Science.gov

Sample records for aerobraked chemical system

  1. Thermal protection systems for aerobrakes

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1993-01-01

    In summary, advantages of the ablative thermal protection system (TPS) for aerobrakes are: (1) proven reliable TPS systems; (2) well characterized (thermally) with good, existing thermal analysis capability; (3) good candidate materials are available; (4) not sensitive to defects and more difficult to damage then RSI or C-C; (5) design program which demonstrated simple (direct bond) application of large panels; (6) thermal excursions not catastrophic; and (7) no SIP required.

  2. Chemical nonequilibrium and viscous flow computation for conic aerobrake bodies

    NASA Technical Reports Server (NTRS)

    Li, C. P.

    1988-01-01

    Three-dimensional analyses are presented for the viscous, reactive flow over a complete entry-body configuration with a wide-angle conic surface. The predictive method uses a split approach that solves iteratively the Navier-Stokes and the continuity equations of chemical species. The finite-difference formulation and the computational grid are adapted to the bow shock and the conformally mapped body such that the velocity components are in the computational spherical-polar space. Combinations of several conic forebody and afterbody configurations have been studied using wind-tunnel, Space Shuttle, and aerobraking orbital transfer vehicle (AOTV) entry conditions. The effects of the borebody bluntness and of finite-rate chemical reactions on the shock layer, the wall catalycity on the boundary layer, the shear-layer impingement on the afterbody, and the base-flow environment are discussed.

  3. Aerobrake concepts for NTP systems study

    NASA Technical Reports Server (NTRS)

    Cruz, Manuel I.

    1992-01-01

    Design concepts are described for landing large spacecraft masses on the Mars surface in support of manned missions with interplanetary transportation using Nuclear Thermal Propulsion (NTP). Included are the mission and systems analyses, trade studies and sensitivity analyses, design analyses, technology assessment, and derived requirements to support this concept. The mission phases include the Mars de-orbit, entry, terminal descent, and terminal touchdown. The study focuses primarily on Mars surface delivery from orbit after Mars orbit insertion using an NTP. The requirements associated with delivery of logistical supplies, habitats, and other equipment on minimum energy Earth to Mars transfers are also addressed in a preliminary fashion.

  4. Regenerative Aerobraking

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2004-01-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  5. Regenerative Aerobraking

    NASA Astrophysics Data System (ADS)

    Moses, Robert W.

    2005-02-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  6. Aerobraking Teams

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Group and team photos of Langely's Aerobraking teams. These photo's were taken right after the 75 day aerobraking phase. People in the photographs include: Paul V. Tartabini, Mary Kae Lockwood, Richard W. Powell, Eric M. Queen, Bob Tolson, Alicia Dwyer, Jill Hanna, Michelle Munk, Zack Q. Chavis, dick Wilmoth, Naru Takashima, Ruth Amundsen, John Aguirre, Allison Roberts, Loreyna Young, Charles W. Davis, John Dec, Joe Gasbarre, Scott Striepe, Paul Escalera and G. M. Keating.

  7. Preliminary design of a large tetrahedral truss/hexagonal panel aerobrake structural system

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Mikulas, Martin M., Jr.

    1990-01-01

    This paper introduces an aerobrake structural concept consisting of two primary components: (1) a lightweight erectable tetrahedral support truss, and (2) a heatshield composed of individual sandwich hexagonal panels which, when attached to the truss, function as a continuous aerobraking surface. A general preliminary analysis procedure to design the aerobrake components is developed, and values of the aerobrake design parameters which minimize the mass and packaging volume for a 120-foot-diameter aerobrake are determined. Sensitivity of the aerobrake design to variations in design parameters is also assessed.

