Sample records for aerobic spore-forming bacteria

  1. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  2. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  3. Aerobic spore-forming bacteria for assessing quality of drinking water produced from surface water.

    PubMed

    Mazoua, Stephane; Chauveheid, Eric

    2005-12-01

    Cryptosporidium and Giardia represent a major microbiological issue for drinking water production from surface water. As their monitoring through a treatment process is rather tedious and as low-concentration goals should be reached for drinking water, aerobic spore-forming bacteria (ASFB) have been studied as an indicator microorganism for a drinking water treatment plant using surface water. The results reveal that monitoring naturally occurring ASFB better highlights daily achievable performances and identifies unusual process events for global disinfection, for both physical and chemical treatment steps in a multi-barrier drinking water treatment plant. Advantages of ASFB over usual process parameters are that these microorganisms are more sensitive to process fluctuations. The use of ASFB also showed that the efficiency of ozone disinfection is not as significantly influenced by the water temperature as reported, despite similar or higher CT values applied during warmer periods. Thus, the disinfection of resistant microorganisms with ozone can also be an efficient process at lower water temperature. ASFB have been shown to be a conservative indicator for Cryptosporidium and Giardia up to a 1st stage filtration and the ASFB Log removals can be used to estimate Log removals for Cryptosporidium and Giardia: compared to ASFB, the Log removals for Cryptosporidium or Giardia are at least equal or 50% higher, respectively. Thus, the monitoring of ASFB along a drinking water treatment process could be a useful tool for performing risk analysis for parasites such as Cryptosporidium and Giardia, and would further allow integration of daily variability into a risk analysis.

  4. Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium.

    PubMed

    Pugin, Benoît; Blamey, Jenny M; Baxter, Bonnie K; Wiegel, Juergen

    2012-09-01

    Novel strains of facultatively aerobic, moderately alkaliphilic and facultatively halophilic bacteria were isolated from a sediment sample taken from the Southern Arm of Great Salt Lake, Utah. Cells of strain JW/BP-GSL-QD(T) (and related strains JW/BP-GSL-RA and JW/BP-GSL-WB) were rod-shaped, spore-forming, motile bacteria with variable Gram-staining. Strain JW/BP-GSL-QD(T) grew under aerobic conditions between 14.5 and 47 °C (optimum 39 °C), in the pH(37 °C) range 6.5-10.3 (optimum pH(37 °C) 8.0), and between 0.1 and 4.5 M Na(+) (optimum 0.9 M Na(+)). No growth was observed in the absence of supplemented Na(+). Strain JW/BP-GSL-QD(T) utilized L-arabinose, D-fructose, D-galactose, D-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylitol and D-xylose under both aerobic and anaerobic conditions, and used ethanol and methanol only under aerobic conditions. Strains JW/BP-GSL-WB and JW/BP-GSL-RA had the same profiles except that methanol was not used aerobically. During growth on glucose, the major organic compounds formed under aerobic conditions were acetate and lactate, and under anaerobic conditions, the fermentation products were formate, acetate, lactate and ethanol. Oxidase and catalase activities were not detected and cytochrome was absent. No respiratory quinones were detected. The main cellular fatty acids were iso-C(15 : 0) (39.1 %) and anteiso-C(15 : 0) (36.3 %). Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid. Additionally, a small amount of an unknown glycolipid was detected. The DNA G+C content of strain JW/BP-GSL-QD(T) was 35.4 mol% (determined by HPLC). For strain JW/BP-GSL-QD(T) the highest degree of 16S rRNA gene sequence similarity was found with Amphibacillus jilinensis (98.6 %), Amphibacillus sediminis (96.7 %) and Amphibacillus tropicus (95.6 %). The level of DNA-DNA relatedness between strain JW/BP-GSL-QD(T) and A. jilinensis Y1

  5. Contamination pathways of spore-forming bacteria in a vegetable cannery.

    PubMed

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne

    2015-06-02

    Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    PubMed

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  7. The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria.

    PubMed

    Clark, Billy R; Pantoya, Michelle L

    2010-10-21

    The threat of biological weapons is a major concern in the present day and has led to studying methods to neutralize spore forming bacteria. A new technique involves the use of a thermite reaction that exhibits biocidal properties to limit bacterial growth. The objective was to examine the influence on bacteria growth upon spore exposure to thermite reactions with and without biocidal properties. Three thermites are considered: two that have biocidal properties (aluminium (Al) combined with iodine pentoxide (I(2)O(5)) and Al combined with silver oxide (Ag(2)O)); and, one that produces a highly exothermic reaction but has no biocidal properties (Al combined with iron oxide (Fe(2)O(3))). Results show that Al + I(2)O(5) is extremely effective at neutralizing spores after only one hour of exposure. The temperature generated by the reaction was not determined to be an influential factor affecting spore growth kinetics. Further analysis of the thermite reactions revealed that the Al + I(2)O(5) reaction produces iodine gas that effectively interacts with the spores and neutralizes bacteria growth, while the Al + Ag(2)O reaction temperature does not vaporize silver. In the condensed phase silver does not interact with the spores enough to neutralize bacteria growth. This study gives evidence that a thermite can be used as a stable transportation and delivery system for biocidal gas.

  8. UV-Resistant Non-Spore-Forming Bacteria From Spacecraft-Assembly Facilities

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri

    2008-01-01

    Four species of non-spore-forming bacteria collected from clean-room surfaces in spacecraft-assembly facilities could survive doses of ultraviolet (UV) radiation that would suffice to kill most known cultivable bacterial species. In a previous study, high UV resistance was found in spores of the SAFR-032 strain of Bacillus pumilus, as reported in "Ultraviolet- Resistant Bacterial Spores," NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 94. These studies are parts of a continuing effort to understand the survival of hardy species of bacteria under harsh conditions, and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could in turn interfere with future life detection missions. The four species investigated were Arthrobacter sp. KSC_Ak2i, Microbacterium schleiferi LMA_AkK1, Brevundimonas diminuta KSC_Ak3a, and Sphingomonas trueperi JSC_Ak7-3. In the study, cells of these species were mixed into Atacama Desert soil (to elucidate the shadowing effect of soil particles) and the resulting mixtures were tested both in solution and in a desiccated state under simulated Martian atmospheric and UV conditions. The UV-survival indices of Arthrobacter sp. and Microbacterium schleiferi were found to be comparable to those of Bacillus pumilus spores.

  9. Development of a filter to prevent infections with spore-forming bacteria in injecting drug users.

    PubMed

    Alhusein, Nour; Scott, Jenny; Kasprzyk-Hordern, Barbara; Bolhuis, Albert

    2016-12-01

    In heroin injectors, there have been a number of outbreaks caused by spore-forming bacteria, causing serious infections such as anthrax or botulism. These are, most likely, caused by injecting contaminated heroin, and our aim was to develop a filter that efficiently removes these bacteria and is also likely to be acceptable for use by people who inject drugs (i.e. quick, simple and not spoil the hit). A prototype filter was designed and different filter membranes were tested to assess the volume of liquid retained, filtration time and efficiency of the filter at removing bacterial spores. Binding of active ingredients of heroin to different types of membrane filters was determined using a highly sensitive analytical chemistry technique. Heroin samples that were tested contained up to 580 bacteria per gramme, with the majority being Bacillus spp., which are spore-forming soil bacteria. To remove these bacteria, a prototype filter was designed to fit insulin-type syringes, which are commonly used by people who inject drugs (PWIDs). Efficient filtration of heroin samples was achieved by combining a prefilter to remove particles and a 0.22 μm filter to remove bacterial spores. The most suitable membrane was polyethersulfone (PES). This membrane had the shortest filtration time while efficiently removing bacterial spores. No or negligible amounts of active ingredients in heroin were retained by the PES membrane. This study successfully produced a prototype filter designed to filter bacterial spores from heroin samples. Scaled up production could produce an effective harm reduction tool, especially during outbreaks such as occurred in Europe in 2009/10 and 2012.

  10. Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment.

    PubMed

    Gauvry, Emilie; Mathot, Anne-Gabrielle; Leguérinel, Ivan; Couvert, Olivier; Postollec, Florence; Broussolle, Véronique; Coroller, Louis

    2017-05-01

    Spore-forming bacteria are able to grow under a wide range of environmental conditions, to form biofilms and to differentiate into resistant forms: spores. This resistant form allows their dissemination in the environment; consequently, they may contaminate raw materials. Sporulation can occur all along the food chain, in raw materials, but also in food processes, leading to an increase in food contamination. However, the problem of sporulation during food processing is poorly addressed and sporulation niches are difficult to identify from the farm to the fork. Sporulation is a survival strategy. Some environmental factors are required to trigger this differentiation process and others act by modulating it. The efficiency of sporulation is the result of the combined effects of these two types of factors on vegetative cell metabolism. This paper aims to explain and help identify sporulation niches in the food chain, based on features of spore-former physiology. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Sterilization Efficiency of Spore forming Bacteria in Powdery Food by Atmospheric Pressure Plasmas Sterilizer

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Tanaka, Masashi; Kikuchi, Yusuke

    2015-09-01

    To provide food sterilization method capable of killing highly heat resistant spore forming bacteria, we have studied effects of plasma treatment method at atmospheric pressure in order to develop a new high speed plasma sterilization apparatus with a low cost and a high efficiency. It is also difficult even for the plasma treatment to sterilize powdery food including spices such as soybean, basil and turmeric. This paper describes that an introduction of mechanical rotation of a treatment space increases the efficiency so that perfect inactivation of spore forming bacteria in these materials by a short treatment time has been demonstrated in our experiments. We also will discuss the sterilization mechanism by dielectric barrier discharge.

  12. The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry.

    PubMed

    Gopal, Nidhi; Hill, Colin; Ross, Paul R; Beresford, Tom P; Fenelon, Mark A; Cotter, Paul D

    2015-01-01

    Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry.

  13. The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry

    PubMed Central

    Gopal, Nidhi; Hill, Colin; Ross, Paul R.; Beresford, Tom P.; Fenelon, Mark A.; Cotter, Paul D.

    2015-01-01

    Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry. PMID:26733963

  14. Spore-forming organisms in platelet concentrates: a challenge in transfusion bacterial safety.

    PubMed

    Störmer, M; Vollmer, T; Kleesiek, K; Dreier, J

    2008-12-01

    Bacterial detection and pathogen reduction are widely used methods of minimizing the risk of transfusion-transmitted bacterial infection. But, bacterial spores are highly resistant to chemical and physical agents. In this study, we assessed the bacterial proliferation of spore-forming organisms seeded into platelet concentrates (PCs) to demonstrate that spores can enter the vegetative state in PCs during storage. In the in vitro study, PCs were inoculated with 1-10 spores mL(-1)of Bacillus cereus (n = 1), Bacillus subtilis (n = 2) and Clostridium sporogenes (n = 2). Sampling was performed during 6-day aerobic storage at 22 degrees C. The presence of bacteria was assessed by plating culture, automated culture and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Spores of the C. sporogenes do not enter the vegetative phase under PC storage conditions, whereas B. subtilis and B. cereus showed growth in the PC and could be detected using RT-PCR and automated culture. Depending on the species and inoculums, bacterial spores may enter the vegetative phase during PC storage and can be detected by bacterial detection methods.

  15. The structural bases of long-term anabiosis in non-spore-forming bacteria

    NASA Astrophysics Data System (ADS)

    Suzina, Natalia E.; Mulyukin, Andrey L.; Dmitriev, Vladimir V.; Nikolaev, Yury A.; Shorokhova, Anna P.; Bobkova, Yulia S.; Barinova, Ekaterina S.; Plakunov, Vladimir K.; El-Registan, Galina I.; Duda, Vitalii I.

    2006-01-01

    Peculiarities of the structural organization in non-spore-forming bacteria associated with long-term anabiosis were revealed both in laboratory cultures and in natural populations isolated from 1 3-Myr-old Eastern Siberian permafrost and tundra soil. Different advanced methods were used, including (a) high-resolution electron microscopy; (b) simulation of in situ conditions in the laboratory by varying the composition of growth medium and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural soils; (d) comparative morphological analysis of microbial cells in model cultures and natural soils (in situ). Under laboratory conditions, the intense formation of resting cells by representatives of various taxa of eubacteria and halophilic archaea occurred in 2 9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-limited media, in starved cell suspensions in the presence of sodium silicate, or on soil agar. Among resting cells, we revealed cystlike forms having a complicated structure and common features. These included a thick capsule; a thickened and multiprofile cell wall; the presence of large intramembrane particles on PF- and EF-fracture surfaces; fine-grained or lumpy cytoplasm; and a condensed nucleoid. The general morphological properties, ultrastructural organization, physiological features of cystlike cells, and their ability to germinate under the appropriate conditions suggest the existence of constitutive dormancy in non-spore-forming bacteria. It was found that the majority of microorganisms in permafrost and tundra soil are cystlike cells, very similar to those in laboratory cultures. Anabiotic (resting) cystlike cells are responsible for the survival of non-spore-formers in extreme Earth habitats and may be regarded as possible analogs of extraterrestrial forms of microbial life.

  16. Acid and bile tolerance of spore-forming lactic acid bacteria.

    PubMed

    Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A

    2000-11-01

    Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).

  17. Effectiveness of high energy electron beam against spore forming bacteria and viruses in slurry

    NASA Astrophysics Data System (ADS)

    Skowron, Krzysztof; Paluszak, Zbigniew; Olszewska, Halina; Wieczorek, Magdalena; Zimek, Zbigniew; Śrutek, Mścisław

    2014-08-01

    The aim of this study was to evaluate the efficacy of high energy electron beam effect against the most resistant indicators - spore forming bacteria (Clostridium sporogenes) and viruses (BPV) - which may occur in slurry. The applied doses of electron beam were 0, 1, 2, 3, 5, 7, 10 and 12 kGy. The theoretic inactivating dose of high energy electron beam for Clostridium sporogenes spores calculated based on the polynomial curve equation was 11.62 kGy, and determined on the basis of regression line equation for BPV virus was equal 23.49 kGy. The obtained results showed a quite good effectiveness of irradiation in bacterial spores inactivation, whereas relatively poor against viruses.

  18. Interaction of aerobic soil bacteria with plutonium(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panak, Petra J.; Nitsche, Heino

    2000-08-22

    We studied the interaction of Pu(VI) with Pseudomonas stutzeri ATCC 17588 and Bacillus sphaericus ATCC 14577, representatives of the main aerobic groups of soil bacteria present in the upper soil layers. The accumulation studies have shown that these soil bacteria accumulate high amounts of Pu(VI). The sorption efficiency toward Pu(VI) decreased with increasing biomass concentration due to increased agglomeration of the bacteria resulting in a decreased total surface area and number of available complexing groups. Spores of Bacillus sphaericus showed a higher biosorption than the vegetative cells at low biomass concentration which decreased significantly with increasing biomass concentration. At highermore » biomass concentrations (> 0.7 g/L), the vegetative cells of both strains and the spores of B. sphaericus showed comparable sorption efficiencies. Investigations on the pH dependency of the biosorption and extraction studies with 0.01 M EDTA solution have shown that the biosorption of plutonium is a reversible process and the plutonium is bound by surface complexation. Optical absorption spectroscopy showed that one third of the initially present Pu(VI) was reduced to Pu(V) after 24 hours. Kinetic studies and solvent extraction to separate different oxidation states of Pu after contact with the biomass provided further information on the yield and the kinetics of the bacteria-mediated reduction. Long-term studies showed that also 16% of Pu(IV) was formed after one month. The comparison of the amount of Pu(IV) formed during that time period with literature data of the Pu(V) disproportionation, indicated that the Pu(IV) seemed to be rather the result of the disproportionation of the formed Pu(V) than of a further microbial reduction.« less

  19. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders.

    PubMed

    Sadiq, Faizan A; Flint, Steve; Yuan, Lei; Li, Yun; Liu, TongJie; He, GuoQing

    2017-12-04

    Biofilms on the surface of dairy manufacturing plants are potential reservoirs of microbial contamination. These microbial aggregates may harbour pathogenic and spoilage organisms which contaminate dairy products. The biofilm forming capacity of many spore forming isolates of dairy origin has not been given much attention. The present study explored the biofilm forming potential of 148 isolates, comprising mesophilic and thermophilic bacteria, with particular emphasis on Bacillus licheniformis on polystyrene and stainless steel (SS) surfaces. We concluded that only four species are of significance for biofilm development on the surface of SS in the presence of skimmed milk, namely, B. licheniformis, Geobacillus stearothermophilus, Geobacillus thermoleovorans group and Anoxybacillus flavithermus. The maximum number of cells recovered from the biofilms developed on SS coupons in the presence of skimmed milk for these four species was as follows: 4.8, 5.2, 4.5 and 5.3logCFU/cm 2 , respectively. Number of cells recovered from biofilms on 1cm 2 SS coupons increased in the presence of tryptic soy broth (TSB) for all mesophiles including B. licheniformis, while decreased for G. stearothermophilus, G. thermoleovorans group and A. flavithermus. The crystal violet staining assay on polystyrene proved to be inadequate to predict cell counts on SS for the bacteria tested in our trial in the presence of either TSB or skimmed milk. The results support the idea that biofilm formation is an important part of bacterial survival strategy as only the most prevalent isolates from milk powders formed good biofilms on SS in the presence of skimmed milk. Biofilm formation also proved to be a strain-dependent characteristic and interestingly significant variation in biofilm formation was observed within the same RAPD groups of B. licheniformis which supports the previously reported genetic and phenotypic heterogeneity within the same RAPD based groups. The work reported in this manuscript

  20. The structural bases of long-term anabiosis in non-spore-forming bacteria

    NASA Astrophysics Data System (ADS)

    Suzina, N. E.; Mulyukin, A. L.; Dmitriev, V. V.; Nikolaev, Yu. A.; Plakunov, V. K.; El-Registan, G. I.; Duda, V. I.

    Peculiarities of the structural and functional organization related to extended and long-term anabiosis were revealed for non-spore-forming bacteria both in stored laboratory cultures and natural substrates: (1) 1-3-Myr-old Eastern Siberian permafrost, (2) tundra soils, and (3) oil slurry. Different advanced or specially designed methods were used such as (a) high-resolution electron microscopy; (b) simulation of in situ conditions in laboratory by varying of growth composition media and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural substrates; (d) specimen selection and preparation; (e) comparative ultrastructural and morphometric analysis of microbial cells in model cultures and natural substrates (in situ). Under laboratory conditions, the intense formation of anabiotic (resting) cells by representatives of various taxa of eubacteria and halophilic archaea were observed in 2-9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-deficient media, in starved cell suspensions in the presence of sodium silicate at environmentally occurring concentrations, or on soil agar. Among resting cells were revealed cyst-like forms possessing the complicated structure. The most common peculiarities of cyst-like resting cells were thick and distinguishable capsule; thickened and multilamellar cell wall with 1 to 3 de novo synthesized murein layers; large intramembrane particles on PF- and EF-fractures; finely granulated or coarse textured cytoplasm; condensed nucleoid. The data of morphological and ultrastructural analyses of cyst-like cells, as well as their experimentally proved resistance to prolonged desiccation, heat shock, etc. and the ability to germinate under the effect of lysozyme, gives an evidence for constitutive dormancy in the studied non-spore-forming bacteria at least. Noteworthy, it was found that the majority of microorganisms in permafrost, tundra soils, and oil slurry was presented

  1. Lipoquinones of some spore-forming rods, lactic-acid bacteria and actinomycetes.

    PubMed

    Hess, A; Holländer, R; Mannheim, W

    1979-11-01

    The respiratory quinones of 73 strains of Gram-positive bacteria including spore-forming rods, lactic-acid bacteria and actinomyctes were examined. Menaquinones with seven isoprenoid units (MK-7) were the main quinone type found in representatives of the genus Bacillus and in Sporolactobacillus inulinus. However, a strain of B. thuringiensis produced MK-8 in addition to MK-7, and strains of B. lentus and B. pantothenticus appeared to produce MK-9 and MK-8, respectively, with no MK-7. In the clostridia and lactic-acid bacteria, no quinones were found, except in Pediococcus cerevisiae NCTC 8066 and Lactobacillus casei subsp. rhamnosus ATCC 7469, which contained menaquinones, and Streptococcus faecalis NCTC 775 and HIM 478-1, which contained demethylmenaquinones, in relatively low concentrations. Menaquinones were also found in the actinomycetes (except Actinomyces odontolyticus and Bifidobacterium bifidum which did not produce any quinones) and in Protaminobacter alboflavus ATCC 8458, the so-called Actinobacillus actinoides ATCC 15900 and Noguchia granulosis NCTC 10559.

  2. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    PubMed Central

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  3. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    DTIC Science & Technology

    2015-07-01

    Bacteria Spore Gas Antibacterial Thermal Unclassified Unclassified Unclassified SAR 47 Suhithi Peiris...naturally antibacterial and biocidal properties using combustion synthesis of mildly energetic reactants; and, (2) engineering an aerosolized spray...of biocidal gases using unique a deflagration synthesis approach. Accomplishments for all years: Major Activity 1: Creating highly porous

  4. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies.

    PubMed

    Headd, Brendan; Bradford, Scott A

    2016-03-01

    Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport. Published by Elsevier Ltd.

  5. Effects of disinfectant fogging procedure on dust, ammonia concentration, aerobic bacteria and fungal spores in a farrowing-weaning room.

    PubMed

    Costa, Annamaria; Colosio, Claudio; Gusmara, Claudia; Sala, Vittorio; Guarino, Marcella

    2014-01-01

    In the last decades, large-scale swine production has led to intensive rearing systems in which air quality can be easily degraded by aerial contaminants that can pose a health risk to the pigs and farm workers. This study evaluated the effects of fogging disinfectant procedure on productive performance, ammonia and dust concentration, aerobic bacteria and fungal spores spreading in the farrowing-weaning room. This trial was conducted in 2 identical farrowing-weaning rooms of a piggery. In both rooms, 30 pregnant sows were lodged in individual cages. At 75 days of age, the piglets were moved to the fattening room. In the treated room, with the birth of the first suckling-pig, the fogging disinfection with diluted Virkon S was applied once a day in the experimental room per 15 minutes at 11:00. The fogging disinfectant treatment was switched between rooms at the end of the first trial period. Temperature, relative humidity, dust (TSP-RF fractions and number of particles), ammonia concentration and aerial contaminants (enterococci, Micrococcaeae and fungal spores) were monitored in both rooms. Ammonia concentration reduction induced by fogging disinfection was estimated 18%, total suspended particles and the respirable fraction were significantly lower in the experimental room. Fungal spores resulted in a significant reduction by the fogging procedure, together with dust respirable fraction and fine particulate matter abatement. The fogging disinfection procedure improved air quality in the piggery, thereby enhancing workers and animals health.

  6. Discrimination of Spore-Forming Bacilli Using spoIVA

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; LaDuc, Myron; Stuecker, Tara

    2009-01-01

    A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions). In some environments, spore-forming bacteria constitute small fractions of the total bacterial populations. The use of sporulation-specific primers in Q-PCR affords the ability to assess the spore-forming fraction of a bacterial population present in an environment of interest. This assessment can provide a more thorough and accurate understanding of the bacterial contamination in the environment, thereby making it possible to focus contamination- testing, contamination-prevention, sterilization, and decontamination resources more economically and efficiently. The method includes the use of sporulation-specific primers in the form of designed, optimized deoxyribonucleic acid (DNA) oligonucleotides specific for the bacterial spoIVA gene (see table). [In "spoIVA," "IV" signifies Roman numeral four and the entire quoted name refers to gene A for the fourth stage of sporulation.] These primers are mixed into a PCR cocktail with a given sample of bacterial cells. A control PCR cocktail into which are mixed universal 16S rRNA primers is also prepared. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] Following several cycles of heating and cooling according to the PCR protocol to amplify amounts of DNA molecules, the amplification products can be analyzed to determine the types of bacterial cells present within the samples. If the amplification product is strong

  7. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  8. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations.

    PubMed

    Rozali, Siti N M; Milani, Elham A; Deed, Rebecca C; Silva, Filipa V M

    2017-12-18

    Spores are the most resistant form of microbial cells, thus difficult to inactivate. The pathogenic or food spoilage effects of certain spore-forming microorganisms have been the primary basis of sterilization and pasteurization processes. Thermal sterilization is the most common method to inactivate spores present on medical equipment and foods. High pressure processing (HPP) is an emerging and commercial non-thermal food pasteurization technique. Although previous studies demonstrated the effectiveness of thermal and non-thermal spore inactivation, the in-depth mechanisms of spore inactivation are as yet unclear. Live and dead forms of two food spoilage bacteria, a mould and a yeast were examined using scanning electron microscopy before and after the inactivation treatment. Alicyclobacillus acidoterrestris and Geobacillus stearothermophilus bacteria are indicators of acidic foods pasteurization and sterilization processes, respectively. Neosartorya fischeri is a phyto-pathogenic mould attacking fruits. Saccharomyces cerevisiae is a yeast with various applications for winemaking, brewing, baking and the production of biofuel from crops (e.g. sugar cane). Spores of the four microbial species were thermally inactivated. Spores of S. cerevisiae were observed in the ascus and free form after thermal and HPP treatments. Different forms of damage and cell destruction were observed for each microbial spore. Thermal treatment inactivated bacterial spores of A. acidoterrestris and G. stearothermophilus by attacking the inner core of the spore. The heat first altered the membrane permeability allowing the release of intracellular components. Subsequently, hydration of spores, physicochemical modifications of proteins, flattening and formation of indentations occurred, with subsequent spore death. Regarding N. fischeri, thermal inactivation caused cell destruction and leakage of intracellular components. Both thermal and HPP treatments of S. cerevisiae free spores attacked

  9. Spore-Forming Bacteria that Resist Sterilization

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron; Venkateswaran, Kasthuri

    2003-01-01

    A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

  10. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    PubMed Central

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  11. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    PubMed

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  12. Virgibacillus halophilus sp. nov., spore-forming bacteria isolated from soil in Japan.

    PubMed

    An, Sun-Young; Asahara, Mika; Goto, Keiichi; Kasai, Hiroaki; Yokota, Akira

    2007-07-01

    Two Gram-positive, round-spore-forming, rod-shaped, halophilic bacterial strains, 5B73C(T) and 5B133E, were isolated from field soil in Kakegawa, Shizuoka, Japan, and were characterized taxonomically using a polyphasic approach. These two strains were found to comprise strictly aerobic, motile rods that formed subterminal endospores. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains 5B73C(T) and 5B133E are phylogenetically affiliated to the genus Virgibacillus, exhibiting sequence similarities of 94.1-96.4 % with respect to the type strains of Virgibacillus species. The DNA G+C contents of strains 5B73C(T) and 5B133E were 42.6 and 42.3 mol%, respectively. The cell-wall peptidoglycan type (meso-diaminopimelic acid), the major cellular fatty acids (anteiso-C(15 : 0), iso-C(15 : 0), anteiso-C(17 : 0) and iso-C(16 : 0)) and the quinone type (MK-7) of the isolates support their affiliation to the genus Virgibacillus. On the basis of their genotypic and phenotypic characteristics, the isolates represent a novel species of the genus Virgibacillus, for which the name Virgibacillus halophilus sp. nov. is proposed. The type strain is 5B73C(T) (=IAM 15308(T)=KCTC 13935(T)).

  13. Low permeability to oxygen of a new barrier film prevents butyric acid bacteria spore formation in farm corn silage.

    PubMed

    Borreani, G; Tabacco, E

    2008-11-01

    The outgrowth of Clostridium spore-forming bacteria causes late blowing in cheeses. Recently, the role of air diffusion during storage and feed-out and the role of aerobic deterioration has been shown to indirectly favor butyric acid bacteria (BAB) growth and to determine the presence of high concentrations of BAB spores in farm tank milk. A new oxygen barrier (OB) film was tested and compared with conventional polyethylene (ST). The objective was to verify whether the OB film could prevent BAB spore formation in whole-crop corn silage during storage on 2 commercial farms with different potential silage spoilage risks. Two bunkers (farms 1 and 2) were divided into 2 parts along the length so that half the feed-out face would be covered with ST film and the other half with OB film. Plastic net bags with freshly chopped corn were buried in the upper layer and in the central part (CORE) of the bunkers. The silos were opened in summer and fed out at different removal rates (19 vs. 33 cm/d). Herbage at ensiling, silage at unloading, and silage after air exposure (6 and 15 d) were analyzed for pH, nitrate, BAB spores, yeasts, and molds. The BAB spores in herbages at ensiling were 2.84 log(10) most probable number (MPN)/g, with no differences between treatments or farms. Nitrate was below the detection limit on farm 1 and exceeded 2,300 mg/kg of fresh matter on farm 2. At unloading, the BAB spores in the ST silage on farm 1 were greater than 5 log(10) MPN/g, whereas in the CORE and the OB silages, they were approximately 2 log(10) MPN/g. The ST silage had the greatest pH (5.89), the greatest mold count (5.07 log(10) cfu/g), and the greatest difference between silage temperature and ambient temperature (dT(section-ambient)). On farm 2, the ST silage had the greatest concentration of BAB spores (2.19 log(10) MPN/g), the greatest pH (4.05), and the least nitrate concentration compared with the CORE and the OB silages. Pooled data on BAB spores collected from aerobically

  14. Pilot-scale investigation of sludge reduction in aerobic digestion system with endospore-forming bacteria.

    PubMed

    Seo, Kyu Won; Choi, Yong-Su; Gu, Man Bock; Kwon, Eilhann E; Tsang, Yiu Fai; Rinklebe, Jörg; Park, Chanhyuk

    2017-11-01

    A pilot-scale investigation of membrane-based aerobic digestion system dominated by endospore-forming bacteria was evaluated as one of the potential sludge treatment processes (STP). Most of the organic matter in the sludge was removed (90.1%) by the particular bacteria in the STP, which consisted of mixed liquor suspended solid (MLSS) contact reactor (MCR), MLSS oxidation reactor (MOR), and membrane bioreactor (MBR). The sludge was accumulated in the MBR without wasting, and then the effluent in STP was fed into the first step in water resource recovery facility (WRRF). According to the analysis of microbial communities in all reactors, various Bacillus species were present in the STP, mainly due to their intrinsic resistance to the extreme conditions. As the surviving Bacillus species might consume degraded microorganisms for their growth, these endospore-forming bacteria-based STP could be suitable for the sludge reduction when they operated for a long time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor

    PubMed Central

    Fang, Jiasong; Kato, Chiaki; Runko, Gabriella M.; Nogi, Yuichi; Hori, Tomoyuki; Li, Jiangtao; Morono, Yuki; Inagaki, Fumio

    2017-01-01

    Phylogenetically diverse microorganisms have been observed in marine subsurface sediments down to ~2.5 km below the seafloor (kmbsf). However, very little is known about the pressure-adapted and/or pressure-loving microorganisms, the so called piezophiles, in the deep subseafloor biosphere, despite that pressure directly affects microbial physiology, metabolism, and biogeochemical processes of carbon and other elements in situ. In this study, we studied taxonomic compositions of microbial communities in high-pressure incubated sediment, obtained during the Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula, Japan. Analysis of 16S rRNA gene-tagged sequences showed that members of spore-forming bacteria within Firmicutes and Actinobacteria were predominantly detected in all enrichment cultures from ~1.5 to 2.4 km-deep sediment samples, followed by members of Proteobacteria, Acidobacteria, and Bacteroidetes according to the sequence frequency. To further study the physiology of the deep subseafloor sedimentary piezophilic bacteria, we isolated and characterized two bacterial strains, 19R1-5 and 29R7-12, from 1.9 and 2.4 km-deep sediment samples, respectively. The isolates were both low G+C content, gram-positive, endospore-forming and facultative anaerobic piezophilic bacteria, closely related to Virgibacillus pantothenticus and Bacillus subtilis within the phylum Firmicutes, respectively. The optimal pressure and temperature conditions for growth were 20 MPa and 42°C for strain 19R1-5, and 10 MPa and 43°C for strain 29R7-12. Bacterial (endo)spores were observed in both the enrichment and pure cultures examined, suggesting that these piezophilic members were derived from microbial communities buried in the ~20 million-year-old coal-bearing sediments after the long-term survival as spores and that the deep biosphere may host more abundant gram-positive spore-forming bacteria and their spores than hitherto recognized. PMID:28220112

  16. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor.

    PubMed

    Fang, Jiasong; Kato, Chiaki; Runko, Gabriella M; Nogi, Yuichi; Hori, Tomoyuki; Li, Jiangtao; Morono, Yuki; Inagaki, Fumio

    2017-01-01

    Phylogenetically diverse microorganisms have been observed in marine subsurface sediments down to ~2.5 km below the seafloor (kmbsf). However, very little is known about the pressure-adapted and/or pressure-loving microorganisms, the so called piezophiles, in the deep subseafloor biosphere, despite that pressure directly affects microbial physiology, metabolism, and biogeochemical processes of carbon and other elements in situ . In this study, we studied taxonomic compositions of microbial communities in high-pressure incubated sediment, obtained during the Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula, Japan. Analysis of 16S rRNA gene-tagged sequences showed that members of spore-forming bacteria within Firmicutes and Actinobacteria were predominantly detected in all enrichment cultures from ~1.5 to 2.4 km-deep sediment samples, followed by members of Proteobacteria, Acidobacteria, and Bacteroidetes according to the sequence frequency. To further study the physiology of the deep subseafloor sedimentary piezophilic bacteria, we isolated and characterized two bacterial strains, 19R1-5 and 29R7-12, from 1.9 and 2.4 km-deep sediment samples, respectively. The isolates were both low G+C content, gram-positive, endospore-forming and facultative anaerobic piezophilic bacteria, closely related to Virgibacillus pantothenticus and Bacillus subtilis within the phylum Firmicutes, respectively. The optimal pressure and temperature conditions for growth were 20 MPa and 42°C for strain 19R1-5, and 10 MPa and 43°C for strain 29R7-12. Bacterial (endo)spores were observed in both the enrichment and pure cultures examined, suggesting that these piezophilic members were derived from microbial communities buried in the ~20 million-year-old coal-bearing sediments after the long-term survival as spores and that the deep biosphere may host more abundant gram-positive spore-forming bacteria and their spores than hitherto recognized.

  17. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  18. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  19. Endospore-forming filamentous bacteria symbiotic in termites: ultrastructure and growth in culture of Arthromitus

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Olendzenski, L.; Afzelius, B. A.

    1990-01-01

    Many morphologically distinguishable filamentous spore-forming bacteria symbiotic in the paunch (hypertrophied hindguts) of wood-eating insects have been seen since Arthromitus was first described and named as a plant by Leidy in 1850. Previous descriptions were inadequate for acceptance of the group in modern bacteriological literature. Twenty-two distinguishable arthromitids in nine different arthropod hosts are recorded on the basis of microscopic studies. Five are named, including two whose ultrastructure are detailed: Arthromitus chasei sp. nov. that lives in the damp wood-eating termite Zootermopsis angusticollis (from the west coast of North America) and Arthromitus reticulitermitidis sp. nov. from the subterranean west coast termite Reticulitermes tibialis. A pterotermiditis from the desert termite Pterotermitidis occidentis; A. zootermopsidis, also from Z. angusticollis; and A. cristatus (Leidy, 1881) from Reticulitermes flavipes of eastern North America are also named here. Characterized by trichomes that show a morphogenetic sequence from no spores through immature spores to mature spores with spore filaments, Arthromitus symbionts can be identified as members of the genus by light microscopy and habitat. Electron microscopy reveals their remarkable complexity. They attach by spore filaments to various objects including the host gut wall; their maturation extends distally toward the termite lumen. By surface sterilization of the termite, maceration of the paunch, exposure to boiling temperatures and plating on soft acetate agar, the heat resistant nature of the spores and facultatively aerobic nature of Arthromitus sp. (from Zootermopsis) was demonstrated.

  20. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Management practices and forage quality affecting the contamination of milk with anaerobic spore-forming bacteria.

    PubMed

    Zucali, Maddalena; Bava, Luciana; Colombini, Stefania; Brasca, Milena; Decimo, Marilù; Morandi, Stefano; Tamburini, Alberto; Crovetto, G Matteo

    2015-04-01

    Anaerobic spore-forming bacteria (ASFB) in milk derive from the farm environment, and the use of silages and management practices are the main responsible of milk ASFB contamination. The aim of this study was to evaluate the relationships between feeding, milking routine and cow hygiene and milk and Grana Padano cheese (produced with and without lysozyme) ASFB contamination. The study involved 23 dairy farms. ASFB in corn silage were on average 2.34 ± 0.87 log10 MPN g(-1). For grass, Italian ryegrass and alfalfa, ASFB (log10 MPN g(-1)) were numerically higher for silages (3.22) than hays (2.85). The use of corn silages of high quality (high lactic and acetic acids concentrations) decreased the milk ASFB contamination, whilst the use of herbage silages did not affect it. The presence (>40%) of cows with dirty udders increased the ASFB contamination of milk, while forestripping had a positive effect (-9% ASFB). Ripened Grana Padano had an ASFB count below the analytical limit; Clostridium tyrobutyricum DNA was found only in wheels produced without lysozyme, which also showed late blowing. The factors increasing milk spore contamination were corn silage quality, cow udder hygiene and inadequate milking routine. Late blowing was present only in cheeses without lysozyme. © 2014 Society of Chemical Industry.

  2. Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria.

    PubMed

    Arfman, N; Dijkhuizen, L; Kirchhof, G; Ludwig, W; Schleifer, K H; Bulygina, E S; Chumakov, K M; Govorukhina, N I; Trotsenko, Y A; White, D

    1992-07-01

    The generic position of 14 strains of gram-positive bacteria able to use methanol as a growth substrate was determined. All are obligately aerobic, thermotolerant organisms that are able to grow at temperatures of 35 to 60 degrees C. Nine of the strains produce oval spores at a subterminal-to-central position in slightly swollen rod-shaped cells. DNA-DNA hybridization studies, 5S rRNA sequence analysis, and physiological characteristics revealed that all 14 strains cluster as a well-defined group and form a distinct new genospecies. Analysis of the 16S and 5S rRNA sequences indicated that this new species is distinct from Bacillus brevis but closely related to B. firmus and B. azotoformans. The name proposed for this new species is B. methanolicus. The type strain, PB1, has been deposited in the National Collection of Industrial and Marine Bacteria as NCIMB 13113.

  3. Isolation and analysis of bacteria associated with spores of Gigaspora margarita.

    PubMed

    Cruz, A F; Horii, S; Ochiai, S; Yasuda, A; Ishii, T

    2008-06-01

    The aim of this work was to observe bacteria associated with the spores of Gigaspora margarita, an arbuscular mycorrhizal fungus (AMF). First, a direct analysis of DNA from sterilized spores indicated the bacteria belonging to the genus Janthinobacterium. In the second assay, two bacterial strains were isolated by osmosis from protoplasts, which were derived from spores by using two particular enzymes: lysing enzymes and yatalase. After isolation, cultivation and identification by their DNA as performed in the first experiment, the species with the closest relation were Janthinobacterium lividum (KCIGM01) and Paenibacillus polymyxa (KCIGM04) isolated with lysing enzymes and yatalase respectively. Morphologically, J. lividum was Gram negative and oval, while P. polymyxa was also oval, but Gram positive. Both strains had antagonistic effects to the pathogenic fungi Rosellimia necatrix, Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani. In particular, J. lividum was much stronger in this role. However, in phosphorus (P) solubilization P. polymyxa functioned better than J. lividum. This experiment had revealed two new bacteria species (P. polymyxa and J. lividum), associated with AMF spores, which functioned to suppress diseases and to solubilize P. AMF spores could be a useful source for bacterial antagonists to soil-borne diseases and P solubilization.

  4. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.

    PubMed

    Hariram, Upasana; Labbé, Ronald

    2015-03-01

    Recent incidents of foodborne illness associated with spices as the vehicle of transmission prompted this examination of U.S. retail spices with regard to Bacillus cereus. This study focused on the levels of aerobic-mesophilic spore-forming bacteria and B cereus spores associated with 247 retail spices purchased from five states in the United States. Samples contained a wide range of aerobic-mesophilic bacterial spore counts (< 200 to 8.3 × 10(7) CFU/g), with 19.1% of samples at levels above 10(5) CFU/g. For examples, paprika, allspice, peppercorns, and mixed spices had high levels of aerobic spores (> 10(7) CFU/g). Using a novel chromogenic agar, B. cereus and B. thuringiensis spores were isolated from 77 (31%) and 11 (4%) samples, respectively. Levels of B. cereus were <3 to 1,600 MPN/g. Eighty-eight percent of B. cereus isolates and 91% of B. thuringiensis isolates possessed at least one type of enterotoxin gene: HBL (hemolysin BL) or nonhemolytic enterotoxin (NHE). None of the 88 isolates obtained in this study possessed the emetic toxin gene (ces). Using commercially available immunological toxin detection kits, the toxigenicity of the isolates was confirmed. The NHE enterotoxin was expressed in 98% of B. cereus and 91% of B. thuringiensis isolates that possessed the responsible gene. HBL enterotoxin was detected in 87% of B. cereus and 100% of B. thuringiensis PCR-positive isolates. Fifty-two percent of B. cereus and 54% of B. thuringiensis isolates produced both enterotoxins. Ninety-seven percent of B. cereus isolates grew at 12°C, although only two isolates grew well at 9°C. The ability of these spice isolates to form spores, produce diarrheal toxins, and grow at moderately abusive temperatures makes retail spices an important potential vehicle for foodborne illness caused by B. cereus strains, in particular those that produce diarrheal toxins.

  5. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  6. Effect of Essential Oils on Germination and Growth of Some Pathogenic and Spoilage Spore-Forming Bacteria.

    PubMed

    Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier

    2015-06-01

    The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097 mg/mL on vegetative cells and 0.001 to 0.002 mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25 mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63 mg/mL on vegetative growth and from 0.75 to 0.09 mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out.

  7. Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination

    PubMed Central

    Doll, Etienne V.; Scherer, Siegfried; Wenning, Mareike

    2017-01-01

    Premature spoilage and varying product quality due to microbial contamination still constitute major problems in the production of microfiltered and pasteurized extended shelf life (ESL) milk. Spoilage-associated bacteria may enter the product either as part of the raw milk microbiota or as recontaminants in the dairy plant. To identify spoilage-inducing bacteria and their routes of entry, we analyzed end products for their predominant microbiota as well as the prevalence and biodiversity of psychrotolerant spores in bulk tank milk. Process analyses were performed to determine the removal of psychrotolerant spores at each production step. To detect transmission and recontamination events, strain typing was conducted with isolates obtained from all process stages. Microbial counts in 287 ESL milk packages at the end of shelf life were highly diverse ranging from <1 to 7.9 log cfu/mL. In total, 15% of samples were spoiled. High G+C Gram-positive bacteria were the most abundant taxonomic group, but were responsible for only 31% of spoilage. In contrast, psychrotolerant spores were isolated from 55% of spoiled packages. In 90% of samples with pure cultures of Bacillus cereus sensu lato and Paenibacillus spp., counts exceeded 6 log cfu/mL. In bulk tank milk, the concentration of psychrotolerant spores was low, accounting for merely 0.5 ± 0.8 MPN/mL. Paenibacillus amylolyticus/xylanexedens was by far the most dominant species in bulk tank milk (48% of all isolates), but was never detected in ESL milk, pointing to efficient removal during manufacturing. Six large-scale process analyses confirmed a high removal rate for psychrotolerant spores (reduction by nearly 4 log-units). B. cereus sensu lato, on the contrary, was frequently found in spoiled end products, but was rarely detected in bulk tank milk. Due to low counts in bulk tank samples and efficient spore removal during production, we suggest that shelf life is influenced only to a minor extent by raw

  8. Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination.

    PubMed

    Doll, Etienne V; Scherer, Siegfried; Wenning, Mareike

    2017-01-01

    Premature spoilage and varying product quality due to microbial contamination still constitute major problems in the production of microfiltered and pasteurized extended shelf life (ESL) milk. Spoilage-associated bacteria may enter the product either as part of the raw milk microbiota or as recontaminants in the dairy plant. To identify spoilage-inducing bacteria and their routes of entry, we analyzed end products for their predominant microbiota as well as the prevalence and biodiversity of psychrotolerant spores in bulk tank milk. Process analyses were performed to determine the removal of psychrotolerant spores at each production step. To detect transmission and recontamination events, strain typing was conducted with isolates obtained from all process stages. Microbial counts in 287 ESL milk packages at the end of shelf life were highly diverse ranging from <1 to 7.9 log cfu/mL. In total, 15% of samples were spoiled. High G+C Gram-positive bacteria were the most abundant taxonomic group, but were responsible for only 31% of spoilage. In contrast, psychrotolerant spores were isolated from 55% of spoiled packages. In 90% of samples with pure cultures of Bacillus cereus sensu lato and Paenibacillus spp., counts exceeded 6 log cfu/mL. In bulk tank milk, the concentration of psychrotolerant spores was low, accounting for merely 0.5 ± 0.8 MPN/mL. Paenibacillus amylolyticus/xylanexedens was by far the most dominant species in bulk tank milk (48% of all isolates), but was never detected in ESL milk, pointing to efficient removal during manufacturing. Six large-scale process analyses confirmed a high removal rate for psychrotolerant spores (reduction by nearly 4 log-units). B. cereus sensu lato, on the contrary, was frequently found in spoiled end products, but was rarely detected in bulk tank milk. Due to low counts in bulk tank samples and efficient spore removal during production, we suggest that shelf life is influenced only to a minor extent by raw

  9. Relationship between aerobic bacteria, salmonellae and Campylobacter on broiler carcasses.

    PubMed

    Cason, J A; Bailey, J S; Stern, N J; Whittemore, A D; Cox, N A

    1997-07-01

    Broiler carcasses were removed from commercial processing lines immediately after defeathering, before chilling, and after chilling to determine whether any relationship exists between aerobic bacteria and the human enteropathogens salmonellae and Campylobacter. In two experiments, a whole carcass rinse procedure was used to sample 30 carcasses after defeathering, 90 carcasses before chilling, and 90 carcasses after chilling, for a total of 210 different carcasses. Aerobic bacteria and Campylobacter spp. were enumerated and the incidence of salmonellae was determined. Salmonellae and Campylobacter incidences were 20 and 94%, respectively, for all carcasses sampled. After picking, neither salmonellae-positive nor Campylobacter-positive carcasses had mean aerobic most probable number (MPN) values that were different from carcasses negative for those organisms. Immediately before chilling, aerobic and Campylobacter counts were 7.12 and 5.33 log10 cfu per carcass, respectively. Immersion chilling reduced aerobic counts by approximately 1.8 log and Campylobacter by 1.5 log, with no change in salmonellae-positive carcasses. There was no difference in aerobic or Campylobacter counts between carcasses that were positive or negative for salmonellae at any of the sampling locations, nor was any correlation found between levels of aerobic organisms and Campylobacter. Carcasses with aerobic counts above the mean or more than one standard deviation above the mean also failed to show any correlation. Discriminant analysis indicated error rates as high as 50% when numbers of aerobic bacteria were used to predict incidence of salmonellae or Campylobacter on individual carcasses. Aerobic bacteria are not suitable as index organisms for salmonellae or Campylobacter on broiler carcasses.

