK92(T) ( = JCM 19541(T) = LMG 28365(T) = PCU 336(T) = TISTR 2234(T)) and BK117-1(T) ( = JCM 19542(T) = LMG 28366(T) = PCU 337(T) = TISTR 2235(T)).

  13. Spore-Forming Bacteria that Resist Sterilization

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron; Venkateswaran, Kasthuri

    2003-01-01

    A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

  14. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  15. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  16. Enteric spore-forming opportunistic parasites in HIV / AIDS.

    PubMed

    Chawla, Rohit; Ichhpujani, R L

    2011-01-01

    Human Immunodeficiency Virus (HIV) infection causes progressive damage to both limbs of the immune system, which results in a plethora of opportunistic infections. Among the various opportunistic infections, gastrointestinal infections are very common in HIV / Acquired Immunodeficiency Syndrome (AIDS). Opportunistic spore-forming protozoal parasites, namely, Cryptosporidium parvum, Isospora belli, Cyclospora cayetanensis, and Microsporidia, play a major role in causing chronic diarrhea, accompanied with weight loss, in patients with HIV / AIDS. The purpose of this review is to discuss the salient microbiological, clinical, and diagnostic aspects of important enteric spore-forming opportunistic parasites in HIV / AIDS.

  17. Biodegradation of Asphalt Cement-20 by Aerobic Bacteria

    PubMed Central

    Pendrys, John P.

    1989-01-01

    Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-degrading bacterium, Acinetobacter calcoaceticus NAV2, excretes an emulsifier which is capable of emulsifying the saturate and naphthene aromatic fractions of asphalt cement-20. This emulsifier is not denatured by phenol. PMID:16347928

  18. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    DTIC Science & Technology

    2015-07-01

    alloys present a novel approach to bacterial neutralization. Experiments are performed to demonstrate the bacterial growth kinetics on synthesized...at 37°C and then removed and checked for bacterial growth . The samples are then placed back into the incubator for another 24 hours and the results...are discussed below. Experiments show no bacterial growth after 24 hours on the nano Ag2O or nano TiO2, but does show colony forming unit (CFU

  19. Novel Species of Non-Spore-Forming Bacteria

    NASA Technical Reports Server (NTRS)

    Briegel, Ariane; Osman, Shariff; Moissl, Christine; Hosoya,Naofumi; Venkateswaran, Kasthuri; Satomi, Masataka; Mayilraj, Shanmugam

    2008-01-01

    While cataloging cultivatable microbes from the airborne biological diversity of the atmosphere of the Regenerative Enclosed life-support Module Simulator (REMS) system at Marshall Space Flight Center, two strains that belong to one novel bacterial species were isolated. Based on 16S rRNA gene sequencing and the unique morphology and the taxonomic characteristics of these strains, it is shown that they belong to the family Intrasporangiaceae, related to the genus Tetrasphaera, with phylogenetic distances from any validly described species of the genus Tetrasphaera ranging from 96.71 to 97.76 percent. The fatty acid profile supported the affiliation of these novel strains to the genus Tetrasphaera except for the presence of higher concentrations of octadecenoic acid (C18:0) and cis-9-octadecenoic acid (C18:1), which discriminates these strains from other valid species. In addition, DNA-DNA hybridization studies indicate that these strains belong to a novel species that could be readily distinguished from its nearest neighbor, Tetrasphaera japonica AMC 5116T, with less than 20 percent DNA relatedness. Physiological and biochemical tests show few phenotypic dissimilarities, but genotypic analysis allowed the differentiation of these gelatin-liquefying strains from previously reported strains. The name Tetrasphaera remsis sp. Nov. is proposed with the type strain 3-M5-R-4(sup T) (=ATCC BAA-1496(sup T)=CIP 109413(sup T). The cells are Gram-positive, nonmotile, cocci, in tetrad arrangement and clusters. Spore formation is not observed. No species of Tetrashpaera has ever been isolated from airborne samples. Previous discoveries have come from soil and activated sludge samples. As other species of this genus have demonstrated enhanced biological phosphorus removal activity, further tests are required to determine if this newly discovered species would have bioremediation applications.

  20. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.

    PubMed

    Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

    2014-08-29

    The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.

  1. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  2. A decade of spore-forming bacterial infections among European injecting drug users: pronounced regional variation.

    PubMed

    Hope, Vivian D; Palmateer, Norah; Wiessing, Lucas; Marongiu, Andrea; White, Joanne; Ncube, Fortune; Goldberg, David

    2012-01-01

    The recent anthrax outbreak among injecting drug users (IDUs) in Europe has highlighted an ongoing problem with severe illness resulting from spore-forming bacteria in IDUs. We collated the numbers of cases of 4 bacterial illnesses (botulism, tetanus, Clostridium novyi, and anthrax) in European IDUs for 2000 to 2009 and calculated population rates. Six countries reported 367 cases; rates varied from 0.03 to 7.54 per million people. Most cases (92%) were reported from 3 neighboring countries: Ireland, Norway, and the United Kingdom. This geographic variation needs investigation.

  3. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  4. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  5. Spore-forming Paenibacillus isolates and the relationship to Planetary Protection

    NASA Astrophysics Data System (ADS)

    Schwendner, Petra; Stieglmeier, Michaela; Wirth, Reinhard; Moissl-Eichinger, Christine

    The main criterion for biocontamination is the detectable amount of microbial spores on the spacecraft and also within the housing assembly facilities. These spacecraft construction clean rooms are challenging for microorganisms, characterized by low nutrient availability, dryness and the frequent employment of detergents and sterilization. Generally, spore forming Bacteria are often very resistant to extreme environmental factors and might even survive the flight to solar system bodies. As a consequence these microbes are of interest for planetary protection implements to avoid the possible transport of survivable matter and biomolecules from earth to other planets and vice versa (forward and reverse contamination). Facing ESA's ExoMars mission, a microbial biodiversity study of different spacecraft assembly clean rooms was per-formed to obtain first insights into the diversity of microorganisms present and their special metabolic skills. The recurrent isolation of different spore-forming Paenibacillus strains was like a common thread in all samplings carried out. In total, 11 isolates were enriched, at least 3 of them representing novel species, as determined via 16S rRNA gene sequencing. For fur-ther characterization of the cell shape and cell appendices novel Paenibacillus strains and their spores were studied via transmission as well as scanning electron microscopy. For resistance tests, Paenibacillus spores were subjected to dryness, vacuum and UV radiation and combi-nations thereof. Furthermore, in so called "Mars cycles" spores were exposed to temperature cycles, ranging from -20 C to +20 C over 24 hours. These cycles were repeated over 10 days and additionally 3 months. Up to present Bacillus atropheus is the model test organism for sterilization and cleanliness assays. These findings claim that in future planetary protection standard assays also other spore forming strains like Paenibacillus should be implicated.

  6. Genome Sequence of Brevibacillus formosus F12T for a Genome-Sequencing Project for Genomic Taxonomy and Phylogenomics of Bacillus-Like Bacteria

    PubMed Central

    Wang, Jie-Ping; Liu, Guo-Hong; Chen, Qian-qian; Zhu, Yu-jing; Chen, Zheng; Che, Jian-mei

    2015-01-01

    Brevibacillus formosus F12T is a Gram-positive, spore-forming, and strictly aerobic bacterium. Here, we report the draft 6.215-Mb genome sequence of B. formosus F12T, which will provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria, as well as for the functional gene mining and application of B. formosus. PMID:26205874

  7. Evaluation of the petrifilm aerobic count plate for enumeration of aerobic marine bacteria from seawater and Caulerpa lentillifera.

    PubMed

    Kudaka, Jun; Horii, Toru; Tamanaha, Koji; Itokazu, Kiyomasa; Nakamura, Masaji; Taira, Katsuya; Nidaira, Minoru; Okano, Sho; Kitahara, Akio

    2010-08-01

    The enumeration and evaluation of the activity of marine bacteria are important in the food industry. However, detection of marine bacteria in seawater or seafood has not been easy. The Petrifilm aerobic count plate (ACP) is a ready-to-use alternative to the traditional enumeration media used for bacteria associated with food. The purpose of this study was to evaluate the usefulness of a simple detection and enumeration method utilizing the Petrifilm ACP for enumeration of aerobic marine bacteria from seawater and an edible seaweed, Caulerpa lentillifera. The efficiency of enumeration of total aerobic marine bacteria on Petrifilm ACP was compared with that using the spread plate method on marine agar with 80 seawater and 64 C. lentillifera samples. With sterile seawater as the diluent, a close correlation was observed between the method utilizing Petrifilm ACP and that utilizing the conventional marine agar (r=0.98 for seawater and 0.91 for C. lentillifera). The Petrifilm ACP method was simpler and less time-consuming than the conventional method. These results indicate that Petrifilm ACP is a suitable alternative to conventional marine agar for enumeration of marine microorganisms in seawater and C. lentillifera samples.

  8. Isolation of the Paenibacillus phoenicis, a Spore-Forming Bacterium

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Osman, Shariff; Satomi, Masataka

    2010-01-01

    A microorganism was isolated from the surfaces of the cleanroom facility in which the Phoenix lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Paenibacillus and represents a novel species. Bacillus spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Spores of Bacillus species are of particular concern to planetary protection due to the extreme resistance of some members of the genus to space environmental conditions such as UV and gamma radiation, vacuum, oxidation, and temperature fluctuation. These resistive spore phenotypes have enhanced potential for transfer, and subsequent proliferation, of terrestrial microbes on another solar body. Due to decreased nutrient conditions within spacecraft assembly facility clean rooms, the vegetative cells of Bacillus species and other spore-forming Paenibacillus species are induced to sporulate, thereby enhancing their survivability of bioreduction

  9. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  10. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft.

    PubMed

    La Duc, Myron T; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  11. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  12. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri

    PubMed Central

    McDonald, Michael J.; Galafassi, Silvia; Compagno, Concetta; Piškur, Jure

    2017-01-01

    The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait. PMID:28282411

  13. Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a marine microbial mat

    NASA Astrophysics Data System (ADS)

    Yurkov, Vladimir V.; Van Gemerden, Hans

    Data have been collected on the abundance of obligately aerobic, bacteriochlorophyll- a-containing bacteria in a marine microbial mat on the West Frisian Island of Texel, The Netherlands. Plate counts on media rich in organic matter revealed average numbers of 3 ∗10 5·cm -3 sediment in the top 10 mm of the mat; the number of purple non-sulphur bacteria was of the same magnitude. Due to the relatively small dimensions of obligately aerobic anoxygenic phototrophic bacteria and purple non-sulphur bacteria, compared to those of purple sulphur bacteria, the contributions of either of the two former groups to the biomass of Bchl- a-containing organisms was approximately 3%. The specific Bchl- a-content of the isolated obligately aerobic phototrophs was very low (0.8 to 1.0 μg·mg -1 protein) compared to that of purple non-sulphur bacteria (16 to 20 μg·mg -1 protein), and purple sulphur bacteria (27 to 30 μg·mg -1). As a consequence, the relative contribution to the total Bchl a concentration of the two former groups (0.1% and 2.1%, respectively) was negligible, compared to that of the purple sulphur bacteria (97.8%). Salinities <50 had little effect on growth rate and yield of isolates; at salinities between 50 and 100 the doubling time increased progressively with a concomitant decrease in yield; no growth occurred at salinities > 140.

  14. Comparison of dry medium culture plates for mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

    PubMed

    Park, Junghyun; Kim, Myunghee

    2013-12-01

    This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

  15. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions.

    PubMed

    Kuhn, M; Steinbüchel, A; Schlegel, H G

    1984-08-01

    When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2.

  16. Aerobic biodegradation of propylene glycol by soil bacteria.

    PubMed

    Toscano, Giuseppe; Cavalca, Lucia; Letizia Colarieti, M; Scelza, Rosalia; Scotti, Riccardo; Rao, Maria A; Andreoni, Vincenza; Ciccazzo, Sonia; Greco, Guido

    2013-09-01

    Propylene glycol (PG) is a main component of aircraft deicing fluids and its extensive use in Northern airports is a source of soil and groundwater contamination. Bacterial consortia able to grow on PG as sole carbon and energy source were selected from soil samples taken along the runways of Oslo Airport Gardermoen site (Norway). DGGE analysis of enrichment cultures showed that PG-degrading populations were mainly composed by Pseudomonas species, although Bacteroidetes were found, as well. Nineteen bacterial strains, able to grow on PG as sole carbon and energy source, were isolated and identified as different Pseudomonas species. Maximum specific growth rate of mixed cultures in the absence of nutrient limitation was 0.014 h(-1) at 4 °C. Substrate C:N:P molar ratios calculated on the basis of measured growth yields are in good agreement with the suggested values for biostimulation reported in literature. Therefore, the addition of nutrients is suggested as a suitable technique to sustain PG aerobic degradation at the maximum rate by autochthonous microorganisms of unsaturated soil profile.

  17. Testing for aerobic heterotrophic bacteria allows no prediction of contamination with potentially pathogenic bacteria in the output water of dental chair units

    PubMed Central

    Bristela, Margit; Skolka, Astrid; Schmid-Schwap, Martina; Piehslinger, Eva; Indra, Alexander; Wewalka, Günther; Stauffer, Fritz

    2012-01-01

    Background: Currently, to our knowledge, quality of output water of dental chair units is not covered by specific regulations in the European Union, and national recommendations are heterogeneous. In Germany, water used in dental chair units must follow drinking water quality. In the United States of America, testing for aerobic heterotrophic bacteria is recommended. The present study was performed to evaluate whether the counts of aerobic heterotrophic bacteria correlate with the presence of potentially pathogenic bacteria such as Legionella spp. or Pseudomonas aeruginosa. Methods: 71 samples were collected from 26 dental chair units with integrated disinfection device and 31 samples from 15 outlets of the water distribution pipework within the department were examined. Samples were tested for aerobic heterotrophic bacteria at 35°C and 22°C using different culture media and for Legionella spp. and for Pseudomonas aeruginosa. Additionally, strains of Legionella pneumophila serogroup 1 were typed with monoclonal antibodies and representative samples of Legionella pneumophila serogroup 1 were typed by sequence based typing. Results: Our results showed a correlation between different agars for aerobic heterotrophic bacteria but no correlation for the count of aerobic heterotrophic bacteria and the presence of Legionella spp. or Pseudomonas aeruginosa. Conclusion: Testing for aerobic heterotrophic bacteria in output water or water distribution pipework within the departments alone is without any value for predicting whether the water is contaminated with potentially pathogenic bacteria like Legionella spp. or Pseudomonas aeruginosa. PMID:22558046

  18. The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems.

    PubMed

    Rush, Darci; Osborne, Kate A; Birgel, Daniel; Kappler, Andreas; Hirayama, Hisako; Peckmann, Jörn; Poulton, Simon W; Nickel, Julia C; Mangelsdorf, Kai; Kalyuzhnaya, Marina; Sidgwick, Frances R; Talbot, Helen M

    2016-01-01

    Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO.

  19. The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems

    PubMed Central

    Birgel, Daniel; Kappler, Andreas; Hirayama, Hisako; Peckmann, Jörn; Poulton, Simon W.; Nickel, Julia C.; Mangelsdorf, Kai; Kalyuzhnaya, Marina; Sidgwick, Frances R.; Talbot, Helen M.

    2016-01-01

    Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO. PMID:27824887

  20. Evaluation of Petrifilm method for enumerating aerobic bacteria in Crottin goat cheese.

    PubMed

    de Sousa, G B; Tamagnini, L M; González, R D; Budde, C E

    2005-01-01

    The Petrifilm Aerobic Count Plate (ACP) developed by 3M laboratories, is a ready-to-use culture medium system, useful for the enumeration of aerobic bacteria in food. Petrifilm was compared with a standard method in several different food products with satisfactory results. However, many studies showed that bacterial counts in Petrifilm were significantly lower than those obtained with conventional methods in fermented food. The purpose of this study was to compare the Petrifilm method for enumerating aerobic bacteria with a conventional method (PCA) in Crottin goat's cheese. Thirty samples were used for the colony count. The mean count and standard deviation were 7.18 +/- 1.17 log CFU g(-1) on PCA and 7.11 +/- 1.05 log CFU g(-1) on Petrifilm. Analysis of variance revealed no significant differences between both methods (t = 1.33, P = 0.193). The Pearson correlation coefficient (0.971, P = 0.0001) indicated a strong linear relationship between the Petrifilm and the standard method. The results showed that Petrifilm is suitable and a convenient alternative to this standard method for the enumeration of aerobic flora in goat soft cheese.

  1. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised

    NASA Technical Reports Server (NTRS)

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2005-01-01

    The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

  2. Phylogenetically Diverse Aerobic Anoxygenic Phototrophic Bacteria Isolated from Epilithic Biofilms in Tama River, Japan

    PubMed Central

    Hirose, Setsuko; Matsuura, Katsumi; Haruta, Shin

    2016-01-01

    The diversity of aerobic anoxygenic phototrophic (AAP) bacteria in freshwater environments, particularly in rivers, has not been examined in as much detail as in ocean environments. In the present study, we investigated the phylogenetic and physiological diversities of AAP bacteria in biofilms that developed on submerged stones in a freshwater river using culture methods. The biofilms collected were homogenized and inoculated on solid media and incubated aerobically in the dark. Sixty-eight red-, pink-, yellow-, orange-, or brown-colored colonies were isolated, and, of these, 28 isolates contained the photosynthetic pigment, bacteriochlorophyll (BChl) a. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates were classified into 14 groups in 8 operational taxonomic units (OTUs) and distributed in the orders Rhodospirillales, Rhodobacterales, and Sphingomonadales of Alphaproteobacteria and in Betaproteobacteria. Physiological analyses confirmed that none of the representative isolates from any of the groups grew under anaerobic phototrophic conditions. Seven isolates in 4 OTUs showed a 16S rRNA gene sequence identity of 98.0% or less with any established species, suggesting the presence of previously undescribed species of AAP bacteria. Six isolates in 2 other OTUs had the closest relatives, which have not been reported to be AAP bacteria. Physiological comparisons among the isolates revealed differences in preferences for nutrient concentrations, BChl contents, and light-harvesting proteins. These results suggest that diverse and previously unknown AAP bacteria inhabit river biofilms. PMID:27453124

  3. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean.

    PubMed

    Lami, Raphaël; Cottrell, Matthew T; Ras, Joséphine; Ulloa, Osvaldo; Obernosterer, Ingrid; Claustre, Hervé; Kirchman, David L; Lebaron, Philippe

    2007-07-01

    Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 x 10(5) cells ml(-1) and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 x 10(-3) microg liter(-1)) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.

  4. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  5. Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2

    PubMed Central

    Upadrasta, Aditya; Pitta, Swetha

    2016-01-01

    Bacillus coagulans Unique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709

  6. Survival of anaerobic and aerobic bacteria in a nonsupportive gassed transport system.

    PubMed Central

    Chow, A W; Cunningham, P J; Guze, L B

    1976-01-01

    Survival of anaerobic and aerobic bacteria in a commercially available, non-supportive, gassed (oxygen-free) transport container (Anaport) was evaluated quantitatively. Saline-suspended obligate anaerobes survived significantly better in the gassed container in aerobic control tubes (P less than 0.025, t test), and counts were virtually unchanged after 8 h of holding. Similarly, initial counts and relative proportions of a mixture of Bacteroides fragilis and Staphylococcus aureus were maintained for 72 h. The value of the gassed transport system was less apparent when microorganisms were suspended in nutrient broth. The major advantage of the gassed transport system appears to be for holding of specimens collected by saline irrigation. PMID:1254710

  7. Draft Genome Sequence of Bacillus mesonae FJAT-13985T (=DSM 25968T) for Setting Up Phylogenomics in Genomic Taxonomy of the Bacillus-Like Bacteria

    PubMed Central

    Liu, Guo-hong; Zhu, Yu-jing; Wang, Jie-ping; Che, Jian-mei; Chen, Qian-qian; Chen, Zheng

    2016-01-01

    Bacillus mesonae FJAT-13985T is a Gram-positive, spore-forming, and aerobic bacterium. Here, we report the draft genome sequence of B. mesonae FJAT-13985T with 5,807,726 bp, which will provide useful information for setting up phylogenomics in the genomic taxonomy of the Bacillus-like bacteria, as well as for the functional gene mining and application of B. mesonae FJAT-13985T. PMID:27313309

  8. Recovery of anaerobic, facultative, and aerobic bacteria from clinical specimens in three anaerobic transport systems.

    PubMed

    Helstad, A G; Kimball, J L; Maki, D G

    1977-06-01

    With aspirated specimens from clinical infections, we evaluated the recovery of anaerobic, aerobic, and facultative bacteria in three widely used transport systems: (i) aspirated fluid in a gassed-out tube (FGT), (ii) swab in modified Cary and Blair transport medium (SCB), and (iii) swab in a gassed-out tube (SGT). Transport tubes were held at 25 degrees C and semiquantitatively sampled at 0, 2, 24, and 48 h. Twenty-five clinical specimens yielded 75 anaerobic strains and 43 isolates of facultative and 3 of aerobic bacteria. Only one anaerobic isolate was not recovered in the first 24 h, and then, only in the SGT. At 48 h, 73 anaerobic strains (97%) were recovered in the FGT, 69 (92%) in the SCB, and 64 (85%) in the SGT. Two problems hindered the recovery of anaerobes in the SCB and SGT systems: first die-off of organisms, as evidenced by a decrease in colony-forming units of 20 strains (27%) in the SCB and 25 strains (33%) in the SGT, as compared with 7 strains (9%) in the FGT, over 48 h; and second, overgrowth of facultative bacteria, more frequent with SCB and SGT. The FGT method was clearly superior at 48 h to the SCB and SGT systems in this study and is recommended as the preferred method for transporting specimens for anaerobic culture.

  9. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms.

  10. The effect of bacteria, enzymes and inulin on fermentation and aerobic stability of corn silage

    PubMed Central

    Peymanfar, S; Kermanshahi, RK

    2012-01-01

    Background and Objectives Ensiling is a conservation method for forage crops. It is based on the fact that anaerobe lactic acid bacteria (LAB) convert watersoluble carbohydrates into organic acids. Therefore, pH decreases and the forage is preserved. The aim of this study was to isolate special kinds of lactic acid bacteria from silage and to study the effect of bacteria, inulin and enzymes as silage additives on the fermentation and aerobic stability of the silage. Materials and Methods The heterofermentative LAB were isolated from corn silages in Broujerd, Iran and biochemically characterized. Acid tolerance was studied by exposure to acidic PBS and growth in bile salt was measured by the spectrophotometric method. Results The results of molecular analysis using 16SrDNA sequences showed that the isolates belonged to Lactobacillus and Enterococcus genera. To enhance stability in acidic environment and against bile salts, microencapsulation with Alginate and Chitosan was used. The Lactobacillus plantarum strains were used as control. The inoculants (1 × 107 cfu/g) alone or in combination with inulin or in combination with enzymes were added to chopped forages and ensiled in 1.5-L anaerobic jars. Conclusion Combination of the isolates Lactobacillus and Enterococcus with inulin and enzymes can improve the aerobic stability of corn silage. PMID:23205249

  11. Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites

    PubMed Central

    Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C.

    2002-01-01

    Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day−1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day−1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks) values for VC were between 0.5 and 3.2 μM, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC. PMID:12450841

  12. Protection of probiotic bacteria in a synbiotic matrix following aerobic storage at 4 °C.

    PubMed

    Chaluvadi, S; Hotchkiss, A T; Call, J E; Luchansky, J B; Phillips, J G; Liu, Ls; Yam, K L

    2012-09-01

    The survival of single strains of Bifidobacterium breve, Bifidobacterium longum, Lactobacillus acidophilus, and Lactobacillus reuteri was investigated in synbiotics that included 10 mg/ml of fructo-oligosaccharides, inulin and pectic-oligosaccharides in an alginate matrix under refrigerated (4 °C) aerobic storage conditions. When the matrices were cross-linked with calcium (45 mM), 102-103 cfu/ml of L. acidophilus and L. reuteri, and 0-103 cfu/ml of B. breve and B. longum survived refrigerated aerobic storage for 28 days. Following refrigerated storage, acetic (3-9 mM), butyric (0-2 mM), propionic (5-16 mM) and lactic acids (1-48 mM) were produced during the growth of probiotics in BHI broth at 37 °C, suggesting their metabolic activity after storage was stressed. When calcium cross-linking was not used in synbiotics, the matrix remained more gel-like after inoculation when compared to the calcium cross-linked matrix. At least 107 cfu/ml of probiotic bacteria survived after 21 days of storage within these gel-like alginate matrices. Significantly higher levels of B. breve, L. acidophilus and L. reuteri were obtained from the synbiotic matrices supplemented with fructo-oligosaccharides, inulin and pectic-oligosaccharides compared to alginate alone. B. longum survival was the same (~7 logs) in all gel-like synbiotic matrices. These results show that synbiotics protected probiotic bacteria and extended their shelf-life under refrigerated aerobic conditions. Synbiotics represent a viable delivery vehicle for health-promoting bacteria.

  13. Evaluation of the 3M™ Petrifilm™ Rapid Aerobic Count Plate for the Enumeration of Aerobic Bacteria: Collaborative Study, First Action 2015.13.

    PubMed

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Jechorek, Robert

    2016-05-01

    The 3M™ Petrifilm™ Rapid Aerobic Count (RAC) Plate is a sample-ready culture medium system containing dual-sensor indicator technology for the rapid quantification of aerobic bacteria in food products. The 3M Petrifilm RAC Plate was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA BAM) Chapter 3 (Aerobic Plate Count) for the enumeration of aerobic bacteria in raw easy-peel shrimp and the Standard Methods for the Examination of Dairy Products (SMEDP) Chapter 6 (Standard Plate Count Method) for the enumeration of aerobic bacteria in pasteurized skim milk and instant nonfat dry milk (instant NFDM). The 3M Petrifilm RAC Plate was evaluated using a paired study design in a multilaboratory collaborative study following current AOAC validation guidelines. Three target contamination levels (low, 10-100 CFU/g; medium, 100-1000 CFU/g; and high 1000-10 000 CFU/g) were evaluated for naturally occurring aerobic microflora for each matrix. For raw easy-peel shrimp, duplicate 3M Petrifilm RAC Plates were enumerated after 24 ± 2 h incubation at both 32 and 35°C. Pasteurized skim milk 3M Petrifilm RAC Plates were enumerated after 24 ± 2 h incubation at 32°C, and instant NFDM 3M Petrifilm RAC Plates were enumerated after 48 ± 3 h incubation at 32°C. No statistical difference was observed between 3M Petrifilm RAC Plate and FDA BAM or SMEDP reference methods for each contamination level.

  14. Caenibacillus caldisaponilyticus gen. nov., sp. nov., a thermophilic, spore-forming and phospholipid-degrading bacterium isolated from acidulocompost.

    PubMed

    Tsujimoto, Yoshiyuki; Saito, Ryo; Furuya, Hiroto; Ishihara, Daisuke; Sahara, Takehiko; Kimura, Nobutada; Nishino, Tokuzo; Tsuruoka, Naoki; Shigeri, Yasushi; Watanabe, Kunihiko

    2016-07-01

    A thermophilic and phospholipid-degrading bacterium, designated strain B157T, was isolated from acidulocompost, a garbage compost processed under acidic conditions at moderately high temperature. The organism was Gram-stain-positive, aerobic, spore-forming and rod-shaped. Growth was observed to occur at 40-65 °C and pH 4.8-8.1 (optimum growth: 50-60 °C, pH 6.2). The strain was catalase- and oxidase-positive. The cell wall contained meso-diaminopimelic acid, alanine, glutamic acid and galactose. The predominant respiratory quinone was menaquinone-7 (MK-7) and the major fatty acids were anteiso-C17 : 0 and iso-C17 : 0. Comparative 16S rRNA gene sequence analysis showed that strain B157T was related most closely to Tuberibacillus calidus 607T (94.8 % identity), and the phylogenetic analysis revealed that it belonged to the family Sporolactobacillaceae. The DNA G+C content was determined as 51.8 mol%. In spite of many similarities with the type strains of members of the family Sporolactobacillaceae, genotypic analyses suggest that strain B157T represents a novel species of a new genus, Caenibacilluscaldisaponilyticus gen. nov., sp. nov. The type strain of Caenibacilluscaldisaponilyticus is B157T (=NBRC 111400T=DSM 101100T).

  15. Characteristics of alcohol dehydrogenases of certain aerobic bacteria representing human colonic flora.

    PubMed

    Nosova, T; Jousimies-Somer, H; Kaihovaara, P; Jokelainen, K; Heine, R; Salaspuro, M

    1997-05-01

    We have recently proposed the existence of a bacteriocolonic pathway for ethanol oxidation [i.e., ethanol is oxidized by alcohol dehydrogenases (ADHs) of intestinal bacteria resulting in high intracolonic levels of reactive and toxic acetaldehyde]. The aim of this in vitro study was to characterize further ADH activity of some aerobic bacteria, representing the normal human colonic flora. These bacteria were earlier shown to possess high cytosolic ADH activities (Escherichia coli IH 133369, Klebsiella pneumoniae IH 35385, Klebsiella oxytoca IH 35339, Pseudomonas aeruginosa IH 35342, and Hafnia alvei IH 53227). ADHs of the tested bacteria strongly preferred NAD as a cofactor. Marked ADH activities were found in all bacteria, even at low ethanol concentrations (1.5 mM) that may occur in the colon due to bacterial fermentation. The Km for ethanol varied from 29.9 mM for K. pneumoniae to 0.06 mM for Hafnia alvei. The inhibition of ADH by 4-methylpyrazole was found to be of the competitive type in 4 of 5 bacteria, and Ki varied from 18.26 +/- 3.3 mM for Escherichia coli to 0.47 +/- 0.13 mM for K. pneumoniae. At pH 7.4, ADH activity was significantly lower than at pH 9.6 in four bacterial strains. ADH of K. oxytoca, however, showed almost equal activities at neutral pH and at 9.6. In conclusion, NAD-linked alcohol dehydrogenases of aerobic colonic bacteria possess low apparent Km's for ethanol. Accordingly, they may oxidize moderate amounts of ethanol ingested during social drinking with nearly maximal velocity. This may result in the marked production of intracolonic acetaldehyde. Kinetic characteristics of the bacterial enzymes may enable some of them to produce acetaldehyde even from endogenous ethanol formed by other bacteria via alcoholic fermentation. The microbial ADHs were inhibited by 4-methylpyrazole by the same competitive inhibition as hepatic ADH, however, with nearly 1000 times lower susceptibility. Individual variations in human colonic flora may thus

  16. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria.

    PubMed

    Ney, Blair; Ahmed, F Hafna; Carere, Carlo R; Biswas, Ambarish; Warden, Andrew C; Morales, Sergio E; Pandey, Gunjan; Watt, Stephen J; Oakeshott, John G; Taylor, Matthew C; Stott, Matthew B; Jackson, Colin J; Greening, Chris

    2017-01-01

    F420 is a low-potential redox cofactor that mediates the transformations of a wide range of complex organic compounds. Considered one of the rarest cofactors in biology, F420 is best known for its role in methanogenesis and has only been chemically identified in two phyla to date, the Euryarchaeota and Actinobacteria. In this work, we show that this cofactor is more widely distributed than previously reported. We detected the genes encoding all five known F420 biosynthesis enzymes (cofC, cofD, cofE, cofG and cofH) in at least 653 bacterial and 173 archaeal species, including members of the dominant soil phyla Proteobacteria, Chloroflexi and Firmicutes. Metagenome datamining validated that these genes were disproportionately abundant in aerated soils compared with other ecosystems. We confirmed through high-performance liquid chromatography analysis that aerobically grown stationary-phase cultures of three bacterial species, Paracoccus denitrificans, Oligotropha carboxidovorans and Thermomicrobium roseum, synthesized F420, with oligoglutamate sidechains of different lengths. To understand the evolution of F420 biosynthesis, we also analyzed the distribution, phylogeny and genetic organization of the cof genes. Our data suggest that although the Fo precursor to F420 originated in methanogens, F420 itself was first synthesized in an ancestral actinobacterium. F420 biosynthesis genes were then disseminated horizontally to archaea and other bacteria. Together, our findings suggest that the cofactor is more significant in aerobic bacterial metabolism and soil ecosystem composition than previously thought. The cofactor may confer several competitive advantages for aerobic soil bacteria by mediating their central metabolic processes and broadening the range of organic compounds they can synthesize, detoxify and mineralize.

  17. Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area

    PubMed Central

    Sato-Takabe, Yuki; Nakao, Hironori; Kataoka, Takafumi; Yokokawa, Taichi; Hamasaki, Koji; Ohta, Kohei; Suzuki, Satoru

    2016-01-01

    Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10–53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas. PMID:28018324

  18. Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean.

    PubMed

    Boeuf, Dominique; Cottrell, Matthew T; Kirchman, David L; Lebaron, Philippe; Jeanthon, Christian

    2013-09-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are found in a range of aquatic and terrestrial environments, potentially playing unique roles in biogeochemical cycles. Although known to occur in the Arctic Ocean, their ecology and the factors that govern their community structure and distribution in this extreme environment are poorly understood. Here, we examined summer AAP abundance and diversity in the North East Pacific and the Arctic Ocean with emphasis on the southern Beaufort Sea. AAP bacteria comprised up to 10 and 14% of the prokaryotic community in the bottom nepheloid layer and surface waters of the Mackenzie plume, respectively. However, relative AAP abundances were low in offshore waters. Environmental pufM clone libraries revealed that AAP bacteria in the Alphaproteobacteria and Betaproteobacteria classes dominated in offshore and in river-influenced surface waters, respectively. The most frequent AAP group was a new uncultivated betaproteobacterial clade whose abundance decreased along the salinity gradient of the Mackenzie plume even though its photosynthetic genes were actively expressed in offshore waters. Our data indicate that AAP bacterial assemblages represented a mixture of freshwater and marine taxa mostly restricted to the Arctic Ocean and highlight the substantial influence of riverine inputs on their distribution in coastal environments.

  19. Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area.

    PubMed

    Sato-Takabe, Yuki; Nakao, Hironori; Kataoka, Takafumi; Yokokawa, Taichi; Hamasaki, Koji; Ohta, Kohei; Suzuki, Satoru

    2016-01-01

    Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10-53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas.

  20. Culturing aerobic and anaerobic bacteria and mammalian cells with a microfluidic differential oxygenator.

    PubMed

    Lam, Raymond H W; Kim, Min-Cheol; Thorsen, Todd

    2009-07-15

    In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen-nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated).

  1. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms

    SciTech Connect

    Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

    1999-11-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O{sub 2}, H{sub 2}S, NO{sub 2}{minus}, NH{sub 2}{sup +}, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells were evenly distributed throughout the biofilm, even in the toxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations. The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 {micro}m below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S{degree}) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms, which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.

  2. Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus.

    PubMed

    Hernández, Noemi; Escudero, José A; San Millán, Álvaro; González-Zorn, Bruno; Lobo, Jorge M; Verdú, José R; Suárez, Mónica

    2015-04-01

    Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle's gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. The main functions associated with the bacteria found in the gut of T. lusitanicus would likely include nitrogen fixation, denitrification, detoxification, and diverse defensive roles against pathogens.

  3. Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria.

    PubMed

    Reshetnikov, Alexander S; Khmelenina, Valentina N; Mustakhimov, Ildar I; Kalyuzhnaya, Marina; Lidstrom, Mary; Trotsenko, Yuri A

    2011-11-01

    The genes of ectoine biosynthesis pathway were identified in six species of aerobic, slightly halophilic bacteria utilizing methane, methanol or methylamine. Two types of ectoine gene cluster organization were revealed in the methylotrophs. The gene cluster ectABC coding for diaminobutyric acid (DABA) acetyltransferase (EctA), DABA aminotransferase (EctB) and ectoine synthase (EctC) was found in methanotrophs Methylobacter marinus 7C and Methylomicrobium kenyense AMO1(T). In methanotroph Methylomicrobium alcaliphilum ML1, methanol-utilizers Methylophaga thalassica 33146(T) , Methylophaga alcalica M8 and methylamine-utilizer Methylarcula marina h1(T), the genes forming the ectABC-ask operon are preceded by ectR, encoding a putative transcriptional regulatory protein EctR. Phylogenetic relationships of the Ect proteins do not correlate with phylogenetic affiliation of the strains, thus implying that the ability of methylotrophs to produce ectoine is most likely the result of a horizontal transfer event.

  4. Life cycle and spore resistance of spore-forming Bacillus atrophaeus.

    PubMed

    Sella, Sandra R B R; Vandenberghe, Luciana P S; Soccol, Carlos Ricardo

    2014-12-01

    Bacillus endospores have a wide variety of important medical and industrial applications. This is an overview of the fundamental aspects of the life cycle, spore structure and factors that influence the spore resistance of spore-forming Bacillus. Bacillus atrophaeus was used as reference microorganism for this review because their spores are widely used to study spore resistance and morphology. Understanding the mechanisms involved in the cell cycle and spore survival is important for developing strategies for spore killing; producing highly resistant spores for biodefense, food and pharmaceutical applications; and developing new bioactive molecules and methods for spore surface display.

  5. Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of No-treatment, Water, and three sanitizers. Sanitizers were Hydrogen ...