  8. Aerobraking Cost and Risk Decisions

    NASA Technical Reports Server (NTRS)

    Spencer, David A.; Tolson, Robert

    2006-01-01

    Four missions have successfully employed aerobraking at Venus and Mars to reduce the spacecraft orbit period and achieve the desired orbit geometry. The propellant mass reductions enabled by the aerobraking technique allow the use of smaller launch systems, which translate to significant savings in launch costs for flight projects. However, there is a significant increase in mission risk associated with the use of aerobraking. Flying a spacecraft through a planetary atmosphere hundreds of times during months of around-the-clock operations places the spacecraft in harm's way, and is extraordinarily demanding on the flight team. There is a cost/risk trade that must be evaluated when a project is choosing between a mission baseline that includes aerobraking, or selecting a larger launch vehicle to enable purely propulsive orbit insertion. This paper provides a brief history of past and future aerobraking missions, describes the aerobraking technique, summarizes the costs associated with aerobraking, and concludes with a suggested methodology for evaluating the cost/risk trade when considering the aerobraking approach.

  9. Aerobrake for the Centaur Aerobrake Flight Experiment

    NASA Astrophysics Data System (ADS)

    Porter, John

    A retractable aerobrake using only current technology was predesigned. It would be flown on the Centaur rocket in 1992 as the principal part of the Centaur Aerobrake Flight Experiment (CAFE). A triple pass, constant dynamic pressure (TCP) trajectory was chosen to limit peak temperature to 2 260 F, and heating to 22 Btu/s-sq ft. The brake would fly at a 12-degree nominal angle of attack (AOA). Given a + or - 2-degree uncertainty, a worst case AOA of 10 degrees, producing a lift to drag (L/D) of 0.139 for trajectory correction, was used in the analysis. A new flexible Thermal Protection System was developed and crudely tested. An 8-inch diameter wind tunnel model and a 1/20th scale functional model were built. Flyable solutions were conceived for all technical challenges. It is concluded that with a 1988 start, there are no major technical roadblocks to a 1992 CAFE flight.

  10. A predictor-corrector guidance algorithm for use in high-energy aerobraking system studies

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Powell, Richard W.

    1991-01-01

    A three-degree-of-freedom predictor-corrector guidance algorithm has been developed specifically for use in high-energy aerobraking performance evaluations. The present study reports on both the development and capabilities of this guidance algorithm to the design of manned Mars aero-braking vehicles. Atmospheric simulations are performed to demonstrate the applicability of this algorithm and to evaluate the effect of atmospheric uncertainties upon the mission requirements. The off-nominal conditions simulated result from atmospheric density and aerodynamic characteristic mispredictions. The guidance algorithm is also used to provide relief from the high deceleration levels typically encountered in a high-energy aerobraking mission profile. Through this analysis, bank-angle modulation is shown to be an effective means of providing deceleration relief. Furthermore, the capability of the guidance algorithm to manage off-nominal vehicle aerodynamic and atmospheric density variations is demonstrated.

  11. Dedicated Deployable Aerobraking Structure

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.; Knarr, Kevin

    2010-01-01

    A dedicated deployable aerobraking structure concept was developed that significantly increases the effective area of a spacecraft during aerobraking by up to a factor of 5 or more (depending on spacecraft size) without substantially increasing total spacecraft mass. Increasing the effective aerobraking area of a spacecraft (without significantly increasing spacecraft mass) results in a corresponding reduction in the time required for aerobraking. For example, if the effective area of a spacecraft is doubled, the time required for aerobraking is roughly reduced to half the previous value. The dedicated deployable aerobraking structure thus enables significantly shorter aerobraking phases, which results in reduced mission cost, risk, and allows science operations to begin earlier in the mission.

  12. The aerobraking space transfer vehicle

    NASA Technical Reports Server (NTRS)

    Andrews, Glen; Carpenter, Brian; Corns, Steve; Harris, Robert; Jun, Brian; Munro, Bruce; Pulling, Eric; Sekhon, Amrit; Welton, Walt; Jakubowski, A.

    1990-01-01

    With the advent of the Space Station and the proposed Geosynchronous Operation Support Center (GeoShack) in the early 21st century, the need for a cost effective, reusable orbital transport vehicle has arisen. This transport vehicle will be used in conjunction with the Space Shuttle, the Space Station, and GeoShack. The vehicle will transfer mission crew and payloads between low earth and geosynchronous orbits with minimal cost. Recent technological advances in thermal protection systems such as those employed in the Space Shuttle have made it possible to incorporate and aerobrake on the transfer vehicle to further reduce transport costs. The research and final design configuration of the aerospace senior design team from VPISU, working in conjunction with NASA, are presented. The topic of aerobraking and focuses on the evolution of an Aerobraking Space Transfer Vehicle (ASTV), is addressed.