  10. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  11. Screening identification of aerobic denitrification bacteria with high soil desalinization capacity

    NASA Astrophysics Data System (ADS)

    Jin, H.; Chen, H.; Jin, H.; Qian, Y.; Zhang, K.

    2017-08-01

    In order to study the mechanism of bacteria used in the saline soil remediation process, the aerobic denitrification bacteria were isolated from an agricultural greenhouse soil in a farm in East China’s Zhejiang Province. The identification, nitrogen reducing characteristics and the denitrification effect of bacteria from different soils at various locations were investigated. The results showed that the NO3- removal rate was 91% with bacteria from the greenhouse soil under aerobic conditions in 52 h, and the bacteria were identified as Gram-positive Castellaniella denitrification bacteria.

  12. The effect of immunoglobulins and somatic cells on the gravity separation of fat, bacteria, and spores in pasteurized whole milk.

    PubMed

    Geer, S R; Barbano, D M

    2014-01-01

    Our objective was to determine the role that immunoglobulins and somatic cells (SC) play in the gravity separation of milk. The experiment comprised 9 treatments: (1) low-temperature pasteurized (LTP; 72°C for 17.31s) whole milk; (2) LTP (72°C for 17.31s) whole milk with added bacteria and spores; (3) recombined LTP (72°C for 17.31s) whole milk with added bacteria and spores; (4) high-temperature pasteurized (HTP; 76°C for 7min) whole milk with added bacteria and spores; (5) HTP (76°C for 7min) whole milk with added bacteria and spores and added colostrum; (6) HTP (76°C for 7min) centrifugally separated, gravity-separated (CS GS) skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores; (7) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores; (8) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores and added colostrum; and (9) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores and added colostrum. The milks in the 9 treatments were gravity separated at 4°C for 23h in glass columns. Five fractions were collected by weight from each of the column treatments, starting from the bottom of the glass column: 0 to 5%, 5 to 90%, 90 to 96%, 96 to 98%, and 98 to 100%. The SC, fat, bacteria, and spores were measured in each of the fractions. The experiment was replicated 3 times in different weeks using a different batch of milk and different colostrum. Portions of the same batch of the frozen bacteria and spore solutions were used for all 3 replicates. The presence of both SC and immunoglobulins were necessary for normal gravity separation (i.e., rising to the top) of fat, bacteria, and spores in whole milk. The presence of immunoglobulins alone without SC was not sufficient to cause bacteria, fat, and spores to rise to the top. The interaction between SC and immunoglobulins was

  13. Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-06-01

    Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality.

    PubMed

    den Besten, Heidy M W; Wells-Bennik, Marjon H J; Zwietering, Marcel H

    2018-03-25

    Heat treatments are widely used in food processing often with the aim of reducing or eliminating spoilage microorganisms and pathogens in food products. The efficacy of applying heat to control microorganisms is challenged by the natural diversity of microorganisms with respect to their heat robustness. This review gives an overview of the variations in heat resistances of various species and strains, describes modeling approaches to quantify heat robustness, and addresses the relevance and impact of the natural diversity of microorganisms when assessing heat inactivation. This comparison of heat resistances of microorganisms facilitates the evaluation of which (groups of) organisms might be troublesome in a production process in which heat treatment is critical to reducing the microbial contaminants, and also allows fine-tuning of the process parameters. Various sources of microbiological variability are discussed and compared for a range of species, including spore-forming and non-spore-forming pathogens and spoilage organisms. This benchmarking of variability factors gives crucial information about the most important factors that should be included in risk assessments to realistically predict heat inactivation of bacteria and spores as part of the measures for controlling shelf life and safety of food products.

  15. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.

    PubMed

    Fujioka, R S

    2001-01-01

    The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely

  16. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  17. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  18. Spores

    MedlinePlus

    ... do not destroy their spores. A process called sterilization destroys spores and bacteria. It is done at ... and under high pressures. In health care settings, sterilization is usually done using a device called an ...

  19. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens

    PubMed Central

    Cruz, Andre Freire; Ishii, Takaaki

    2012-01-01

    Summary The aim of this research was to isolate and characterize bacteria from spores of arbuscular mycorrhizal fungi (AMF). We designated these bacteria ‘probable endobacteria’ (PE). Three bacterial strains were isolated from approximately 500 spores of Gigaspora margarita (Becker and Hall) using a hypodermic needle (diameter, 200 μm). The bacteria were identified by morphological methods and on the basis of ribosomal gene sequences as Bacillus sp. (KTCIGM01), Bacillus thuringiensis (KTCIGM02), and Paenibacillus rhizospherae (KTCIGM03). We evaluated the effect of these probable endobacteria on antagonistic activity to the soil-borne plant pathogens (SBPPs) Fusarium oxysporum f. sp. lactucae MAFF 744088, Rosellinia necatrix, Rhizoctonia solani MAFF 237426, and Pythium ultimum NBRC 100123. We also tested whether these probable endobacteria affected phosphorus solubilization, ethylene production, nitrogenase activity (NA), and stimulation of AMF hyphal growth. In addition, fresh samples of spores and hyphae were photographed using an in situ scanning electron microscope (SEM) (Quanta 250FEG; FEI Co., Japan). Bacterial aggregates (BAs), structures similar to biofilms, could be detected on the surface of hyphae and spores. We demonstrate that using extraction with an ultrathin needle, it is possible to isolate AMF-associated bacterial species that are likely derived from inside the fungal spores. PMID:23213368

  20. Formation of resting cells by non-spore-forming microorganisms as a strategy of long-term survival in the environment

    NASA Astrophysics Data System (ADS)

    Mulyukin, Andrei L.; Soina, Vera S.; Demkina, Elena V.; Kozlova, Alla N.; Suzina, Natalia E.; Dmitriev, Vladimir V.; Duda, Vitalii I.; El'-Registan, Galina I.

    2003-01-01

    Non-spore-forming bacteria of the genera Micrococcus and Arthrobacter, including the isolates from permafrost sediments, were found to be able to form cystlike cells under special conditions. Cystlike cells maintained the viability during long-term storage (for up to several years), had undetectable respiratory activity and the elevated resistance to heating and other unfavorable conditions, possessed the specific fine structure and morphology, and were formed in the life cycles of the microorganism. These properties allow cystlike cells to be attributed to a new type of resting microbial forms. Furthermore, the distinctive feature of resting cystlike cells was their low P/S ratios and high Ca/K ratios in comparison to vegetative cells as shown by X-ray microanalysis. The experimentally obtained bacterial cystlike cells with thickened and laminated cell walls and altered texture of the cytoplasm were similar to the cells abundant in native microbial populations isolated from permafrost sediments and ancient soils of the Kolyma lowland (Siberia, Russia). Due to the inherent elevated resistance to adverse conditions and maintenance of viability for prolonged periods, resting cystlike cells are likely to ensure long-term survival of non-spore-forming bacteria in cold environments.

  1. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation.

    PubMed

    Wang, Qilin; Song, Kang; Hao, Xiaodi; Wei, Jing; Pijuan, Maite; van Loosdrecht, Mark C M; Zhao, Huijun

    2018-06-01

    The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ± 0.001 d -1 and 0.028 ± 0.001 d -1 , respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ± 0.001 d -1 and 0.025 ± 0.001 d -1 , respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ± 0.001 d -1 and 0.003 ± 0.001 d -1 , respectively. Further analysis revealed that death accounted for 73 ± 4% and 89 ± 5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ± 4% and 11 ± 5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Spore-to-spore agar culture of the myxomycete Physarum globuliferum.

    PubMed

    Liu, Pu; Wang, Qi; Li, Yu

    2010-02-01

    The ontogeny of the myxomycete Physarum globuliferum was observed on corn meal agar and hanging drop cultures without adding sterile oat flakes, bacteria or other microorganisms. Its complete life cycle including spore germination, myxamoebae, swarm cells, plasmodial development, and maturity of fructifications was demonstrated. Details of spore-to-spore development are described and illustrated.

  3. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey.

    PubMed

    André, S; Zuber, F; Remize, F

    2013-07-15

    Thermal processing of Low Acid Canned Foods (LACF), which are safe and shelf-stable at ambient temperature for several years, results in heat inactivation of all vegetative microorganisms and the partial or total inactivation of spores. Good Manufacturing Hygienic Practices include stability tests for managing the pathogen risk related to surviving mesophilic bacterial spores. LACF are also often submitted to additional incubation conditions, typically 55 °C for 7 days, to monitor spoilage by thermophiles. In this study we identified the bacterial species responsible for non-stability after prolonged at 55 °C of incubation of LACF from 455 samples collected from 122 French canneries over 10 years. Bacteria were identified by microsequencing or a recent developed tool for group-specific PCR detection (SporeTraQ™). A single species was identified for 93% of examined samples. Three genera were responsible for more than 80% of all non-stability cases: mostly Moorella (36%) and Geobacillus (35%), and less frequently Thermoanaerobacterium (10%). The other most frequent bacterial genera identified were Bacillus, Thermoanaerobacter, Caldanaerobius, Anoxybacillus, Paenibacillus and Clostridium. Species frequency was dependent on food category, i.e. vegetables, ready-made meals containing meat, seafood or other recipes, products containing fatty duck, and related to the intensity of the thermal treatment applied in these food categories. The spore heat resistance parameters (D or δ and z values) from 36 strains isolated in this study were determined. Taken together, our results single out the species most suitable for use as indicators for thermal process settings. This extensively-documented survey of the species that cause non-stability at 55 °C in LACF will help canneries to improve the management of microbial contamination. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Novel Species of Non-Spore-Forming Bacteria

    NASA Technical Reports Server (NTRS)

    Briegel, Ariane; Osman, Shariff; Moissl, Christine; Hosoya,Naofumi; Venkateswaran, Kasthuri; Satomi, Masataka; Mayilraj, Shanmugam

    2008-01-01

    While cataloging cultivatable microbes from the airborne biological diversity of the atmosphere of the Regenerative Enclosed life-support Module Simulator (REMS) system at Marshall Space Flight Center, two strains that belong to one novel bacterial species were isolated. Based on 16S rRNA gene sequencing and the unique morphology and the taxonomic characteristics of these strains, it is shown that they belong to the family Intrasporangiaceae, related to the genus Tetrasphaera, with phylogenetic distances from any validly described species of the genus Tetrasphaera ranging from 96.71 to 97.76 percent. The fatty acid profile supported the affiliation of these novel strains to the genus Tetrasphaera except for the presence of higher concentrations of octadecenoic acid (C18:0) and cis-9-octadecenoic acid (C18:1), which discriminates these strains from other valid species. In addition, DNA-DNA hybridization studies indicate that these strains belong to a novel species that could be readily distinguished from its nearest neighbor, Tetrasphaera japonica AMC 5116T, with less than 20 percent DNA relatedness. Physiological and biochemical tests show few phenotypic dissimilarities, but genotypic analysis allowed the differentiation of these gelatin-liquefying strains from previously reported strains. The name Tetrasphaera remsis sp. Nov. is proposed with the type strain 3-M5-R-4(sup T) (=ATCC BAA-1496(sup T)=CIP 109413(sup T). The cells are Gram-positive, nonmotile, cocci, in tetrad arrangement and clusters. Spore formation is not observed. No species of Tetrashpaera has ever been isolated from airborne samples. Previous discoveries have come from soil and activated sludge samples. As other species of this genus have demonstrated enhanced biological phosphorus removal activity, further tests are required to determine if this newly discovered species would have bioremediation applications.

  6. Isolation of the Paenibacillus phoenicis, a Spore-Forming Bacterium

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Osman, Shariff; Satomi, Masataka

    2010-01-01

    A microorganism was isolated from the surfaces of the cleanroom facility in which the Phoenix lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Paenibacillus and represents a novel species. Bacillus spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Spores of Bacillus species are of particular concern to planetary protection due to the extreme resistance of some members of the genus to space environmental conditions such as UV and gamma radiation, vacuum, oxidation, and temperature fluctuation. These resistive spore phenotypes have enhanced potential for transfer, and subsequent proliferation, of terrestrial microbes on another solar body. Due to decreased nutrient conditions within spacecraft assembly facility clean rooms, the vegetative cells of Bacillus species and other spore-forming Paenibacillus species are induced to sporulate, thereby enhancing their survivability of bioreduction

  7. Comparison of Dry Medium Culture Plates for Mesophilic Aerobic Bacteria in Milk, Ice Cream, Ham, and Codfish Fillet Products

    PubMed Central

    Park, Junghyun; Kim, Myunghee

    2013-01-01

    This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products. PMID:24551829

  8. Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery.

    PubMed

    Mtimet, Narjes; Guégan, Stéphanie; Durand, Lucile; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-05-01

    Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  10. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.

    PubMed

    Finnegan, Lucy; Garcia-Melgares, Manuel; Gmerek, Tomasz; Huddleston, W Ryan; Palmer, Alexander; Robertson, Andrew; Shapiro, Sarah; Unkles, Shiela E

    2011-10-01

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.

  11. Rapid onsite detection of bacterial spores of biothreat importance by paper-based colorimetric method using erbium-pyrocatechol violet complex.

    PubMed

    Shivakiran, M S; Venkataramana, M; Lakshmana Rao, P V

    2016-01-01

    Dipicolinic acid (DPA) is an important chemical marker for the detection of bacterial spores. In this study, complexes of lanthanide series elements such as erbium, europium, neodymium, and terbium were prepared with pyrocatechol violet and effectively immobilized the pyrocatechol violet (PV)-metal complex on a filter paper using polyvinyl alcohol. These filter paper strips were employed for the onsite detection of bacterial spores. The test filter papers were evaluated quantitatively with different concentrations of DPA and spores of various bacteria. Among the four lanthanide ions, erbium displayed better sensitivity than the other ions. The limit of detection of this test for DPA was 60 μM and 5 × 10(6) spores. The effect of other non-spore-forming bacteria and interfering chemicals on the test strips was also evaluated. The non-spore-forming bacteria did not have considerable effect on the test strip whereas chemicals such as EDTA had significant effects on the test results. The present test is rapid and robust, capable of providing timely results for better judgement to save resources on unnecessary decontamination procedures during false alarms.

  12. Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms

    PubMed Central

    2012-01-01

    Background Clostridium thermocellum is an anaerobic thermophilic bacterium that exhibits high levels of cellulose solublization and produces ethanol as an end product of its metabolism. Using cellulosic biomass as a feedstock for fuel production is an attractive prospect, however, growth arrest can negatively impact ethanol production by fermentative microorganisms such as C. thermocellum. Understanding conditions that lead to non-growth states in C. thermocellum can positively influence process design and culturing conditions in order to optimize ethanol production in an industrial setting. Results We report here that Clostridium thermocellum ATCC 27405 enters non-growth states in response to specific growth conditions. Non-growth states include the formation of spores and a L-form-like state in which the cells cease to grow or produce the normal end products of metabolism. Unlike other sporulating organisms, we did not observe sporulation of C. thermocellum in low carbon or nitrogen environments. However, sporulation did occur in response to transfers between soluble and insoluble substrates, resulting in approximately 7% mature spores. Exposure to oxygen caused a similar sporulation response. Starvation conditions during continuous culture did not result in spore formation, but caused the majority of cells to transition to a L-form state. Both spores and L-forms were determined to be viable. Spores exhibited enhanced survival in response to high temperature and prolonged storage compared to L-forms and vegetative cells. However, L-forms exhibited faster recovery compared to both spores and stationary phase cells when cultured in rich media. Conclusions Both spores and L-forms cease to produce ethanol, but provide other advantages for C. thermocellum including enhanced survival for spores and faster recovery for L-forms. Understanding the conditions that give rise to these two different non-growth states, and the implications that each has for enabling or

  13. On the use of total aerobic spore bacteria to make treatment decisions due to Cryptosporidium risk at public water system wells.

    PubMed

    Berger, Philip; Messner, Michael J; Crosby, Jake; Vacs Renwick, Deborah; Heinrich, Austin

    2018-05-01

    Spore reduction can be used as a surrogate measure of Cryptosporidium natural filtration efficiency. Estimates of log10 (log) reduction were derived from spore measurements in paired surface and well water samples in Casper Wyoming and Kearney Nebraska. We found that these data were suitable for testing the hypothesis (H 0 ) that the average reduction at each site was 2 log or less, using a one-sided Student's t-test. After establishing data quality objectives for the test (expressed as tolerable Type I and Type II error rates), we evaluated the test's performance as a function of the (a) true log reduction, (b) number of paired samples assayed and (c) variance of observed log reductions. We found that 36 paired spore samples are sufficient to achieve the objectives over a wide range of variance, including the variances observed in the two data sets. We also explored the feasibility of using smaller numbers of paired spore samples to supplement bioparticle counts for screening purposes in alluvial aquifers, to differentiate wells with large volume surface water induced recharge from wells with negligible surface water induced recharge. With key assumptions, we propose a normal statistical test of the same hypothesis (H 0 ), but with different performance objectives. As few as six paired spore samples appear adequate as a screening metric to supplement bioparticle counts to differentiate wells in alluvial aquifers with large volume surface water induced recharge. For the case when all available information (including failure to reject H 0 based on the limited paired spore data) leads to the conclusion that wells have large surface water induced recharge, we recommend further evaluation using additional paired biweekly spore samples. Published by Elsevier GmbH.

  14. Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project.

    PubMed

    Carlin, F; Girardin, H; Peck, M W; Stringer, S C; Barker, G C; Martinez, A; Fernandez, A; Fernandez, P; Waites, W M; Movahedi, S; van Leusden, F; Nauta, M; Moezelaar, R; Torre, M D; Litman, S

    2000-09-25

    Vegetables are frequent ingredients of cooked chilled foods and are frequently contaminated with spore-forming bacteria (SFB). Therefore, risk assessment studies have been carried out, including the following: hazard identification and characterisation--from an extensive literature review and expertise of the participants, B. cereus and C. botulinum were identified as the main hazards; exposure assessment--consisting of determination of the prevalence of hazardous SFB in cooked chilled foods containing vegetables and in unprocessed vegetables, and identification of SFB representative of the bacterial community in cooked chilled foods containing vegetables, determination of heat-resistance parameters and factors affecting heat resistance of SFB, determination of the growth kinetics of SFB in vegetable substrate and of the influence of controlling factors, validation of previous work in complex food systems and by challenge testing and information about process and storage conditions of cooked chilled foods containing vegetables. The paper illustrates some original results obtained in the course of the project. The results and information collected from scientific literature or from the expertise of the participants are integrated into the microbial risk assessment, using both a Bayesian belief network approach and a process risk model approach, previously applied to other foodborne hazards.

  15. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  16. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor.

    PubMed

    Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang

    2018-05-05

    The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.

  17. Chloride-associated adaptive response in aerobic methylotrophic dichloromethane-utilising bacteria.

    PubMed

    Torgonskaya, Maria L; Doronina, Nina V; Hourcade, Edith; Trotsenko, Yuri A; Vuilleumier, Stéphane

    2011-06-01

    Aerobic methylotrophic bacteria able to grow with dichloromethane (DCM) as the sole carbon and energy source possess a specific glutathione S-transferase, DCM dehalogenase, which transforms DCM to formaldehyde, used for biomass and energy production, and hydrochloric acid, which is excreted. Evidence is presented for chloride-specific responses for three DCM-degrading bacteria, Methylobacterium extorquens DM4, Methylopila helvetica DM6 and Albibacter methylovorans DM10. Chloride release into the medium was inhibited by sodium azide and m -chlorophenylhydrazone, suggesting an energy-dependent process. In contrast, only nigericin affected chloride excretion in Mb. extorquens DM4 and Mp. helvetica DM6, while valinomycin had the same effect in A. methylovorans DM10 only. Chloride ions stimulated DCM-dependent induction of DCM dehalogenase expression for Mp. helvetica DM6 and A. methylovorans DM10, and shortened the time for onset of chloride release into the medium. Striking chloride-containing structures were observed by electron microscopy and X-ray microanalysis on the cell surface of Mp. helvetica DM6 and A. methylovorans DM10 during growth with DCM, and with methanol in medium supplemented with sodium chloride. Taken together, these data suggest the existence of both general and specific chloride-associated adaptations in aerobic DCM-degrading bacteria. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Assembly of the outermost spore layer: pieces of the puzzle are coming together.

    PubMed

    Stewart, George C

    2017-05-01

    Certain endospore-forming soil dwelling bacteria are important human, animal or insect pathogens. These organisms produce spores containing an outer layer, the exosporium. The exosporium is the site of interactions between the spore and the soil environment and between the spore and the infected host during the initial stages of infection. The composition and assembly process of the exosporium are poorly understood. This is partly due to the extreme stability of the exosporium that has proven to be refractive to existing methods to deconstruct the intact structure into its component parts. Although more than 20 proteins have been identified as exosporium-associated, their abundance, relationship to other proteins and the processes by which they are assembled to create the exosporium are largely unknown. In this issue of Molecular Microbiology, Terry, Jiang, and colleagues in Per Bullough's laboratory show that the ExsY protein is a major structural protein of the exosporium basal layer of B. cereus family spores and that it can self-assemble into complex structures that possess many of the structural features characteristic of the exosporium basal layer. The authors refined a model for exosporium assembly. Their findings may have implications for exosporium formation in other spore forming bacteria, including Clostridium species. © 2017 John Wiley & Sons Ltd.

  19. A microbiological surrogate for evaluating treatment efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, E.W.; Fox, K.W.; Miltner, R.J.

    1995-10-01

    In this study we report on the use of a microbial surrogate system which can be used to evaluate the efficiency of various unit processes used in drinking water treatment for the removal of microbial contaminants. The proposed procedure uses Gram-positive, mesophilic, aerobic spore-forming bacteria as the surrogate organisms. These bacteria do not pose a public health threat and are naturally occurring in most surface water supplies. The aerobic spore-formers are easy to culture and are present throughout the treatment train. This group of organisms consists primarily of species of the genus Bacillus. These organisms form endospores which are ellipsoidalmore » to spherical in shape and measure on average approximately 0.5 X 1.0 X 1.5 micrometers, and are environmentally resistant. Like pathogenic Giardia cysts and Cryptosporidium oocysts endospores of aerobic bacilli may be found far into the treatment train.« less

  20. Bacillus anthracis (image)

    MedlinePlus

    ... aerobic spore-forming bacterium that causes disease in humans and animals. The bacteria is found in two forms: cutaneous anthrax and inhalation anthrax. Cutaneous anthrax is an infection of the skin caused by direct contact with the bacterium. Inhalation ...

  1. Isolation of non-sporing anaerobic rods from infections in children.

    PubMed

    Brook, I

    1996-07-01

    From 1974 to 1994, 2033 microbiological specimens from children were submitted for cultures for anaerobic bacteria. Fifty-seven isolates of Bifidobacterium spp. were obtained from 55 (3%) children, 67 isolates of Eubacterium spp. from 65 (3%) children and 41 isolates of Lactobacillus spp. from 40 (2%) children. Most Bifidobacterium isolates were from chronic otitis media, abscesses, peritonitis, aspiration pneumonia and paronychia. Most Eubacterium isolates were from abscesses, peritonitis, decubitus ulcers and bites. Lactobacillus spp. were mainly isolated from abscesses, aspiration pneumonia, bacteraemia and conjunctivitis. Most (> 90%) infections from which these species were isolated were polymicrobial and yielded a mixture of aerobic and anaerobic bacteria. The organisms most commonly isolated with the non-sporing anaerobic gram-positive rods were Peptostreptococcus spp., Bacteroides spp., pigmented Prevotella and Porphyromonas spp., Fusobacterium spp., Staphylococcus aureus and Escherichia coli. Most Bacteroides spp. and E. coli were isolated from intra-abdominal infection and skin and soft tissue infection around the rectal area, whereas most Prevotella, Porphyromonas and Fusobacterium isolates were from oropharyngeal, pulmonary and head and neck sites. The predisposing conditions associated with the isolation of non-sporing anaerobic gram-positive rods were previous surgery, malignancy, steroid therapy and immunodeficiency. Antimicrobial therapy was given to 149 (83%) of the 160 patients, in conjunction with surgical drainage or correction of pathology in 89 (56%).

  2. Rapid High-Throughput Assessment of Aerobic Bacteria in Complex Samples by Fluorescence-Based Oxygen Respirometry

    PubMed Central

    O'Mahony, Fiach C.; Papkovsky, Dmitri B.

    2006-01-01

    A simple method has been developed for the analysis of aerobic bacteria in complex samples such as broth and food homogenates. It employs commercial phosphorescent oxygen-sensitive probes to monitor oxygen consumption of samples containing bacteria using standard microtiter plates and fluorescence plate readers. As bacteria grow in aqueous medium, at certain points they begin to deplete dissolved oxygen, which is seen as an increase in probe fluorescence above baseline signal. The time required to reach threshold signal is used to either enumerate bacteria based on a predetermined calibration or to assess the effects of various effectors on the growth of test bacteria by comparison with an untreated control. This method allows for the sensitive (down to a single cell), rapid (0.5 to 12 h) enumeration of aerobic bacteria without the need to conduct lengthy (48 to 72 h) and tedious colony counts on agar plates. It also allows for screening a wide range of chemical and environmental samples for their toxicity. These assays have been validated with different bacteria, including Escherichia coli, Micrococcus luteus, and Pseudomonas fluorescens, with the enumeration of total viable counts in broth and industrial food samples (packaged ham, chicken, and mince meat), and comparison with established agar plating and optical-density-at-600-nm assays has been given. PMID:16461677

  3. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    PubMed Central

    Egan, Kevin; Field, Des; Rea, Mary C.; Ross, R. Paul; Hill, Colin; Cotter, Paul D.

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  4. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    PubMed

    Egan, Kevin; Field, Des; Rea, Mary C; Ross, R Paul; Hill, Colin; Cotter, Paul D

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  5. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria.

    PubMed

    Wang, Xiaolong; Gao, Dawen

    2018-02-01

    Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Removal of Bacillus anthracis sterne spore from commercial unpasteurized liquid egg white

    USDA-ARS?s Scientific Manuscript database

    Thermal pasteurization used by the egg industry for controlling vegetative cells of pathogens is ineffective for destroying endospores. There is a strong need in the agri-industries to develop effective intervention strategies to eliminate the possible bioterrorism threat from spore forming bacteria...

  7. Spore Formation and Toxin Production in Clostridium difficile Biofilms

    PubMed Central

    Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

  8. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  9. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary

    PubMed Central

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance. PMID:24824666

  10. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary.

    PubMed

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-11-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell (3)H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect (3)H-leucine incorporation in light-dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.

  11. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  12. FIRST AUTHOR

    EPA Science Inventory

    Endospores of aerobic spore-forming bacteria have been shown to be useful microbial surrogates for evaluating water treatment plant performance. A method was developed for analyzing for this microbial surrogate. Results will be presented from a survey of various water sources, al...

  13. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  14. Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium.

    PubMed

    Doronina, N V; Trotsenko, Y A; Krausova, V I; Boulygina, E S; Tourova, T P

    1998-10-01

    A new genus, Methylopila, and one new species are described for a group of seven strains of facultatively methylotrophic bacteria with the serine pathway of C1 assimilation. These bacteria are aerobic, Gram-negative, non-spore--forming, motile, colourless rods that multiply by binary fission. Their DNA base content ranges from 66 to 70 mol % G + C. Their cellular fatty acid profile consists primarily of C18:1 omega 7 cis-vaccenic and C19:0 cyclopropane acids. The major hydroxy acid is 3-OH C14:0. The main ubiquinone is Q-10. The dominant cellular phospholipids are phosphatidylethanolamine and phosphatidylcholine. The new isolates have a low level of DNA-DNA homology (5-10%) with the type strains of the serine pathway methylobacteria belonging to the genera Methylobacterium, Aminobacter, Hyphomicrobium and Methylorhabdus. Another approach, involving 16S rRNA gene sequence analysis of strain IM1T, has shown that the new isolates represent a separate branch within the alpha-2 subclass of the Proteobacteria. The type species of the new genus is Methylopila capsulata sp. nov., with the type strain IM1T (= VKM B-1606T).

  15. Evaluating the transport of bacillus subtilis spores as a potential surrogate for Cryptosporidium parvum Oocysts

    USDA-ARS?s Scientific Manuscript database

    The USEPA has recommended the use of aerobic spores as an indicator for Cryptosporidium oocysts when determining groundwater under the direct influence of surface water. Surface properties, interaction energies, transport, retention, and release behavior of B. subtilis spores were measured over a r...

  16. Phosphatase activity of aerobic and facultative anaerobic bacteria.

    PubMed

    Pácová, Z; Kocur, M

    1978-10-01

    1115 strains of aerobic and facultatively anaerobic bacteria were tested for phosphatase activity by a conventional plate method and a microtest. The microtest was devised to allow results to be read after 4 h cultivation. Phosphatase activity was found in wide range of species and strains. Besides staphylococci, where the test for phosphatase is successfully used, it may be applied as one of the valuable tests for the differentiation of the following species: Bacillus cereus, B. licheniformis, Aeromonas spp., Vibrio parahaemolyticus, Actinobacillus spp., Pasteurella spp., Xanthomonas spp., Flavobacterium spp., Alteromonas putrefaciens, Pseudomonas maltophilia, Ps. cepacia, and some other species of Pseudomonas. The species which gave uniformly negative phosphatase reaction were as follows: Staph. saprophyticus, Acinetobacter calcoaceticus, Alcaligenes faecalis, and Bordetella bronchiseptica.

  17. Wrinkled alfalfa seeds harbor more aerobic bacteria and are more difficult to sanitize than smooth seeds.

    PubMed

    Charkowski, A O; Sarreal, C Z; Mandrell, R E

    2001-09-01

    At least 14 separate outbreaks of food poisoning attributed to either Salmonella enterica or Escherichia coli O157:H7 have been traced to sprouts in the past decade. Seeds contaminated with human pathogens caused most of these outbreaks, thus many sprout growers are now treating alfalfa seeds with the sanitizing agent, calcium hypochlorite (Ca[OCl]2), prior to sprouting. The efficacy of alfalfa seed sanitation varies between seed lots and between seeds within each lot. Alfalfa seeds from different seed lots were sorted by type in an effort to determine if certain seed types carry more aerobic bacteria than other seed types. Seeds with a wrinkled type, characteristic of lygus bug damage, had significantly higher levels of culturable aerobic bacteria and were more difficult to sanitize than smooth, healthy seeds. After sanitation, wrinkled alfalfa seeds that had been inoculated with S. enterica ser. Newport carried significantly higher levels of Salmonella Newport than smooth seeds. If S. enterica is present on wrinkled seeds in naturally contaminated seed lots, it may be difficult to chemically sanitize the seed lot. Removal of the wrinkled alfalfa seeds from the seed lots, perhaps by adapting color sorting equipment similar to that used to sort rice grains and other seeds, should reduce the level of aerobic bacteria in seed lots and may result in lower levels of human pathogens on contaminated alfalfa seeds.

  18. Enzymatic Manganese(II) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species

    PubMed Central

    Francis, Chris A.; Tebo, Bradley M.

    2002-01-01

    Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised. PMID:11823231

  19. Infection of Tribolium castaneum with Bacillus thuringiensis: Quantification of Bacterial Replication within Cadavers, Transmission via Cannibalism, and Inhibition of Spore Germination

    PubMed Central

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P.

    2015-01-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. PMID:26386058

  20. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean.

    PubMed

    Lami, Raphaël; Cottrell, Matthew T; Ras, Joséphine; Ulloa, Osvaldo; Obernosterer, Ingrid; Claustre, Hervé; Kirchman, David L; Lebaron, Philippe

    2007-07-01

    Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 x 10(5) cells ml(-1) and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 x 10(-3) microg liter(-1)) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.

  1. Evaluation of the viability of Lactobacillus spp. after the production of different solid dosage forms.

    PubMed

    Brachkova, Mariya I; Duarte, Aida; Pinto, João F

    2009-09-01

    The work aims to provide evidence on the viability of Lactobacillus spp. and a spore form of Bacillus subtilis from nonprocessed bacteria to coated dosage forms (i.e., mini-tablets, pellets, and their coated forms). Lactobacillus spp. were cultivated overnight in MRS broth (10(9) cfu/mL) and B. subtilis spores were produced on plate count agar (10(7) cfu/mL) for 2 weeks. Bacteria and spores were freeze-dried in skim milk enriched with glycerol. The cakes were further processed into tablets (2.5 mm diameter) by direct compression with or without microcrystalline cellulose and inulin. Pellets (1-1.4 mm diameter) were produced by extrusion-spheronization of bacterial and spore suspensions with microcrystalline cellulose, lactose, inulin, and skim milk. Both tablets and pellets were film coated. The properties of the dosage forms, particularly the bacterial viability, were evaluated immediately after production and throughout storage for 6 months at 4 degrees C. The study has shown that for an adequate stabilization of the bacteria a protective matrix (e.g., skim milk) and cryoprotectors (e.g., glycerol) must be present at early stages of bacterial de-hydration. Tabletting had a less deleterious effect (<2 log units) on bacteria when compared to pelletization (in some cases 3 log units). Enteric coating (15%, w/w) of either tablets or pellets did not affect the viability of the bacteria.

  2. Production of proinflammatory mediators by indoor air bacteria and fungal spores in mouse and human cell lines.

    PubMed

    Huttunen, Kati; Hyvärinen, Anne; Nevalainen, Aino; Komulainen, Hannu; Hirvonen, Maija-Riitta

    2003-01-01

    We compared the inflammatory and cytotoxic responses caused by household mold and bacteria in human and mouse cell lines. We studied the fungi Aspergillus versicolor, Penicillium spinulosum, and Stachybotrys chartarum and the bacteria Bacillus cereus, Pseudomonas fluorescens, and Streptomyces californicus for their cytotoxicity and ability to stimulate the production of inflammatory mediators in mouse RAW264.7 and human 28SC macrophage cell lines and in the human A549 lung epithelial cell line in 24-hr exposure to 10(5), 10(6), and 10(7) microbes/mL. We studied time dependency by terminating the exposure to 10(6) microbes/mL after 3, 6, 12, 24, and 48 hr. We analyzed production of the cytokines tumor necrosis factor-alpha and interleukins 6 and 1ss (TNF-alpha, IL-6, IL-1ss, respectively) and measured nitric oxide production using the Griess method, expression of inducible NO-synthase with Western Blot analysis, and cytotoxicity with the MTT-test. All bacteria strongly induced the production of TNF-alpha, IL-6 and, to a lesser extent, the formation of IL-1ss in mouse macrophages. Only the spores of Str. californicus induced the production of NO and IL-6 in both human and mouse cells. In contrast, exposure to fungal strains did not markedly increase the production of NO or any cytokine in the studied cell lines except for Sta. chartarum, which increased IL-6 production somewhat in human lung epithelial cells. These microbes were less cytotoxic to human cells than to mouse cells. On the basis of equivalent numbers of bacteria and spores of fungi added to cell cultures, the overall potency to stimulate the production of proinflammatory mediators decreased in the order Ps. fluorescens > Str. californicus > B. cereus > Sta. chartarum > A. versicolor > P. spinulosum. These data suggest that bacteria in water-damaged buildings should also be considered as causative agents of adverse inflammatory effects.

  3. Production of proinflammatory mediators by indoor air bacteria and fungal spores in mouse and human cell lines.

    PubMed Central

    Huttunen, Kati; Hyvärinen, Anne; Nevalainen, Aino; Komulainen, Hannu; Hirvonen, Maija-Riitta

    2003-01-01

    We compared the inflammatory and cytotoxic responses caused by household mold and bacteria in human and mouse cell lines. We studied the fungi Aspergillus versicolor, Penicillium spinulosum, and Stachybotrys chartarum and the bacteria Bacillus cereus, Pseudomonas fluorescens, and Streptomyces californicus for their cytotoxicity and ability to stimulate the production of inflammatory mediators in mouse RAW264.7 and human 28SC macrophage cell lines and in the human A549 lung epithelial cell line in 24-hr exposure to 10(5), 10(6), and 10(7) microbes/mL. We studied time dependency by terminating the exposure to 10(6) microbes/mL after 3, 6, 12, 24, and 48 hr. We analyzed production of the cytokines tumor necrosis factor-alpha and interleukins 6 and 1ss (TNF-alpha, IL-6, IL-1ss, respectively) and measured nitric oxide production using the Griess method, expression of inducible NO-synthase with Western Blot analysis, and cytotoxicity with the MTT-test. All bacteria strongly induced the production of TNF-alpha, IL-6 and, to a lesser extent, the formation of IL-1ss in mouse macrophages. Only the spores of Str. californicus induced the production of NO and IL-6 in both human and mouse cells. In contrast, exposure to fungal strains did not markedly increase the production of NO or any cytokine in the studied cell lines except for Sta. chartarum, which increased IL-6 production somewhat in human lung epithelial cells. These microbes were less cytotoxic to human cells than to mouse cells. On the basis of equivalent numbers of bacteria and spores of fungi added to cell cultures, the overall potency to stimulate the production of proinflammatory mediators decreased in the order Ps. fluorescens > Str. californicus > B. cereus > Sta. chartarum > A. versicolor > P. spinulosum. These data suggest that bacteria in water-damaged buildings should also be considered as causative agents of adverse inflammatory effects. PMID:12515684

  4. Aerobic Bacteria in the Diaphragmatic Portion of Stethoscope of Medical Professionals of Tertiary Care Hospital.

    PubMed

    Bham, G; Bhandari, J; Neupane, M R; Dawadi, R; Pradhan, P

    2015-01-01

    Hospital environment is a reservoir of wide varieties of microorganisms which are frequently reported colonizing in medical equipment. Stethoscopes are essential tools and of universal use in the medical profession, which might be a source of spreading nosocomial infections. This research project was conducted with an aim to assess the presence of aerobic bacteria in the stethoscope of the medical doctors working at Patan Hospital and students of Patan Academy of Health Sciences. It is a cross sectional study based on structured questionnaire and sample assessment from the stethoscope of doctors and students of Patan Hospital and Patan Academy of Health Sciences. The stethescopes used by the doctors of five major departments of Patan Hospital and students of clinical years were included in this study. Total of 99 stethoscope owned by different level of professionals (positions) and different departments were examined for bacterial contamination. Out of them, 36 were found to be considerably contaminated. Single strain of bacteria was grown from a single stethoscope. Among them 34 were Gram positive and remaining were Gram negative. Out of 34 gram postive bacteria, 29 were identified as Staphylococcus aureus, six were identified as Coagulase Negative Staphylococcus and remaining were Gram positive bacilli. There is presence of aerobic bacteria in diaphragmatic portion of stethoscope of medical professional of which the gram positives were the commonest.

  5. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    PubMed

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.

    PubMed

    Bressuire-Isoard, Christelle; Broussolle, Véronique; Carlin, Frédéric

    2018-05-17

    Bacterial spores are resistant to physical and chemical insults, which make them a major concern for public health and for industry. Spores help bacteria to survive extreme environmental conditions that vegetative cells cannot tolerate. Spore resistance and dormancy are important properties for applications in medicine, veterinary health, food safety, crop protection, and other domains. The resistance of bacterial spores results from a protective multilayered structure and from the unique composition of the spore core. The mechanisms of sporulation and germination, the first stage after breaking of dormancy, and organization of spore structure have been extensively studied in Bacillus species. This review aims to illustrate how far the structure, composition and properties of spores are shaped by the environmental conditions in which spores form. We look at the physiological and molecular mechanisms underpinning how sporulation media and environment deeply affect spore yield, spore properties like resistance to wet heat and physical and chemical agents, germination, and further growth. For example, spore core water content decreases as sporulation temperature increases, and resistance to wet heat increases. Controlling the fate of Bacillus spores is pivotal to controlling bacterial risks and process efficiencies in, for example, the food industry, and better control hinges on better understanding how sporulation conditions influence spore properties.

  7. [Sporocidic activity of sodium hypochlorite and peracetic acid alone or combined against free or fixed spores or on biofilm].

    PubMed

    Samrakandi, M M; Roques, C; Michel, G

    1994-05-01

    In order to assess the sporocidal activity of chlorine and peracetic acid (PAA), alone and in combination, against a spored biofilm, the biofilms of two species (Bacillus subtilis ATCC 6633 and Bacillus megaterium ATCC 8245) were formed on inert support (tygon). A sporulation kinetic of these bacteria in biofilm was established. Sporocidal properties of chlorine and PAA were compared against free spores, spores fixed by drying and spores in biofilm. The combination of these two products was also tested. Minimal sporocidal concentrations (MSC) of the two products towards free spores were determined (contact time 5 mn). The efficacy of these MSC were evaluated in terms of contact time on adhered spores and on spores in biofilm. Chlorine and PAA exhibited an excellent sporocidal activity. The combination of PAA and chlorine, tested by checkerboard micromethod, was found to be synergistic in case of free or adhered spores. The spored biofilm showed a high resistance. The combination of these two products revealed then only an additive effect.

  8. Spore test parameters matter: Mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method.

    PubMed

    Kent, D J; Chauhan, K; Boor, K J; Wiedmann, M; Martin, N H

    2016-07-01

    United States dairy industry exports have steadily risen in importance over the last 10yr, with dairy powders playing a particularly critical role. Currently, approximately half of US-produced nonfat dry milk and skim milk powder is exported. Reaching new and expanding existing export markets relies in part on the control of endospore-forming bacteria in dairy powders. This study reports baseline mesophilic and thermophilic spore counts and spore populations from 55 raw material samples (primarily raw milk) and 33 dairy powder samples from dairy powder processors across the United States. Samples were evaluated using various spore testing methodologies and included initial heat treatments of (1) 80°C for 12 min; (2) 100°C for 30 min; and (3) 106°C for 30 min. Results indicate that significant differences in both the level and population of spores were found for both raw milk and dairy powders with the various testing methods. Additionally, on average, spore counts were not found to increase significantly from the beginning to the end of dairy powder processing, most likely related to the absence of biofilm formation by processing plant-associated sporeformers (e.g., Anoxybacillus sp.) in the facilities sampled. Finally, in agreement with other studies, Bacillus licheniformis was found to be the most prevalent sporeformer in both raw materials and dairy powders, highlighting the importance of this organism in developing strategies for control and reduction of spore counts in dairy powders. Overall, this study emphasizes the need for standardization of spore enumeration methodologies in the dairy powder industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria.

    PubMed

    Quéméneur, Marianne; Heinrich-Salmeron, Audrey; Muller, Daniel; Lièvremont, Didier; Jauzein, Michel; Bertin, Philippe N; Garrido, Francis; Joulian, Catherine

    2008-07-01

    A new primer set was designed to specifically amplify ca. 1,100 bp of aoxB genes encoding the As(III) oxidase catalytic subunit from taxonomically diverse aerobic As(III)-oxidizing bacteria. Comparative analysis of AoxB protein sequences showed variable conservation levels and highlighted the conservation of essential amino acids and structural motifs. AoxB phylogeny of pure strains showed well-discriminated taxonomic groups and was similar to 16S rRNA phylogeny. Alphaproteobacteria-, Betaproteobacteria-, and Gammaproteobacteria-related sequences were retrieved from environmental surveys, demonstrating their prevalence in mesophilic As-contaminated soils. Our study underlines the usefulness of the aoxB gene as a functional marker of aerobic As(III) oxidizers.

  10. Pilot-scale crossflow-microfiltration and pasturization to remove spores of Bacillus anthracis (Sterne) from milk

    USDA-ARS?s Scientific Manuscript database

    HTST pasteurization of milk is generally ineffective against spore-forming bacteria such as Bacillus anthracis (BA) but is lethal to its vegetative cells. Crossflow microfiltration (MF), using ceramic membranes with a pore diameter of 1.4 um, has been shown to physically remove somatic cells, vegeta...

  11. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    PubMed

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  12. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    NASA Astrophysics Data System (ADS)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  13. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX.

    PubMed

    Omardien, Soraya; Ter Beek, Alexander; Vischer, Norbert; Montijn, Roy; Schuren, Frank; Brul, Stanley

    2018-06-14

    An empirical approach was taken to screen a novel synthetic compound library designed to be active against Gram-positive bacteria. We obtained five compounds that were active against spores from the model organism Bacillus subtilis and the food-borne pathogen Bacillus cereus during our population based experiments. Using single cell live imaging we were able to observe effects of the compounds on spore germination and outgrowth. Difference in sensitivity to the compounds could be observed between B. subtilis and B. cereus using live imaging, with minor difference in the minimal inhibitory and bactericidal concentrations of the compounds against the spores. The compounds all delayed the bursting time of germinated spores and affected the generation time of vegetative cells at sub-inhibitory concentrations. At inhibitory concentrations spore outgrowth was prevented. One compound showed an unexpected potential for preventing spore germination at inhibitory concentrations, which merits further investigation. Our study shows the valuable role single cell live imaging can play in the final selection process of antimicrobial compounds.

  14. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  15. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 mRad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  16. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  17. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    PubMed

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors. © 2015 The Society for Applied Microbiology.

  18. Contribution of aerobic anoxygenic phototrophic bacteria to total organic carbon pool in aquatic system of subtropical karst catchments, Southwest China: evidence from hydrochemical and microbiological study.

    PubMed

    Li, Qiang; Song, Ang; Peng, Wenjie; Jin, Zhenjiang; Müller, Werner E G; Wang, Xiaohong

    2017-06-01

    Aerobic anoxygenic phototrophic bacteria may play a particular role in carbon cycling of aquatic systems. However, little is known about the interaction between aerobic anoxygenic phototrophic bacteria and hydrochemistry in groundwater-surface water exchange systems of subtropical karst catchments. We carried out a detailed study on the abundance of aerobic anoxygenic phototrophic bacteria and bacterioplankton, hydrochemistry and taxonomy of bacterioplankton in the Maocun watershed, Southwest China, an area with karst geological background. Our results revealed that bacteria are the important contributors to total organic carbon source/sequestration in the groundwater-surface water of this area. The aerobic anoxygenic phototrophic bacteria, including β-Proteobacteria, also appear in the studied water system. In addition to that, the genus Polynucleobacter of the phototropic β-Proteobacteria shows a close link with those sampling sites by presenting bacterial origin organic carbon on CCA biplot and is found to be positively correlated with total nitrogen, dissolved oxygen and pH (r = 0.860, 0.747 and 0.813, respectively) in the Maocun watershed. The results suggest that Polynucleobacter might be involved in the production of organic carbon and might act as the negative feedback on global warming. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  20. Comparison between Rinse and Crush-and-Rub Sampling for Aerobic Bacteria Recovery from Hatching Eggs after Sanitization

    USDA-ARS?s Scientific Manuscript database

    This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatments with sanitizers. Eggs were arranged into 5 treatments consisting of three sanitizers, Water, and No-treatment. Sanitizers were Hydrogen...