  6. Comparison between Rinse and Crush-and-Rub Sampling for Aerobic Bacteria Recovery from Hatching Eggs after Sanitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatments with sanitizers. Eggs were arranged into 5 treatments consisting of three sanitizers, Water, and No-treatment. Sanitizers were Hydrogen...

  7. Growth of Aerobic Ripening Bacteria at the Cheese Surface Is Limited by the Availability of Iron

    PubMed Central

    Back, Alexandre; Irlinger, Françoise

    2012-01-01

    The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions. PMID:22367081

  8. Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron.

    PubMed

    Monnet, Christophe; Back, Alexandre; Irlinger, Françoise

    2012-05-01

    The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions.

  9. An initial investigation into the ecology of culturable aerobic postmortem bacteria.

    PubMed

    Chun, Lauren P; Miguel, Marcus J; Junkins, Emily N; Forbes, Shari L; Carter, David O

    2015-12-01

    Postmortem microorganisms are increasingly recognized for their potential to serve as physical evidence. Yet, we still understand little about the ecology of postmortem microbes, particularly those associated with the skin and larval masses. We conducted an experiment to characterize microbiological and chemical properties of decomposing swine (Sus scrofa domesticus) carcasses on the island of Oahu, Hawaii, USA, during June 2013. Bacteria were collected from the head, limb, and larval mass during the initial 145h of decomposition. We also measured the pH, temperature, and oxidation-reduction potential of larval masses in situ. Bacteria were cultured aerobically on Standard Nutrient Agar at 22°C and identified using protein or genetic signals. Carcass decomposition followed a typical sigmoidal pattern and associated bacterial communities differed by sampling location and time since death, although all communities were dominated by phyla Actinobacteria, Firmicutes, and Proteobacteria. Larval masses were reducing environments (~-200mV) of neutral pH (6.5-7.5) and high temperature (35°C-40°C). We recommend that culturable postmortem and larval mass microbiology and chemistry be investigated in more detail, as it has potential to complement culture-independent studies and serve as a rapid estimate of PMI.

  10. Reducing time to identification of aerobic bacteria and fastidious micro-organisms in positive blood cultures.

    PubMed

    Intra, J; Sala, M R; Falbo, R; Cappellini, F; Brambilla, P

    2016-12-01

    Rapid and early identification of micro-organisms in blood has a key role in the diagnosis of a febrile patient, in particular, in guiding the clinician to define the correct antibiotic therapy. This study presents a simple and very fast method with high performances for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after only 4 h of incubation. We used early bacterial growth on PolyViteX chocolate agar plates inoculated with five drops of blood-broth medium deposited in the same point and spread with a sterile loop, followed by a direct transfer procedure on MALDI-TOF MS target slides without additional modification. Ninety-nine percentage of aerobic bacteria were correctly identified from 600 monomicrobial-positive blood cultures. This procedure allowed obtaining the correct identification of fastidious pathogens, such as Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae that need complex nutritional and environmental requirements in order to grow. Compared to the traditional pathogen identification from blood cultures that takes over 24 h, the reliability of results, rapid performance and suitability of this protocol allowed a more rapid administration of optimal antimicrobial treatment in the patients.

  11. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  12. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker

    PubMed Central

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing “unknown methanotrophic bacteria.” This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  13. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker.

    PubMed

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.

  14. CotG-Like Modular Proteins Are Common among Spore-Forming Bacilli

    PubMed Central

    Saggese, Anella; Isticato, Rachele; Cangiano, Giuseppina; Ricca, Ezio

    2016-01-01

    ABSTRACT CotG is an abundant protein initially identified as an outer component of the Bacillus subtilis spore coat. It has an unusual structure characterized by several repeats of positively charged amino acids that are probably the outcome of multiple rounds of gene elongation events in an ancestral minigene. CotG is not highly conserved, and its orthologues are present in only two Bacillus and two Geobacillus species. In B. subtilis, CotG is the target of extensive phosphorylation by a still unidentified enzyme and has a role in the assembly of some outer coat proteins. We report now that most spore-forming bacilli contain a protein not homologous to CotG of B. subtilis but sharing a central “modular” region defined by a pronounced positive charge and randomly coiled tandem repeats. Conservation of the structural features in most spore-forming bacilli suggests a relevant role for the CotG-like protein family in the structure and function of the bacterial endospore. To expand our knowledge on the role of CotG, we dissected the B. subtilis protein by constructing deletion mutants that express specific regions of the protein and observed that they have different roles in the assembly of other coat proteins and in spore germination. IMPORTANCE CotG of B. subtilis is not highly conserved in the Bacillus genus; however, a CotG-like protein with a modular structure and chemical features similar to those of CotG is common in spore-forming bacilli, at least when CotH is also present. The conservation of CotG-like features when CotH is present suggests that the two proteins act together and may have a relevant role in the structure and function of the bacterial endospore. Dissection of the modular composition of CotG of B. subtilis by constructing mutants that express only some of the modules has allowed a first characterization of CotG modules and will be the basis for a more detailed functional analysis. PMID:26953338

  15. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  16. Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere

    PubMed Central

    Stiefel, Philipp; Zambelli, Tomaso

    2013-01-01

    In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

  17. Safety assessment of dairy microorganisms: aerobic coryneform bacteria isolated from the surface of smear-ripened cheeses.

    PubMed

    Denis, Catherine; Irlinger, Françoise

    2008-09-01

    The group of "coryneform bacteria" belongs to the class of Actinobacteria including a diverse and heterogeneous collection of bacteria of various genera. Most of them are known as environmental residents and/or commensal flora of humans and they are isolated frequently in clinical studies. Actinobacteria include also several aerobic species, present at the surface of smear-ripened cheeses for decades and used as ripening culture in the dairy industry. Their clinical significance is controversial because an easy combination of phenotypic and molecular methods to characterize Actinobacteria at the species level is still lacking. A bibliographical survey was conducted to assess the safety status of Actinobacteria species used as starter culture in fermented dairy foods, according to their technological interest. Aerobic coryneform bacteria isolated from smear-ripened cheeses are most commonly recovered from soil, the environment or food. To date, no clinical infection or food toxi-infection related to smear cheese coryneform bacteria ingestion has been reported. From a taxonomic viewpoint, dairy species are distant from the reference species associated with known pathologies. From a physiological viewpoint, cheese smear coryneform bacteria appear to be related to particular ecological niches: they are all oxidative species, and most are psychrotrophic and unable to grow at 37 degrees C whereas medically relevant coryneform bacteria are facultative anaerobes and grow at 35-37 degrees C. Consequently, technological strains must be selected according to taxonomic criteria (nonpathogenic species) and ecological criteria.

  18. Organic osmolytes in aerobic bacteria from mono lake, an alkaline, moderately hypersaline environment.

    PubMed

    Ciulla, R A; Diaz, M R; Taylor, B F; Roberts, M F

    1997-01-01

    The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, Calif., an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress.

  19. Spatial and temporal variability of aerobic anoxygenic photoheterotrophic bacteria along the east coast of Australia.

    PubMed

    Bibiloni-Isaksson, Jaime; Seymour, Justin R; Ingleton, Tim; van de Kamp, Jodie; Bodrossy, Levente; Brown, Mark V

    2016-12-01

    Aerobic Anoxygenic Phototrophic Bacteria (AAnPB) are ecologically important microorganisms, widespread in oceanic photic zones. However, the key environmental drivers underpinning AAnPB abundance and diversity are still largely undefined. The temporal patterns in AAnPB dynamics at three oceanographic reference stations spanning at approximately 15° latitude along the Australian east coast were examined. AAnPB abundance was highly variable, with pufM gene copies ranging from 1.1 × 10(2) to 1.4 × 10(5) ml(-1) and positively correlated with day length and solar radiation. pufM gene Miseq sequencing revealed that the majority of sequences were closely related to those obtained previously, suggesting that key AAnPB groups are widely distributed across similar environments globally. Temperature was a major structuring factor for AAnPB assemblages across large spatial scales, correlating positively with richness and Gammaproteobacteria (phylogroup K) abundance but negatively with Roseobacter-clade (phylogroup E) abundance, with temperatures between 16°C and 18°C identified as a potential transition zone between these groups. Network analysis revealed that discrete AAnPB populations exploit specific niches defined by varying temperature, light and nutrient conditions in the Tasman Sea system, with evidence for both niche sharing and partitioning amongst closely related operational taxonomic units.

  20. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill.

  1. Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization.

    PubMed

    Spickler, J L; Buhr, R J; Cox, N A; Bourassa, D V; Rigsby, L L

    2011-07-01

    This study compared surface and deep eggshell aerobic bacteria recovered by the rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of no treatment, water, and 3 sanitizers. The sanitizers were H(2)O(2), phenol, and Q(4)B (a compound chemical containing 4 quaternary ammoniums and 1 biguanide moiety). Eggs were sprayed according to treatment and allowed to dry for 1 h before sampling. To collect samples for the eggshell rinse, each egg was massaged in a plastic bag with 20 mL of saline. Eggshells were then aseptically opened and their contents were discarded before being individually crushed into 50-mL centrifuge tubes containing 20 mL of saline. Aerobic bacteria were enumerated on Petrifilm after 48 h of incubation at 37°C. Aerobic bacteria recovered (log(10) cfu/mL) from the eggshell rinse were highest and similar for the no-treatment (4.0) and water (3.7) groups, lower for the phenol (3.2) and H(2)O(2) (3.1) groups, and lowest for the Q(4)B (2.4) group. Aerobic bacteria levels with the crush-and-rub method were similar for the no-treatment (2.5) and water (2.3) groups, lower for the phenol (1.6) group, intermediate for the H(2)O(2) (1.2) group, and lowest for the Q(4)B (0.9) group. The overall correlation between the rinse and crush-and-rub sampling methods for individual egg aerobic bacteria counts was r = 0.71. The correlation within each treatment revealed the following r values: no treatment, 0.55; water, 0.72; H(2)O(2), 0.67; phenol, 0.73; and Q(4)B, 0.38. A second experiment was designed to further examine the lower aerobic bacterial levels recovered by the crush-and-rub method (for previously rinsed eggs) than the levels recovered in the initial eggshell rinse sample. Eggs were either rinsed and then crushed and rubbed, or they were only crushed and rubbed without a prior rinse. Results confirmed a significant decrease (1.5 log(10) cfu/mL) in bacteria levels

  2. Dynamics of phosphorus and phytate-utilizing bacteria during aerobic degradation of dairy cattle dung.

    PubMed

    Fuentes, Bárbara; Jorquera, Milko; Mora, María de la Luz

    2009-01-01

    During organic wastes degradation, P is transformed which may affect its availability. In this study, the dynamics of P and the occurrence of phytate-utilizing bacteria (PUB) were evaluated during aerobic degradation of dairy cattle dung in laboratory-scale reactors for 105 d. The results showed an increase of water-soluble inorganic P (Pi) (from 570 to 1890 mg kg(-1)) and biomass P (from 390 to 870 mg kg(-1)) during the initial 40 d. After this period, water-soluble Pi remained constant (around 1500 mg kg(-1)) and biomass P decreased (around 220 mg kg(-1)) probably due to the decrease of easily available C in dung. Under the acidic conditions in the first 20 d there was an increase in concentration of Al (25 mg kg(-1)) and Fe (27 mg kg(-1)) ions. These ions were no longer detectable in the alkaline conditions occurring after 40 d. In the same period, the Ca concentration increased (from 1170 to 2370 mg kg(-1)) and chemical speciation revealed permanent association of Ca ions with Pi. Sequential P fractionation showed a decrease of organic P in NaHCO(3), NaOH and HCl fractions and an increase of residual P (25-52% with respect to total P). Analysis by (31)P NMR also showed a decrease (from 14% to 1.6%) of phytic acid content during final experimental period (60 and 105 d). The bacteriological analysis revealed various PUB involved in degradation of the dung. Two morphotypes, genetically characterized as Enterobacter and Rahnella, which were dominant under higher content of residual P, showed strong utilization of phytate in vitro.

  3. Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment

    SciTech Connect

    Ciulla, R.A.; Roberts, M.F.; Diaz, M.R.; Taylor, B.F.

    1997-01-01

    The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, California, an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress. 33 refs., 5 figs., 2 tabs.

  4. Effect of heating rate on highly heat-resistant spore-forming microorganisms.

    PubMed

    Gómez-Jódar, Isabel; Ros-Chumillas, María; Palop, Alfredo

    2016-03-01

    Highly heat-resistant spore-forming Bacillus cause nonsterility problems in canned food and reduce the shelf life of many processed foods. The aim of this research was to evaluate the thermal inactivation of Bacillus sporothermodurans IIC65, Bacillus subtilis IC9, and Geobacillus stearothermophilus T26 under isothermal and nonisothermal conditions. The data obtained showed that B. sporothermodurans and B. subtilis were more heat resistant than G. stearothermophilus. The survival curves of B. sporothermodurans and B. subtilis showed shoulders, while the survival curves of G. stearothermophilus showed tails. Under nonisothermal treatment, at heating rates of 1 and 20 ℃/min, time needed to completely inactivate G. stearothermophilus was shorter than that required for B. sporothermodurans and B. subtilis. In complex heat treatments (heating-holding-cooling), the survival curves of B. sporothermodurans and B. subtilis showed the same activation shoulders than those obtained under isothermal treatments and the activation shoulders were again absent in the case of G. stearothermophilus. Predictions fitted quite well the data obtained for B. sporothermodurans. In contrast, the data for B. subtilis showed half a log cycle more survival than expected and in the case of G. stearothermophilus, the survival curve obtained showed much higher inactivation than expected.

  5. Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms

    PubMed Central

    Zheng, Ziqiang; Zheng, Jinshui; Zhang, Zhengming; Peng, Donghai; Sun, Ming

    2016-01-01

    In the soil environment, Bacilli can affect nematode development, fecundity and survival. However, although many Bacillus species can kill nematodes, the virulence mechanisms Bacilli utilize remain unknown. In this study, we collected 120 strains comprising 30 species across the Bacillaceae and Paenibacillaceae families of the Bacillales order and measured their nematicidal activities in vitro. Comparison of these strains’ nematicidal capacities revealed that nine species, including Bacillus thuringiensis, B. cereus, B. subtilis, B. pumilus, B. firmus, B. toyonensis, Lysinibacillus sphaericus, Brevibacillus laterosporus and B. brevis, were highly nematicidal, the first of which showed the highest activity. Genome sequencing and analysis identified many potential virulence factors, which grouped into five types. At least four possible mechanisms were deduced on the basis of the combination of these factors and the bacterial nematicidal activity, including a pore-forming mechanism of crystal proteins, an inhibition-like mechanism of thuringiensin and a degradation mechanism of proteases and/or chitinases. Our results demonstrate that 120 spore-forming Bacilli across different families share virulence factors that may contribute to their nematicidal capacity. PMID:27539267

  6. Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms.

    PubMed

    Zheng, Ziqiang; Zheng, Jinshui; Zhang, Zhengming; Peng, Donghai; Sun, Ming

    2016-08-19

    In the soil environment, Bacilli can affect nematode development, fecundity and survival. However, although many Bacillus species can kill nematodes, the virulence mechanisms Bacilli utilize remain unknown. In this study, we collected 120 strains comprising 30 species across the Bacillaceae and Paenibacillaceae families of the Bacillales order and measured their nematicidal activities in vitro. Comparison of these strains' nematicidal capacities revealed that nine species, including Bacillus thuringiensis, B. cereus, B. subtilis, B. pumilus, B. firmus, B. toyonensis, Lysinibacillus sphaericus, Brevibacillus laterosporus and B. brevis, were highly nematicidal, the first of which showed the highest activity. Genome sequencing and analysis identified many potential virulence factors, which grouped into five types. At least four possible mechanisms were deduced on the basis of the combination of these factors and the bacterial nematicidal activity, including a pore-forming mechanism of crystal proteins, an inhibition-like mechanism of thuringiensin and a degradation mechanism of proteases and/or chitinases. Our results demonstrate that 120 spore-forming Bacilli across different families share virulence factors that may contribute to their nematicidal capacity.

  7. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.

  8. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables.

  9. Determinative factors of competitive advantage between aerobic bacteria for niches at the air-liquid interface.

    PubMed

    Yamamoto, Kyosuke; Haruta, Shin; Kato, Souichiro; Ishii, Masaharu; Igarashi, Yasuo

    2010-01-01

    We focused on bacterial interspecies relationships at the air-liquid interface where the formation of pellicles by aerobes was observed. Although an obligate aerobe (Brevibacillus sp. M1-5) was initially dominant in the pellicle population, a facultative aerobe (Pseudoxanthomonas sp. M1-3) emerged and the viability of M1-5 rapidly decreased due to severe competition for oxygen. Supplementation of the medium with carbohydrates allowed the two species to coexist at the air-liquid interface. These results indicate that the population dynamics within pellicles are primarily governed by oxygen utilization which was affected by a combination of carbon sources.

  10. Variable carbon isotope fractionation expressed by aerobic CH 4-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Templeton, Alexis S.; Chu, Kung-Hui; Alvarez-Cohen, Lisa; Conrad, Mark E.

    2006-04-01

    Carbon isotope fractionation factors reported for aerobic bacterial oxidation of CH 4(α) range from 1.003 to 1.039. In a series of experiments designed to monitor changes in the carbon isotopic fractionation of CH 4 by Type I and Type II methanotrophic bacteria, we found that the magnitude of fractionation was largely due to the first oxidation step catalyzed by methane monooxygenase (MMO). The most important factor that modulates the (α) is the fraction of the total CH 4 oxidized per unit time, which strongly correlates to the cell density of the growth cultures under constant flow conditions. At cell densities of less than 0.1 g/L, fractionation factors greater than 1.03 were observed, whereas at cell densities greater than 0.5 g/L the fractionation factors decreased to as low as 1.002. At low cell densities, low concentrations of MMO limit the amount of CH 4 oxidized, while at higher cell densities, the overall rates of CH 4 oxidation increase sufficiently that diffusion of CH 4 from the gaseous to dissolved state and into the cells is likely the rate-determining step. Thus, the residual CH 4 is more fractionated at low cell densities, when only a small fraction of the total CH 4 has been oxidized, than at high cell densities, when up to 40% of the influent CH 4 has been utilized. Therefore, since Rayleigh distillation behavior is not observed, δ 13C values of the residual CH 4 cannot be used to infer the amount oxidized in either laboratory or field-studies. The measured (α) was the same for both Type I and Type II methanotrophs expressing particulate or soluble MMO. However, large differences in the δ 13C values of biomass produced by the two types of methanotrophs were observed. Methylosinus trichosporium OB3b (Type II) produced biomass with δ 13C values about 15‰ higher than the dissimilated CO 2, whereas Methylomonas methanica (Type I) produced biomass with δ 13C values only about 6‰ higher than the CO 2. These effects were independent of the

  11. Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil.

    PubMed

    Sánchez-Peinado, María del Mar; González-López, Jesús; Rodelas, Belén; Galera, Vanesa; Pozo, Clementina; Martínez-Toledo, María Victoria

    2008-08-01

    An enrichment culture technique was used to isolate soil bacteria capable of growing in the presence of two different concentrations of linear alkylbenzene sulfonates (LAS) (10 and 500 microg ml(-1)). Nine bacterial strains, representatives of the major colony types of aerobic heterotrophic cultivable bacteria in the enriched samples, were isolated and subsequently identified by PCR-amplification and partial sequencing of the 16S rRNA gene. Amongst the isolates, strains LAS05 (Pseudomonas syringae), LAS06 (Staphylococcus epidermidis), LAS07 (Delftia tsuruhatensis), LAS08 (Staphylococcus epidermidis) and LAS09 (Enterobacter aerogenes), were able to grow in pure culture in dialysed soil media amended with LAS (50 microg ml(-1)). The three Gram-negative strains grew to higher cell numbers in the presence of 50 microg ml(-1) of LAS, compared to LAS-unamended dialysed soil medium, and were selected for further testing of their ability to use LAS as carbon source. However, HPLC analysis of culture supernatants showed that the three strains can tolerate but not degrade LAS when grown in pure cultures. A higher concentration of soluble phosphates was recorded in dialysed soil media amended with LAS (50 microg ml(-1)) compared to unamended control media, suggesting an effect of the surfactant that enhanced the bioavailability of P from soil. The presence of LAS at a concentration of 50 microg ml(-1) had an important impact on growth of selected aerobic heterotrophic soil bacteria, a deleterious effect which may be relevant for the normal function and evolution of agricultural soil.

  12. Survival, injury and inactivation of Escherichia coli 0157:H7, salmonella and aerobic mesophilic bacteria in apple juice and cider amended with nisin-edta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For health reasons, people are consuming fresh juices or minimally processed fruit and vegetable juices, thereby, exposing themselves to the risk of foodborne illness if such juices are contaminated with bacteria pathogens. Behavior of aerobic mesophilic bacteria, Escherichia coli O157:H7 and Salmon...

  13. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    PubMed Central

    Jusop, Shamshuddin; Naher, Umme Aminun; Othman, Radziah; Razi, Mohd Ismail

    2013-01-01

    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1), plant P uptake (0.78 P pot−1), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH. PMID:24288473

  14. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.

    PubMed

    Finnegan, Lucy; Garcia-Melgares, Manuel; Gmerek, Tomasz; Huddleston, W Ryan; Palmer, Alexander; Robertson, Andrew; Shapiro, Sarah; Unkles, Shiela E

    2011-10-01

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.

  15. Validation of the Peel Plate™ AC for Detection of Total Aerobic Bacteria in Dairy and Nondairy Products.

    PubMed

    Salter, Robert S; Durbin, Gregory W; Bird, Patrick; Fisher, Kiel; Crowley, Erin; Hammack, Thomas; Chen, Yi; Clark, Dorn; Ziemer, Wayne

    2016-01-01

    Peel Plate™ AC (aerobic count) is a low-profile plastic 47 mm culture dish with adhesive top that contains a dried standard plate count medium with oxidation/reduction indicator triphenyl tetrazolium chloride (TTC) that turns red with dehydrogenase enzyme activity of growing aerobic bacteria. The method provides a conventional quantitative count with simple rehydration and incubation for 48 ± 3 h at 35 ± 1°C for most food matrixes and 32 ± 1°C for 48 ± 3 h for dairy products. Dairy matrixes claimed and supported with total aerobic count data are whole milk, skim milk, chocolate milk (2% fat), light cream (20% fat), pasteurized whole goat milk, ultra-high temperature pasteurized milk, nonfat dried milk, lactose-reduced milk, strawberry milk, raw cow milk, raw goat milk, raw sheep milk, condensed skim milk, and vanilla ice cream. Food matrixes claimed for aerobic count detection are raw ground beef, environmental sponge of stainless steel, raw ground turkey, dry dog food, liquid whole pasteurized eggs, milk chocolate, poultry carcass rinse, and large animal carcass sponge. The method has been independently evaluated for aerobic count in dairy products: whole milk, skim milk, chocolate milk, and light cream. The method was also independently evaluated for aerobic count in food matrixes: ground beef and sponge rinse from stainless steel surfaces. In the matrix study, each matrix was assessed separately at each contamination level in comparison to an appropriate reference method. Colony counts were determined for each level and then log10-transformed. The transformed data were evaluated for repeatability, mean comparison between methods with 95% confidence interval (CI), and r(2). A CI range of (-0.5, 0.5) on the mean difference was used as the acceptance criterion to establish significant statistical differences between methods. The evaluations demonstrate that the Peel Plate AC provides no statistical differences across most of the matrixes with r(2) > 0

  16. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-07-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 %) was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  17. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-05-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 52 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94%) was affiliated with the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  18. Inhibition of Salmonella Typhimurium by Cultures of Cecal Bacteria during Aerobic Incubation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two trials were conducted to examine the ability of cecal bacterial cultures from broilers to inhibit growth of Salmonella Typhimurium during aerobic incubation. Cecal broth media was inoculated with 10 µl of cecal contents from 6 week old broilers taken from 2 separate flocks. Cultures were incubat...

  19. Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria

    PubMed Central

    Payne, Rayford B.; Fagervold, Sonja K.; May, Harold D.; Sowers, Kevin R.

    2013-01-01

    Bioremediation of sediments contaminated with commercial PCBs is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring “Dehalobium chlorocoercia” DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with GAC as a delivery system was determined in 2-liter laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 mg/kg to less than 2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, non-bioaugmented controls containing filtered culture supernatant showed only 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia, or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both non-indigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective, environmentally sustainable strategy to reduce PCBs levels in contaminated sediment. PMID:23463900

  20. In silico analysis of 16S rRNA gene sequencing based methods for identification of medically important aerobic Gram-negative bacteria.

    PubMed

    Teng, Jade L L; Yeung, Ming-Yiu; Yue, Geoffrey; Au-Yeung, Rex K H; Yeung, Eugene Y H; Fung, Ami M Y; Tse, Herman; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2011-09-01

    This study provides guidelines on the usefulness of full and 527 bp 16S rRNA gene sequencing and Microseq databases for identifying medically important aerobic Gram-negative bacteria. Overall, full and 527 bp 16S rRNA gene sequencing can identify 26.1 % and 32.6 %, respectively, of medically important aerobic Gram-negative bacteria confidently to the species level, whereas the full-MicroSeq and 500-MicroSeq databases can identify 15.2 % and 26.1 %, respectively, of medically important aerobic Gram-negative bacteria confidently to the species level. Among the major groups of aerobic Gram-negative bacteria, the methods and databases are least useful for identification of Aeromonas, Bordetella and Bartonella species. None of the Aeromonas species can be confidently or doubtfully identified, whereas only 0 % and 0-33.3 % of Bordetella species and 0-10 % and 0-10 % of Bartonella species can be confidently and doubtfully identified, respectively. On the other hand, these methods and databases are most useful for identification of members of the families Pasteurellaceae and Legionellaceae and Campylobacter species: 29.6-59.3 % and 7.4-18.5 % of members of Pasteurellaceae, 36-52 % and 12-24 % of members of Legionellaceae, and 26.7-60 % and 0-13.3 % of Campylobacter species can be confidently and doubtfully identified, respectively. Thirty-nine medically important aerobic Gram-negative bacteria that should be confidently identified by full 16S rRNA gene sequencing are not included in the full-MicroSeq database. Twenty-three medically important aerobic Gram-negative bacteria that should be confidently identified by 527 bp 16S rRNA gene sequencing are not included in the 500-MicroSeq database. Compared with results of our previous studies on anaerobic and Gram-positive bacteria, full and 527 bp 16S rRNA gene sequencing are able to confidently identify significantly more anaerobic Gram-positive and Gram-negative bacteria than aerobic Gram

  1. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters.

    PubMed

    Ferrera, Isabel; Gasol, Josep M; Sebastián, Marta; Hojerová, Eva; Koblízek, Michal

    2011-11-01

    Growth is one of the basic attributes of any living organism. Surprisingly, the growth rates of marine bacterioplankton are only poorly known. Current data suggest that marine bacteria grow relatively slowly, having generation times of several days. However, some bacterial groups, such as the aerobic anoxygenic phototrophic (AAP) bacteria, have been shown to grow much faster. Two manipulation experiments, in which grazing, viruses, and resource competition were reduced, were conducted in the coastal Mediterranean Sea (Blanes Bay Microbial Observatory). The growth rates of AAP bacteria and of several important phylogenetic groups (the Bacteroidetes, the alphaproteobacterial groups Roseobacter and SAR11, and the Gammaproteobacteria group and its subgroups the Alteromonadaceae and the NOR5/OM60 clade) were calculated from changes in cell numbers in the manipulation treatments. In addition, we examined the role that top-down (mortality due to grazers and viruses) and bottom-up (resource availability) factors play in determining the growth rates of these groups. Manipulations resulted in an increase of the growth rates of all groups studied, but its extent differed largely among the individual treatments and among the different groups. Interestingly, higher growth rates were found for the AAP bacteria (up to 3.71 day⁻¹) and for the Alteromonadaceae (up to 5.44 day⁻¹), in spite of the fact that these bacterial groups represented only a very low percentage of the total prokaryotic community. In contrast, the SAR11 clade, which was the most abundant group, was the slower grower in all treatments. Our results show that, in general, the least abundant groups exhibited the highest rates, whereas the most abundant groups were those growing more slowly, indicating that some minor groups, such the AAP bacteria, very likely contribute much more to the recycling of organic matter in the ocean than what their abundances alone would predict.

  2. Radioassay for Hydrogenase Activity in Viable Cells and Documentation of Aerobic Hydrogen-Consuming Bacteria Living in Extreme Environments

    PubMed Central

    Schink, Bernhard; Lupton, F. S.; Zeikus, J. G.

    1983-01-01

    An isotopic tracer assay based on the hydrogenase-dependent formation of tritiated water from tritium gas was developed for in life analysis of microbial hydrogen transformation. This method allowed detection of bacterial hydrogen metabolism in pure cultures or in natural samples obtained from aquatic ecosystems. A differentiation between chemical-biological and aerobic-anaerobic hydrogen metabolism was established by variation of the experimental incubation temperature or by addition of selective inhibitors. Hydrogenase activity was shown to be proportional to the consumption or production of hydrogen by cultures of Desulfovibrio vulgaris, Clostridium pasteurianum, and Methanosarcina barkeri. This method was applied, in connection with measurements of free hydrogen and most-probable-number enumerations, in aerobic natural source waters to establish the activity and document the ecology of hydrogen-consuming bacteria in extreme acid, thermal, or saline environments. The utility of the assay is based in part on the ability to quantify bacterial hydrogen transformation at natural hydrogen partial pressures, without the use of artificial electron acceptors. PMID:16346288

  3. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  4. Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth's atmosphere: extended incubation periods needed for culture-based assays

    USGS Publications Warehouse

    Griffin, Dale W.

    2008-01-01

    On 13 August 2004, an atmospheric sample was collected at an altitude of 20,000 m along a west to east transect over the continental United States by NASA’s Stratospheric and Cosmic Dust Program. This sample was then shipped to the US Geological Survey’s Global Desert Dust program for microbiological analyses. This sample, which was plated on a low nutrient agar to determine if cultivable microorganisms were present, produced 590 small yellow to off-white colonies after approximately 7 weeks of incubation at room-temperature. Of 50 colonies selected for identification using 16S rRNA sequencing, 41 belonged to the family Micrococcaceae, seven to the family Microbacteriaceae, one to the genus Staphylococcus, and one to the genus Brevibacterium. All of the isolates identified were non-spore-forming pigmented bacteria, and their presence in this sample illustrate that it is not unusual to recover viable microbes at extreme altitudes. Additionally, the extended period required to initiate growth demonstrates the need for lengthy incubation periods when analyzing high-altitude samples for cultivable microorganisms.

  5. Survival of Aerobic and Anaerobic Bacteria in Purulent Clinical Specimens Maintained in the Copan Venturi Transystem and Becton Dickinson Port-a-Cul Transport Systems

    PubMed Central

    Citron, Diane M.; Warren, Yumi A.; Hudspeth, Marie K.; Goldstein, Ellie J. C.

    2000-01-01

    Recovery of aerobic and anaerobic bacteria from clinical specimens maintained in the Copan Venturi Transystem and the Becton Dickinson Port-a-Cul transport was assessed. Of 54 anaerobes, 53 were recovered after 4 h, and 52 were recovered after 24 h, from both systems. After 48 h, 45 and 50 were recovered from the two systems, respectively. PMID:10655410

  6. Isolation of Aerobic Anoxygenic Photosynthetic Bacteria from Black Smoker Plume Waters of the Juan de Fuca Ridge in the Pacific Ocean

    PubMed Central

    Yurkov, Vladimir; Beatty, J. Thomas

    1998-01-01

    A strain of the aerobic anoxygenic photosynthetic bacteria was isolated from a deep-ocean hydrothermal vent plume environment. The in vivo absorption spectra of cells indicate the presence of bacteriochlorophyll a incorporated into light-harvesting complex I and a reaction center. The general morphological and physiological characteristics of this new isolate are described. PMID:16349490

  7. Colonization by aerobic bacteria in karst: Laboratory and in situ experiments

    USGS Publications Warehouse

    Personne, J.-C.; Poty, F.; Mahler, B.J.; Drogue, C.

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

  8. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients

    PubMed Central

    Ashour, Hossam M; El-Sharif, Amany

    2009-01-01

    Background Nosocomial infections pose significant threats to hospitalized patients, especially the immunocompromised ones, such as cancer patients. Methods This study examined the microbial spectrum of gram-negative bacteria in various infection sites in patients with leukemia and solid tumors. The antimicrobial resistance patterns of the isolated bacteria were studied. Results The most frequently isolated gram-negative bacteria were Klebsiella pneumonia (31.2%) followed by Escherichia coli (22.2%). We report the isolation and identification of a number of less-frequent gram negative bacteria (Chromobacterium violacum, Burkholderia cepacia, Kluyvera ascorbata, Stenotrophomonas maltophilia, Yersinia pseudotuberculosis, and Salmonella arizona). Most of the gram-negative isolates from Respiratory Tract Infections (RTI), Gastro-intestinal Tract Infections (GITI), Urinary Tract Infections (UTI), and Bloodstream Infections (BSI) were obtained from leukemic patients. All gram-negative isolates from Skin Infections (SI) were obtained from solid-tumor patients. In both leukemic and solid-tumor patients, gram-negative bacteria causing UTI were mainly Escherichia coli and Klebsiella pneumoniae, while gram-negative bacteria causing RTI were mainly Klebsiella pneumoniae. Escherichia coli was the main gram-negative pathogen causing BSI in solid-tumor patients and GITI in leukemic patients. Isolates of Escherichia coli, Klebsiella, Enterobacter, Pseudomonas, and Acinetobacter species were resistant to most antibiotics tested. There was significant imipenem -resistance in Acinetobacter (40.9%), Pseudomonas (40%), and Enterobacter (22.2%) species, and noticeable imipinem-resistance in Klebsiella (13.9%) and Escherichia coli (8%). Conclusion This is the first study to report the evolution of imipenem-resistant gram-negative strains in Egypt. Mortality rates were higher in cancer patients with nosocomial Pseudomonas infections than any other bacterial infections. Policies restricting

  9. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.

  10. Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe

    PubMed Central

    Miguez, Carlos B.; Shen, Chun F.; Bourque, Denis; Guiot, Serge R.; Groleau, Denis

    1999-01-01

    We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not sequentially. Here, emphasis was placed on monitoring various methanotrophic populations by using classical methods and also a PCR amplification assay based on the mmoX gene fragment of the soluble methane monooxygenase (sMMO). The following results were obtained: (i) under the conditions used, Methylosinus sporium appeared to survive better than Methylosinus trichosporium; (ii) the PCR method which we used could detect as few as about 2,000 sMMO gene-containing methanotrophs per g (wet weight) of granular sludge; (iii) inoculation of the bioreactors with pure cultures of methanotrophs contributed greatly to increases in the sMMO-containing population (although the sMMO-containing population decreased gradually with time, at the end of an experiment it was always at least 2 logs larger than the initial population before inoculation); (iv) in general, there was a good correlation between populations with the sMMO gene and populations that exhibited sMMO activity; and (v) inoculation with sMMO-positive cultures helped increase significantly the proportion of sMMO-positive methanotrophs in reactors, even after several weeks of operation under various regimes. At some point, anaerobic-aerobic bioreactors like those described here might be used for biodegradation of various chlorinated pollutants. PMID:9925557

  11. Persistence of non-native spore forming bacteria in drinking water biofilm and evaluation of decontamination methods.

    PubMed

    Shane, William T; Szabo, Jeffrey G; Bishop, Paul L

    2011-01-01

    Persistence of Bacillus globigii spores, a surrogate for Bacillus anthracis, was studied on biofouled concrete-lined slides in drinking water using biofilm annular reactors. Reactors were inoculated with B. globigii spores and persistence was monitored in the bulk and biofilm phases, first in dechlorinated water and later with free chlorine concentrations of 1 and 5 mg/L. In the dechlorinated study, a steady state population of spores developed on the slides. The addition of free chlorine at 5 mg/L decreased the adhered spore density by 2-logs within 4 hours and spores were not detected after 67 and 49 hours in the presence of 1 and 5 mg/L free chlorine, respectively. This suggests that adhered spores can persist in non-chlorinated conditions, but detach and/or are inactivated upon addition of free chlorine. When injected into a chlorinated reactor, adhered spore density continually decreased and spores were either undetectable or unquantifiable by 48 hours for both 1 and 5 mg/L chlorine concentrations. Results from these experiments suggest that the presence of a free chlorine residual limits adherence of viable spores to biofouled concrete-lined pipe walls by inactivating spores before they have attached. Both free chlorine concentrations (1 and 5 mg/L) were equally effective at inactivating spores in terms of log reduction, but the higher concentrations yielded faster rates of log reduction.

  12. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    PubMed

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors.