  13. Modeling and analysis of doubly curved aerobrake truss structures

    NASA Technical Reports Server (NTRS)

    Washington, Gregory; Klang, Eric

    1992-01-01

    An aerobrake structural concept featuring a double curved tetrahedral truss support system and hexagonal heat shield panels was modeled and analyzed. Modeling equations for a sphere, cone, and paraboloid were developed for the purpose. Design equation and computer codes were also evolved and employed to determine the total mass of the aerobrake as well as any parameters that had an adverse effect on the total aerobrake mass. These data were used in a point design for a Mars mission aerobrake. A 131-ft diameter aerobrake was found to be viable using the present structural concept (i.e., the total aerobrake mass is not greater than 450,000 lb, which is the attached spacecraft mass). It is also shown that curvature, load point placement, number of load points, number of strut designs, and number of rings all have an effect on the mass of the aerobrake.

  14. Optimization of aerobraked orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Caluori, V. A.; Bloetscher, F.

    1981-01-01

    A new method for utilizing the upper atmosphere to modify earth orbital trajectories through use of a pressure supported drag brake has been previously proposed. Analytical results and initial wind tunnel test data indicate that there is considerable improvement available to the original aerobraking concept. Optimization of the drag brake with respect to size versus structural heating, and the application of more advanced cooling techniques, indicates that reductions in weight and volume of the aerobraking system by 50 percent should be possible. Additional analysis indicates that further improvements might be available through use of a alternate drag control mode which eliminates the need to throttle the vehicle main engine during the aerobraking maneuver.

  15. The Innovative DE orbiting Aerobrake System "IDEAS " for Small Satellites: The Use of Gossamer Technolgy for a Cleaner Space

    NASA Astrophysics Data System (ADS)

    Santerre, B.; Bonnefond, T.; Dupuy, C.

    2008-08-01

    From the birth of space adventure until now, a huge number of objects have been put in orbit. Today, space environment is more and more crowded. The assessed number of objects sizing more than 1 cm is 300000. About 9600 objects are referenced, with only 500 useful. 22% of satellites are non operating satellites. For these reasons, space debris is becoming a real concern. The Inter Agency Space Debris Cordination (IDAC), composed of 11 space agencies, has defined a code of conduct to limit the space debris. In 2004, CNES decided to apply this code of conduct. As a consequence, the in-orbit life time (after operative life) of every satellite must be limited to 25 years. In the frame of this code of conduct, Astrium Space Transportation is developing in collaboration with CNES, a solution for slow deorbiting of small satellites using passive aerobraking. The Gossamer technology has been identified as the best solution to fulfil this functional requirement and to limit cost and performance impacts for the satellite. The interest of using gossamer technologies for small satellite aerobraking system was demonstrated by a feasibility study performed by Astrium Space Transportation during 2005. The main advantages of the retained solution are the easy accommodation on satellite, the simple electrical interface with the satellite, the ability to be operated even on an underperforming spacecraft (as long as telemetry can be received) and the absence of need of any specific satellite control. The trade-off between several inflatable technologies led to the selection of kapton/aluminium/kapton laminates, mainly because of the specific requirements of the mission (low available electrical power, long passive-life duration before deployment, no attitude control during deployment = non defined thermal conditions). This technology is currently developed and will be qualified for an application on a CNES satellite, called Microscope, that is asked to reduce its natural deorbiting

  16. Minimum accommodation for aerobrake assembly. Phase 2: Structural concepts for a lunar transfer vehicle aerobrake which can be assembled on orbit

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.; Tutterow, Robin D.

    1993-01-01

    A multidisciplinary conceptual study was conducted to define a reusable lunar transfer vehicle (LTV) aerobrake which could be launched on a Space Shuttle of Titan 4 and assembled on orbit at Space Station Freedom. A major objective was to design an aerobrake, with integrated structure and thermal protection systems, which has a mass less than 20 percent (9040 lb) of the LTV lunar return mass. The aerobrake segmentation concepts, the structural concepts, a joint concept for assembly, and a structural design with analysis of the aerobrake are described. Results show that a 50-foot diameter LTV aerobrake can be designed for on-orbit assembly which will achieve the 20 percent mass budget.