  1. Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus salis sp. nov.

    PubMed

    Seck, E H; Diop, A; Armstrong, N; Delerce, J; Fournier, P-E; Raoult, D; Khelaifia, S

    2018-05-01

    Bacillus salis strain ES3 T (= CSUR P1478 = DSM 100598) is the type strain of B. salis sp. nov. It is an aerobic, Gram-positive, moderately halophilic, motile and spore-forming bacterium. It was isolated from commercial table salt as part of a broad culturomics study aiming to maximize the culture conditions for the in-depth exploration of halophilic bacteria in salty food. Here we describe the phenotypic characteristics of this isolate, its complete genome sequence and annotation, together with a comparison with closely related bacteria. Phylogenetic analysis based on 16S rRNA gene sequences indicated 97.5% similarity with Bacillus aquimaris, the closest species. The 8 329 771 bp long genome (one chromosome, no plasmids) exhibits a G+C content of 39.19%. It is composed of 18 scaffolds with 29 contigs. Of the 8303 predicted genes, 8109 were protein-coding genes and 194 were RNAs. A total of 5778 genes (71.25%) were assigned a putative function.

  2. Isolation and whole genome analysis of endospore-forming bacteria from heroin.

    PubMed

    Kalinowski, Jörn; Ahrens, Björn; Al-Dilaimi, Arwa; Winkler, Anika; Wibberg, Daniel; Schleenbecker, Uwe; Rückert, Christian; Wölfel, Roman; Grass, Gregor

    2018-01-01

    Infections caused by endospore-forming bacteria have been associated with severe illness and death among persons who inject drugs. Analysis of the bacteria residing in heroin has thus been biased towards species that affect human health. Similarly, exploration of the bacterial diversity of seized street market heroin correlated with the skin microflora of recreational heroin users insofar as different Staphylococus spp. or typical environmental endospore formers including Bacillus cereus and other Bacilli outside the B. cereus sensu lato group as well as diverse Clostridia were identified. In this work 82 samples of non-street market ("wholesale") heroin originating from the German Federal Criminal Police Office's heroin analysis program seized during the period between 2009 and 2014 were analyzed for contaminating bacteria. Without contact with the end user and with only little contaminations introduced by final processing, adulteration and cutting this heroin likely harbors original microbiota from the drug's original source or trafficking route. We found this drug to be only sparsely populated with retrievable heterotrophic, aerobic bacteria. In total, 68 isolates were retrieved from 49 out of 82 samples analyzed (60% culture positive). All isolates were endospore-forming, Gram-positive Bacilli. Completely absent were non-endospore-formers or Gram-negatives. The three most predominant species were Bacillus clausii, Bacillus (para)licheniformis, and Terribacillus saccharophilus. Whole genome sequencing of these 68 isolates was performed using Illumina technology. Sequence data sets were assembled and annotated using an automated bioinformatics pipeline. Average nucleotide identity (ANI) values were calculated for all draft genomes and all close to identical genomes (ANI>99.5%) were compared to the forensic data of the seized drug, showing positive correlations that strongly warrant further research on this subject. Copyright © 2017 Elsevier B.V. All rights

  3. Survival of B. Horneckiae Spores Under Ground-simulated Space Conditions

    NASA Technical Reports Server (NTRS)

    Schanche, Bradley

    2012-01-01

    To prevent forward contamination and maintain the scientific integrity of future life detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated habitats, spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. Recently a radiation resistant, spore forming bacterial isolate, Bacillus horneckiae, was isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. The exceptionally high tolerance of extreme conditions demonstrated by sporeforming bacteria highlighted the need to assess the viability of these microbes in situ (in real) space. The proposed BOSS (Biofilm Organisms Surfing Space) project aims to understand the mechanisms by which biofilm forming organisms, such as B. horneckiae, will potentially be able to withstand harsh space conditions. As previously stated, the spore producing ability of these species gives them increased survivability to harsh conditions. Some of the spores will have the protective exosporium layer artificially removed before the test to determine if the existence of this layer significantly changes the survivability during the mission. In preparation for that experiment, we analyzed spores which were exposed during a ground simulation, the EXPOSE R2 Biofilm Organisms Surfing Space (BOSS). Previous to exposure, spores were deposited onto spacecraft grade aluminum coupons in a spore suspension calculated to contain between 10(exp 7) and 10(exp 8) spores. This precursor series will be used to establish a baseline survivability function for comparison with the future flight tests during EXPOSE-R. For each coupon, a 10% polyvinyl alcohol (PVA) film was applied and peeled

  4. The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems

    PubMed Central

    Birgel, Daniel; Kappler, Andreas; Hirayama, Hisako; Peckmann, Jörn; Poulton, Simon W.; Nickel, Julia C.; Mangelsdorf, Kai; Kalyuzhnaya, Marina; Sidgwick, Frances R.; Talbot, Helen M.

    2016-01-01

    Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO. PMID:27824887

  5. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Zhang, Xinglin; Aarts, Dirk G. A. L.; Dullens, Roel P. A.

    2018-06-01

    Recent progress in synthetic nanotechnology and the ancient use of metals in food preservation and the antibacterial treatment of wounds have prompted the development of nanometallic materials for antimicrobial applications1-4. However, the materials designed so far do not simultaneously display antimicrobial activity and the capability of binding and capturing bacteria and spores. Here, we develop a one-step pyrolysis procedure to synthesize monodisperse superparamagnetic nickel colloidal nanocrystal clusters (SNCNCs), which show both antibacterial activity and the ability to bind Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as bacterial spores. The SNCNCs are formed from a rapid burst of nickel nanoparticles, which self-assemble slowly into clusters. The clusters can magnetically extract 99.99% of bacteria and spores and provide a promising approach for the removal of microbes, including hard-to-treat microorganisms. We believe that our work illustrates the exciting opportunities that nanotechnology offers for alternative antimicrobial strategies and other applications in microbiology.

  6. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker

    PubMed Central

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing “unknown methanotrophic bacteria.” This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  7. Evolutionary Dynamics of Spore Killers

    PubMed Central

    Nauta, M. J.; Hoekstra, R. F.

    1993-01-01

    Spore killing in ascomycetes is a special form of segregation distortion. When a strain with the Killer genotype is crossed to a Sensitive type, spore killing is expressed by asci with only half the number of ascospores as usual, all surviving ascospores being of the Killer type. Using population genetic modeling, this paper explores conditions for invasion of Spore killers and for polymorphism of Killers, Sensitives and Resistants (which neither kill, nor get killed), as found in natural populations. The models show that a population with only Killers and Sensitives can never be stable. The invasion of Killers and stable polymorphism only occur if Killers have some additional advantage during the process of spore killing. This may be due to the effects of local sib competition or some kind of ``heterozygous'' advantage in the stage of ascospore formation or in the short diploid stage of the life cycle. This form of segregation distortion appears to be essentially different from other, well-investigated forms, and more field data are needed for a better understanding of spore killing. PMID:8293989

  8. Microbiological diversity and prevalence of spoilage and pathogenic bacteria in commercial fermented alcoholic beverages (beer, fruit wine, refined rice wine, and yakju).

    PubMed

    Jeon, Se Hui; Kim, Nam Hee; Shim, Moon Bo; Jeon, Young Wook; Ahn, Ji Hye; Lee, Soon Ho; Hwang, In Gyun; Rhee, Min Suk

    2015-04-01

    The present study examined 469 commercially available fermented alcoholic beverages (FABs), including beer (draft, microbrewed, and pasteurized), fruit wine (grape and others), refined rice wine, and yakju (raw and pasteurized). Samples were screened for Escherichia coli and eight foodborne pathogens (Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Yersinia enterocolitica), and the aerobic plate count, lactic acid bacteria, acetic acid bacteria, fungi, and total coliforms were also enumerated. Microbrewed beer contained the highest number of microorganisms (average aerobic plate count, 3.5; lactic acid bacteria, 2.1; acetic acid bacteria, 2.0; and fungi, 3.6 log CFU/ml), followed by draft beer and yakju (P < 0.05), whereas the other FABs contained , 25 CFU/25 ml microorganisms. Unexpectedly, neither microbial diversity nor microbial count correlated with the alcohol content (4.7 to 14.1%) or pH (3.4 to 4.2) of the product. Despite the harsh conditions, coliforms (detected in 23.8% of microbrewed beer samples) and B. cereus (detected in all FABs) were present in some products. B. cereus was detected most frequently in microbrewed beer (54.8% of samples) and nonpasteurized yakju (50.0%), followed by pasteurized yakju (28.8%), refined rice wine (25.0%), other fruit wines (12.3%), grape wine (8.6%), draft beer (5.6%), and pasteurized beer (2.2%) (P < 0.05). The finding that spore-forming B. cereus and coliform bacteria can survive the harsh conditions present in alcoholic beverages should be taken into account (alongside traditional quality indicators such as the presence of lactic acid-producing bacteria, acetic acid-producing bacteria, or both) when developing manufacturing systems and methods to prolong the shelf life of high-quality FAB products. New strategic quality management plans for various FABs are needed.

  9. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised

    NASA Technical Reports Server (NTRS)

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2005-01-01

    The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

  10. Self-healing concrete by use of microencapsulated bacterial spores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.Y.; Laboratory of Microbial Ecology and Technology; Soens, H.

    Microcapsules were applied to encapsulate bacterial spores for self-healing concrete. The viability of encapsulated spores and the influence of microcapsules on mortar specimens were investigated first. Breakage of the microcapsules upon cracking was verified by Scanning Electron Microscopy. Self-healing capacity was evaluated by crack healing ratio and the water permeability. The results indicated that the healing ratio in the specimens with bio-microcapsules was higher (48%–80%) than in those without bacteria (18%–50%). The maximum crack width healed in the specimens of the bacteria series was 970 μm, about 4 times that of the non-bacteria series (max 250 μm). The overall watermore » permeability in the bacteria series was about 10 times lower than that in non-bacteria series. Wet–dry cycles were found to stimulate self-healing in mortar specimens with encapsulated bacteria. No self-healing was observed in all specimens stored at 95%RH, indicating that the presence of liquid water is an essential component for self-healing.« less

  11. Influence of bovine lactoferrin on the growth of selected probiotic bacteria under aerobic conditions.

    PubMed

    Chen, Po-Wen; Ku, Yu-We; Chu, Fang-Yi

    2014-10-01

    Bovine lactoferrin (bLf) is a natural glycoprotein, and it shows broad-spectrum antimicrobial activity. However, reports on the influences of bLf on probiotic bacteria have been mixed. We examined the effects of apo-bLf (between 0.25 and 128 mg/mL) on both aerobic and anaerobic cultures of probiotics. We found that bLf had similar effects on the growth of probiotics under aerobic or anaerobic conditions, and that it actively and significantly (at concentrations of >0.25 mg/mL) retarded the growth rate of Bifidobacterium bifidum (ATCC 29521), B. longum (ATCC 15707), B. lactis (BCRC 17394), B. infantis (ATCC 15697), Lactobacillus reuteri (ATCC 23272), L. rhamnosus (ATCC 53103), and L. coryniformis (ATCC 25602) in a dose-dependent manner. Otherwise, minimal inhibitory concentrations (MICs) were 128 or >128 mg/mL against B. bifidum, B. longum, B. lactis, L. reuteri, and L. rhamnosus (ATCC 53103). With regard to MICs, bLf showed at least four-fold lower inhibitory effect on probiotics than on pathogens. Intriguingly, bLf (>0.25 mg/mL) significantly enhanced the growth of Rhamnosus (ATCC 7469) and L. acidophilus (BCRC 14065) by approximately 40-200 %, during their late periods of growth. Supernatants produced from aerobic but not anaerobic cultures of L. acidophilus reduced the growth of Escherichia coli by about 20 %. Thus, bLf displayed a dose-dependent inhibitory effect on the growth of most probiotic strains under either aerobic or anaerobic conditions. An antibacterial supernatant prepared from the aerobic cultures may have significant practical use.

  12. Micromotors to capture and destroy anthrax simulant spores.

    PubMed

    Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph

    2015-03-07

    Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats.

  13. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation.

    PubMed

    Ribis, John W; Ravichandran, Priyanka; Putnam, Emily E; Pishdadian, Keyan; Shen, Aimee

    2017-01-01

    The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis , only two of these morphogenetic proteins have homologs in the Clostridia : SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis . Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis , C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia , but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  14. Decrease in optical density as a results of germination of Alicyclobacillus acidoterrestris spores under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Porębska, I.; Rutkowska, M.; Sokołowska, B.

    2015-01-01

    Alicyclobacillus acidoterrestris is a spore-forming bacterium, causing spoilage of juices. The spores of these bacteria have the ability to survive in the typical conditions used for thermal pasteurization. Therefore, the use of other techniques such as high hydrostatic pressure is considered for their inactivation. The effect of hydrostatic pressure of 200-500 MPa, at temperatures 4-50 °C for 15 min, on the dynamics of germination of A. acidoterrestris spores in apple juice and pH 4 buffer was studied. To estimate the share of germinated spores, the method of determining the optical density at a wavelength of 660 nm (OD660) was used. Parameters of hydrostatic pressure treatment used in this work affected the dynamics of germination of A. acidoterrestris spores in apple juice, and the temperature had the greatest effect. The results indicate that nutrients present in apple juice can promote the germination of A. acidoterrestris spores. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014) in Nantes (France) 15-18 July 2014.

  15. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  16. [Isolation and identification of electrochemically active microorganism from micro-aerobic environment].

    PubMed

    Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng

    2014-10-01

    Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.

  17. Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization

    USDA-ARS?s Scientific Manuscript database

    This study compared surface and deep eggshell aerobic bacteria recovered by rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of No-treatment, Water, and three sanitizers. Sanitizers were Hydrogen ...

  18. Antimicrobial resistance among aerobic biofilm producing bacteria isolated from chronic wounds in the tertiary care hospitals of Peshawar, Pakistan.

    PubMed

    Rahim, K; Qasim, M; Rahman, H; Khan, T A; Ahmad, I; Khan, N; Ullah, A; Basit, A; Saleha, S

    2016-08-01

    Chronic wound infections impose major medical and economic costs on health-care systems, cause significant morbidity, mortality and prolonged hospitalisation. The presence of biofilm producing bacteria in these wounds is considered as an important virulence factor that leads to chronic implications including ulceration. The undertaken study aimed to isolate and identify the biofilm aerobic bacterial pathogens from patients with chronic wound infections, and determine their antibiotics resistance profiles Method: During this study, swab specimens were collected from patients with chronic wounds at teaching hospitals of Peshawar, Pakistan between May 2013 and June 2014. The isolated aerobic bacterial pathogens were identified on the basis of standard cultural characteristics and biochemical tests. Antibiotics resistance profiles of biofilm producing bacteria against selected antibiotics were then determined. Among the chronic wound infections, diabetic foot ulcers were most common 37 (37%), followed by surgical ulcers 27 (27%). Chronic wounds were common in male patients older than 40 years. Among the total 163 isolated bacterial pathogens the most prevalent bacterial species were Pseudomonas aeruginosa 44 (27%), Klebsiella pneumoniae 26 (16%), Staphylococcus species 22 (14%) and Streptococcus spp. 21 (13%). The isolation rate of bacterial pathogens was high among patients with diabetic foot ulcers 83 (50.9%). Among bacterial isolates, 108 (66.2%) were observed as biofilm producers while 55 (33.8%) did not form biofilm in our model. The investigated biofilm producing bacterial isolates showed comparatively high resistance against tested antibiotics compared to non-biofilm producing bacterial isolates. The most effective antibiotics were amikacine and cefepime against all isolates. Increased multidrug resistance in biofilm producing bacteria associated with chronic wounds was observed in this study. Judicious use of antibiotics is needed to control the wound

  19. Impact of spores on the comparative efficacies of five antibiotics for treatment of Bacillus anthracis in an in vitro hollow fiber pharmacodynamic model.

    PubMed

    Louie, Arnold; VanScoy, Brian D; Brown, David L; Kulawy, Robert W; Heine, Henry S; Drusano, George L

    2012-03-01

    Bacillus anthracis, the bacterium that causes anthrax, is an agent of bioterrorism. The most effective antimicrobial therapy for B. anthracis infections is unknown. An in vitro pharmacodynamic model of B. anthracis was used to compare the efficacies of simulated clinically prescribed regimens of moxifloxacin, linezolid, and meropenem with the "gold standards," doxycycline and ciprofloxacin. Treatment outcomes for isogenic spore-forming and non-spore-forming strains of B. anthracis were compared. Against spore-forming B. anthracis, ciprofloxacin, moxifloxacin, linezolid, and meropenem reduced the B. anthracis population by 4 log(10) CFU/ml over 10 days. Doxycycline reduced the population of this B. anthracis strain by 5 log(10) CFU/ml (analysis of variance [ANOVA] P = 0.01 versus other drugs). Against an isogenic non-spore-forming strain, meropenem killed the vegetative B. anthracis the fastest, followed by moxifloxacin and ciprofloxacin and then doxycycline. Linezolid offered the lowest bacterial kill rate. Heat shock studies using the spore-producing B. anthracis strain showed that with moxifloxacin, ciprofloxacin, and meropenem therapies the total population was mostly spores, while the population was primarily vegetative bacteria with linezolid and doxycycline therapies. Spores have a profound impact on the rate and extent of killing of B. anthracis. Against spore-forming B. anthracis, the five antibiotics killed the total (spore and vegetative) bacterial population at similar rates (within 1 log(10) CFU/ml of each other). However, bactericidal antibiotics killed vegetative B. anthracis faster than bacteriostatic drugs. Since only vegetative-phase B. anthracis produces the toxins that may kill the infected host, the rate and mechanism of killing of an antibiotic may determine its overall in vivo efficacy. Further studies are needed to examine this important observation.

  20. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  1. From fundamental studies of sporulation to applied spore research.

    PubMed

    Barák, Imrich; Ricca, Ezio; Cutting, Simon M

    2005-01-01

    Sporulation in the Gram-positive bacterium, Bacillus subtilis, has been used as an excellent model system to study cell differentiation for almost half a century. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although many basic aspects of this process are now understood in great detail, including the crystal and NMR structures of some of the key proteins and their complexes, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or are only described by 'controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely be increased if we were to include sporulation processes in the Gram-negative spore formers. Spore formers have great potential in applied research. They have been used for many years as biodosimeters and as natural insecticides, exploited in the industrial production of enzymes, antibiotics, used as probiotics and, more, exploited as possible vectors for drug delivery, vaccine antigens and other immunomodulating molecules. This report describes these and other aspects of current fundamental and applied spore research that were presented at European Spores Conference held in Smolenice Castle, Slovakia, June 2004.

  2. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation

    PubMed Central

    Ribis, John W.; Ravichandran, Priyanka; Putnam, Emily E.; Pishdadian, Keyan

    2017-01-01

    ABSTRACT The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  3. Dormant state in bacteria: Conceptions and implications for terrestrial biogeoscience and astrobiology

    NASA Astrophysics Data System (ADS)

    Mulyukin, A.

    2003-04-01

    Gaining insight into strategies and mechanisms that ensure long term-preservation of microorganisms in various environments, including cold habitats, is a very important issue for terrestrial biogeoscience and astrobiology. This communication has a focus on the analysis of the published and our experimental data regarding the dormant state of different microorganisms, with an emphasis on non-spore-forming bacteria, which are widely spread in numerous ecological niches (e.g. permafrost sediments). Albeit it is recognized that one of the strategies to endure environmental stresses is entering of non-spore-forming bacteria into the viable-but-non-culturable state, a question of whether these microorganisms have the resting stage remains unclear. However, our previous studies showed that non-spore-forming bacteria and yeast could form cyst-like cells that possess many attributes of constitutively resting cells. As applied to the survival strategy of non-spore-forming bacteria in permafrost sediments, recognizing a very important role of the viable-but-nonculturable state in asporogenous bacteria, we however believe that their long-term maintenance in such habitats is due to the formation of cyst-like cells. Interestingly, bacterial isolates from permafrost sediments showed a greater productivity of autoregulatory factors, favoring the transition of cells into the resting state, and a more elevated resistance to some stresses than closely related collection strains. This suggests a greater potentiality of the permafrost isolates to enter the resting stage and thereby to survive for millennia years in natural habitats. However, it is known that only a little part of microorganisms that are present in environmental samples can be enumerated by standard plating on agar media, and a discrepancy between the total number of cells and those capable of forming colonies is a rather common case. Such a discrepancy can be due to either the actual non-culturability of microbial

  4. Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria.

    PubMed

    Doronina, Nina V; Trotsenko, Yuri A; Kuznetsov, Boris B; Tourova, Tatjana P; Salkinoja-Salonen, Mirja S

    2002-05-01

    Two aerobic, pink-pigmented, facultatively methylotrophic bacteria, strains F20T and RXM(T), are described taxonomically. On the basis of their phenotypic and genotypic properties, the isolates are proposed as novel species of the genus Methylobacterium, Methylobacterium suomiense sp. nov. (type strain F20T = VKM B-2238T = NCIMB 13778T) and Methylobacterium lusitanum sp. nov. (type strain RXMT = VKM B-2239T = NCIMB 13779T).

  5. Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2

    PubMed Central

    Upadrasta, Aditya; Pitta, Swetha

    2016-01-01

    Bacillus coagulans Unique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709

  6. A procedure for estimating Bacillus cereus spores in soil and stream-sediment samples - A potential exploration technique

    USGS Publications Warehouse

    Watterson, J.R.

    1985-01-01

    The presence of bacterial spores of the Bacillus cereus group in soils and stream sediments appears to be a sensitive indicator of several types of concealed mineral deposits, including vein-type gold deposits. The B. cereus assay is rapid, inexpensive, and inherently reproducible. The test, currently under investigation for its potential in mineral exploration, is recommended for use on a research basis. Among the aerobic spore-forming bacilli, only B. cereus and closely related strains produce an opaque zone in egg-yolk emulsion agar. This characteristic, also known as the Nagler of lecitho-vitellin reaction, has long been used to rapidly indentify and estimate presumptive B. cereus. The test is here adapted to permit rapid estimation of B. cereus spores in soil and stream-sediment samples. Relative standard deviation was 10.3% on counts obtained from two 40-replicate pour-plate determinations. As many as 40 samples per day can be processed. Enough procedural detail is included to permit investigation of the test in conventional geochemical laboratories using standard microbiological safety precautions. ?? 1985.

  7. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  8. Aerosol and Surface Deposition Characteristics of Two Surrogates for Bacillus anthracis Spores

    PubMed Central

    Stapleton, Helen L.

    2016-01-01

    ABSTRACT Spores of an acrystalliferous derivative of Bacillus thuringiensis subsp. kurstaki, termed Btcry−, are morphologically, aerodynamically, and structurally indistinguishable from Bacillus anthracis spores. Btcry− spores were dispersed in a large, open-ended barn together with spores of Bacillus atrophaeus subsp. globigii, a historically used surrogate for Bacillus anthracis. Spore suspensions (2 × 1012 CFU each of B. atrophaeus subsp. globigii and Btcry−) were aerosolized in each of five spray events using a backpack misting device incorporating an air blower; a wind of 4.9 to 7.6 m s−1 was also flowing through the barn in the same direction. Filter air samplers were situated throughout the barn to assess the aerosol density of the spores during each release. Trays filled with a surfactant in aqueous buffer were placed on the floor near the filter samplers to assess spore deposition. Spores were also recovered from arrays of solid surfaces (concrete, aluminum, and plywood) that had been laid on the floor and set up as a wall at the end of the barn. B. atrophaeus subsp. globigii spores were found to remain airborne for significantly longer periods, and to be deposited on horizontal surfaces at lower densities, than Btcry− spores, particularly near the spray source. There was a 6-fold-higher deposition of Btcry− spores than of B. atrophaeus subsp. globigii spores on vertical surfaces relative to the surrounding airborne density. This work is relevant for selecting the best B. anthracis surrogate for the prediction of human exposure, hazard assessment, and hazard management following a malicious release of B. anthracis. IMPORTANCE There is concern that pathogenic bacteria could be maliciously disseminated in the air to cause human infection and disruption of normal life. The threat from spore-forming organisms, such as the causative agent of anthrax, is particularly serious. In order to assess the extent of this risk, it is important to have a

  9. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  10. A new microtitre plate screening method for evaluating the viability of aerobic respiring bacteria in high surface biofilms.

    PubMed

    Pérez, L M; Alvarez, B L; Codony, F; Fittipaldi, M; Adrados, B; Peñuela, G; Morató, J

    2010-09-01

    It is difficult to determine the effects of bactericidal compounds against bacteria in a biofilm because classical procedures for determining cell viability require several working days, multiple complicated steps and are frequently only applicable to cells in suspension. We attempt to develop a compact, inexpensive and versatile system to measure directly the extent of biofilm formation from water systems and to determine the viability of respiring bacteria in high surface biofilms. It has been reported that the reduction of tetrazolium sodium salts, such as XTT (sodium 3,3'-[1-[(phenylamino)carbonyl]-3,4-tetrazolium]Bis(4-methoxy)-6-nitro)benzene sulfonic acid hydrate), during active bacterial metabolism can be incorporated into a colorimetric method for quantifying cell viability. XTT is reduced to a soluble formazan compound during bacterial aerobic metabolism such that the amount of formazan generated is proportional to the bacterial biomass. We show here, for the first time, that this colorimetric approach can be used to determine the metabolic activity of adherent aerobic bacteria in a biofilm as a measure of cell viability. This technique has been used to estimate viability and proliferation of bacteria in suspension, but this is the first application to microbial communities in a real undisturbed biofilm. This simple new system can be used to evaluate the complex biofilm community without separating the bacteria from their support. Thus, the results obtained by this practice may be more representative of the circumstances in a natural system, opening the possibility to multiple potential applications.

  11. Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78.

    PubMed

    Segarra, Guillem; Puopolo, Gerardo; Giovannini, Oscar; Pertot, Ilaria

    2015-12-20

    The formulation is a significant step in biopesticide development and is an efficient way to obtain consistency in terms of biological control under field conditions. Nonetheless, there is still a lack of information regarding the processes needed to achieve efficient formulation of non spore-forming bacterial biological control agents. In response to this, we propose a flow diagram made up of six steps including selection of growth parameters, checking of minimum shelf life, selection of protective additives, checking that the additives have no adverse effects, validation of the additive mix under field conditions and choosing whether to use additives as co-formulants or tank mix additives. This diagram is intended to provide guidance and decision-making criteria for the formulation of non spore-forming bacterial biological control agents against foliar pathogens. The diagram was then validated by designing an efficient formulation for a Gram-negative bacterium, Lysobacter capsici AZ78, to control grapevine downy mildew caused by Plasmopara viticola. A harvest of 10(10)L. capsici AZ78cellsml(-1) was obtained in a bench top fermenter. The viability of cells decreased by only one order of magnitude after one year of storage at 4°C. The use of a combination of corn steep liquor, lignosulfonate, and polyethyleneglycol in the formulation improved the survival of L. capsici AZ78 cells living on grapevine leaves under field conditions by one order of magnitude. Furthermore, the use of these additives also guaranteed a reduction of 71% in P. viticola attacks. In conclusion, this work presents a straightforward stepwise flow diagram to help researchers develop formulations for biological control agents that are easy to prepare, stable, not phytotoxic and able to protect the microorganims under field conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition

    PubMed Central

    Müller, Frank D.; Schink, Christian W.; Hoiczyk, Egbert; Cserti, Emöke; Higgs, Penelope I.

    2011-01-01

    Summary Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo, or two other genetic loci encoding homologs of polysaccharide synthesis enzymes, fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition. PMID:22188356

  13. Aerobic microbial enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to takemore » place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.« less

  14. Impact of Spores on the Comparative Efficacies of Five Antibiotics for Treatment of Bacillus anthracis in an In Vitro Hollow Fiber Pharmacodynamic Model

    PubMed Central

    VanScoy, Brian D.; Brown, David L.; Kulawy, Robert W.; Heine, Henry S.; Drusano, George L.

    2012-01-01

    Bacillus anthracis, the bacterium that causes anthrax, is an agent of bioterrorism. The most effective antimicrobial therapy for B. anthracis infections is unknown. An in vitro pharmacodynamic model of B. anthracis was used to compare the efficacies of simulated clinically prescribed regimens of moxifloxacin, linezolid, and meropenem with the “gold standards,” doxycycline and ciprofloxacin. Treatment outcomes for isogenic spore-forming and non-spore-forming strains of B. anthracis were compared. Against spore-forming B. anthracis, ciprofloxacin, moxifloxacin, linezolid, and meropenem reduced the B. anthracis population by 4 log10 CFU/ml over 10 days. Doxycycline reduced the population of this B. anthracis strain by 5 log10 CFU/ml (analysis of variance [ANOVA] P = 0.01 versus other drugs). Against an isogenic non-spore-forming strain, meropenem killed the vegetative B. anthracis the fastest, followed by moxifloxacin and ciprofloxacin and then doxycycline. Linezolid offered the lowest bacterial kill rate. Heat shock studies using the spore-producing B. anthracis strain showed that with moxifloxacin, ciprofloxacin, and meropenem therapies the total population was mostly spores, while the population was primarily vegetative bacteria with linezolid and doxycycline therapies. Spores have a profound impact on the rate and extent of killing of B. anthracis. Against spore-forming B. anthracis, the five antibiotics killed the total (spore and vegetative) bacterial population at similar rates (within 1 log10 CFU/ml of each other). However, bactericidal antibiotics killed vegetative B. anthracis faster than bacteriostatic drugs. Since only vegetative-phase B. anthracis produces the toxins that may kill the infected host, the rate and mechanism of killing of an antibiotic may determine its overall in vivo efficacy. Further studies are needed to examine this important observation. PMID:22155821

  15. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products.

    PubMed

    Oomes, S J C M; van Zuijlen, A C M; Hehenkamp, J O; Witsenboer, H; van der Vossen, J M B M; Brul, S

    2007-11-30

    Spore-forming bacteria can be a problem in the food industry, especially in the canning industry. Spores present in ingredients or present in the processing environment severely challenge the preservation process since their thermal resistance may be very high. We therefore asked the question which bacterial spore formers are found in a typical soup manufacturing plant, where they originate from and what the thermal resistance of their spores is. To answer these questions molecular techniques for bacterial species and strain identification were used as well as a protocol for the assessment of spore heat stress resistance based on the Kooiman method. The data indicate the existence and physiological cause of the high thermal resistance of spores of many of the occurring species. In particular it shows that ingredients used in soup manufacturing are a rich source of high thermal resistant spores and that sporulation in the presence of ingredients rich in divalent metal ions exerts a strong influence on spore heat resistance. It was also indicated that Bacillus spores may well be able to germinate and resporulate during manufacturing i.e. through growth and sporulation in line. Both these spores and those originating from the ingredients were able to survive certain thermal processing settings. Species identity was confirmed using fatty acid analysis, 16SrRNA gene sequencing and DNA-DNA hybridisation. Finally, molecular typing experiments using Ribotyping and AFLP analysis show that strains within the various Bacillus species can be clustered according to the thermal resistance properties of their spores. AFLP performed slightly better than Ribotyping. The data proofed to be useful for the generation of strain specific probes. Protocols to validate these probes in routine identification and innovation aimed at tailor made heat processing in soup manufacturing have been formulated.

  17. Survival, injury and inactivation of Escherichia coli 0157:H7, salmonella and aerobic mesophilic bacteria in apple juice and cider amended with nisin-edta

    USDA-ARS?s Scientific Manuscript database

    For health reasons, people are consuming fresh juices or minimally processed fruit and vegetable juices, thereby, exposing themselves to the risk of foodborne illness if such juices are contaminated with bacteria pathogens. Behavior of aerobic mesophilic bacteria, Escherichia coli O157:H7 and Salmon...

  18. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  19. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems.

    PubMed

    Quezada, Maribel; Buitrón, Germán; Moreno-Andrade, Iván; Moreno, Gloria; López-Marín, Luz M

    2007-01-01

    The use of fatty acid methyl esters (FAME) as biomarkers to identify groups of microorganisms was studied. A database was constructed using previously published results that identify FAME biomarkers for aerobic, anaerobic and facultatively aerobic bacteria. FAME profiles obtained from pure cultures were utilized to confirm the predicted presence of biomarkers. Principal component analysis demonstrated that the FAME profiles can be used to determine the incidence of these bacterial groups. The presence of aerobic, anaerobic and facultatively aerobic bacteria in the communities, in four bioreactors being used to treat different wastewaters, was investigated by applying FAME biomarkers.

  20. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  1. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  2. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables. © 2015 Institute of Food Technologists®

  3. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce.

    PubMed

    Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W

    2012-01-16

    Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this

  4. Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

    PubMed Central

    Li, Y.; Wang, F.; Nishino, N.

    2016-01-01

    We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56-day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents. PMID:26949952

  5. Successful aerobic bioremediation of groundwater contaminated with higher chlorinated phenols by indigenous degrader bacteria.

    PubMed

    Mikkonen, Anu; Yläranta, Kati; Tiirola, Marja; Dutra, Lara Ambrosio Leal; Salmi, Pauliina; Romantschuk, Martin; Copley, Shelley; Ikäheimo, Jukka; Sinkkonen, Aki

    2018-07-01

    The xenobiotic priority pollutant pentachlorophenol has been used as a timber preservative in a polychlorophenol bulk synthesis product containing also tetrachlorophenol and trichlorophenol. Highly soluble chlorophenol salts have leaked into groundwater, causing severe contamination of large aquifers. Natural attenuation of higher-chlorinated phenols (HCPs: pentachlorophenol + tetrachlorophenol) at historically polluted sites has been inefficient, but a 4-year full scale in situ biostimulation of a chlorophenol-contaminated aquifer by circulation and re-infiltration of aerated groundwater was remarkably successful: pentachlorophenol decreased from 400 μg L -1 to <1 μg L -1 and tetrachlorophenols from 4000 μg L -1 to <10 μg L -1 . The pcpB gene, the gene encoding pentachlorophenol hydroxylase - the first and rate-limiting enzyme in the only fully characterised aerobic HCP degradation pathway - was present in up to 10% of the indigenous bacteria already 4 months after the start of aeration. The novel quantitative PCR assay detected the pcpB gene in situ also in the chlorophenol plume of another historically polluted aquifer with no remediation history. Hotspot groundwater HCPs from this site were degraded efficiently during a 3-week microcosm incubation with one-time aeration but no other additives: from 5400 μg L -1 to 1200 μg L -1 and to 200 μg L -1 in lightly and fully aerated microcosms, respectively, coupled with up to 2400% enrichment of the pcpB gene. Accumulation of lower-chlorinated metabolites was observed in neither in situ remediation nor microcosms, supporting the assumption that HCP removal was due to the aerobic degradation pathway where the first step limits the mineralisation rate. Our results demonstrate that bacteria capable of aerobic mineralisation of xenobiotic pentachlorophenol and tetrachlorophenol can be present at long-term polluted groundwater sites, making bioremediation by simple aeration a viable and

  6. MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores.

    PubMed

    Mazza, Paola; Noens, Elke E; Schirner, Kathrin; Grantcharova, Nina; Mommaas, A Mieke; Koerten, Henk K; Muth, Günther; Flärdh, Klas; van Wezel, Gilles P; Wohlleben, Wolfgang

    2006-05-01

    MreB forms a cytoskeleton in many rod-shaped bacteria which is involved in cell shape determination and chromosome segregation. PCR-based and Southern analysis of various actinomycetes, supported by analysis of genome sequences, revealed mreB homologues only in genera that form an aerial mycelium and sporulate. We analysed MreB in one such organism, Streptomyces coelicolor. Ectopic overexpression of mreB impaired growth, and caused swellings and lysis of hyphae. A null mutant with apparently normal vegetative growth was generated. However, aerial hyphae of this mutant were swelling and lysing; spores doubled their volume and lost their characteristic resistance to stress conditions. Loss of cell wall consistency was observed in MreB-depleted spores by transmission electron microscopy. An MreB-EGFP fusion was constructed to localize MreB in the mycelium. No clearly localized signal was seen in vegetative mycelium. However, strong fluorescence was observed at the septa of sporulating aerial hyphae, then as bipolar foci in young spores, and finally in a ring- or shell-like pattern inside the spores. Immunogold electron microscopy using MreB-specific antibodies revealed that MreB is located immediately underneath the internal spore wall. Thus, MreB is not essential for vegetative growth of S. coelicolor, but exerts its function in the formation of environmentally stable spores, and appears to primarily influence the assembly of the spore cell wall.

  7. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300-2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%-1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  8. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE PAGES

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; ...

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly themore » full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  9. Effects of space vacuum and solar ultraviolet irradiation (254 nanometers) on the colony forming ability of Bacillus subtilis spores

    NASA Technical Reports Server (NTRS)

    Buecker, H.; Horneck, G.; Wollenhaupt, H.

    1973-01-01

    Bacillus subtilis spores are highly resistant to harsh environments. Therefore, in the Apollo 16 Microbial Response to Space Environment Experiment (M191), these spores were exposed to space vacuum or solar ultraviolet irradiation, or both, to estimate the change of survival for terrestrial organisms in space. The survival of the spores was determined in terms of colony-forming ability. Comparison of the flight results with results of simulation experiments on earth applying high vacuum or ultraviolet irradiation, or both, revealed no remarkable difference. Simultaneous exposure to both these space factors resulted in a synergistic effect (that is, an ultraviolet supersensitivity). Therefore, the change of survival in space is assumed to depend on the degree of protection against solar ultraviolet irradiation.

  10. The Fungal Spores Survival Under the Low-Temperature Plasma

    NASA Astrophysics Data System (ADS)

    Soušková, Hana; Scholtz, V.; Julák, J.; Savická, D.

    This paper presents an experimental apparatus for the decontamination and sterilization of water suspension of fungal spores. The fungicidal effect of stabilized positive and negative corona discharges on four fungal species Aspergillus oryzae, Clacosporium sphaerospermum, Penicillium crustosum and Alternaria sp. was studied. Simultaneously, the slower growing of exposed fungal spores was observed. The obtained results are substantially different in comparison with those of the analogous experiments performed with bacteria. It may be concluded that fungi are more resistant to the low-temperature plasma.

  11. Time series analysis of aerobic bacterial flora during Miso fermentation.

    PubMed

    Onda, T; Yanagida, F; Tsuji, M; Shinohara, T; Yokotsuka, K

    2003-01-01

    This article reports a microbiological study of aerobic mesophilic bacteria that are present during the fermentation process of Miso. Aerobic bacteria were enumerated and isolated from Miso during fermentation and divided into nine groups using traditional phenotypic tests. The strains were identified by biochemical analysis and 16S rRNA sequence analysis. They were identified as Bacillus subtilis, B. amyloliquefaciens, Kocuria kristinae, Staphylococcus gallinarum and S. kloosii. All strains were sensitive to the bacteriocins produced by the lactic acid bacteria isolated from Miso. The dominant species among the undesirable species throughout the fermentation process were B. subtilis and B. amyloliquefaciens. It is suggested that bacteriocin-producing lactic acid bacteria are effective in the growth prevention of aerobic bacteria in Miso. This study has provided useful information for controlling of bacterial flora during Miso fermentation.

  12. Reducing time to identification of aerobic bacteria and fastidious micro-organisms in positive blood cultures.

    PubMed

    Intra, J; Sala, M R; Falbo, R; Cappellini, F; Brambilla, P

    2016-12-01

    Rapid and early identification of micro-organisms in blood has a key role in the diagnosis of a febrile patient, in particular, in guiding the clinician to define the correct antibiotic therapy. This study presents a simple and very fast method with high performances for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after only 4 h of incubation. We used early bacterial growth on PolyViteX chocolate agar plates inoculated with five drops of blood-broth medium deposited in the same point and spread with a sterile loop, followed by a direct transfer procedure on MALDI-TOF MS target slides without additional modification. Ninety-nine percentage of aerobic bacteria were correctly identified from 600 monomicrobial-positive blood cultures. This procedure allowed obtaining the correct identification of fastidious pathogens, such as Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae that need complex nutritional and environmental requirements in order to grow. Compared to the traditional pathogen identification from blood cultures that takes over 24 h, the reliability of results, rapid performance and suitability of this protocol allowed a more rapid administration of optimal antimicrobial treatment in the patients. Bloodstream infections are serious conditions with a high mortality and morbidity rate. Rapid identification of pathogens and appropriate antimicrobial therapy have a key role for successful patient outcome. In this work, we developed a rapid, simplified, accurate, and efficient method, reaching 99 % identification of aerobic bacteria from monomicrobial-positive blood cultures by using early growth on enriched medium, direct transfer to target plate without additional procedures, matrix-assisted laser desorption ionization-time of flight mass spectrometry and SARAMIS database. The application of this protocol allows to anticipate appropriate antibiotic therapy.

  13. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    PubMed

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere

    PubMed Central

    Stiefel, Philipp; Zambelli, Tomaso

    2013-01-01

    In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

  15. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts.

    PubMed

    Bradford, Scott A; Kim, Hyunjung; Headd, Brendan; Torkzaban, Saeed

    2016-02-02

    The U.S. Environmental Protection Agency has recommended the use of aerobic spores as an indicator for Cryptosporidium oocysts when determining groundwater under the direct influence of surface water. Surface properties, interaction energies, transport, retention, and release behavior of B. subtilis spores were measured over a range of physicochemical conditions, and compared with reported information for C. parvum oocysts. Interaction energy calculations predicted a much larger energy barrier and a shallower secondary minimum for spores than oocysts when the solution ionic strength (IS) equaled 0.1, 1, and 10 mM, and no energy barrier when the IS = 100 mM. Spores and oocysts exhibited similar trends of increasing retention with IS and decreasing Darcy water velocity (qw), and the predicted setback distance to achieve a six log removal was always larger for spores than oocysts. However, low levels of observed spore and oocyst release significantly influenced the predicted setback distance, especially when the fraction of reversibly retained microbes (Frev) was high. An estimate for Frev was obtained from large release pulses of spore and oocyst when the IS was reduced to deionized water. The value of Frev always increased with qw, whereas an opposition trend for Frev with IS was observed for spores (decreasing) and oocysts (increasing).

  16. [Roseibacula alcaliphilum gen. nov. sp. nov., a new alkaliphilic aerobic anoxygenic phototrophic bacterium from a meromictic soda Lake Doroninskoe (East Siberia, Russia)].

    PubMed

    Nuianzina-Boldareva, E N; Gorlenko, V M

    2014-01-01

    A bacterial strain De was isolated from the surface water layer of the meromictic soda lake Doroninskoe. When grown in the dark, it formed-pink colonies on agar media. The cells were nonmotile, contained bacteriochlorophyll a and carotenoids. Stationary-phase cells contained intracellular vesicular membranes similar to the membranes of the photosynthetic apparatus of some ndnsulfur purple bacteria. Aerobic growth did not occur. Sucrose, citrate, mannitol, sorbitol, case in hydrolysate,and yeast extract were the preferable substrates for aerobic growth, Xylose, lactose, aspartate, benzoate, malate, malonate, succinate, tartrate, formate, fumarate, glycerol, methanol, and ethanol were not utilized; Growth occurred at up to 50.g/L NaCl (optimum at 5 g/L) and pH 9.8. According to the 16S rRNA gene sequencing, similarity between the isolate and the known alkaliphilic genera of nonsulfur purple bacteria (Rhodobaca) and of aerobic anoxygenic phototrophic bacteria (Roseinatronobacter) was 96%, which was sufficient for description ofa new genus of aerobic anoxygenic phototrophic bacteria. The name Roseibacula alcaliphiluin gen. nov., sp. nov. was, proposed for the isolate.

  17. Fungal spores are transported long distances in smoke from biomass fires

    NASA Astrophysics Data System (ADS)

    Mims, Sarah A.; Mims, Forrest M.

    Viable fungal spores are present in smoke from distant biomass fires. This finding has potentially important implications for prescribed burning, agricultural management and public health. While attempting to find fungal spores in dust blown from China to Texas, one of us (S.A.M.) discovered that smoke from Yucatan contains viable bacteria and fungal spores, including the genera Alternaria, Cladosporium, Fusariella and Curvularia. There was a high correlation ( r2=0.78) of spores and coarse carbon particles collected on microscope slides during 13 days of the 2002 smoke season. To eliminate possible contamination by local spores, an air sampler was flown from a kite at a Texas Gulf Coast beach during and after the 2003 smoke season on days when the NOAA back trajectory showed air arriving from Yucatan. Fifty-two spores and 19 coarse black carbon particles (>2.5 μm) were collected during a 30-min kite flight on the smoke day and 12 spores and four carbons on the day without smoke. We have found spores in smoke from an Arizona forest fire and in Asian smoke at Mauna Loa Observatory, Hawaii. We have tested these findings by burning dried grass, leaves, twigs and flood detritus. The smoke from all test fires contained many spores.

  18. A new route of bioaugmentation by allochthonous and autochthonous through biofilm bacteria for soluble chemical oxygen demand removal of old leachate.

    PubMed

    Alijani Ardeshir, Rashid; Rastgar, Sara; Peyravi, Majid; Jahanshahi, Mohsen; Shokuhi Rad, Ali

    2017-10-01

    Landfill leachate contains environmental pollutants that are generally resistant to biodegradation. In this study, indigenous and exogenous bacteria in leachate were acclimated in both biofilm and suspension forms to increase the removal of soluble chemical oxygen demand (SCOD). The bacteria from the leachate and sewage were acclimated to gradually increasing leachate concentration prepared using a reverse osmosis membrane over 28 days. The SCOD removal was measured aerobically or nominally anaerobically. Biofilms were prepared using different carrier media (glass, rubber, and plastic). The maximum SCOD removal in suspensions was 32% (anaerobic) and in biofilms was 39% (aerobic). In the suspension form, SCOD removal using acclimated bacteria from leachate and sewage anaerobically increased in comparison with the control (P < .05). In the biofilm form, the aerobic condition and the use of acclimated bacteria from leachate and sewage increased the removal efficiency of SCOD in comparison with other biofilm groups (P < .05). Three species of bacteria, including Bacillus cereus, Bacillus subtilis, and Pseudomonas aeruginosa were identified in the biofilm from leachate and sewage. Bioaugmentation technology using biofilms and acclimations can be an effective, inexpensive, and simple way to decrease SCOD in old landfill leachate.

  19. Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis.