  13. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

    PubMed

    Zhang, Jie; Guo, Gang; Chen, Lei; Li, Junfeng; Yuan, Xianjun; Yu, Chengqun; Shimojo, Masataka; Shao, Tao

    2015-06-01

    The objective of this study was to evaluate effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of oats-common vetch mixed silage by using a small-scale fermentation system on the Tibetan plateau. (i) An inoculant (Lactobacillus plantarum) (L) or (ii) propionic acid (P) or (iii) inoculant + propionic acid (PL) were used as additives. After fermenting for 60 days, silos were opened and the aerobic stability was tested for the following 15 days. The results showed that all silages were well preserved with low pH and NH3 -N, and high lactic acid content and V-scores. L and PL silages showed higher (P < 0.05) lactic acid and crude protein content than the control silage. P silage inhibited lactic acid production. Under aerobic conditions, L silage had similar yeast counts as the control silage (> 10(5) cfu/g fresh matter (FM)); however, it numerically reduced aerobic stability for 6 h. P and PL silages showed fewer yeasts (< 10(5) cfu/g FM) (P < 0.05) and markedly improved the aerobic stability (> 360 h). The result suggested that PL is the best additive as it could not only improved fermentation quality, but also aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

  14. Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus komodoensis): new implications for the "bacteria as venom" model.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M; Cox, Cathleen R; Recchio, Ian M; Okimoto, Ben; Bryja, Judith; Fry, Bryan G

    2013-06-01

    It has been speculated that the oral flora of the Komodo dragon (Varanus komodoensis) exerts a lethal effect on its prey; yet, scant information about their specific oral flora bacteriology, especially anaerobes, exists. Consequently, the aerobic and anaerobic oral bacteriology of 16 captive Komodo dragons (10 adults and six neonates), aged 2-17 yr for adults and 7-10 days for neonates, from three U.S. zoos were studied. Saliva and gingival samples were collected by zoo personnel, inoculated into anaerobic transport media, and delivered by courier to a reference laboratory. Samples were cultured for aerobes and anaerobes. Strains were identified by standard methods and 16S rRNA gene sequencing when required. The oral flora consisted of 39 aerobic and 21 anaerobic species, with some variation by zoo. Adult dragons grew 128 isolates, including 37 aerobic gram-negative rods (one to eight per specimen), especially Enterobacteriaceae; 50 aerobic gram-positive bacteria (two to nine per specimen), especially Staphylococcus sciuri and Enterococcusfaecalis, present in eight of 10 and nine of 10 dragons, respectively; and 41 anaerobes (one to six per specimen), especially clostridia. All hatchlings grew aerobes but none grew anaerobes. No virulent species were isolated. As with other carnivores, captive Komodo oral flora is simply reflective of the gut and skin flora of their recent meals and environment and is unlikely to cause rapid fatal infection.

  15. (An)aerobic bacteria found in secondary-cataract material. A SEM/TEM study.

    PubMed

    Kalicharan, D; Jongebloed, W L; Los, L I; Worst, J G

    1992-01-01

    Twenty four patients, who had marked reduction of vision due to secondary-cataract developed after an ECCE, were treated by surgical cleaning of the posterior lens capsule. During this procedure globular secondary-cataract material was removed and collected for morphological examination by SEM and TEM. Fragments of various sizes and shapes, including some with a 'golf ball' structure, were seen; these closely resembled particles frequently found in cataractous lenses. In addition, in 18 patients micro-organisms were found: rod-shaped bacteria, cocci, and in 2 cases yeasts. These findings were the more remarkable because these were clinically quiet eyes with no signs of intra-ocular inflammation and cultures have been persistently negative. We imagine that these bacteria must have entered the eye during the cataract extraction and have settled there without causing an infection.

  16. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.

    PubMed

    Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia

    2003-01-01

    A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes.

  17. [Sensitivity and resistance of aerobic bacteria isolated from patients with periodontitis towards antibiotics and bacteriophages (comparative analysis)].

    PubMed

    Nemsadze, T D; Mshvenieradze, D D; Apridonidze, K G

    2006-03-01

    In order to examine sensitivity and resistance of isolated aerobic bacteria from periodontitis materials towards antibiotics and bacteriophages, there has been studied exudations taken from 737 patients' periodontic pockets or the tissue taken from curettage. According to the rate of identified microorganisms, they have been arranged as follows: S. epidermidis 39,34+/-1,56%; S. pyogenes 18,84+/-1,25%; M. catarrhalis 17,09+/-1,2%; S. aureus 10,71+/-0,99%; E.coli-5,66+/-0,74%; Diphtheroids in 1,13+/-0,33%; S. Mucilaginosus 1,02+/-0,32%, proteus vulgaris - 0,72+/-0,27%; H. parainfluenzae - 0,72+/-0,27%; S. intermedium 0,61+/-0,24%; P. aeruginosa - 0,61+/-0,24%; H. influenzae - 0,51+/-0,22%, S. saprophiticus - 0,51+/-0,22%; S. viridans - 0,51+/-0,22%; S. pneumoniae - 0,41+/-0,2%; K. pneumoniae - 0,41+/-0,22%; S. haemoliticus - 0,41+/-0,2%; B. adolescentics - 0,3+/-0,17%; L. acidophilus -0,3+/-0,17%; S. salivarius-0,1+/-0,1%. It has been stated that percentage of polyresistant strains is growing. While having aerobic infections of periodontitis, kefzol, cephazolin, cephamezin, zinaceph, klaphoran, cephdazidim (cephalosporins I, II, II generation); tetracycline, doxycycline, (tetracyclines); 5-noks, cyprophloxacyne (chinolons I, II generation); ryphamphcyne (rymphamicynes); but standby medicines may be also considered: penicillin G, procaine penicillin (penicillines); streptomycin, kanamicin, gentamicin (aminoglycosides); lincomycin, clindamycin, (lincosamides); eritromycin, macropen (macrolides); chloramphenicol. Since the resistance of microbial strains was not developed towards bacteriophages during the treatment it is considerable to apply simultaneously the bacteriophages and standby antibiotics.

  18. Effect of a preparation containing lactic fermentation bacteria on the hygienic status and aerobic stability of silages.

    PubMed

    Selwet, M

    2008-01-01

    The objective of this study was to determine the influence of biological silage additive (Bonsilage) on the hygiene quality and nutritive value of maize and grass-legume silages. The experiments were conducted on FAO 240 maize (Zea mays L.) and a mixture of italian ryegrass (Lolium multiflorum L.), 50% with alfalfa (Medicago media Pers.), 50%. Group 1 was a control and comprised silage without any additives, group 2 was ensiled with the addition of 4 cm3 kg(-1) biological silage additive. After 60 days of silage process individual silages were subjected to microbiological composition, and chemical analyses of silages were also determined. Similar analyses were repeated at day 7 following exposure to oxygen. The applied biological silage additive was found to reduce (P<0.05) numbers of Clostridium, Enterobacteriaceae, yeasts and mold fungi cells, and increase (P<0.05) the number of LAB (lactic acid bacteria) in comparison with the control in both silages. Chemical analysis of the maize silage showed that the biological additive caused an increase (P<0.05) in DM (dry matter), CP (crude protein), WSC (water soluble carbohydrates), LA (lactic acid), AA (acetic acid), ethanol, and a decrease (P<0.05) in the concentration of BA (butyric acid), N-NH3 and pH value in comparison with the control. Chemical analysis of silage samples from the grass-legume mixture showed that the additive caused an increase (P<0.05) in the content of DM, CP, WSC, LA and AA in comparison with the control. Samples of silage with the addition of an inoculant were characterized by a lower (P<0.05) content of BA, N-NH3, ethanol and pH value. The biological additive impoved the aerobic stability of silages in the aerobic phase.

  19. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient.

    PubMed

    Ferrera, Isabel; Sarmento, Hugo; Priscu, John C; Chiuchiolo, Amy; González, José M; Grossart, Hans-Peter

    2017-01-01

    Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient).

  20. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient

    PubMed Central

    Ferrera, Isabel; Sarmento, Hugo; Priscu, John C.; Chiuchiolo, Amy; González, José M.; Grossart, Hans-Peter

    2017-01-01

    Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient). PMID:28275369

  1. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology.

    PubMed

    Pedersen, Martin B; Gaudu, Philippe; Lechardeur, Delphine; Petit, Marie-Agnès; Gruss, Alexandra

    2012-01-01

    The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.

  2. Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability.

    PubMed

    Xiao, Na; Jiao, Nianzhi

    2011-11-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12(T), Labrenzia alexandrii DFL 11(T), and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and (1)H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark.

  3. Toxinogenic and spoilage potential of aerobic spore-formers isolated from raw milk.

    PubMed

    De Jonghe, Valerie; Coorevits, An; De Block, Jan; Van Coillie, Els; Grijspeerdt, Koen; Herman, Lieve; De Vos, Paul; Heyndrickx, Marc

    2010-01-01

    The harmful effects on the quality and safety of dairy products caused by aerobic spore-forming isolates obtained from raw milk were characterized. Quantitative assessment showed strains of Bacillus subtilis, the Bacillus cereus group, Paenibacillus polymyxa and Bacillus amyloliquefaciens to be strongly proteolytic, along with Bacillus licheniformis, Bacillus pumilus and Lysinibacillus fusiformis to a lesser extent. Lipolytic activity could be demonstrated in strains of B. subtilis, B. pumilus and B. amyloliquefaciens. Qualitative screening for lecithinase activity also revealed that P. polymyxa strains produce this enzyme besides the B. cereus group that is well-known for causing a 'bitty cream' defect in pasteurized milk due to lecithinase activity. We found a strain of P. polymyxa to be capable of gas production during lactose fermentation. Strains belonging to the species B. amyloliquefaciens, Bacillus clausii, Lysinibacillus sphaericus, B. subtilis and P. polymyxa were able to reduce nitrate. A heat-stable cytotoxic component other than the emetic toxin was produced by strains of B. amyloliquefaciens and B. subtilis. Heat-labile cytotoxic substances were produced by strains identified as B. amyloliquefaciens, B. subtilis, B. pumilus and the B. cereus group. Variations in expression levels between strains from the same species were noticed for all tests. This study emphasizes the importance of aerobic spore-forming bacteria in raw milk as the species that are able to produce toxins and/or spoilage enzymes are all abundantly present in raw milk. Moreover, we demonstrated that some strains are capable of growing at room temperature and staying stable at refrigeration temperatures.

  4. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds.

    PubMed

    Melendez, J H; Frankel, Y M; An, A T; Williams, L; Price, L B; Wang, N-Y; Lazarus, G S; Zenilman, J M

    2010-12-01

    Chronic wounds cause substantial morbidity and disability. Infection in chronic wounds is clinically defined by routine culture methods that can take several days to obtain a final result, and may not fully describe the community of organisms or biome within these wounds. Molecular diagnostic approaches offer promise for a more rapid and complete assessment. We report the development of a suite of real-time PCR assays for rapid identification of bacteria directly from tissue samples. The panel of assays targets 14 common, clinically relevant, aerobic pathogens and demonstrates a high degree of sensitivity and specificity using a panel of organisms commonly associated with chronic wound infection. Thirty-nine tissue samples from 29 chronic wounds were evaluated and the results compared with those obtained by culture. As revealed by culture and PCR, the most common organisms were methicillin-resistant Staphylococcus aureus (MRSA) followed by Streptococcus agalactiae (Group B streptococcus) and Pseudomonas aeruginosa. The sensitivities of the PCR assays were 100% and 90% when quantitative and qualitative culture results were used as the reference standard, respectively. The assays allowed the identification of bacterial DNA from ten additional organisms that were not revealed by quantitative or qualitative cultures. Under optimal conditions, the turnaround time for PCR results is as short as 4-6 h. Real-time PCR is a rapid and inexpensive approach that can be easily introduced into clinical practice for detection of organisms directly from tissue samples. Characterization of the anaerobic microflora by real-time PCR of chronic wounds is warranted.

  5. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica.

    PubMed

    Pinheiro, Guilherme L; Correa, Raquel F; Cunha, Raquel S; Cardoso, Alexander M; Chaia, Catia; Clementino, Maysa M; Garcia, Eloi S; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes.

  6. Production of autoinducer-2 by aerobic endospore-forming bacteria isolated from the West African fermented foods.

    PubMed

    Qian, Yang; Kando, Christine Kere; Thorsen, Line; Larsen, Nadja; Jespersen, Lene

    2015-11-01

    Autoinducer-2 (AI-2) is a quorum-sensing (QS) molecule which mediates interspecies signaling and affects various bacterial behaviors in food fermentation. Biosynthesis of AI-2 is controlled by S-ribosylhomocysteine lyase encoded by the luxS gene. The objective of this study was to investigate production of AI-2 by aerobic endospore-forming bacteria (AEB) isolated from the West African alkaline fermented seed products Mantchoua and Maari. The study included 13 AEB strains of Bacillus subtilis, B. cereus, B. altitudinis, B. amyloliquefaciens, B. licheniformis, B. aryabhattai, B. safensis, Lysinibacillus macroides and Paenibacillus polymyxa. All the tested strains harbored the luxS gene and all strains except for P. polymyxa B314 were able to produce AI-2 during incubation in laboratory medium. Production of AI-2 by AEB was growth phase dependent, showing maximum activity at the late exponential phase. AI-2 was depleted from the culture medium at the beginning of the stationary growth phase, indicating that the tested AEB possess a functional AI-2 receptor that internalizes AI-2. This study provides the evidences of QS system in Bacillus spp. and L. macroides and new knowledge of AI-2 production by AEB. This knowledge contributes to the development of QS-based strategies for better control of alkaline fermentation.

  7. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica

    PubMed Central

    Pinheiro, Guilherme L.; Correa, Raquel F.; Cunha, Raquel S.; Cardoso, Alexander M.; Chaia, Catia; Clementino, Maysa M.; Garcia, Eloi S.; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  8. Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media.

    PubMed

    Fernández, Lucía; Louvado, António; Esteves, Valdemar I; Gomes, Newton C M; Almeida, Adelaide; Cunha, Ângela

    2017-02-05

    Endocrine disrupting compounds (EDCs) are considered as high research priority being a source of potential adverse ecological health effects in environmental waters. 17β-Estradiol (E2), a recalcitrant natural estrogen, is typically encountered in wastewater treatment plants (WWTPs) at levels ranging 10-30ngL(-1) in the influent flow and 1-3ngL(-1) in the effluent flow. The exposure to even extremely low concentrations of E2 may interfere with the normal function of the endocrine system of organisms. In this study, five bacteria isolated from enrichment cultures of sediments of mud volcanoes of the Gulf of Cadiz (Moroccan-Iberian margin) were identified as aerobic E2 biodegraders, which produce low amounts of biotransformed estrone (E1). Analysis of 16S rDNA gene sequences identified three of them as Virgibacillus halotolerans, Bacillus flexus and Bacillus licheniformis. Among the set of strains, Bacillus licheniformis showed also ability to biodegrade E2 under anaerobic conditions.

  9. Archaea produce lower yields of N2 O than bacteria during aerobic ammonia oxidation in soil.

    PubMed

    Hink, Linda; Nicol, Graeme W; Prosser, James I

    2016-03-11

    Nitrogen fertilisation of agricultural soil contributes significantly to emissions of the potent greenhouse gas nitrous oxide (N2 O), which is generated during denitrification and, in oxic soils, mainly by ammonia oxidisers. Although laboratory cultures of ammonia oxidising bacteria (AOB) and archaea (AOA) produce N2 O, their relative activities in soil are unknown. This work tested the hypothesis that AOB dominate ammonia oxidation and N2 O production under conditions of high inorganic ammonia (NH3 ) input, but result mainly from the activity of AOA when NH3 is derived from mineralisation. 1-octyne, a recently discovered inhibitor of AOB, was used to distinguish N2 O production resulting from archaeal and bacterial ammonia oxidation in soil microcosms, and specifically inhibited AOB growth, activity and N2 O production. In unamended soils, ammonia oxidation and N2 O production were lower and resulted mainly from ammonia oxidation by AOA. The AOA N2 O yield relative to nitrite produced was half that of AOB, likely due to additional enzymatic mechanisms in the latter, but ammonia oxidation and N2 O production were directly linked in all treatments. Relative contributions of AOA and AOB to N2 O production, therefore, reflect their respective contributions to ammonia oxidation. These results suggest potential mitigation strategies for N2 O emissions from fertilised agricultural soils.

  10. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    PubMed Central

    Dey, Satarupa; Paul, A.K.

    2013-01-01

    Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2–8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB) broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6–17.8 mM), the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate. PMID:24159321

  11. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  12. Draft Genome Sequence of Thermogemmatispora onikobensis NBRC 111776T, an Aerial Mycelium- and Spore-Forming Thermophilic Bacterium Belonging to the Class Ktedonobacteria

    PubMed Central

    Hosoyama, Akira; Yabe, Shuhei; Yokota, Akira; Uchino, Yoshihito; Takano, Hideaki

    2016-01-01

    Here, we report the draft genome sequence of Thermogemmatispora onikobensis NBRC 111776T, an aerial mycelium- and spore-forming thermophilic bacterium belonging to the class Ktedonobacteria. The genome contains five biosynthetic gene clusters coding for secondary metabolites, such as terpene, thiopeptide, lantipeptide, nonribosomal peptide, and lassopeptide, suggesting the potential to produce secondary metabolites. PMID:27738048

  13. Desulfosporosinus burensis sp. nov., a spore-forming, mesophilic, sulfate-reducing bacterium isolated from a deep clay environment.

    PubMed

    Mayeux, Bruno; Fardeau, Marie-Laure; Bartoli-Joseph, Manon; Casalot, Laurie; Vinsot, Agnès; Labat, Marc

    2013-02-01

    A novel anaerobic, gram-positive, spore-forming, curved rod-shaped, mesophilic and sulfate-reducing bacterium was isolated from pore water collected in a borehole at -490 m in Bure (France). This strain, designated BSREI1(T), grew at temperatures between 5 °C and 30 °C (optimum 25 °C) and at a pH between 6 and 8 (optimum 7). It did not require NaCl for growth, but tolerated it up to 1.5 % NaCl. Sulfate, thiosulfate and elemental sulfur were used as terminal electron acceptors. Strain BSREI1(T) used crotonate, formate, lactate, pyruvate, fructose, glycerol and yeast extract as electron donors in the presence of sulfate. The sole quinone was MK-7. The G+C content of the genomic DNA was 43.3 mol%. Strain BSREI1(T) had the type strains of Desulfosporosinus lacus (16S rRNA gene sequence similarity of 96.83 %), Desulfosporosinus meridiei (96.31 %) and Desulfosporosinus hippei (96.16 %) as its closest phylogenetic relatives. On the basis of phylogenetic and physiological properties, strain BSREI1(T) is proposed as a representative of a novel species of the genus Desulfosporosinus, Desulfosporosinus burensis sp. nov.; the type strain is BSREI1(T) ( = DSM 24089(T) = JCM 17380(T)).

  14. Growth parameters of Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and aerobic mesophilic bacteria of apple cider amended with nisin-EDTA.

    PubMed

    Ukuku, Dike O; Zhang, Howard; Huang, Lihan

    2009-05-01

    The effect of nisin (0 or 300 IU/mL), ethylenediamine tetraacetic acid (EDTA, 20 mM), and nisin (300 IU)-EDTA (20 mM) on growth parameters, including lag period (LP) and generation time, of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. in the presence or absence of aerobic mesophilic bacteria of apple cider during storage at 5 degrees C for up to 16 days or 23 degrees C for 16 h was investigated. The growth data were analyzed and fitted to the modified Gompertz model. The LP values for aerobic mesophilic bacteria of apple cider (control) and those amended with EDTA and nisin during storage at 5 degrees C were 1.61, 1.76, and 5.45 days, respectively. In apple cider stored at 23 degrees C for 16 h, the LP values for the same bacteria and treatment were 3.24, 3.56, and 5.85 h, respectively. The LP values for E. coli O157:H7 determined in the presence of aerobic mesophilic bacteria of apple cider stored at 23 degrees C for 16 h was 1.48 h, while populations for L. monocytogenes and Salmonella in the same cider declined. In sterile apple cider left at 23 degrees C for 16 h, the LP values for E. coli O157:H7, Salmonella, and L. monocytogenes averaged 2.74, 2.37, and 3.16 h, respectively. The generation time for these pathogens were 0.402, 0.260, and 0.187 log (CFU/mL)/h, respectively. Addition of nisin and EDTA combination caused a decline in lag phase duration and the populations for all pathogens tested, suggesting possible addition of this additive to freshly prepared apple cider to enhance its microbial safety and prevent costly recalls.

  15. ["In vitro" susceptibility of some aerobic and anaerobic bacteria to three 5-nitro-imidazole derivatives: metronidazole, ornidazole and tinidazole (author's transl)].

    PubMed

    Dublanchet, A; Durieux, R

    1980-01-01

    As shown earlier, the three drugs are effective against most anaerobic bacteria. However, with Bacteroides fragilis the geometric mean MIC of metronidazole (0.43 microgram/ml), ornidazole (0.37 microgram/ml) and tinidazole (0.20 microgram/ml) are statistically different. Moreover, and contrary to generally accepted opinion, some aerobic bacteria such as Moraxella and Bacillus can be susceptible to nitro-imidazoles. The results suggest another mechanism for the action of nitro-imidazoles, different from that previously described. This underscores the major role of the reduction of the nitrogroup by a low-redox-potential. Two strains of strictly anaerobic bacteria show a relative resistance in the microaerophilic zone.

  16. Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California.

    PubMed

    Pikuta, Elena V; Hoover, Richard B; Bej, Asim K; Marsic, Damien; Detkova, Ekaterina N; Whitman, William B; Krader, Paul

    2003-08-01

    A novel extremely haloalkaliphilic, strictly anaerobic, acetogenic bacterium strain APO was isolated from sediments of the athalassic, meromictic, alkaline Mono Lake in California. The Gram-positive, spore-forming, slightly curved rods with sizes 0.55-0.7x1.7-3.0 microm were motile by a single laterally attached flagellum. Strain APO was mesophilic (range 10-48 degrees C, optimum of 37 degrees C); halophilic (NaCl range 1-20% (w/v) with optimum of 3-5% (w/v), and alkaliphilic (pH range 8.0-10.5, optimum 9.5). The novel isolate required sodium ions in the medium. Strain APO was an organotroph with a fermentative type of metabolism and used the substrates peptone, bacto-tryptone, casamino acid, yeast extract, l-serine, l-lysine, l-histidine, l-arginine, and pyruvate. The new isolate performed the Stickland reaction with the following amino acid pairs: proline + alanine, glycine + alanine, and tryptophan + valine. The main end product of growth was acetate. High activity of CO dehydrogenase and hydrogenase indicated the presence of a homoacetogenic, non-cycling acetyl-CoA pathway. Strain APO was resistant to kanamycin but sensitive to chloramphenicol, tetracycline, and gentamycin. The G+C content of the genomic DNA was 44.4 mol% (by HPLC method). The sequence of the 16S rRNA gene of strain APO possessed 98.2% similarity with the sequence from Tindallia magadiensis Z-7934, but the DNA-DNA hybridization value between these organisms was only 55%. On the basis of these physiological and molecular properties, strain APO is proposed to be a novel species of the genus Tindallia with the name Tindallia californiensis sp. nov., (type strain APO = ATCC BAA-393 = DSM 14871).

  17. Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, E. V.; Hoover, R. B.; Bej, A. K.; Marsic, D.; Detkova, E. N.; Whitman, W. B.; Krader, P.

    2003-01-01

    A novel extremely haloalkaliphilic, strictly anaerobic, acetogenic bacterium strain APO was isolated from sediments of the athalassic, meromictic, alkaline Mono Lake in California. The Gram-positive, spore-forming, slightly curved rods with sizes 0.55- 0.7x1.7-3.0 microns were motile by a single laterally attached flagellum. Strain APO was mesophilic (range 10-48 C, optimum of 37 C); halophilic (NaCl range 1-20% (w/v) with optimum of 3-5% (w/v), and alkaliphilic (pH range 8.0-10.5, optimum 9.5). The novel isolate required sodium ions in the medium. Strain APO was an organotroph with a fermentative type of metabolism and used the substrates peptone, bacto-tryptone, casamino acid, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The new isolate performed the Stickland reaction with the following amino acid pairs: proline + alanine, glycine + alanine, and tryptophan + valine. The main end product of growth was acetate. High activity of CO dehydrogenase and hydrogenase indicated the presence of a homoacetogenic, non-cycling acetyl-coA pathway. Strain APO was resistant to kanamycin but sensitive to chloramphenicol, tetracycline, and gentamycin. The G+C content of the genomic DNA was 44.4 mol% (by HPLC method). The sequence of the 16s rRNA gene of strain APO possessed 98.2% similarity with the sequence from Tindullia magadiensis Z-7934, but the DNA-DNA hybridization value between these organisms was only 55%. On the basis of these physiological and molecular properties, strain APO is proposed to be a novel species of the genus Tindallia with the name Tindallia californiensis sp. nov., (type strain APO = ATCC BAA-393 - DSM 14871).

  18. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    PubMed

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  19. [Phylogenetic analysis of bacteria of extreme ecosystems].

    PubMed

    Romanovskaia, V A; Parfenova, V V; Bel'kova, N L; Sukhanova, E V; Gladka, G V; Tashireva, A A

    2014-01-01

    Phylogenetic analysis of aerobic chemoorganotrophic bacteria of the two extreme regions (Dead Sea and West Antarctic) was performed on the basis of the nucleotide sequences of the 16S rRNA gene. Thermotolerant and halotolerant spore-forming bacteria 7t1 and 7t3 of terrestrial ecosystems Dead Sea identified as Bacillus licheniformis and B. subtilis subsp. subtilis, respectively. Taking into account remote location of thermotolerant strain 6t1 from closely related strains in the cluster Staphylococcus, 6t1 strain can be regarded as Staphylococcus sp. In terrestrial ecosystems, Galindez Island (Antarctic) detected taxonomically diverse psychrotolerant bacteria. From ornithogenic soil were isolated Micrococcus luteus O-1 and Microbacterium trichothecenolyticum O-3. Strains 4r5, 5r5 and 40r5, isolated from grass and lichens, can be referred to the genus Frondihabitans. These strains are taxonomically and ecologically isolated and on the tree diagram form the joint cluster with three isolates Frondihabitans sp., isolated from the lichen Austrian Alps, and psychrotolerant associated with plants F. cladoniiphilus CafT13(T). Isolates from black lichen in the different stationary observation points on the south side of a vertical cliff identified as: Rhodococcus fascians 181n3, Sporosarcina aquimarina O-7, Staphylococcus sp. 0-10. From orange biofilm of fouling on top of the vertical cliff isolated Arthrobacter sp. 28r5g1, from the moss-- Serratia sp. 6r1g. According to the results, Frondihabitans strains most frequently encountered among chemoorganotrophic aerobic bacteria in the Antarctic phytocenoses.

  20. Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

    PubMed Central

    Li, Y.; Wang, F.; Nishino, N.

    2016-01-01

    We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56-day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents. PMID:26949952

  1. Effects of carbon dioxide on the fate of Listeria monocytogenes, of aerobic bacteria and on the development of spoilage in minimally processed fresh endive.

    PubMed

    Carlin, F; Nguyen-the, C; Abreu Da Silva, A; Cochet, C

    1996-09-01

    Minimally processed fresh broad-leaved endive (Cichorium endivia L.) were stored at 3 and 10 degrees C in modified atmospheres containing air, 10% CO2/10% O2, 30% CO2/10% O2, and 50% CO2/10% O2. The effects of these modified atmospheres on the fate of both aerobic bacteria and three strains of Listeria monocytogenes, was investigated. Increases in CO2 concentrations significantly reduced the growth of the aerobic microflora. The best preservation of the visual quality occurred on endive leaves stored in 10% CO2/10% O2, whereas leaves stored in 30% CO2/10% O2 and 50% CO2/10% O2, and to a lesser extent in air, showed extensive spoilage after storage. Listeria monocytogenes was slightly affected at 3 degrees C by the modified atmospheres, as compared to air. At 10 degrees C, results varied between replicate experiments, but L. monocytogenes generally grew better as the CO2 concentration was increased. The three test strains behaved in a similar way. In conclusion, among the modified atmospheres tested, a modified atmosphere containing 10% CO2/10% O2 resulted in improved visual quality of minimally processed fresh endive, without a marked effect on the growth of the aerobic microflora or of L. monocytogenes.

  2. [Microbiological research methods of drinking water regulation in West Germany from 1986. Suitability of the specifications of DIN 38411, Part 7, for the detection of sulfite-reducing, spore-forming anaerobes (Clostridia)].

    PubMed

    Schneider, J; Edenharder, R; Borneff, J

    1988-01-01

    The drinking-water regulations of the Federal Republic of Germany, from 22.05.1986, contains in paragraph 1 the instructions: "Drinking-water must be free of pathogens", and further in paragraph 11, "Responsibilities of the employer or other owner of a water supplying facility", include that: "The official authority may direct, that the employer...of a water supplying facility has to extend or has to cause to extend the microbiological examinations in order to determine, that...sulfite-reducing, spore-forming anaerobes (Clostridia) can not be detected in 20 ml of water..." The drinking-water regulations do not prescribe a bacteriological examination method in detail. Appendix 1 rules only that the examination for sulfite-reducing, spore-forming anaerobes (Clostridia) has to be performed after heating the sample to 75 degrees C (+/- 5 degrees C) for 10 min, by either the multiple-tube or membrane filtration method and cultivation in DRCM1-medium. If growth occurs, the presence of Clostridia must be confirmed by anaerobic and aerobic subcultivation. Furthermore, a DIN-instruction (DIN 38411, part 7) exists, which prescribes a detailed procedure for multiple-tube and membrane filtration methods, but does not provide for strict anaerobiosis. We were, however, unable to detect Clostridia in a multitude of water samples with the methods of the DIN-regulation. In order to examine if neglect of strict anaerobiosis was the reason for these failures, we checked the suitability of the DIN-regulation for the isolation of Clostridia from drinking water. In preliminary tests we examined up to four strains of the species C. botulinum, C. cadaveris, C. cochlearium, C. difficile, C. innocuum, C. perfringens and C. tertium for their ability to form heat-resistent spores in four sporulation media. It was, however, not possible to find a medium, in which all strains could sporulate within one week. In order to characterize the detection of these anaerobes in water, one particularly

  3. Presence and resistance of Streptococcus agalactiae in vaginal specimens of pregnant and adult non-pregnant women and association with other aerobic bacteria.

    PubMed

    Numanović, Fatima; Smajlović, Jasmina; Gegić, Merima; Delibegović, Zineta; Bektaš, Sabaheta; Halilović, Emir; Nurkić, Jasmina

    2017-02-01

    Aim To determine the prevalence rate and resistance profile of Streptococcus agalactiae (S. agalactiae) in vaginal swabs of pregnant and adult non-pregnant women in the Tuzla region, Bosnia and Herzegovina (B&H), as well as its association with other aerobic bacteria. Methods This prospective study included 200 women, 100 pregnant and 100 adult non-pregnant. The research was conducted at the Institute of Microbiology, University Clinical Center Tuzla from October to December 2015. Standard aerobic microbiological techniques were used for isolation and identification of S. agalactiae and other aerobic bacteria. Antimicrobial susceptibility was determined by the disk diffusion and microdilution method(VITEK 2/AES instrument). Results Among 200 vaginal swabs, 17 (8.50%) were positive for S. agalactiae, e. g., 7% (7/100) of pregnant and 10% (10/100) of adult non-pregnant women. In the pregnant group, 71.4% (5/7) of S. agalactiae isolates were susceptible to clindamycin and 85.7%(6/7) to erythromycin. In the adult non-pregnant group, only resistance to clindamycin was observed in one patient (1/10; 10%). S. agalactiae as single pathogen was isolated in 57.14% (4/7) of pregnant and 60% (6/10) of adult non-pregnant S. agalactiae positive women. In mixed microbial cultures S. agalactiae was most frequently associated with Enterococcus faecalis and Escherichia coli. Conclusion The rate of S. agalactiae positive women in the population of pregnant and adult non-pregnant women of Tuzla Canton, B&H is comparable with other European countries. Large studies are needed to develop a common national strategy for the prevention of S. agalactiae infection in B&H, especially during pregnancy.

  4. Isolation of aerobic, gliding, xylanolytic and laminarinolytic bacteria from acidic Sphagnum peatlands and emended description of Chitinophaga arvensicola Kampfer et al. 2006.

    PubMed

    Pankratov, Timofei A; Kulichevskaya, Irina S; Liesack, Werner; Dedysh, Svetlana N

    2006-12-01

    Four aerobic, heterotrophic, yellow-pigmented and flexirubin-producing bacterial strains with gliding motility were isolated from acidic Sphagnum-dominated wetlands of Northern Russia. These bacteria are capable of degrading xylan, laminarin and some other polysaccharides, but not cellulose, pectin or chitin. The four strains possess almost identical 16S rRNA gene sequences and are most closely related (98.9-99.5 % sequence similarity) to the recently reclassified species of the phylum Bacteroidetes, Chitinophaga arvensicola Kämpfer et al. 2006, formerly known as [Cytophaga] arvensicola Oyaizu et al. 1983. However, the novel isolates from Sphagnum peat differed from C. arvensicola DSM 3695(T) in their ability to degrade xylan and starch, by greater tolerance of acidic pH and by their inability to reduce nitrate. An emended description of this species is proposed.

  5. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  6. Iodide Accumulation by Aerobic Bacteria Isolated from Subsurface Sediments of a 129I-Contaminated Aquifer at the Savannah River Site, South Carolina ▿

    PubMed Central

    Li, Hsiu-Ping; Brinkmeyer, Robin; Jones, Whitney L.; Zhang, Saijin; Xu, Chen; Schwehr, Kathy A.; Santschi, Peter H.; Kaplan, Daniel I.; Yeager, Chris M.

    2011-01-01

    129I is of major concern because of its mobility in the environment, excessive inventory, toxicity (it accumulates in the thyroid), and long half-life (∼16 million years). The aim of this study was to determine if bacteria from a 129I-contaminated oxic aquifer at the F area of the U.S. Department of Energy's Savannah River Site, SC, could accumulate iodide at environmentally relevant concentrations (0.1 μM I−). Iodide accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from the F area that were closely related to Streptomyces/Kitasatospora spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, accumulated 2 to 50% total iodide (0.1 μM), whereas the F-area strains accumulated just 0.2 to 2.0%. Iodide accumulation by FA-30 was stimulated by the addition of H2O2, was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation kinetics with regard to I− concentration (up to 10 μM I−), and increased at pH values of <6. Overall, the data indicate that I− accumulation likely results from electrophilic substitution of cellular organic molecules. This study demonstrates that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts of iodide; however, this mechanism may contribute to the long-term fate and transport of 129I and to the biogeochemical cycling of iodine over geologic time. PMID:21278282

  7. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria.

    PubMed

    Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda; Westblade, Lars F; Ferraro, Mary Jane; Branda, John A

    2013-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.

  8. Differential staining of bacteria: endospore stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita; Breakwell, Donald P

    2009-11-01

    Endospore production is a very important characteristic of some bacteria, allowing them to resist adverse environmental conditions such as desiccation, chemical exposure, extreme heat, radiation, etc. The identification of endospores is also very important for the clinical microbiologist who is analyzing a patient's body fluid or tissue-there are not that many spore-forming genera. In fact, there are two major pathogenic spore-forming genera, Bacillus and Clostridium, together causing a number of lethal diseases-botulism, gangrene, tetanus, and anthrax, to name a few.

  9. Novel pod for chlorine dioxide generation and delivery to control aerobic bacteria on the inner surface of floor drains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Floor drains in poultry processing and further processing plants are a harborage site for bacteria both free swimming and in biofilms. This population can include Listeria monocytogenes which has been shown to have potential for airborne spreading from mishandled open drains. Chlorine dioxide (ClO...

  10. Comparison of two transport systems available in Japan (TERUMO kenkiporter II and BBL Port-A-Cul) for maintenance of aerobic and anaerobic bacteria.

    PubMed

    Fujimoto, Daichi; Takegawa, Hiroshi; Doi, Asako; Sakizono, Kenji; Kotani, Yoko; Miki, Kanji; Naito, Takuya; Niki, Marie; Miyamoto, Junko; Tamai, Koji; Nagata, Kazuma; Nakagawa, Atsushi; Tachikawa, Ryo; Otsuka, Kojiro; Katakami, Nobuyuki; Tomii, Keisuke

    2014-01-01

    The kenkiporter II (KP II) transport system is commonly used in many hospitals in Japan for transporting bacterial specimens to microbiology laboratories. Recently, the BBL Port-A-Cul (PAC) fluid vial became available. However, no reports thus far have compared the effectiveness of these two transport systems. We chose 4 aerobic and facultative anaerobic bacteria as well as 8 anaerobic organisms, and prepared three strains of each bacterium in culture media for placement into PAC and KP II containers. We compared the effectiveness of each transport system for preserving each organism at 6, 24, and 48 h after inoculation at room temperature. Thirty-six strains out of 12 bacteria were used in this study. The PAC system yielded better recovery in quantity of organisms than the KP II system at 6, 24 and 48 h. More strains were significantly recovered with the PAC system than with the KP II at 24 h (36/36 vs. 23/36, P < 0.001) and 48 h (30/36 vs. 12/36, P < 0.001). The PAC system was better in the recovery of viable organisms counted at 24 and 48 h after inoculation compared with the KP II system. The PAC system may be recommended for the transfer of bacterial specimens in clinical settings.

  11. Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus.