  17. Manned Mars aerobrake vehicle design issues

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Powell, Richard W.; Braun, Robert D.

    1990-01-01

    The paper examines the preliminary definition of the stagnation region aerothermodynamic environment, the effect of convective/radiative effect of trim angle-of-attack mispredictions, packaging issues, and the implications of wake flow for vehicles not having an aft aeroshell. The implications of each of these factors for a Mars aerobrake configuration with a L/D in the range of 0.3-0.5 is evaluated. It is shown that packaging and wake flow requirements have a significant impact on the final design of a low L/D aerobrake. Due to the large proportion of carbonaceous species in the Martian atmosphere, radiative heating is seen to play a more dominant role in the stagnation region aerothermodynamics than for an equivalent earth entry. It is concluded that this radiation amplification is an additional reason to consider a multiple aerobrake system.

  18. Aerobraking at Venus: A science and technology enabler

    NASA Astrophysics Data System (ADS)

    Hibbard, Kenneth; Glaze, Lori; Prince, Jill

    2012-04-01

    Venus remains one of the great unexplored planets in our solar system, with key questions remaining on the evolution of its atmosphere and climate, its volatile cycles, and the thermal and magmatic evolution of its surface. One potential approach toward answering these questions is to fly a reconnaissance mission that uses a multi-mode radar in a near-circular, low-altitude orbit of ∼400 km and 60-70° inclination. This type of mission profile results in a total mission delta-V of ∼4.4 km/s. Aerobraking could provide a significant portion, potentially up to half, of this energy transfer, thereby permitting more mass to be allocated to the spacecraft and science payload or facilitating the use of smaller, cheaper launch vehicles.Aerobraking at Venus also provides additional science benefits through the measurement of upper atmospheric density (recovered from accelerometer data) and temperature values, especially near the terminator where temperature changes are abrupt and constant pressure levels drop dramatically in altitude from day to night.Scientifically rich, Venus is also an ideal location for implementing aerobraking techniques. Its thick lower atmosphere and slow planet rotation result in relatively more predictable atmospheric densities than Mars. The upper atmosphere (aerobraking altitudes) of Venus has a density variation of 8% compared to Mars' 30% variability. In general, most aerobraking missions try to minimize the duration of the aerobraking phase to keep costs down. These short phases have limited margin to account for contingencies. It is the stable and predictive nature of Venus' atmosphere that provides safer aerobraking opportunities.The nature of aerobraking at Venus provides ideal opportunities to demonstrate aerobraking enhancements and techniques yet to be used at Mars, such as flying a temperature corridor (versus a heat-rate corridor) and using a thermal-response surface algorithm and autonomous aerobraking, shifting many daily ground

  19. Implementation and Simulation Results using Autonomous Aerobraking Development Software

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; DwyerCianciolo, Alicia M.; Bowes, Angela; Prince, Jill L. H.; Powell, Richard W.

    2011-01-01

    An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan.

  20. Minimum accommodation for aerobrake assembly, phase 2

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Haynes, Davy A.; Tutterow, Robin D.; Watson, Judith J.; Russell, James W.

    1994-01-01

    A multi-element study was done to assess the practicality of a Space Station Freedom-based aerobrake system for the Space Exploration Initiative. The study was organized into six parts related to structure, aerodynamics, robotics and assembly, thermal protection system, inspection, and verification, all tied together by an integration study. The integration activity managed the broad issues related to meeting mission requirements. This report is a summary of the issues addressed by the integration team.

  1. The effect of interplanetary trajectory options on a manned Mars aerobrake configuration

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Powell, Richard W.; Hartung, Lin C.