    PubMed

    Selvakumar, Gopal; Shagol, Charlotte C; Kim, Kiyoon; Han, Seunggab; Sa, Tongmin

    2018-06-05

    The interaction between arbuscular mycorrhizal fungi (AMF) and AMF spore associated bacteria (SAB) were previously found to improve mycorrhizal symbiotic efficiency under saline stress, however, the information about the molecular basis of this interaction remain unknown. Therefore, the present study aimed to investigate the response of maize plants to co-inoculation of AMF and SAB under salinity stress. The co-inoculation of AMF and SAB significantly improved plant dry weight, nutrient content of shoot and root tissues under 25 or 50 mM NaCl. Importantly, co-inoculation significantly reduced the accumulation of proline in shoots and Na + in roots. Co-inoculated maize plants also exhibited high K + /Na + ratios in roots at 25 mM NaCl concentration. Mycorrhizal colonization significantly positively altered the expression of ZmAKT2, ZmSOS1, and ZmSKOR genes, to maintain K + and Na + ion homeostasis. Confocal laser scanning microscope (CLSM) view showed that SAB were able to move and localize into inter- and intracellular spaces of maize roots and were closely associated with the spore outer hyaline layer. These new findings indicate that co-inoculation of AMF and SAB effectively alleviates the detrimental effects of salinity through regulation of SOS pathway gene expression and K + /Na + homeostasis to improve maize plant growth.

  20. Antimicrobial effects of gold/copper sulphide (Gold/Copper monosulfide) core/shell nanoparticles on Bacillus anthracis spores and cells

    NASA Astrophysics Data System (ADS)

    Addae, Ebenezer

    Bacillus anthracis is a gram positive, rod shaped and spore forming bacteria. It causes anthrax, a deadly human and animal disease that can kill its victims in three days. The spores of B. anthracis can survive extreme environmental conditions for decades and germinate when exposed to proper conditions. Due to its potential as a bio-weapon, effective disinfectants that pose less harm to the environment and animals are urgently needed. Metal nanoparticles have the potential of killing microbial cells and spores. We present here the effect of Gold/Copper Sulphide core/shell (Au/CuS) nanoparticles on B. anthracis cells and spores. The results indicated that the continuous presence of 0.83 microM during the spore growth in nutrient medium completely inhibited spore outgrowth. Au/CuS nanoparticles at concentration of 4.15 μM completely inactivated B. anthracis cells (x 107) after 30 min of pre-treatment in any of the three buffers including water, PBS, and nutrient broth. However, the same and even higher concentrations of nanoparticles produce no significant spore (x 105) killing after 24 h of pre-treatment. SEM imaging, EDS analysis, and DNA extrusion experiments revealed that nanoparticles damaged the cell membrane causing DNA and cytosolic content efflux and eventually cell death. The study demonstrated the strong antimicrobial activity of Au/CuS nanoparticles to B. anthracis cells and revealed that Au/CuS NPs showed more effective inactivation effect against the cells than they did against the spores.

  1. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time.more » After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  2. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells.

    PubMed

    Talukdar, Prabhat K; Udompijitkul, Pathima; Hossain, Ashfaque; Sarker, Mahfuzur R

    2017-01-01

    Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed. Copyright © 2016 American Society for Microbiology.

  3. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells

    PubMed Central

    Talukdar, Prabhat K.; Udompijitkul, Pathima; Hossain, Ashfaque

    2016-01-01

    ABSTRACT Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed. PMID:27795314

  4. Antibiotic Production by Anaerobic Bacteria1

    PubMed Central

    Sturgen, Nancy O.; Casida, L. E.

    1962-01-01

    Soils from aerobic and anaerobic sources were investigated for the possible presence of bacteria which produce antibiotics under anaerobic conditions of growth. The screening techniques devised for this study yielded 157 soil bacteria which, during anaerobic growth, produced antibiotic activity against aerobic test bacteria. Studies on choice of media, presence of oxygen, and changes in antibiotic activity during growth indicated that representative strains of these bacteria produced mixtures of antibiotics. The activity was heat labile. PMID:13918037

  5. Bacterial spore inactivation induced by cold plasma.

    PubMed

    Liao, Xinyu; Muhammad, Aliyu Idris; Chen, Shiguo; Hu, Yaqin; Ye, Xingqian; Liu, Donghong; Ding, Tian

    2018-04-05

    Cold plasma has emerged as a non-thermal technology for microbial inactivation in the food industry over the last decade. Spore-forming microorganisms pose challenges for microbiological safety and for the prevention of food spoilage. Inactivation of spores induced by cold plasma has been reported by several studies. However, the exact mechanism of spore deactivation by cold plasma is poorly understood; therefore, it is difficult to control this process and to optimize cold plasma processing for efficient spore inactivation. In this review, we summarize the factors that affect the resistance of spores to cold plasma, including processing parameters, environmental elements, and spore properties. We then describe possible inactivation targets in spore cells (e.g., outer structure, DNA, and metabolic proteins) that associated with inactivation by cold plasma according to previous studies. Kinetic models of the sporicidal activity of cold plasma have also been described here. A better understanding of the interaction between spores and cold plasma is essential for the development and optimization of cold plasma technology in food the industry.

  6. Gene activity during germination of spores of the fern, Onoclea sensibilis. Cell-free translation analysis of mRNA of spores and the effect of alpha-amanitin on spore germination

    NASA Technical Reports Server (NTRS)

    Raghavan, V.

    1992-01-01

    Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.

  7. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    NASA Astrophysics Data System (ADS)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  8. Characteristics of dissolved organic matter formed in aerobic and anaerobic digestion of excess activated sludge.

    PubMed

    Du, Haixia; Li, Fusheng

    2017-02-01

    The characteristics of dissolved organic matter (DOM) formed in aerobic and anaerobic digestion of excess activated sludge (EAS) was investigated for three total solid (TS) concentrations (1.2, 2.3 and 5.2%) and three temperatures (5, 20 and 35 °C). The results on the overall concentration of DOM evaluated by TOC showed significantly higher values in anaerobic than aerobic digestion (2.8-6.9 times for TS 1.2-5.2% at 20 °C). Data analysis with a first-order sequential reaction model revealed that higher occurrence of DOM in anaerobic digestion was a result of comparatively faster hydrolysis (1.3-5.5 times for TS 1.2-5.2% at 20 °C; 1.4-49.3 times for temperatures 5-35 °C with TS 1.2%) and slower degradation (0.3-1.0 times for TS 1.2-5.2% at 20 °C; 0.5-8.3 times for temperatures 5-35 °C with TS 1.2%). In aerobic digestion, more humic substances were formed; while, in anaerobic digestion, proteins and aromatic amino acids were the major constituents. For both digestions, except for a few exceptions, proteins and humic substances increased as the TS concentration increased; and increasing the temperature led to a decrease in the content of proteins formed in both aerobic and anaerobic digestion, and an increase in the content of humic substances in the aerobic digestion. The UV-absorbing DOM constituents were highly heterogeneous, and were comparatively larger in anaerobic digestion; and did not change significantly with the TS concentrations and temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    PubMed Central

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium–hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  10. 14C Analysis of Protein Extracts from Bacillus Spores

    PubMed Central

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  11. 14C Analysis of protein extracts from Bacillus spores.

    PubMed

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Assessing the Impact of Germination and Sporulation Conditions on the Adhesion of Bacillus Spores to Glass and Stainless Steel by Fluid Dynamic Gauging

    PubMed Central

    Xu Zhou, Ke; Li, Nan; Christie, Graham

    2017-01-01

    Abstract The adhesion of spores of 3 Bacillus species with distinctive morphologies to stainless steel and borosilicate glass was studied using the fluid dynamic gauging technique. Marked differences were observed between different species of spores, and also between spores of the same species prepared under different sporulation conditions. Spores of the food‐borne pathogen B. cereus were demonstrated to be capable of withstanding shear stresses greater than 1500 Pa when adhered to stainless steel, in contrast to spores of Bacillus subtilis and Bacillus megaterium, which detached in response to lower shear stress. An extended DLVO model was shown to be capable of predicting the relative differences in spore adhesion between spores of different species and different culture conditions, but did not predict absolute values of force of adhesion well. Applying the model to germinating spores showed a significant reduction in adhesion force shortly after triggering germination, indicating a potential strategy to achieve enhanced removal of spores from surfaces in response to shear stress, such as during cleaning‐in‐place procedures. Practical Application Spore‐forming bacteria are a concern to the food industry because they have the potential to cause food‐borne illness and product spoilage, while being strongly adhesive to processing surfaces and resistant to cleaning‐in‐place procedures. This work is of significance to the food processors and manufacturers because it offers insight to the properties of spore adhesion and identifies a potential strategy to facilitate the removal of spores during cleaning procedures. PMID:29125641

  13. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  14. Abundance and Genetic Diversity of Aerobic Anoxygenic Phototrophic Bacteria of Coastal Regions of the Pacific Ocean

    PubMed Central

    Ritchie, Anna E.

    2012-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities. PMID:22307290

  15. Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in Bacillus subtilis

    PubMed Central

    Abe, Kimihiro; Kawano, Yuta; Iwamoto, Keito; Arai, Kenji; Maruyama, Yuki; Eichenberger, Patrick; Sato, Tsutomu

    2014-01-01

    Temperate phages infect bacteria by injecting their DNA into bacterial cells, where it becomes incorporated into the host genome as a prophage. In the genome of Bacillus subtilis 168, an active prophage, SPβ, is inserted into a polysaccharide synthesis gene, spsM. Here, we show that a rearrangement occurs during sporulation to reconstitute a functional composite spsM gene by precise excision of SPβ from the chromosome. SPβ excision requires a putative site-specific recombinase, SprA, and an accessory protein, SprB. A minimized SPβ, where all the SPβ genes were deleted, except sprA and sprB, retained the SPβ excision activity during sporulation, demonstrating that sprA and sprB are necessary and sufficient for the excision. While expression of sprA was observed during vegetative growth, sprB was induced during sporulation and upon mitomycin C treatment, which triggers the phage lytic cycle. We also demonstrated that overexpression of sprB (but not of sprA) resulted in SPβ prophage excision without triggering the lytic cycle. These results suggest that sprB is the factor that controls the timing of phage excision. Furthermore, we provide evidence that spsM is essential for the addition of polysaccharides to the spore envelope. The presence of polysaccharides on the spore surface renders the spore hydrophilic in water. This property may be beneficial in allowing spores to disperse in natural environments via water flow. A similar rearrangement occurs in Bacillus amyloliquefaciens FZB42, where a SPβ-like element is excised during sporulation to reconstitute a polysaccharide synthesis gene, suggesting that this type of gene rearrangement is common in spore-forming bacteria because it can be spread by phage infection. PMID:25299644

  16. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum

    NASA Astrophysics Data System (ADS)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  17. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  18. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. Copyright © 2010 S. Karger AG, Basel.

  19. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline.

    PubMed

    Robertson, W J; Franzmann, P D; Mee, B J

    2000-02-01

    Previous studies on the geochemistry of a shallow unconfined aquifer contaminated with hydrocarbons suggested that the degradation of some hydrocarbons was linked to bacterial sulphate reduction. There was attenuation of naphthalene, 1,3,5-trimethylbenzene (TMB), toluene, p-xylene and ethylbenzene in the groundwater with concomitant loss of sulphate. Here, the recovery of eight strains of sulphate-reducing bacteria (SRB) from the contaminated site is reported. All were straight or curved rod-shaped cells which formed endospores. Amplification and sequencing of the 16S rDNA indicated that the strains were all sulphate reducers of the Gram-positive line of descent, and were most closely related to Desulfosporosinus (previously Desulfotomaculum) orientis DSM 8344 (97-98.9% sequence similarity). The strains clustered in three phylogenetic groups based on 16S rRNA sequences. Whole cell fatty acid compositions were similar to those of D. orientis DSM 8344, and were consistent with previous studies of fatty acids in soil and groundwater from the site. Microcosms containing groundwater from this aquifer indicated a role for sulphate reduction in the degradation of [ring-UL-14C]toluene, but not for the degradation of [UL-14C]benzene which could also be degraded by the microcosms. Adding one of the strains that was isolated from the groundwater (strain T2) to sulphate-enriched microcosms increased the rate of toluene degradation four- to 10-fold but had no effect on the rate of benzene degradation. The addition of molybdate, an inhibitor of sulphate reduction, to the groundwater samples decreased the rate of toluene mineralization. There was no evidence to support the mineralization of [UL-14C]benzene, [ring-UL-14C]toluene or unlabelled m-xylene, p-xylene, ethylbenzene, TMB or naphthalene by any of the strains in pure culture. Growth of all the strains was completely inhibited by 100 micromol l-1 TMB.

  20. Single Spore Isolation as a Simple and Efficient Technique to obtain fungal pure culture

    NASA Astrophysics Data System (ADS)

    Noman, E.; Al-Gheethi, AA; Rahman, N. K.; Talip, B.; Mohamed, R.; H, N.; Kadir, O. A.

    2018-04-01

    The successful identification of fungi by phenotypic methods or molecular technique depends mainly on the using an advanced technique for purifying the isolates. The most efficient is the single spore technique due to the simple requirements and the efficiency in preventing the contamination by yeast, mites or bacteria. The method described in the present work is depends on the using of a light microscope to transfer one spore into a new culture medium. The present work describes a simple and efficient procedure for single spore isolation to purify of fungi recovered from the clinical wastes.

  1. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops

    PubMed Central

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436

  2. Synthetic Spores Give Insight into the Real Thing and Reveal Functional Applications | Center for Cancer Research

    Cancer.gov

    Spores from bacteria, such as Bacillus subtilis, are produced to allow the bacterium’s genetic material to survive harsh environments. When the bacterium senses nutrient depletion, it divides asymmetrically into a forespore and a mother cell. The mother cell engulfs the forespore, and coat proteins synthesized by the mother cell localize to the surface of the forespore. The mother cell eventually ruptures, releasing the mature spore, which is surrounded by a thick shell of approximately 70 different proteins. This protein coat is one of the most durable static biological structures, but, because of its complexity, detailed studies of how the coat forms have been lacking. Kumaran Ramamurthi, Ph.D., of CCR’s Laboratory of Molecular Biology, and his colleagues including postdoctoral fellow and lead author of the study I-Lin Wu, Ph.D., decided to investigate the assembly of the basement layer of the spore coat by decorating spherical membranes supported by silica beads with SpoIVA and SpoVM, proteins which are known to be required for coat assembly.

  3. Differentiation of Dictyostelium discoideum vegetative cells into spores during earth orbit in space

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.; Ohnishi, T.

    2001-01-01

    We reported previously that emerged amoebae of Dictyosterium ( D.) discoideum grew, aggregated and differentiated to fruiting bodies with normal morphology in space. Here, we investigated the effects of space radiation and/or microgravity on the number, viability, kinetics of germination, growth rate and mutation frequency of spores formed in space in a radiation-sensitive strain, γs13, and the parental strain, NC4. In γs13, there were hardly spores in the fruiting bodies formed in space. In NC4, we found a decrease in the number of spores, a delay in germination of the spores and delayed start of cell growth of the spores formed in space when compared to the ground control. However, the mutation frequency of the NC4 spores formed in space was similar to that of the ground control. We conclude that the depression of spore formation might be induced by microgravity and/or space radiation through the depression of some stage(s) of DNA repair during cell differentiation in the slime mold.

  4. Growth parameters of Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and aerobic mesophilic bacteria of apple cider amended with nisin-EDTA.

    PubMed

    Ukuku, Dike O; Zhang, Howard; Huang, Lihan

    2009-05-01

    The effect of nisin (0 or 300 IU/mL), ethylenediamine tetraacetic acid (EDTA, 20 mM), and nisin (300 IU)-EDTA (20 mM) on growth parameters, including lag period (LP) and generation time, of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. in the presence or absence of aerobic mesophilic bacteria of apple cider during storage at 5 degrees C for up to 16 days or 23 degrees C for 16 h was investigated. The growth data were analyzed and fitted to the modified Gompertz model. The LP values for aerobic mesophilic bacteria of apple cider (control) and those amended with EDTA and nisin during storage at 5 degrees C were 1.61, 1.76, and 5.45 days, respectively. In apple cider stored at 23 degrees C for 16 h, the LP values for the same bacteria and treatment were 3.24, 3.56, and 5.85 h, respectively. The LP values for E. coli O157:H7 determined in the presence of aerobic mesophilic bacteria of apple cider stored at 23 degrees C for 16 h was 1.48 h, while populations for L. monocytogenes and Salmonella in the same cider declined. In sterile apple cider left at 23 degrees C for 16 h, the LP values for E. coli O157:H7, Salmonella, and L. monocytogenes averaged 2.74, 2.37, and 3.16 h, respectively. The generation time for these pathogens were 0.402, 0.260, and 0.187 log (CFU/mL)/h, respectively. Addition of nisin and EDTA combination caused a decline in lag phase duration and the populations for all pathogens tested, suggesting possible addition of this additive to freshly prepared apple cider to enhance its microbial safety and prevent costly recalls.

  5. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  6. Survival and Recovery of Methanotrophic Bacteria Starved Under Oxic and Anoxic Conditions

    NASA Technical Reports Server (NTRS)

    Roslev, Peter; King, Gary M.

    1994-01-01

    The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and niorpholow were seen for methanotrophic bacteria starved tinder anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survin,e carbon deprivation under anoxic conditions by using maintenance energy derived Solelyr from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously, supporting aerobic methanotrophic growth.

  7. Morpho-structural variations of bacterial spores after treatment in steam vacuum assisted autoclave.

    PubMed

    Fonzi, M; Montomoli, E; Gasparini, R; Devanna, D; Fonzi, L

    1999-01-01

    This study intended to verify, through microbiological techniques and TEM investigations, the killing of bacterial spores after treatment in steam autoclave, and to propose strictly morphological considerations about the target of this sterilisation process. Autoclave is the most common device for sterilising instruments in order to prevent cross infections in dental offices. The autoclave efficiency has been improved in the last years and part of this improvement is related to both a better and more correct use of the autoclave system and to the technological innovations introduced in the last generation of devices. However, associations as ADA or CDC suggest to regularly verify the process of 'autoclaving' through biological indicators (BI). The most commonly used BI are made of spores strips or suspensions of Bacillus Subtilis (pb 168) and Bacillus Stearothermophilus (ATCC 10149). They visually prove, changing colours on enzymatic base, the death of micro-organism and if the physical parameters, necessary for sterilisation, have been achieved. These two strains of endospore-forming bacteria were processed and prepared following two different techniques: Karnovsky fixed and epon embedded--phosphotungstic acid fixed for direct observation. The kind and the extent of analysed modifications are extremely various: from deep lacerations, which changed the spore structure, to little clefts which let the cytoplasm go out.

  8. Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor.

    PubMed

    Cai, Chun-guang; Zhu, Nan-wen; Liu, Jun-shen; Wang, Zhen-peng; Cai, Wei-min

    2004-01-01

    Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor (SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.

  9. Spore coat architecture of Clostridium novyi NT spores.

    PubMed

    Plomp, Marco; McCaffery, J Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J

    2007-09-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  10. Aerobic methanol-oxidizing bacteria in soil.

    PubMed

    Kolb, Steffen

    2009-11-01

    Methanol is an atmospheric compound that is primarily released from plant polymers and impacts ozone formation. The global methanol emission rate from terrestrial ecosystems is of the same order of magnitude (4.9 x 10(12) mol year(-1)) as that of methane (10 x 10(12) mol year(-1)). The major proportion of the annual plant-released methanol does not enter the atmosphere, but may be reoxidized by biological methanol oxidation, which is catalyzed by methanol-oxidizing prokaryotes. Fifty-six aerobic methanol-oxidizing species have been isolated from soils. These methylotrophs belong to the Alpha-, Beta-, and Gammaproteobacteria, Verrucomicrobia, Firmicutes, and Actinobacteria. Their ecological niches are determined by oxygen and methanol concentration, temperature, pH, the capability to utilize nitrate as an electron acceptor, and the spectrum of nitrogen sources and utilizable multicarbon substrates. Recently discovered interactions with eukaryotes indicate that their ecological niches may not solely be defined by physicochemical parameters. Nonetheless, there are still gaps in knowledge; based on global methanol budgets, methanol oxidation in soil is important, but has not been addressed adequately by biogeochemical studies. Ratios of above-ground and soil-internal methanol oxidation are not known. The contribution to methanol-oxidation by aerobic and anaerobic methylotrophs in situ also needs further research.

  11. Survival of Aerobic and Anaerobic Bacteria in Chicken Meat During Freeze-Dehydration, Rehydration, and Storage1

    PubMed Central

    Chipley, J. R.; May, K. N.

    1968-01-01

    Total and anaerobic counts were ascertained on boneless, cooked, cubed, frozen chicken meat. We determined survival of aerobes and anaerobes in the natural flora after the meat was freeze-dehydrated and rehydrated at room temperature for 30 min and at 50, 85, and 100 C for 10 min. Total and anaerobic counts of bacteria in the rehydrated meat were established during storage of samples at 4, 22, and 37 C—until a spoilage odor was detected. Samples were also inoculated with Clostridium sporogenes and were dried and rehydrated at 100 C and stored at 37 C. Approximately 21% of the aerobes and 37% of the anaerobes survived drying and rehydration at room temperature. Many genera of aerobes, anaerobes, and facultative anaerobes survived drying and rehydration at 50 C; only sporeformers survived rehydration at 85 or 100 C. Low-temperature (4 C) storage of rehydrated meat produced ample shelf life (over 20 days), whereas storage at the higher temperature resulted in a shelf life of less than 30 hr. Approximately 81% of the C. sporogenes cells survived rehydration at 100 C and grew to over 107 cells within 40 hr. Our study presents additional data for adequate microbiological control in processing of freeze-dehydrated meat. Also, it points out the natural selection for sporeformers at high temperature of rehydration, stressing the need for consumer education in product handling for safety purposes. PMID:5689798

  12. Fate of classical faecal bacterial markers and ampicillin-resistant bacteria in agricultural soils under Mediterranean climate after urban sludge amendment.

    PubMed

    Gondim-Porto, Clarissa; Platero, Leticia; Nadal, Ignacio; Navarro-García, Federico

    2016-09-15

    The use of sewage sludge or biosolids as agricultural amendments may pose environmental and human health risks related to pathogen or antibiotic-resistant microorganism transmission from soils to vegetables or to water through runoff. Since the survival of those microorganisms in amended soils has been poorly studied under Mediterranean climatic conditions, we followed the variation of soil fecal bacterial markers and ampicillin-resistant bacteria for two years with samplings every four months in a split block design with three replica in a crop soil where two different types of biosolids (aerobically or anaerobically digested) at three doses (low, 40; intermediate, 80; and high, 160Mg·ha(-1)) were applied. Low amounts of biosolids produced similar decay rates of coliform populations than in control soil (-0.19 and -0.27log10CFUs·g(-1)drysoilmonth(-1) versus -0.22) while in the case of intermediate and high doses were close to zero and their populations remained 24months later in the range of 4-5log10CFUs·g(-1)ds. Enterococci populations decayed at different rates when using aerobic than anaerobic biosolids although high doses had higher rates than control (-0.09 and -0.13log10CFUs·g(-1)dsmonth(-1) for aerobic and anaerobic, respectively, vs -0.07). At the end of the experiment, counts in high aerobic and low and intermediate anaerobic plots were 1 log10 higher than in control (4.21, 4.03, 4.2 and 3.11log10CFUs·g(-1) ds, respectively). Biosolid application increased the number of Clostridium spores in all plots at least 1 log10 with respect to control with a different dynamic of decay for low and intermediate doses of aerobic and anaerobic sludge. Ampicillin-resistant bacteria increased in amended soils 4months after amendment and remained at least 1 log10 higher 24months later, especially in aerobic and low and intermediate anaerobic plots due to small rates of decay (in the range of -0.001 to -0.008log10CFUs·g(-1)dsmonth(-1) vs -0.016 for control). Aerobic

  13. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  14. Microbiological Spoilage of Dairy Products

    NASA Astrophysics Data System (ADS)

    Ledenbach, Loralyn H.; Marshall, Robert T.

    The wide array of available dairy foods challenges the microbiologist, engineer, and technologist to find the best ways to prevent the entry of microorganisms, destroy those that do get in along with their enzymes, and prevent the growth and activities of those that escape processing treatments. Troublesome spoilage microorganisms include aerobic psychrotrophic Gram-negative bacteria, yeasts, molds, heterofermentative lactobacilli, and spore-forming bacteria. Psychrotrophic bacteria can produce large amounts of extracellular hydrolytic enzymes, and the extent of recontamination of pasteurized fluid milk products with these bacteria is a major determinant of their shelf life. Fungal spoilage of dairy foods is manifested by the presence of a wide variety of metabolic by-products, causing off-odors and flavors, in addition to visible changes in color or texture.

  15. Longitudinal assessment of dairy farm management practices associated with the presence of psychrotolerant Bacillales spores in bulk tank milk on 10 New York State dairy farms.

    PubMed

    Masiello, S N; Kent, D; Martin, N H; Schukken, Y H; Wiedmann, M; Boor, K J

    2017-11-01

    The ability of certain spore-forming bacteria in the order Bacillales (e.g., Bacillus spp., Paenibacillus spp.) to survive pasteurization in spore form and grow at refrigeration temperatures results in product spoilage and limits the shelf life of high temperature, short time (HTST)-pasteurized fluid milk. To facilitate development of strategies to minimize contamination of raw milk with psychrotolerant Bacillales spores, we conducted a longitudinal study of 10 New York State dairy farms, which included yearlong monthly assessments of the frequency and levels of bulk tank raw milk psychrotolerant spore contamination, along with administration of questionnaires to identify farm management practices associated with psychrotolerant spore presence over time. Milk samples were first spore pasteurized (80°C for 12 min) and then analyzed for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) for 7, 14, and 21 d after SP. Overall, 41% of samples showed sporeformer counts of >20,000 cfu/mL at d 21, with Bacillus and Paenibacillus spp. being predominant causes of high sporeformer counts. Statistical analyses identified 3 management factors (more frequent cleaning of the bulk tank area, the use of a skid steer to scrape the housing area, and segregating problem cows during milking) that were all associated with lower probabilities of d-21 Bacillales spore detection in SP-treated bulk tank raw milk. Our data emphasize that appropriate on-farm measures to improve overall cleanliness and cow hygiene will reduce the probability of psychrotolerant Bacillales spore contamination of bulk tank raw milk, allowing for consistent production of raw milk with reduced psychrotolerant spore counts, which will facilitate production of HTST-pasteurized milk with extended refrigerated shelf life. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase

    PubMed Central

    Donnelly, M. Lauren; Fimlaid, Kelly A.

    2016-01-01

    ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes. IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized

  17. Germination and amplification of anthrax spores by soil-dwelling amoebas.

    PubMed

    Dey, Rafik; Hoffman, Paul S; Glomski, Ian J

    2012-11-01

    While anthrax is typically associated with bioterrorism, in many parts of the world the anthrax bacillus (Bacillus anthracis) is endemic in soils, where it causes sporadic disease in livestock. These soils are typically rich in organic matter and calcium that promote survival of resilient B. anthracis spores. Outbreaks of anthrax tend to occur in warm weather following rains that are believed to concentrate spores in low-lying areas where runoff collects. It has been concluded that elevated spore concentrations are not the result of vegetative growth as B. anthracis competes poorly against indigenous bacteria. Here, we test an alternative hypothesis in which amoebas, common in moist soils and pools of standing water, serve as amplifiers of B. anthracis spores by enabling germination and intracellular multiplication. Under simulated environmental conditions, we show that B. anthracis germinates and multiplies within Acanthamoeba castellanii. The growth kinetics of a fully virulent B. anthracis Ames strain (containing both the pX01 and pX02 virulence plasmids) and vaccine strain Sterne (containing only pX01) inoculated as spores in coculture with A. castellanii showed a nearly 50-fold increase in spore numbers after 72 h. In contrast, the plasmidless strain 9131 showed little growth, demonstrating that plasmid pX01 is essential for growth within A. castellanii. Electron and time-lapse fluorescence microscopy revealed that spores germinate within amoebal phagosomes, vegetative bacilli undergo multiplication, and, following demise of the amoebas, bacilli sporulate in the extracellular milieu. This analysis supports our hypothesis that amoebas contribute to the persistence and amplification of B. anthracis in natural environments.

  18. Laser induced disruption of bacterial spores on a microchip.

    PubMed

    Hofmann, Oliver; Murray, Kirk; Wilkinson, Alan-Shaun; Cox, Timothy; Manz, Andreas

    2005-04-01

    We report on the development of a laser based spore disruption method. Bacillus globigii spores were mixed with a laser light absorbing matrix and co-crystallized into 200-microm-wide and 20-microm-deep nanovials formed in a polydimethylsiloxane (PDMS) target plate. Surface tension effects were exploited to effect up to 125-fold spore enrichment. When the target zones were illuminated at atmospheric pressure with pulsed UV-laser light at fluences below 20 mJ cm(-2) a change in spore morphology was observed within seconds. Post illumination PCR analysis suggests the release of endogenous DNA indicative of spore disruption. For laser fluences above 20 mJ cm(-2), desorption of spores and fragments was also observed even without a matrix being employed. Desorbed material was collected in a PDMS flowcell attached to the target plate during laser illumination. This opens up a route towards the direct extraction of released DNA in an integrated spore disruption-PCR amplification microchip device.

  19. Inactivation of Clostridium perfringens spores adhered onto stainless steel surface by agents used in a clean-in-place procedure.

    PubMed

    Alzubeidi, Yasmeen S; Udompijitkul, Pathima; Talukdar, Prabhat K; Sarker, Mahfuzur R

    2018-07-20

    Enterotoxigenic Clostridium perfringens, a leading foodborne pathogen can be cross-contaminated from food processing stainless steel (SS) surfaces to the finished food products. This is mostly due to the high resistance of C. perfringens spores adhered onto SS surfaces to various disinfectants commonly used in food industries. In this study, we aimed to investigate the survivability and adherence of C. perfringens spores onto SS surfaces and then validate the effectiveness of a simulated Clean-in-Place (CIP) regime on inactivation of spores adhered onto SS surfaces. Our results demonstrated that, 1) C. perfringens spores adhered firmly onto SS surfaces and survived for at-least 48 h, unlike their vegetative cells who died within 30 min, after aerobic incubation at refrigerated and ambient temperatures; 2) Spores exhibited higher levels of hydrophobicity than vegetative cells, suggesting a correlation between cell surface hydrophobicity and adhesion to solid surfaces; 3) Intact spores were more hydrophobic than the decoated spores, suggesting a positive role of spore coat components on spores' hydrophobicity and thus adhesion onto SS surfaces; and finally 4) The CIP regime (NaOH + HNO 3 ) successfully inactivated C. perfringens spores adhered onto SS surfaces, and most of the effect of CIP regime appeared to be due to the NaOH. Collectively, our current findings may well contribute towards developing a strategy to control cross-contamination of C. perfringens spores into food products, which should help reducing the risk of C. perfringens-associated food poisoning outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. [Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses].

    PubMed

    Spicher, G; Peters, J

    1976-12-01

    formaldehyde not higher than those needed for the killing of vegetative gram-negative bacteria were necessary. The conidia of Aspergillus niger were found to be more resistant than the cells of Candida albicans but did not require any higher concentrations than for the killing of Staphylococcus aureus (see Fig. 1 B). In the case of bacterial spores, a special phenomenon was observed. If the spores had been exposed to a temperature of 80 and 95 degrees C, respectively (depending on the species involved) for one or two hours following exposure to formaldehyde, a considerably higher number of spores was found to be capable of germination and colony formation than without such treatment (heat activation: cf. Fig. 2A and Fig. 2B). The spores of Bacillus cereus had only a relatively low resistance to formaldehyde. To reduce the proportion of the spores capable of colony formation to 1/10000, a 2.9% formaldehyde concentration was necessary without heat activation and one of 10.8% with heat activation...

  1. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  2. Atmospheric transport of mold spores in clouds of desert dust

    USGS Publications Warehouse

    Shinn, E.A.; Griffin, Dale W.; Seba, D.B.

    2003-01-01

    Fungal spores can be transported globally in clouds of desert dust. Many species of fungi (commonly known as molds) and bacteria--including some that are human pathogens--have characteristics suited to long-range atmospheric transport. Dust from the African desert can affect air quality in Africa, Europe, the Middle East, and the Americas. Asian desert dust can affect air quality in Asia, the Arctic, North America, and Europe. Atmospheric exposure to mold-carrying desert dust may affect human health directly through allergic induction of respiratory stress. In addition, mold spores within these dust clouds may seed downwind ecosystems in both outdoor and indoor environments.

  3. [Use of antagonistic Bacillus subtilis bacteria for treatment of nosocomial urinary tract infections].

    PubMed

    Pushkarev, A M; Tuĭgunova, V G; Zaĭnullin, R R; Kuznetsova, T N; Gabidullin, Iu Z

    2007-01-01

    Effect of Bactisporin--a probiotic, containing spores of aerobic Bacillus subtilis 3H bacterium--for complex treatment of patients with nosocomial urinary tract infections was studied. 68 Cultures of different species of conditionally pathogenic bacteria were isolated from urine of the patients. Susceptibility of the isolated cultures to antibiotics before and after application of B. subtilis 3H metabolites was determined. The metabolites were accumulated on potato-glucose agar (PGA) while bacterium was cultivated on kapron membranes placed on surface of the medium. Influence of obtained metabolites on isolated strains was assessed by cultivation of each strain in metabolites-rich PGA during 24 h. Metabolites of B. subtilis led to decrease in resistance of isolated uropathogenic microflora to antibiotics. Use of Bactisporin in complex treatment of nosocomial urinary tract infections resulted in accelerated elimination of causative microorganism.

  4. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  5. Polarity of Spore Germination in Funaria hygrometrica Hedw.

    NASA Astrophysics Data System (ADS)

    Pundyak, O. I.; Demkiv, O. T.; Khorkavtsiv, O. Ya; Bagrii, B. B.

    It is shown that in darkness the spores of moss Funaria hygrometrica Hedw. germinated polarly under the influence of gravity. At the beginning the rhizoids appeared. They grew downwards. Then future chloronematical stolons started to form a germination spore. Usually, they grew upwards. Clinorotation or horizontal placing of Petry dishes could discoordinate such a gravisensitivity.

  6. Fern Spore Longevity in Saline Water: Can Sea Bottom Sediments Maintain a Viable Spore Bank?

    PubMed Central

    de Groot, G. Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal. PMID:24223951

  7. Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of measuring the fraction of bacterial spores in a sample that remain viable exploits DPA-triggered luminescence of Tb(3+) and is based partly on the same principles as those described earlier. Unlike prior methods for performing such live/dead assays of bacterial spores, this method does not involve counting colonies formed by cultivation (which can take days), or counting of spores under a microscope, and works whether or not bacterial spores are attached to other small particles (i.e., dust), and can be implemented on a time scale of about 20 minutes.

  8. Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus komodoensis): new implications for the "bacteria as venom" model.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M; Cox, Cathleen R; Recchio, Ian M; Okimoto, Ben; Bryja, Judith; Fry, Bryan G

    2013-06-01

    It has been speculated that the oral flora of the Komodo dragon (Varanus komodoensis) exerts a lethal effect on its prey; yet, scant information about their specific oral flora bacteriology, especially anaerobes, exists. Consequently, the aerobic and anaerobic oral bacteriology of 16 captive Komodo dragons (10 adults and six neonates), aged 2-17 yr for adults and 7-10 days for neonates, from three U.S. zoos were studied. Saliva and gingival samples were collected by zoo personnel, inoculated into anaerobic transport media, and delivered by courier to a reference laboratory. Samples were cultured for aerobes and anaerobes. Strains were identified by standard methods and 16S rRNA gene sequencing when required. The oral flora consisted of 39 aerobic and 21 anaerobic species, with some variation by zoo. Adult dragons grew 128 isolates, including 37 aerobic gram-negative rods (one to eight per specimen), especially Enterobacteriaceae; 50 aerobic gram-positive bacteria (two to nine per specimen), especially Staphylococcus sciuri and Enterococcusfaecalis, present in eight of 10 and nine of 10 dragons, respectively; and 41 anaerobes (one to six per specimen), especially clostridia. All hatchlings grew aerobes but none grew anaerobes. No virulent species were isolated. As with other carnivores, captive Komodo oral flora is simply reflective of the gut and skin flora of their recent meals and environment and is unlikely to cause rapid fatal infection.

  9. Method for collecting spores from a mold

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1977-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  10. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    PubMed Central

    Jusop, Shamshuddin; Naher, Umme Aminun; Othman, Radziah; Razi, Mohd Ismail

    2013-01-01

    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1), plant P uptake (0.78 P pot−1), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH. PMID:24288473

  11. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    PubMed

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  12. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  13. Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth's atmosphere: extended incubation periods needed for culture-based assays

    USGS Publications Warehouse

    Griffin, Dale W.

    2008-01-01

    On 13 August 2004, an atmospheric sample was collected at an altitude of 20,000 m along a west to east transect over the continental United States by NASA’s Stratospheric and Cosmic Dust Program. This sample was then shipped to the US Geological Survey’s Global Desert Dust program for microbiological analyses. This sample, which was plated on a low nutrient agar to determine if cultivable microorganisms were present, produced 590 small yellow to off-white colonies after approximately 7 weeks of incubation at room-temperature. Of 50 colonies selected for identification using 16S rRNA sequencing, 41 belonged to the family Micrococcaceae, seven to the family Microbacteriaceae, one to the genus Staphylococcus, and one to the genus Brevibacterium. All of the isolates identified were non-spore-forming pigmented bacteria, and their presence in this sample illustrate that it is not unusual to recover viable microbes at extreme altitudes. Additionally, the extended period required to initiate growth demonstrates the need for lengthy incubation periods when analyzing high-altitude samples for cultivable microorganisms.

  14. The Molecular Timeline of a Reviving Bacterial Spore

    PubMed Central

    Sinai, Lior; Rosenberg, Alex; Smith, Yoav; Segev, Einat; Ben-Yehuda, Sigal

    2015-01-01

    Summary The bacterial spore can rapidly convert from a dormant to a fully active cell. Here we study this remarkable cellular transition in Bacillus subtilis and reveal the identity of the newly synthesized proteins throughout spore revival. Our analysis uncovers a highly ordered developmental program that correlates with the spore morphological changes and reveals the spatial and temporal molecular events fundamental to reconstruct a cell. As opposed to current knowledge, we found that translation takes place during the earliest revival event, termed germination, a process hitherto considered to occur without the need for any macromolecule synthesis. Furthermore, we demonstrate that translation is required for execution of germination and relies on the bona fide translational factors RpmE and Tig. Our study sheds light on the spore revival process and on the vital building blocks underlying cellular awakening, thereby paving the way for designing new antimicrobial agents to eradicate spore-forming pathogens. PMID:25661487

  15. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi

    PubMed Central

    2011-01-01

    Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. Results We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. Conclusions We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage. PMID:21349193

  16. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.

    PubMed

    Marleau, Julie; Dalpé, Yolande; St-Arnaud, Marc; Hijri, Mohamed

    2011-02-24

    A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.

  17. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    DTIC Science & Technology

    2013-02-01

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...Applied and Environmental Microbiology, (08 2011): 0. doi: 10.1128/ AEM .05031-11 11/13/2011 21.00 J. Liu, J. R. Faeder, P. Setlow, X. Yi. Synergism...individual spores was measured by fluorescence emission , while changes in spore refractility and the level of CaDPA were monitored by phase contrast

  18. Growth of Aerobic Ripening Bacteria at the Cheese Surface Is Limited by the Availability of Iron

    PubMed Central

    Back, Alexandre; Irlinger, Françoise

    2012-01-01

    The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions. PMID:22367081

  19. Formation of Polyhydroxyalkanoate in Aerobic Anoxygenic Phototrophic Bacteria and Its Relationship to Carbon Source and Light Availability▿

    PubMed Central

    Xiao, Na; Jiao, Nianzhi

    2011-01-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12T, Labrenzia alexandrii DFL 11T, and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and 1H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark. PMID:21908634

  20. Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism.

    PubMed

    Francis, Michael B; Sorg, Joseph A

    2016-01-01

    Classically, dormant endospores are defined by their resistance properties, particularly their resistance to heat. Much of the heat resistance is due to the large amount of dipicolinic acid (DPA) stored within the spore core. During spore germination, DPA is released and allows for rehydration of the otherwise-dehydrated core. In Bacillus subtilis , 7 proteins are encoded by the spoVA operon and are important for DPA release. These proteins receive a signal from the activated germinant receptor and release DPA. This DPA activates the cortex lytic enzyme CwlJ, and cortex degradation begins. In Clostridium difficile , spore germination is initiated in response to certain bile acids and amino acids. These bile acids interact with the CspC germinant receptor, which then transfers the signal to the CspB protease. Activated CspB cleaves the cortex lytic enzyme, pro-SleC, to its active form. Subsequently, DPA is released from the core. C. difficile encodes orthologues of spoVAC , spoVAD , and spoVAE . Of these, the B. subtilis SpoVAC protein was shown to be capable of mechanosensing. Because cortex degradation precedes DPA release during C. difficile spore germination (opposite of what occurs in B. subtilis ), we hypothesized that cortex degradation would relieve the osmotic constraints placed on the inner spore membrane and permit DPA release. Here, we assayed germination in the presence of osmolytes, and we found that they can delay DPA release from germinating C. difficile spores while still permitting cortex degradation. Together, our results suggest that DPA release during C. difficile spore germination occurs though a mechanosensing mechanism. IMPORTANCE Clostridium difficile is transmitted between hosts in the form of a dormant spore, and germination by C. difficile spores is required to initiate infection, because the toxins that are necessary for disease are not deposited on the spore form. Importantly, the C. difficile spore germination pathway

  1. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Survival of Aerobic and Anaerobic Bacteria in Purulent Clinical Specimens Maintained in the Copan Venturi Transystem and Becton Dickinson Port-a-Cul Transport Systems

    PubMed Central

    Citron, Diane M.; Warren, Yumi A.; Hudspeth, Marie K.; Goldstein, Ellie J. C.

    2000-01-01

    Recovery of aerobic and anaerobic bacteria from clinical specimens maintained in the Copan Venturi Transystem and the Becton Dickinson Port-a-Cul transport was assessed. Of 54 anaerobes, 53 were recovered after 4 h, and 52 were recovered after 24 h, from both systems. After 48 h, 45 and 50 were recovered from the two systems, respectively. PMID:10655410

  3. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

    PubMed

    Zhang, Jie; Guo, Gang; Chen, Lei; Li, Junfeng; Yuan, Xianjun; Yu, Chengqun; Shimojo, Masataka; Shao, Tao

    2015-06-01

    The objective of this study was to evaluate effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of oats-common vetch mixed silage by using a small-scale fermentation system on the Tibetan plateau. (i) An inoculant (Lactobacillus plantarum) (L) or (ii) propionic acid (P) or (iii) inoculant + propionic acid (PL) were used as additives. After fermenting for 60 days, silos were opened and the aerobic stability was tested for the following 15 days. The results showed that all silages were well preserved with low pH and NH3 -N, and high lactic acid content and V-scores. L and PL silages showed higher (P < 0.05) lactic acid and crude protein content than the control silage. P silage inhibited lactic acid production. Under aerobic conditions, L silage had similar yeast counts as the control silage (> 10(5) cfu/g fresh matter (FM)); however, it numerically reduced aerobic stability for 6 h. P and PL silages showed fewer yeasts (< 10(5) cfu/g FM) (P < 0.05) and markedly improved the aerobic stability (> 360 h). The result suggested that PL is the best additive as it could not only improved fermentation quality, but also aerobic stability of oats-common vetch mixed silage on the Tibetan plateau. © 2014 Japanese Society of Animal Science.

  4. Aerobic and anaerobic bacteria in tonsils of children with recurrent tonsillitis.

    PubMed

    Brook, I; Yocum, P; Friedman, E M

    1981-01-01

    Tonsils were obtained from 50 children suffering from recurrent tonsillitis. Patients' ages ranged from 2.5 to 17 years (mean 6 years); 29 were males and 21 females. The tonsils were sectioned in half after heat searing of the surface and the core material was cultured for aerobic and anaerobic microorganisms. Mixed aerobic and anaerobic flora was obtained in all patients, yielding an average of 7.8 isolates (4.1 anaerobes and 3.7 aerobes) per specimen. There were 207 anaerobes isolated. The predominant isolates were 101 Bacteroides sp (including 10 B fragilis group, and 47 B melaninogenicus group), 29 Fusobacterium sp, 34 Gram-positive anaerobic cocci (25 Peptococcus sp and 9 Peptostreptococcus sp) and 16 Veillonella sp. There were 185 aerobic isolates. The predominant isolates were 41 alpha-hemolytic streptococci, 24 Staphylococcus aureus, 19 beta-hemolytic streptococci (11 group A, 4 group B, and 2 each group C and F), 14 Haemophilus sp (including 12 H influenzae type B) and 5 H parainfluenzae. Beta-lactamase production was noted in 56 isolates recovered from 37 tonsils. These were all isolates of S aureus (24) and B fragilis (10), 15 of 47 B melaninogenicus (32%), 5 of the 12 B oralis (42%), and 2 of 12 H influenzae type B (17%). Our findings indicate the polymicrobial aerobic and anaerobic nature of deep tonsillar flora in children with recurrent tonsillitis, and demonstrate the presence of many beta-lactamase-producing organisms in 74% of the patients.

  5. Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates.

    PubMed

    Mirabal Alonso, Loreli; Kleiner, Diethelm; Ortega, Eduardo

    2008-04-01

    The present paper reports the presence of bacteria and yeasts tightly associated with spores of an isolate of Glomus mosseae. Healthy spores were surface disinfected by combining chloramine-T 5%, Tween-40, and cephalexin 2.5 g L(-1) (CTCf). Macerates of these spores were incubated on agar media, microorganisms were isolated, and two yeasts were characterized (EndoGm1, EndoGm11). Both yeasts were able to solubilize low-soluble P sources (Ca and Fe phosphates) and accumulate polyphosphates (polyPs). Sequence analysis of 18S ribosomal deoxyribonucleic acid showed that the yeasts belong to the genera Rhodotorula or Rhodosporidium (EndoGm1) and Cryptococcus (EndoGm11). Results from inoculation experiments showed an effect of the spore-associated yeasts on the root growth of rice, suggesting potential tripartite interactions with mycorrhizal fungi and plants.