    PubMed Central

    Millward-Sadler, S J; Davidson, K; Hazlewood, G P; Black, G W; Gilbert, H J; Clarke, J H

    1995-01-01

    To test the hypothesis that selective pressure has led to the retention of cellulose-binding domains (CBDs) by hemicellulase enzymes from aerobic bacteria, four new xylanase (xyn) genes from two cellulolytic soil bacteria, Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus, have been isolated and sequenced. Pseudomonas genes xynE and xynF encoded modular xylanases (XYLE and XYLF) with predicted M(r) values of 68,600 and 65000 respectively. XYLE contained a glycosyl hydrolase family 11 catalytic domain at its N-terminus, followed by three other domains; the second of these exhibited sequence identity with NodB from rhizobia. The C-terminal domain (40 residues) exhibited significant sequence identity with a non-catalytic domain of previously unknown function, conserved in all the cellulases and one of the hemicellulases previously characterized from the pseudomonad, and was shown to function as a CBD when fused to the reporter protein glutathione-S-transferase. XYLF contained a C-terminal glycosyl hydrolase family 10 catalytic domain and a novel CBD at its N-terminus. C. mixtus genes xynA and xynB exhibited substantial sequence identity with xynE and xynF respectively, and encoded modular xylanases with the same molecular architecture and, by inference, the same functional properties. In the absence of extensive cross-hybridization between other multiple cel (cellulase) and xyn genes from P. fluorescens subsp. cellulosa and genomic DNA from C. mixtus, similarity between the two pairs of xylanases may indicate a recent transfer of genes between the two bacteria. Images Figure 1 Figure 4 PMID:7492333

  12. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo—Brazil)

    PubMed Central

    Cuadrat, Rafael R. C.; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M. R.

    2016-01-01

    Abstract Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean. PMID:26871866

  13. Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats

    PubMed Central

    Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A.; Brussaard, Corina P. D.; Underwood, Graham J. C.; Timmis, Kenneth N.; Duran, Robert

    2012-01-01

    Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

  14. Constraints in the colonization of natural and engineered subterranean igneous rock aquifers by aerobic methane-oxidizing bacteria inferred by culture analysis.

    PubMed

    Chi Fru, E

    2008-08-01

    The aerobic methane-oxidizing bacteria (MOB) are suggested to be important for the removal of oxygen from subterranean aquifers that become oxygenated by natural and engineering processes. This is primarily because MOB are ubiquitous in the environment and in addition reduce oxygen efficiently. The biogeochemical factors that will control the success of the aerobic MOB in these kinds of underground aquifers remain unknown. In this study, viable and cultivable MOB occurring at natural and engineered deep granitic aquifers targeted for the disposal of spent nuclear fuel (SNF) in the Fennoscandian Shield (approximately 3-1000 m) were enumerated. The numbers were correlated with in situ salinity, methane concentrations, conductivity, pH, and depth. A mixed population habiting freshwater aquifers (approximately 3-20 m), a potential source for the inoculation of MOB into the deeper aquifers was tested for tolerance to NaCl, temperature, pH, and an ability to produce cysts and exospores. Extrapolations show that due to changing in situ parameters (salinity, conductivity, and pH), the numbers of MOB in the aquifers dropped quickly with depth. A positive correlation between the most probable numbers of MOB and methane concentrations was observed. Furthermore, the tolerance-based tests of cultured strains indicated that the MOB in the shallow aquifers thrived best in mesophilic and neutrophilic conditions as opposed to the hyperthermophilic and alkaliphilic conditions expected to develop in an engineered subterranean SNF repository. Overall, the survival of the MOB both quantitatively and physiologically in the granitic aquifers was under the strong influence of biogeochemical factors that are strongly depth-dependent.

  15. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  16. Availability of O2 as a substrate in the cytoplasm of bacteria under aerobic and microaerobic conditions.

    PubMed

    Arras, T; Schirawski, J; Unden, G

    1998-04-01

    The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O2 tension [pO2] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O2 (corresponding to 7 to 8 microM O2) (1 bar = 10(5) Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and microaerobic conditions (about 10 mbar of O2), the diffusion of O2 into the cytoplasm occurs at high rates sufficient for catabolic processes. This is in agreement with calculated O2 diffusion rates. Below 10 mbar of O2, oxygen became limiting for the oxygenases, probably due to their high Km values, but the diffusion of O2 into the cytoplasm presumably should be sufficiently rapid to maintain ambient oxygen concentrations at oxygen tensions as low as 1 mbar of O2. The consequences of this finding for the availability of O2 as a substrate or as a regulatory signal in the cytoplasm of bacterial cells are discussed.

  17. Availability of O2 as a Substrate in the Cytoplasm of Bacteria under Aerobic and Microaerobic Conditions

    PubMed Central

    Arras, Tanja; Schirawski, Jan; Unden, Gottfried

    1998-01-01

    The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O2 tension [pO2] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O2 (corresponding to 7 to 8 μM O2) (1 bar = 105 Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and microaerobic conditions (about 10 mbar of O2), the diffusion of O2 into the cytoplasm occurs at high rates sufficient for catabolic processes. This is in agreement with calculated O2 diffusion rates. Below 10 mbar of O2, oxygen became limiting for the oxygenases, probably due to their high Km values, but the diffusion of O2 into the cytoplasm presumably should be sufficiently rapid to maintain ambient oxygen concentrations at oxygen tensions as low as 1 mbar of O2. The consequences of this finding for the availability of O2 as a substrate or as a regulatory signal in the cytoplasm of bacterial cells are discussed. PMID:9555896

  18. Fate of mesophilic aerobic bacteria and Salmonella enterica on the surface of eggs as affected by chicken feces, storage temperature, and relative humidity.

    PubMed

    Park, Sunhyung; Choi, Seonyeong; Kim, Hoikyung; Kim, Yoonsook; Kim, Byeong-sam; Beuchat, Larry R; Ryu, Jee-Hoon

    2015-06-01

    We compared the microbiological quality of chicken eggshells obtained from a traditional wholesale market and a modern supermarket. We also determined the survival and growth characteristics of naturally occurring mesophilic aerobic bacteria (MAB) and artificially inoculated Salmonella enterica on eggshells under various environmental conditions (presence of chicken feces, temperature [4, 12, or 25 °C], and relative humidity [RH; 43 or 85%]). The populations of MAB, coliforms, and molds and yeasts on eggshells purchased from a traditional wholesale market were significantly (P ≤ 0.05) higher than those from a modern supermarket. In the second study, when we stored uninoculated eggs under various storage conditions, the population of MAB on eggshells (4.7-4.9 log CFU/egg) remained constant for 21 days, regardless of storage conditions. However, when eggshells were inoculated with S. enterica and stored under the same conditions, populations of the pathogen decreased significantly (P ≤ 0.05) under all tested conditions. Survival of S. enterica increased significantly (P ≤ 0.05) in the presence of feces, at low temperatures, and at low RH. These observations will be of value when predicting the behavior of microorganisms on eggshells and selecting storage conditions that reduce the populations of S. enterica on eggshells during distribution.

  19. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria

    PubMed Central

    Cerna-Cortes, Jorge Francisco; Leon-Montes, Nancy; Cortes-Cueto, Ana Laura; Salas-Rangel, Laura P.; Helguera-Repetto, Addy Cecilia; Lopez-Hernandez, Daniel; Rivera-Gutierrez, Sandra; Fernandez-Rendon, Elizabeth; Gonzalez-y-Merchand, Jorge Alberto

    2015-01-01

    The aims of this study were to evaluate the microbiological quality and the occurrence of nontuberculous mycobacteria (NTM) in a variety of salads and sprouts from supermarkets and street vendors in Mexico City. Aerobic-mesophilic bacteria (AMB) were present in 100% of RTE-salads samples; 59% of samples were outside guidelines range (>5.17 log10 CFU per g). Although fecal coliforms (FC) were present in 32% of samples, only 8% of them exceeded the permissible limit (100 MPN/g). Regarding the 100 RTE-sprouts, all samples were also positive for AMB and total coliforms (TC) and 69% for FC. Seven NTM species were recovered from 7 salad samples; they included three M. fortuitum, two M. chelonae, one M. mucogenicum, and one M. sp. Twelve RTE-sprouts samples harbored NTM, which were identified as M. porcinum (five), M. abscessus (two), M. gordonae (two), M. mucogenicum (two), and M. avium complex (one). Most RTE-salads and RTE-sprouts had unsatisfactory microbiological quality and some harbored NTM associated with illness. No correlation between the presence of coliforms and NTM was found. Overall, these results suggest that RTE-salads and RTE-sprouts might function as vehicles for NTM transmission in humans; hence, proper handling and treatment before consumption of such products might be recommendable. PMID:25918721

  20. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.

    PubMed

    Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N

    2011-03-01

    In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline.

  1. Adequacy of Petrifilm™ Aerobic Count plates supplemented with de Man, Rogosa & Sharpe broth and chlorophenol red for enumeration of lactic acid bacteria in salami.

    PubMed

    de Castilho, Natália Parma Augusto; Okamura, Vivian Tiemi; Camargo, Anderson Carlos; Pieri, Fábio Alessandro; Nero, Luís Augusto

    2015-12-01

    The present study aimed to assess the performance of alternative protocols to enumerate lactic acid bacteria (LAB) in salami. Fourteen cultures and two mixed starter cultures were plated using six protocols: 1) Petrifilm™ Aerobic Count (AC) with MRS broth and chlorophenol red (CR), incubated under aerobiosis or 2) under anaerobiosis, 3) MRS agar with CR, 4) MRS agar with bromocresol purple, 5) MRS agar at pH5.7, and 6) All Purpose Tween agar. Samples of salami were obtained and the LAB microbiota was enumerated by plating according protocols 1, 2, 3 and 5. Regression analysis showed a significant correlation between the tested protocols, based on culture counts (p<0.05). Similar results were observed for salami, and no significant differences of mean LAB counts between selected protocols (ANOVA, p>0.05). Colonies were confirmed as LAB, indicating proper selectivity of the protocols. The results showed the adequacy of Petrifilm™ AC supplemented with CR for the enumeration of LAB in salami.

  2. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria.

    PubMed

    Cerna-Cortes, Jorge Francisco; Leon-Montes, Nancy; Cortes-Cueto, Ana Laura; Salas-Rangel, Laura P; Helguera-Repetto, Addy Cecilia; Lopez-Hernandez, Daniel; Rivera-Gutierrez, Sandra; Fernandez-Rendon, Elizabeth; Gonzalez-y-Merchand, Jorge Alberto

    2015-01-01

    The aims of this study were to evaluate the microbiological quality and the occurrence of nontuberculous mycobacteria (NTM) in a variety of salads and sprouts from supermarkets and street vendors in Mexico City. Aerobic-mesophilic bacteria (AMB) were present in 100% of RTE-salads samples; 59% of samples were outside guidelines range (>5.17 log10 CFU per g). Although fecal coliforms (FC) were present in 32% of samples, only 8% of them exceeded the permissible limit (100 MPN/g). Regarding the 100 RTE-sprouts, all samples were also positive for AMB and total coliforms (TC) and 69% for FC. Seven NTM species were recovered from 7 salad samples; they included three M. fortuitum, two M. chelonae, one M. mucogenicum, and one M. sp. Twelve RTE-sprouts samples harbored NTM, which were identified as M. porcinum (five), M. abscessus (two), M. gordonae (two), M. mucogenicum (two), and M. avium complex (one). Most RTE-salads and RTE-sprouts had unsatisfactory microbiological quality and some harbored NTM associated with illness. No correlation between the presence of coliforms and NTM was found. Overall, these results suggest that RTE-salads and RTE-sprouts might function as vehicles for NTM transmission in humans; hence, proper handling and treatment before consumption of such products might be recommendable.

  3. Geosporobacter subterraneus gen. nov., sp. nov., a spore-forming bacterium isolated from a deep subsurface aquifer.

    PubMed

    Klouche, Nihel; Fardeau, Marie-Laure; Lascourrèges, Jean-François; Cayol, Jean-Luc; Hacene, Hocine; Thomas, Pierre; Magot, Michel

    2007-08-01

    A novel, strictly anaerobic, chemo-organotrophic bacterium, designated strain VNs68(T), was isolated from a well that collected water from a deep aquifer at a depth of 800 m in the Paris Basin, France. Cells were thin, non-motile, Gram-positive rods forming terminal endospores (3.0-5.0 x 0.5 microm). Strain VNs68(T) grew at temperatures between 30 and 55 degrees C (optimum 42 degrees C) and at pH 5.6-8.4 (optimum pH 7.3). It did not require salt for growth but tolerated up to 40 g NaCl l(-1). Strain VNs68(T) was an obligate heterotroph fermenting carbohydrates such as glucose, xylose, fructose, ribose and cellobiose. Casamino acids and amino acids (arginine, serine, lysine, alanine, aspartate, asparagine, isoleucine, histidine) were also fermented. The main fermentation products from glucose were acetate with H(2) and CO(2). Sulfate, sulfite, thiosulfate, elemental sulfur, nitrate and nitrite were not used as electron acceptors. The G+C content of the genomic DNA was 42.2 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain VNs68(T) was affiliated to cluster XI, order Clostridiales, domain Bacteria. On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain VNs68(T) is considered to represent a novel species of a new genus, for which the name Geosporobacter subterraneus gen. nov., sp. nov. is proposed. The type strain of Geosporobacter subterraneus is VNs68(T) (=DSM 17957(T) =JCM 14037(T)).

  4. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows.

    PubMed

    Oliveira, André S; Weinberg, Zwi G; Ogunade, Ibukun M; Cervantes, Andres A P; Arriola, Kathy G; Jiang, Yun; Kim, Donghyeon; Li, Xujiao; Gonçalves, Mariana C M; Vyas, Diwakar; Adesogan, Adegbola T

    2017-03-22

    Forages are usually inoculated with homofermentative and facultative heterofermentative lactic acid bacteria (LAB) to enhance lactic acid fermentation of forages, but effects of such inoculants on silage quality and the performance of dairy cows are unclear. Therefore, we conducted a meta-analysis to examine the effects of LAB inoculation on silage quality and preservation and the performance of dairy cows. A second objective was to examine the factors affecting the response to silage inoculation with LAB. The studies that met the selection criteria included 130 articles that examined the effects of LAB inoculation on silage quality and 31 articles that investigated dairy cow performance responses. The magnitude of the effect (effect size) was evaluated using raw mean differences (RMD) between inoculated and uninoculated treatments. Heterogeneity was explored by meta-regression and subgroup analysis using forage type, LAB species, LAB application rate, and silo scale (laboratory or farm-scale) as covariates for the silage quality response and forage type, LAB species, diet type [total mixed ration (TMR) or non-TMR], and the level of milk yield of the control cows as covariates for the performance responses. Inoculation with LAB (≥10(5) cfu/g as fed) markedly increased silage fermentation and dry matter recovery in temperate and tropical grasses, alfalfa, and other legumes. However, inoculation did not improve the fermentation of corn, sorghum, or sugarcane silages. Inoculation with LAB reduced clostridia and mold growth, butyric acid production, and ammonia-nitrogen in all silages, but it had no effect on aerobic stability. Silage inoculation (≥10(5) cfu/g as fed) increased milk yield and the response had low heterogeneity. However, inoculation had no effect on diet digestibility and feed efficiency. Inoculation with LAB improved the fermentation of grass and legume silages and the performance of dairy cows but did not affect the fermentation of corn, sorghum

  5. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula.

    PubMed

    Tabacco, E; Righi, F; Quarantelli, A; Borreani, G

    2011-03-01

    The economic damage that results from aerobic deterioration of silage is a significant problem for farm profitability and feed quality. This paper quantifies the dry matter (DM) and nutritional losses that occur during the exposure of corn and sorghum silages to air over 14 d and assesses the possibility of enhancing the aerobic stability of silages through inoculation with lactic acid bacteria (LAB). The trial was carried out in Northern Italy on corn (50% milk line) and grain sorghum (early dough stage) silages. The crops were ensiled in 30-L jars, without a LAB inoculant (C), with a Lactobacillus plantarum inoculum (LP), and with a Lactobacillus buchneri inoculum (LB; theoretical rate of 1 × 10(6) cfu/g of fresh forage). The pre-ensiled material, the silage at silo opening, and the aerobically exposed silage were analyzed for DM content, fermentative profiles, yeast and mold count, starch, crude protein, ash, fiber components, 24-h and 48-h DM digestibility and neutral detergent fiber (NDF) degradability. The yield and nutrient analysis data of the corn and sorghum silages were used as input for Milk2006 to estimate the total digestible nutrients, net energy of lactation, and milk production per Mg of DM. The DM fermentation and respiration losses were also calculated. The inocula influenced the in vitro NDF digestibility at 24h, the net energy for lactation (NE(L)), and the predicted milk yield per megagram of DM, whereas the length of time of air exposure influenced DM digestibility at 24 and 48 h, the NE(L), and the predicted milk yield per megagram of DM in the corn silages. The inocula only influenced the milk yield per megagram of DM and the air exposure affected the DM digestibility at 24h, the NE(L), and the milk yield per megagram of DM in the sorghum silages. The milk yield, after 14 d of air exposure, decreased to 1,442, 1,418, and 1,277 kg/Mg of DM for C, LB, and LP corn silages, respectively, compared with an average value of 1,568 kg of silage at

  6. Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of cassava from the Republic of the Congo.

    PubMed

    Ouoba, Labia Irène I; Vouidibio Mbozo, Alain B; Thorsen, Line; Anyogu, Amarachukwu; Nielsen, Dennis S; Kobawila, Simon C; Sutherland, Jane P

    2015-11-01

    Investigation of the microbial diversity of Ntoba Mbodi, an African food made from the alkaline fermentation of cassava leaves, revealed the presence of a Gram-positive, catalase-positive, aerobic, motile and rod-shaped endospore-forming bacterium (NM73) with unusual phenotypic and genotypic characteristics. The analysis of the 16S rRNA gene sequence revealed that the isolate was most closely related to Lysinibacillus meyeri WS 4626T (98.93%), Lysinibacillus xylanilyticus XDB9T (96.95%) and Lysinibacillus odysseyi 34hs-1T (96.94%). The DNA-DNA relatedness of the isolate with L. meyeri LMG 26643T, L. xylanilyticus DSM 23493T and L. odysseyi DSM 18869T was 41%, 16% and 15%, respectively. The internal transcribed spacer-PCR profile of the isolate was different from those of closely related bacteria. The cell-wall peptidoglycan type was A4α, L-Lys-D-Asp and the major fatty acids were iso-C15:0, anteiso-C15:0, anteiso-C17:0 and iso-C17:0 and iso-C17:1ω10c. The polar lipids included phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphoaminolipid, aminolipid, two phospholipids and two unknown lipids. The predominant menaquinones were MK-7 and MK-6. Ribose was the only whole-cell sugar detected. The DNA G+C content was 38 mol%. Based on the results of the phenotypic and genotypic characterization, it was concluded that the isolate represents a novel species of the genus Lysinibacillus, for which the name of Lysinibacillus louembei sp. nov. is proposed. NM73T ( = DSM 25583T = LMG 26837T) represents the type strain.

  7. Ulcerative enteritis in Homarus americanus: case report and molecular characterization of intestinal aerobic bacteria of apparently healthy lobsters in live storage.

    PubMed

    Battison, Andrea L; Després, Béatrice M; Greenwood, Spencer J

    2008-10-01

    An intermoult male American lobster, Homarus americanus, with severe intestinal lesions was encountered while collecting samples of aerobic intestinal bacteria from lobsters held in an artificial sea-water recirculation aquarium system. Grossly, the intestine was firm, thickened, and white. Histologic examination revealed a severe, diffuse, ulcerative enteritis which spared the chitin-lined colon, somewhat similar to hemocytic enteritis of shrimp. The bacterial isolates from this lobster were compared to 11 other lobsters lacking gross intestinal lesions. Two organisms, one identified as Vibrio sp. and another most similar to an uncultured proteobacterium (98.9%), clustering with Rhanella and Serratia species using 16S rDNA PCR, were isolated from the intestines of the 11, grossly normal, lobsters and the affected lobster. An additional two intestinal isolates were cultured only from the lobster with ulcerative enteritis. One, a Flavobacterium, similar to Lutibacter litoralis (99.3%), possibly represented a previously described commensal of the distal intestine. The second, a Vibrio sp., was unique to the affected animal. While the etiology of the ulcerative enteritis remains undetermined, this report represents the first description of gross and histologic findings in H. americanus of a condition which has morphologic similarities to hemocytic enteritis of shrimp. An additional observation was a decrease in the number of intestinal isolates recovered from the 11 apparently healthy lobsters compared to that previously reported for recently harvested lobster. More comprehensive studies of the relationship between the health of lobsters, gut microbial flora and the husbandry and environment maintained within holding units are warranted.

  8. Microbiological diversity and prevalence of spoilage and pathogenic bacteria in commercial fermented alcoholic beverages (beer, fruit wine, refined rice wine, and yakju).

    PubMed

    Jeon, Se Hui; Kim, Nam Hee; Shim, Moon Bo; Jeon, Young Wook; Ahn, Ji Hye; Lee, Soon Ho; Hwang, In Gyun; Rhee, Min Suk

    2015-04-01

    The present study examined 469 commercially available fermented alcoholic beverages (FABs), including beer (draft, microbrewed, and pasteurized), fruit wine (grape and others), refined rice wine, and yakju (raw and pasteurized). Samples were screened for Escherichia coli and eight foodborne pathogens (Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Yersinia enterocolitica), and the aerobic plate count, lactic acid bacteria, acetic acid bacteria, fungi, and total coliforms were also enumerated. Microbrewed beer contained the highest number of microorganisms (average aerobic plate count, 3.5; lactic acid bacteria, 2.1; acetic acid bacteria, 2.0; and fungi, 3.6 log CFU/ml), followed by draft beer and yakju (P < 0.05), whereas the other FABs contained , 25 CFU/25 ml microorganisms. Unexpectedly, neither microbial diversity nor microbial count correlated with the alcohol content (4.7 to 14.1%) or pH (3.4 to 4.2) of the product. Despite the harsh conditions, coliforms (detected in 23.8% of microbrewed beer samples) and B. cereus (detected in all FABs) were present in some products. B. cereus was detected most frequently in microbrewed beer (54.8% of samples) and nonpasteurized yakju (50.0%), followed by pasteurized yakju (28.8%), refined rice wine (25.0%), other fruit wines (12.3%), grape wine (8.6%), draft beer (5.6%), and pasteurized beer (2.2%) (P < 0.05). The finding that spore-forming B. cereus and coliform bacteria can survive the harsh conditions present in alcoholic beverages should be taken into account (alongside traditional quality indicators such as the presence of lactic acid-producing bacteria, acetic acid-producing bacteria, or both) when developing manufacturing systems and methods to prolong the shelf life of high-quality FAB products. New strategic quality management plans for various FABs are needed.

  9. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module

    PubMed Central

    Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Victor; Iliyin, Vyacheslav

    2015-01-01

    One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth’s atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite). After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth’s atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport. PMID:26151136

  10. Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard.

    PubMed

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-04-01

    Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate, succinate, fumarate, proline, alanine and glycine were used as electron donors in the presence of sulfate. Growth occurred with pyruvate as sole substrate. Optimal growth was observed at pH 7.1-7.5 and concentrations of 1-1.5 % NaCl and 0.4 % MgCl2. Strain 15T grew between 26 and 46.5 degrees C and optimal growth occurred at 44 degrees C. Therefore, strain 15T apparently cannot grow at in situ temperatures of Arctic sediments from where it was isolated, and it was proposed that it was present in the sediment in the form of spores. The DNA G+C content was 48.9 mol%. Strain 15T was most closely related to Desulfotomaculum thermosapovorans MLF(T) (93.5 % 16S rRNA gene sequence similarity). Strain 15T represents a novel species, for which the name Desulfotomaculum arcticum sp. nov. is proposed. The type strain is strain 15T (=DSM 17038T = JCM 12923T).

  11. Spore-Forming Thermophilic Bacterium within Artificial Meteorite Survives Entry into the Earth's Atmosphere on FOTON-M4 Satellite Landing Module.

    PubMed

    Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Victor; Iliyin, Vyacheslav

    2015-01-01

    One of the key conditions of the lithopanspermia hypothesis is that microorganisms situated within meteorites could survive hypervelocity entry from space through the Earth's atmosphere. So far, all experimental proof of this possibility has been based on tests with sounding rockets which do not reach the transit velocities of natural meteorites. We explored the survival of the spore-forming thermophilic anaerobic bacterium, Thermoanaerobacter siderophilus, placed within 1.4-cm thick basalt discs fixed on the exterior of a space capsule (the METEORITE experiment on the FOTON-M4 satellite). After 45 days of orbital flight, the landing module of the space vehicle returned to Earth. The temperature during the atmospheric transit was high enough to melt the surface of basalt. T. siderophilus survived the entry; viable cells were recovered from 4 of 24 wells loaded with this microorganism. The identity of the strain was confirmed by 16S rRNA gene sequence and physiological tests. This is the first report on the survival of a lifeform within an artificial meteorite after entry from space orbit through Earth's atmosphere at a velocity that closely approached the velocities of natural meteorites. The characteristics of the artificial meteorite and the living object applied in this study can serve as positive controls in further experiments on testing of different organisms and conditions of interplanetary transport.

  12. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  13. Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes.

    PubMed

    Shiratori, Hatsumi; Ohiwa, Hitomi; Ikeno, Hironori; Ayame, Shohei; Kataoka, Naoaki; Miya, Akiko; Beppu, Teruhiko; Ueda, Kenji

    2008-04-01

    A novel anaerobic, moderately thermophilic, spore-forming, rod-shaped bacterium (strain EBR46T) was isolated from an enrichment culture derived from an anaerobic thermophilic (55 degrees C) methanogenic bioreactor treating artificial solid wastes. Phylogeny based on 16S rRNA gene sequence analysis placed strain EBR46T within a distinct lineage between Clostridium clusters II and III. The closest recognized relative of strain EBR46T was Gracilibacter thermotolerans DSM 17427T (85.3 % 16S rRNA gene sequence similarity). The DNA G+C content of strain EBR46T was 36.2 mol%. The novel strain grew optimally at 55-58 degrees C and at pH 7.5-8.0 and was able to grow on peptone, tryptone, Casamino acids, casein hydrolysate, methionine, threonine, tryptophan, cysteine, lysine and serine in the presence of 0.2 % yeast extract. Carbohydrates were not utilized. The main products from tryptone utilization were acetate, iso-butyrate, propionate and iso-valerate. Strain EBR46T produced hydrogen sulfide from cysteine. The major fatty acids were iso-C15 : 0, C14 : 0, C16 : 0 DMA (dimethyl acetal) and iso-C15 : 0 DMA. Based on its unique phylogenetic and physiological features, strain EBR46T is considered to represent a novel species of a new genus, for which the name Lutispora thermophila gen. nov., sp. nov. is proposed. The type strain of the type species is EBR46T (=NBRC 102133T=DSM 19022T).

  14. Growth parameters of escherichia coli O157:H7, salmonella and listeria monocytogenes and aerobic mesophilic bacteria of apple cider amended with nisin-EDTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of nisin (0 or 300 IU), Ethylenediamine Tetraacetic Acid (EDTA, 20 mM) and (nisin 300 IU+ EDTA 20 mM) on growth parameters; including lag period (LP) and growth rate (GR) of Escherichia coli O157:H7, L. monocytogenes and Salmonella spp. in the presence or absence of aerobic mesophilic bac...

  15. (Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor

    PubMed Central

    Carlström, Charlotte I.; Loutey, Dana; Bauer, Stefan; Clark, Iain C.; Rohde, Robert A.; Iavarone, Anthony T.; Lucas, Lauren

    2015-01-01

    ABSTRACT The pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2−), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms. PMID:25805732

  16. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage.

    PubMed

    Huisden, C M; Adesogan, A T; Kim, S C; Ososanya, T

    2009-02-01

    This study determined how the fermentation and aerobic stability of corn silage are affected by treatment with molasses or 2 dual-purpose inoculants applied at or above the recommended rate. Corn forage (DeKalb 69-70) was harvested at 39% dry matter (DM) and ensiled after treatment with no additives (control, CON), molasses (MOL), Buchneri 500 inoculant, or Pioneer 11C33 inoculant. Molasses was applied at 3% of forage DM. Buchneri 500 was applied at the recommended rate of 8 mg/kg fresh forage to supply 1 x 10(5) cfu/g of Pediococcus pentosaceus 12455 and 4 x 10(5) cfu/g of Lactobacillus buchneri 40788 (BB) or at twice the recommended rate (DBB). Pioneer 11C33 inoculant was applied at the recommended rate of 1.1 mg/kg fresh forage to supply 1 x 10(5) cfu/g of a mixture of Lactobacillus plantarum, L. buchneri, and Enteroccocus faecium (PN) or at twice the recommended rate (DPN). Each treatment was applied in quadruplicate and the treated forages were ensiled within 20-L mini silos for 135 d at 18 to 35 degrees C. Molasses-treated silages had greater ash and starch concentrations than CON silages and greater lactate and ethanol concentrations than other silages. Like CON silages, MOL silages had high yeast counts (>10(5) cfu/g); consequently, they deteriorated within 30 h as shown by temperature increase. Inoculant-treated silages had lower lactate to acetate ratios than CON or MOL silages largely because they had greater acetate concentrations. Consequently, all inoculant-treated silages had fewer yeasts (<10(5) cfu/g) and were more stable (>30 h) than CON and MOL silages. When applied at recommended rates, PN and BB had similar effects on silage chemical composition, fermentation, fungal counts, and aerobic stability, except for a lower lactate concentration in PN silages. Concentrations of VFA, and NH(3)-N, pH, and extent of aerobic stability were similar for PN, DPN, BB, and DBB silages. However, lactate concentration was greater in DPN than in PN. In conclusion

  17. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  18. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  19. Endospore-forming filamentous bacteria symbiotic in termites: ultrastructure and growth in culture of Arthromitus

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Olendzenski, L.; Afzelius, B. A.

    1990-01-01

    Many morphologically distinguishable filamentous spore-forming bacteria symbiotic in the paunch (hypertrophied hindguts) of wood-eating insects have been seen since Arthromitus was first described and named as a plant by Leidy in 1850. Previous descriptions were inadequate for acceptance of the group in modern bacteriological literature. Twenty-two distinguishable arthromitids in nine different arthropod hosts are recorded on the basis of microscopic studies. Five are named, including two whose ultrastructure are detailed: Arthromitus chasei sp. nov. that lives in the damp wood-eating termite Zootermopsis angusticollis (from the west coast of North America) and Arthromitus reticulitermitidis sp. nov. from the subterranean west coast termite Reticulitermes tibialis. A pterotermiditis from the desert termite Pterotermitidis occidentis; A. zootermopsidis, also from Z. angusticollis; and A. cristatus (Leidy, 1881) from Reticulitermes flavipes of eastern North America are also named here. Characterized by trichomes that show a morphogenetic sequence from no spores through immature spores to mature spores with spore filaments, Arthromitus symbionts can be identified as members of the genus by light microscopy and habitat. Electron microscopy reveals their remarkable complexity. They attach by spore filaments to various objects including the host gut wall; their maturation extends distally toward the termite lumen. By surface sterilization of the termite, maceration of the paunch, exposure to boiling temperatures and plating on soft acetate agar, the heat resistant nature of the spores and facultatively aerobic nature of Arthromitus sp. (from Zootermopsis) was demonstrated.

  20. Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies.

    PubMed

    Hillesland, Heidi; Read, Amber; Subhadra, Bobban; Hurwitz, Ivy; McKelvey, Robin; Ghosh, Kashinath; Das, Pradeep; Durvasula, Ravi

    2008-12-01

    Visceral leishmaniasis is an understudied parasitic disease responsible for significant global morbidity and mortality. We are presently investigating a method of disease prevention termed paratransgenesis. In this approach, symbiotic or commensal bacteria are transformed to produce anti-Leishmania molecules. The transformed bacteria are delivered back to sand flies to inactivate the parasite within the vector itself. In this study, we identified 28 distinct gut microorganisms from Phlebotomus argentipes trapped from four visceral leishmaniasis-endemic sites in India. A significant percent of Staphylococcus spp., environmental bacteria, and Enterobacteriaceae were identified. Two non-pathogenic organisms, Bacillus megaterium and Brevibacterium linens, were also isolated. Both organisms are also used extensively in industry. Our results indicate that B. megaterium and B. linens are possible candidates for use in a model of paratransgenesis to prevent transmission of Leishmania.

  1. Survival and Recovery of Methanotrophic Bacteria Starved Under Oxic and Anoxic Conditions

    NASA Technical Reports Server (NTRS)

    Roslev, Peter; King, Gary M.

    1994-01-01

    The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and niorpholow were seen for methanotrophic bacteria starved tinder anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survin,e carbon deprivation under anoxic conditions by using maintenance energy derived Solelyr from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously, supporting aerobic methanotrophic growth.

  2. Survival and Recovery of Methanotrophic Bacteria Starved under Oxic and Anoxic Conditions †

    PubMed Central

    Roslev, Peter; King, Gary M.

    1994-01-01

    The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and morphology were seen for methanotrophic bacteria starved under anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survive carbon deprivation under anoxic conditions by using maintenance energy derived solely from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously supporting aerobic methanotrophic growth. PMID:16349336

  3. Enumeration of Free-Living Aerobic N2-Fixing H2-Oxidizing Bacteria by Using a Heterotrophic Semisolid Medium and Most-Probable-Number Technique

    PubMed Central

    Barraquio, Wilfredo L.; Dumont, Ann; Knowles, Roger

    1988-01-01

    A heterotrophic semisolid medium was used with two sensitive assay methods, C2H2 reduction and O2-dependent tritium uptake, to determine nitrogenase and hydrogenase activities, respectively. Organisms known to be positive for both activities showed hydrogenase activity in both the presence and absence of 1% C2H2, and thus, it was possible to test a single culture for both activities. Hydrogen uptake activity was detected for the first time in N2-fixing strains of Pseudomonas stutzeri. The method was then applied to the most-probable-number method of counting N2-fixing and H2-oxidizing bacteria in some natural systems. The numbers of H2-oxidizing diazotrophs were considerably higher in soil surrounding nodules of white beans than they were in the other systems tested. This observation is consistent with reports that the rhizosphere may be an important ecological niche for H2 transformation. PMID:16347643

  4. Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and Reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strains of aerobic, Gram-positive rods, and round spore-forming bacteria were isolated from a variety of geographic locations, and a subsequent polyphasic study was undertaken to clarify the taxonomic position of the round spore-forming isolates: strain KSC-SF6gT, strain M32, and strain NBRC 12622. ...

  5. Studies on ultrasmall bacteria in relation to the presence of bacteria in the stratosphere

    NASA Astrophysics Data System (ADS)

    Alshammari, Fawaz; Wainwright, Milton; Alabri, Khalid; Alharbi, Sulamain A.

    2011-04-01

    Recent studies confirm that bacteria exist in the stratosphere. It is generally assumed that these bacteria are exiting from Earth, although it is possible that some are incoming from space. Most stratospheric bacterial isolates belong to the spore-forming genus Bacillus, although non-spore formers have also been isolated. Theoretically, the smaller a bacterium is, the more likely it is to be carried from Earth to the stratosphere. Ultrasmall bacteria have been frequently isolated from Earth environments, but not yet from the stratosphere. This is an anomalous situation, since we would expect such small bacteria to be over represented in the stratosphere-microflora. Here, we show that ultrasmall bacteria are present in the environment on Earth (i.e. in seawater and rainwater) and discuss the paradox of why they have not been isolated from the stratosphere.

  6. Microbial utilization of the industrial wastewater pollutants 2-ethylhexylthioglycolic acid and iso-octylthioglycolic acid by aerobic gram-negative bacteria.

    PubMed

    Toups, Mario; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2010-04-01

    Industrial wastewater from the production of sulfur containing esters and the resulting products of this synthesis, 2-ethylhexylthioglycolic acid (EHTG) and iso-octylthioglycolic acid (IOTG), were deployed in this study to enrich novel bacterial strains, since no wastewater and EHTG or IOTG degrading microorganisms were hitherto described or available. In addition, nothing is known about the biodegradation of these thiochemicals. The effect of this specific wastewater on the growth behaviour of microorganisms was investigated using three well-known Gram-negative bacteria (Escherichia coli, Pseudomonas putida, and Ralstonia eutropha). Concentrations of 5% (v/v) wastewater in complex media completely inhibited growth of these three bacterial strains. Six bacterial strains were successfully isolated, characterized and identified by sequencing their 16S rRNA genes. Two isolates referred to as Achromobacter sp. strain MT-E3 and Pseudomonas sp. strain MT-I1 used EHTG or IOTG, respectively, as well as the wastewater as sole source of carbon and energy for weak growth. More notably, both isolates removed these sulfur containing esters in remarkable amounts from the cultures supernatant. One further isolate was referred to as Klebsiella sp. strain 58 and exhibited an unusual high tolerance against the wastewater's toxicity without utilizing the contaminative compounds. If cultivated with gluconic acid as additional carbon source, the strain grew even in presence of more than 40% (v/v) wastewater. Three other isolates belonging to the genera Bordetella and Pseudomonas tolerated these organic sulfur compounds but showed no degradation abilities.