    1990-01-01

    Manned Mars missions originating in low Earth orbit (LEO) in the time frame 2010 to 2025 were analyzed to identify preferred mission opportunities and their associated vehicle and trajectory characteristics. Interplanetary and Mars atmospheric trajectory options were examined under the constraints of an initial manned exploration scenario. Two chemically propelled vehicle options were considered: (1) an all propulsive configuration, and (2) a configuration which employs aerobraking at Earth and Mars with low lift/drag (L/D) shapes. Both the interplanetary trajectory options as well as the Mars atmospheric passage are addressed to provide a coupled trajectory simulation. Direct and Venus swingby interplanetary transfers with a 60 day Mars stopover are considered. The range and variation in both Earth and Mars entry velocity are also defined. Two promising mission strategies emerged from the study: (1) a 1.0 to 2.0 year Venus swingby mission, and (2) a 2.0 to 2.5 year direct mission. Through careful trajectory selection, 11 mission opportunities are identified in which the Mars entry velocity is between 6 and 10 km/sec and Earth entry velocity ranges from 11.5 to 12.5 km/sec. Simulation of the Earth return aerobraking maneuver is not performed. It is shown that a low L/D configuration is not feasible for Mars aerobraking without substantial improvements in the interplanetary navigation system. However, even with an advanced navigation system, entry corridor and aerothermal requirements restrict the number of potential mission opportunities. It is also shown that for a large blunt Mars aerobrake configuration, the effects of radiative heating can be significant at entry velocities as low as 6.2 km/sec and will grow to dominate the aerothermal environment at entry velocities above 8.5 km/sec. Despite the additional system complexity associated with an aerobraking vehicle, the use of aerobraking was shown to significantly lower the required initial LEO weight. In

  2. Thermal Analysis Methods for Aerobraking Heating

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Gasbarre, Joseph F.; Dec, John A.

    2005-01-01

    As NASA begins exploration of other planets, a method of non-propulsively slowing vehicles at the planet, aerobraking, may become a valuable technique for managing vehicle design mass and propellant. An example of this is Mars Reconnaissance Orbiter (MRO), which will launch in late 2005 and reach Mars in March of 2006. In order to save propellant, MRO will use aerobraking to modify the initial orbit at Mars. The spacecraft will dip into the atmosphere briefly on each orbit, and during the drag pass, the atmospheric drag on the spacecraft will slow it, thus lowering the orbit apoapsis. The largest area on the spacecraft, and that most affected by the heat generated during the aerobraking process, is the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley, to simulate their performance throughout the entire roughly 6-month period of aerobraking. Several interesting methods were used to make this analysis more rapid and robust. Two separate models were built for this analysis, one in Thermal Desktop for radiation and orbital heating analysis, and one in MSC.Patran for thermal analysis. The results from the radiation model were mapped in an automated fashion to the Patran thermal model that was used to analyze the thermal behavior during the drag pass. A high degree of automation in file manipulation as well as other methods for reducing run time were employed, since toward the end of the aerobraking period the orbit period is short, and in order to support flight operations the runs must be computed rapidly. All heating within the Patran Thermal model was combined in one section of logic, such that data mapped from the radiation model and aeroheating model, as well as skin temperature effects on the aeroheating and surface radiation, could be incorporated easily. This approach calculates the aeroheating at any given node, based on its position and temperature as well as the density and velocity at that trajectory point. Run times on

  3. Development of Autonomous Aerobraking - Phase 2

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2013-01-01

    Phase 1 of the Development of Autonomous Aerobraking (AA) Assessment investigated the technical capability of transferring the processes of aerobraking maneuver (ABM) decision-making (currently performed on the ground by an extensive workforce and communicated to the spacecraft via the deep space network) to an efficient flight software algorithm onboard the spacecraft. This document describes Phase 2 of this study, which was a 12-month effort to improve and rigorously test the AA Development Software developed in Phase 1. Aerobraking maneuver; Autonomous Aerobraking; Autonomous Aerobraking Development Software; Deep Space Network; NASA Engineering and Safety Center

  4. Experimental Aerobraking with Venus Express

    NASA Astrophysics Data System (ADS)