  6. The frequency and some characteristics of anaerobic bacteria isolated from various forms of bovine mastitis.

    PubMed

    Greeff, A S; Du Preez, J H; De Beer, M

    1983-03-01

    The prevalence of strictly anaerobic bacteria in the secretions from untreated cases of mastitis in lactating dairy cows was investigated. The study involved 147 Friesland cows in 12 highveld herds. All herds yielded cows with anaerobic udder infections. No anaerobic bacteria were recovered from cows with normal quarters or those with latent aerobic infections. Only anaerobes were present in 10% of so-called 'aseptic' mastitis cases. A variety of anaerobic organisms was isolated concurrently with facultative bacteria from 5,3% and 58,8% of cases classified as subclinical and clinical respectively. Peptococcus spp. was associated with Corynebacterium pyogenes and Bacteroides spp. with Staphylococcus aureus and/or Streptococcus agalactiae in 80% anaerobic udder infections. Gram positive anaerobic species were mostly sensitive to penicillin-G but all the Gram negative rods were resistant. In addition, all B. fragilis strains produced beta-lactamase. The ability to produce heparinase was demonstrated in one strain of Peptococcus indolicus and a Peptostreptococcus sp.

  7. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    PubMed

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se 0 ) under both aerobic and anaerobic conditions. The biogenic nano-Se 0 converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg 0 ) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg 0 remediation, probably owing to the release of intracellular nano-Se 0 from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se 0 and Hg 0 . Biosynthesis of nano-Se 0 both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg 0 -contaminated surface and subsurface soils, where the redox potential often changes dramatically. Copyright © 2016. Published by Elsevier Ltd.

  8. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  9. Electron microscopic examination of uncultured soil-dwelling bacteria.

    PubMed

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  10. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    PubMed

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. Copyright © 2014 Elsevier Ltd. All

  11. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    PubMed

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  12. Limit for the Survivability from Potassium Decay of Bacterial Spores in Halite Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Kminek, G.; Bada, J. L.

    2001-12-01

    Vreeland et al.1 recently claimed to have isolated and cultured a viable spore forming halotolerant bacterium from a 250 million year old brine inclusion present in a salt crystal from the Salado formation. An earlier report suggested that viable bacterial spores could be revived from samples obtained from insects entombed in 25-40 million year old Dominican amber2. On the bases of these reports, Parkes3 raised the question of whether bacterial spores under some conditions might be effectively immortal. Sporulation, induced by an adverse change in the environmental conditions, is able to stabilize the DNA primarily against hydrolytic depurination for extended periods of time4. However, the organism is still exposed to ionizing radiation from the environment. Dormant spores have a reduced sensitivity to ionizing radiation per se, but unlike active organisms are unable to repair DNA damage encountered during long-term exposure to ionizing radiation. The accumulated damage may overwhelm any repair mechanism that starts in the early stage of spore germination5. The main radionuclide in a halite fluid inclusion is 40K, which accounts for 0.0117% of natural potassium. 40K decays via beta decay to 40Ca and via electron capture to 40Ar, releasing a primary gamma-ray. About 83.3 % of the beta's emitted are in the energy range of 0.3-1.3 MeV. We assume 7 g/l for an average concentration of natural potassium in a halite fluid inclusion, which means that the amount of 40K in a 10 μ l fluid inclusion is 8.19 ng. We have chosen a 10 μ l because this volume is typical of that used to obtain chemical data and in the attempts to extract bacteria. Less than a percent of the gamma decay energy is absorbed in a fluid inclusion of 10 μ l. Thus, we will not take the gamma decay energy into account for the further discussion. Almost all the beta energy is absorbed in the fluid inclusion. The total decay energy absorbed in a time period of 250 million years is about 87 kGy. The most

  13. Glycoconjugates as Mediators of Nitric Oxide Production upon Exposure to Bacterial Spores by Macrophages

    NASA Astrophysics Data System (ADS)

    Lahiani, Mohamed; Soderberg, Lee; Tarasenko, Olga

    2011-06-01

    Phagocytes generate nitric oxide (NO) in large quantities to combat bacteria. The spore-producing Gram-positive organisms of Bacillus cereus family are causative agents from mild to a life threatening infection in humans and domestic animals. Our group have shown that glycoconjugates (GCs) activate macrophages and enhance killing of Bacillus spores. In this investigation, we will explore the effect of different GCs structures on NO production. The objective of this study is to study effects of GCs 2, 4, 6, 8, 10 on NO release upon exposure to B. cereus and Bacillus anthracis spores by macrophages. Our results demonstrated that GCs activated macrophages and increased NO production using studied GCs ligands compared to macrophage only (p<0.001). GC2 and GC8 were able to further increase NO production in macrophages compared to the B. anthracis spores treated macrophages (p<0.001). Our finding suggests that GCs could be used as potential mediators of NO production in macrophages to fight B. anthracis and other pathogens.

  14. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.

    PubMed

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm(-1). For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    PubMed

    Selvakumar, G; Shagol, C C; Kang, Y; Chung, B N; Han, S G; Sa, T M

    2018-06-01

    The propagation of pure cultures of arbuscular mycorrhizal fungal (AMF) is an essential requirement for their large-scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single-spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of sorghum-sudangrass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1-kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2·5-kg capacity pots containing sterilized soil. Among the 150 inoculated seedlings, only 27 seedlings were colonized by AMF spores. After 240 days, among the 27 seedlings, five inoculants resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single-spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum and Funneliformis mosseae. Furthermore, indigenous spore F. mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using the single-spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describe the feasible and cost-effective method to mass produce AMF spores for large-scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. © 2018 The Society for Applied Microbiology.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Rui; Parker, Matthew; Seshadri, Rekha

    Bradyrhizobiumsp. Tv2a.2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Tachigali versicolor collected in Barro Colorado Island of Panama. Here we describe the features of Bradyrhizobiumsp. Tv2a.2, together with high-quality permanent draft genome sequence information and annotation. The 8,496,279 bp high-quality draft genome is arranged in 87 scaffolds of 87 contigs, contains 8,109 protein-coding genes and 72 RNA-only encoding genes. In conclusion, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  17. High-quality permanent draft genome sequence of Bradyrhizobium sp. Tv2a.2, a microsymbiont of Tachigali versicolor discovered in Barro Colorado Island of Panama

    DOE PAGES

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; ...

    2015-05-17

    Bradyrhizobiumsp. Tv2a.2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Tachigali versicolor collected in Barro Colorado Island of Panama. Here we describe the features of Bradyrhizobiumsp. Tv2a.2, together with high-quality permanent draft genome sequence information and annotation. The 8,496,279 bp high-quality draft genome is arranged in 87 scaffolds of 87 contigs, contains 8,109 protein-coding genes and 72 RNA-only encoding genes. In conclusion, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  18. High-quality permanent draft genome sequence of Bradyrhizobium sp. Th.b2, a microsymbiont of Amphicarpaea bracteata collected in Johnson City, New York

    DOE PAGES

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; ...

    2015-05-16

    Bradyrhizobium sp. Th.b2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Amphicarpaea bracteata collected in Johnson City, New York. Here we describe the features of Bradyrhizobium sp. Th.b2, together with high-quality permanent draft genome sequence information and annotation. The 10,118,060 high-quality draft genome is arranged in 266 scaffolds of 274 contigs, contains 9,809 protein-coding genes and 108 RNA-only encoding genes. In conclusion, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  19. High-quality permanent draft genome sequence of Bradyrhizobium sp. Th.b2, a microsymbiont of Amphicarpaea bracteata collected in Johnson City, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Rui; Parker, Matthew; Seshadri, Rekha

    Bradyrhizobium sp. Th.b2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Amphicarpaea bracteata collected in Johnson City, New York. Here we describe the features of Bradyrhizobium sp. Th.b2, together with high-quality permanent draft genome sequence information and annotation. The 10,118,060 high-quality draft genome is arranged in 266 scaffolds of 274 contigs, contains 9,809 protein-coding genes and 108 RNA-only encoding genes. In conclusion, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  20. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis.

    PubMed

    Ramírez-Guadiana, Fernando H; Meeske, Alexander J; Rodrigues, Christopher D A; Barajas-Ornelas, Rocío Del Carmen; Kruse, Andrew C; Rudner, David Z

    2017-09-01

    One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5-15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria.

  1. Bacteria-based concrete: from concept to market

    NASA Astrophysics Data System (ADS)

    Wiktor, V.; Jonkers, H. M.

    2016-08-01

    The concept of self-healing concrete—a concrete which can autonomously repair itself after crack formation, with no or limited human intervention—has received a lot of attention over the past 10 years as it could help structures to last longer and at a lower maintenance cost. This paper gives an overview on the key aspects and recent advances in the development of the bacteria-based self-healing concrete developed at the University of Technology of Delft (The Netherlands). Research started with the screening and selection of concrete compatible bacteria and nutrients. Several types of encapsulated bacteria and nutrients have been developed and tested. The functionality of these healing agents was demonstrated by showing metabolic activity of activated bacterial spores by oxygen consumption measurements and by regain of material functionality in form of regain of water tightness. Besides development of bacteria-based self-healing concrete, a bacteria-based repair mortar and liquid system were developed for the treatment of aged concrete structures. Field trials have been carried out with either type of bacteria-based systems and the promising results have led to a spinoff company Basilisk Self-Healing Concrete with the aim to further develop these systems and bring them to the market.

  2. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes.

    PubMed

    Postollec, Florence; Mathot, Anne-Gabrielle; Bernard, Muriel; Divanac'h, Marie-Laure; Pavan, Sonia; Sohier, Danièle

    2012-08-01

    Sporeforming bacteria are ubiquitous in the environment and exhibit a wide range of diversity leading to their natural prevalence in foodstuff. The state of the art of sporeformer prevalence in ingredients and food was investigated using a multiparametric PCR-based tool that enables simultaneous detection and identification of various genera and species mostly encountered in food, i.e., Alicyclobacillus, Anoxybacillus flavithermus, Bacillus, B. cereus group, B. licheniformis, B. pumilus, B. sporothermodurans, B. subtilis, Brevibacillus laterosporus, Clostridium, Geobacillus stearothermophilus, Moorella and Paenibacillus species. In addition, 16S rDNA sequencing was used to extend identification to other possibly present contaminants. A total of 90 food products, with or without visible trace of spoilage were analysed, i.e., 30 egg-based products, 30 milk and dairy products and 30 canned food and ingredients. Results indicated that most samples contained one or several of the targeted genera and species. For all three tested food categories, 30 to 40% of products were contaminated with both Bacillus and Clostridium. The percentage of contaminations associated with Clostridium or Bacillus represented 100% in raw materials, 72% in dehydrated ingredients and 80% in processed foods. In the last two product types, additional thermophilic contaminants were identified (A. flavithermus, Geobacillus spp., Thermoanaerobacterium spp. and Moorella spp.). These results suggest that selection, and therefore the observed (re)-emergence of unexpected sporeforming contaminants in food might be favoured by the use of given food ingredients and food processing technologies. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Relative Frequency Distribution of D125 C Values for Spore Isolates from the Mariner-Mars 1969 Spacecraft

    PubMed Central

    Bond, W. W.; Favero, M. S.; Petersen, N. J.; Marshall, J. H.

    1971-01-01

    Bacterial spore crops were prepared from 103 randomly selected aerobic mesophilic isolates collected during a spore assay of Mariner-Mars 1969 spacecraft conducted by the Jet Propulsion Laboratory. D125 c values, which were determined by the fractional-replicate-unit-negative-most-probable number assay method using a forced air oven, ranged from less than 5 min to a maximum of 58 min. Subsequent identification of the 103 isolates indicated that there was no relationship between species and dry-heat resistance. A theoretical dry-heat survival curve of the “population” was nonlinear. The slope of this curve was determined almost exclusively by the more resistant organisms, although they represented only a small portion of the “population.” PMID:16349904

  4. Identification of a polymorphic collagen-like protein in the crustacean bacteria Pasteuria ramosa.

    PubMed

    Mouton, Laurence; Traunecker, Emmanuel; McElroy, Kerensa; Du Pasquier, Louis; Ebert, Dieter

    2009-12-01

    Pasteuria ramosa is a spore-forming bacterium that infects Daphnia species. Previous results demonstrated a high specificity of host clone/parasite genotype interactions. Surface proteins of bacteria often play an important role in attachment to host cells prior to infection. We analyzed surface proteins of P. ramosa spores by two-dimensional gel electrophoresis. For the first time, we prove that two isolates selected for their differences in infectivity reveal few but clear-cut differences in protein patterns. Using internal sequencing and LC/MS/MS, we identified a collagen-like protein named Pcl1a (Pasteuria collagen-like protein 1a). This protein, reconstructed with the help of Pasteuria genome sequences, contains three domains: a 75-amino-acid amino-terminal domain with a potential transmembrane helix domain, a central collagen-like region (CLR) containing Gly-Xaa-Yaa (GXY) repeats, and a 7-amino-acid carboxy-terminal domain. The CLR region is polymorphic among the two isolates with amino-acid substitutions and a variable number of GXY triplets. Collagen-like proteins are rare in prokaryotes, although they have been described in several pathogenic bacteria, including Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis, closely related to Pasteuria species, in which they could be involved in the adherence of bacteria to host cells.

  5. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells

    PubMed Central

    Edwards, Adrianne N.; Karim, Samiha T.; Pascual, Ricardo A.; Jowhar, Lina M.; Anderson, Sarah E.; McBride, Shonna M.

    2016-01-01

    Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60–75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the

  6. L-form bacteria cohabitants in human blood: significance for health and diseases.

    PubMed

    Markova, Nadya D

    2017-05-01

    From a historical perspective, intriguing assumptions about unknown "live units" in human blood have attracted the attention of researchers, reflecting their desire to define a new class of microorganisms. Thus, the concept of "blood microbiota" brings about many questions about the nature, origin, and biological significance of the "unusual microbial cohabitants" in human blood. In contrast to current views that bloodstream in healthy humans is sterile, the hypothesis about the existence of microbes as L-forms (cell wall deficient bacteria) in human blood has evolved on the basis of known facts about their unique biology, as observed in our studies and those of other authors. Recently, we reported that bacterial L-forms persist in the human blood and that filterable, self-replicating bodies with a virus-like size of 100 nm are able to cross the maternal-fetal barrier by vertically transmitted pathway, then enter fetus blood circulation and colonize newborns. Subjects discussed here include the following: Is the existence of L-form bacteria in human blood a natural phenomenon? Are L-form bacteria commensal cohabitants in the human body? Since blood is an unfavorable compartment for the classical bacteria and their propagation, how do L-forms survive in blood circulation? How does L-form microbiota in blood influence the host immune system and contribute to systemic inflammatory, autoimmune, and tumor diseases? The current commentary presents the topic of "human microbiota and L-form bacteria" in its microcosm. It contains details of the hypothesis, supporting evidence and important implications.

  7. Presence and resistance of Streptococcus agalactiae in vaginal specimens of pregnant and adult non-pregnant women and association with other aerobic bacteria.

    PubMed

    Numanović, Fatima; Smajlović, Jasmina; Gegić, Merima; Delibegović, Zineta; Bektaš, Sabaheta; Halilović, Emir; Nurkić, Jasmina

    2017-02-01

    Aim To determine the prevalence rate and resistance profile of Streptococcus agalactiae (S. agalactiae) in vaginal swabs of pregnant and adult non-pregnant women in the Tuzla region, Bosnia and Herzegovina (B&H), as well as its association with other aerobic bacteria. Methods This prospective study included 200 women, 100 pregnant and 100 adult non-pregnant. The research was conducted at the Institute of Microbiology, University Clinical Center Tuzla from October to December 2015. Standard aerobic microbiological techniques were used for isolation and identification of S. agalactiae and other aerobic bacteria. Antimicrobial susceptibility was determined by the disk diffusion and microdilution method(VITEK 2/AES instrument). Results Among 200 vaginal swabs, 17 (8.50%) were positive for S. agalactiae, e. g., 7% (7/100) of pregnant and 10% (10/100) of adult non-pregnant women. In the pregnant group, 71.4% (5/7) of S. agalactiae isolates were susceptible to clindamycin and 85.7%(6/7) to erythromycin. In the adult non-pregnant group, only resistance to clindamycin was observed in one patient (1/10; 10%). S. agalactiae as single pathogen was isolated in 57.14% (4/7) of pregnant and 60% (6/10) of adult non-pregnant S. agalactiae positive women. In mixed microbial cultures S. agalactiae was most frequently associated with Enterococcus faecalis and Escherichia coli. Conclusion The rate of S. agalactiae positive women in the population of pregnant and adult non-pregnant women of Tuzla Canton, B&H is comparable with other European countries. Large studies are needed to develop a common national strategy for the prevention of S. agalactiae infection in B&H, especially during pregnancy. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  8. Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation.

    PubMed

    Das, Ranjit; Li, Guiying; Mai, Bixian; An, Taicheng

    2018-06-04

    Laccase has been applied extensively as a biocatalyst to remove different organic pollutants. This study characterized a spore-laccase from the bisphenol A (BPA)-degrading strain Bacillus sp. GZB. The spore-laccase was encoded with 513 amino acids, containing spore coat protein A (CotA). It showed optimal activity at 70 °C and pH = 7.2 in presence of 2, 6-dimethoxyphenol. At 60 °C, optimal activity was also seen at pH = 3.0 and pH = 6.8 with 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) and syringaldazine, respectively. The spore-laccase was stable at high temperature, at acidic to alkaline pH values, and in the presence of different organic solvents. Spore-laccase activity was increased by introducing Cu 2+ , Mg 2+ , and Na + , but was strongly inhibited by Fe 2+ , Ag + , l-cysteine, dithiothreitol, and NaN 3 . The cotA gene was cloned and expressed in E. coli BL21 (DE3); the purified protein was estimated as having a molecular weight of ~63 kDa. Different synthetic dyes and BPA were effectively decolorized or degraded both by the spore laccase and recombinant laccase. When BPA oxidation was catalyzed using laccase, there was an initial formation of phenoxy radicals and further oxidation or CC bond cleavage of the radicals produced different organic acids. Detailed reaction pathways were developed based on nine identified intermediates. The acute toxicity decreased gradually during BPA degradation by laccase. This study is the first report about a genus of Bacillus that can produce a highly active and stable laccase to degrade BPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Laboratory Investigations on the Survival of Bacillus subtilis Spores in Deliquescent Salt Mars Analog Environments

    NASA Astrophysics Data System (ADS)

    Nuding, Danielle L.; Gough, Raina V.; Venkateswaran, Kasthuri J.; Spry, James A.; Tolbert, Margaret A.

    2017-10-01

    Observed features such as recurring slope lineae suggest that liquid water may exist on the surface and near-subsurface of Mars today. The presence of this liquid water, likely in the form of a brine, has important implications for the present-day water cycle, habitability, and planetary protection policies. It is possible that this water is formed, at least partially, by deliquescence of salts, a process during which hygroscopic salts absorb water vapor from the atmosphere and form a saturated liquid brine. We performed laboratory experiments to examine the ability of Bacillus subtilis (B-168) spores, alone or mixed with calcium perchlorate salt (Ca(ClO4)2), to form liquid water via deliquescence under Mars-relevant conditions. Spore survival after exposure to these conditions was examined. An environmental chamber was used to expose the samples to temperature and relative humidity (RH) values similar to those found on Mars, and Raman microscopy was used to identify the phases of water and salt that were present and to confirm the presence of spores. We found that B-168 spores did not condense any detectable water vapor on their own during the diurnal cycle, even at 100% RH. However, when spores were mixed with perchlorate salt, the entire sample deliquesced at low RH values, immersing the spores in a brine solution during the majority of the simulated martian temperature and humidity cycle. After exposure to the simulated diurnal cycles and, in some cases, perchlorate brine, the impact of each environmental scenario on spore survival was estimated by standard plate assay. We found that, if there are deliquescent salts in contact with spores, there is a mechanism for the spores to acquire liquid water starting with only atmospheric water vapor as the H2O source. Also, neither crystalline nor liquid Ca(ClO4)2 is sporicidal despite the low water activity.

  10. Near-infrared surface-enhanced-Raman-scattering (SERS) mediated detection of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2003-08-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  11. Near-infrared Surface-Enhanced-Raman-Scattering (SERS) mediated discrimination of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2004-03-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman- Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  12. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneouslymore » acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.« less

  13. Screening and biological characteristics of fufenozide degrading bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Chenhao; Gong, Mingfu; Guan, Qinlan; Deng, Xia; Deng, Hongyan; Huang, Jiao

    2018-04-01

    Fufenozide was a novel pesticide for the control of Lepidoptera pests, which was highly toxic to silkworm. Fufenozide-contaminated soil samples were collected and the bacteria that degrade fufenozide were isolated and screened by selective medium. The colony characteristics, cell characteristics and degradation characteristics in different concentrations fufenozide of the fufenozide degrading bacteria were studied. The results indicated that seven strains of fufenozide degradeing bacteria, named as DDH01, DDH03, DDH04, DDH04, DDH05, DDH07 and DDH07 respectively, were isolated from soil contaminated with fufenozide. DDH01, DDH02, DDH04 and DDH05 of seven fufenozide degrading bacteria, was gram-positive bacteria, and DDH03, DDH06 and DDH07 was gram-negative bacteria. All of seven strains of fufenozide degrading bacteria were not spores, weeks flagella, rod-shaped bacteria. DDH06 and DDH07 had capsules, and the remaining five strains had not capsule. The colonies formed by seven strains of fufenozide degradation bacteria on beef extract peptone medium plate were milky white colonies with irregular edges, thinner lawn, smaller colony with smooth surface. The growth of 7 strains of fufenozide degradation bacteria was significantly affected by the concentration of fufenozide, All of 7 strains grown in the range from 0.00025 g/mL to 1 g/mL of 10% fufenozide suspension. DDH2 was the best among the 7 strains of fufenozide degrading bacteria grown in 10% fufenozide suspension medium.

  14. Evaluation of disinfectants and antiseptics to eliminate bacteria from the surface of turkey eggs and hatch gnotobiotic poults.

    PubMed

    Sylte, M J; Chandra, L C; Looft, T

    2017-07-01

    Bird eggs are in contact with intestinal microbiota at or after oviposition, but are protected from bacterial translocation by a glycoprotein cuticle layer, the shell, and internal membranes. In a preliminary study, turkey eggs were hatched in a germ-free environment. Firmicutes 16S rRNA gene was detected in the cecal microbiota of hatched poults, suggesting that poults may acquire spore-formers by exposure to shell contents during hatching. Generating gnotobiotic poults for research requires elimination of bacteria from the egg's surface without damaging the developing embryo. The ability of different disinfectants and antiseptics to eliminate eggshell bacteria without harming the developing embryo was tested. Different classes of disinfectants and antiseptics (halogens, biguanidines, and oxidants) were selected to target spores and vegetative bacteria likely present on the egg's surface. Eggs were treated by fully immersing in heated antiseptic (betadine or chlorhexidine) or disinfectant (alkaline bleach, acidified bleach, chlorine dioxide, Oxysept-333, or Virkon S) solutions for up to 15 minutes. Shells were aseptically harvested for aerobic and anaerobic culturing of bacteria. Toxicity to the developing embryo was assessed by gross evaluation of developmental changes in treated eggs incubated up to 27 d of embryonation. Halogen disinfectants acidified bleach and chlorine dioxide, and oxidants Oxysept-333 and Virkon-S eliminated viable bacteria from eggshells. However, addition of oxidants, alone or in combination with other treatments, produced significant (P < 0.05) embryotoxicity. The combination treatment of acidified bleach, chlorine dioxide, and betadine produced minimal embryotoxicity and eliminated viable bacteria from whole turkey eggs, and produced hatched poults in a gnotobiotic isolator. As a control, eggs were treated with PBS, incubated, and hatched under germ-replete conditions. After hatching, poults were euthanized and treated poults had no

  15. Flavonoids released naturally from alfalfa promote development of symbiotic glomus spores in vitro.

    PubMed

    Tsai, S M; Phillips, D A

    1991-05-01

    Because flavonoids from legumes induce transcription of nodulation genes in symbiotic rhizobial bacteria, it is reasonable to test whether these compounds alter the development of vesicular-arbuscular mycorrhizal (VAM) fungi that infect those plants. Quercetin-3-O-galactoside, the dominant flavonoid released naturally from alfalfa (Medicago sativa L.) seeds, promoted spore germination of Glomus etunicatum and Glomus macrocarpum in vitro. Quercetin produced the maximum increases in spore germination, hyphal elongation, and hyphal branching in G. etunicatum at 1 to 2.5 muM concentrations. Two flavonoids exuded from alfalfa roots, 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone, also enhanced spore germination of this fungal species. Formononetin, an isoflavone that is released from stressed alfalfa roots, inhibited germination of both Glomus species. These in vitro results suggest that plant flavonoids may facilitate or regulate the development of VAM symbioses and offer new hope for developing pure, plant-free cultures of VAM fungi.

  16. Clostridium difficile shows no trade-off between toxin and spore production within the human host.

    PubMed

    Blanco, Natalia; Walk, Seth; Malani, Anurag N; Rickard, Alexander; Benn, Michele; Eisenberg, Marisa; Zhang, Min; Foxman, Betsy

    2018-05-01

    This study aimed to describe the correlation between Clostridium difficile spore and toxin levels within the human host. In addition, we assessed whether overgrowth of Candida albicans modified this association. We measured toxin, spore and Candida albicans levels among 200 successively collected stool samples that tested positive for C. difficile, and PCR ribotyped these C. difficile isolates. Analysis of variance and linear regression were used to test the association between spore and toxin levels. Kruskal-Wallis tests and t-tests were used to compare the association between spore or toxin levels and host, specimen, or pathogen characteristics. C. difficile toxin and spore levels were positively associated (P<0.001); this association did not vary significantly with C. albicans overgrowth [≥5 logs of C. albicans colony-forming units (c.f.u.) g -1 ]. However, ribotypes 027 and 078-126 were significantly associated with higher levels of toxin and spores, and C. albicans overgrowth. The strong positive association observed between in vivo levels of C. difficile toxin and spores suggests that patients with more severe C. difficile infections may have increased spore production, enhancing C. difficile transmission. Although, on average, spore levels were higher in toxin-positive samples than in toxin-negative/PCR-positive samples, spores were found in almost all toxin-negative samples. The ubiquity of spore production among toxin-negative and formed stool samples emphasizes the importance of following infection prevention and control measures for all C. difficile-positive patients during their entire hospital stay.

  17. Method and Apparatus for Detecting and Quantifying Bacterial Spores on a Surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2017-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: a matrix including lanthanide ions is provided on the surface containing the bacterial spores; functionalized aromatic molecules are released from the bacterial spores on the surface; a complex of the lanthanide ion and the aromatic molecule is formed on the surface; the complex of the lanthanide ion and the aromatic molecule is excited to generate a characteristic luminescence of the complex on the surface; and the bacterial spores exhibiting the luminescence of the complex on the surface are detected and quantified.

  18. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: a matrix including lanthanide ions is provided on the surface containing the bacterial spores; functionalized aromatic molecules are released from the bacterial spores on the surface; a complex of the lanthanide ion and the aromatic molecule is formed on the surface; the complex of the lanthanide ion and the aromatic molecule is excited to generate a characteristic luminescence of the complex on the surface; and the bacterial spores exhibiting the luminescence of the complex on the surface are detected and quantified.

  19. [Treatment of aerobic vaginitis and clinically uncertain causes of vulvovaginal discomfort].

    PubMed

    Cepický, P; Malina, J; Kuzelová, M

    2003-11-01

    The treatment of clinically uncertain conditions of vaginal discomforts with a mixed preparation of nifuratel + nystatin (Macmiror complex) and the relation of uncertain conditions to aerobic vaginitis. A prospective study. Gynecology-Obstetrics Outpatient Department LEVRET Ltd., AescuLab Ltd., Laboratory of Microbiology, Prague. 50 women with vaginal discomfort, causes of which had not been clarified by gynecological examination, determination of pH and the amine test, were examined by vaginal smears using microscopy. The results were evaluated in relation to aerobic vaginitis in a pure form or in combination with other nosological units. The authors also evaluated results of therapy by oral nifuratel (Macmiror tbl) 3 x 200 mg daily and a vaginal combined preparation containing nifuratel 500 mg + nystatin 200 kIU (Macmiror complex 500 glo vag) for the period of 7 days. In 50 women candida was demonstrated 24 times, presence of key cells 11 times, lactobacillus nine times with more than 50 in the field, six women were affected by aerobic vaginitis. In all these cases the pH was 4.8 or higher, leukocytes were significantly represented in all cases (> 15 in the field), as well as gram-negative bacteria and/or cocci (> 30 in the field), indicating a combined picture of mycosis, anaerobic vaginosis or lactobacillosis with aerobic vaginitis. The therapy was successful in all cases, the relapse of complaints during one month occurred in three cases. Aerobic vaginitis in a pure form or with anaerobic vaginosis, mycosis or lactobacillosis is frequently concealed under clinically uncertain pictures of vulvo-vaginal discomfort. The therapy by a combination of nifurated 3 x 200 mg orally together with the combined vaginal preparation nifuratel 500 mg + nystatin 200 kIU for the period of 7 days exerts high effect and a low number of relapses.

  20. Isolation and identification of bacteria from paperboard food packaging

    PubMed Central

    Mashhadi Mohammadzadeh-Vazifeh, Mojtaba; Khajeh-Nasiri, Shamsolmoluk; Hashemi, Shabnam; Fakhari, Javad

    2015-01-01

    Background and Objectives: Paper and paperboard packaging play an important role in safety and quality of food products. Common bacteria of paper and paperboard food packaging could grow due to specific conditions included humidity, temperature and major nutrition to contaminate the food. The purpose of this research was to investigate numbers and the types of bacteria in the food packaging paperboard. Materials and Methods: The surface and the depth of the each paperboard sample were examined by the dimension of one cm2 and one gram. The paperboard samples were randomly collected from popular confectionaries and fast food restaurants in Tehran, Iran. Results: The results indicated the range of 0.2×103 to >1.0×105 cfu/1g bacterial contamination in paperboard food packaging. Also, most detected bacteria were from spore forming and family Bacillaceae. Conclusion: The bioburden paperboard used for food packaging showed high contamination rate more than standard acceptance level. PMID:26719786

  1. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  2. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing.

    PubMed

    Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele

    2015-01-01

    Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications.

  3. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing

    PubMed Central

    Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele

    2015-01-01

    Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications. PMID:26528254

  4. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  5. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  6. Site-Directed Mutagenesis and Structural Studies Suggest that the Germination Protease, GPR, in Spores of Bacillus Species Is an Atypical Aspartic Acid Protease

    PubMed Central

    Carroll, Thomas M.; Setlow, Peter

    2005-01-01

    Germination protease (GPR) initiates the degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus and Clostridium species. The GPR amino acid sequence is not homologous to members of the major protease families, and previous work has not identified residues involved in GPR catalysis. The current work has focused on identifying catalytically essential amino acids by mutagenesis of Bacillus megaterium gpr. A residue was selected for alteration if it (i) was conserved among spore-forming bacteria, (ii) was a potential nucleophile, and (iii) had not been ruled out as inessential for catalysis. GPR variants were overexpressed in Escherichia coli, and the active form (P41) was assayed for activity against SASP and the zymogen form (P46) was assayed for the ability to autoprocess to P41. Variants inactive against SASP and unable to autoprocess were analyzed by circular dichroism spectroscopy and multiangle laser light scattering to determine whether the variant's inactivity was due to loss of secondary or quaternary structure, respectively. Variation of D127 and D193, but no other residues, resulted in inactive P46 and P41, while variants of each form were well structured and tetrameric, suggesting that D127 and D193 are essential for activity and autoprocessing. Mapping these two aspartate residues and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking similarity to the catalytic residues and propeptide lysine of aspartic acid proteases. These data indicate that GPR is an atypical aspartic acid protease. PMID:16199582

  7. ENZYMES OF GLUCOSE AND PYRUVATE CATABOLISM IN CELLS, SPORES, AND GERMINATED SPORES OF CLOSTRIDIUM BOTULINUM1

    PubMed Central

    Simmons, Richard J.; Costilow, Ralph N.

    1962-01-01

    Simmons, R. J. (Michigan State University, East Lansing), and R. N. Costilow. Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. J. Bacteriol. 84:1274–1281. 1962.—An investigation was made of the enzymes of vegetative cells, spores, and germinated spores of Clostridium botulinum 62-A to elucidate a pathway of glucose metabolism. Manometric studies were conducted with intact cells, and various enzymes and enzyme systems were assayed in cell-free and spore-free extracts by use of spectrophotometric and colorimetric procedures. Glucose fermentation was found to be inducible; glucokinase was the controlling enzyme. All other enzymes of the Embden-Meyerhof-Parnas (EMP) pathway were found in both induced and non-induced cells, but they were in relatively low concentrations in the latter. This, plus the fact that no glucose-6-phosphate dehydrogenase was detected, led to the conclusion that glucose is catabolized primarily by the EMP system. A number of glycolytic enzymes were also found in extracts of spores and germinated spores of this organism, but the activities were extremely low as compared with activities in cell extracts. A phosphoroclastic-type reaction was readily demonstrated in both glucose-adapted and non-adapted cells, but not in spores and germinated spores. However, both acetokinase and phosphotransacetylase, as well as coenzyme A transphorase, were detected in spores and germinated-spore extracts, although at very low activity levels as compared with cell extracts. The specific activity of diaphorase in spore extracts was about one-half that of corresponding cell extracts, and the activity of reduced diphosphopyridine nucleotide (DPNH) oxidase was actually higher in the spore extracts. In addition, the DPNH oxidase in spore extracts was considerably more heat-stable than that in extracts of cells or germinated spores. PMID:13977433

  8. Arrhenius reconsidered: astrophysical jets and the spread of spores

    NASA Astrophysics Data System (ADS)

    Sheldon, Malkah I.; Sheldon, Robert B.

    2015-09-01

    In 1871, Lord Kelvin suggested that the fossil record could be an account of bacterial arrivals on comets. In 1903, Svante Arrhenius suggested that spores could be transported on stellar winds without comets. In 1984, Sir Fred Hoyle claimed to see the infrared signature of vast clouds of dried bacteria and diatoms. In 2012, the Polonnaruwa carbonaceous chondrite revealed fossilized diatoms apparently living on a comet. However, Arrhenius' spores were thought to perish in the long transit between stars. Those calculations, however, assume that maximum velocities are limited by solar winds to ~5 km/s. Herbig-Haro objects and T-Tauri stars, however, are young stars with jets of several 100 km/s that might provide the necessary propulsion. The central engine of bipolar astrophysical jets is not presently understood, but we argue it is a kinetic plasma instability of a charged central magnetic body. We show how to make a bipolar jet in a belljar. The instability is non-linear, and thus very robust to scaling laws that map from microquasars to active galactic nuclei. We scale up to stellar sizes and recalculate the viability/transit-time for spores carried by supersonic jets, to show the viability of the Arrhenius mechanism.

  9. Draft Genome Sequence of Brevibacillus laterosporus OSY-I1, a Strain That Produces Brevibacillin, Which Combats Drug-Resistant Gram-Positive Bacteria

    PubMed Central

    Yang, Xu; Yesil, Mustafa; Xiaoli, Lingzi; Dudley, Edward G.

    2017-01-01

    ABSTRACT Brevibacillus laterosporus OSY-I1 is a Gram-positive spore-forming bacterium isolated from soil. The bacterium produces brevibacillin, an antimicrobial lipopeptide effective against several drug-resistant Gram-positive bacteria. Here, we present the draft genome sequence of the strain OSY-I1 and the gene cluster responsible for the biosynthesis of brevibacillin. PMID:29025947

  10. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials.

    PubMed

    Barker, Gary C; Malakar, Pradeep K; Plowman, June; Peck, Michael W

    2016-01-04

    We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg(-1). Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments. Copyright © 2016 Barker et al.

  11. Permeability of bacterial spores. IV. Water content, uptake, and distribution.

    PubMed

    BLACK, S H; GERHARDT, P

    1962-05-01

    Black, S. H. (The University of Michigan, Ann Arbor) and Philipp Gerhardt. Permeability of bacterial spores. IV. Water content, uptake, and distribution. J. Bacteriol. 83:960-967. 1962.-Dormant and germinated spores of Bacillus cereus strain terminalis were examined for water properties. Respectively, they exhibited a mean density of 1.28 and 1.11 g/ml, a water content of 64.8 and 73.0%, and a total water uptake of 66.6 and 75.6%, based on spore weight, or 86.0 and 83.9%, based on spore volume. The results confirmed a previous report that internal and external water are in virtually complete equilibrium, but refuted a prevailing hypothesis that heat resistance is attributable to a dry core. A model of spore ultrastructure that evolved from the cumulative results pictures a moist, dense, heteroporous core. A new hypothesis is formulated as an explanation for thermostability in spores and possibly in other instances; it postulates the occurrence of an insolubly gelled core with cross-linking between macromolecules through stable but reversible bonds so as to form a high-polymer matrix with entrapped free water.

  12. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials

    PubMed Central

    Barker, Gary C.; Malakar, Pradeep K.; Plowman, June

    2016-01-01

    We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg−1. Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments. PMID:26729721

  13. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    PubMed Central

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  14. Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk.

    PubMed

    Tomasula, P M; Mukhopadhyay, S; Datta, N; Porto-Fett, A; Call, J E; Luchansky, J B; Renye, J; Tunick, M

    2011-09-01

    High-temperature, short-time pasteurization of milk is ineffective against spore-forming bacteria such as Bacillus anthracis (BA), but is lethal to its vegetative cells. Crossflow microfiltration (MF) using ceramic membranes with a pore size of 1.4 μm has been shown to reject most microorganisms from skim milk; and, in combination with pasteurization, has been shown to extend its shelf life. The objectives of this study were to evaluate MF for its efficiency in removing spores of the attenuated Sterne strain of BA from milk; to evaluate the combined efficiency of MF using a 0.8-μm ceramic membrane, followed by pasteurization (72°C, 18.6s); and to monitor any residual BA in the permeates when stored at temperatures of 4, 10, and 25°C for up to 28 d. In each trial, 95 L of raw skim milk was inoculated with about 6.5 log(10) BA spores/mL of milk. It was then microfiltered in total recycle mode at 50°C using ceramic membranes with pore sizes of either 0.8 μm or 1.4 μm, at crossflow velocity of 6.2 m/s and transmembrane pressure of 127.6 kPa, conditions selected to exploit the selectivity of the membrane. Microfiltration using the 0.8-μm membrane removed 5.91±0.05 log(10) BA spores/mL of milk and the 1.4-μm membrane removed 4.50±0.35 log(10) BA spores/mL of milk. The 0.8-μm membrane showed efficient removal of the native microflora and both membranes showed near complete transmission of the casein proteins. Spore germination was evident in the permeates obtained at 10, 30, and 120 min of MF time (0.8-μm membrane) but when stored at 4 or 10°C, spore levels were decreased to below detection levels (≤0.3 log(10) spores/mL) by d 7 or 3 of storage, respectively. Permeates stored at 25°C showed coagulation and were not evaluated further. Pasteurization of the permeate samples immediately after MF resulted in additional spore germination that was related to the length of MF time. Pasteurized permeates obtained at 10 min of MF and stored at 4 or 10°C showed no

  15. Viable spore counts in biological controls pre-sterilization.

    PubMed

    Brusca, María I; Bernat, María I; Turcot, Liliana; Nastri, Natalia; Nastri, Maria; Rosa, Alcira

    2005-01-01

    The aim of the present study was to evaluate the total count of viable spores in standardized inoculated carriers pre-sterilization. Samples of "Bacterial Spore Sterilization Strip" (R Biological Laboratories) (well before their expiry date) were divided into Group A (B. subtilis) and Group B (B. stearothermophylus). Twenty-four strips were tested per group. The strips were minced in groups of three, placed in chilled sterile water and vortexed for 5 minutes to obtain a homogenous suspension. Ten ml of the homogenous suspension were transferred to two sterile jars, i.e. one jar per group. The samples were then heated in a water bath at 95 degrees C (Group A) or 80 degrees C (Group B) for 15 minutes and cooled rapidly in an ice bath at 0- 4 degrees C during 15 minutes. Successive dilutions were performed until a final aliquot of 30 to 300 colony-forming units (CFU) was obtained. The inoculums were placed in Petri dishes with culture medium (soy extract, casein agar adapted for spores, melted and cooled to 45-50 degrees C) and incubated at 55 degrees C or 37 degrees C. Statistical analysis of the data was performed. A larger number of spores were found at 48 hours than at 24 hours. However, this finding did not hold true for all the groups. The present results show that monitoring viable spores pre-sterilization would guarantee the accuracy of the data. Total spore counts must be within 50 and 300% of the number of spores indicated in the biological control. The procedure is essential to guarantee the efficacy of the biological control.

  16. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Rui; Parker, Matthew; Seshadri, Rekha

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Rootmore » Nodule Bacteria (GEBA-RNB) project proposal.« less

  17. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    DOE PAGES

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; ...

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Rootmore » Nodule Bacteria (GEBA-RNB) project proposal.« less

  18. Laboratory Investigations on the Survival of Bacillus subtilis Spores in Deliquescent Salt Mars Analog Environments.

    PubMed

    Nuding, Danielle L; Gough, Raina V; Venkateswaran, Kasthuri J; Spry, James A; Tolbert, Margaret A

    2017-10-01

    Observed features such as recurring slope lineae suggest that liquid water may exist on the surface and near-subsurface of Mars today. The presence of this liquid water, likely in the form of a brine, has important implications for the present-day water cycle, habitability, and planetary protection policies. It is possible that this water is formed, at least partially, by deliquescence of salts, a process during which hygroscopic salts absorb water vapor from the atmosphere and form a saturated liquid brine. We performed laboratory experiments to examine the ability of Bacillus subtilis (B-168) spores, alone or mixed with calcium perchlorate salt (Ca(ClO 4 ) 2 ), to form liquid water via deliquescence under Mars-relevant conditions. Spore survival after exposure to these conditions was examined. An environmental chamber was used to expose the samples to temperature and relative humidity (RH) values similar to those found on Mars, and Raman microscopy was used to identify the phases of water and salt that were present and to confirm the presence of spores. We found that B-168 spores did not condense any detectable water vapor on their own during the diurnal cycle, even at 100% RH. However, when spores were mixed with perchlorate salt, the entire sample deliquesced at low RH values, immersing the spores in a brine solution during the majority of the simulated martian temperature and humidity cycle. After exposure to the simulated diurnal cycles and, in some cases, perchlorate brine, the impact of each environmental scenario on spore survival was estimated by standard plate assay. We found that, if there are deliquescent salts in contact with spores, there is a mechanism for the spores to acquire liquid water starting with only atmospheric water vapor as the H 2 O source. Also, neither crystalline nor liquid Ca(ClO 4 ) 2 is sporicidal despite the low water activity. Key Words: Raman microscopy-Mars-Planetary protection-Salts-Water activity. Astrobiology 17, 997-1008.

  19. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  20. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  1. Gardnerella vaginalis and anaerobic bacteria in genital disease.

    PubMed Central

    Tabaqchali, S; Wilks, M; Thin, R N

    1983-01-01

    In a study of Gardnerella vaginalis and anaerobic bacteria in non-specific vaginitis (NSV) and other genital disease 89 patients attending a genital medicine clinic had vaginal samples examined for conventional pathogens and for quantitative analysis of G vaginalis and aerobic and anaerobic bacterial flora. The overall incidence of G vaginalis was 20%; G vaginalis (mean concentration 7.0 log10/g of secretion) occurred predominantly in patients with NSV (57%) but also in sexual contacts of non-specific urethritis (NSU) (37.5%) and in patients with other conditions (11.8%). G vaginalis is therefore a relatively common isolate in patients with vaginal discharge. The concentration of aerobic and anaerobic bacteria ranged from 4.9-11.0 log10/g of secretion with an anaerobe-to-aerobe ratio of 10:1. Anaerobic bacteria, particularly anaerobic Gram-positive cocci (mean concentrations 7.7 log10/g), were present in patients with NSV and in association with G vaginalis, but they also occurred in other clinical groups and with other pathogens, particularly Trichomonas vaginalis. Anaerobic bacteria may therefore play an important role in the pathogenesis of vaginal infections. PMID:6600955

  2. [Sporogenesis, sporoderm and mature spore ornamentation in Lycopodiaceae].

    PubMed

    Rincon Baron, Edgar Javier; Rolleri, Cristina Hilda; Passarelli, Lilian M; Espinosa Matías, Silvia; Torres, Alba Marina

    2014-09-01

    polyplastidic species, the secretory activity of the tapetum is less intense. Sporoderm development is centripetal, exospore is the first formed layer, then the endospore and, if present, perispore is the final deposited layer. Adult spores of the Lycopodiaceae showed two patterns of ornamentation: negative or caviform (foveolate spores) and positive or muriform ornamentation, the latter with two subtypes (rugate and reticulate spores). The spores of Huperzia are characteristically foveolate, the rugate spores were found in a few species of Huperzia and in all of the Lycopodiella s. l. taxa studied, while Lycopodium s.l. spores bear reticulate ornamentation. Numerous ornamentation traits are diagnostic at the specific level. The types of ornamentation found do not support the recent extreme fragmentation of the family in several genera, but could match, a priori, with the idea of three subfamilies. The findings of sporogenesis, extremely similar in all taxa studied, point more to consider fewer genera, more comprehensive, than the recent, marked splitting of the family.

  3. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis.

    PubMed

    Wang, Katherine H; Isidro, Anabela L; Domingues, Lia; Eskandarian, Haig A; McKenney, Peter T; Drew, Kevin; Grabowski, Paul; Chua, Ming-Hsiu; Barry, Samantha N; Guan, Michelle; Bonneau, Richard; Henriques, Adriano O; Eichenberger, Patrick

    2009-11-01

    Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to green fluorescent protein and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homologue of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement.

  4. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis

    PubMed Central

    Wang, Katherine H.; Isidro, Anabela L.; Domingues, Lia; Eskandarian, Haig A.; McKenney, Peter T.; Drew, Kevin; Grabowski, Paul; Chua, Ming-Hsiu; Barry, Samantha N.; Guan, Michelle; Bonneau, Richard; Henriques, Adriano O.; Eichenberger, Patrick

    2009-01-01

    SUMMARY Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to GFP and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homolog of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement. PMID:19775244

  5. Fungal spores as potential ice nuclei in fog/cloud water and snow

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  6. Dipicolinic Acid Release and the Germination of Alicyclobacillus acidoterrestris Spores under Nutrient Germinants.

    PubMed

    Porębska, Izabela; Sokołowska, Barbara; Woźniak, Łukasz

    2017-03-30

    The presence of Alicyclobacillus, a thermoacidophilic and spore-forming bacterium, in acidic fruit juices poses a serious problem for the processing industry. A typical sign of spoilage in contaminated juices is a characteristic phenolic off-flavour associated with the production of guaiacol. Spores are formed in response to starvation and in a natural environment re-access the nutrients, e.g.: L-alanine and AGFK - a mixture of asparagine, glucose, fructose and potassium, triggers germination. The aim of this study was to estimate the impact of L-alanine and AGFK on the germination of the spores of two Alicyclobacillus acidoterrestris strains and to evaluate the relationship of the germination rate with dipicolinic acid (DPA) release. The spores were suspended in apple juice or in buffers at pH 4 and pH 7, followed by the addition of L-alanine and AGFK. Suspensions were or were not subjected, to a temperature of 80°C/10 min and incubated for various periods of time at 45°C. Optical density (OD660) was used to estimate the number of germinated spores. The amount of DPA released was determined using HPLC. The results indicate that the degree of germination of A. acidoterrestris spores depended on the strain and time of incubation and the nutritious compounds used. The data obtained show that the amount of DPA released correlated to the number of A. acidoterrestris spores germinated.