  7. Optimum detection times for bacteria and yeast species with the BACTEC 9120 aerobic blood culture system: evaluation for a 5-year period in a Turkish university hospital.

    PubMed

    Durmaz, Gül; Us, Tercan; Aydinli, Aydin; Kiremitci, Abdurrahman; Kiraz, Nuri; Akgün, Yurdanur

    2003-02-01

    We tracked and documented the time of positivity of blood cultures by using the BACTEC 9120 (Becton Dickinson Diagnostic Instrument Systems) blood culture system over a 5-year study period. A 7-day protocol of the incubation period was selected, and a total of 11156 blood cultures were evaluated. The clinically significant microorganisms (32.95%) were isolated in 3676 specimens. Gram-positive and -negative bacterial isolation rates were found to be 41.07 and 44.88%, respectively. Yeasts were found in 14.03% of all pathogens. Both the false-positivity and -negativity rates were very low (0.1 and 0.3%, respectively). The mean detection times for all of the pathogens were determined to be 19.45 h. Yeasts, nonfermentative gram-negative bacteria, and Brucella melitensis strains were isolated within 5 days. By taking these data into account, we decided to establish a 5-day-incubation protocol in our laboratory instead of the 7 days that are commonly used.

  8. Optimum Detection Times for Bacteria and Yeast Species with the BACTEC 9120 Aerobic Blood Culture System: Evaluation for a 5-Year Period in a Turkish University Hospital

    PubMed Central

    Durmaz, Gül; Us, Tercan; Aydinli, Aydin; Kiremitci, Abdurrahman; Kiraz, Nuri; Akgün, Yurdanur

    2003-01-01

    We tracked and documented the time of positivity of blood cultures by using the BACTEC 9120 (Becton Dickinson Diagnostic Instrument Systems) blood culture system over a 5-year study period. A 7-day protocol of the incubation period was selected, and a total of 11,156 blood cultures were evaluated. The clinically significant microorganisms (32.95%) were isolated in 3,676 specimens. Gram-positive and -negative bacterial isolation rates were found to be 41.07 and 44.88%, respectively. Yeasts were found in 14.03% of all pathogens. Both the false-positivity and -negativity rates were very low (0.1 and 0.3%, respectively). The mean detection times for all of the pathogens were determined to be 19.45 h. Yeasts, nonfermentative gram-negative bacteria, and Brucella melitensis strains were isolated within 5 days. By taking these data into account, we decided to establish a 5-day-incubation protocol in our laboratory instead of the 7 days that are commonly used. PMID:12574291

  9. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.

    PubMed

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V

    2015-04-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population.

  10. Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields

    PubMed Central

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren

    2015-01-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the “Rapid Annotation using the Subsystems Technology” server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

  11. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  12. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  13. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  14. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM.

  15. [Isolation and identification of electrochemically active microorganism from micro-aerobic environment].

    PubMed

    Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng

    2014-10-01

    Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.

  16. Time-resolved and steady-state fluorescence spectroscopy from bacteria subjected to bactericidal agents

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Alimova, Alexandra; Siddique, Masood; Savage, Howard E.; Shah, Mahendra; Rosen, Richard; Alfano, Robert

    2004-03-01

    The time-resolved and steady-state changes in fluorescence were investigated from one spore-forming (Bacillus subtilis) and four non-spore forming (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Pseudomonas aeruginosa) bacteria subjected to different bactericidal agents. The bactericidal agents were sodium hypochlorite (bleach) hydrogen peroxide, formaldehyde, and UV light exposure. Application of sodium hypochlorite resulted in an almost total lose of fluorescence signal and large decrease in the optical density of the bacterial suspension. Addition of hydrogen peroxide resulted in a 35% decrease in emission intensity fom the Sa and an 85-95% decrease for the other bacteria. Ultraviolet light exposure resulted in a 5-35% decrease in the emission intensity of the tryptophan band. The addition of formaldehyde to the bacteria did not result in significant changes in the steady-state emission intensity, but did shift the tryptophan emission peak position to shorter wavelengths by 3 to 5 nm. Time-resolved fluorescence measurements showed that the fluorescence lifetime of tryptophan in the bacteria could not be described by a single exponential decay, and was similar to that of tryptophan in neutral aqueous solution. Upon addition of formaldehyde to the Gram positive bacteria (Bs and Sa) the strength of the short lifetime component increased dramatically, while for the Gram negative bacteria, a smaller increase was observed. These fluorescence changes reflect the different mechanisms of the bactericidal agents and may provide a useful tool to monitor the effectiveness of disinfectants.

  17. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  18. High-Quality Genome Sequence of Bacillus vireti DSM 15602T for Setting Up Phylogenomics for the Genomic Taxonomy of Bacillus-Like Bacteria

    PubMed Central

    Liu, Guo-Hong; Wang, Jie-Ping; Che, Jian-Mei; Chen, Qian-Qian; Chen, Zheng

    2015-01-01

    Bacillus vireti DSM 15602T is a Gram-negative, spore-forming, and facultatively anaerobic bacterium. Here, we report the 5.309-Mb draft genome sequence of B. vireti DSM 15602T, which will provide useful information for setting up phylogenomics for the genomic taxonomy of Bacillus-like bacteria, as well as for the functional gene mining and application of B. vireti. PMID:26251494

  19. Isolation and identification of bacteria from paperboard food packaging

    PubMed Central

    Mashhadi Mohammadzadeh-Vazifeh, Mojtaba; Khajeh-Nasiri, Shamsolmoluk; Hashemi, Shabnam; Fakhari, Javad

    2015-01-01

    Background and Objectives: Paper and paperboard packaging play an important role in safety and quality of food products. Common bacteria of paper and paperboard food packaging could grow due to specific conditions included humidity, temperature and major nutrition to contaminate the food. The purpose of this research was to investigate numbers and the types of bacteria in the food packaging paperboard. Materials and Methods: The surface and the depth of the each paperboard sample were examined by the dimension of one cm2 and one gram. The paperboard samples were randomly collected from popular confectionaries and fast food restaurants in Tehran, Iran. Results: The results indicated the range of 0.2×103 to >1.0×105 cfu/1g bacterial contamination in paperboard food packaging. Also, most detected bacteria were from spore forming and family Bacillaceae. Conclusion: The bioburden paperboard used for food packaging showed high contamination rate more than standard acceptance level. PMID:26719786

  20. Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa.

    PubMed

    Ma, Yanhe; Xue, Yanfen; Grant, William D; Collins, Nadine C; Duckworth, Andrew W; Van Steenbergen, Robert P; Jones, Brian E

    2004-06-01

    Two related novel alkaliphilic and slightly halophilic bacteria are described. They are strain N10 from Lake Chahannor in China and strain 1E1 from Lake Elmenteita in East Africa. Both strains are strictly aerobic, heterotrophic, alkaliphilic, mesophilic, and require NaCl for growth. The optimal conditions for growth were at pH 10-10.5 and 2-3% (w/v) NaCl. Cells of both strains were Gram-negative, rod-shaped, non-spore-forming, and motile with a single polar flagellum. Cellular fatty acids in both strains were predominantly saturated and mono-unsaturated straight-chain fatty acids (16:0, 16:1omega7c and 18:1omega7c). The major isoprenoid quinone of both strains was Q8. The major polar lipids are phosphatidylglycerol, diphosphatidylglycerol, phosphatidylglycerol phosphate and phosphatidylethanolamine. The guanine plus cytosine (G + C) content of the DNA was 52.5 mol% and 55.4 mol%, respectively. Phylogenetic analysis revealed that the two strains formed a distinct lineage within the gamma-3 subclass of the Proteobacteria. The strains shared a 16S rDNA sequence similarity of 96.1% and showed less than 93.7% of sequence similarity to any other known species. Based on polyphasic data, the two strains were differentiated from currently recognized genera and represent a new genus, Alkalimonas gen. nov., with two species, Alkalimonas amylolytica sp. nov. (type strain is N10T = AS 1.3430) and Alkalimonas delamerensis sp. nov. ( type strain is 1E1(P, T) = CBS 391.94). The GenBank accession numbers for the 16S rRNA gene sequence of strains N10 and 1E1 are AF250323 and X92130, respectively.

  1. The Growth of Steroidobacter agariperforans sp. nov., a Novel Agar-Degrading Bacterium Isolated from Soil, is Enhanced by the Diffusible Metabolites Produced by Bacteria Belonging to Rhizobiales

    PubMed Central

    Sakai, Masao; Hosoda, Akifumi; Ogura, Kenjiro; Ikenaga, Makoto

    2014-01-01

    An agar-degrading bacterium was isolated from soil collected in a vegetable cropping field. The growth of this isolate was enhanced by supplying culture supernatants of bacteria belonging to the order Rhizobiales. Phylogenetic analysis based on 16S rRNA gene sequences indicated the novel bacterium, strain KA5–BT, belonged to the genus Steroidobacter in Gammaproteobacteria, but differed from its closest relative, Steroidobacter denitrificans FST, at the species level with 96.5% similarity. Strain KA5–BT was strictly aerobic, Gram-negative, non-motile, non-spore forming, and had a straight to slightly curved rod shape. Cytochrome oxidase and catalase activities were positive. The strain grew on media containing culture supernatants in a temperature range of 15–37°C and between pH 4.5 and 9.0, with optimal growth occurring at 30°C and pH 6.0–8.0. No growth occurred at 10 or 42°C or at NaCl concentrations more than 3% (w/v). The main cellular fatty acids were iso–C15:0, C16:1ω7c, and iso–C17:1ω9c. The main quinone was ubiquinone-8 and DNA G+C content was 62.9 mol%. In contrast, strain FST was motile, did not grow on the agar plate, and its dominant cellular fatty acids were C15:0 and C17:1ω8c. Based on its phylogenetic and phenotypic properties, strain KA5–BT (JCM 18477T = KCTC 32107T) represents a novel species in genus Steroidobacter, for which the name Steroidobacter agariperforans sp. nov. is proposed. PMID:24621511

  2. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  3. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  4. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  5. Magnetic properties of heterotrophic bacteria (abstract)

    NASA Astrophysics Data System (ADS)

    Verkhovceva, Nadezda V.; Glebova, Irina N.; Romanuk, Anatoly V.

    1994-05-01

    The magnetic properties (magnetic susceptibility and saturation magnetization) of six species of heterotrophic bacteria were studied: alcaligenes faecalis 81, arthrobacter globiformis BKM 685, bacillus cereus 8, leptothrix pseudo-ochracea D-405, proteus vulgaris 14, and seliberia stellata. It has been shown that the magnetic properties of bacteria depend on (1) the peculiarity of the micro-organism (species-specific and connected with cultivation conditions); (2) the source of the iron in the media. Most of the bacteria are diamagnetic in media with a minimum of iron (χ∞=-7.2-0.3×10-6 sm3/g). The spore forming species (bacillus cereus) has increased diamagnetism. Usually the bacteria are paramagnetic in iron-containing media because they concentrate into Fe compounds. The paramagnetism of the iron-concentrating species (anthrobacter globiformis -χpar=2.4×10-6, leptothrix pseudo-ochtracea χpar=11.0×10-6 and seliberia stellata χpar=3.2×10-6 sm3/g) depends, in general, on magnetically ordered compounds. Iron compounds not accumulated by proteus vulgaris and these species are always diamagnetic .

  6. Aerobic and anaerobic cecal bacterial flora of commercially processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in the bacterial flora of aerobic and anaerobic cultures of broiler ceca collected from a commercial poultry processing facility were determined. Bacterial isolates from cecal cultures were selected based on the ability of the bacteria to grow in media supplemented with lactate and succ...

  7. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  8. Burkholderia dabaoshanensis sp. nov., a Heavy-Metal-Tolerant Bacteria Isolated from Dabaoshan Mining Area Soil in China

    PubMed Central

    Zhu, Honghui; Guo, Jianhua; Chen, Meibiao; Feng, Guangda; Yao, Qing

    2012-01-01

    Heavy-metal-tolerant bacteria, GIMN1.004T, was isolated from mine soils of Dabaoshan in South China, which were acidic (pH 2–4) and polluted with heavy metals. The isolation was Gram-negative, aerobic, non-spore-forming, and rod-shaped bacteria having a cellular width of 0.5−0.6 µm and a length of 1.3−1.8 µm. They showed a normal growth pattern at pH 4.0–9.0 in a temperature ranging from 5°C to 40°C.The organism contained ubiquinone Q-8 as the predominant isoprenoid quinine, and C16∶0, summed feature 8 (C18∶1ω7c and C18∶1ω6c), C18∶0, summed feature 3 (C16∶1ω7c or iso-C15∶0 2-OH), C17∶0 cyclo, C18∶1ω9c, C19∶0 cyclo ω8c, C14∶0 as major fatty acid. These profiles were similar to those reported for Burkholderia species. The DNA G+C % of this strain was 61.6%. Based on the similarity to 16S rRNA gene sequence, GIMN1.004T was considered to be in the genus Burkholderia. The similarities of 16S rRNA gene sequence between strain GIMN1.004T and members of the genus Burkholderia were 96−99.4%, indicating that this novel strain was phylogenetically related to members of that genus. The novel strain showed the highest sequence similarities to Burkholderia soli DSM 18235T (99.4%); Levels of DNA-DNA hybridization with DSM 18235T was 25%. Physiological and biochemical tests including cell wall composition analysis, differentiated phenotype of this strain from that closely related Burkholderia species. The isolation had great tolerance to cadmium with MIC of 22 mmol/L, and adsorbability of 144.94 mg/g cadmium,and it was found to exhibit antibiotic resistance characteristics. The adsorptive mechanism of GIMN1.004T for cadmium depended on the action of the amide,carboxy and phosphate of cell surface and producing low-molecular-weight (LMW ) organic acids to complex or chelated Cd2+.Therefore, the strain GIMN1.004T represented a new cadmium resistance species, which was tentatively named as Burkholderia dabaoshanensis sp. nov. The strain type is

  9. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov.

    PubMed

    Balkwill, D L; Drake, G R; Reeves, R H; Fredrickson, J K; White, D C; Ringelberg, D B; Chandler, D P; Romine, M F; Kennedy, D W; Spadoni, C M

    1997-01-01

    Phylogenetic analyses of 16S rRNA gene sequences by distance matrix and parsimony methods indicated that six strains of bacteria isolated from deep saturated Atlantic coastal plain sediments were closely related to the genus Sphingomonas. Five of the strains clustered with, but were distinct from, Sphingomonas capsulata, whereas the sixth strain was most closely related to Blastobacter natatorius. The five strains that clustered with S. capsulata, all of which could degrade aromatic compounds, were gram-negative, non-spore-forming, non-motile, rod-shaped organisms that produced small, yellow colonies on complex media. Their G + C contents ranged from 60.0 to 65.4 mol%, and the predominant isoprenoid quinone was ubiquinone Q-10. All of the strains were aerobic and catalase positive. Indole, urease, and arginine dihydrolase were not produced. Gelatin was not liquified, and glucose was not fermented. Sphingolipids were present in all strains; 2OH14:0 was the major hydroxy fatty acid, and 18:1 was a major constituent of cellular lipids. Acid was produced oxidatively from pentoses, hexoses, and disaccharides, but not from polyalcohols and indole. All of these characteristics indicate that the five aromatic-degrading strains should be placed in the genus Sphingomonas as currently defined. Phylogenetic analysis of 16S rRNA gene sequences, DNA-DNA reassociation values, BOX-PCR genomic fingerprinting, differences in cellular lipid composition, and differences in physiological traits all indicated that the five strains represent three previously undescribed Sphingomonas species. Therefore, we propose the following new species: Sphingomonas aromaticivorans (type strain, SMCC F199), Sphingomonas subterranea (type strain, SMCC B0478), and Sphingomonas stygia (type strain, SMCC B0712).

  10. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov.

    PubMed

    Buczolits, Sandra; Denner, Ewald B M; Vybiral, Dietmar; Wieser, Monika; Kämpfer, Peter; Busse, Hans-Jürgen

    2002-03-01

    Three aerobic, gram-negative, rod-shaped, non-spore-forming, red-pigmented, airborne bacteria (I/26-Cor1T, I/32A-Cor1 and I/74-Cor2) collected in the Museo Correr (Venice, Italy) were investigated to determine their taxonomic status by analysing their biochemical, physiological and chemotaxonomic features and the G+C content of genomic DNA and by comparing their genomic fingerprints. Additionally, the almost complete 16S rRNA gene sequence of strain I/26-Cor1T was analysed. The three strains were nearly identical in their morphological, physiological, biochemical and chemotaxonomic properties. The strains contained a menaquinone system with the predominant menaquinone MK-7 and a fatty acid profile with C15:0 anteiso, C15:0 iso and C16:1 predominant. Phosphatidylethanolamine and several unidentified lipids were detected in the polar lipid profiles. The polyamine pattern consisted of sym-homospermidine as the major compound. meso-Diaminopimelic acid was found as the characteristic cell-wall diamino acid. The DNA base composition of the three strains ranged from 60 to 63 mol% G+C. Phylogenetically, strain I/26-Cor1T was most closely related to Hymenobacter actinosclerus (95.8% 16S rRNA gene sequence similarity). Physiological and genomic characteristics indicated that the two strains I/26-Cor1T and I/32A-Cor1 are representatives of the same species. The phylogenetic distance to any validly described taxon as indicated by 16S rRNA gene sequence similarities demonstrates that I/26-Cor1T and I/32A-Cor1 represent a novel species, for which the name Hymenobacter aerophilus sp. nov. is proposed, with the type strain I/26-Cor1T (= DSM 13606T = LMG 19657T). I/32A-Cor1 (= DSM 13607 = LMG 19658) is another strain of the species Hymenobacter aerophilus. Since the taxonomic status of strain I/74-Cor2 within the genus Hymenobacter was not determined unambiguously, it is designated Hymenobacter sp. I/74-Cor2 (= DSM 13611 = LMG 19659).

  11. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    PubMed

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop.

  12. [Evaluation of normal aerobic skin flora (author's transl)].

    PubMed

    Crémieux, A; Cazac, J L

    1980-01-01

    This work attempts the quantitative and qualitative evaluation of the bacterial population from two different areas: elbow and groin. Bacteria are recovered using the method of Williamson and Kligman modified by Fleurette and Transy. Aerobic flora is determined from bacterial counts on various media. Results show a density of 475 to 630 bacteria/cm2 for elbow, and 1.9 to 2.4 X 10(5) bacteria/cm2 for groin (geometric and arithmetic mean, respectively). Percentages of different species and types are calculated, and skin population is represented by a circular diagram.

  13. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  14. Antimicrobial susceptibility and extended-spectrum beta-lactamase rates in aerobic gram-negative bacteria causing intra-abdominal infections in Vietnam: report from the Study for Monitoring Antimicrobial Resistance Trends (SMART 2009-2011).

    PubMed

    Biedenbach, Douglas J; Bouchillon, Samuel K; Hoban, Daryl J; Hackel, Meredith; Phuong, Doan Mai; Nga, Tran Thi Thanh; Phuong, Nguyen Tran My; Phuong, Tran Thi Lan; Badal, Robert E

    2014-08-01

    Treatment options for multidrug-resistant pathogens remain problematic in many regions and individual countries, warranting ongoing surveillance and analysis. Limited antimicrobial susceptibility information is available for pathogens from Vietnam. This study determined the bacterial susceptibility of aerobic gram-negative pathogens of intra-abdominal infections among patients in Vietnam during 2009-2011. A total of 905 isolates were collected from 4 medical centers in this investigation as part of the Study for Monitoring Antimicrobial Resistance Trends. Antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL) rates among the appropriate species were determined by a central laboratory using Clinical and Laboratory Standards Institute methods. Among the species collected, Escherichia coli (48.1% ESBL-positive) and Klebsiella pneumoniae (39.5% ESBL-positive) represented the majority (46.4%) of the isolates submitted for this study. Ertapenem MIC90 values were lowest for these 2 species at 0.12 and 0.25μg/mL and remained unchanged for ESBL-positive isolates. Imipenem MIC90 values were also the same for all isolates and ESBL-positive strains at 0.25 and 0.5μg/mL, respectively. Ertapenem MIC90 values for additional species with sufficient numbers for analysis, including Enterobacter cloacae, Proteus mirabilis, Acinetobacter baumannii, and Pseudomonas aeruginosa, were 1, 0.06, >4, and >4μg/mL, respectively. Analysis of beta-lactamases in a subset of 132 phenotypically ESBL-positive Enterobacteriaceae demonstrated that CTX-M variants, particularly CTX-M-27 and CTX-M-15, were the predominant enzymes. High resistance rates in Vietnam hospitals dictate continuous monitoring as antimicrobial inactivating enzymes continue to spread throughout Asia and globally.

  15. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H2 and other valuable compounds.

  16. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  18. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  19. Dormant state in bacteria: Conceptions and implications for terrestrial biogeoscience and astrobiology

    NASA Astrophysics Data System (ADS)

    Mulyukin, A.

    2003-04-01

    Gaining insight into strategies and mechanisms that ensure long term-preservation of microorganisms in various environments, including cold habitats, is a very important issue for terrestrial biogeoscience and astrobiology. This communication has a focus on the analysis of the published and our experimental data regarding the dormant state of different microorganisms, with an emphasis on non-spore-forming bacteria, which are widely spread in numerous ecological niches (e.g. permafrost sediments). Albeit it is recognized that one of the strategies to endure environmental stresses is entering of non-spore-forming bacteria into the viable-but-non-culturable state, a question of whether these microorganisms have the resting stage remains unclear. However, our previous studies showed that non-spore-forming bacteria and yeast could form cyst-like cells that possess many attributes of constitutively resting cells. As applied to the survival strategy of non-spore-forming bacteria in permafrost sediments, recognizing a very important role of the viable-but-nonculturable state in asporogenous bacteria, we however believe that their long-term maintenance in such habitats is due to the formation of cyst-like cells. Interestingly, bacterial isolates from permafrost sediments showed a greater productivity of autoregulatory factors, favoring the transition of cells into the resting state, and a more elevated resistance to some stresses than closely related collection strains. This suggests a greater potentiality of the permafrost isolates to enter the resting stage and thereby to survive for millennia years in natural habitats. However, it is known that only a little part of microorganisms that are present in environmental samples can be enumerated by standard plating on agar media, and a discrepancy between the total number of cells and those capable of forming colonies is a rather common case. Such a discrepancy can be due to either the actual non-culturability of microbial

  20. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  1. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Mallavarapu, Megharaj; Naidu, Ravi

    2015-06-01

    Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.

  2. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.

    PubMed

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2016-06-01

    Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What is concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may carry additional risk of antibiotic resistance.

  3. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2014-01-01

    Although it is known that a part of lactic acid bacteria can produce carotenoid, little is known about the regulation of carotenoid production. The objective of this study was to determine whether aerobic growth condition influences carotenoid production in carotenoid-producing Enterococcus gilvus. Enterococcus gilvus was grown under aerobic and anaerobic conditions. Its growth was slower under aerobic than under anaerobic conditions. The decrease in pH levels and production of lactic acid were also lower under aerobic than under anaerobic conditions. In contrast, the amount of carotenoid pigments produced by E. gilvus was significantly higher under aerobic than under anaerobic conditions. Further, real-time quantitative reverse transcription PCR revealed that the expression level of carotenoid biosynthesis genes crtN and crtM when E. gilvus was grown under aerobic conditions was 2.55-5.86-fold higher than when it was grown under anaerobic conditions. Moreover, after exposure to 16- and 32-mM H2O2, the survival rate of E. gilvus grown under aerobic conditions was 61.5- and 72.5-fold higher, respectively, than when it was grown under anaerobic conditions. Aerobic growth conditions significantly induced carotenoid production and the expression of carotenoid biosynthesis genes in E. gilvus, resulting in increased oxidative stress tolerance.

  4. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  5. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  6. Diversity of bacteria of the genus Bacillus on board of international space station.

    PubMed

    Alekhova, T A; Zakharchuk, L M; Tatarinova, N Yu; Kadnikov, V V; Mardanov, A V; Ravin, N V; Skryabin, K G

    2015-01-01

    From swabs of surfaces of equipment and air samples of the Russian segment of the International Space Station, nine strains of spore-forming bacteria of the genus Bacillus belonging to the species B. pumilus, B. licheniformis, B. subtilis, B. megaterium, and B. amyloliquefaciens were isolated. The last species of bacilli on the equipment of RS ISS was detected for the first time. For these species of bacilli, there are known strains that can be opportunistic to humans, and their metabolites can cause biodegradation of equipment and materials. B. pumilus found on ISS belongs to the group of bacteria that exhibits a particularly high resistance to adverse environmental conditions, such as dehydration, ultraviolet and gamma radiation, and chemical disinfection.

  7. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  8. Sporulation in Bacteria: Beyond the Standard Model.

    PubMed

    Hutchison, Elizabeth A; Miller, David A; Angert, Esther R

    2014-10-01

    Endospore formation follows a complex, highly regulated developmental pathway that occurs in a broad range of Firmicutes. Although Bacillus subtilis has served as a powerful model system to study the morphological, biochemical, and genetic determinants of sporulation, fundamental aspects of the program remain mysterious for other genera. For example, it is entirely unknown how most lineages within the Firmicutes regulate entry into sporulation. Additionally, little is known about how the sporulation pathway has evolved novel spore forms and reproductive schemes. Here, we describe endospore and internal offspring development in diverse Firmicutes and outline progress in characterizing these programs. Moreover, comparative genomics studies are identifying highly conserved sporulation genes, and predictions of sporulation potential in new isolates and uncultured bacteria can be made from these data. One surprising outcome of these comparative studies is that core regulatory and some structural aspects of the program appear to be universally conserved. This suggests that a robust and sophisticated developmental framework was already in place in the last common ancestor of all extant Firmicutes that produce internal offspring or endospores. The study of sporulation in model systems beyond B. subtilis will continue to provide key information on the flexibility of the program and provide insights into how changes in this developmental course may confer advantages to cells in diverse environments.

  9. Petrifilm plates for enumeration of bacteria counts in goat milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PetrifilmTM Aerobic Count (AC) and Coliform Count (CC) plates were validated against standard methods for enumeration of coliforms, total bacteria, and psychrotrophic bacteria in raw (n = 39) and pasteurized goat milk (n = 17) samples. All microbiological data were transformed into log form and sta...

  10. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid.

    PubMed

    Geng, Weitao; Cao, Mingfeng; Song, Cunjiang; Xie, Hui; Liu, Li; Yang, Chao; Feng, Jun; Zhang, Wei; Jin, Yinghong; Du, Yang; Wang, Shufang

    2011-07-01

    Bacillus amyloliquefaciens is one of most prevalent Gram-positive aerobic spore-forming bacteria with the ability to synthesize polysaccharides and polypeptides. Here, we report the complete genome sequence of B. amyloliquefaciens LL3, which was isolated from fermented food and presents the glutamic acid-independent production of poly-γ-glutamic acid.

  11. Bacillus anthracis (image)

    MedlinePlus

    ... is an aerobic spore-forming bacterium that causes disease in humans and animals. The bacteria is found in two forms: cutaneous ... of the bacterium. While anthrax commonly affects hoofed animals ... acquire this disease as well. Anthrax is a potential agent for ...

  12. Burkholderia acidipaludis sp. nov., aluminum-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia.

    PubMed

    Aizawa, Tomoko; Bao Ve, Nguyen; Vijarnsorn, Pisoot; Nakajima, Mutsuyasu; Sunairi, Michio

    2010-09-01

    Two strains of aluminium-tolerant bacteria, SA33(T) and 7A078, were isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps (pH 2-4) in actual acid sulfate soil areas of Vietnam (SA33(T)) and Thailand (7A078). The strains were Gram-negative, aerobic, non-spore-forming rods, 0.6-0.7 mum wide and 1.3-1.7 mum long. These strains showed good growth at pH 3.0-8.0 and 17-37 degrees C. The organisms contained ubiquinone Q-8 as the predominant isoprenoid quinone and C(16 : 0), C(18 : 1) ω 7c and C(17 : 0) cyclo as the major fatty acids. Their fatty acid profiles were similar to those reported for other Burkholderia species. The DNA G+C content of these strains was 64 mol%. On the basis of 16S rRNA gene sequence similarity, the strains were shown to belong to the genus Burkholderia. Although the 16S rRNA gene sequence similarity values calculated for strain SA33(T) to 7A078 and the type strains of Burkholderia kururiensis, B. sacchari and B. tuberum were 100, 97.3, 97.1 and 97.0 %, respectively, strains SA33(T) and 7A078 formed a group that was distinct in the phylogenetic trees; the DNA-DNA relatedness of strain SA33(T) to 7A078 and these three type strains were respectively 90, 47, 46 and 45 %. The results of physiological and biochemical tests, including whole-cell protein pattern analysis, allowed phenotypic differentiation of these strains from described Burkholderia species. Therefore, strains SA33(T) and 7A078 represent a novel species, for which the name Burkholderia acidipaludis sp. nov. is proposed. The type strain is SA33(T) (=NBRC 101816(T) =VTCC-D6-6(T)). Strain 7A078 (=NBRC 103872 =BCC 36999) is a reference strain.

  13. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    PubMed Central

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  14. Chlorine resistance patterns of bacteria from two drinking water distribution systems.

    PubMed Central

    Ridgway, H F; Olson, B H

    1982-01-01

    The relative chlorine sensitivities of bacteria isolated from chlorinated and unchlorinated drinking water distribution systems were compared by two independent methods. One method measured the toxic effect of free chlorine on bacteria, whereas the other measured the effect of combined chlorine. Bacteria from the chlorinated system were more resistant to both the combined and free forms of chlorine than those from the unchlorinated system, suggesting that there may be selection for more chlorine-tolerant microorganisms in chlorinated waters. Bacteria retained on the surfaces of 2.0-microns Nuclepore membrane filters were significantly more resistant to free chlorine compared to the total microbial population recovered on 0.2-micron membrane filters, presumably because aggregated cells or bacteria attached to suspended particulate matter exhibit more resistance than unassociated microorganisms. In accordance with this hypothesis, scanning electron microscopy of suspended particulate matter from the water samples revealed the presence of attached bacteria. The most resistant microorganisms were able to survive a 2-min exposure to 10 mg of free chlorine per liter. These included gram-positive spore-forming bacilli, actinomycetes, and some micrococci. The most sensitive bacteria were readily killed by chlorine concentrations of 1.0 mg liter-1 or less, and included most gram-positive micrococci, Corynebacterium/Arthrobacter, Klebsiella, Pseudomonas/Alcaligenes, Flavobacterium/Moraxella, and Acinetobacter. Images PMID:7149722

  15. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka.

    PubMed

    Kevbrin, Vadim V; Zengler, Karsten; Lysenko, Anatolii M; Wiegel, Juergen

    2005-10-01

    A facultative aerobic, moderately thermophilic, spore forming bacterium, strain JW/VK-KG4 was isolated from an enrichment culture obtained from the Geyser valley, a geo-thermally heated environment located in the Kamchatka peninsula (Far East region of Russia). The cells were rod shaped, motile, peritrichous flagellated stained Gram positive and had a Gram positive type cell wall. Aerobically, the strain utilized a range of carbohydrates including glucose, fructose, trehalose, proteinuous substrates, and pectin as well. Anaerobically, only carbohydrates are utilized. When growing on carbohydrates, the strain required yeast extract and vitamin B(12). Anaerobically, glucose was fermented to lactate as main product and acetate, formate, ethanol as minor products. Aerobically, even in well-aerated cultures (agitated at 500 rpm), glucose oxidation was incomplete and lactate and acetate were found in culture supernatants as by-products. Optimal growth of the isolate was observed at pH(25 C) 6.8-8.5 and 60 degrees C. The doubling times on glucose at optimal growth conditions were 34 min (aerobically) and 40 min (anaerobically). The G+C content was 42.3 mol% as determined by T(m) assay. Sequence analysis of the 16S rRNA gene indicated an affiliation of strain JW/VK-KG4 with Anoxybacillus species. Based on its morphology, physiology, phylogenetic relationship and its low DNA-DNA homology with validly published species of Anoxybacillus, it is proposed that strain JW/VK-KG4 represents a new species in the genus Anoxybacillus as A. kamchatkensis sp. nov. The type strain for the novel species is JW/VK-KG4(T) (=DSM 14988, =ATCC BAA-549). The GenBank accession number for the 16S rDNA sequence is AF510985.

  16. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  17. Isolation of aerobic microbes from Ixodes scapularis (Acari: Ixodidae), the vector of Lyme disease in the eastern United States.

    PubMed

    Martin, P A; Schmidtmann, E T

    1998-08-01

    The spirochete Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Benner is transmitted by Ixodes scapularis Say, a vector of Lyme disease. As a 1st step into investigating the possibility of biocontrol of the tick, we identified the microbiota associated with the ticks. We collected, identified, and determined the sex of ticks from foliage and deer. Seventy-three initial bacterial isolates were recovered from 43 ticks (27 adults and 16 nymphs). The bacteria isolated from nymphs were qualitatively different (mainly gram-negative cocci) from the bacteria isolated from adult ticks (gram-negative and gram-positive rods). To determine long-term viability, these isolates were stored for 6 mo under laboratory conditions. After storage, 63 surviving bacterial isolates were characterized using the Biology System of identification by substrate utilization. Forty-four isolates were identified to the species level. Our characterization efforts focused on the 40 spore-forming bacteria, which could prove useful in the biocontrol of ticks. Eleven species of Bacillus were identified. Bacillus thuringiensis-B. cereus was the predominant species group isolated. Six isolates from this group formed crystals.

  18. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks.

  19. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  20. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.

    PubMed

    Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

    2013-01-01

    This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber.

  1. Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane.

    PubMed

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis-DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.

  2. Aerobic granulation of aggregating consortium X9 isolated from aerobic granules and role of cyclic di-GMP.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Wang, Xin-Yue; Yang, Qiaoli; Pan, Xiangliang

    2014-01-01

    This study monitored the granulation process of an aggregating functional consortium X9 that was consisted of Pseudomonas putida X-1, Acinetobacter sp. X-2, Alcaligenes sp. X-3 and Comamonas testosteroni X-4 in shaken reactors. The growth curve of X9 was fit using logistic model as follows y=1.49/(1+21.3*exp(-0.33x)), the maximum specific cell growth rate for X9 was 0.33 h(-1). Initially X9 consumed polysaccharides (PS) and secreted proteins (PN) to trigger granulation. Then X9 grew in biomass and formed numerous micro-granules, driven by increasing hydrophobicity of cell membranes and of accumulated extracellular polymeric substances (EPS). In later stage the intracellular cyclic diguanylate (c-di-GMP) was at high levels for inhibiting bacteria swarming motility, thereby promotion formation of large aerobic granules. The findings reported herein advise the way to accelerate granule formation and to stabilize operation in aerobic granular reactors.

  3. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  4. A Field-Suitable, Semisolid Aerobic Enrichment Medium for Isolation of Campylobacter jejuni in Small Numbers

    PubMed Central

    Jeffrey, J. S.; Hunter, A.; Atwill, E. R.

    2000-01-01

    The objective of this study was to produce an economical, easy to prepare, field-suitable enrichment medium for detection of Campylobacter jejuni in small numbers. A semisolid aerobic enrichment medium was developed. Rates of recovery from inoculated medium, sterile swabs, and mixed cultures of C. jejuni and coliform bacteria were tested. PMID:10747165

  5. Developmental intestinal aerobic microflora in the kori bustard (Ardeotis kori).

    PubMed

    Naldo, J L; Silvanose, C D; Samour, J H; Bailey, T A

    1998-01-01

    A study was carried out to investigate the normal aerobic bacterial flora of developing kori bustard (Ardeotis kori) chicks, captive bred at the National Avian Research Center, Abu Dhabi, United Arab Emirates. Faecal samples were collected from 14 birds at different ages from the first day of hatching until 99 days old and were cultured for aerobic bacteria. Several bacterial species were isolated from the cultures, they included Escherichia coli, Streptococcus viridians, Enterococcus faecalis, Klebsiella oxytoca, Proteus spp., Enterobacter, spp. and Serratia marcescens. Gram-negative bacilli were isolated from all but one of the faecal samples collected. They were also the predominant bacteria, accounting for between 55.6 and 73.4% of the mean colony count of faecal cultures from all age groups. E. coli was the most frequently isolated bacteria, the frequency and mean colony count increased as the birds grew older. Gram-positive cocci were isolated from between 50 and 100% of the faecal samples from all age groups, and they accounted for between 26.6 and 44.4% of the mean colony count. Results from this study indicated that Gram-negative bacilli and Gram-positive cocci can be isolated frequently from the faeces of developing, clinically normal, captive bred kori bustard chicks.

  6. [Microwave effect on survival of sporulated bacteria inoculated in minced meat].

    PubMed

    Arias, M L; Jiménez, M; Antillón, F

    1998-06-01

    Due to the current tendency of cooking and heating meat prepared foods in microwave ovens and the possibility that they transmit bacterial diseases, the survival rate of spore-forming bacteria was evaluated in minced meat samples. Meat was innoculated with a known number of Bacillus cereus and Clostridium perfringens spores, and laterly thawed and cooked in an Amana microwave oven (2450 Hz). Survival rate was determined according to the methodology described by Vanderzant & Splittstoesser, and the activity of the enzyme acid phosphatase was determined as cooking parameter. B. cereus spore showed a decrease in its number as the time of exposition increased, but without fully disappearing. C. perfringens spores also decreased in number, but showed a later increase, associated with the germination of survival spores.