    Svedhem, Hakan

    2013-10-01

    Venus Express has successfully orbited Venus in its polar 24 hour, 250km by 66000 km, orbit since April 2006 and has provided a wealth of new data from our sister planet. Approaching the end of the mission we are now planning an experimental campaign dedicated to aerobraking at altitudes down to as low as about 130km. These low pericentre passes will provide direct measurements of density, temperature, magnetic field and energetic particles in a region not accessible by other methods. Experience of operations and studies of spacecraft responses will be valuable knowledge for possible future missions that might need this techniques as a part of its nominal operations. Aerobraking was considered in the early design phase of the mission but it was fairly soon realised that the nominal mission would not need this. However, a few important design features were maintained in order to allow for this in case it should be needed at a later stage. The inherently stable geometry of the spacecraft configuration and the inclusion of a software mode for aerobraking are the two most important elements from this early design phase. An recent study by industry has determined the constraints for the spacecraft and identified several potential scenarios. The present highly elliptical orbit has as one of its inherent features a downward drift of the pericentre altitude of between 1 and 4 km/day. However, at certain times, when the Sun is in the orbital plane, this drift disappears for a period of up to two weeks. This is a very well suited time to carry out these initial experiments as it is makes operations safer and it reduces the heat input on the spacecraft as the solar panels will be edge-on towards the sun during the aerobraking. Already a number of low altitude operations have been carried out during the so called atmospheric drag campaigns. The spacecraft has then dipped down to altitudes as low as 165 km and a good characterisation of this region has been performed. This

  5. Mars vehicle TCS and aerobrake TPS

    NASA Technical Reports Server (NTRS)

    Comer, G.

    1986-01-01

    General design approach, some problems and technology needs for a Mars vehicle manned module Thermal Control System (TCS) and aerobrake Thermal Protection System (TPS) are discussed. The design approach of the TCS will be similar to that of the space station. Mars atmospheric dust storms are identified as an unknown that will impact the design of the Mars landing vehicle and base facility. New technology may be needed for thermal control surfaces to functionally survive the dust storms. The TPS for the Mars aerocapture vehicle will be subject to marginal stagnation heating rates for conjunction class missions and very high heating rates for opposition class missions. New technology TPS materials or an ablative heat shield will be required for the high stagnation heating rate trajectories. No significantly new technology is needed for the manned modules that do not descent to the Mars surface.

  6. Aerobrake assembly with minimum Space Station accommodation

    NASA Technical Reports Server (NTRS)

    Katzberg, Steven J.; Butler, David H.; Doggett, William R.; Russell, James W.; Hurban, Theresa

    1991-01-01

    The minimum Space Station Freedom accommodations required for initial assembly, repair, and refurbishment of the Lunar aerobrake were investigated. Baseline Space Station Freedom support services were assumed, as well as reasonable earth-to-orbit possibilities. A set of three aerobrake configurations representative of the major themes in aerobraking were developed. Structural assembly concepts, along with on-orbit assembly and refurbishment scenarios were created. The scenarios were exercised to identify required Space Station Freedom accommodations. Finally, important areas for follow-on study were also identified.

  7. Development of Autonomous Aerobraking (Phase 1)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Powell, Richard W.; Prince, Jill L.

    2012-01-01

    The NASA Engineering and Safety Center received a request from Mr. Daniel Murri (NASA Technical Fellow for Flight Mechanics) to develop an autonomous aerobraking capability. An initial evaluation for all phases of this assessment was approved to proceed at the NESC Review Board meeting. The purpose of phase 1 of this study was to provide an assessment of the feasibility of autonomous aerobraking. During this phase, atmospheric, aerodynamic, and thermal models for a representative spacecraft were developed for both the onboard algorithm known as Autonomous Aerobraking Development Software, and a ground-based "truth" simulation developed for testing purposes. The results of the phase 1 assessment are included in this report.

  8. Aerobraking Maneuver (ABM) Report Generator

    NASA Technical Reports Server (NTRS)

    Fisher, Forrest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    abmREPORT Version 3.1 is a Perl script that extracts vital summarization information from the Mars Reconnaissance Orbiter (MRO) aerobraking ABM build process. This information facilitates sequence reviews, and provides a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files and burn magnitude configuration files and presents them in a single, easy-to-check report that provides the majority of the parameters necessary for cross check and verification during the sequence review process. This means that needed information, formerly spread across a number of different files and each in a different format, is all available in this one application. This program is built on the capabilities developed in dragReport and then the scripts evolved as the two tools continued to be developed in parallel.