  7. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  8. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    DTIC Science & Technology

    2014-01-01

    wild-type spores but ~15-fold higher deltaTrelease values; v ) germination kinetics of wild-type spores given a ? 30 sec 140 MPa HP pulse followed by...15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and ( v ) the germination of wild-type...committed spores, as it does for nutrient-committed spores (14)? ( v ) Can these HP-com- mitted spores be isolated under conditions that do not allow

  9. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  10. Method and Apparatus for Detecting and Quantifying Bacterial Spores on a Surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2016-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  11. Fifth international fungus spore conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  12. Investigating the Detrimental Effects of Low Pressure Plasma Sterilization on the Survival of Bacillus subtilis Spores Using Live Cell Microscopy.

    PubMed

    Fuchs, Felix M; Raguse, Marina; Fiebrandt, Marcel; Madela, Kazimierz; Awakowicz, Peter; Laue, Michael; Stapelmann, Katharina; Moeller, Ralf

    2017-11-30

    Plasma sterilization is a promising alternative to conventional sterilization methods for industrial, clinical, and spaceflight purposes. Low pressure plasma (LPP) discharges contain a broad spectrum of active species, which lead to rapid microbial inactivation. To study the efficiency and mechanisms of sterilization by LPP, we use spores of the test organism Bacillus subtilis because of their extraordinary resistance against conventional sterilization procedures. We describe the production of B. subtilis spore monolayers, the sterilization process by low pressure plasma in a double inductively coupled plasma reactor, the characterization of spore morphology using scanning electron microscopy (SEM), and the analysis of germination and outgrowth of spores by live cell microscopy. A major target of plasma species is genomic material (DNA) and repair of plasma-induced DNA lesions upon spore revival is crucial for survival of the organism. Here, we study the germination capacity of spores and the role of DNA repair during spore germination and outgrowth after treatment with LPP by tracking fluorescently-labelled DNA repair proteins (RecA) with time-resolved confocal fluorescence microscopy. Treated and untreated spore monolayers are activated for germination and visualized with an inverted confocal live cell microscope over time to follow the reaction of individual spores. Our observations reveal that the fraction of germinating and outgrowing spores is dependent on the duration of LPP-treatment reaching a minimum after 120 s. RecA-YFP (yellow fluorescence protein) fluorescence was detected only in few spores and developed in all outgrowing cells with a slight elevation in LPP-treated spores. Moreover, some of the vegetative bacteria derived from LPP-treated spores showed an increase in cytoplasm and tended to lyse. The described methods for analysis of individual spores could be exemplary for the study of other aspects of spore germination and outgrowth.

  13. Spore collection and elimination apparatus and method

    DOEpatents

    Czajkowski, Carl [South Jamesport, NY; Warren, Barbara Panessa [Port Jefferson, NY

    2007-04-03

    The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.

  14. Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for Lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Link, Lindsey; Melosh, H Jay; Nicholson, Wayne L

    2005-12-01

    An important but untested aspect of the lithopanspermia hypothesis is that microbes situated on or within meteorites could survive hypervelocity entry from space through Earth's atmosphere. The use of high-altitude sounding rockets to test this notion was explored. Granite samples permeated with spores of Bacillus subtilis strain WN511 were attached to the exterior telemetry module of a sounding rocket and launched from White Sands Missile Range, New Mexico into space, reaching maximum atmospheric entry velocity of 1.2 km/s. Maximum recorded temperature during the flight was measured at 145 degrees C. The surfaces of the post-flight granite samples were swabbed and tested for recovery and survival of WN511 spores, using genetic markers and the unique DNA fingerprint of WN511 as recovery criteria. Spore survivors were isolated at high frequency, ranging from 1.2% to 4.4% compared with ground controls, from all surfaces except the forward-facing surface. Sporulation-defective mutants were noted among the spaceflight survivors at high frequency (4%). These experiments constitute the first report of spore survival to hypervelocity atmospheric transit, and indicate that sounding rocket flights can be used to model the high-speed atmospheric entry of bacteria-laden artificial meteorites.

  15. Bacillus subtilis Spores on Artificial Meteorites Survive Hypervelocity Atmospheric Entry: Implications for Lithopanspermia

    NASA Astrophysics Data System (ADS)

    Fajardo-Cavazos, Patricia; Link, Lindsey; Melosh, H. Jay; Nicholson, Wayne L.

    2005-12-01

    An important but untested aspect of the lithopanspermia hypothesis is that microbes situated on or within meteorites could survive hypervelocity entry from space through Earth's atmosphere. The use of high-altitude sounding rockets to test this notion was explored. Granite samples permeated with spores of Bacillus subtilis strain WN511 were attached to the exterior telemetry module of a sounding rocket and launched from White Sands Missile Range, New Mexico into space, reaching maximum atmospheric entry velocity of 1.2 km/s. Maximum recorded temperature during the flight was measured at 145°C. The surfaces of the post-flight granite samples were swabbed and tested for recovery and survival of WN511 spores, using genetic markers and the unique DNA fingerprint of WN511 as recovery criteria. Spore survivors were isolated at high frequency, ranging from 1.2% to 4.4% compared with ground controls, from all surfaces except the forward-facing surface. Sporulation-defective mutants were noted among the spaceflight survivors at high frequency (4%). These experiments constitute the first report of spore survival to hypervelocity atmospheric transit, and indicate that sounding rocket flights can be used to model the high-speed atmospheric entry of bacteria-laden artificial meteorites.

  16. Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly.

    PubMed

    Liu, Hualan; Ray, W Keith; Helm, Richard F; Popham, David L; Melville, Stephen B

    2016-06-15

    Heat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to β-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase. Clostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in

  17. Fruiting bodies of the social amoeba Dictyostelium discoideum increase spore transport by Drosophila

    PubMed Central

    2014-01-01

    Background Many microbial phenotypes are the product of cooperative interactions among cells, but their putative fitness benefits are often not well understood. In the cellular slime mold Dictyostelium discoideum, unicellular amoebae aggregate when starved and form multicellular fruiting bodies in which stress-resistant spores are held aloft by dead stalk cells. Fruiting bodies are thought to be adaptations for dispersing spores to new feeding sites, but this has not been directly tested. Here we experimentally test whether fruiting bodies increase the rate at which spores are acquired by passing invertebrates. Results Drosophila melanogaster accumulate spores on their surfaces more quickly when exposed to intact fruiting bodies than when exposed to fruiting bodies physically disrupted to dislodge spore masses from stalks. Flies also ingest and excrete spores that still express a red fluorescent protein marker. Conclusions Multicellular fruiting bodies created by D. discoideum increase the likelihood that invertebrates acquire spores that can then be transported to new feeding sites. These results thus support the long-hypothesized dispersal benefits of altruism in a model system for microbial cooperation. PMID:24884856

  18. Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air

    NASA Astrophysics Data System (ADS)

    O'Gorman, Céline M.; Fuller, Hubert T.

    2008-06-01

    Temporal and spatial variations in airborne spore concentrations of selected allergenic and pathogenic fungi were examined in Dublin, Ireland, in 2005. Air samples were taken at four outdoor locations in the city every 2 weeks, coupled with measurements of meteorological conditions. Total culturable airborne fungal spore concentrations in Dublin ranged from 30-6800 colony forming units per cubic metre of air (CFU m-3) over the 12-month period. Cladosporium, Penicillium, Aspergillus and Alternaria spores were constantly present in the Dublin atmosphere, representing >20% of the total culturable spore count. Concentrations of Cladosporium increased significantly in summer and reached allergenic threshold levels, peaking at over 3200 CFU m-3 in August. Penicillium spore concentrations never reached allergenic threshold levels, with average concentrations of <150 CFU m-3. Alternaria conidia formed only 0.3% of the total culturable fungal spore count and concentrations never exceeded 50 CFU m-3, attributable to the coastal position of Dublin and its low levels of arable production. The opportunistic human pathogen Aspergillus fumigatus was present throughout the year in nominal concentrations (<10 CFU m-3), but sporadic high counts were also recorded (300-400 CFU m-3), the potential health implications of which give cause for concern. Spores of neither Cryptococcus neoformans nor Stachybotrys chartarum were detected, but airborne basidiospores of Schizophyllum commune were evidenced by the dikaryotization of monokaryon tester strains following exposure to the air. The relationships between airborne fungal spore concentrations and meteorological factors were analysed by redundancy analysis and revealed positive correlations between temperature and Cladosporium and relative humidity and Penicillium and Aspergillus.

  19. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.

    PubMed

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O; Carlin, Frédéric; Broussolle, Véronique

    2016-01-01

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  1. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    PubMed Central

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  2. Combined pressure-thermal inactivation effect on spores in lu-wei beef--a traditional Chinese meat product.

    PubMed

    Wang, B-S; Li, B-S; Du, J-Z; Zeng, Q-X

    2015-08-01

    This study investigated the inactivation effect and kinetics of Bacillus coagulans and Geobacillus stearothermophilus spores suspended in lu-wei beef by combining high pressure (500 and 600 MPa) and moderate heat (70 and 80 °C or 80 and 90 °C). During pressurization, the temperature of pressure-transmitting fluid was tested with a K-type thermocouple, and the number of surviving cells was determined by a plate count method. The pressure come-up time and corresponding inactivation of Bacillus coagulans and G. stearothermophilus spores were considered during the pressure-thermal treatment. For the two types of spores, the results showed a higher inactivation effect in phosphate buffer solution than that in lu-wei beef. Among the bacteria evaluated, G. stearothermophilus spores had a higher resistance than B. coagulans spores during the pressure-thermal processing. One linear model and two nonlinear models (i.e. the Weibull and log-logistic models) were fitted to the survivor data to obtain relevant kinetic parameters, and the performance of these models was compared. The results suggested that the survival curve of the spores could be accurately described utilizing the log-logistic model, which produced the best fit for all inactivation data. The compression heating characteristics of different pressure-transmitting fluids should be considered when using high pressure to sterilize spores, particularly while the pressure is increasing. Spores can be inactivated by combining high pressure and moderate heat. The study demonstrates the synergistic inactivation effect of moderate heat in combination with high pressure in real-life food. The use of mathematical models to predict the inactivation for spores could help the food industry further to develop optimum process conditions. © 2015 The Society for Applied Microbiology.

  3. Photometric immersion refractometry of bacterial spores.

    PubMed Central

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  4. A Ratio of Spore to Viable Organisms: A Case Study of the JPL-SAF Cleanroom

    NASA Technical Reports Server (NTRS)

    Hendrickson, Ryan; Urbaniak, Camilla; Malli Mohan, Ganesh Babu; Aronson, Heidi; Venkateswaran, Kasthuri

    2017-01-01

    Spacecraft surfaces that are destined to land on potential life-harboring celestial bodies are required to be rigorously cleaned and continuously monitored for spore bioburden as a proxy for spacecraft cleanliness. The NASA standard assay (NSA), used for spacecraft bioburden estimates, specifically measures spores that are cultivable, aerobic, resistant to heat shock, and grow at 30 C in a nutrient-rich medium. Since the vast majority of microorganisms cannot be cultivated using the NSA, it is necessary to utilize state-of-the art molecular techniques to better understand the presence of all viable microorganisms, not just those measured with the NSA. In this study, the nutrient-deprived low biomass cleanrooms, where spacecraft are assembled, were used as a surrogate for spacecraft surfaces to measure the ratio of NSA spores in relation to the total viable microorganism population in order to make comparisons with the 2006 Space Studies Board (SSB) estimate of 1 spore per approximately 50,000 viable organisms. Ninety-eight surface wipe samples were collected from the Spacecraft Assembly Facility (SAF) cleanroom at the Jet Propulsion Laboratory (JPL) over a 6-month period. The samples were processed and analyzed using classical microbiology along with molecular methodology. Traditional microbiology plating methods were used to determine the cultivable bacterial, fungal, and spore populations. Molecular assays were used to determine the total organisms (TO, dead and live) and the viable organisms (VO, live). The TO was measured using adenosine triphosphate (ATP) and quantitative polymerase chain reaction (qPCR) assays. The VO was measured using internal ATP, propidium monoazide (PMA)-qPCR, and flow cytometry (after staining for viable microorganisms) assays. Based on the results, it was possible to establish a ratio between spore counts and VO for each viability assay. The ATP-based spore to VO ratio ranged from 149-746, and the bacterial PMA-qPCR assay-based ratio

  5. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    DTIC Science & Technology

    2015-06-19

    animal waste an~ decompositiOn DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED PR-15-306 Anthrax...influx of water. Ungerminated spore Germination Germinated spore Spore hydratation ~ Non-refractile spore Refractile spore • Fluorescence

  6. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  7. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  8. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  9. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae.

    PubMed

    Zhang, Zhen-Yu; Yuan, Yimin; Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4', 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species.

  10. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae

    PubMed Central

    Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4’, 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species. PMID:29304141

  11. Activity of nadifloxacin (OPC-7251) and seven other antimicrobial agents against aerobic and anaerobic Gram-positive bacteria isolated from bacterial skin infections.

    PubMed

    Nenoff, P; Haustein, U-F; Hittel, N

    2004-10-01

    The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.

  12. Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores

    PubMed Central

    2013-01-01

    Background Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs’ antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores. Results and discussion The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease). Conclusions The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on

  13. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau.

    PubMed

    Chen, Lei; Guo, Gang; Yuan, Xianjun; Zhang, Jie; Li, Junfeng; Shao, Tao

    2016-03-30

    The objective of this study was to investigate the effect of molasses, lactic acid bacteria and propionic acid on the fermentation quality, aerobic stability and in vitro gas production of total mixed ration (TMR) silage prepared with oat-common vetch intercrop on the Tibetan plateau. TMR (436 g kg(-1) dry matter (DM)) was ensiled with six experimental treatments: (1) no additives (control); (2) molasses (M); (3) an inoculant (Lactobacillus plantarum) (L); (4) propionic acid (P); (5) molasses + propionic acid (MP); (6) inoculant + propionic acid (LP). All silages were well preserved with low pH (< 4.19) and NH3-N contents, and high lactic acid contents after ensiling for 45 days. L and PL silages underwent a more efficient fermentation than silages without L. P and MP silages inhibited lactic acid production. Under aerobic conditions, M and L silage reduced aerobic stability for 15 and 74 h, respectively. All silages that had propionic acid in their treatments markedly (P < 0.05) improved the aerobic stability. After 72 h incubation, all additives treatments increased (P < 0.05) the 72 h cumulative gas production and in vitro DM digestibility (IVDMD) as compared with the control. L treatment decreased (P < 0.05) in vitro neutral detergent fibre degradability. Our findings show that TMR prepared with oat-common vetch intercrop can be well preserved. Although propionic acid is compatible with lactic acid bacteria, and when used together, they had minor effects on fermentation, aerobic stability and in vitro digestibility of TMR silage prepared with oat-common vetch intercrop. © 2015 Society of Chemical Industry.

  14. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis.

    PubMed

    O'Neill, Katherine; Bradley, Judy M; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli; Elborn, J Stuart; Tunney, Michael M

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung.

  15. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.

    PubMed

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2016-06-01

    Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What is concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may carry additional risk of antibiotic resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2014-06-01

    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Using thermal inactivation kinetics to calculate the probability of extreme spore longevity: implications for paleomicrobiology and lithopanspermia.

    PubMed

    Nicholson, Wayne L

    2003-12-01

    Thermal inactivation kinetics with extrapolation were used to model the survival probabilities of spores of various Bacillus species over time periods of millions of years at the historical ambient temperatures (25-40 degrees C) encountered within the 250 million-year-old Salado formation, from which the putative ancient spore-forming bacterium Salibacillus marismortui strain 2-9-3 was recovered. The model indicated extremely low-to-moderate survival probabilities for spores of mesophiles. but surprisingly high survival probabilities for thermophilic spores. The significance of the results are discussed in terms of the survival probabilities of (i) terrestrial spores in ancient geologic samples and (ii) spores transported between planets within impact ejecta.

  18. Using Thermal Inactivation Kinetics to Calculate the Probability of Extreme Spore Longevity: Implications for Paleomicrobiology and Lithopanspermia

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne L.

    2003-12-01

    Thermal inactivation kinetics with extrapolation were used to model the survival probabilities of spores of various Bacillus species over time periods of millions of years at the historical ambient temperatures (25-40 °) encountered within the 250 million-year-old Salado formation, from which the putative ancient spore-forming bacterium Salibacillus marismortui strain 2-9-3 was recovered. The model indicated extremely low-to-moderate survival probabilities for spores of mesophiles, but surprisingly high survival probabilities for thermophilic spores. The significance of the results are discussed in terms of the survival probabilities of (i) terrestrial spores in ancient geologic samples and (ii) spores transported between planets within impact ejecta.

  19. Contribution of Spores to the Ability of Clostridium difficile To Adhere to Surfaces

    PubMed Central

    Joshi, Lovleen Tina; Phillips, Daniel S.; Williams, Catrin F.; Alyousef, Abdullah

    2012-01-01

    Clostridium difficile is the commonest cause of hospital-acquired infection in the United Kingdom. We characterized the abilities of 21 clinical isolates to form spores; to adhere to inorganic and organic surfaces, including stainless steel and human adenocarcinoma cells; and to germinate. The composition of culture media had a significant effect on spore formation, as significantly more spores were produced in brain heart infusion broth (Student's t test; P = 0.018). The spore surface relative hydrophobicity (RH) varied markedly (14 to 77%) and was correlated with the ability to adhere to stainless steel. We observed no correlation between the ribotype and the ability to adhere to steel. When the binding of hydrophobic (DS1813; ribotype 027; RH, 77%) and hydrophilic (DS1748; ribotype 002; RH, 14%) spores to human gut epithelial cells at different stages of cell development was examined, DS1813 spores adhered more strongly, suggesting the presence of surface properties that aid attachment to human cells. Electron microscopy studies revealed the presence of an exosporium surrounding DS1813 spores that was absent from spores of DS1748. Finally, the ability of spores to germinate was found to be strain and medium dependent. While the significance of these findings to the disease process has yet to be determined, this study has highlighted the importance of analyzing multiple isolates when attempting to characterize the behavior of a bacterial species. PMID:22923404

  20. Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma

    NASA Astrophysics Data System (ADS)

    Connor, Mairéad; Flynn, Padrig B.; Fairley, Derek J.; Marks, Nikki; Manesiotis, Panagiotis; Graham, William G.; Gilmore, Brendan F.; McGrath, John W.

    2017-02-01

    Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Spores produced by C. difficile are robust and can remain viable for months, leading to prolonged healthcare-associated outbreaks with high mortality. Exposure of C. difficile spores to a novel, non-thermal atmospheric pressure gas plasma was assessed. Factors affecting sporicidal efficacy, including percentage of oxygen in the helium carrier gas admixture, and the effect on spores from different strains representing the five evolutionary C. difficile clades was investigated. Strains from different clades displayed varying resistance to cold plasma. Strain R20291, representing the globally epidemic ribotype 027 type, was the most resistant. However all tested strains displayed a ~3 log reduction in viable spore counts after plasma treatment for 5 minutes. Inactivation of a ribotype 078 strain, the most prevalent clinical type seen in Northern Ireland, was further assessed with respect to surface decontamination, pH, and hydrogen peroxide concentration. Environmental factors affected plasma activity, with dry spores without the presence of organic matter being most susceptible. This study demonstrates that cold atmospheric plasma can effectively inactivate C. difficile spores, and highlights factors that can affect sporicidal activity.

  1. Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Růziciková, H; Vránová, A

    2003-01-01

    The study is focused on the comparison of autothermal thermophilic aerobic digestion, thermophilic and mesophilic anaerobic digestion, based on long-term monitoring of all processes in full-scale wastewater treatment plants, with an emphasis on the efficiency in destroying pathogens. The hygienisation effect was evaluated as a removal of counts of indicator bacteria, thermotolerant coliforms and enterococci as CFU/g total sludge solids and a frequency of a positive Salmonella spp. detection. Both thermophilic technologies of municipal wastewater sludge stabilisation had the capability of producing sludge A biosolids suitable for agricultural land application when all operational parameters (mainly temperature, mixing and retention time) were stable and maintained at an appropriate level.

  2. Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions.

    PubMed

    Ma, Ting; Ji, Kaihua; Wang, Wei; Wang, Jinghong; Li, Zhaoyu; Ran, Haitao; Liu, Bin; Li, Guoqiang

    2012-12-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. In static cultivation at 30 °C for 72 h under anoxic, oxygen-limited and aerated conditions, cellulose production exceeded 5 g/l, which indicated that oxygen was not essential for production of BC by Enterobacter sp. FY-07. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis showed that the microstructure of the BC was similar to that produced by aerobic bacteria such as Gluconacetobacter xylinum BCRC12335 and Acetobacter sp. V6. The crystallinity index of the BC was 63.3%. Water-holding capacity (approximately 11000%) and rehydration ratio (24.4%) were superior to those reported for BC produced by the aerobic bacteria G. xylinum BCRC12335 and Acetobacter sp. V6. These results will facilitate static submerged fermentation for the production of BC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Characterization of radiation-resistant vegetative bacteria in beef.

    PubMed

    Welch, A B; Maxcy, R B

    1975-08-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D10 of 5.4 min at 70 C or less. The radiation resistance ranged from D10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized.

  4. Effect of Hyperbaric Carbon Dioxide on Spores and Vegetative Cells of Bacillus stearothermophilus

    DTIC Science & Technology

    1994-05-01

    BACILLUS STEAROTHERMOPHILUS DTIC ELECTE JUN131994 D By Chester T. Roskey* Anthony Sikes *Framingham State College Framingham, MA 01701 94-18004...Spores and Vegetative Cells of Bacillus Stearothermophilus 6. AUTHOR(S) Dr. Chester T. Roskey* & Dr. Anthony Sikes 5 FUNDING NUMBERS PR: TB040...SUBJECT TERMS BACILLUS STEAROTHERMOPHILUS THERM0PHILIC BACTERIA THERM0PHILIC SPOILAGE 15. NUMBER OF PAGES 39 16 PRICE CODE 17. SECURITY

  5. Effects of High Pressure on Bacillus licheniformis Spore Germination and Inactivation

    PubMed Central

    Borch-Pedersen, Kristina; Mellegård, Hilde; Reineke, Kai; Boysen, Preben; Sevenich, Robert; Lindbäck, Toril

    2017-01-01

    ABSTRACT Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at <300 MPa triggers spore germination by activating germination receptors (GRs), while pressurization at >300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis, a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions

  6. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    PubMed

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  7. Prevalence of Clostridium botulinum and thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry.

    PubMed

    Sevenier, V; Delannoy, S; André, S; Fach, P; Remize, F

    2012-04-16

    Two categories of vegetables (carrots and green beans) that are widely used in the manufacture of canned food were surveyed for their spore contamination. Samples were recovered from 10 manufactures spread over all producing areas in France. Two samples over 316 raw vegetables collected were found positive for botulinum neurotoxin producing Clostridia spores as tested by PCR-based GeneDisc assay. Both positive samplestested positive for the type B neurotoxin gene (bont/B). In parallel, heat-resistant spores of thermophilic bacteria that are likely to be associated with canned food spoilage after prolonged incubation at 55 °C were surveyed after specific enrichment. Prevalence varied between 1.6% for Moorella thermoacetica/thermoautotrophica in green bean samples and 8.6% for either Geobacillus stearothermophilus or Thermoanaerobacterium spp. in carrot samples. Vegetable preparation, e.g. washing and edge cutting, considerably reduced spore contamination levels. These data constitute the first wide examination of vegetables specifically cultivated for industrialpurposes for their contamination by spores of thermophilic bacterial species. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Small-Molecule Inhibition of Choline Catabolism in Pseudomonas aeruginosa and Other Aerobic Choline-Catabolizing Bacteria ▿ †

    PubMed Central

    Fitzsimmons, Liam F.; Flemer, Stevenson; Wurthmann, A. Sandy; Deker, P. Bruce; Sarkar, Indra Neil; Wargo, Matthew J.

    2011-01-01

    Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ. PMID:21602374

  9. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.

    PubMed

    Fresno, Teresa; Peñalosa, Jesús M; Santner, Jakob; Puschenreiter, Markus; Prohaska, Thomas; Moreno-Jiménez, Eduardo

    2016-09-01

    Arsenic is a non-threshold carcinogenic metalloid. Thus, human exposure should be minimised, e.g. by chemically stabilizing As in soil. Since iron is a potential As immobiliser, it was investigated whether root iron plaque, formed under aerobic conditions, affects As uptake, metabolism and distribution in Lupinus albus plants. White lupin plants were cultivated in a continuously aerated hydroponic culture containing Fe/EDDHA or FeSO4 and exposed to arsenate (5 or 20 μM). Only FeSO4 induced surficial iron plaque in roots. LA-ICP-MS analysis accomplished on root sections corroborated the association of As to this surficial Fe. Additionally, As(V) was the predominant species in FeSO4-treated roots, suggesting less efficient As uptake in the presence of iron plaque. Fe/EDDHA-exposed roots neither showed such surficial FeAs co-localisation nor As(V) accumulation; in contrast As(III) was the predominant species in root tissue. Furthermore, FeSO4-treated plants showed reduced shoot-to-root As ratios, which were >10-fold lower compared to Fe/EDDHA treatment. Our results highlight the role of an iron plaque formed in roots of white lupin under aerobic conditions on As immobilisation. These findings, to our knowledge, have not been addressed before for this plant and have potential implications on soil remediation (phytostabilisation) and food security (minimising As in crops). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Science hub spore data

    EPA Pesticide Factsheets

    Data set includes UV dose, and Bacillus pumilus spore plate counts in colony forming unitsThis dataset is associated with the following publication:Boczek , L., E. Rhodes , J. Cashdollar, J. Ryu, J. Popovici , J. Hoelle , M. Sivaganesan , S. Hayes , M. Rodgers , and H. Ryu. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems. JOURNAL OF MICROBIOLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 122: 43-49, (2016).

  11. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    PubMed

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  12. Effects of nifedipine on gravi-dependent germination of moss spores

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, O. Y.; Demkiv, O. T.

    % of spores cell filaments oriented parallely with respect to the gravity vector. Results shown suggest that the endogenic competency of a single-cell spore is necessary condition of gravi- induced initiation of polar axis the competency being realized with Ca2+ movement. The highest level of Ca2+ luminescence was at the bottom of spores. In other sites of the spores the Ca2+ luminescence was about 20-fold lower than at the site of Ca2+ influx. In the 24 h after formation of first outgrowth the new site of Ca2+ influx appeared at the opposite site of spore and the second outgrowth arised. Consequently during the period of gravi-dependent spore development the newly top Ca2+ influx was repeatedly established. The direction of the Ca2+ ions influx correlated with re-orientation of spores with respect to the gravity vector. It is known that the nifedipine partially inhibits polar axis formation (Chatterjee et al., 2000) the latter being formed under the influence Ca2+ gradient (Cove, 2000). Thus, our results confirm that the fast change of Ca2+ influx probably is one of the earliest cell-level responses induced by gravity and it plays a key role in guiding polar events of germinating spores. This research was supported by NASA grant NN-09 (R).

  13. Evaluation of peracetic acid fog for the inactivation of Bacillus anthracis spore surrogates in a large decontamination chamber.

    PubMed

    Wood, Joseph P; Calfee, Michael Worth; Clayton, Matthew; Griffin-Gatchalian, Nicole; Touati, Abderrahmane; Egler, Kim

    2013-04-15

    The purpose of this study was to evaluate the sporicidal (inactivation of bacterial spores) effectiveness and operation of a fogging device utilizing peracetic acid/hydrogen peroxide (PAA). Experiments were conducted in a pilot-scale 24 m(3) stainless steel chamber using either biological indicators (BIs) or bacterial spores deposited onto surfaces via aerosolization. Wipe sampling was used to recover aerosol-deposited spores from chamber surfaces and coupon materials before and after fogging to assess decontamination efficacy. Temperature, relative humidity, and hydrogen peroxide vapor levels were measured during testing to characterize the fog environment. The fog completely inactivated all BIs in a test using a 60 mL solution of PAA (22% hydrogen peroxide/4.5% peracetic acid). In tests using aerosol-deposited bacterial spores, the majority of the post-fogging spore levels per sample were less than 1 log colony forming units, with a number of samples having no detectable spores. In terms of decontamination efficacy, a 4.78 log reduction of viable spores was achieved on wood and stainless steel. Fogging of PAA solutions shows potential as a relatively easy to use decontamination technology in the event of contamination with Bacillus anthracis or other spore-forming infectious disease agents, although additional research is needed to enhance sporicidal efficacy. Published by Elsevier B.V.

  14. Reduced Bacterial Colony Count of Anaerobic Bacteria Is Associated with a Worsening in Lung Clearance Index and Inflammation in Cystic Fibrosis

    PubMed Central

    Bradley, Judy M.; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung. PMID:25992575

  15. Reductive dehalogenation of 3,5-dibromo-4-hydroxybenzoate by an aerobic strain of Delftia sp. EOB-17.

    PubMed

    Chen, Kai; Jian, Shanshan; Huang, Linglong; Ruan, Zhepu; Li, Shunpeng; Jiang, Jiandong

    2015-12-01

    To confirm the reductive dehalogenation ability of the aerobic strain of Delftia sp. EOB-17, finding more evidences to support the hypothesis that reductive dehalogenation may occur extensively in aerobic bacteria. Delftia sp. EOB-17, isolated from terrestrial soil contaminated with halogenated aromatic compounds, completely degraded 0.2 mM DBHB in 28 h and released two equivalents of bromides under aerobic conditions in the presence of sodium succinate. LC-MS analysis revealed that DBHB was transformed to 4-hydroxybenzoate via 3-bromo-4-hydroxybenzoate by successive reductive dehalogenation. Highly conserved DBHB-degrading genes, including reductive dehalogenase gene (bhbA3) and the extra-cytoplasmic binding receptor gene (bhbB3), were also found in strain EOB-17 by genome sequencing. The optimal temperature and pH for DBHB reductive dehalogenation activity are 30 °C and 8, respectively, and 0.1 mM Cd(2+), Cu(2+), Hg(2+) and Zn(2+) strongly inhibited dehalogenation activity. The aerobic strain of Delftia sp. EOB-17 was confirmed to reductively dehalogenate DBHB under aerobic conditions, providing another evidence to support the hypothesis that reductive dehalogenation occurs extensively in aerobic bacteria.

  16. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  17. Sequential anaerobic-aerobic degradation of munitions waste.

    PubMed

    Ibeanusi, Victor; Jeilani, Yassin; Houston, Samantha; Doss, Danielle; Coley, Bianca

    2009-01-01

    A sequential anaerobic-aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus-GC subgroup B.

  18. Evaluating the Sporicidal Activity of Disinfectants against Clostridium difficile and Bacillus amyloliquefaciens Spores by Using the Improved Methods Based on ASTM E2197-11

    PubMed Central

    Uwamahoro, Marie Christine; Massicotte, Richard; Hurtubise, Yves; Gagné-Bourque, François; Mafu, Akier Assanta; Yahia, L’Hocine

    2018-01-01

    Spore-forming pathogenic bacteria, such as Clostridium difficile, are associated with nosocomial infection, leading to the increased use of sporicidal disinfectants, which impacts socioeconomic costs. However, C. difficile can be prevented using microorganisms such as Bacillus amyloliquefaciens, a prophylactic agent that has been proven to be effective against it in recent tests or it can be controlled by sporicidal disinfectants. These disinfectants against spores should be evaluated according to a known and recommended standard. Unfortunately, some newly manufactured disinfectants like Bioxy products have not yet been tested. ASTM E2197-11 is a standard test that uses stainless steel disks (1 cm in diameter) as carriers, and the performance of the test formulation is calculated by comparing the number of viable test organisms to that on the control carriers. Surface tests are preferable for evaluating disinfectants with sporicidal effects on hard surfaces. This study applies improved methods, based on the ASTM E2197-11 standard, for evaluating and comparing the sporicidal efficacies of several disinfectants against spores of C. difficile and B. amyloliquefaciens, which are used as the test organisms. With the improved method, all spores were recovered through vortexing and membrane filtration. The results show that chlorine-based products are effective in 5 min and Bioxy products at 5% w/v are effective in 10 min. Although Bioxy products may take longer to prove their effectiveness, their non-harmful effects to hospital surfaces and people have been well established in the literature. PMID:29459891

  19. Evaluating the Sporicidal Activity of Disinfectants against Clostridium difficile and Bacillus amyloliquefaciens Spores by Using the Improved Methods Based on ASTM E2197-11.

    PubMed

    Uwamahoro, Marie Christine; Massicotte, Richard; Hurtubise, Yves; Gagné-Bourque, François; Mafu, Akier Assanta; Yahia, L'Hocine

    2018-01-01

    Spore-forming pathogenic bacteria, such as Clostridium difficile , are associated with nosocomial infection, leading to the increased use of sporicidal disinfectants, which impacts socioeconomic costs. However, C. difficile can be prevented using microorganisms such as Bacillus amyloliquefaciens , a prophylactic agent that has been proven to be effective against it in recent tests or it can be controlled by sporicidal disinfectants. These disinfectants against spores should be evaluated according to a known and recommended standard. Unfortunately, some newly manufactured disinfectants like Bioxy products have not yet been tested. ASTM E2197-11 is a standard test that uses stainless steel disks (1 cm in diameter) as carriers, and the performance of the test formulation is calculated by comparing the number of viable test organisms to that on the control carriers. Surface tests are preferable for evaluating disinfectants with sporicidal effects on hard surfaces. This study applies improved methods, based on the ASTM E2197-11 standard, for evaluating and comparing the sporicidal efficacies of several disinfectants against spores of C. difficile and B. amyloliquefaciens , which are used as the test organisms. With the improved method, all spores were recovered through vortexing and membrane filtration. The results show that chlorine-based products are effective in 5 min and Bioxy products at 5% w/v are effective in 10 min. Although Bioxy products may take longer to prove their effectiveness, their non-harmful effects to hospital surfaces and people have been well established in the literature.

  20. Terahertz vibrational signature of bacterial spores arising from nanostructure decorated endospore surface.

    PubMed

    Datta, Debopam; Stroscio, Michael A; Dutta, Mitra; Zhang, Weidong; Brown, Elliott R

    2018-05-03

    This theoretical effort is the first to explore the possible hypothesis that terahertz optical activity of Bacillus spores arises from normal vibrational modes of spore coat subcomponents in the terahertz frequency range. Bacterial strains like Bacillus and Clostridium form spores with a hardened coating made of peptidoglycan to protect its genetic material in harsh conditions. In recent years, electron microscopy and atomic force microscopy has revealed that bacterial spore surfaces are decorated with nanocylinders and honeycomb nanostructures. In this article, a simple elastic continuum model is used to describe the vibration of these nanocylinders mainly in Bacillus subtilis, which also leads to the conclusion that the terahertz signature of these spores arises from the vibration of these nanostructures. Three vibrating modes: radial/longitudinal, torsional and flexural, have been identified and discussed for the nanocylinders. The effect of bound water, which shifts the vibration frequency, is also discussed. The peptidoglycan molecule consists of polar and charged amino acids; hence, the sporal surface local vibrations interact strongly with the terahertz radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Adherence of Clostridium perfringens spores to human intestinal epithelial Caco-2 cells.

    PubMed

    Sakanoue, Hideyo; Nakano, Takashi; Sano, Kouichi; Yasugi, Mayo; Monma, Chie; Miyake, Masami

    2018-03-01

    Clostridium perfringens is a gram-positive, spore-forming bacillus, and is a causative agent of foodborne infection, antibiotic-associated diarrhoea and sporadic diarrhoea in humans. In cases of antibiotic-associated and sporadic diarrhoea, C. perfringens colonises the intestine, proliferates and causes disease. However, bacterial colonisation of the intestine is not considered necessary in the pathogenesis of foodborne illness, because such pathogenesis can be explained by anchorage-independent production of diarrhoeic toxin by the bacterium in the intestine. In this study, we used an in vitro adherence assay to examine the adherence of C. perfringens spores to human intestinal Caco-2 cells. Adherence of spores from isolates of foodborne illness and nosocomial infection was observed within 15 min, and plateaued 60 min after inoculation. Electron microscopy revealed a tight association of spores with the surface of Caco-2 cells. The adherence of vegetative cells could not be confirmed by the same method, however. These results suggest that C. perfringens spores may adhere to intestinal epithelial cells in vivo, although its biological significance remains to be determined.

  2. Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane.

    PubMed

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis -dichloroethylene ( cis -DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis -DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.

  3. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth.

    PubMed

    Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun

    2015-09-01

    Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Determinative factors of competitive advantage between aerobic bacteria for niches at the air-liquid interface.

    PubMed

    Yamamoto, Kyosuke; Haruta, Shin; Kato, Souichiro; Ishii, Masaharu; Igarashi, Yasuo

    2010-01-01

    We focused on bacterial interspecies relationships at the air-liquid interface where the formation of pellicles by aerobes was observed. Although an obligate aerobe (Brevibacillus sp. M1-5) was initially dominant in the pellicle population, a facultative aerobe (Pseudoxanthomonas sp. M1-3) emerged and the viability of M1-5 rapidly decreased due to severe competition for oxygen. Supplementation of the medium with carbohydrates allowed the two species to coexist at the air-liquid interface. These results indicate that the population dynamics within pellicles are primarily governed by oxygen utilization which was affected by a combination of carbon sources.

  5. Bacteria contributing to behaviour of radiocarbon in sodium acetate.

    PubMed

    Ishii, Nobuyoshi; Uchida, Shigeo

    2011-07-01

    An acetate-utilising bacterium was isolated and identified from deionised water that was used for flooding of paddy soils in this study's batch culture experiments. Bacteria in the deionised water samples formed colonies on agar plates containing [1,2-(14)C] sodium acetate, and the autoradiograms showed that all the colonies were positive for (14)C utilisation. Then one of the acetate-utilising bacteria was isolated. The isolate was characterised by phylogenetic analysis, cell morphology, Gram staining and growth at 30 °C. Phylogenetic analysis based on 16S rRNA sequencing showed that the isolate belonged to the genus Burkholderia. The bacterium was gram-negative rods and grew at 30 °C under aerobic conditions. Based on these characteristics, the isolate was identified as Burkholderia gladioli. Because B. gladioli is often found in soil, water and the rhizosphere, attention must be paid to the relationships between bacteria and the behaviour of (14)C to for the safety assessment of geological disposal of transuranic waste.

  6. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    DTIC Science & Technology

    2009-12-01

    exosporium maturation and assembly and suggest a novel role for the exosporium in germination. During starvation, bacteria of the genus Bacillus...Bacillus subtilis, the outermost struc- ture is a protective layer called the coat, which guards the spore against reactive small molecules, degradative ...analysis. Generation of anti-ExsK antibodies. Recombinant ExsK was generated and purified using the pET expression system (Novagen) according to the

  7. Using Bacterial Surrogates to Assess Pathogen Transport in the Subsurface: Laboratory and Field Indications of Co-Transport Considerations

    NASA Astrophysics Data System (ADS)

    Emelko, M.; Stimson, J. R.; McLellan, N. L.; Mesquita, M.

    2009-12-01

    processes such as RBF. Here, duplicate column studies were conducted to evaluate the transport of nano- and micro-sized polystyrene micropsheres, aerobic spores of Bacillus subtilis, PR772 bacteriophage, and pathogenic Salmonella typhimurium bacteria in a well-sorted fine sand (d 50 = 0.6 mm). A field validation experiment investigating transport of 1.5 µm polystyrene micropsheres and aerobic spores in and RBF system comprised of unconsolidated silty sand, gravel, and boulders was conducted. The column studies demonstrated that the presence of the aerobic spores resulted in increased removal of 4.5 µm microspheres from< 2 log to ~4 log, and 1.5 µm microsphere removal from <0.5 log to ~1 log removal. Microscopic examination of the samples also revealed extensive clumping of microspheres and microorganisms during the experiments conducted with aerobic spores. A field trial during which microspheres and spores of B. subtilis were injected into the subsurface provided corroborating evidence of a co-transport effect of aerobic spores by demonstrating ~1.6 log increase in 1.5 µm microsphere removal in the presence of aerobic spores.

  8. The sps Gene Products Affect the Germination, Hydrophobicity, and Protein Adsorption of Bacillus subtilis Spores

    PubMed Central

    Cangiano, Giuseppina; Sirec, Teja; Panarella, Cristina; Isticato, Rachele; Baccigalupi, Loredana; De Felice, Maurilio

    2014-01-01

    The multilayered surface of the Bacillus subtilis spore is composed of proteins and glycans. While over 70 different proteins have been identified as surface components, carbohydrates associated with the spore surface have not been characterized in detail yet. Bioinformatic data suggest that the 11 products of the sps operon are involved in the synthesis of polysaccharides present on the spore surface, but an experimental validation is available only for the four distal genes of the operon. Here, we report a transcriptional analysis of the sps operon and a functional study performed by constructing and analyzing two null mutants lacking either all or only the promoter-proximal gene of the operon. Our results show that both sps mutant spores apparently have normal coat and crust but have a small germination defect and are more hydrophobic than wild-type spores. We also show that spores lacking all Sps proteins are highly adhesive and form extensive clumps. In addition, sps mutant spores have an increased efficiency in adsorbing a heterologous enzyme, suggesting that hydrophobic force is a major determinant of spore adsorption and indicating that a deep understanding of the surface properties of the spore is essential for its full development as a surface display platform. PMID:25239894

  9. A quantum dot-spore nanocomposite pH sensor.

    PubMed

    Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang

    2016-04-01

    A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica.

    PubMed

    Tahon, Guillaume; Willems, Anne

    2017-09-01

    This study investigated the culturable aerobic phototrophic bacteria present in soil samples collected in the proximity of the Belgian Princess Elisabeth Station in the Sør Rondane Mountains, East Antarctica. Until recently, only oxygenic phototrophic bacteria (Cyanobacteria) were well known from Antarctic soils. However, more recent non-cultivation-based studies have demonstrated the presence of anoxygenic phototrophs and, particularly, aerobic anoxygenic phototrophic bacteria in these areas. Approximately 1000 isolates obtained after prolonged incubation under different growth conditions were studied and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Representative strains were identified by sequence analysis of 16S rRNA genes. More than half of the isolates grouped among known aerobic anoxygenic phototrophic taxa, particularly with Sphingomonadaceae, Methylobacterium and Brevundimonas. In addition, a total of 330 isolates were tested for the presence of key phototrophy genes. While rhodopsin genes were not detected, multiple isolates possessed key genes of the bacteriochlorophyll synthesis pathway. The majority of these potential aerobic anoxygenic phototrophic strains grouped with Alphaproteobacteria (Sphingomonas, Methylobacterium, Brevundimonas and Polymorphobacter). Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. High-quality permanent draft genome sequence of Rhizobium sullae strain WSM1592; a Hedysarum coronarium microsymbiont from Sassari, Italy

    DOE PAGES

    Yates, Ron; Howieson, John; De Meyer, Sofie E.; ...

    2015-07-24

    Rhizobium sullae strain WSM1592 is an aerobic, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule formed on the short-lived perennial legume Hedysarum coronarium (also known as Sulla coronaria or Sulla). WSM1592 was isolated from a nodule recovered from H. coronarium roots located in Ottava, bordering Sassari, Sardinia in 1995. WSM1592 is highly effective at fixing nitrogen with H. coronarium, and is currently the commercial Sulla inoculant strain in Australia. Here we describe the features of R. sullae strain WSM1592, together with genome sequence information and its annotation. The 7,530,820 bp high-quality permanent draft genomemore » is arranged into 118 scaffolds of 118 contigs containing 7.453 protein-coding genes and 73 RNA-only encoding genes. In conclusion, this rhizobial genome is sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.« less

  12. Biomass measurement of methane forming bacteria in environmental samples

    NASA Technical Reports Server (NTRS)

    Martz, R. F.; Sebacher, D. I.; White, D. C.

    1983-01-01

    Methane-forming bacteria contain unusual phytanylglycerol ether phospholipids which can be extracted from the bacteria in sediments and assayed quantitatively by high performance liquid chromatography (HPLC). In this procedure the lipids were extracted, the phospholipids recovered, hydrolyzed, purified by thin layer chromatography, derivatized and assayed by HPLC. Ether lipids were recovered quantitatively from Methanobacterium thermoautotrophicum and sediments at levels as low as 8 x 10(-14) moles. In freshwater and marine sediments the flux of methane to the atmosphere and the methane levels in the pore water reflects the recovery of the phytanyl glycerol ether lipid 'signature'. The proportion of the ether phospholipid to the total recoverable phospholipid was highest in anaerobic digester sewage sludge and deeper subsurface freshwater sediment horizons.

  13. Formation of Protoplasts from Resting Spores

    PubMed Central

    Fitz-James, Philip C.

    1971-01-01

    Coat-stripped spores suspended in hypertonic solutions and supplied with two essential cations can be converted into viable protoplasts by lysozyme digestion of both cortex and germ cell wall. Calcium ions are necessary to prevent membrane rupture, and magnesium ions are necessary for changes indicative of hydration of the core, particularily the nuclear mass. Since remnant spore coat covered such protoplasts of Bacillus subtilis and the germ cell wall of B. cereus spores is not lysozyme digestible, coatless spores of B. megaterium KM were more useful for these studies. Lysozyme digestion in cation-free environment produced a peculiar semi-refractile spore core free of a cortex but prone to rapid hydration and lytic changes on the addition of cations. Strontium could replace Ca2+ but Mn2+ could not replace Mg2+ in these digestions. When added to the spores, dipicolinic acid and other chelates appeared to compete with the membrane for the calcium needed for stabilization during lysozyme conversion to protoplasts. It is argued that calcium could function to stabilize the inner membrane anionic groups over the anhydrous dipicolinic acid-containing core of resting spores. Images PMID:4995380

  14. Biomarkers of Aspergillus spores

    NASA Astrophysics Data System (ADS)

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  15. Anaerobic sporeformers and their significance with respect to milk and dairy products.