  7. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  8. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  9. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  10. Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.

    PubMed Central

    Rhee, S K; Lee, G M; Yoon, J H; Park, Y H; Bae, H S; Lee, S T

    1997-01-01

    New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications. PMID:9212408

  11. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  12. Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov.

    PubMed

    Goto, Keiichi; Mochida, Kaoru; Kato, Yuko; Asahara, Mika; Fujita, Rieko; An, Sun-Young; Kasai, Hiroaki; Yokota, Akira

    2007-06-01

    Moderately thermophilic, acidophilic, spore-forming bacteria (146 strains) were isolated from various beverages and environments. Based on the results of sequence analysis of the hypervariable region of the 16S rRNA gene, eight of the strains represent novel species of the genus Alicyclobacillus. These strains were designated 3-A191(T), 4-A336(T), 5-A83J(T), 5-A167N, 5-A239-2O-A(T), E-8, RB718(T) and S-TAB(T). Phylogenetic analyses of 16S rRNA and DNA gyrase B subunit (gyrB) nucleotide sequences confirmed that the eight strains belonged to the Alicyclobacillus clade. Cells of the eight strains were Gram-positive or Gram-variable, strictly aerobic and rod-shaped. The strains grew well under acidic and moderately thermal conditions, produced acid from various sugars, contained menaquinone 7 as the major isoprenoid quinone and did not produce guaiacol. omega-Alicyclic fatty acids were the predominant lipid component of strains 4-A336(T), 5-A83J(T), 5-A167N, RB718(T) and S-TAB(T). No omega-alicyclic fatty acids were detected in strains 3-A191(T), 5-A239-2O-A(T) or E-8, but iso- and anteiso-branched fatty acids and small amounts of straight-chain saturated fatty acids were detected instead. According to the DNA-DNA hybridization data and distinct morphological, physiological, chemotaxonomical and genetic traits, the eight strains represent six novel species within the genus Alicyclobacillus, for which the following names are proposed: Alicyclobacillus contaminans sp. nov. (type strain 3-A191(T)=DSM 17975(T)=IAM 15224(T)), Alicyclobacillus fastidiosus sp. nov. (type strain S-TAB(T)=DSM 17978(T)=IAM 15229(T)), Alicyclobacillus kakegawensis sp. nov. (type strain 5-A83J(T)=DSM 17979(T)=IAM 15227(T)), Alicyclobacillus macrosporangiidus sp. nov. (type strain 5-A239-2O-A(T)=DSM 17980(T)=IAM 15370(T)), Alicyclobacillus sacchari sp. nov. (type strain RB718(T)=DSM 17974(T)=IAM 15230(T)) and Alicyclobacillus shizuokensis sp. nov. (type strain 4-A336(T)=DSM 17981(T)=IAM 15226(T)).

  13. Active and diverse rainwater bacteria collected at an inland site in spring and summer 2011

    NASA Astrophysics Data System (ADS)

    Cho, Byung Cheol; Jang, Gwang Il

    2014-09-01

    Rainwater is an important natural resource and utilized for various beneficial purposes. However, information on prokaryotes in rainwater is limited. Rainwater samples were collected during three heavy rain events at a suburban site in Seoul in April, May, and July 2011. The highest bacterial abundance (BA) in rainwater was observed in April when airborne bacteria had also been abundant the day before rainwater collection. ATP content in bacterial fraction of the rainwater suggested that the rainwater bacteria were metabolically active. Bacterial community compositions (BCCs) of rainwater samples, analyzed by using 16S rRNA gene-based pyrosequencing, differed considerably among the three rain events. Rainwater bacteria showed potentials of fast growth and drastic shift after incubation in BCCs from fresh rainwater at broad taxonomic levels and the dominant operational taxonomic units (OTUs) level. Presumable marine bacterial OTUs which formed a robust clade with marine bacteria Lacinutrix spp. were at high concentrations in rainwater in April, likely reflecting origin from saline environments. Most of the Flavobacteria sequences unusually high in April rainwater seemed to have marine origins. Further, spore-forming euryhaline marine Firmicutes were isolated from rainwater samples, suggesting possible dispersal of some marine bacteria via rain. A potential human pathogen and Escherichia coli-like sequences were detected in rainwater samples, calling for the need for assessment of health risks of collected rainwater.

  14. Development of microorganisms in the chernozem under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Polyanskaya, L. M.; Gorbacheva, M. A.; Milanovskii, E. Yu.; Zvyagintsev, D. G.

    2010-03-01

    A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.

  15. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  16. Swimming bacteria power microscopic gears.

    SciTech Connect

    Sokolov, A.; Apodaca, M. M.; Grzybowski, B. A.; Aranson, I. S.; Materials Science Division; Princeton Univ.; Northwestern Univ.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be 'rectified' under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  17. Swimming bacteria power microscopic gears

    SciTech Connect

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  18. Swimming bacteria power microscopic gears.

    PubMed

    Sokolov, Andrey; Apodaca, Mario M; Grzybowski, Bartosz A; Aranson, Igor S

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be "rectified" under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears' angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  19. Swimming bacteria power microscopic gears

    PubMed Central

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-01

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms. PMID:20080560

  20. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  1. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  2. Incidence of naturally internalized bacteria in lettuce leaves.

    PubMed

    Hou, Zhe; Fink, Ryan C; Radtke, Christie; Sadowsky, Michael J; Diez-Gonzalez, Francisco

    2013-04-01

    Lettuce is the fresh leafy vegetable most frequently involved in foodborne disease outbreaks. Human bacterial pathogens may be experimentally internalized into lettuce plants, but the occurrence of natural microflora inside lettuce leaves has not been elucidated. To characterize the endophytic microorganism residing in commercial lettuce leaves, two separate studies were conducted. First, a total of 30 and 25 heads of romaine and red leaf lettuce, respectively, served as the source of individual leaves which were surface sterilized, stomached, enriched in BHI broth for 24h and plated onto BHI agar for non-selective isolation of internalized microorganism. In a separate survey, 80 heads of each of the two types of lettuce were similarly processed, except that GN broth and MacConkey agar (MCA) were used for isolation of Gram negative bacteria. Thirty-eight out of 100 leaves were positive for internalized microorganisms, and Bacillus, Pseudomonas and Pantoea were the genera most frequently found in both types of lettuce. Members of the genus Erwinia were isolated from romaine lettuce only. In the second study, 21 and 60% of romaine and red leaf lettuce heads, respectively, had internalized bacteria capable of growing on MCA. Among the Gram negative strains, Pseudomonas and Pantoea genera were most frequently isolated. Enterobacter isolates were obtained from three red leaf samples. In summary, spore-forming bacteria and traditional epiphytic bacterial genera were frequently detected in surface-sterilized commercial lettuce leaves. Despite the common occurrence of internalized bacteria, only Enterobacter was related to Escherichia coli O157:H7 and Salmonella.

  3. Bioenergetics of photoheterotrophic bacteria in the oceans.

    PubMed

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems.

  4. Biological treatment of high-pH and high-concentration black liquor of cotton pulp by an immediate aerobic-anaerobic-aerobic process.

    PubMed

    Lihong, Miao; Furong, Li; Jinli, Wen

    2009-01-01

    In this study, an immediate aerobic-anaerobic-aerobic (O/A/O) biological process was established for the treatment of black liquor of cotton pulp and was tested by both laboratory-scale batch experiment and pilot-scale continuous experiment. The effects of the hydraulic retention time (HRT) were studied, as were the alkaliphilic bacteria number, the culturing temperature and the concentration of black liquor on COD (chemical oxygen demand) removal. The total COD (COD(tot)) removal rate of the novel O/A/O process, for a black liquor with influent COD(tot) over 8,000 mg/L and pH above 12.8, was 68.7+/-4% which is similar with that of the traditional acidic-anaerobic-aerobic process (64.9+/-3%). The first aerobic stage based on alkaliphilic bacteria was the crucial part of the process, which was responsible for decreasing the influent pH from above 12 to an acceptable level for the following treatment unit. The average generation time of the alkaliphilic bacteria in the black liquor was about 36 minutes at 40 degrees C in a batch aerobic activated sludge system. The efficiency of the first aerobic stage was affected greatly by the temperature. The COD(tot) removal at 55 degrees C was much lower in comparison with the COD(tot) removal at 45 degrees C or 50 degrees C. Both the laboratory-scale batch experiments and the pilot-scale continuous experiment showed that the COD(tot) removal rate could reach about 65% for original black liquor with a pH of about 13.0 and a COD of 18,000-22,000 mg/L by the immediate O/A/O process. The first aerobic stage gave an average COD(tot) removal of 45.5% at 35 degrees C (HRT = 72 h) at a volume loading rate of 3.4 kg COD m(-3) d(-1).

  5. Improvement of activated sludge bacteria growth by low intensity ultrasound

    NASA Astrophysics Data System (ADS)

    Yan, Y. X.; Ding, J. Y.; Gao, J. L.

    2016-08-01

    Influence of low intensity ultrasound (US) on growth rate of bacteria separated from aerobic activated sludge was studied. In order to reveal the optimal ultrasonic conditions,specific oxygen uptake rate (SOUR) of activated sludge was first detected and results showed that the maximum SOUR was obtained (increased by 40%) at US intensity of 3 Wcm-2 and irradiation time of 10min. Under the optimal conditions, 2 species of bacteria isolated from activated sludge were sonicated and then cultivated for 36h, and increment of 6% and 10% of growth rate were detected for the 2 species of bacteria, respectively, indicating US irradiation of suitable parameters effectively improved activated sludge bacteria growth.

  6. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules.

    PubMed

    Xu, Guangjing; Xu, Xiaochen; Yang, Fenglin; Liu, Sitong

    2011-01-15

    Partial nitrification was successfully achieved with addition of 5mM KClO(3) in the aerobic granules system. Batch tests demonstrated that KClO(3) selectively inhibited nitrite-oxidizing bacteria (NOB) but not ammonia-oxidizing bacteria (AOB). During stable partial nitrification, the influent pH was kept at 7.8-8.2, while the DO and temperature were not controlled in the SBR. When the NH(4)-N and COD levels were kept at 100mg/l and 400mg/l in the influent, the NH(4)-N and COD removal efficiencies reached 98.93% and 78.65%, respectively. The NO(2)-N accounted for 92.95% of the NO(χ)-N (NO(2)-N+NO(3)-N) in the effluent. Furthermore, about 90% of the chlorate was reduced to nontoxic chloride, thus it would not cause environmental problem. SEM showed that the main composition of the aerobic granules was bacilli and coccus bacteria. FISH analysis revealed that AOB became the dominant nitrifying bacteria, whereas NOB were detected only in low abundance. Chlorate could be used to control the development and maintenance of aerobic granules sludge for partial nitrification.

  7. Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification.

    PubMed

    Joo, Hung-Soo; Hirai, Mitsuyo; Shoda, Makoto

    2006-09-01

    Alcaligenes faecalis strain No. 4, which has heterotrophic nitrification and aerobic denitrification abilities, was used to treat actual piggery wastewater containing high-strength ammonium under aerobic conditions. In a continuous experiment using a solids-free wastewater (SFW) mixed with feces, almost all of the 2000 NH4+ -N mg/L and 12,000 COD mg/L in the wastewater was removed and the ammonium removal rate was approximately 30 mg-N/L/h, which was 5-10 times higher than the rates achieved by other bacteria with the same abilities. The denitrification ratio was more than 65% of removed NH4+ -N, indicating that strain No. 4 exhibited its heterotrophic nitrification and aerobic denitrification abilities in the piggery wastewater.

  8. Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata.

    PubMed

    Benzhai, Hai; Lei, Liu; Ge, Qin; Yuwan, Peng; Ping, Li; Qingxiang, Yang; Hailei, Wang

    2014-10-01

    In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR.

  9. Aerobic and anaerobic bioprocessing of activated sludge: floc disintegration by enzymes.

    PubMed

    Ayol, Azize; Filibeli, Ayse; Sir, Diclehan; Kuzyaka, Ersan

    2008-11-01

    Hydrolytic enzymes such as glucosidases, lipases, and proteases have an imperative function at the hydrolysis stage of complex organic structures in the degradation of biodegradable particulate organic matter. As a key factor, extracellular polymeric substances (EPS) control the extracellular hydrolytic enzymes in this degradation mechanism. A flocculated matrix of EPS bridging with bacteria holds back the dewaterability properties of the bioprocessed sludges. Disruption of the flocculated matrix leads to improved solubilization of sludge solids by attacking the hydrolytic enzymes to polymeric substances forming enzyme-substrate complexes. To determine the floc disintegration mechanisms by enzymes during aerobic and anaerobic bioprocessing of sludges, experimental data obtained from three aerobic digesters and three anaerobic digesters were evaluated. As part of a broader project examining the overall fate and effects of hydrolytic enzymes in biological sludge stabilization, this paper compares the performances of aerobic and anaerobic reactors used in this study and reports significant improvements in enzymatic treatment of activated sludge.

  10. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  11. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  12. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  13. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  14. Microbial Composition and Structure of Aerobic Granular Sewage Biofilms▿

    PubMed Central

    Weber, S. D.; Ludwig, W.; Schleifer, K.-H.; Fried, J.

    2007-01-01

    Aerobic activated sludge granules are dense, spherical biofilms which can strongly improve purification efficiency and sludge settling in wastewater treatment processes. In this study, the structure and development of different granule types were analyzed. Biofilm samples originated from lab-scale sequencing batch reactors which were operated with malthouse, brewery, and artificial wastewater. Scanning electron microscopy, light microscopy, and confocal laser scanning microscopy together with fluorescence in situ hybridization (FISH) allowed insights into the structure of these biofilms. Microscopic observation revealed that granules consist of bacteria, extracellular polymeric substances (EPS), protozoa and, in some cases, fungi. The biofilm development, starting from an activated sludge floc up to a mature granule, follows three phases. During phase 1, stalked ciliated protozoa of the subclass Peritrichia, e.g., Epistylis spp., settle on activated sludge flocs and build tree-like colonies. The stalks are subsequently colonized by bacteria. During phase 2, the ciliates become completely overgrown by bacteria and die. Thereby, the cellular remnants of ciliates act like a backbone for granule formation. During phase 3, smooth, compact granules are formed which serve as a new substratum for unstalked ciliate swarmers settling on granule surfaces. These mature granules comprise a dense core zone containing bacterial cells and EPS and a loosely structured fringe zone consisting of either ciliates and bacteria or fungi and bacteria. Since granules can grow to a size of up to several millimeters in diameter, we developed and applied a modified FISH protocol for the study of cryosectioned biofilms. This protocol allows the simultaneous detection of bacteria, ciliates, and fungi in and on granules. PMID:17704280

  15. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  16. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  17. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment.

  18. Isolation and characterization of medically important aerobic actinomycetes in soil of iran (2006 - 2007).

    PubMed

    Aghamirian, Mohammad Reza; Ghiasian, Seyed Amir

    2009-01-01

    The aerobic actinomycetes are a large group of soil-inhabiting bacteria that occur worldwide. Some of them are the main cause of two important diseases, nocardiosis and actinomycetoma. To identify the prevalence and geographic distribution of aerobic actinomycetes in soil of Qazvin province, a study was carried out during 2006-2007. In this study, the incidence and diversity of medically important aerobic actinomycetes was determined in 300 soil samples of different parts of Qazvin. The suspensions of superficial soil samples were prepared by adding of normal saline, streptomycin and chloramphenicol and the supernatants were cultured on brain-heart infusion agar and Sabouraud's dextrose agar contain cycloheximide. The isolated microorganisms were examined by Gram and acid-fast stains and were identified biochemically and morphologically. Of 96 aerobic actinomycetes isolates identified, Actinomadura madurae and Streptomyces somaliensis were the most frequently isolated species each representing 19.8% of isolates, followed by Nocardia asteroides (15.6%), N. otitidiscaviarum (9.4%), N. brasiliensis (7.3%), A. peletieri, S. griseus, and Nocardia spp. (each 5.2%), and N. transvalensis, Nocardiopsis dassonvillei, Actinomadura spp. and Streptomyces spp. (each 3.1%). To the best of our knowledge, this is the first report on epidemiological investigation of medically important aerobic actinomycetes in soil samples from Iran. In recent years, mycetoma and nocardiosis have been increasingly reported in Iran. The results showed that medically important actinomycetes occur in the environment of Iran and soil could be potential source of actinomycotic infections.

  19. Formation of aerobic granules and their PHB production at various substrate and ammonium concentrations.

    PubMed

    Fang, Fang; Liu, Xian-Wei; Xu, Juan; Yu, Han-Qing; Li, Yong-Mei

    2009-01-01

    Aerobic granular sludge rich in polyhydroxybutyrate (PHB) was cultivated in a sequencing batch reactor (SBR) by seeding anaerobic granular sludge. The PHB content in aerobic granules was investigated and the experimental results reveal that both influent chemical oxygen demand (COD) and ammonium concentrations had a significant effect on the morphological characteristics and the PHB production of the aerobic granular sludge. At a COD and ammonium concentration of 750 mg/L and 8.5mg/L, respectively, the PHB content of the granules reached 44%, but their poor settling ability, as evidenced by a high sludge volume index, was observed. This was attributed to the outgrowth of filamentous bacteria on the granule surface. However, an increase in the ammonium concentration resulted in an elevated sludge concentration and a decrease in the PHB content in the granules. In this case, the aerobic granular sludge with a regular and compact structure was formed. The results suggest that, through controlling the COD and ammonium concentrations in the influent, the PHB-rich aerobic granular sludge with good settling ability could be cultivated.

  20. Aerobic fitness testing: an update.

    PubMed

    Stevens, N; Sykes, K

    1996-12-01

    This study confirms that all three tests are reliable tools for the assessment of cardiorespiratory fitness and the prediction of aerobic capacity. While this particular study consisted of active, youthful subjects, subsequent studies at University College Chester have found similar findings with larger databases and a wider cross-section of subjects. The Astrand cycle test and Chester step test are submaximal tests with error margins of 5-15 per cent and therefore, not as precise as maximal testing. However, they still give a reasonably accurate reflection of an individual's fitness without the cost, time, effort and risk on the part of the subject. The bleep test is a low-cost maximal test designed for well-motivated, active individuals who are used to running to physical exhaustion. Used on other groups, results will not accurately reflect cardiorespiratory fitness values. While all three tests have inherent advantages and disadvantages, perhaps the most important factors are the knowledge and skills of the tester. Without a sound understanding of the physiological principles underlying these tests, and the ability to conduct an accurate assessment and evaluation of results in a knowledgeable and meaningful way, then the credibility of the tests and the results become suspect. However, used correctly, aerobic capacity tests can provide valuable baseline data about the fitness levels of individuals and data from which exercise programmes may be developed. The tests also enable fitness improvements to be monitored, help to motivate participants by establishing reasonable and achievable goals, assist in risk stratification and facilitate participants' education about the importance of physical fitness for work and for life. Since this study was completed, further tests have been repeated on 140 subjects of a wider age and ability range. This large database confirms the results found in this study.

  1. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  2. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  3. The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage.

    PubMed

    Liu, Qinghua; Zhang, Jianguo; Shi, Shangli; Sun, Qizhong

    2011-08-01

    In order to clarify the ensiling characteristics of stylo (Stylosanthes guianensis Swartz), the effects of wilting (no wilting, light wilting and heavy wilting) and storage temperatures (10°C, 20°C, 30°C and 40°C) on the fermentation quality and aerobic stability of stylo silage were investigated. Wilting had no significant influence on the contents of crude protein, ether extract and acid detergent fiber, and numbers of lactic acid bacteria, aerobic bacteria, yeasts and mold (P > 0.05). Heavy wilted material, wilted for 12 h, had higher neutral detergent fiber content and lower water-soluble carbohydrate content than unwilted and light wilted materials (P < 0.05). Wilting and storage temperatures had significant effects on pH value, acetic acid, butyric acid and NH(3) -N contents of stylo silage (P < 0.01 or P < 0.05). Wilting tended to reduce acetic acid and NH(3) -N contents and improve the fermentation quality of stylo silage. In all the silages, no wilting silage ensiled at 30°C had the highest butyric acid content (P < 0.05). High temperature of 40°C markedly restricted the growth of lactic acid bacteria and aerobic bacteria in silage, irrespective of wilting. The wilted silage or silage stored at low temperature had poor aerobic stability.

  4. Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common.

    PubMed

    An, Dongshan; Caffrey, Sean M; Soh, Jung; Agrawal, Akhil; Brown, Damon; Budwill, Karen; Dong, Xiaoli; Dunfield, Peter F; Foght, Julia; Gieg, Lisa M; Hallam, Steven J; Hanson, Niels W; He, Zhiguo; Jack, Thomas R; Klassen, Jonathan; Konwar, Kishori M; Kuatsjah, Eugene; Li, Carmen; Larter, Steve; Leopatra, Verlyn; Nesbø, Camilla L; Oldenburg, Thomas; Pagé, Antoine P; Ramos-Padron, Esther; Rochman, Fauziah F; Saidi-Mehrabad, Alireeza; Sensen, Christoph W; Sipahimalani, Payal; Song, Young C; Wilson, Sandra; Wolbring, Gregor; Wong, Man-Ling; Voordouw, Gerrit

    2013-09-17

    Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes.

  5. Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common

    PubMed Central

    2013-01-01

    Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes. PMID:23889694

  6. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  7. Tetrachloroethene-dehalogenating bacteria.

    PubMed

    Damborský, J

    1999-01-01

    Tetrachloroethene is a frequent groundwater contaminant often persisting in the subsurface environments. It is recalcitrant under aerobic conditions because it is in a highly oxidized state and is not readily susceptible to oxidation. Nevertheless, at least 15 organisms from different metabolic groups, viz. halorespirators (9), acetogens (2), methanogens (3) and facultative anaerobes (2), that are able to metabolize tetrachloroethene have been isolated as axenic cultures to-date. Some of these organisms couple dehalo-genation to energy conservation and utilize tetrachloroethene as the only source of energy while others dehalogenate tetrachloroethene fortuitously. Halorespiring organisms (halorespirators) utilize halogenated organic compounds as electron acceptors in an anaerobic respiratory process. Different organisms exhibit differences in the final products of tetrachloroethene dehalogenation, some strains convert tetrachloroethene to trichloroethene only, while others also carry out consecutive dehalogenation to dichloroethenes and vinyl chloride. Thus far, only a single organism, 'Dehalococcoides ethenogenes' strain 195, has been isolated which dechlorinates tetrachloroethene all the way down to ethylene. The majority of tetrachloroethene-dehalogenating organisms have been isolated only in the past few years and several of them, i.e., Dehalobacter restrictus, Desulfitobacterium dehalogenans, 'Dehalococcoides ethenogenes', 'Dehalospirillum multivorans', Desulfuromonas chloroethenica, and Desulfomonile tiedjei, are representatives of new taxonomic groups. This contribution summarizes the available information regarding the axenic cultures of the tetrachloroethene-dehalogenating bacteria. The present knowledge about the isolation of these organisms, their physiological characteristics, morphology, taxonomy and their ability to dechlorinate tetrachloroethene is presented to facilitate a comprehensive comparison.

  8. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  9. Aerobic intestinal flora of wild-caught African dwarf crocodiles Osteolaemus tetraspis.

    PubMed

    Huchzermeyer, F W; Henton, M M; Riley, J; Agnagna, M

    2000-09-01

    Intestinal contents were collected from wild-caught African dwarf crocodiles (Osteolaemus tetraspis) in 1993 and 1995 which were slaughtered at urban markets in the Congo Republic. The samples were kept frozen and brought back to Onderstepoort for aerobic culture. Out of 29 specimens, 33 species of bacteria and 20 species of fungi were isolated. The bacteria included three isolates of Salmonella and eight isolates of Escherichia coli, most of the latter being rough strains. The flora of individual specimens contained 1-5 bacterial and 0-5 fungal species. Neither Aeromonas hydrophila nor Edwardsiella tarda were isolated from any of the samples.

  10. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean.

    PubMed

    Koblízek, Michal; Masín, Michal; Ras, Josephine; Poulton, Alex J; Prásil, Ondrej

    2007-10-01

    We analysed bacteriochlorophyll diel changes to assess growth rates of aerobic anoxygenic phototrophs in the euphotic zone across the Atlantic Ocean. The survey performed during Atlantic Meridional Transect cruise 16 has shown that bacteriochlorophyll in the North Atlantic Gyre cycles at rates of 0.91-1.08 day(-1) and in the South Atlantic at rates of 0.72-0.89 day(-1). In contrast, in the more productive equatorial region and North Atlantic it cycled at rates of up to 2.13 day(-1). These results suggest that bacteriochlorophyll-containing bacteria in the euphotic zone of the oligotrophic gyres grow at rates of about one division per day and in the more productive regions up to three divisions per day. This is in striking contrast with the relatively slow growth rates of the total bacterial community. Thus, aerobic anoxygenic phototrophs appear to be a very dynamic part of the marine microbial community and due to their rapid growth, they are likely to be larger sinks for dissolved organic matter than their abundance alone would predict.

  11. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates

    PubMed Central

    Robrock, Kristin R.; Coelhan, Mehmet; Sedlak, David; Alvarez-Cohen, Lisa

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di- BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation. PMID:19731666

  12. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates.

    PubMed

    Robrock, Kristin R; Coelhan, Mehmet; Sedlak, David L; Alvarez-Cohent, Lisa

    2009-08-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of the related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di-BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta,- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation.

  13. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  14. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    PubMed Central

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  15. Inactivation of bacteria and helminth in wastewater treatment plant effluent using oxidation processes.

    PubMed

    Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano; Franco, Regina Maura Bueno; Guimarães, José Roberto

    2013-01-01

    The contamination of bodies of water by raw and even treated sewage is worrying because pathogens that affect public health and the environment are not fully eliminated in wastewater treatment systems. The disinfection step is an important barrier to adopt to reduce this contamination. However, widely used disinfectants such as chlorine do not guarantee the inactivation of resistant organisms such as spore-forming bacteria and helminth eggs. This study evaluated the effectiveness of processes of peroxidation (H2O2), ultraviolet radiation (UV) and peroxidation assisted by ultraviolet radiation (H2O2/UV) in terms of reduction and inactivation of total coliform bacteria, Escherichia coli, helminth eggs and larvae present in a treated sewage. Doses of UV radiation of 70 mJ cm(-2) and hydrogen peroxide concentration of 30 mg L(-1) were used. The number of bacteria reduced after UV and H2O2/UV processes was 3 and 4 log, respectively. An average reduction of 59% in the number of eggs was verified when using H2O2, UV, and H2O2/UV processes. Helminth larvae were reduced by 24% after H2O2 and UV; the process H2O2/UV did not reduce the number of larvae. Statistically significant differences between the processes for both organisms were not observed.

  16. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health.

  17. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  18. Adherence of skin bacteria to human epithelial cells.

    PubMed Central

    Romero-Steiner, S; Witek, T; Balish, E

    1990-01-01

    Aerobic and anaerobic bacteria isolated from human axillae were tested for their capacity to adhere to buccal epithelial cells, immortalized human epithelial (HEp-2) cells, and undifferentiated and differentiated human epithelial cells. In general, both aerobic and anaerobic diphtheroids adhered better to differentiated human epithelial cells than to HEp-2 and undifferentiated human epithelial cells (P less than 0.05). Mannose, galactose, fucose, N-acetyl-D-glucosamine, and fibronectin were also assayed for their capacity to inhibit the adherence of diphtheroids to human epithelial cells. A great deal of variability was observed in the capacity of the latter compounds to inhibit the attachment of aerobic diphtheroids to undifferentiated and differentiated epithelial cells. Overall, mannose appeared to be best at inhibiting the adherence of the aerobic diphtheroids to undifferentiated human epithelial cells. Galactose, fucose, N-acetyl-D-glucosamine, and fibronectin showed a greater capacity to inhibit attachment of aerobic diphtheroids to differentiated than to undifferentiated human epithelial cells. The inhibition of adherence to differentiated human epithelial cells varied with the microorganism and the compound tested; however, the highest and most consistent inhibition of adherence (76.1 to 88.6%) was observed with a 5% solution of N-acetyl-D-glucosamine. The in vitro adherence and adherence inhibition assays presented here demonstrate that a number of adhesins and receptors are involved in the adherence of skin bacteria to human epithelial cells and receptors on human epithelial cells are apparently altered during differentiation. PMID:2298877

  19. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  20. The rise of oxygen and aerobic biochemistry.

    PubMed

    Saito, Mak A

    2012-01-11

    Analysis of conserved protein folding domains across extant genomes by Kim et al. in this issue of Structure provides insights into the timing of some of the earliest aerobic metabolisms to arise on Earth.

  1. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  2. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  3. Phototrophic bacteria and their role in the biogeochemical sulfur cycle

    NASA Technical Reports Server (NTRS)

    Trueper, H. G.

    1985-01-01

    An essential step that cannot be bypassed in the biogeochemical cycle of sulfur today is dissimilatory sulfate reduction by anaerobic bacteria. The enormous amounts of sulfides produced by these are oxidized again either anaerobically by phototrophic bacteria or aerobically by thiobacilli and large chemotrophic bacteria (Beggiatoa, Thiovulum, etc.). Phototrophic bacteria use sulfide, sulfur, thiosulfate, and sulfite as electron donors for photosynthesis. The most obvious intermediate in their oxidative sulfur metabolism is a long chain polysulfide that appears as so called sulfur globules either inside (Chromatiaceae) or outside (Ectothiorhodospiraceae, Chlorobiaceae, and some of the Rhodospirillaceae) the cells. The assimilation of sulfur compounds in phototrophic bacteria is in principle identical with that of nonphototrophic bacteria. However, the Chlorobiaceae and some of the Chromatiaceae and Rhodospirillaceae, unable to reduce sulfate, rely upon reduced sulfur for biosynthetic purposes.

  4. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  5. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  6. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  7. Copper tolerance and virulence in bacteria

    PubMed Central

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  8. Copper tolerance and virulence in bacteria.

    PubMed

    Ladomersky, Erik; Petris, Michael J

    2015-06-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host.

  9. Antibacterial activity of crotalid venoms against oral snake flora and other clinical bacteria.

    PubMed

    Talan, D A; Citron, D M; Overturf, G D; Singer, B; Froman, P; Goldstein, E J

    1991-07-01

    Despite heavy oral and fang contamination of crotalid species with a wide variety of potentially pathogenic bacteria, crotalid envenomation is associated with a low incidence of bacterial infection. Minimal inhibitory and bactericidal concentrations of venoms from three crotalid species were determined against six aerobic and eight anaerobic reference and oral crotalid microorganisms. All anaerobic isolates were resistant to greater than 20,480 micrograms/ml, whereas variable activity (range, 5-20,480 micrograms/ml) was observed for aerobic strains. Further studies against other aerobic clinical isolates demonstrated that venom had the greatest activity (MIC, less than or equal to 80 micrograms/ml) against staphylococci, Pseudomonas aeruginosa, and Enterobacter, Citrobacter, Proteus, and Morganella species. Inhibitory activity was lost with prolonged incubation for many gram-negative species. Crotalid venoms are broadly active against aerobic gram-negative and -positive bacteria. This activity may play a role in the low incidence of infection after envenomation injuries.

  10. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  11. Isolation and Characterization of Bacteria Capable of Tolerating the Extreme Conditions of Clean Room Environments▿

    PubMed Central

    La Duc, Myron T.; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-01-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of

  12. Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1.

    PubMed

    Gui, Mengyao; Chen, Qian; Ma, Tao; Zheng, Maosheng; Ni, Jinren

    2017-02-01

    Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L(-1) h(-1)), higher nitrite accumulation (47.3∼99.8 mg L(-1)), and higher N2O emission ratios (5∼283 mg L(-1)/mg L(-1)). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L(-1)) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L(-1)) > Cu(II) (0.5∼5 mg L(-1)) > Ni(II) (2∼10 mg L(-1)) > Zn(II) (25∼50 mg L(-1)). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  13. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  14. Aerobic bacterial flora of nesting green turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica.

    PubMed

    Santoro, Mario; Hernández, Giovanna; Caballero, Magaly

    2006-12-01

    Bacteriological examination of 70 nesting green turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica was performed to investigate nasal and cloacal aerobic bacteria. A total of 325 bacterial isolates were obtained, including 10 Gram-negative and three Gram-positive genera. Two hundred thirty-nine were Gram-negative and 86 were Gram-positive isolates. Klebsiella pneumoniae was the most common microbe identified in turtle samples: 27/70 (38.5%) in cloacal, and 33/70 (47.1%) in nasal samples. The Enterobacteriaceae family, including Enterobacter agglomerans, E. cloacae, Escherichia coli, Klebsiella oxytoca, K. pneumoniae, and Serratia marcescens, was the largest Gram-negative group of bacteria recovered and comprised 127 of 239 (53.1%) of the Gram-negative isolates. Staphylococcus species was the largest Gram-positive bacteria group, including S. aureus, S. cromogenes, S. epidermis, and S. intermedius, and made up 63 of 86 (73.2%) of the Gram-positive isolates recovered. The results of this study demonstrate that the aerobic bacterial flora of nesting green turtles at Tortuguero National Park is composed of a very wide spectrum of bacteria, including several potential pathogens.

  15. Microbial community analysis of an aerobic nitrifying-denitrifying MBR treating ABS resin wastewater.

    PubMed

    Chang, Chia-Yuan; Tanong, Kulchaya; Xu, Jia; Shon, Hokyong

    2011-05-01

    A two-stage aerobic membrane bioreactor (MBR) system for treating acrylonitrile butadiene styrene (ABS) resin wastewater was carried out in this study to evaluate the system performance on nitrification. The results showed that nitrification of the aerobic MBR system was significant and the highest TKN removal of approximately 90% was obtained at hydraulic retention time (HRT) 18 h. In addition, the result of nitrogen mass balance revealed that the percentage of TN removal due to denitrification was in the range of 8.7-19.8%. Microbial community analysis based on 16s rDNA molecular approach indicated that the dominant ammonia oxidizing bacteria (AOB) group in the system was a β-class ammonia oxidizer which was identified as uncultured sludge bacterium (AF234732). A heterotrophic aerobic denitrifier identified as Thauera mechernichensis was found in the system. The results indicated that a sole aerobic MBR system for simultaneous removals of carbon and nitrogen can be designed and operated for neglect with an anaerobic unit.

  16. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    PubMed

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se(0)) under both aerobic and anaerobic conditions. The biogenic nano-Se(0) converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg(0)) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg(0) remediation, probably owing to the release of intracellular nano-Se(0) from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se(0) and Hg(0). Biosynthesis of nano-Se(0) both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg(0)-contaminated surface and subsurface soils, where the redox potential often changes dramatically.

  17. Evaluation of a standard scrubbing method for the recovery of aerobic skin flora.

    PubMed

    Chevalier, J; Mercier, G M; Crémieux, A

    1987-01-01

    The most reliable method for sampling skin flora is still a matter of debate, although the subject is of importance in many fields ranging from clinical to basic research. For the evaluation of normal skin flora, Williamson and Kligman's scrub method is the most commonly used. In order to determine the value of this method, standardized for the evaluation of topical antimicrobial agents on aerobic skin flora, we compared its results to those obtained both from bacterial counts and from microscopic studies on biopsies performed at the same site. After different experiments had established the optimal experimental conditions on human and pig skin, a comparative study on six healthy subjects was carried out in the peri-umbilical area. The mean log numbers of aerobic bacteria in the scrub samples and in the biopsies were respectively, 3.1 and 2.9, which were not statistically significant. These numerical results were similar to those obtained by electron microscopy. Hence, the standard scrub method may be considered satisfactory for the recovery of aerobic bacteria from healthy human skin.

  18. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents--special references to bacteria isolated between April 2010 and March 2011].

    PubMed

    Shinagawa, Nagao; Taniguchi, Masaaki; Hirata, Koichi; Furuhata, Tomohisa; Fukuhara, Kenichiro; Mizugucwi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitake; Kihara, Chikasi; Sasaki, Kazuaki; Oono, Keisuke; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Watabe, Kosho; Kobayashi, Yasuhito; Yamaue, Hiroki; Hirono, Seiko; Takesue, Yoshio; Fujiwara, Toshiyoshi; Shinoura, Susumu; Kimura, Hideyuki; Hoshikawa, Tsuyoshi; Oshima, Hideki; Aikawa, Naoki; Sasaki, Junichi; Suzuki, Masaru; Sekine, Kazuhiko; Abe, Shinya; Takeyama, Hiromitsu; Wakasugi, Takehiro; Mashita, Keiji; Tanaka, Moritsugu; Mizuno, Akira; Ishikawa, Masakazu; Iwai, Akihiko; Saito, Takaaki; Muramoto, Masayuki; Kubo, Shoji; Lee, Shigeru; Fukuhara, Kenichiro; Iwagaki, Hiromi; Tokunaga, Naoyuki; Sueda, Taijliro; Hiyama, Elso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Kanehiro, Tetsuya; Takeuchi, Hitoshi; Tanakaya, Koujn; Iwasaki, Mitsuhiro

    2014-10-01

    Bacteria isolated from surgical infections during the period from April 2010 to March 2011 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 631 strains including 25 strains of Candida spp. were isolated from 170 (81.7%) of 208 patients with surgical infections. Four hundred and twenty two strains were isolated from primary infections, and 184 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. such as Enterococcus faecalis, Enterococcus faecium, and Enterococcus avium was highest, followed by Streptococcus spp. such as Streptococcus anginosus and Staphylococcus spp. such as Staphylococcus aureus, in this order, from primary infections, while Enterococcus spp. such as E. faecalis and E. faecium was highest, followed by Staphylococcus spp. such as S. aureus from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Pseudomonas aeruginosa in this order, and from surgical site infection, E. coli and R aeruginosa were most predominantly isolated, followed by E. cloacae and K. pneumoniae. Among anaerobic Gram-positive bacteria, the isolation rates of Parvimonas micra, Eggerthella lenta, Streptococcus constellatus, Gemella morbillorum, and Collinsella aerofaciens were the highest from primary infections, and the isolation rate from surgical site infection was generally low. Among anaerobic Gram-negative bacteria, the isolation rate of Bilophila wadsworthia was the highest from primary infections, followed by, Bacteroides

  19. Distribution and identification of luminous bacteria from the sargasso sea.

    PubMed

    Orndorff, S A; Colwell, R R

    1980-05-01

    Vibrio fischeri and Lucibacterium harveyi constituted 75 of the 83 luminous bacteria isolated from Sargasso Sea surface waters. Photobacterium leiognathi and Photobacterium phosphoreum constituted the remainder of the isolates. Luminescent bacteria were recovered at concentrations of 1 to 63 cells per 100 ml from water samples collected at depths of 160 to 320 m. Two water samples collected at the thermocline yielded larger numbers of viable, aerobic heterotrophic and luminous bacteria. Luminescent bacteria were not recovered from surface microlayer samples. The species distribution of the luminous bacteria reflected previously recognized growth patterns; i.e., L. harveyi and V. fischeri were predominant in the upper, warm waters (only one isolate of P. phosphoreum was obtained from surface tropical waters).

  20. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  1. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis.

    PubMed

    O'Neill, Katherine; Bradley, Judy M; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli; Elborn, J Stuart; Tunney, Michael M

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung.

  2. Comparative study of normal and sensitive skin aerobic bacterial populations.

    PubMed

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-12-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API(®) strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder.

  3. Comparative study of normal and sensitive skin aerobic bacterial populations

    PubMed Central

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-01-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API® strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

  4. Aerobic microbial manufacture of nanoscale selenium: exploiting nature's bio-nanomineralization potential.

    PubMed

    Tejo Prakash, N; Sharma, Neetu; Prakash, Ranjana; Raina, Kuldeep K; Fellowes, Jonathan; Pearce, Carolyn I; Lloyd, Jonathan R; Pattrick, Richard A D

    2009-12-01

    The potential of the environment to yield organisms that can produce functional bionanominerals is demonstrated by selenium-tolerant, aerobic bacteria isolated from a seleniferous rhizosphere soil. An isolate, NS3, was identified as a Bacillus species (EU573774.1) based on morphological and 16S rRNA characterization. This strain reduced Se(IV) under aerobic conditions to produce amorphous alpha Se(0) nanospheres. A room-temperature washing treatment was then employed to remove the biomass and resulted in the production of clusters of hexagonal Se(0) nano-rods. The Se(0) nanominerals were analyzed using electron microscopy and X-ray diffraction techniques. This Bacillus isolate has the potential to be used both in the neutralizing of toxic Se(IV) anions in the environment and in the environmentally friendly manufacture of nanomaterials.

  5. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade.

    PubMed

    Marshall, Katharine T; Morris, Robert M

    2013-02-01

    Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers (GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams and mussels, in oxygen minimum zones and throughout the deep ocean (>200 m). Here, we report isolation of the first cultured representative from this GSO clade. Closely related cultures were obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach higher final cell densities when glucose and thiosulfate are added to the media. This suggests that aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment 'Candidatus: Thioglobus singularis', alluding to the clade's known role in sulfur oxidation and the isolate's planktonic lifestyle.

  6. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  7. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  8. Aerobic degradation of sulfanilic acid using activated sludge.

    PubMed

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  9. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  10. Aerobic microbiology and culture sensitivity of head and neck space infection of odontogenic origin

    PubMed Central

    Shah, Amit; Ramola, Vikas; Nautiyal, Vijay

    2016-01-01

    Context: Head and neck space infections source, age, gender, tooth involved, fascial spaces involved, microbiological study of aerobic flora, and antibiotic susceptibilities. Aims: The aim of the present study is to identify causative aerobic microorganisms responsible for deep fascial spaces of head and neck infections and evaluate the resistance of antibiotics used in the treatment of such. Settings and Design: Prospective study in 100 patients. Materials and Methods: This prospective study was conducted on 100 patients who reported in the outpatient department and fulfilled the inclusion criteria to study aerobic microbiology and antibiotic sensitivity in head and neck space infection of odontogenic origin. Pus sample was obtained either by aspiration or by swab stick from the involved spaces, and culture and sensitivity tests were performed. Statistical Analysis Used: Chi-square test and level of significance. Results: Result showed aerobic Gram-positive isolates were 73% and aerobic Gram-negative isolates were 18%. Nine percent cases showed no growth. Streptococcus viridans was the highest isolate in 47% cases among Gram-positive bacteria, and in Gram-negative, Klebsiella pneumoniae was the highest isolate of total cases 11%. Amoxicillin showed resistance (48.4%) as compared to other antibiotics such as ceftriaxone, carbenicillin, amikacin, and imipenem had significantly higher sensitivity. Conclusions: Amoxicillin with clavulanic acid showed (64.8%) efficacy for all organisms isolated, whereas ceftriaxone showed (82.4%) efficacy and could be used in odontogenic infections for both Gram-positive and Gram-negative microorganisms. Substitution of third generation cephalosporin for amoxicillin in the empirical management of deep fascial space infections can also be used. Carbenicillin, amikacin, and imipenem showed (93.4%) sensitivity against all microorganisms and should be reserved for more severe infection. Newer and broad-spectrum antibiotics are more

  11. The Lomagundi Event Marks Post-Pasteur Point Evolution of Aerobic Respiration: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Kirschvink, J. L.; Nash, C. Z.; Raub, T. M.; Kopp, R. E.; Hilburn, I. A.

    2009-05-01

    All published early Earth carbon cycle models assume that aerobic respiration is as ancient as oxygenic photosynthesis. However, aerobic respiration shuts down at oxygen concentrations below the Pasteur Point, (.01 of the present atmospheric level, PAL). As geochemical processes are unable to produce even local oxygen concentrations above .001 PAL, it follows that aerobic respiration could only have evolved after oxygenic photosynthesis, implying a time gap. The evolution of oxygen reductase-utilizing metabolisms presumably would have occupied this interval. During this time the PS-II-generated free oxygen would have been largely unavailable for remineralization of dissolved organic carbon and so would have profoundly shifted the burial ratio of organic/inorganic carbon. We argue that the sequential geological record of the Makganyene (Snowball?) glaciation (2.3-2.22), the exessively aerobic Hekpoort and coeval paleosols, the Lomagundi-Jatuli carbon isotopic excursion (ending 2.056 Ga), and the deposition of concentrated, sedimentary organic carbon (shungite) mark this period of a profoundly unbalanced global carbon cycle. The Kopp et al. (2005) model for oxyatmoversion agrees with phylogenetic evidence for the radiation of cyanobacteria followed closely by the radiation of gram-negative lineages containing magnetotactic bacteria, which depend upon vertical oxygen gradients. These organisms include delta-Proteobacteria from which the mitochondrial ancestor originated. The Precambrian carbon cycle was rebalanced after a series of biological innovations allowed utilization of the high redox potential of free oxygen. Aerobic respiration in mitochondria required the evolution of a unique family of Fe-Cu oxidases, one of many factors contributing to the >210 Myr delay between the Makganyene deglaciation and the end of the Lomagundi-Jatuli event. We speculate that metalliferious fluids associated with the eruption of the Bushveld complex facilitated evolution of these

  12. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  13. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  14. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  15. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  16. Aerobic exercise in fibromyalgia: a practical review.

    PubMed

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  17. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  18. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  19. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  20. Specialized cell surface structures in cellulolytic bacteria.

    PubMed

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-08-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose.

  1. Specialized cell surface structures in cellulolytic bacteria.

    PubMed Central

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-01-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817

  2. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  3. [Aerobic bacterial flora from the digestive tract of the common vampire bat, Desmodus rotundus (Chiroptera: Phyllostomidae)].

    PubMed

    Chaverri, Gloriana

    2006-09-01

    This study addresses the composition of microbial flora in the vampire bat (Desmodus rotundus) primarily because all available data are outdated, and because of the economical significance of this bat species. Twenty-one bats were collected and their aerobic bacteria documented separately for stomach and intestine. Bacteria were identified through the Analytical Profile Index (API), and results analyzed with the APILAB software. A total of thirty bacterial species were isolated from sixteen females and five males. The most common species were Escherichia coli and Staphylococcus aureus, although other bacteria, such as Acinetobacterjohnsonii, Enterobacter sakazakii, Staphylococcus chromogenes, S. hyicus and S. xylosus were also common. The number of species found in the stomach and intestine was significantly different, and the intestine presented a higher diversity compared to the stomach. This has previously been found in other mammals and it is attributed to a reduction of acidity. Most of the species found in this study are considered normal components of the digestive tract of mammals, although other bacteria common in the skin of mammals and from aquatic environments were found. Bacteria from the skin may invade the vampire's stomach and/or intestine when the bat has contact with its prey, and may suggest that the vampire's feeding habit facilitates the invasion of other microbes not common in its digestive tract. The fact that bacteria from aquatic environments were also found suggests that D. rotundus, as previously found by other researchers, drinks free water when available, and water may be another source of microbial invasion.

  4. Texcoconibacillus texcoconensis gen. nov., sp. nov., alkalophilic and halotolerant bacteria isolated from soil of the former lake Texcoco (Mexico).

    PubMed

    Ruiz-Romero, Erick; Coutiño-Coutiño, María de los Angeles; Valenzuela-Encinas, César; López-Ramírez, María Patricia; Marsch, Rodolfo; Dendooven, Luc

    2013-09-01

    A novel Gram-positive, rod-shaped, spore-forming bacterium, designated 13CC(T) was isolated from soil of the former lake Texcoco. The strain was aerobic, catalase-positive and oxidase-negative. It grew at salinities of 0-26% (w/v) NaCl with an optimum at 9-16% (w/v) NaCl. The cells contain peptidoglycan type A1γ, A1γ' with glycine instead of l-alanine and three variations of peptidoglycan type A4γ. The only quinone detected was MK-7. The major fatty acid was anteiso-C(15:0). The polar lipids fraction consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three different phospholipids. The DNA G+C content was 37.5 mol%. Maximum-likelihood phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 13CC(T) was closely related to members of the genus Bacillus and shared 92.35% similarity with Bacillus agaradhaerens, 92.28% with Bacillus neizhouensis and 92.21% with Bacillus locisalis. It is proposed based on the phenotypic, genotypic and phylogenetic analyses that the novel isolate should be classified as a representative of a new genus and novel species, for which the name Texcoconibacillus texcoconensis gen. nov., sp. nov. is proposed. The type strain of Texcoconibacillus texcoconensis is 13CC(T) ( =JCM 17654(T) =DSM 24696(T)).

  5. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    PubMed

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  6. Effects of hexavalent chromium on performance and microbial community of an aerobic granular sequencing batch reactor.

    PubMed

    Wang, Zichao; Gao, Mengchun; She, Zonglian; Jin, Chunji; Zhao, Yangguo; Yang, Shiying; Guo, Liang; Wang, Sen

    2015-03-01

    The performance and microbial community of an aerobic granular sequencing batch reactor (GSBR) were investigated at different hexavalent chromium (Cr(VI)) concentrations. The COD and NH4 (+)-N removal efficiencies decreased with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific oxygen utilization rate (SOUR) decreased from 34.86 to 12.18 mg/(g mixed liquor suspended sludge (MLSS)·h) with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR) decreased with the increase in Cr(VI) concentration, whereas the SNRR was always higher than the sum of SAOR and SNOR at 0-30 mg/L Cr(VI). The scanning electron micrographs (SEM) showed some undefined particles on the surface of filamentous bacteria that might be the chelation of chromium and macromolecular organics at 30 mg/L Cr(VI). The denaturing gradient gel electrophoresis (DGGE) profiles revealed that some microorganisms adapting to high Cr(VI) concentration gradually became the predominant bacteria, while others without Cr(VI)-tolerance capacity tended to deplete or weaken. Some bacteria could tolerate the toxicity of high Cr(VI) concentration in the aerobic GSBR, such as Propionibacteriaceae bacterium, Ochrobactrum anthropi, and Micropruina glycogenica.

  7. Peroxide-Sensing Transcriptional Regulators in Bacteria

    PubMed Central

    Mongkolsuk, Skorn

    2012-01-01

    The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H2O2, while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H2O2 via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins. PMID:22797754

  8. Peroxide-sensing transcriptional regulators in bacteria.

    PubMed

    Dubbs, James M; Mongkolsuk, Skorn

    2012-10-01

    The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H(2)O(2), while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H(2)O(2) via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins.

  9. The inhibition of Clostridium botulinum type C by other bacteria in wetland sediments

    USGS Publications Warehouse

    Sandler, Renee J.; Rocke, Tonie E.; Yuill, Thomas M.

    1998-01-01

    Bacteria with inhibitory activity against Clostridium botulinum type C were isolated from 32% of sediment samples (n = 1600) collected from 10 marshes in a northern California wetland over a 12 mo period. Aerobic and anaerobic bacteria with inhibitory activity were isolated from 12% and 23% of the samples, respectively. Bacteria with inhibitory activity were isolated from all 10 study sites and throughout the year. This study demonstrates that bacteria with inhibitory activity against C. botulinum type C occur naturally in wetland sediments.

  10. The effects of temperature and motility on the advective transport of a deep subsurface bacteria through saturated sediment

    SciTech Connect

    McCaulou, Douglas Ray

    1993-01-01

    Replicate column experiments were done to quantify the effects of temperature and bacterial motility on advective transport through repacked, but otherwise unaltered, natural aquifer sediment. The bacteria used in this study, A0500, was a flagellated, spore-forming rod isolated from the deep subsurface at DOE`s Savannah River Laboratory. Motility was controlled by turning on flagellar metabolism at 18°C but off at 40°α), estimated using a steady-state filtration model. The observed greater microsphere removal at the higher temperature agreed with the physical-chemical model, but bacteria removal at 18{degrees}C was only half that at 4°C. The sticking efficiency for non-motile A0500 (4°C) was over three times that of the motile A0500 (18°C), 0.073 versus 0.022 respectively. Analysis of complete breakthrough curves using a non-steady, kinetically limited, transport model to estimate the time scales of attachment and detachment suggested that motile A 0500 bacteria traveled twice as far as non-motile A 0500 bacteria before becoming attached. Once attached, non-motile colloids detached on the time scale of 9 to 17 days. The time scale for detachment of motile A0500 bacteria was shorter, 4 to 5 days. Results indicate that bacterial attachment was reversible and detachment was enhanced by bacterial motifity. The kinetic energy of bacterial motility changed the attachment-detachment kinetics in favor of the detached state. The chemical factors responsible for the enhanced transport are not known. However, motility may have caused weakly held bacteria to detach from the secondary minimum, and possibly from the primary minimum, as described by DLVO theory.

  11. Tistlia consotensis gen. nov., sp. nov., an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring.

    PubMed

    Díaz-Cárdenas, C; Patel, B K C; Baena, S

    2010-06-01

    A Gram-negative, aerobic, mesophilic, non-spore-forming, chemotrophic, chlorophyll-lacking, nitrogen-fixing bacterium, designated strain USBA 355(T), was isolated from the saline spring 'Salado de Consotá' situated in the Colombian Andes. The non-flagellated cells of strain USBA 355(T) were straight to slightly curved rods (0.6-0.7 x 3.0-3.5 microm). Growth occurred optimally at 30 degrees C (growth temperature range between 20 and 40 degrees C), at pH 6.5-6.7 (pH growth range between 5.0 and 8.0) and at 0.5 % NaCl (w/v) (range between 0 and 4 %). The major quinone present was Q-10 and the predominant fatty acids identified were C(19 : 0) cyclo omega8c, C(18 : 1)omega7c and C(18 : 0). The G+C content of the chromosomal DNA was 71+/-1 mol%. 16S rRNA gene sequence analysis indicated that strain USBA 355(T) formed a distant phylogenetic line of descent with members of the genus Thalassobaculum, family Rhodospirillaceae, class Alphaproteobacteria (90 % gene sequence similarity). Comparison of the phylogenetic, chemotaxonomic and physiological features of strain USBA 355(T) with all other members of the family Rhodospirillaceae suggested that it represents a novel genus and species for which the name Tistlia consotensis gen. nov., sp. nov. is proposed. The type strain of the type species is USBA 355(T) (=JCM 15529(T)=KCTC 22406(T)).

  12. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  13. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  14. Sulfur cycling and metabolism of phototrophic and filamentous sulfur bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Brune, D.; Poplawski, R.; Schmidt, T. M.

    1985-01-01

    Phototrophic sulfur bacteria taken from different habitate (Alum Rock State Park, Palo Alto salt marsh, and Big Soda Lake) were grown on selective media, characterized by morphological and pigment analysis, and compared with bacteria maintained in pure culture. A study was made of the anaerobic reduction of intracellular sulfur globules by a phototrophic sulfur bacterium (Chromatium vinosum) and a filamentous aerobic sulfur bacterium (Beggiatoa alba). Buoyant densities of different bacteria were measured in Percoll gradients. This method was also used to separate different chlorobia in mixed cultures and to assess the relative homogeneity of cultures taken directly or enriched from natural samples (including the purple bacterial layer found at a depth of 20 meters at Big Soda Lake.) Interactions between sulfide oxidizing bacteria were studied.

  15. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  16. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  17. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  18. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  19. Genomics of Aerobic Cellulose Utilization Systems in Actinobacteria

    PubMed Central

    Anderson, Iain; Abt, Birte; Lykidis, Athanasios; Klenk, Hans-Peter; Kyrpides, Nikos; Ivanova, Natalia

    2012-01-01

    Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms. PMID:22723998

  20. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes

    USGS Publications Warehouse

    Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D.

    2011-01-01

    High resolution direct-push profiling over short vertical distances was used to investigate CH4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH4 and CO2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in ??13CCH4 from an average of - 57.6??? (?? 1.7???) in the methanogenic zone to - 39.6??? (?? 8.7???) at 105 m downgradient, strongly suggest CH4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O2 across the water table is leading to aerobic degradation of CH4 at this interface. Dissolved N2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O2 through aerobic degradation of CH4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O2 transport mechanisms. ?? 2011 Elsevier B.V. All rights reserved.

  1. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions.

    PubMed

    Zhao, Lanmei; Bao, Mutai; Yan, Miao; Lu, Jinren

    2016-09-01

    Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product.

  2. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C.

    PubMed

    Liang, Rongrong; Yu, Xiaoqiao; Wang, Renhuan; Luo, Xin; Mao, Yanwei; Zhu, Lixian; Zhang, Yimin

    2012-06-01

    This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration.

  3. Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters

    PubMed Central

    Christensen, Bjørn; Torsvik, Terje; Lien, Torleiv

    1992-01-01

    Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images PMID:16348693

  4. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  5. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity

    PubMed Central

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-01-01

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit FeII-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail. PMID:26610529

  6. Prospective study of the clinical performance of three BACTEC media in a modern emergency department: Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F.

    PubMed

    Rocchetti, Andrea; Di Matteo, Luigi; Bottino, Paolo; Foret, Benjamin; Gamalero, Elisa; Calabresi, Alessandra; Guido, Gianluca; Casagranda, Ivo

    2016-11-01

    The performance of 3 blood culture bottles (BACTEC Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F) were analyzed with clinical specimens collected from 688 Emergency Department patients. A total of 270 strains belonging to 33 species were identified, with E. coli and S. aureus as the most frequently detected. Overall recovery rate (RR) of bacteria and yeast was equivalent in the Plus Aerobic/F vials (208 of 270 isolates; 77.0%) and Anaerobic Lytic/F vials (206 isolates; 76.3%) and significantly better than in the Plus Anaerobic/F vials (189 isolates; 70.0%). Median time to detection (TTD) was earliest with the Anaerobic Lytic/F vials (12.0h) compared with the Plus Aerobic/F (14.6h) and Plus Anaerobic/F vials (15.4h). Positivity rate (PR) was similar for Anaerobic Lytic/F vials (76.9%) and Plus Aerobic/F vials (76.5%), but better if compared with Plus Anaerobic/F vials (69.4%). The PR and TTD for the combination of Plus Aerobic/F with Anaerobic Lytic/F (94.5% and 12.3h, respectively) was significantly better than with Plus Aerobic/F with Plus Anaerobic/F (87.8% and 14.1h).

  7. Mineralization of Linear Alkylbenzene Sulfonate by a Four-Member Aerobic Bacterial Consortium

    PubMed Central

    Jiménez, Luis; Breen, Alec; Thomas, Nikki; Federle, Thomas W.; Sayler, Gary S.

    1991-01-01

    A bacterial consortium capable of linear alkylbenzene sulfonate (LAS) mineralization under aerobic conditions was isolated from a chemostat inoculated with activated sludge. The consortium, designated KJB, consisted of four members, all of which were gram-negative, rod-shaped bacteria that grew in pairs and short chains. Three isolates had biochemical properties characteristic of Pseudomonas spp.; the fourth showed characteristics of the Aeromonas spp. Cell suspensions were grown together in minimal medium with [14C]LAS as the only carbon source. After 13 days of incubation, more than 25% of the [14C]LAS was mineralized to 14CO2 by the consortium. Pure bacterial cultures and combinations lacking any one member of the KJB bacterial consortium did not mineralize LAS. Three isolates carried out primary biodegradation of the surfactant, and one did not. This study shows that the four bacteria complemented each other and synergistically mineralized LAS, indicating catabolic cooperation among the four consortium members. PMID:16348496

  8. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.

  9. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity.

    PubMed

    Wasmund, Kenneth; Kurtböke, D Ipek; Burns, Kathryn A; Bourne, David G

    2009-05-01

    This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the alpha-subunit of particulate methane monooxygenase (pmoA) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum. Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages.

  10. Sterol Synthesis in Diverse Bacteria

    PubMed Central

    Wei, Jeremy H.; Yin, Xinchi; Welander, Paula V.

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  11. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  12. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  13. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    PubMed Central

    Abdallah, Rehab Z.; Adel, Mustafa; Ouf, Amged; Sayed, Ahmed; Ghazy, Mohamed A.; Alam, Intikhab; Essack, Magbubah; Lafi, Feras F.; Bajic, Vladimir B.; El-Dorry, Hamza; Siam, Rania

    2014-01-01

    The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces. PMID:25295031

  14. Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases.

    PubMed

    Jeoung, Jae-Hun; Fesseler, Jochen; Goetzl, Sebastian; Dobbek, Holger

    2014-01-01

    Carbon monoxide (CO) pollutes the atmosphere and is toxic for respiring organisms including man. But CO is also an energy and carbon source for phylogenetically diverse microbes living under aerobic and anaerobic conditions. Use of CO as metabolic fuel for microbes relies on enzymes like carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS), which catalyze conversions resembling processes that eventually initiated the dawn of life.CODHs catalyze the (reversible) oxidation of CO with water to CO2 and come in two different flavors with unprecedented active site architectures. Aerobic bacteria employ a Cu- and Mo-containing CODH in which Cu activates CO and Mo activates water and takes up the two electrons generated in the reaction. Anaerobic bacteria and archaea use a Ni- and Fe-containing CODH, where Ni activates CO and Fe provides the nucleophilic water. Ni- and Fe-containing CODHs are frequently associated with ACS, where the CODH component reduces CO2 to CO and ACS condenses CO with a methyl group and CoA to acetyl-CoA.Our current state of knowledge on how the three enzymes catalyze these reactions will be summarized and the different strategies of CODHs to achieve the same task within different active site architectures compared.

  15. Presence of aerobic micro-organisms and their influence on basic semen parameters in infertile men.

    PubMed

    Filipiak, E; Marchlewska, K; Oszukowska, E; Walczak-Jedrzejowska, R; Swierczynska-Cieplucha, A; Kula, K; Slowikowska-Hilczer, J

    2015-09-01

    Urogenital tract infections in males are one of the significant etiological factors in infertility. In this prospective study, 72 patients with abnormal semen parameters or any other symptoms of urogenital tract infection were examined. Semen analysis according to the WHO 2010 manual was performed together with microbial assessment: aerobic bacteria culture, Chlamydia antigen test, Candida culture, Ureaplasma and Mycoplasma-specific culture. In total, 69.4% of semen samples were positive for at least one micro-organism. Ureaplasma sp. was the most common micro-organism found in 33% of semen samples of infertile patients with suspected male genital tract infection. The 2nd most common micro-organisms were Enterococcus faecalis (12.5%) and Escherichia coli (12.5%), followed by Staphylococcus aureus (7%), Chlamydia trachomatis (7%) and Candida sp. (5.6%). Generally, bacteria were sensitive to at least one of the antibiotics tested. No statistically significant relationship was observed between the presence of aerobic micro-organisms in semen and basic semen parameters: volume, pH, concentration, total count, motility, vitality and morphology.

  16. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  17. [Cardiovascular protection and mechanisms of actions of aerobic exercise].

    PubMed

    Hou, Zuo-Xu; Zhang, Yuan; Gao, Feng

    2014-08-01

    It is well established that aerobic exercise exerts beneficial effect on cardiovascular system, but the underlying mechanisms are yet to be elucidated. Recent studies have shown that aerobic exercise ameliorates insulin resistance, inflammation and mitochondrial dysfunction which play important roles in the development of cardiovascular disease. In this review, we discussed the underlying mechanisms of the cardioprotective role of aerobic exercise, especially the latest progress in this field.

  18. Bacteria Inactivation During Lithotripsy

    NASA Astrophysics Data System (ADS)

    del Sol Quintero, María; Mora, Ulises; Gutiérrez, Jorge; Mues, Enrique; Castaño, Eduardo; Fernández, Francisco; Loske, Achim M.

    2006-09-01

    The influence of extracorporeal and intracorporeal lithotripsy on the viability of bacteria contained inside artificial kidney stones was investigated in vitro. Two different bacteria were exposed to the action of one extracorporeal shock wave generator and four intracorporeal lithotripters.

  19. Regulation of Light Output and Identification of Luminous Bacteria from Free-Living and Particle-Associated Bacterial Assemblages

    DTIC Science & Technology

    1993-12-31

    Samples from a culture of the marine nitrogen-fixing bacteria Vibrio natriegens were collected from aerobic/combined-nitrogen replete conditions and...transcription and translation. APPROACH: Samples from a culture of the marine nitrogen-fixing bacteria Vibrio natriegens were collected from aerobic...after the-shift in a subsequent experiment 3 12 21 1 3 3-A 9-09 14. SUBJECT TERMS iii~lIIIIIIlI1fh1NUMBER Of PAGES 3 Nitrogenase, nitrogen-fixing, Vibrio

  20. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    PubMed

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds.

  1. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  2. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  3. Aerobic Capacity and Postprandial Flow Mediated Dilation.

    PubMed

    Ballard, Kevin D; Miller, James J; Robinson, James H; Olive, Jennifer L

    The consumption of a high-fat meal induces transient vascular dysfunction. Aerobic exercise enhances vascular function in healthy individuals. Our purpose was to determine if different levels of aerobic capacity impact vascular function, as measured by flow mediated dilation, following a high-fat meal. Flow mediated dilation of the brachial artery was determined before, two- and four-hours postprandial a high-fat meal in young males classified as highly trained (n = 10; VO2max = 74.6 ± 5.2 ml·kg·min(-1)) or moderately active (n = 10; VO2max = 47.3 ± 7.1 ml·kg·min(-1)). Flow mediated dilation was reduced at two- (p < 0.001) and four-hours (p < 0.001) compared to baseline for both groups but was not different between groups at any time point (p = 0.108). Triglycerides and insulin increased at two- (p < 0.001) and four-hours (p < 0.05) in both groups. LDL-C was reduced at four-hours (p = 0.05) in highly trained subjects, and two- and four-hours (p ≤ 0.01) in moderately active subjects. HDL-C decreased at two- (p = 0.024) and four-hours (p = 0.014) in both groups. Glucose increased at two-hours postprandial for both groups (p = 0.003). Our results indicate that a high-fat meal results in reduced endothelium-dependent vasodilation in highly trained and moderately active individuals with no difference between groups. Thus, high aerobic capacity does not protect against transient reductions in vascular function after the ingestion of a single high-fat meal compared to individuals who are moderately active.

  4. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite.

  5. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87

    PubMed Central

    Ianniello, Rocco G.; Matera, Attilio; Genovese, Francesco; Parente, Eugenio; Ricciardi, Annamaria

    2016-01-01

    Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB). Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase), antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation) batch cultivations with different dissolved oxygen (DO) concentrations. The expression of pox (pyruvate oxidase) and cydABCD operon (cytochrome bd oxidase complex) was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO). Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei. PMID:27812097

  6. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers.

    PubMed

    Stanley, Nicholas J; Kuehn, Thomas H; Kim, Seung Won; Raynor, Peter C; Anantharaman, Senthilvelan; Ramakrishnan, M A; Goyal, Sagar M

    2008-04-01

    Background culturable bacteria aerosols were collected and identified in two large public buildings located in Minneapolis, Minnesota and Seattle, Washington over a period of 5 months and 3 months, respectively. The installed particulate air filters in the ventilation systems were used as the aerosol sampling devices at each location. Both pre and final filters were collected from four air handing units at each site to determine the influence of location within the building, time of year, geographical location and difference between indoor and outdoor air. Sections of each loaded filter were eluted with 10 ml of phosphate buffered saline (PBS). The resulting solutions were cultured on blood agar plates and incubated for 24 h at 36 degrees C. Various types of growth media were then used for subculturing, followed by categorization using a BioLog MicroStation (Biolog, Hayward, CA, USA) and manual observation. Environmental parameters were gathered near each filter by the embedded on-site environmental monitoring systems to determine the effect of temperature, humidity and air flow. Thirty nine different species of bacteria were identified, 17 found only in Minneapolis and 5 only in Seattle. The hardy spore-forming genus Bacillus was the most commonly identified and showed the highest concentrations. A significant decrease in the number of species and their concentration occurred in the Minneapolis air handling unit supplying 100% outdoor air in winter, however no significant correlations between bacteria concentration and environmental parameters were found.

  7. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  8. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  9. Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge.

    PubMed

    Mohanty, Sagarika; Dafale, Nishant; Rao, Nageswara Neti

    2006-10-01

    A two-stage anaerobic-aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l(-1). The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by > 90% increased as the concentration of the dye increased. It was also found that maintaining dissolved oxygen (DO) concentration below 0.5 mg l(-1 )and addition of a co-substrate viz., glucose, facilitates anaerobic decolorization reaction remarkably. An attempt was made to identify the metabolites formed in anaerobic process by using high performance liquid chromatography (HPLC) and UV-VIS spectrophotometry. A plate assay was performed for the detection of dominant decolorizing bacteria. Only a few bacterial colonies with high clearing zones (decolorization zones) were found. The results showed that under anaerobic condition RB-5 molecules were reduced and aromatic amines were generated. The aromatic amine metabolite was partly removed in subsequent aerobic bio-treatment. It was possible to achieve more than 90% decolorization and approximately 46% reduction in amine metabolite concentration through two-stage anaerobic-aerobic treatment after a reaction period of 2 days.

  10. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition.

    PubMed

    Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong

    2017-02-11

    The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios.

  11. [Methanotrophic bacteria of acid sphagnum bogs].

    PubMed

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.

  12. Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis).

    PubMed

    Aizawa, Tomoko; Urai, Makoto; Iwabuchi, Noriyuki; Nakajima, Mutsuyasu; Sunairi, Michio

    2010-01-01

    Three xylanase-producing alkaliphilic strains, SU1(T), 36AC4 and 36AC6, were isolated from the guts of larvae of the Japanese horned beetle (Trypoxylus dichotomus septentrionalis). The isolates stained Gram-positive and were aerobic, spore-forming, non-motile and rod-shaped and grew optimally at 30 degrees C and pH 9. They contained MK-7 as the major isoprenoid quinone and iso-C(15 : 0), anteiso-C(15 : 0), anteiso-C(17 : 0) and iso-C(17 : 0) as the major fatty acids. The DNA G+C contents of the strains were 37.4-37.7 mol%. On the basis of 16S rRNA gene sequence similarity, these strains were shown to belong to the genus Bacillus. Although their 16S rRNA gene sequence similarity to the type strains of the alkaliphilic species Bacillus pseudalcaliphilus and B. alcalophilus was 97 %, the novel isolates formed a distinct group in the phylogenetic trees and DNA-DNA relatedness values to the type strains of these species were less than 30 %. Results of physiological and biochemical tests, including salt preference, enabled these strains to be differentiated phenotypically from described Bacillus species. Therefore, strains SU1(T), 36AC4 and 36AC6 represent a novel species for which the name Bacillus trypoxylicola sp. nov. is proposed; the type strain is SU1(T) (=NBRC 102646(T) =KCTC 13244(T)).

  13. Diversity and ecology of oxalotrophic bacteria.

    PubMed

    Hervé, Vincent; Junier, Thomas; Bindschedler, Saskia; Verrecchia, Eric; Junier, Pilar

    2016-02-01

    Oxalate is present in environments as diverse as soils or gastrointestinal tracts. This organic acid can be found as free acid or forming metal salts (e.g. calcium, magnesium). Oxalotrophy, the ability to use oxalate as carbon and energy sources, is mainly the result of bacterial catabolism, which can be either aerobic or anaerobic. Although some oxalotrophic bacterial strains are commonly used as probiotics, little is known about the diversity and ecology of this functional group. This review aims at exploring the taxonomic distribution and the phylogenetic diversity of oxalotrophic bacteria across biomes. In silico analyses were conducted using the two key enzymes involved in oxalotrophy: formyl-coenzyme A (CoA) transferase (EC 2.8.3.16) and oxalyl-CoA decarboxylase (EC 4.1.1.8), encoded by the frc and oxc genes, respectively. Our analyses revealed that oxalate-degrading bacteria are restricted to three phyla, namely Actinobacteria, Firmicutes and Proteobacteria and originated from terrestrial, aquatic and clinical environments. Diversity analyses at the protein level suggest that total Oxc diversity is more constrained than Frc diversity and that bacterial oxalotrophic diversity is not yet fully described. Finally, the contribution of oxalotrophic bacteria to ecosystem functioning as well as to the carbon cycle is discussed.

  14. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  15. Aerobic treatment of wine-distillery wastewaters

    SciTech Connect

    Sales, D.; Valcarcel, M.J.; Perez, L.; de la Ossa, E.M.

    1987-01-01

    Waste from food-processing and allied industries is largely made up of organic compounds which can be metabolized by aerobic or anaerobic means. However, these wastes present a series of problems to biological depuration plants, such as the need for prior treatment to establish conditions suitable for the development of the microorganisms responsible for the process; and the long retention time of the biomass if acceptable effluents are to be obtained. Again, the seasonal nature of many of these industries makes for very heterogeneous waste. This means that treatment plant must be versatile and are subject to rapid successions of close-down and start-up interspersed with long intervals of inactivity. All these difficulties oblige the industries in the sector to adapt depurative technology to their particular needs. Wine distilleries fall into this general category. Their waste (called vinasses) is acidic, has a high organic content and varies widely according to the raw matter distilled: wine, lies, etc. This paper studies the start-up of digestors for aerobic treatment of vinasses and the establishment of optimum operating conditions for an adequate depurative performance.

  16. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  17. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters.

    PubMed

    Farnsworth, James E; Goyal, Sagar M; Kim, Seung Won; Kuehn, Thomas H; Raynor, Peter C; Ramakrishnan, M A; Anantharaman, Senthilvelan; Tang, Weihua

    2006-10-01

    The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.

  18. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)].

    PubMed

    Kalashnikov, A M; Gaĭsin, V A; Sukhacheva, M V; Namsaraeva, B B; Panteleeva, A N; Nuianzina-Boldareva, E N; Kuznetsov, B B; Gorlenko, V M

    2014-01-01

    Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54 degrees C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected irn the samples from both the thermophilic and mesophilic mats. Cultures ofnonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolatd from the mats developing at high (50.6-49.4 degrees C) and low temperatures (45-20 degrees C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealedin low-temperature mats. Truly thermophilic purple and gree sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfuret communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophylla-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20 degrees C) mat is of interest.

  19. Aerobic Physical Activity and the Leadership of Principals

    ERIC Educational Resources Information Center

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  20. The Effectiveness of Aerobic Exercise Instruction for Totally Blind Women.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.; And Others

    1992-01-01

    A multifaceted method (involving verbal and hands-on training) was used to teach aerobic exercises to 3 totally blind women (ages 24-37). All three women demonstrated positive gains in their performance, physical fitness, and attitudes toward participating in future mainstream aerobic exercise classes. (DB)

  1. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  2. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  3. p53 aerobics: the major tumor suppressor fuels your workout.