    PubMed

    Doyle, Conor J; Gleeson, David; Jordan, Kieran; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; Cotter, Paul D

    2015-03-16

    Sporeforming bacteria are a significant concern for the international dairy industry. Spores present in milk survive heat treatments and can persist during downstream processing. If they are present in sufficient numbers in dairy products they can cause spoilage or lead to illness as a result of toxin production. While many reviews have highlighted the threat posed by spores of aerobic bacteria to the dairy industry, few have focused on problems caused by the array of different species of anaerobic sporeformers (Clostridium and related genera) that can be found in milk. This is despite of the fact that members of these bacteria are found throughout the dairy farm environment, and can be toxigenic, neurotoxigenic or spoilage bacteria. This makes the possible presence of Clostridium and related spores in bulk tank milk (BTM) important from both a financial and a public health perspective. In this review dairy associated anaerobic sporeformers are assessed from a number of perspectives. This includes the taxonomy of this group of bacteria, the important subgroup of this genus the "sulphite reducing clostridia" (SRC), how these bacteria are detected in milk products, the epidemiological data regarding pathogenic species and strains within the SRC group as well as the influence of farming practices on the presence of SRC in BTM. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes

    PubMed Central

    Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833

  17. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    PubMed

    Fauteux, Lisa; Cottrell, Matthew T; Kirchman, David L; Borrego, Carles M; Garcia-Chaves, Maria Carolina; Del Giorgio, Paul A

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  18. Synthetic Spores Give Insight into the Real Thing and Reveal Functional Applications | Center for Cancer Research

    Cancer.gov

    Spores from bacteria, such as Bacillus subtilis, are produced to allow the bacterium’s genetic material to survive harsh environments. When the bacterium senses nutrient depletion, it divides asymmetrically into a forespore and a mother cell. The mother cell engulfs the forespore, and coat proteins synthesized by the mother cell localize to the surface of the forespore. The

  19. Characterization of single spore isolates of Agaricus bisporus (Lange) Imbach using conventional and molecular methods.

    PubMed

    Sharma, Manju; Suman, B C; Gupta, Dharmesh

    2014-10-01

    Strains A-15, S11, S-140, and U3 of Agaricus bisporus (Lange) Imbach, were used as parent strains for raising single spore homokaryotic isolates. Out of total 1,642 single spore isolates, only 36 single spore isolates were homokaryons and exhibited slow mycelial growth rate (≤2.0 mm/day) and appressed colony morphology. All these SSIs failed to produce pinheads in Petri plates even after 65 days of incubation, whereas the strandy slow growing SSIs along with parent strains were able to form the fructification in petriplates after 30 days. Out of 24, six ISSR primers, exhibited scorable bands. In the ISSR fingerprints, single spore isolates, homokaryons, lacked amplification products at multiple loci; they grow slowly and all of them had appressed types of colony morphology. The study revealed losses of ISSR polymorphic patterns in non-fertile homokaryotic single spore isolates compared to the parental control or fertile heterokaryotic single spore isolates.

  20. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    USDA-ARS?s Scientific Manuscript database

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  1. Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium.

    PubMed

    Lefèvre, Christopher T; Howse, Paul A; Schmidt, Marian L; Sabaty, Monique; Menguy, Nicolas; Luther, George W; Bazylinski, Dennis A

    2016-12-01

    Although dissimilatory sulfate-reducing bacteria (SRB) are generally described as strictly anaerobic organisms with regard to growth, several reports have shown that some SRB, particularly Desulfovibrio species, are quite resistant to O 2 . For example, SRB remain viable in many aerobic environments while some even reduce O 2 to H 2 O. However, reproducible aerobic growth of SRB has not been unequivocally documented. Desulfovibrio magneticus is a SRB that is also a magnetotactic bacterium (MTB). MTB biomineralize magnetosomes which are intracellular, membrane-bounded, magnetic iron mineral crystals. The ability of D. magneticus to grow aerobically in several different media under air where an O 2 concentration gradient formed, or under O 2 -free N 2 gas was tested. Under air, cells grew as a microaerophilic band of cells at the oxic-anoxic interface in media lacking sulfate. These results show that D. magneticus is capable of aerobic growth with O 2 as a terminal electron acceptor. This is the first report of consistent, reproducible aerobic growth of SRB. This finding is critical in determining important ecological roles SRB play in the environment. Interestingly, the crystal structure of the magnetite crystals of D. magneticus grown under microaerobic conditions showed significant differences compared with those produced anaerobically providing more evidence that environmental parameters influence magnetosome formation. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Characterization of radiation-resistant vegetative bacteria in beef

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, A.B.; Maxcy, R.B.

    1975-08-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2more » to 50 C. These bacteria were relatively heat sensitive, e.g., D$sub 10$ of 5.4 min at 70$sup 0$C or less. The radiation resistance ranged from D$sub 10$ values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. (auth)« less

  3. Reaerosolization of Fluidized Spores in Ventilation Systems▿

    PubMed Central

    Krauter, Paula; Biermann, Arthur

    2007-01-01

    This project examined dry, fluidized spore reaerosolization in a heating, ventilating, and air conditioning duct system. Experiments using spores of Bacillus atrophaeus, a nonpathogenic surrogate for Bacillus anthracis, were conducted to delineate the extent of spore reaerosolization behavior under normal indoor airflow conditions. Short-term (five air-volume exchanges), long-term (up to 21,000 air-volume exchanges), and cycled (on-off) reaerosolization tests were conducted using two common duct materials. Spores were released into the test apparatus in turbulent airflow (Reynolds number, 26,000). After the initial pulse of spores (approximately 1010 to 1011 viable spores) was released, high-efficiency particulate air filters were added to the air intake. Airflow was again used to perturb the spores that had previously deposited onto the duct. Resuspension rates on both steel and plastic duct materials were between 10−3 and 10−5 per second, which decreased to 10 times less than initial rates within 30 min. Pulsed flow caused an initial spike in spore resuspension concentration that rapidly decreased. The resuspension rates were greater than those predicted by resuspension models for contamination in the environment, a result attributed to surface roughness differences. There was no difference between spore reaerosolization from metal and that from plastic duct surfaces over 5 hours of constant airflow. The spores that deposited onto the duct remained a persistent source of contamination over a period of several hours. PMID:17293522

  4. Imaging bacterial spores by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores bymore » soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.« less

  5. Use of yeast spores for microencapsulation of enzymes.

    PubMed

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  6. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  7. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria.

    PubMed

    Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda; Westblade, Lars F; Ferraro, Mary Jane; Branda, John A

    2013-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.

  8. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The Threat of Aerobic Vaginitis to Pregnancy and Neonatal Morbidity.

    PubMed

    Kaambo, Eveline; Africa, Charlene W J

    2017-06-01

    Aerobic vaginitis (AV) is an endogenous opportunistic infection brought about by the disruption of the normal vaginal microbiota. Its early diagnosis and treatment during pregnancy may reduce the risk of negative pregnancy outcomes. The aim of this review was to report on the aerobic bacteria most prevalent in AV and to provide evidence of the threat of untreated AV on pregnancy outcomes. More than 300 papers on preterm delivery were extracted from several research domains and filtered to include only AV-associated bacteria such as Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Group B streptococci and their association with adverse pregnancy outcomes. Due to the diverse sample groups, study techniques and outcomes, a meta-analysis was not conducted. The review revealed that the association of AV with adverse pregnancy outcomes has not been as widely researched as bacterial vaginosis (BV) and needs further investigation. Furthermore, the frequent misdiagnosis of AV coupled with the emerging antimicrobial resistance associated with bacteria implicated in AV and neonatal nosocomial infections pose a problem for prophylaxis and treatment to reduce the risk of maternal and neonatal morbidity and mortality.

  10. Chlorine Dioxide Inactivation of Cryptosporidium parvum Oocysts and Bacterial Spore Indicators

    PubMed Central

    Chauret, Christian P.; Radziminski, Chris Z.; Lepuil, Michael; Creason, Robin; Andrews, Robert C.

    2001-01-01

    Cryptosporidium parvum, which is resistant to chlorine concentrations typically used in water treatment, is recognized as a significant waterborne pathogen. Recent studies have demonstrated that chlorine dioxide is a more efficient disinfectant than free chlorine against Cryptosporidium oocysts. It is not known, however, if oocysts from different suppliers are equally sensitive to chlorine dioxide. This study used both a most-probable-number–cell culture infectivity assay and in vitro excystation to evaluate chlorine dioxide inactivation kinetics in laboratory water at pH 8 and 21°C. The two viability methods produced significantly different results (P < 0.05). Products of disinfectant concentration and contact time (Ct values) of 1,000 mg · min/liter were needed to inactivate approximately 0.5 log10 and 2.0 log10 units (99% inactivation) of C. parvum as measured by in vitro excystation and cell infectivity, respectively, suggesting that excystation is not an adequate viability assay. Purified oocysts originating from three different suppliers were evaluated and showed marked differences with respect to their resistance to inactivation when using chlorine dioxide. Ct values of 75, 550, and 1,000 mg · min/liter were required to achieve approximately 2.0 log10 units of inactivation with oocysts from different sources. Finally, the study compared the relationship between easily measured indicators, including Bacillus subtilis (aerobic) spores and Clostridium sporogenes (anaerobic) spores, and C. parvum oocysts. The bacterial spores were found to be more sensitive to chlorine dioxide than C. parvum oocysts and therefore could not be used as direct indicators of C. parvum inactivation for this disinfectant. In conclusion, it is suggested that future studies address issues such as oocyst purification protocols and the genetic diversity of C. parvum, since these factors might affect oocyst disinfection sensitivity. PMID:11425712

  11. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    NASA Astrophysics Data System (ADS)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  12. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.

    PubMed

    Spicher, G; Peters, J; Borchers, U

    1999-02-01

    For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.

  13. Sensitizing Clostridium difficile Spores with Germinants on Skin and Environmental Surfaces Represents a New Strategy for Reducing Spores via Ambient Mechanisms

    PubMed Central

    Nerandzic, Michelle M.; Donskey, Curtis J.

    2017-01-01

    Background Clostridium difficile is a leading cause of healthcare-associated infections worldwide. Prevention of C. difficile transmission is challenging because spores are not killed by alcohol-based hand sanitizers or many commonly used disinfectants. One strategy to control spores is to induce germination, thereby rendering the spores more susceptible to benign disinfection measures and ambient stressors. Methods/Results C. difficile spores germinated on skin after a single application of cholic acid-class bile salts and co-germinants; for 4 C. difficile strains, recovery of viable spores from skin was reduced by ~0.3 log10CFU to 2 log10CFU after 2 hours and ~1 log10CFU to > 2.5 log10CFU after 24 hours. The addition of taurocholic acid to 70% and 30% ethanol significantly enhanced reduction of viable spores on skin and on surfaces. Desiccation, and to a lesser extent the presence of oxygen, were identified as the stressors responsible for reductions of germinated spores on skin and surfaces. Additionally, germinated spores became susceptible to killing by pH 1.5 hydrochloric acid, suggesting that germinated spores that remain viable on skin and surfaces might be killed by gastric acid after ingestion. Antibiotic-treated mice did not become colonized after exposure to germinated spores, whereas 100% of mice became colonized after exposure to the same quantity of dormant spores. Conclusions Germination could provide a new approach to reduce C. difficile spores on skin and in the environment and to render surviving spores less capable of causing infection. Our findings suggest that it may be feasible to develop alcohol-based hand sanitizers containing germinants that reduce spores on hands. PMID:29167835

  14. The nature of water within bacterial spores: protecting life in extreme environments

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Friedline, Anthony; Johnson, Karen; Zachariah, Malcolm M.; Thomas, Kieth J., III

    2011-10-01

    The bacterial spore is a formidable container of life, protecting the vital contents from chemical attack, antimicrobial agents, heat damage, UV light degradation, and water dehydration. The exact role of the spore components remains in dispute. Nevertheless, water molecules are important in each of these processes. The physical state of water within the bacterial spore has been investigated since the early 1930's. The water is found two states, free or bound, in two different areas, core and non-core. It is established that free water is accessible to diffuse and exchange with deuterated water and that the diffusible water can access all areas of the spore. The presence of bound water has come under recent scrutiny and has been suggested the water within the core is mobile, rather than bound, based on the analysis of deuterium relaxation rates. Using an alternate method, deuterium quadrupole-echo spectroscopy, we are able to distinguish between mobile and immobile water molecules. In the absence of rapid motion, the deuterium spectrum of D2O is dominated by a broad line, whose line shape is used as a characteristic descriptor of molecular motion. The deuterium spectrum of bacterial spores reveals three distinct features: the broad peak of immobilized water, a narrow line of water in rapid motion, and a signal of intermediate width. This third signal is assigned this peak from partially deuterated proteins with the spore in which N-H groups have undergone exchange with water deuterons to form N-D species. As a result of these observations, the nature of water within the spore requires additional explanation to understand how the spore and its water preserve life.

  15. Pollutants degradation performance and microbial community structure of aerobic granular sludge systems using inoculums adapted at mild and low temperature.

    PubMed

    Muñoz-Palazon, Barbara; Pesciaroli, Chiara; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesús; Gonzalez-Martinez, Alejandro

    2018-08-01

    Three aerobic granular sequencing batch reactors were inoculated using different inocula from Finland, Spain and a mix of both in order to investigate the effect over the degradation performance and the microbial community structure. The Finnish inoculum achieved a faster granulation and a higher depollution performance within the first two month of operation. However, after 90 days of operation, similar physico-chemical values were observed. On the other hand, the Real-time PCR showed that Archaea diminished from inoculum to granular biomass, while Bacteria and Fungi numbers remained stable. All granular biomass massive parallel sequencing studies were similar regardless of the inocula from which they formed, as confirmed by singular value decomposition principal coordinates analysis, expected effect size of OTUs, and β-diversity analyses. Thermoproteaceae, Meganema and a Trischosporonaceae members were the dominant phylotypes for the three domains studied. The analysis of oligotype distribution demonstrated that a fungal oligotype was ubiquitous. The dominant OTUs of Bacteria were correlated with bioreactors performance. The results obtained determined that the microbial community structure of aerobic granular sludge was similar regardless of their inocula, showing that the granulation of biomass is related to several phylotypes. This will be of future importance for the implementation of aerobic granular sludge to full-scale systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Expression of Meiotic Drive Elements Spore Killer-2 and Spore Killer-3 in Asci of Neurospora Tetrasperma

    PubMed Central

    Raju, N. B.; Perkins, D. D.

    1991-01-01

    It was shown previously that when a chromosomal Spore killer factor is heterozygous in Neurospora species with eight-spored asci, the four sensitive ascospores in each ascus die and the four survivors are all killers. Sk-2(K) and Sk-3(K) are nonrecombining haplotypes that segregate with the centromere of linkage group III. No killing occurs when either one of these killers is homozygous, but each is sensitive to killing by the other in crosses of Sk-2(K) X Sk-3(K). In the present study, Sk-2(K) and Sk-3(K) were transferred by recurrent backcrosses from the eight-spored species Neurospora crassa into Neurospora tetrasperma, a pseudohomothallic species which normally makes asci with four large spores, each heterokaryotic for mating type and for any other centromere-linked genes that are heterozygous in the cross. The action of Sk-2(K) and Sk-3(K) in N. tetrasperma is that predicted from their behavior in eight-spored species. A sensitive nucleus is protected from killing if it is enclosed in the same ascospore with a killer nucleus. Crosses of Sk-2(K) X Sk-2(S), Sk-3(K) X Sk-3(S), and Sk-2(K) X Sk-3(K) all produce four-spored asci that are wild type in appearance, with the ascospores heterokaryotic and viable. The Eight-spore gene E, which shows variable penetrance, was used to obtain N. tetrasperma asci in which two to eight spores are small and homokaryotic. When killer and sensitive alleles are segregating in the presence of E, only those ascospores that contain a killer allele survive. Half of the small ascospores are killed. In crosses of Sk-2(K) X Sk-3(K) (with E heterozygous), effectively all small ascospores are killed. The ability of N. tetrasperma to carry killer elements in cryptic condition suggests a possible role for Spore killers in the origin of pseudohomothallism, with adoption of the four-spored mode restoring ascospore viability of crosses in which killing would otherwise occur. PMID:1834522

  17. Proteins YlaJ and YhcN contribute to the efficiency of spore germination in Bacillus subtilis.

    PubMed

    Johnson, Christian L; Moir, Anne

    2017-04-01

    The YlaJ and YhcN spore lipoproteins of Bacillus subtilis contain a common domain, and are of unknown function. Homologues of YlaJ or YhcN are widespread in Bacilli and are also encoded in those Clostridia that use cortex lytic enzymes SleB and CwlJ for cortex hydrolysis during germination. In B. subtilis, we report that single and double mutants lacking YlaJ and/or YhcN show a reduced rate of spore germination in L-alanine, with a delay in loss of heat resistance, release of dipicolinic acid and OD fall. If B. subtilis spores lack the cortex lytic enzyme CwlJ, spore cortex degradation and subsequent outgrowth to form colonies is strictly dependent on the other cortex lytic enzyme SleB, allowing a test of SleB function; in a cwlJ mutant background, the combined loss of both ylaJ and yhcN genes resulted in a spore population in which only 20% of spores germinated and outgrew to form colonies, suggesting that SleB activity is compromised. YlaJ and YhcN have a role in germination that is not yet well defined, but these proteins are likely to contribute, directly or indirectly, to early events in germination, including effective SleB function. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  19. The effect of growth medium on B. anthracis Sterne spore carbohydrate content.

    PubMed

    Colburn, Heather A; Wunschel, David S; Antolick, Kathryn C; Melville, Angela M; Valentine, Nancy B

    2011-06-01

    The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides. We have investigated the carbohydrate composition of B. anthracis Sterne spores produced using four different medium types formulated with different sources of medium components. The amount of rhamnose, 3-O-methyl rhamnose and galactosamine was found to vary significantly between spores cultured using different medium formulations. The relative abundance of these monosaccharides compared to other monosaccharides such as mannosamine was also found to vary with medium type. Specific medium components were also found to impact the carbohydrate profile. Xylose has not been previously described in B. anthracis spores but was detected at low levels in two media. This may represent residual material from the brewery yeast extract used to formulate these two media. These results illustrate the utility of this method to capture the impact of growth medium on carbohydrate variation in spores. Detecting carbohydrate profiles in B. anthracis evidentiary material may provide useful forensic information on the growth medium used for sporulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  1. Involvement of Superoxide Dismutase in Spore Coat Assembly in Bacillus subtilis

    PubMed Central

    Henriques, Adriano O.; Melsen, Lawrence R.; Moran, Charles P.

    1998-01-01

    Endospores of Bacillus subtilis are enclosed in a proteinaceous coat which can be differentiated into a thick, striated outer layer and a thinner, lamellar inner layer. We found that the N-terminal sequence of a 25-kDa protein present in a preparation of spore coat proteins matched that of the Mn-dependent superoxide dismutase (SOD) encoded by the sodA locus. sodA is transcribed throughout the growth and sporulation of a wild-type strain and is responsible for the SOD activity detected in total cell extracts prepared from B. subtilis. Disruption of the sodA locus produced a mutant that lacked any detectable SOD activity during vegetative growth and sporulation. The sodA mutant was not impaired in the ability to form heat- or lysozyme-resistant spores. However, examination of the coat layers of sodA mutant spores revealed increased extractability of the tyrosine-rich outer coat protein CotG. We showed that this condition was not accompanied by augmented transcription of the cotG gene in sporulating cells of the sodA mutant. We conclude that SodA is required for the assembly of CotG into the insoluble matrix of the spore and suggest that CotG is covalently cross-linked into the insoluble matrix by an oxidative reaction dependent on SodA. Ultrastructural analysis revealed that the inner coat formed by a sodA mutant was incomplete. Moreover, the outer coat lacked the characteristic striated appearance of wild-type spores, a pattern that was accentuated in a cotG mutant. These observations suggest that the SodA-dependent formation of the insoluble matrix containing CotG is largely responsible for the striated appearance of this coat layer. PMID:9573176

  2. Fungal spore germination into yeast or mycelium: possible implications of dimorphism in evolution and human pathogenesis

    NASA Astrophysics Data System (ADS)

    Ghormade, Vandana; Deshpande, M. V.

    The ability of dimorphism in fungi is conventionally regarded as a reversible change between the two vegetative forms, yeast and mycelium, in response to environmental change. A zygomycetous isolate, Benjaminiella poitrasii, exhibited yeast-mycelium transition in response to the change in temperature (37-28 °C) and decrease in glucose concentration. For the first time the presence of dimorphic response during asexual and sexual spore germination is reported under the dimorphism-triggering conditions in B. poitrasii. The zygospores germinated into budding yeast when subjected to yeast-form supporting conditions. The mycelium-form favoring conditions gave rise to true mycelium. Similarly, the asexual spores displayed a dimorphic response during germination. Our observations suggest that dimorphism is an intrinsic ability present in the vegetative, asexual, and sexual forms of the fungus. As dimorphic fungi are intermediate to the unicellular yeast and the filamentous forms, understanding of the dimorphic character could be useful to trace the evolutionary relationships among taxonomically different fungi. Moreover, the implications of spore germination during the onset of pathogenesis and in drug development for human health care are discussed.

  3. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  4. Two complementary approaches to quantify variability in heat resistance of spores of Bacillus subtilis.

    PubMed

    den Besten, Heidy M W; Berendsen, Erwin M; Wells-Bennik, Marjon H J; Straatsma, Han; Zwietering, Marcel H

    2017-07-17

    Realistic prediction of microbial inactivation in food requires quantitative information on variability introduced by the microorganisms. Bacillus subtilis forms heat resistant spores and in this study the impact of strain variability on spore heat resistance was quantified using 20 strains. In addition, experimental variability was quantified by using technical replicates per heat treatment experiment, and reproduction variability was quantified by using two biologically independent spore crops for each strain that were heat treated on different days. The fourth-decimal reduction times and z-values were estimated by a one-step and two-step model fitting procedure. Grouping of the 20 B. subtilis strains into two statistically distinguishable groups could be confirmed based on their spore heat resistance. The reproduction variability was higher than experimental variability, but both variabilities were much lower than strain variability. The model fitting approach did not significantly affect the quantification of variability. Remarkably, when strain variability in spore heat resistance was quantified using only the strains producing low-level heat resistant spores, then this strain variability was comparable with the previously reported strain variability in heat resistance of vegetative cells of Listeria monocytogenes, although in a totally other temperature range. Strains that produced spores with high-level heat resistance showed similar temperature range for growth as strains that produced low-level heat resistance. Strain variability affected heat resistance of spores most, and therefore integration of this variability factor in modelling of spore heat resistance will make predictions more realistic. Copyright © 2017. Published by Elsevier B.V.

  5. [Resting forms of gram negative chemolithoautotrophic bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum].

    PubMed

    Loĭko, N G; Soina, V S; Sorokin, D Iu; Mitiushina, L L; El'-Registan, G I

    2003-01-01

    The haloalkaliphilic chemoautotrophic gram-negative bacteria Thioalkalivibrio versutus, strain AL2, and Thioalkalimicrobium aerophilum, strain AL3, were shown to possess the capacity to produce resting forms, namely cyst-like refractile cells (CRC), whose production was controlled by the level of the d1 extracellular factors, exhibiting the function of anabiosis autoinducers. The conditions were elucidated that promoted the formation of CRC in the developmental cycles of the cultures studied, in condensed cell suspensions undergoing autolysis, and under the action of exogenously introduced chemical analogues of anabiosis autoinducers (alkylhydroxybenzenes). The peculiarities of the fine structure of the resting cells obtained were studied. Distinctions were revealed (with respect to viability and thermotolerance) between the CRC formed under different conditions. The relationship between the growth strategy and survival strategy of extremophilic bacteria is discussed with taking into account the effect of the d1 autoregulatory factors. A new model of CRC formation is proposed: CRC production in the life cycle of bacteria developing under conditions of increased concentration of anabiosis autoinducers.

  6. Does human saliva decrease the antimicrobial activity of chlorhexidine against oral bacteria?

    PubMed

    Abouassi, Thaer; Hannig, Christian; Mahncke, Katja; Karygianni, Lamprini; Wolkewitz, Martin; Hellwig, Elmar; Al-Ahmad, Ali

    2014-10-10

    Several studies have shown the antibacterial effectiveness of 0.2% chlorhexidine (CHX) in both in vitro and in vivo studies. In this way, CHX comes directly in contact with saliva. This in vitro study aimed at investigating the possible neutralizing effect of saliva on CHX. Saliva samples (12 ml) were collected from twenty healthy volunteers. The aerobic and anaerobic bacterial counts in saliva were determined on Colombia blood agar (CBA) and yeast cysteine agar (HCB), respectively. Saliva from each subject was divided among 4 experimental groups (3 ml/group). Samples were centrifuged at 4000 g for 10 min. The centrifuged salivary bacteria were incubated with the following solutions: 0.2% CHX in saliva, CHX in saliva with 7% ethanol, CHX in 0.9% NaCl, CHX in 0.9% NaCl with 7% ethanol. After exposure for 1 min or 3 min to these CHX solutions, the CHX was neutralized and the bacteria were cultivated, after which the number of colony forming units (aerobic and anaerobic) was determined. CHX reduced the CFU in all groups significantly (p = 0.0001). Therefore, CHX had a similar effect on both aerobic and anaerobic microorganisms. Significantly more bacteria survived the effect of CHX when kept in salivary solution. This effect from saliva could be compensated by the addition of ethanol. In the absence of saliva there was no significant difference observed in the effectiveness of CHX with respect to ethanol. Prolonging the exposure time to 3 min enhanced the effectiveness of CHX. The effect of saliva on the antimicrobial activity of CHX was weak albeit statistically significant. However, addition of 7% ethanol compensates this effect. The impact of saliva on the reduction of the antimicrobial efficacy of mouthrinses such as CHX needs to be taken into consideration with regard to improving their antibacterial properties.

  7. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  8. Testing Nucleoside Analogues as Inhibitors of Bacillus anthracis Spore Germination In Vitro and in Macrophage Cell Culture ▿

    PubMed Central

    Alvarez, Zadkiel; Lee, Kyungae; Abel-Santos, Ernesto

    2010-01-01

    Bacillus anthracis, the etiological agent of anthrax, has a dormant stage in its life cycle known as the endospore. When conditions become favorable, spores germinate and transform into vegetative bacteria. In inhalational anthrax, the most fatal manifestation of the disease, spores enter the organism through the respiratory tract and germinate in phagosomes of alveolar macrophages. Germinated cells can then produce toxins and establish infection. Thus, germination is a crucial step for the initiation of pathogenesis. B. anthracis spore germination is activated by a wide variety of amino acids and purine nucleosides. Inosine and l-alanine are the two most potent nutrient germinants in vitro. Recent studies have shown that germination can be hindered by isomers or structural analogues of germinants. 6-Thioguanosine (6-TG), a guanosine analogue, is able to inhibit germination and prevent B. anthracis toxin-mediated necrosis in murine macrophages. In this study, we screened 46 different nucleoside analogues as activators or inhibitors of B. anthracis spore germination in vitro. These compounds were also tested for their ability to protect the macrophage cell line J774a.1 from B. anthracis cytotoxicity. Structure-activity relationship analysis of activators and inhibitors clarified the binding mechanisms of nucleosides to B. anthracis spores. In contrast, no structure-activity relationships were apparent for compounds that protected macrophages from B. anthracis-mediated killing. However, multiple inhibitors additively protected macrophages from B. anthracis. PMID:20921305

  9. Plasma Assisted Decontamination of Bacterial Spores

    PubMed Central

    Kuo, Spencer P

    2008-01-01

    The efficacy and mechanism of killing bacterial spores by a plasma torch is studied. Bacterial-spore (Bacillus cereus) suspension is inoculated onto glass/paper slide-coupons and desiccated into dry samples, and inoculated into well-microplate as wet sample. The exposure distance of all samples is 4 cm from the nozzle of the torch. In the experiment, paper slide-coupon is inserted inside an envelope. The kill times on spores in three types of samples are measured to be about 3, 9, and 24 seconds. The changes in the morphology and shape of still viable spores in treated wet samples are recorded by scanning electron and atomic force microscopes. The loss of appendages and exosporium in the structure and squashed/flattened cell shape are observed. The emission spectroscopy of the torch indicates that the plasma effluent carries abundant reactive atomic oxygen, which is responsible for the destruction of spores. PMID:19662115

  10. Quantification of two forms of green sulfur bacteria in their natural habitat using bacteriochlorophyll fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Zhiltsova, Anna A.; Lunina, Olga N.; Savvichev, Alexander S.; Patsaeva, Svetlana V.

    2016-04-01

    Detection of phototropic organisms in their natural habitat using optical instruments operating under water is urgently needed for many tasks of ecological monitoring. While fluorescence methods are widely applied nowadays to detect and characterize phytoplankton communities, the techniques for detection and recognition of anoxygenic phototrophs are considered challenging. Differentiation of the forms of anoxygenic green sulfur bacteria in natural water using spectral techniques remains problematic. Green sulfur bacteria could be found in two forms, green-colored (containing BChl d in pigment compound) and brown-colored (containing BChl e), have the special ecological niche in such reservoirs. Separate determination of these microorganisms by spectral methods is complicated because of similarity of spectral characteristics of their pigments. We describe the novel technique of quantification of two forms of green sulfur bacteria directly in water using bacteriochlorophyll fluorescence without pigment extraction. This technique is noninvasive and could be applied in remote mode in the water bodies with restricted water circulation to determine simultaneously concentrations of two forms of green sulfur bacteria in their natural habitat.

  11. [Secretion analysis of pathogenic bacteria culture in 115 rural chronic nasal-sinusitis patients].

    PubMed

    Zhang, Xiaoyuan; Sun, Jingwu; Chu, Shu

    2014-05-01

    To investigate the bacteria distribution, drug bacterial sensitivity characteristics of the rural chronic rhinosinusitis (CRS). And to explore the effect of antibiotic on pathogenic bacteria culture. Choose nasal sinus secretions from 115 CRS patients living in rural areas. Aerobic bacteria culture, anaerobic bacteria culture and drug sensitive test were procedured for each sample. At the same time the use of antibiotics nearly 2 months and nearly 2 weeks were collected. Among one hundred and fifteen specimens, 17 kinds of germs were detected in 37 cases, the positive rate of aerobic bacteria was 32.17%. Staphylococcus aureus and epidermis staphylococcus aureus the most common type of aerobe in CRS patients at rural areas. There was negative result in the anaerobic bacteria culture of 17 maxillary sinus specimen. The cases of using antibiotics nearly 2 months was up to 90, accounting for 78.26%. Nearly 2 weeks, 73 cases, accounting for 63.48%. The chi-square analysis showed high bacterial culture rate, in chronic rhinosinusitis with nasal polyps (CRSwNP group), which revealed correlation between bacterial infection factors and nasal polyps formation. For CRS patients with positive result of bacterial culture, they were sensitive to ofloxacin, cefotaxime, organism, ciprofloxacin, magnitude cephalosporin, and were drug fast to penicillin G, ampicillin, erythromycin. No specific differences was found in the bacteria distribution of rural CRS. antibiotics abusage in rural CRS patients and the anaerobic bacteria culture techniques is the main factor resulting in low culture rate. Rational use of antimicrobial agents should be established on the basis of the bacterial culture and drug sensitive test.

  12. Characterization of Radiation-Resistant Vegetative Bacteria in Beef1

    PubMed Central

    Welch, Ardyce B.; Maxcy, R. B.

    1975-01-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D10 of 5.4 min at 70 C or less. The radiation resistance ranged from D10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. Images PMID:1164011

  13. On the neutralization of bacterial spores in post-detonation flows

    NASA Astrophysics Data System (ADS)

    Gottiparthi, K. C.; Schulz, J. C.; Menon, S.

    2014-09-01

    In multiple operational scenarios, explosive charges are used to neutralize confined or unconfined stores of bacterial spores. The spore destruction is achieved by post-detonation combustion and mixing of hot detonation product gases with the ambient flow and spore clouds. In this work, blast wave interaction with bacterial spore clouds and the effect of post-detonation combustion on spore neutralization are investigated using numerical simulations. Spherical explosive charges (radius, = 5.9 cm) comprising of nitromethane are modeled in the vicinity of a spore cloud, and the spore kill in the post-detonation flow is quantified. The effect of the mass of the spores and the initial distance, , of the spore cloud from the explosive charge on the percentage of spores neutralized is investigated. When the spores are initially placed within a distance of 3.0, within 0.1 ms after detonation of the charge, all the spores are neutralized by the blast wave and the hot detonation product gases. In contrast, almost all the spores survived the explosion when is greater than 8.0. The percentage of intact spores varied from 0 to 100 for 3.0 8.0 with spore neutralization dependent on time spent by the spores in the post-detonation mixing/combustion zone.

  14. Reduction of aerobic and lactic acid bacteria in dairy desludge using an integrated compressed CO2 and ultrasonic process.

    PubMed

    Overton, Tim W; Lu, Tiejun; Bains, Narinder; Leeke, Gary A

    Current treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO 2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk.

  15. Physical-biological coupling in spore dispersal of kelp forest macroalgae

    NASA Astrophysics Data System (ADS)

    Gaylord, Brian; Reed, Daniel C.; Washburn, Libe; Raimondi, Peter T.

    2004-08-01

    The physical-biological linkages controlling the dispersal of spores produced by macroalgae that reside in kelp forests are complicated and laced with feedbacks. Here we discuss the fundamental elements of these interactions. Biological considerations include spore swimming and sinking speeds, their periods of viability in the plankton, and the height of spore release above the seafloor, which together determine the durations over which spores can be swept by horizontal currents before they contact the seafloor. Morphologies and material properties of canopy forming kelps may also influence the drag exerted on passing waters by the kelps, the plants' ability to persist in the face of rapid flows, and thereby the degree to which impinging currents are redirected around, or slowed within, kelp forests. Macroalgal life histories, and the size of spore sources as controlled by the dimensions of kelp forests and the density and fecundity of individuals within them, influence effective dispersal distances as well. Physical considerations encompass the mean speed, direction, and timescales of variability of currents relative to spore suspension times, the interaction of surface gravity waves with currents in producing turbulence in the benthic boundary layer, wind-driven surface mixing, water stratification, and shoreline bathymetry and substratum roughness, all of which can affect the interplay of vertical and horizontal transport of macroalgal spores. Intricate within-forest processes may induce attenuation of current speeds and consequent reductions in seabed shear, along with simultaneous production of small-scale turbulence in kelp wakes. Slower mean currents and smaller eddy scales in turn may attenuate vertical mixing within forests, thus extending spore suspension times. Further complexities likely arise due to changes in the relative rates of horizontal and vertical dispersion, modifications to the overall profiles of vertical mixing, and the creation of fine

  16. Biological indicators for steam sterilization: characterization of a rapid biological indicator utilizing Bacillus stearothermophilus spore-associated alpha-glucosidase enzyme.

    PubMed

    Albert, H; Davies, D J; Woodson, L P; Soper, C J

    1998-11-01

    The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth.

  17. Memory of Germinant Stimuli in Bacterial Spores

    PubMed Central

    Wang, Shiwei; Faeder, James R.; Setlow, Peter

    2015-01-01

    ABSTRACT Bacterial spores, despite being metabolically dormant, possess the remarkable capacity to detect nutrients and other molecules in their environment through a biochemical sensory apparatus that can trigger spore germination, allowing the return to vegetative growth within minutes of exposure of germinants. We demonstrate here that bacterial spores of multiple species retain memory of transient exposures to germinant stimuli that can result in altered responses to subsequent exposure. The magnitude and decay of these memory effects depend on the pulse duration as well as on the separation time, incubation temperature, and pH values between the pulses. Spores of Bacillus species germinate in response to nutrients that interact with germinant receptors (GRs) in the spore’s inner membrane, with different nutrient types acting on different receptors. In our experiments, B. subtilis spores display memory when the first and second germinant pulses target different receptors, suggesting that some components of spore memory are downstream of GRs. Furthermore, nonnutrient germinants, which do not require GRs, exhibit memory either alone or in combination with nutrient germinants, and memory of nonnutrient stimulation is found to be more persistent than that induced by GR-dependent stimuli. Spores of B. cereus and Clostridium difficile also exhibit germination memory, suggesting that memory may be a general property of bacterial spores. These observations along with experiments involving strains with mutations in various germination proteins suggest a model in which memory is stored primarily in the metastable states of SpoVA proteins, which comprise a channel for release of dipicolinic acid, a major early event in spore germination. PMID:26604257

  18. Vulnerability of Bacillus spores and of related genera to physical impaction injury with particular reference to spread-plating.

    PubMed

    Thomas, P; Sekhar, A C; Mujawar, M M

    2014-11-01

    To examine whether bacterial spores are vulnerable to impaction injury during standard spread-plating or to other modes of physical impaction. Employing heat-challenged spores of Bacillus pumilus, Bacillus subtilis, Bacillus thuringiensis, Lysinibacillus, Paenibacillus and Brevibacillus spp. from day-4 to day-10 nutrient agar (NA) plates in 50% ethanol, plating the spore suspension to the extent of just drying the agar surface on fresh NA (50-60 s; SP-B) was tested in comparison with the spreader-independent approach of spotting-and-tilt-spreading (SATS), or a brief plating (<10 s; SP-A). Spore CFU was significantly reduced with SP-B in different organisms (23-40%) over SATS independent of the spore size. Comparing 4-, 7- and 10-day-old B. pumilus spores, the former two displayed significant CFU reduction in SP-B indicating a spore age-related effect. Continuous plating for 2-5 min showed a reduction in spore CFU in all organisms depending on plating duration. CFU reduction effect with SP-B was less manifest on refrigerated plates where no friction was experienced but acute on prewarmed and surface-dried plates. Spreader movement over agar surface subsequent to the exhaustion of free moisture proved highly detrimental to spores. A simulated plating study by plating the spores over a plastic film till drying showed a significant reduction in spore CFU. DAPI staining and glass bead-vortexing studies confirmed spore disruption through physical impaction. Bacterial spores are vulnerable to injury during spread-plating or with other forms of physical impaction with variable effects on different genotypes independent of the spore size but altered by spore age. Implications during spore CFU estimations employing spread-plating and during spore surveillance, and the recommendation of SATS as an easier and safer alternative for spore CFU enumeration. © 2014 The Society for Applied Microbiology.

  19. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sedimentary Biosignatures of Social Organization in Cone-Forming Filamentous Bacteria

    NASA Astrophysics Data System (ADS)

    Tice, M. M.; Gong, J.; Zeng, Z.; Sneed, J.; Wehner, M.; Sparks, D. W.

    2013-12-01

    Conical mats consisting of centimeter-scale steep-sided cones growing above flat basal films form some of the most distinctive fossil microbial communities in the geologic record. Cones have been hypothesized to form by the initially random motion of filamentous bacteria into small tangled clumps followed by the phototactic motion of the same bacteria up resulting slopes. More recent models of cone development suggest that they form in response to growth in stagnant fluids where diffusion limits exchange of nutrients and wastes with the environment. Determining the biological and environmental factors that promote cone formation will be important for interpreting the geological record of fossil mats and stromatolites, on Earth and potentially on Mars. Here we report the results of new experiments demonstrating complex social organization of cone-forming communities and a novel biosignature of the growth of such communities on sandy sediments, as well as detection of that biosignature in 3.2 Ga fossil mats of the Moodies Group (Barberton greenstone belt, South Africa). In order to investigate the processes involved in cone formation, we grew cultures of a filamentous cyanobacterium originally isolated from tufted cones in Yellowstone National Park, Montana, U.S.A. (Leptolyngbya sp. Y-WT-2000 Cl 1). During early mat development, filaments coat sand grain surfaces and aggregate into ~100-μm-long tufts, or mutually aligned bundles of filaments. Tufts are highly motile, bridging sand grains and merging to form larger tufts. After 10-14 days of growth, tufts aggregate during the early morning into centers composed of many tufts that wave vertically and along the sand surface. Centers move across the sediment surface during the middle of the day and merge along bridging tufts. These bridges transmit force to the underlying sediment and are capable of rolling sand grains. At this stage, mats are composed of small mobile centers that disperse along streams of co

  1. Manganese Oxidizing Bacteria in Guaymas Basin Hydrothermal Fluids, Sediments, and Plumes

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Tebo, B. M.

    2002-12-01

    The active seafloor hydrothermal system at Guaymas Basin in the Gulf of California is unique in that spreading centers are covered with thick sediments, and hydrothermal fluids are injected into a semi-enclosed basin. This hydrothermal activity is the source of a large input of dissolved manganese [Mn(II)] into Guaymas Basin, and the presence of a large standing stock of particulate manganese in this basin has been taken as evidence for a short residence time of dissolved Mn(II) with respect to oxidation, suggestive of bacterial catalysis. During a recent Atlantis/Alvin expedition (R/V Atlantis Cruise #7, Leg 11, Jim Cowen Chief Scientist), large amounts of particulate manganese oxides were again observed in Guaymas Basin hydrothermal plumes. The goal of the work presented here was to identify bacteria involved in the oxidation of Mn(II) in Guaymas Basin, and to determine what molecular mechanisms drive this process. Culture-based methods were employed to isolate Mn(II)-oxidizing bacteria from Guaymas Basin hydrothermal fluids, sediments, and plumes, and numerous Mn(II)-oxidizing bacteria were identified based on the formation of orange, brown, or black manganese oxides on bacterial colonies on agar plates. The Mn(II)-oxidizing bacteria were able to grow at temperatures from 12 to 50°C, and a selection of the isolates were chosen for phylogenetic (16S rRNA genes) and microscopic characterization. Endospore-forming Bacillus species accounted for many of the Mn(II)-oxidizing isolates obtained from both hydrothermal sediments and plumes, while members of the alpha- and gamma-proteobacteria were also found. Mn(II)-oxidizing enzymes from previously characterized Bacillus spores are known to be active at temperatures greater than 50°C. The presence of Mn(II)-oxidizing spores - some of which are capable of growing at elevated temperatures - in hydrothermal fluids and sediments at Guaymas Basin suggests that Mn(II) oxidation may be occurring immediately or very soon

  2. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extractionmore » improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.« less

  3. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    PubMed

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.

  4. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.

    2004-01-01

    The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821

  5. Survival strategies of Bacillus spores in food.

    PubMed

    Stecchini, Mara Lucia; Del Torre, Manuela; Polese, Pierluigi

    2013-11-01

    Control of bacterial spores is one of the major problem in the food preservation. Spores of Bacillus genus are commonly present in different environments, including soil and the gut of insects and animals and, as a result, they can be spread to all kind of foods. Due to their high resistance properties, their complete inactivation in food is often impossible without changing the product characteristics. Surviving spores can germinate and grow out to vegetative cells, with the consequent great risk of food spoilage and food poisoning after consumption. Spores have evolved various mechanisms, including phenotypic variability, to protect themselves from a wide range of damage resulting from food preservation treatments. Even if the phenotypic heterogeneity contributes to increase the chances of survival of Bacillus spore to conventional preservation treatments, in some specific instances, an homogeneous response could be the result of a strategy adopted by the spores to increase resistance to those treatments.

  6. Bacteria profile and antibiogram of the bacteria isolated from the exposed pulp of dog canine teeth.

    PubMed

    Almansa Ruiz, José Carlos; Jonker, Annelize; Bosman, Anna-Mari; Steenkamp, Gerhard

    2018-04-27

    Twenty-seven microbiological samples were taken from root canals (RC) of the canine teeth of 20 dogs where the pulps were non-vital and exposed due to complicated crown fractures. These pulps were cultured for aerobic/anaerobic bacteria. Antimicrobial susceptibility of isolates was determined using the Kirby-Bauer diffusion test. A total of 49 cultivable isolates, belonging to 27 different microbial species and 18 different genera, were recovered from the 27 RCs sampled. Twenty (40.81 per cent) of the cultivable isolates were Gram positive while 29 (59.19 per cent) were Gram negative. Facultative anaerobes were the most common bacteria (77.56 per cent). Aerobic isolates represented 18.36 per cent, and strict anaerobes 4.08 per cent. The antimicrobials with the highest in vitro efficacy were gentamicin (100 per cent) and enrofloxacin (93.32 per cent). © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces.

    PubMed

    Bobek, Jan; Šmídová, Klára; Čihák, Matouš

    2017-01-01

    The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life - connected with spore formation and antibiotic production - is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell's signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces , while focusing on the aforementioned points.

  8. Comparison of Psilocybe cubensis spore and mycelium allergens.

    PubMed

    Helbling, A; Horner, W E; Lehrer, S B

    1993-05-01

    Basidiospores are an important cause of respiratory allergy in mold-sensitive atopic subjects. Collection of the large amounts of spores required for extract preparation is tedious and difficult. A desirable alternative could be mycelium grown in vitro if it is allergenically similar to spores. Therefore this study compared the allergen contents of Psilocybe cubensis spore and mycelium extracts by different techniques with the use of pooled sera from subjects who had skin test and RAST results that were positive to P. cubensis spores. Isoelectric focusing immunoprints revealed six common IgE-binding bands at isoelectric points 4.7, 5.0, 5.5, 5.6, 8.7, and 9.3. Two additional bands at isoelectric points 3.9 and 5.7 were detected only in the spore extract. Sodium dodecylsulfate-polyacrylamide gel electrophoresis immunoblots exhibited six common IgE-binding bands at 16, 35, 487, 52, 62, and 76 kd; 20 and 40 kd bands were present only in the spore extract. Although RAST and isoelectric focusing inhibition demonstrated that P. cubensis spore and mycelium extracts share many allergens, spores were allergenically more potent than mycelium. The results indicate that mycelium is a useful source of P. cubensis allergen, even though several spore allergens were not detected in mycelium.

  9. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria

    PubMed Central

    Johnson, D. Barrie; Hedrich, Sabrina; Pakostova, Eva

    2017-01-01

    Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A

  10. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  11. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    PubMed

    Delvecchio, Vito G; Connolly, Joseph P; Alefantis, Timothy G; Walz, Alexander; Quan, Marian A; Patra, Guy; Ashton, John M; Whittington, Jessica T; Chafin, Ryan D; Liang, Xudong; Grewal, Paul; Khan, Akbar S; Mujer, Cesar V

    2006-09-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.

  12. Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis‡

    PubMed Central

    DelVecchio, Vito G.; Connolly, Joseph P.; Alefantis, Timothy G.; Walz, Alexander; Quan, Marian A.; Patra, Guy; Ashton, John M.; Whittington, Jessica T.; Chafin, Ryan D.; Liang, Xudong; Grewal, Paul; Khan, Akbar S.; Mujer, Cesar V.

    2006-01-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Δ-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development. PMID:16957262

  13. β-1,6-glucan synthesis-associated genes are required for proper spore wall formation in Saccharomyces cerevisiae.