    PubMed

    Kruse, Jan-Philipp; Gu, Wei

    2006-07-01

    In addition to its role as the central regulator of the cellular stress response, p53 can regulate aerobic respiration via the novel transcriptional target SCO2, a critical regulator of the cytochrome c oxidase complex (Matoba et al., 2006). Loss of p53 results in decreased oxygen consumption and aerobic respiration and promotes a switch to glycolysis, thereby reducing endurance during physical exercise.

  4. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  5. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  6. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  7. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  8. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  9. Influence of dye type and salinity on aerobic decolorization of azo dyes by microbial consortium and the community dynamics.

    PubMed

    Tan, Liang; Ning, Shuxiang; Wang, Ying; Cao, Xiangyu

    2012-01-01

    In this research, aerobic decolorization of different azo dyes by a microbial community was studied. The results showed that more than 80% of four azo dyes (100 mg/L) could be aerobically decolorized by the microbial consortium, however, the time needed was obviously different. Kinetic data indicated that the processes were well described by zero-order kinetics, and the chemical structures of dyes had obvious influence on decolorization rates. On the other hand, effects of salinity on decolorization were also investigated. There was still 40% dye removal for Acid Brilliant Red GR when the salinity increased to 250 g/L. And the microbial community structures with different salinity were detected by PCR-DGGE. It was shown that the same two bacteria were dominant in all decolorization systems, and some typical halophilic microorganisms were found under higher-salt conditions.

  10. Microbial Removal of Atmospheric Carbon Tetrachloride in Bulk Aerobic Soils▿

    PubMed Central

    Mendoza, Y.; Goodwin, K. D.; Happell, J. D.

    2011-01-01

    Atmospheric concentrations of carbon tetrachloride (CCl4) were removed by bulk aerobic soils from tropical, subtropical, and boreal environments. Removal was observed in all tested soil types, indicating that the process was widespread. The flux measured in field chamber experiments was 0.24 ± 0.10 nmol CCl4 (m2 day)−1 (average ± standard deviation [SD]; n = 282). Removal of CCl4 and removal of methane (CH4) were compared to explore whether the two processes were linked. Removal of both gases was halted in laboratory samples that were autoclaved, dry heated, or incubated in the presence of mercuric chloride (HgCl2). In marl soils, treatment with antibiotics such as tetracycline and streptomycin caused partial inhibition of CCl4 (50%) and CH4 (76%) removal, but removal was not affected in soils treated with nystatin or myxothiazol. These data indicated that bacteria contributed to the soil removal of CCl4 and that microeukaryotes may not have played a significant role. Amendments of methanol, acetate, and succinate to soil samples enhanced CCl4 removal by 59%, 293%, and 72%, respectively. Additions of a variety of inhibitors and substrates indicated that nitrification, methanogenesis, or biological reduction of nitrate, nitrous oxide, or sulfate (e.g., occurring in possible anoxic microzones) did not play a significant role in the removal of CCl4. Methyl fluoride inhibited removal of CH4 but not CCl4, indicating that CH4 and CCl4 removals were not directly linked. Furthermore, CCl4 removal was not affected in soils amended with copper sulfate or methane, supporting the results with MeF and suggesting that the observed CCl4 removal was not significantly mediated by methanotrophs. PMID:21724884

  11. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  12. Isolation and Characterization of Gram-Positive Piezophilic Bacteria from Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Runko, G. M.; Fang, J.; Kato, C.

    2014-12-01

    The marine deep biosphere remains as the least studied of all of Earth's habitats and is inadequately understood, but is extremely important to understand the impacts that microbes have on global biogeochemical cycles. Sediment samples were obtained during IODP Expedition 337 in the western Pacific Ocean, from 1,498 meters below the seafloor (mbsf; samples 6R3), 1,951-1,999 mbsf (19R1), and 2,406 mbsf (29R7). These samples were initially mixed with marine broth and cultivated under anaerobic conditions at pressure of 35 MPa (megapascal) and temperatures of 35° C, 45° C, and 55° C for 3 months on board the Chikyu. Single colonies were isolated via plating on marine broth. Then, six strains of bacteria were identified, 6R3-1, 6R3-15, 19R1-5, 29R7-12B, 29R7-12M, and 29R7-12S. The six strains were then examined for optimal growth temperature and pressure. These organisms are Gram-positive, spore-forming, facultative anaerobic piezophilic bacteria. Major fatty acids are anteiso-15:0, anteiso-17:0 and iso-15:0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are closely related to Virgibacillus pantothenticus, Robinsoniella peoriensis, and Bacillus subtilis. Because of their abundance in the deep marine subsurface, these microorganisms likely play an important role in sustaining the deep microbial ecosystem and influencing biogeochemical cycles in the deep biosphere.

  13. Occurrence and role of lactic acid bacteria in seafood products.

    PubMed

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  14. Taxonomy of phototrophic green and purple bacteria: a review.

    PubMed

    Pfennig, N; Trüper, H G

    1983-01-01

    The presently existing classification for the green and purple bacteria comprises physiological-ecological assemblages of phototrophic bacteria with anoxygenic photosynthesis. The taxonomic units of the different levels were based entirely on common phenotypic traits, including morphological, cytological, physiological and biochemical characteristics. Since degrees of resemblance form the basis of the grouping, this classification cannot reflect the genetic or evolutionary relatedness of these bacteria, neither among themselves nor with other bacteria. The advantage of the artificial system, however, is the use of features which can be established in most laboratories and which allow the comparison and identification of newly isolated strains with those already studied and described. The four existing families correspond to the four major recognized, ecophysiological groups, the Chlorobiaceae and Chloroflexaceae among the green bacteria, and the Chromatiaceae and Rhodospirillaceae among the purple bacteria. Our knowledge of all these groups is incomplete; this is reflected by the fact that seven new species have been described during the past three years (6th Newsletter on phot. bacteria, Trüper and Hansen, 1982). The description of the new genus and species Erythrobacter longus (Shiba and Simidu, 1982) is also interesting, as it comprises aerobic chemoorganotrophic marine bacteria which form bacteriochlorophyll a and carotenoids; however, no strains were able to grow phototrophilcally. Significant success is currently being obtained in the different approaches toward elucidating the genetic relationships within and outside of the purple and green bacteria. Detailed studies of the lipopolysaccharides of several species and genera of the Rhodospirillaceae (Weckesser et al., 1979, and more recent paper) have proven to be very useful for the recognition of relationships or dissimilarities between the species of a genus or between different genera. Amino acid sequence

  15. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  16. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories.

  17. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  18. Effects of an esterase-producing inoculant on fermentation, aerobic stability, and neutral detergent fiber digestibility of corn silage.

    PubMed

    Kang, T W; Adesogan, A T; Kim, S C; Lee, S S

    2009-02-01

    This experiment evaluated effects of an inoculant containing esterase-producing bacteria on fermentation, aerobic stability, in situ dry matter digestibility (DMD), and neutral detergent fiber (NDF) digestibility (NDFD) of corn silage. Two corn hybrids grown on adjacent fields [Croplan Genetics 851RR2 (CS1) and Vigoro 61R36 (CS2)] were harvested at approximately 39% dry matter. Each forage was conserved in quadruplicate in 20-L mini silos with or without application of an inoculant at a level to achieve 1.0 x 10(4) cfu/g of Lactobacillus casei and 1.0 x 10(5) cfu/g of Lactobacillus buchneri. After 110 d of ensiling, silos were opened and silages were analyzed for chemical composition, fermentation indices, microbial counts, and aerobic stability. In situ DMD, 24-h and 48-h DMD, and NDFD were measured by incubating ground (6-mm) samples in triplicate in each of 2 lactating, fistulated dairy cows fed a corn silage-based diet. Inoculation decreased concentrations of total fermentation acids and lactate, as well as lactate to acetate ratio, and increased propionate concentration compared with the uninoculated control in CS1 but not CS2. Inoculation tended to decrease yeast counts of CS1 but increased yeast counts and tended to increase the mold counts of CS2. Consequently, inoculation improved the aerobic stability of CS1 by 57.3 h (98%) but decreased that of CS2 by 20.5 h (20%). Inoculation also increased the potentially degradable fraction of CS1 and the total degradable fraction, 24-h and 48-h DMD, and 48-h NDFD of CS2. Inoculation of CS1 modified the fermentation, improved the aerobic stability, and increased the potentially degradable DM fraction. Inoculation of CS2 did not affect fermentation, but decreased the aerobic stability and increased the total degradable DM fraction, 24-h and 48-h DMD, and 48-h NDFD.

  19. The effect of Lactobacillus buchneri 40788 on the fermentation and aerobic stability of high moisture corn in laboratory silos.

    PubMed

    Taylor, C C; Kung, L

    2002-06-01

    The production of antifungal compounds during fermentation could be a useful mechanism to improve the aerobic stability of fermented feeds when they are exposed to air. High moisture corn (26% moisture) was ground and inoculated with various amounts of Lactobacillus buchneri 40788, a heterolactic acid bacteria, and ensiled in laboratory silos. Inoculation with L. buchneri 40788 from 1 x 10(5) to 1 x 10(6) cfu/g of corn had minor effects on the end products of fermentation during the early stage of ensiling (< or = 14 d). However, after 49, 92, and 166 d of ensiling, increasing the application rate of L. buchneri 40788 applied to corn increased the concentration of acetic acid when compared to untreated corn. Addition of L. buchneri 40788 had few other effects on the end products of fermentation. Dry matter recovery and aerobic stability were measured after 92 and 166 d of ensiling. At these times, dry matter recovery was not different among treatments, and numbers of yeasts and molds tended to decrease as the application rate of L. buchneri 40788 increased. Aerobic stability (number of h prior to a 2 degrees C rise in temperature after exposure to air) was markedly improved by the addition > or = 5 x 10(5) cfu/g of L. buchneri 40788. Combining L. buchneri 40788 with L. plantarum did not impart better aerobic stability than when L. buchneri 40788 was applied alone to corn. Addition of L. buchneri 40788 did not affect the rate of fermentation in high moisture corn, but after prolonged storage higher application rates increased production of acetic acid and markedly improved aerobic stability.

  20. Co-variations of bacterial composition and catabolic genes related to PAH degradation in a produced water treatment system consisting of successive anoxic and aerobic units.

    PubMed

    Wang, Zhenyu; Li, Jian; Hesham, Abd El-Latif; He, Shaowu; Zhang, Yu; Wang, Zijian; Yang, Min

    2007-02-01

    This paper reports on the investigation of concentration levels of PAHs, community structure, as well as the abundance of PAH-related catabolic genes including upper-pathway dioxygenase genes (nahAc and phnAc) and down-pathway catechol dioxygenase genes (C12O and C23O) in a successive anoxic and aerobic treatment of produced water from the Jidong Oilfield, China. 93% of total PAHs were removed, almost equally contributed by the anoxic and aerobic units. However, PAHs of more than 3 benzene rings remained almost unchanged. The signals for phnAc and C12O were undetectable in this biological system, whereas the existence of nahAc and C23O was confirmed in the system and the copies of the two genes in the aerobic tank were 2 or 3 orders higher than those in the influent water sample. The different behavior of C23O demonstrated that mineralization of PAHs might mainly occur in the aerobic unit. The existence of nahAc and C23O genes in the influent and the high similarity of genotype between the influent and the two sludge samples suggested that bacteria existing in the influent contributed to PAH removal and bacteria harboring PAH catabolic genes were enriched in the sludge.

  1. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  2. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  3. Magnesium carbonate precipitate strengthened aerobic granules.

    PubMed

    Lee, Duu-Jong; Chen, Yu-You

    2015-05-01

    Aerobic granules were precipitated internally with magnesium carbonate to enhance their structural stability under shear. The strengthened granules were tested in continuous-flow reactors for 220 days at organic loadings of 6-39 kg/m(3)/day, hydraulic retention times of 0.44-19 h, and temperatures of 10 or 28°C. The carbonate salt had markedly improved the granule strength without significant changes in granule morphology or microbial communities (with persistent strains Streptomyces sp., Rhizobium sp., Brevundimonas sp., and Nitratireductor sp.), or sacrifice in biological activity for organic degradation. MgCO3 precipitated granules could be used in continuous-flow reactor for wastewater treatment at low cost and with easy processing efforts.

  4. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  5. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  6. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents - Special references to bacteria isolated between April 2011 and March 2012].

    PubMed

    Shinagawa, Nagao; Taniguchi, Masaaki; Hirata, Koichi; Furuhata, Tomohisa; Mizuguchi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitake; Kihara, Chikasi; Sasaki, Kazuaki; Oono, Keisuke; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Watabe, Kosho; Hoshikawa, Tsuyoshi; Oshima, Hideki; Aikawa, Naoki; Sasaki, Junichi; Suzuki, Masaru; Sekine, Kazuhiko; Abe, Shinya; Takeyama, Hiromitsu; Wakasugi, Takehiro; Mashita, Keiji; Tanaka, Moritsugu; Mizuno, Akira; Ishikawa, Masakazu; Iwai, Akihiko; Saito, Takaaki; Muramoto, Masayuki; Kubo, Shoji; Lee, Shigeru; Fukuhara, Kenichiro; Kobayashi, Yasuhito; Yamaue, Hiroki; Hirono, Seiko; Takesue, Yoshio; Fujiwara, Toshiyoshi; Shinoura, Susumu; Kimura, Hideyuki; Iwagaki, Hiromi; Tokunaga, Naoyuki; Sueda, Taijiro; Hiyama, Eiso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Kanehiro, Tetsuya; Takeuchi, Hitoshi; Tanakaya, Kouji; Iwasaki, Mitsuhiro

    2014-12-01

    Bacteria isolated from surgical infections during the period from April 2011 to March 2012 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 785 strains including 31 strains of Candida spp. were isolated from 204 (78.8%) of 259 patients with surgical infections. Five hundred and twenty three strains were isolated from primary infections, and 231 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. was highest, followed by Streptococcus spp. and Staphylococcus spp., in this order, from primary infections, while Enterococcus spp. was highest, followed by Staphylococcus spp. from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterobacter cloacae, in this order, and from surgical site infection, E. coli was most predominantly isolated, followed by P. aeruginosa, K. pneumoniae, and E. cloacae. Among anaerobic Gram-positive bacteria, the isolation rate of Eggerthella lenta was the highest from primary infections, followed by Parvimonas micra, Collinsella aerofaciens, Lactobacillus acidophilus and Finegoldia magna, and from surgical site infection, E. lenta was most predominantly isolated, followed by P micra and L. acidophilus, in this order. Among anaerobic Gram-negative bacteria, the isolation rate of Bacteroidesfragilis was the highest from primary infections, followed by Bilophila wadsworthia, Bacteroides thetaiotaomicron, Bacteroides uniformis and Bacteroides vulgatus, and from surgical site infection, B. fragilis was most

  7. Effects of Kettlebell Training on Aerobic Capacity.

    PubMed

    Falatic, J Asher; Plato, Peggy A; Holder, Christopher; Finch, Daryl; Han, Kyungmo; Cisar, Craig J

    2015-07-01

    This study examined the effects of a kettlebell training program on aerobic capacity. Seventeen female National Collegiate Athletic Association Division I collegiate soccer players (age: 19.7 ± 1.0 years, height: 166.1 ± 6.4 cm, weight: 64.2 ± 8.2 kg) completed a graded exercise test to determine maximal oxygen consumption (V̇O2max). Participants were assigned to a kettlebell intervention group (KB) (n = 9) or a circuit weight-training (CWT) control group (n = 8). Participants in the KB group completed a kettlebell snatch test to determine individual snatch repetitions. Both groups trained 3 days a week for 4 weeks in addition to their off-season strength and conditioning program. The KB group performed the 15:15 MVO2 protocol (20 minutes of kettlebell snatching with 15 seconds of work and rest intervals). The CWT group performed multiple free-weight and dynamic body-weight exercises as part of a continuous circuit program for 20 minutes. The 15:15 MVO2 protocol significantly increased V̇O2max in the KB group. The average increase was 2.3 ml·kg⁻¹·min⁻¹, or approximately a 6% gain. There was no significant change in V̇O2max in the CWT control group. Thus, the 4-week 15:15 MVO2 kettlebell protocol, using high-intensity kettlebell snatches, significantly improved aerobic capacity in female intercollegiate soccer players and could be used as an alternative mode to maintain or improve cardiovascular conditioning.

  8. NC10 bacteria in marine oxygen minimum zones.

    PubMed

    Padilla, Cory C; Bristow, Laura A; Sarode, Neha; Garcia-Robledo, Emilio; Gómez Ramírez, Eddy; Benson, Catherine R; Bourbonnais, Annie; Altabet, Mark A; Girguis, Peter R; Thamdrup, Bo; Stewart, Frank J

    2016-08-01

    Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling.

  9. Functional diversity of bacteria in a ferruginous hydrothermal sediment.

    PubMed

    Handley, Kim M; Boothman, Christopher; Mills, Rachel A; Pancost, Richard D; Lloyd, Jonathan R

    2010-09-01

    A microbial community showing diverse respiratory processes was identified within an arsenic-rich, ferruginous shallow marine hydrothermal sediment (20-40 degrees C, pH 6.0-6.3) in Santorini, Greece. Analyses showed that ferric iron reduction with depth was broadly accompanied by manganese and arsenic reduction and FeS accumulation. Clone library analyses indicated the suboxic-anoxic transition zone sediment contained abundant Fe(III)- and sulfate-reducing Deltaproteobacteria, whereas the overlying surface sediment was dominated by clones related to the Fe(II)-oxidizing zetaproteobacterium, Mariprofundus ferroxydans. Cultures obtained from the transition zone were enriched in bacteria that reduced Fe(III), nitrate, sulfate and As(V) using acetate or lactate as electron donors. In the absence of added organic carbon, bacteria were enriched that oxidized Fe(II) anaerobically or microaerobically, sulfide microaerobically and aerobically and As(III) aerobically. According to 16S rRNA gene analyses, enriched bacteria represented a phylogenetically wide distribution. Most probable number counts indicated an abundance of nitrate-, As(V)- and Fe(III)((s,aq))-reducers, and dissolved sulfide-oxidizers over sulfate-reducers, and FeS-, As(III)- and nitrate-dependent Fe(II)-oxidisers in the transition zone. It is noteworthy that the combined community and geochemical data imply near-surface microbial iron and arsenic redox cycling were dominant biogeochemical processes.

  10. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup; Kim, Dong-Ho

    2007-11-01

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10 5 to 10 7 CFU/ml and 0 to 10 3 CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10 2 CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10 7 CFU/g) were eliminated by irradiation at 3 kGy. Approximate D10 values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts.

  11. Draft Genome Sequence of Bacillus clausii UBBC07, a Spore-Forming Probiotic Strain.

    PubMed

    Upadrasta, Aditya; Pitta, Swetha; Madempudi, Ratna Sudha

    2016-04-21

    ITALIC! Bacillus clausiiUBBC07 is a safe endospore-forming strain, characterized for defined therapeutic effects. The finished draft whole-genome sequence is presented here to scan its genetic constitution for its expanded use as a probiotic in various health sectors.

  12. Draft Genome Sequence of Bacillus clausii UBBC07, a Spore-Forming Probiotic Strain

    PubMed Central

    Upadrasta, Aditya; Pitta, Swetha

    2016-01-01

    Bacillus clausii UBBC07 is a safe endospore-forming strain, characterized for defined therapeutic effects. The finished draft whole-genome sequence is presented here to scan its genetic constitution for its expanded use as a probiotic in various health sectors. PMID:27103711

  13. Bacillus and other spore-forming genera: variations in responses and mechanisms for survival.

    PubMed

    Checinska, Aleksandra; Paszczynski, Andrzej; Burbank, Malcolm

    2015-01-01

    The ubiquity of Bacilli endospores in soils facilitates their easy transfer routes to other environments, including cleanrooms and low-biomass sites required by many industries such as food production and processing. A bacterial endospore is a metabolically dormant form of life that is much more resistant to heat, desiccation, lack of nutrients, exposure to UV and gamma radiation, organic chemicals, and oxidizing agents than is a vegetative cell. For example, the heat tolerance of endospores depends on multiple factors such as sporulation temperature, core dehydration, and the presence of minerals and small, acid-soluble proteins (SASPs) in the core. This review describes our current understanding of the persistence mechanisms related to sporeformers' biochemical properties and discusses in detail spores' heat, radiation, and reactive chemical resistance. In addition, it discusses the impact of contamination with spores on many areas of human activity, spore adhesive properties, and biofilm contribution to resistance.

  14. Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments.

    PubMed

    Ettoumi, Besma; Raddadi, Noura; Borin, Sara; Daffonchio, Daniele; Boudabous, Abdellatif; Cherif, Ameur

    2009-09-01

    Members of the genus Bacillus and related genera are ubiquitous in nature. However, Bacillus species isolated from marine sediments have attracted less interest respect to their terrestrial relatives. Here, we report the phylogenetic diversity of a collection of 96 Bacilli, isolated from 17 distinct stations of 5 oceanographic campaigns. The diversity was analysed by phenotypic and molecular approaches based on the amplified rDNA restriction analysis (ARDRA), amplification of the internal transcribed spacers (ITS-PCR) and on 16S rRNA sequencing. Intra-specific polymorphism was efficiently detected by biochemical analysis and ARDRA while results of ITS-PCR were in agreement with 16S rRNA sequencing. The identification results assigned 68% of the isolates to the species B. subtilis, B. licheniformis, B. pumilus and B. cereus. Phylogenetic analysis allowed the separation of 9 isolates in a clade that may represent a group of obligate marine Bacillus since they clustered with B. firmus, B. foraminis and marine isolates with metal oxidation and bioaccumulation capabilities. The remaining isolates showed a close affiliation to the genera Virgibacillus, Gracilibacillus and Paenibacillus. The widespread of Bacilli and their high diversity level observed in this work point out the need of more extensive studies to understand their distribution and ecology in deep-sea environments.

  15. Effect of gradual-increasing aeration mode in an aerobic tank on nutrients' removal and functional microbial communities.

    PubMed

    Zhao, Yang-Guo; Guo, Xiaoma; She, Zonglian; Gao, Mengchun; Guo, Liang

    2016-12-30

    Different aeration rates and modes in an aerobic tank of an anaerobic/anoxic/aerobic (A(2)O) process were investigated to reveal their influence on nitrogen and phosphorus removal efficiency. Meanwhile, Illumina high-throughput sequencing of partial 16S rRNA gene of bacteria was conducted to monitor the abundance and composition of microbial communities. The results showed that higher aeration rate led to better nutrients' removal efficiency. The gradual-increasing aeration mode along the wastewater stream enhanced the contaminants' removal and the system achieved chemical oxygen demand, [Formula: see text]-N, total nitrogen (TN) removal rates of 72%, 96% and 51%, respectively. However, the gradual-decreasing or uniform aeration modes resulted in inefficient removal of TN, especially the ammonia due to low DO in the end parts of A(2)O. Microbial community analysis indicated that denitrifying phosphorus-accumulating bacteria Acinetobacter spp. were the most dominant groups under the gradual-increasing aeration mode in all tanks of the A(2)O bioreactor. Moreover, the members of genera Clostridium, Thauera and Dechloromonas also largely existed in the system. The gradual-increasing aeration mode and cooperation of different groups of bacteria made the system stable and high-performance.

  16. [Biosynthesis of the bioprotectant ectoin by aerobic methylotrophic bacteria from methanol].

    PubMed

    Doronina, N V; Ezhov, V A; Beschastnyĭ, A P; Trotsenko, Iu A

    2010-01-01

    It is shown that neutrophilic methylobacteria Methylophaga thalassica and M. marina have higher rates of growth and ectoin accumulation compared to the haloalkaliphilic species M. alcalica and M. natronia and methanotrophs Methylomicrobium alcaliphilum and M. kenyense. The conditions of M. thalassica cultivation in methanol-containing medium were optimized. The yield of this process reached 60 g/l of absolutely dry biomass containing 15-19% (9-11 g/l) ectoine. The scheme of ectoin isolation from the biomass by extraction and subsequent purification, which allowed obtaining preparations of different degree of purity, was developed.

  17. Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria.

    PubMed

    Mortazavi, V; Nahrkhalaji, M Mehdikhani; Fathi, M H; Mousavi, S B; Esfahani, B Nasr

    2010-07-01

    The aim of this work was to evaluate the antibacterial effect of bioactive glass nanopowders. The 58S, 63S, and 72S compositions were prepared via the sol-gel technique. Characterization techniques such as X-ray diffraction, transmission electron microscopy (TEM), Zetasizer, and X-ray fluorescent were used. The antibacterial activity was studied using Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus. Cytotoxicity of the samples was evaluated using mouse fibroblast L929 cell line. The chemical compositions of the prepared samples were as predicted, and the particle size of the samples with an amorphous structure mainly ranged over 20-90 nm. At broth concentrations below 50 mg/mL, they showed no antibacterial activity. The 58S showed the highest antibacterial activity with the minimum bactericidal concentrations of 50 and 100 mg/mL for E. coli plus S. aureus and for P. aeruginosa, respectively. The 63S exhibited bactericidal and bacteriostatic effects on E. coli and S. aureus at concentrations of 100 and 50 mg/mL, respectively, at an minimum bactericidal concentrations of 100 mg/mL. However, 72S bioactive glass nanopowder showed no antibacterial effect. They showed no cytotoxicity. It was concluded that bioactive glass nanopowders could be considered as good candidates for the treatment of oral bone defects and root canal disinfection. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  18. Enhancing Natural Attenuation through Bioaugmentation with Aerobic Bacteria that Degrade cis-1,2-Dichloroethene

    DTIC Science & Technology

    2010-05-01

    cDCE cis-1,2-dichloroethene cfu colony forming units CMO cyclohexanone monooxygenase DCA 1,2-dichloroethane DNA deoxyribonucleic acid...of JS666) and (2) cyclohexanone monooxygenase (CMO) (based on the cyclohexanone monooxygenase gene of JS666). Additionally, a putative universal (UNI...molecular probes (one based on the isocitrate lyase gene and one based on the cyclohexanone monooygenase gene). In addition, JS666 activity and

  19. Enhancing Natural Attenuation Through Bioaugmentation with Aerobic Bacteria that Degrade cDCE

    DTIC Science & Technology

    2010-05-01

    colony forming units CMO cyclohexanone monooxygenase DCA 1,2-dichloroethane DNA deoxyribonucleic acid DO dissolved oxygen DoD Department...based probes were developed at Cornell University: (1) isocitrate lyase (ISO) (based on the isocitrate lyase gene of JS666) and (2) cyclohexanone ...monooxygenase (CMO) (based on the cyclohexanone monooxygenase gene of JS666). Additionally, a putative universal (UNI) probe was employed that was intended

  20. Enhancing Natural Attenuation through Bioaugmentation with Aerobic Bacteria that Degrade cis-1,2-Dichloroethene

    DTIC Science & Technology

    2010-01-01

    Force Base bp base pair cDCE cis-1,2-dichloroethene cells/mL Cells per milliliter cfu Colony forming units CMO cyclohexanone monooxygenase...half-strength nutrients from Stanier’s minimal salts base (Stanier et al., 1966) with cyclohexanone (5 mM) as the carbon source. The slow growth on...and high cost of pure cDCE dictated that the bulk of the growth be done on an alternative substrate such as cyclohexanone , which did not inhibit

  1. Enhancing Natural Attenuation Through Bioaugmentation with Aerobic Bacteria that Degrade Cis-1,2-Dichloroethene

    DTIC Science & Technology

    2008-08-01

    serum vials (Wheaton) with 100 ml of liquid and 60 ml of headspace (air plus excess oxygen). Teflon-coated butyl rubber stoppers were crimp-sealed to...comparing the peak areas from a 100-µL headspace sample to cDCE standards prepared in water with the same liquid -to-headspace ratio. An Eppendorf...conducted in 100-ml liquid volumes in 160-ml glass serum bottles fitted with Teflon-lined, butyl-rubber stoppers and aluminum crimp-caps as described

  2. Enhancing Natural Attenuation Through Bioaugmentation with Aerobic Bacteria that Degrade Cis-1,2-Dichloroethene

    DTIC Science & Technology

    2008-04-01

    liquid volumes as the unknown samples. Standards on pure oxygen and pure carbon dioxide were also created. This was done by purging 160-ml glass...that contained MSM with cDCE as the sole carbon source. Experiments were carried out in 160-ml serum vials (Wheaton) with 100 ml of liquid and 60...headspace sample to cDCE standards prepared in water with the same liquid -to-headspace ratio. An Eppendorf Biophotometer was used to measure the optical

  3. Characterization of aerobic oil and grease-degrading bacteria in wastewater.

    PubMed

    Nzila, Alexis; Thukair, Assad; Sankara, Saravanan; Abdur Razzak, Shaikh

    2017-03-01

    A bacterial consortium that degrades cooking oil (CO) has been isolated in wastewater (WW) samples, by enrichment in olive CO. This consortium could degrade 90% of CO within 7-9 days (from an initial 1% [w/v]), and it is more active at alkaline conditions. The 16S ribonucleic acid (RNA) gene analysis showed that it contains five bacterium species: Stenotrophomonas rhizophila, Sphingobacterium sp., Pseudomonas libanensis, Pseudomonas poae and Pseudomonas aeruginosa. This consortium can degrade the free fatty acids (FFA): palmitic, stearic, oleic, linoleic and linolenic acids; glycerol, glucose and amylose; and albumin, but could not efficiently degrade carboxymethyl-cellulose. Each strain could also degrade CO and FFAs. The level of bacterial crude-activity of extracellular lipases was found to be between 0.2 and 4U/ml. Using synthetic WW, the consortium could reduce 80% of the chemical oxygen demand [from 10550 ± 2828 mg/l], 80% of nitrogen (from 410 ± 78 mgl/l) and 57% of phosphorus (from 93 ± 25 mg/l). Thus, this consortium can be utilized in the removal of CO from WW.

  4. Protection of probiotic bacteria in a synbiotic matrix following aerobic storage at 4 deg C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The survival of single strains of Bifidobacterium breve, Bifidobacterium longum, Lactobacillus acidophilus, and Lactobacillus reuteri was investigated in synbiotics that included 10 mg/mL of fructo-oligosaccharides, inulin and pectic-oligosaccharides in an alginate matrix under refrigerated (4 C) ae...

  5. Biodegradation of Benzene by Halophilic and Halotolerant Bacteria under Aerobic Conditions

    PubMed Central

    A. Nicholson, Carla; Z. Fathepure, Babu

    2004-01-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment. PMID:14766609

  6. Use of a foaming disinfectant and cleaner to reduce aerobic bacteria on poultry transport coops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry transportation coops are rarely washed and have been demonstrated to be a point of cross-contamination of broiler carcasses. Foaming disinfectants and cleaners, commonly used within processing plants, may be used to clean and disinfect poultry transportation coops. In this study, homogeniz...

  7. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates

    NASA Astrophysics Data System (ADS)

    Patterson, B. M.; Aravena, R.; Davis, G. B.; Furness, A. J.; Bastow, T. P.; Bouchard, D.

    2013-10-01

    A field-based investigation was conducted at a contaminated site where the vadose zone was contaminated with a range of chlorinated hydrocarbons. The investigation consisted of groundwater and multilevel soil-gas monitoring of a range of contaminants and gases, along with isotope measurements and microbiology studies. The investigation provided multiple lines of evidence that demonstrated aerobic biodegradation of vinyl chloride (VC) was occurring in the vadose zone (i) above the on-site source zone, and (ii) above the downgradient off-site groundwater plume location. Data from both the on-site and off-site locations were consistent in showing substantially greater (an order of magnitude greater) rates of VC removal from the aerobic vadose zone compared to more recalcitrant contaminants trichloroethene (TCE) and tetrachloroethene (PCE). Soil gas VC isotope analysis showed substantial isotopic enrichment of VC (δ13C - 5.2 to - 10.9‰) compared to groundwater (δ13C - 39.5‰) at the on-site location. Soil gas CO2 isotope analysis at both locations showed that CO2 was highly isotopically depleted (δ13C - 28.8 to - 33.3‰), compared to soil gas CO2 data originating from natural sediment organic matter (δ13C = - 14.7 to - 21.3‰). The soil gas CO2 δ13C values were consistent with near-water table VC groundwater δ13C values (- 36.8 to - 39.5‰), suggesting CO2 originating from aerobic biodegradation of VC. Bacteria that had functional genes (ethene monooxygenase (etnC) and epoxyalkane transferase (etnE) involved in ethene metabolism and VC oxidation were more abundant at the source zone where oxygen co-existed with VC. The distribution of VC and oxygen vadose zone vapour plumes, together with long-term changes in soil gas CO2 concentrations and temperature, provided information to elucidate the factors controlling aerobic biodegradation of VC in the vadose zone. Based on the overlapping VC and oxygen vadose zone vapour plumes, aerobic vapour biodegradation

  8. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates.

    PubMed

    Patterson, B M; Aravena, R; Davis, G B; Furness, A J; Bastow, T P; Bouchard, D

    2013-10-01

    A field-based investigation was conducted at a contaminated site where the vadose zone was contaminated with a range of chlorinated hydrocarbons. The investigation consisted of groundwater and multilevel soil-gas monitoring of a range of contaminants and gases, along with isotope measurements and microbiology studies. The investigation provided multiple lines of evidence that demonstrated aerobic biodegradation of vinyl chloride (VC) was occurring in the vadose zone (i) above the on-site source zone, and (ii) above the downgradient off-site groundwater plume location. Data from both the on-site and off-site locations were consistent in showing substantially greater (an order of magnitude greater) rates of VC removal from the aerobic vadose zone compared to more recalcitrant contaminants trichloroethene (TCE) and tetrachloroethene (PCE). Soil gas VC isotope analysis showed substantial isotopic enrichment of VC (δ¹³C -5.2 to -10.9‰) compared to groundwater (δ¹³C -39.5‰) at the on-site location. Soil gas CO₂ isotope analysis at both locations showed that CO₂ was highly isotopically depleted (δ¹³C -28.8 to -33.3‰), compared to soil gas CO₂ data originating from natural sediment organic matter (δ¹³C= -14.7 to -21.3‰). The soil gas CO2 δ¹³C values were consistent with near-water table VC groundwater δ¹³C values (-36.8 to -39.5‰), suggesting CO₂ originating from aerobic biodegradation of VC. Bacteria that had functional genes (ethene monooxygenase (etnC) and epoxyalkane transferase (etnE)) involved in ethene metabolism and VC oxidation were more abundant at the source zone where oxygen co-existed with VC. The distribution of VC and oxygen vadose zone vapour plumes, together with long-term changes in soil gas CO₂ concentrations and temperature, provided information to elucidate the factors controlling aerobic biodegradation of VC in the vadose zone. Based on the overlapping VC and oxygen vadose zone vapour plumes, aerobic vapour

  9. [Distribution of potentially nitrogen-fixing bacteria and its relationship with physicochemical parameters in soils with three vegetation types in the southern Colombian Amazon region].

    PubMed

    Mantilla-Paredes, Andrea J; Cardona, Gladys I; Peña-Venegas, Clara P; Murcia, Uriel; Rodríguez, Mariana; Zambrano, Maria M

    2009-12-01

    Potentially nitrogen-fixing microaerobic and aerobic bacteria were isolated from several Colombian Amazon soils (forest, pastures and chagras) and two landscapes (floodable and non floodable areas). The abundance and distribution of bacteria were evaluated, as well as their relationship with soil physical and chemical characteristics. Landscape had a direct influence on the abundance of the microaerobic bacteria, with higher numbers in forest and pasture soils in non-floodable zones. The aerobic isolates (N=51) were grouped into 19 morphologies, with the highest numbers found in forest soil in floodable zones. A higher number of aerobic morphologies was shared among forest sites (Nonmetric Multidimensional Scaling and Analysis of Similarity p<0.05), and 40% of the distribution was explained by lime percentage and Al concentration.

  10. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides.

    PubMed

    Schellenberger, Stefanie; Drake, Harold L; Kolb, Steffen

    2012-02-01

    Herbicides have the potential to impair the metabolism of soil microorganisms. The current study addressed the toxic effect of bentazon and 4-chloro-2-methylphenoxyacetic acid on aerobic and anaerobic Bacteria that are involved in cellulose and cellobiose degradation in an agricultural soil. Aerobic saccharide degradation was reduced at concentrations of herbicides above environmental values. Microbial processes (e.g. fermentations, ferric iron reduction) that were linked to anaerobic cellulose and cellobiose degradation were reduced in the presence of both herbicides at concentrations above and at those that occur in crop field soil. 16S rRNA gene transcript numbers of total Bacteria, and selected bacterial taxa (Clostridia [Group I], Planctomycetaceae, and two uncultivated taxa of Bacteroidetes) decreased more in anoxic than in oxic cellulose-supplemented soil microcosms in the presence of both herbicides. Collectively, the results suggested that the metabolism of anaerobic cellulose-degrading Bacteria was impaired by typical in situ herbicide concentrations, whereas in situ concentrations did not impair metabolism of aerobic cellulose- and cellobiose-degrading soil Bacteria.

  11. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  12. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For