    PubMed

    Pan, Hua-Ping; Wang, Ning; Tachikawa, Hiroyuki; Nakanishi, Hideki; Gao, Xiao-Dong

    2017-11-01

    The yeast spore wall is an excellent model to study the assembly of an extracellular macromolecule structure. In the present study, mutants defective in β-1,6-glucan synthesis, including kre1∆, kre6∆, kre9∆ and big1∆, were sporulated to analyse the effect of β-1,6-glucan defects on the spore wall. Except for kre6∆, these mutant spores were sensitive to treatment with ether, suggesting that the mutations perturb the integrity of the spore wall. Morphologically, the mutant spores were indistinguishable from wild-type spores. They lacked significant sporulation defects partly because the chitosan layer, which covers the glucan layer, compensated for the damage. The proof for this model was obtained from the effect of the additional deletion of CHS3 that resulted in the absence of the chitosan layer. Among the double mutants, the most severe spore wall deficiency was observed in big1∆ spores. The majority of the big1∆chs3∆ mutants failed to form visible spores at a higher temperature. Given that the big1∆ mutation caused a failure to attach a GPI-anchored reporter, Cwp2-GFP, to the spore wall, β-1,6-glucan is involved in tethering of GPI-anchored proteins in the spore wall as well as in the vegetative cell wall. Thus, β-1,6-glucan is required for proper organization of the spore wall. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Sphagnum moss disperses spores with vortex rings.

    PubMed

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  15. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    PubMed

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  16. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.

  17. Effects of four short-chain fatty acids or salts on fermentation characteristics and aerobic stability of alfalfa (Medicago sativa L.) silage.

    PubMed

    Yuan, Xian J; Wen, Ai Y; Wang, Jian; Desta, Seare T; Dong, Zhi H; Shao, Tao

    2018-01-01

    The objective of the present study was to evaluate the effects of four chemicals on the fermentation quality and aerobic stability of alfalfa (Medicago sativa L.) silage. Wilted alfalfa was ensiled without additive (control), or with formic acid (FA), potassium diformate (KDF), sodium diacetate (SDA) or calcium propionate (CAP). After 60 days of ensiling, the pH values in FA, KDF and SDA silages were lower (P < 0.05) compared to that of control and CAP silages, and chemicals (P < 0.05) decreased butyric acid and ammonia N concentrations and populations of aerobic bacteria and yeasts compared to the control. The SDA and CAP silages had a higher (P < 0.05) lactic acid bacteria content compared to the FA and KDF silages. The SDA and CAP silages had higher (P < 0.05) acetic and propionic acid contents compared to the other silages, respectively. The ammonia N concentrations in the FA and KDF silages were lower compared to the other silages during the first 5 days of aerobic exposure, and then increased sharply to 105 and 100 g kg -1 total N, respectively, which was higher (P < 0.05) than that of the SDA and CAP silages on day 9 of aerobic exposure. Yeasts and aerobic bacteria counts in SDA silage slowly increased and remained at lower levels compared to the other silages after 7 days of aerobic exposure. Additives prolonged the aerobic stability duration compared to the control, and the SDA and CAP silages remained stable for more than 216 h, followed by the KDF and FA silages (202 and 196 h, respectively). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  19. Detection of Agar, by Analysis of Sugar Markers, Associated with Bacillus Anthracis Spores, After Culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunschel, David S.; Colburn, Heather A.; Fox, Alvin

    2008-08-01

    Detection of small quantities of agar associated with spores of Bacillus anthracis could provide key information regarding its source or growth characteristics. Agar, widely used in growth of bacteria on solid surfaces, consists primarily of repeating polysaccharide units of 3,6-anhydro-L-galactose (AGal) and galactose (Gal) with sulfated and O-methylated galactoses present as minor constituents. Two variants of the alditol acetate procedure were evaluated for detection of potential agar markers associated with spores. The first method employed a reductive hydrolysis step, to stabilize labile anhydrogalactose, by converting to anhydrogalactitol. The second eliminated the reductive hydrolysis step simplifying the procedure. Anhydrogalactitol, derived frommore » agar, was detected using both derivatization methods followed by gas chromatography-mass spectrometry (GC-MS) analysis. However, challenges with artefactual background (reductive hydrolysis) or marker destruction (hydrolysis) lead to the search for alternative sugar markers. A minor agar component, 6-O-methyl galactose (6-O-M gal), was readily detected in agar-grown but not broth-grown bacteria. Detection was optimized by the use of gas chromatography-tandem mass spectrometry (GC-MS-MS). With appropriate choice of sugar marker and analytical procedure, detection of sugar markers for agar has considerable potential in microbial forensics.« less

  20. Metabolic potential of a Novel Gram-Negative, Spore-forming, and Putatively Sulfate-Reducing Bacterium in the Continental Subsurface

    NASA Astrophysics Data System (ADS)

    Lau, C. Y. M.; Becraft, E. D.; Cason, E. D.; Borgonie, G.; Kieft, T. L.; Li, L.; van Heerden, E.; Jarett, J.; Woyke, T.; Stepanauskas, R.; Onstott, T. C.

    2017-12-01

    Anaerobic sulfate reduction is among the most thermodynamically favorable biochemical reactions in the deep subsurface environments. Phylogenetically and functionally diverse sulfate-reducing bacteria (SRB) within Deltaproteobacteria and Firmicutes have been reported. However, only few of them have been isolated in pure cultures for detailed physiological characterization. Previous studies showed that fracture fluid samples from the 1 km-deep borehole DR5IPC (Driefontein gold mine, South Africa) harbored novel SRB, as indicated by the low percentages (84% and 90%) of identity of the 16S ribosomal RNA clone sequences to known SRB. To overcome the challenge of low cultivability, we employed next-generation sequencing to unveil the metabolic potential of these novel SRB. Metagenomic assembly and binning yielded seven >50% complete genomes including a methylotrophic SRB belonging to Deltaproteobacteria (DR5_3) and two draft genomes representing an uncultivated phylum, tentatively "Driefonteinae" (DR5_4 and DR5_5). They accounted for 3%, 2% and 18% of all metagenomic reads. Three single-cell assembled genomes (SAGs) sharing 99% of average nucleotide identity (ANI) with DR5_5 were obtained. Analysis of the protein-coding genes in DR5_5 and related SAGs indicated that "Driefonteinae" possesses dissimilatory sulfite reductase genes (dsrAB), suggesting that sulfate would be the terminal electron acceptor. Whereas it may use diverse electron acceptors such as carbon monoxide, acetate, lactate and formate. A near-complete collection of genes for Wood-Ljungdahl pathway and genes for partial pentose phosphate pathway, glycolysis and tricarboxylic acid cycle further showed that "Driefonteinae" may live a mixotrophic life style. It is evident that archaeal genes related to methanogens were acquired through horizontal gene transfer. Phenotypically, "Driefonteinae" has a Gram-negative cell wall and flagella. The ability of forming spores would enable this microorganism to endure

  1. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen.

    PubMed

    Awad, Milena M; Johanesen, Priscilla A; Carter, Glen P; Rose, Edward; Lyras, Dena

    2014-01-01

    The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.

  2. Degradation kinetics of testosterone by manure-borne bacteria: influence of temperature, pH, glucose amendments, and dissolved oxygen.

    PubMed

    Yang, Yun-Ya; Borch, Thomas; Young, Robert B; Goodridge, Lawrence D; Davis, Jessica G

    2010-01-01

    Land application of manure may contribute endocrine disrupting compounds (EDCs) such as steroid hormones to the environment. Little attention has been paid to the potential for degradation of steroid hormones by manure-borne bacteria and their degradation kinetics and pathways. In a laboratory study, the potential for biodegradation of testosterone, 17beta-estradiol (E2) and progesterone by swine (Sus scrofa) manure-borne bacteria was examined. In addition, the impact of temperature, pH (6, 7, and 7.5), glucose amendments (0, 3, and 22 mmol L(-1)), and presence of oxygen on testosterone degradation kinetics was determined. Testosterone, 17beta-estradiol and progesterone were biodegraded within 25 h of reaction initiation under aerobic conditions. The degradation of testosterone followed pseudo first-order and zero-order reaction kinetics under aerobic and anaerobic conditions, respectively, in tryptic soy broth (TSB) pre-enriched systems. The half-life (t1/2) for the degradation of testosterone under anaerobic conditions was six times longer than aerobic conditions. Testosterone degradation was found to significantly increase (- 17%) when incubated at 37 degrees C vs. 22 degrees C. The impact of pH (t1/2 ranged from 4.4-4.9 h) and glucose amendments (t1/2 ranged from 4.6-5.1 h) on the testosterone degradation rate were found to be small. Testosterone was transformed to dehydrotestosterone (DHT) (major degradation product), androstenedione (AD), and androstadienedione (ADD) under aerobic conditions as revealed by liquid chromatography-time-of-flight mass spectrometry (LC/TOF-MS). These results indicate that testosterone is rapidly degraded by manure-borne bacteria under a wide range of environmentally relevant conditions. However, the formed degradation products are still of potential concern due to their endocrine disrupting potential.

  3. Inactivation of Clostridium difficile spores by microwave irradiation.

    PubMed

    Ojha, Suvash Chandra; Chankhamhaengdecha, Surang; Singhakaew, Sombat; Ounjai, Puey; Janvilisri, Tavan

    2016-04-01

    Spores are a potent agent for Clostridium difficile transmission. Therefore, factors inhibiting spores have been of continued interest. In the present study, we investigated the influence of microwave irradiation in addition to conductive heating for C. difficile spore inactivation in aqueous suspension. The spores of 15 C. difficile isolates from different host origins were exposed to conductive heating and microwave irradiation. The complete inhibition of spore viability at 10(7) CFU/ml was encountered following microwave treatment at 800 W for 60 s, but was not observed in the conductive-heated spores at the same time-temperature exposure. The distinct patterns of ultrastructural alterations following microwave and conductive heat treatment were observed and the degree of damages by microwave was in the exposure time-dependent manner. Microwave would therefore be a simple and time-efficient tool to inactivate C. difficile spores, thus reducing the risk of C. difficile transmission. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Allelic differences within and among sister spores of the arbuscular mycorrhizal fungus Glomus etunicatum suggest segregation at sporulation.

    PubMed

    Boon, Eva; Zimmerman, Erin; St-Arnaud, Marc; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae.

  6. High-quality permanent draft genome sequence of Bradyrhizobium sp. strain WSM1743 - an effective microsymbiont of an Indigofera sp. growing in Australia

    DOE PAGES

    Eshraghi, Leila; De Meyer, Sofie E.; Tian, Rui; ...

    2015-10-26

    Bradyrhizobium sp. strain WSM1743 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of an Indigofera sp. WSM1743 was isolated from a nodule recovered from the roots of an Indigofera sp. growing 20 km north of Carnarvon in Australia. It is slow growing, tolerates up to 1 % NaCl and is capable of growth at 37 °C. Here we describe the features of Bradyrhizobium sp. strain WSM1743, together with genome sequence information and its annotation. Finally, the 8,341,956 bp high-quality permanent draft genome is arranged into 163 scaffolds and 167more » contigs, contains 7908 protein-coding genes and 75 RNA-only encoding genes and was sequenced as part of the Root Nodule Bacteria chapter of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  7. High-quality permanent draft genome sequence of Bradyrhizobium sp. strain WSM1743 - an effective microsymbiont of an Indigofera sp. growing in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eshraghi, Leila; De Meyer, Sofie E.; Tian, Rui

    Bradyrhizobium sp. strain WSM1743 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of an Indigofera sp. WSM1743 was isolated from a nodule recovered from the roots of an Indigofera sp. growing 20 km north of Carnarvon in Australia. It is slow growing, tolerates up to 1 % NaCl and is capable of growth at 37 °C. Here we describe the features of Bradyrhizobium sp. strain WSM1743, together with genome sequence information and its annotation. Finally, the 8,341,956 bp high-quality permanent draft genome is arranged into 163 scaffolds and 167more » contigs, contains 7908 protein-coding genes and 75 RNA-only encoding genes and was sequenced as part of the Root Nodule Bacteria chapter of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  8. Inhibition of Salmonella Typhimurium by Cultures of Cecal Bacteria during Aerobic Incubation

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted to examine the ability of cecal bacterial cultures from broilers to inhibit growth of Salmonella Typhimurium during aerobic incubation. Cecal broth media was inoculated with 10 µl of cecal contents from 6 week old broilers taken from 2 separate flocks. Cultures were incubat...

  9. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure.

    PubMed

    Ma, Shuangshuang; Fang, Chen; Sun, Xiaoxi; Han, Lujia; He, Xueqin; Huang, Guangqun

    2018-07-01

    Bacteria play an important role in organic matter degradation and maturity during aerobic composting. This study analyzed composting with or without a membrane cover in laboratory-scale aerobic composting reactor systems. 16S rRNA gene analysis was used to study the bacterial community succession during composting. The richness of the bacterial community decreased and the diversity increased after covering with a semi-permeable membrane and applying a slight positive pressure. Principal components analysis based on operational taxonomic units could distinguish the main composting phases. Linear Discriminant Analysis Effect Size analysis indicated that covering with a semi-permeable membrane reduced the relative abundance of anaerobic Clostridiales and pathogenic Pseudomonas and increased the abundance of Cellvibrionales. In membrane-covered aerobic composting systems, the relative abundance of some bacteria could be affected, especially anaerobic bacteria. Covering could effectively promote fermentation, reduce emissions and ensure organic fertilizer quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Bryophyte spore germinability is inhibited by peatland substrates

    NASA Astrophysics Data System (ADS)

    Bu, Zhao-Jun; Li, Zhi; Liu, Li-Jie; Sundberg, Sebastian; Feng, Ya-Min; Yang, Yun-He; Liu, Shuang; Song, Xue; Zhang, Xing-Lin

    2017-01-01

    Bryophyte substrates and species may affect spore germination through allelopathy. Polytrichum strictum is currently expanding in peatlands in north-eastern China - is this an effect of its superior spore germinability or do its gametophytes have a stronger allelopathic effect than do Sphagnum? We conducted a spore burial experiment to test the effect of species identity, substrate and water table depth (WTD) on spore germinability and bryophyte allelopathic effect with P. strictum and two Sphagnum species (S. palustre and S. magellanicum). After 5 months of burial during a growing season, the spores were tested for germinability. Allelopathic effect of bryophyte substrates was assessed by the difference between spore germinability after being stored inside or outside the substrates. After burial, more than 90% of the spores lost their germinability across all three species due to ageing and allelopathy. Spore germinability differed among species, where the spores in S. palustre had a higher germination frequency than those in P. strictum. The three bryophytes maintained a higher germinability in Sphagnum than in Polytrichum hummocks, probably due to a stronger allelopathic effect of P. strictum. Water table drawdown by 10 cm increased germinability by more than 60% across the three species. The study indicates that P. strictum does not possess an advantage regarding spore germination but rather its gametophytes have a stronger allelopathic effect. Due to the weaker inhibitive effect of Sphagnum gametophytes, P. strictum may have a potential establishment superiority over Sphagnum in peatlands, in addition to a better drought tolerance, which may explain its current expansion.

  11. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.

    PubMed

    Wong, Jonathan P; DiTullio, Paul; Parkinson, Steve

    2015-01-01

    The global prevalence of antibiotic resistance and the threat posed by drug-resistant superbugs are a leading challenge confronting modern medicine in the 21st century. However, the progress on the development of novel antibiotics to combat this problem is severely lagging. A more concerted effort to develop novel therapeutic agents with robust activity and unique mechanisms of action will be needed to overcome the problem of drug resistance. Furthermore, biofilm forming bacteria are known to be increasingly resistant to the actions of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections. Bisphosphocins (also scientifically known as nubiotics) are novel small protonated deoxynucleotide molecules, and exert their antibacterial activity by depolarization of the bacterial cell membrane, causing bacterial cell death. Bisphosphocins may represent an effective weapon against antibiotic-resistant and biofilm-forming pathogenic bacteria. Preclinical efficacy studies in animals have shown that the compounds are safe and, efficacious against various bacterial infections, including drug-resistant pathogens. In vitro biochemical analysis confirmed that the bactericidal activity of bisphosphocins is mediated by depolarization of the bacterial cell membrane, and these compounds are better able to penetrate through bacterial biofilm and kill the biofilm encased bacteria. This article will cover the structure, mode of action, safety, efficacy and the current state of development of bisphosphocins. Together, the information presented here will present a strong case for bisphosphocins to be considered for use as new weapons to complement the existing arsenal of antimicrobial drugs and as a first line defence against drug-resistant and biofilm-forming bacteria.

  12. Isolation and identification of amylase-producing, endospore-forming bacteria from the alimentary tract of commercially processed broilers

    USDA-ARS?s Scientific Manuscript database

    Bacterial cultures of crop and cecal contents of adult poultry contain beneficial bacteria that reduce colonization of young poultry by Salmonella. Since endospore-forming bacteria may play a role in competitive exclusion of Salmonella in poultry, 3 trials were conducted to isolate these bacteria fr...

  13. Fluorescence-based methods for the detection of pressure-induced spore germination and inactivation

    NASA Astrophysics Data System (ADS)

    Baier, Daniel; Reineke, Kai; Doehner, Isabel; Mathys, Alexander; Knorr, Dietrich

    2011-03-01

    The application of high pressure (HP) provides an opportunity for the non-thermal preservation of high-quality foods, whereas highly resistant bacterial endospores play an important role. It is known that the germination of spores can be initiated by the application of HP. Moreover, the resistance properties of spores are highly dependent on their physiological states, which are passed through during the germination. To distinguish between different physiological states and to detect the amount of germinated spores after HP treatments, two fluorescence-based methods were applied. A flow cytometric method using a double staining with SYTO 16 as an indicator for germination and propidium iodide as an indicator for membrane damage was used to detect different physiological states of the spores. During the first step of germination, the spore-specific dipicolinic acid (DPA) is released [P. Setlow, Spore germination, Curr. Opin. Microbiol. 6 (2003), pp. 550-556]. DPA reacts with added terbium to form a distinctive fluorescent complex. After measuring the fluorescence intensity at 270 nm excitation wavelength in a fluorescence spectrophotometer, the amount of germinated spores can be determined. Spores of Bacillus subtilis were treated at pressures from 150 to 600 MPa and temperatures from 37 °C to 60 °C in 0.05 M ACES buffer solution (pH 7) for dwell times of up to 2 h. During the HP treatments, inactivation up to 2log 10 cycles and thermal sensitive populations up to 4log 10 cycles could be detected by plate counts. With an increasing number of thermal sensitive spores, an increased proportion of spores in germinated states was detected by flow cytometry. Also the released amount of DPA increased during the dwell times. Moreover, a clear pressure-temperature-time-dependency was shown by screening different conditions. The fluorescence-based measurement of the released DPA can provide the opportunity of an online monitoring of the germination of spores under HP inside

  14. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics

    PubMed Central

    Peng, Lixin; Chen, De; Setlow, Peter; Li, Yong-qing

    2009-01-01

    Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual B. subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores’ peptidoglycan cortex. Conclusions from these measurements include: 1) CaDPA release from individual wild-type germinating spores was biphasic; in a first heterogeneous slow phase, Tlag, CaDPA levels decreased ∼15% and in the second phase ending at Trelease, remaining CaDPA was released rapidly; 2) in L-alanine germination of wild-type spores and spores lacking SleB: a) the ESLI rose ∼2-fold shortly before Tlag at T1; b) following Tlag, the ESLI again rose ∼2-fold at T2 when CaDPA levels had decreased ∼50%; and c) the ESLI reached its maximum value at ∼Trelease and then decreased; 3) in CaDPA germination of wild-type spores: a) Tlag increased and the first increase in ESLI occurred well before Tlag, consistent with different pathways for CaDPA and L-alanine germination; b) at Trelease the ESLI again reached its maximum value; 4) in L-alanine germination of spores lacking both CLEs and unable to degrade their cortex, the time ΔTrelease (Trelease–Tlag) for excretion of ≥75% of CaDPA was ∼15-fold higher than that for wild-type or sleB spores; and 5) spores lacking only CwlJ exhibited a similar, but not identical ESLI pattern during L-alanine germination to that seen with cwlJ sleB spores, and the high value for ΔTrelease. PMID:19374431

  15. Viability and infectivity of fresh and cryopreserved Nosema ceranae spores.

    PubMed

    McGowan, Janine; De la Mora, Alvaro; Goodwin, Paul H; Habash, Marc; Hamiduzzaman, Mollah Md; Kelly, Paul G; Guzman-Novoa, Ernesto

    2016-12-01

    The microsporidium fungus Nosema ceranae is an intracellular parasite that infects the midgut of the honey bee, Apis mellifera. A major limitation of research on N. ceranae is that the fungus is non-culturable and thus studying it depends on the seasonal availability of Nosema spores. Also, spore viability and infectivity can vary considerably, and thus there is a need for reliable methods for determining those traits. This study examined different conditions for N. ceranae spore cryopreservation at -70°C, assessing spore viability and infectivity. Viability was determined by a staining procedure counting total spores numbers with bright field microscopy and un-viable spore numbers with the fluorescent dye, propidium iodide. Spore infectivity was determined with a dilution inoculation assay. Infectivity was dependent on the inoculum dose for the proportion of bees with detectable Nosema infections based on the number of spores per bee at 18days after inoculation; 4000 spores per bee or higher were needed to get approx. 100% of the inoculated bees infected. The median infective dose (ID 50 ) was 149 spores per bee, and the minimum dose capable of causing a detectable infection was 1.28 spores. The proportion of N. ceranae infected bees correlated significantly with the number of spores per bee (r=0.98, P<0.0001). N. ceranae spores cryopreserved in water or 10% glycerol did not differ in viability compared to fresh spores, but lost infectivity when inoculated into bees. This study shows that while cryopreservation of N. ceranae spores can preserve viability, the spores can have reduced infectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  17. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  18. Heme and menaquinone induced electron transport in lactic acid bacteria

    PubMed Central

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species. PMID:19480672

  19. Heme and menaquinone induced electron transport in lactic acid bacteria.

    PubMed

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  20. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  1. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  2. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.

  3. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  4. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models.

    PubMed

    Booth, J Leland; Duggan, Elizabeth S; Patel, Vineet I; Langer, Marybeth; Wu, Wenxin; Braun, Armin; Coggeshall, K Mark; Metcalf, Jordan P

    2016-10-01

    The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores escape from the alveolus to regional lymph nodes, germinate and enter the circulatory system to cause disease. The roles of carrier cells and the effects of B. anthracis toxins in this process are unclear. We used a human lung organ culture model to measure spore uptake by antigen presenting cells (APC) and alveolar epithelial cells (AEC), spore partitioning between these cells, and the effects of B. anthracis lethal toxin and protective antigen. We repeated the study in a human A549 alveolar epithelial cell model. Most spores remained unassociated with cells, but the majority of cell-associated spores were in AEC, not in APC. Spore movement was not dependent on internalization, although the location of internalized spores changed in both cell types. Spores also internalized in a non-uniform pattern. Toxins affected neither transit of the spores nor the partitioning of spores into AEC and APC. Our results support a model of spore escape from the alveolus that involves spore clustering with transient passage through intact AEC. However, subsequent transport of spores by APC from the lung to the lymph nodes may occur. Published by Elsevier Masson SAS.

  5. Requirements for the Development of Bacillus Anthracis Spore Reference Materials Used to Test Detection Systems

    PubMed Central

    Almeida, Jamie L.; Wang, Lili; Morrow, Jayne B.; Cole, Kenneth D.

    2006-01-01

    Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments. PMID:27274929

  6. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft)more » contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return

  7. NC10 bacteria in marine oxygen minimum zones

    PubMed Central

    Padilla, Cory C; Bristow, Laura A; Sarode, Neha; Garcia-Robledo, Emilio; Gómez Ramírez, Eddy; Benson, Catherine R; Bourbonnais, Annie; Altabet, Mark A; Girguis, Peter R; Thamdrup, Bo; Stewart, Frank J

    2016-01-01

    Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling. PMID:26918666

  8. Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, E.; Gomoiu, I.; Kollia, Z.; Cefalas, A. C.

    2011-01-01

    This work is a part of ESA/EU SURE project aiming to quantify the survival probability of fungal spores in space under solar irradiation in the vacuum ultraviolet (VUV) (110-180 nm) spectral region. The contribution and impact of VUV photons, vacuum, low temperature and their synergies on the survival probability of Aspergillus terreus spores is measured at simulated space conditions on Earth. To simulate the solar VUV irradiation, the spores are irradiated with a continuous discharge VUV hydrogen photon source and a molecular fluorine laser, at low and high photon intensities at 10 15 photon m -2 s -1 and 3.9×10 27 photons pulse -1 m -2 s -1, respectively. The survival probability of spores is independent from the intensity and the fluence of photons, within certain limits, in agreement with previous studies. The spores are shielded from a thin carbon layer, which is formed quickly on the external surface of the proteinaceous membrane at higher photon intensities at the start of the VUV irradiation. Extrapolating the results in space conditions, for an interplanetary direct transfer orbit from Mars to Earth, the spores will be irradiated with 3.3×10 21 solar VUV photons m -2. This photon fluence is equivalent to the irradiation of spores on Earth with 54 laser pulses with an experimental ˜92% survival probability, disregarding the contribution of space vacuum and low temperature, or to continuous solar VUV irradiation for 38 days in space near the Earth with an extrapolated ˜61% survival probability. The experimental results indicate that the damage of spores is mainly from the dehydration stress in vacuum. The high survival probability after 4 days in vacuum (˜34%) is due to the exudation of proteins on the external membrane, thus preventing further dehydration of spores. In addition, the survival probability is increasing to ˜54% at 10 K with 0.12 K/s cooling and heating rates.

  9. Factors influencing the inactivation of Alicyclobacillus acidoterrestris spores exposed to high hydrostatic pressure in apple juice

    NASA Astrophysics Data System (ADS)

    Sokołowska, B.; Skąpska, S.; Fonberg-Broczek, M.; Niezgoda, J.; Chotkiewicz, M.; Dekowska, A.; Rzoska, S. J.

    2013-03-01

    Alicyclobacillus acidoterrestris, a thermoacidophilic and spore-forming bacterium, survives the typical pasteurization process and can cause the spoilage of juices, producing compounds associated with disinfectant-like odour (guaiacol, 2,6 - dibromophenol, 2,6 - dichlorophenol). Therefore, the use of other more effective techniques such as high hydrostatic pressure (HHP) is considered for preserving juices. The aim of this study was to search for factors affecting the resistance of A. acidoterrestris spores to HHP. The baroprotective effect of increased solute concentration in apple juice on A. acidoterrestris spores during high pressure processing was observed. During the 45 min pressurization (200 MPa, 50°C) of the spores in concentrated apple juice (71.1°Bx), no significant changes were observed in their number. However, in the juices with a soluble solids content of 35.7, 23.6 and 11.2°Bx, the reduction in spores was 1.3-2.4 log, 2.6-3.3 log and 2.8-4.0 log, respectively. No clear effect of age of spores on the survival under high pressure conditions was found. Spores surviving pressurization and subjected to subsequent HHP treatment showed increased resistance to pressure, by even as much as 2.0 log.

  10. Biofilm forming ability of bacteria isolated from necrotic roots canals of teeth

    NASA Astrophysics Data System (ADS)

    Alwan, Merriam Ghadhanfar; Usup, Gires; Heng, Lee Yook; Ahmad, Asmat

    2018-04-01

    The growth of microbes in biofilms are associated with repeated and chronic human infections and are extremely resistant to antimicrobial agents. The purpose of this study was to determine the diversity of bacteria from necrotic roots canals of teeth and to detect their biofilm formation ability. A total of 42 bacterial isolates were isolated and identified as belonging to 11 genera. These are Enterococcus sp. (21.4%) followed by Streptococcus sp. (16.8%), Bacillus sp. (11.9%), Peptostreptococcus sp. (9.5%), Staphylococcus sp. (9.5%), Bacteroides sp. (7.1%), Clostridium sp. (7.1%), Actinomyces sp. (7.1%), Fusobacterium sp. (4.76%), Provotella sp. (2.4%) and Chromobacterium sp. (2.4%). Three screening methods for biofilm forming ability were used. Congo Red Agar method (CRA), Tube method (TM) and Microtitre Plate (MTP). From the results, MTP method is a more reliable and quantitative method for the screening and detection of microorganism's ability to form biofilm. This method can be recommended and suggested as a general screening method for the detection of biofilm forming bacteria isolated from roots canals of teeth.

  11. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  12. Bacteria of living and dead larvae of Porthetria dispar (L.)

    Treesearch

    John D. Podgwaite; Benjamin J. Cosenza

    1966-01-01

    A preliminary study of the bacteria associated with living and dead larvae of the gypsy moth (Porthetria dispar (L.)) was undertaken to determine what types of micro-organisms may be associated with disease in this insect. Specific objectives of this study were to enumerate the types of aerobic bacteria, and if possible to further elucidate the role...

  13. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Fukuda, Yasuro; Mochida, Michihiro; Iwamoto, Yoko

    2016-06-01

    Both primary biological aerosol particles (PBAPs) and oxidation products of biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosols (OAs) in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs) for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p < 0.05), resulting from the nocturnal sporulation under near-saturated relative humidity. On the contrary, BVOC oxidation products showed higher levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC) in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  14. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen

    PubMed Central

    Awad, Milena M; Johanesen, Priscilla A; Carter, Glen P; Rose, Edward; Lyras, Dena

    2014-01-01

    The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions. PMID:25483328

  15. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  16. Classification of Streptomyces Spore Surfaces into Five Groups

    PubMed Central

    Dietz, Alma; Mathews, John

    1971-01-01

    Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607

  17. Allelic Differences within and among Sister Spores of the Arbuscular Mycorrhizal Fungus Glomus etunicatum Suggest Segregation at Sporulation

    PubMed Central

    St-Arnaud, Marc; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae. PMID:24386173

  18. [Survival of Bacillus anthracis spores in various tannery baths].

    PubMed

    Mendrycka, M; Mierzejewski, J

    2000-01-01

    The influence of tannery baths: liming, deliming, bating, pickling, tanning, retannage on the survival and on the germination dynamism of B. anthracis spores (Sterne strain) was investigated. The periods and the conditions of this influence were established according to technological process of cow hide tannage. Practically after every bath some part of the spores remained vital. The most effective killing of spores occurred after pickling, liming and deliming. Inversely, the most viable spores remained after bating and retannage process. The lack of correlation that was observed between survival and germination of spores after retannage bath can be explained by different mechanism of spores germination inhibition and their killing.

  19. Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies

    PubMed Central

    Raguse, Marina; Fiebrandt, Marcel; Stapelmann, Katharina; Madela, Kazimierz; Laue, Michael; Lackmann, Jan-Wilm; Thwaite, Joanne E.; Setlow, Peter; Awakowicz, Peter

    2016-01-01

    Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 107 spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques. PMID:26801572

  20. "Spore" and the Sociocultural Moment

    ERIC Educational Resources Information Center

    Meyer, W. Max

    2012-01-01

    Analyses of the game "Spore" have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the "Spore" discussion relative to…

  1. Liver abscesses in dromedary camels: Pathological characteristics and aerobic bacterial aetiology

    PubMed Central

    Aljameel, M.A.; Halima, M.O.; ElTigani-Asil, A.E.; Abdalla, A.S.; Abdellatif, M.M.

    2014-01-01

    The study was carried out at Nyala abattoirs, South Darfur State, Sudan during a period from 2009 to 2011. Slaughtered camels (822) were examined for pathological changes of liver abscesses and identification of the involved aerobic bacteria. Grossly, a total of 111 (13.5%) liver abscesses were recorded in different camel ages; 90 (81.1%) were less than seven years old and 21 (18.9%) were more than seven years old. Histopathology of sectioned tissues revealed necrotic abscesses with infiltration of inflammatory cells, hydropic degeneration with swelling of hepatocytes comprising the sinusoid and different size of vacuoles in the hepatic cells. Proliferation of bile ducts with fibrous tissue and infiltration of inflammatory cells was also recorded. Investigation of bacteria revealed 90 aerobic isolates; they were identified to 52 (57.8%) gram positive cocci, 20 (22.2%) gram positive rods and 18 (20.0%) gram negative rods. Staphylococcus spp. (41.1%), Corynebacterium spp. (17.9%) and Streptococcus spp. (13.3%) were the most frequently identified bacteria involved in liver abscesses of camels in the region. Further studies are required to assess the pathogenicity of bacterial isolates from camel livers. This is particularly important from a public health perspective, since some people of Sudan are known to consume raw camel liver. PMID:26623351

  2. Effect of simulated lunar impact on the survival of bacterial spores.

    NASA Technical Reports Server (NTRS)

    Whitfield, O.; Merek, E. L.; Oyama, V. I.

    1973-01-01

    In order to test the effect of impact on organisms, the survival of bacterial spores after being propelled at high velocity in Pyrex and plastic beads into crushed basalt was measured. The beads were fired into sterilized canisters by both a conventional powder and a light gas gun. Results indicate that at the minimum (2.4 km/sec) lunar capture velocity, the number of colony forming units (CFUs) decreased by five orders of magnitude, and at 5.5 km/sec, statistically a more probable capture velocity, no CFUs were found. The decrease in CFUs observed with increasing velocity indicates that the spores were most probably killed by the impact.

  3. Evaluation of a Stochastic Inactivation Model for Heat-Activated Spores of Bacillus spp. ▿

    PubMed Central

    Corradini, Maria G.; Normand, Mark D.; Eisenberg, Murray; Peleg, Micha

    2010-01-01

    Heat activates the dormant spores of certain Bacillus spp., which is reflected in the “activation shoulder” in their survival curves. At the same time, heat also inactivates the already active and just activated spores, as well as those still dormant. A stochastic model based on progressively changing probabilities of activation and inactivation can describe this phenomenon. The model is presented in a fully probabilistic discrete form for individual and small groups of spores and as a semicontinuous deterministic model for large spore populations. The same underlying algorithm applies to both isothermal and dynamic heat treatments. Its construction does not require the assumption of the activation and inactivation kinetics or knowledge of their biophysical and biochemical mechanisms. A simplified version of the semicontinuous model was used to simulate survival curves with the activation shoulder that are reminiscent of experimental curves reported in the literature. The model is not intended to replace current models to predict dynamic inactivation but only to offer a conceptual alternative to their interpretation. Nevertheless, by linking the survival curve's shape to probabilities of events at the individual spore level, the model explains, and can be used to simulate, the irregular activation and survival patterns of individual and small groups of spores, which might be involved in food poisoning and spoilage. PMID:20453137

  4. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition.

    PubMed

    Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong

    2017-05-01

    The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mitigation of Alicyclobacillus spp. spores on food contact surfaces with aqueous chlorine dioxide and hypochlorite.

    PubMed

    Friedrich, Loretta M; Goodrich-Schneider, Renee; Parish, Mickey E; Danyluk, Michelle D

    2009-12-01

    The prevalence of Alicyclobacillus spp. and other spore-forming spoilage organisms in food handling and processing environments presents a sanitation challenge to manufacturers of products such as juices and beverages. The objectives of this study were to determine the efficacy of chlorine dioxide and sodium hypochlorite in killing Alicyclobacillus spores in situ and to evaluate the efficacy of various chlorine dioxide and hypochlorite sanitizing regimes on Alicyclobacillus spp. spores on stainless steel, wood, and rubber conveyor material. Five or two log CFU/ml spore concentrations were left in aqueous solution or inoculated onto stainless steel, rubber, or wood coupons and challenged with sanitizer for varied time intervals. After treatment, the coupons were placed in sterile sample bags, massaged with neutralizing buffer, and enumerated on Ali agar. Surfaces were also examined before and after treatment by scanning electron microscopy to confirm destruction or removal of the spores. For both five and two log CFU/ml spore concentrations, treatments of 50 and 100 ppm of chlorine dioxide and 1000 and 2000 ppm of hypochlorite, respectively, were the most effective. Of the range of chlorine dioxide concentrations and contact time regimes evaluated for all surfaces, the most effective concentration/time regime applied was 100 ppm for 10 min. Reductions ranged from 0 to 4.5 log CFU/coupon. Chlorine dioxide was least effective when applied to wood. Hypochlorite was not efficient at eliminating Alicyclobacillus spores from any of the food contact surfaces at any time and concentration combinations tested. Chlorine dioxide is an alternative treatment to kill spores of Alicyclobacillus spp. in the processing environment.

  6. Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.--novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane.

    PubMed

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2000-06-01

    Eight strains of Gram-negative, aerobic, asporogenous, neutrophilic, mesophilic, facultatively methylotrophic bacteria are taxonomically described. These icl- serine pathway methylobacteria utilize dichloromethane, methanol and methylamine as well as a variety of polycarbon compounds as the carbon and energy source. The major cellular fatty acids of the non-pigmented strains DM1, DM3, and DM5 to DM9 are C18:1, C16:0, C18:0, Ccy19:0 and that of the pink-pigmented strain DM4 is C18:1. The main quinone of all the strains is Q-10. The non-pigmented strains have similar phenotypic properties and a high level of DNA-DNA relatedness (81-98%) as determined by hybridization. All strains belong to the alpha-subgroup of the alpha-Proteobacteria. 16S rDNA sequence analysis led to the classification of these dichloromethane-utilizers in the genus Methylopila as a new species - Methylopila helvetica sp.nov. with the type strain DM9 (=VKM B-2189). The pink-pigmented strain DM4 belongs to the genus Methylobacterium but differs from the known members of this genus by some phenotypic properties, DNA-DNA relatedness (14-57%) and 16S rDNA sequence. Strain DM4 is named Methylobacterium dichloromethanicum sp. nov. (VKM B-2191 = DSMZ 6343).

  7. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus.

    PubMed

    Stelkens, Rike B; Miller, Eric L; Greig, Duncan

    2016-05-01

    Spores from wild yeast isolates often show great variation in the size of colonies they produce, for largely unknown reasons. Here we measure the colonies produced from single spores from six different wild Saccharomyces paradoxus strains. We found remarkable variation in spore colony sizes, even among spores that were genetically identical. Different strains had different amounts of variation in spore colony sizes, and variation was not affected by the number of preceding meioses, or by spore maturation time. We used time-lapse photography to show that wild strains also have high variation in spore germination timing, providing a likely mechanism for the variation in spore colony sizes. When some spores from a laboratory strain make small colonies, or no colonies, it usually indicates a genetic or meiotic fault. Here, we demonstrate that in wild strains spore colony size variation is normal. We discuss and assess potential adaptive and non-adaptive explanations for this variation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India

    DOE PAGES

    Gehlot, Hukam Singh; Ardley, Julie; Tak, Nisha; ...

    2016-06-23

    Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence informationmore » and its annotation. The 8,458,965 bp high-quality permanent draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.« less

  9. High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehlot, Hukam Singh; Ardley, Julie; Tak, Nisha

    Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence informationmore » and its annotation. The 8,458,965 bp high-quality permanent draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.« less

  10. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1972-01-01

    The efficiency of a biodetection grinder, used to recover buried contamination, was tested using spacecraft components and laminated polystyrene strips containing Bacillus subtilis var. niger spores. The surfaces were decontaminated before tests. Results are given in tabular form. Tables are also given for heat resistance of bacteria spores, prevalence of bacteria in spacecraft before launch, and the types of bacteria found in Apollo 15 spacecraft components and command modules.

  11. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Objective: Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris) extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Materials and methods: Antimicrobial activities of the plant extracts against the planktonic form of the bacteria were determined using the disc diffusion method. MIC and MBC values were evaluated using macrobroth dilution technique. Anti-biofilm effects were assessed by microtiter plate method. Results: According to disc diffusion test (MIC and MBC), the ability of Thymus vulgaris (T. vulgaris ) extracts for inhibition of bacteria in planktonic form was confirmed. In dealing with biofilm structures, the inhibitory effect of the extracts was directly correlated to their concentration. Except for the inhibition of biofilm formation, efficacy of each extract was independent from type of solvent. Conclusion: According to the potential of Thymus vulgaris (T. vulgaris) extracts to inhibit the test bacteria in planktonic and biofilm form, it can be suggested that Thymus vulgaris (T. vulgaris) extracts can be applied as antimicrobial agents against the pathogenic bacteria particularly in biofilm forms. PMID:26442753

  12. Photodynamic inactivation of mold fungi spores by newly developed charged corroles.

    PubMed

    Preuß, Annegret; Saltsman, Irena; Mahammed, Atif; Pfitzner, Michael; Goldberg, Israel; Gross, Zeev; Röder, Beate

    2014-04-05

    The photodynamic effect, originally used in photodynamic therapy (PDT) for the treatment of different diseases, e.g. of cancer, has recently been introduced for the inactivation of bacteria. Mold fungi, which provoke health problems like allergies and diseases of the respiratory tract, are even more resistant and their biology is also very different. This study presents the development of four new photosensitizers, which, in combination with low doses of white light, inhibit the germination of mold fungi spores. Two of them even cause lethal damage to the conidia (spores) which are responsible for the spreading of mold fungi. The photoactivity of the newly synthesized corroles was obtained by their application on three different mold fungi: Aspergillus niger, Cladosporium cladosporoides, and Penicillium purpurgenum. To distinguish between inactivation of germination and permanent damage, the fungi were first incubated under illumination for examination of photosensitizer-induced growth inhibition and then left in darkness to test the survival of the conidia. None of the compounds displayed dark toxicity, but all of them attenuated or prevented germination when exposed to light, and the positively charged complexes induced a complete damage of the conidia. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Strategy to inactivate Clostridium perfringens spores in meat products.

    PubMed

    Akhtar, Saeed; Paredes-Sabja, Daniel; Torres, J Antonio; Sarker, Mahfuzur R

    2009-05-01

    The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100-200 MPa, 7 min) and elevated temperature (80 degrees C, 10 min); spore germination at high temperatures (55, 60 or 65 degrees C); and inactivation of germinated spores with elevated temperatures (80 and 90 degrees C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 degrees C, 10 min). Low pressures (100-200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 degrees C, 10 min), and germinated at temperatures lethal for vegetative cells (>or= 55 degrees C) when incubated for 60 min with a mixture of L-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (approximately 4 decimal reduction) in meat by elevated temperatures (80-90 degrees C for 20 min) required a long germination period (55 degrees C for 60 min). However, similar inactivation level was reached with shorter germination period (55 degrees C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 degrees C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 degrees C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 degrees C in about 20 min and further incubation at 55 degrees C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 degrees C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C

  14. THE EFFECT OF MASSIVE DOSES OF $gamma$-RADIATION ON THE IMMUNOGENIC PROPERTIES OF BACTERIA OF THE INTESTINAL GROUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumanian, M.A.; Duplishcheva, A.P.; Sedova, T.S.

    1958-01-01

    Bacteria of the intestinal group were found to be killed by radiation doses of 400,000 to 600,000 r. When spore forms of bacteria were contained in the material, sterilization was achieved by doses of 1.5 to 2 Mr. Applications of radiosterilization are discussed for the preparation of bacterial-cell vaccines, bacterial antigen complexes. chemical vaccines, and the preparation of vaccines made from bacteria killed by radiation. A study was made of the quality, antigenic and immunogenic properties, liability to retain Vi antigen, and toxicity of vaccines and antigenic complexes prepared from irradiated dysentery and typhoid bacteria. It was found that themore » radio-antigens were less toxic than antigens prepared from formalinized bacteria or from bacteria which had not been killed before the preparation of the antigen. When antigen previously prepared from formalinized bacteria was subjected to radiation, it either did not differ in toxic properties from the unirradiated antigen or was more toxic. Radiovaccines induced antibody formatdon in the same way as ordinary formalinized vaccines. Experimental data are tabulated. It was concluded that gamma irradiation can be used both for the production of intestinal group vaccines and antigens and for the sterilization of corresponding bacterial preparations already prepared. (C.H.)« less

  15. The Function of Gas Vesicles in Halophilic Archaeaand Bacteria: Theories and Experimental Evidence

    PubMed Central

    Oren, Aharon

    2012-01-01

    A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms. PMID:25371329

  16. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  17. Surface tension propulsion of fungal spores by use of microdroplets

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-11-01

    Most basidiomycete fungi (such as edible mushrooms) actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed high-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeast, along with a detailed mechanical analysis of the spore ejection. We developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system.

  18. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis.

    PubMed

    Munoz, L; Sadaie, Y; Doi, R H

    1978-10-10

    The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.

  19. Activation and injury of Clostridium perfringens spores by alcohols.

    PubMed Central

    Craven, S E; Blankenship, L C

    1985-01-01

    The activation properties of Clostridium perfringens NCTC 8679 spores were demonstrated by increases in CFU after heating in water or aqueous alcohols. The temperature range for maximum activation, which was 70 to 80 degrees C in water, was lowered by the addition of alcohols. The response at a given temperature was dependent on the time of exposure and the alcohol concentration. The monohydric alcohols and some, but not all, of the polyhydric alcohols could activate spores at 37 degrees C. The concentration of a monohydric alcohol that produced optimal spore activation was inversely related to its lipophilic character. Spore injury, which was manifested as a dependence on lysozyme for germination and colony formation, occurred under some conditions of alcohol treatment that exceeded those for optimal spore activation. Treatment with aqueous solutions of monohydric alcohols effectively activated C. perfringens spores and suggests a hydrophobic site for spore activation. PMID:2864897

  20. The PsB glycoprotein complex is secreted as a preassembled precursor of the spore coat in Dictyostelium discoideum.

    PubMed

    Watson, N; McGuire, V; Alexander, S

    1994-09-01

    The PsB glycoprotein in Dictyostelium discoideum is one of a diverse group of developmentally regulated, prespore-cell-specific proteins, that contain a common O-linked oligosaccharide. This post-translational modification is dependent on the wild-type modB allele. The PsB protein exists as part of a multiprotein complex of six different proteins, which have different post-translational modifications and are held together by both covalent and non-covalent interactions (Watson et al. (1993). J. Biol. Chem. 268, 22634-22641). In this study we have used microscopic and biochemical analyses to examine the cellular localization and function of the PsB complex during development. We found that the PsB complex first accumulates in prespore vesicles in slug cells and is secreted later during culmination and becomes localized to both the extracellular matrix of the apical spore mass of mature fruiting bodies and to the inner layer of the spore coat. The PsB associated with the spore coat is covalently bound by disulfide bridges. The PsB protein always exists in a multiprotein complex, but the composition of the PsB complex changes during secretion and spore maturation. Some of the PsB complex proteins have been identified as spore coat proteins. These data demonstrate that some of the proteins that form the spore coat exist as a preassembled precursor complex. The PsB complex is secreted in a developmentally regulated manner during the process of spore differentiation, at which time proteins of the complex, as well as additional spore coat proteins, become covalently associated in at least two forms of extracellular matrix: the interspore matrix and the spore coat. These and other studies show that proteins with modB dependent O-linked oligosaccharides are involved in a wide variety of processes underlying morphogenesis in this organism. These developmental processes are the direct result of cellular mechanisms regulating protein targeting, assembly and secretion, and the