  9. Space Tug Aerobraking Study. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Corso, C. J.; Eyer, C. L.

    1972-01-01

    The feasibility and practicality of employing an aerobraking trajectory for return of the reusable Space Tug from geosynchronous and other high energy missions was investigated. The aerobraking return trajectory modes from high orbits employ transfer ellipses which have low perigee altitudes wherein the earth's sensible atmosphere provides drag to reduce the Tug descent delta velocity requirements and thus decrease the required return trip propulsive energy. An aerobraked Space Tug, sized to the Space Shuttle payload capability and dimensional constraints, can accomplish 95 percent of the geosynchronous missions with a single Shuttle/Tug launch per mission. Aerodynamics, aerothermodynamics, trajectory, quidance and control, configuration concepts, materials, weights and performance parameters were identified. Sensitivities to trajectory uncertainties, atmospheric anomalies and re-entry environments were determined. New technology requirements and future studies required to further enhance the aerobraking potential were identified.

  10. Autonomous Aerobraking: A Design, Development, and Feasibility Study

    NASA Technical Reports Server (NTRS)

    Prince, Jill L. H.; Powell, Richard W.; Murri, Dan

    2011-01-01

    Aerobraking has been used four times to decrease the apoapsis of a spacecraft in a captured orbit around a planetary body with a significant atmosphere utilizing atmospheric drag to decelerate the spacecraft. While aerobraking requires minimum fuel, the long time required for aerobraking requires both a large operations staff, and large Deep Space Network resources. A study to automate aerobraking has been sponsored by the NASA Engineering and Safety Center to determine initial feasibility of equipping a spacecraft with the onboard capability for autonomous aerobraking, thus saving millions of dollars incurred by a large aerobraking operations workforce and continuous DSN coverage. This paper describes the need for autonomous aerobraking, the development of the Autonomous Aerobraking Development Software that includes an ephemeris estimator, an atmospheric density estimator, and maneuver calculation, and the plan forward for continuation of this study.

  11. Autonomous Aerobraking Development Software: Phase 2 Summary

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Maddock, Robert W.; Prince, Jill L.; Bowes, Angela; Powell, Richard W.; White, Joseph P.; Tolson, Robert; O'Shaughnessy, Daniel; Carrelli, David

    2013-01-01

    NASA has used aerobraking at Mars and Venus to reduce the fuel required to deliver a spacecraft into a desired orbit compared to an all-propulsive solution. Although aerobraking reduces the propellant, it does so at the expense of mission duration, large staff, and DSN coverage. These factors make aerobraking a significant cost element in the mission design. By moving on-board the current ground-based tasks of ephemeris determination, atmospheric density estimation, and maneuver sizing and execution, a flight project would realize significant cost savings. The NASA Engineering and Safety Center (NESC) sponsored Phase 1 and 2 of the Autonomous Aerobraking Development Software (AADS) study, which demonstrated the initial feasibility of moving these current ground-based functions to the spacecraft. This paper highlights key state-of-the-art advancements made in the Phase 2 effort to verify that the AADS algorithms are accurate, robust and ready to be considered for application on future missions that utilize aerobraking. The advancements discussed herein include both model updates and simulation and benchmark testing. Rigorous testing using observed flight atmospheres, operational environments and statistical analysis characterized the AADS operability in a perturbed environment.

  12. Autonomous Aerobraking Development Software: Phase One Performance Analysis at Mars, Venus, and Titan

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; Bowes, Angela; Powell, Richard W.; Prince, Jill L. H.; Cianciolo, Alicia Dwyer

    2012-01-01

    When entering orbit about a planet or moon with an appreciable atmosphere, instead of using only the propulsion system to insert the spacecraft into its desired orbit, aerodynamic drag can be used after the initial orbit insertion to further decelerate the spacecraft. Several past NASA missions have used this aerobraking technique to reduce the fuel required to deliver a spacecraft into a desired orbit. Aerobraking was first demonstrated at Venus with Magellan in 1993 and then was used to achieve the science orbit of three Mars orbiters: Mars Global Surveyor in 1997, Mars Odyssey in 2001, and Mars Reconnaissance Orbiter in 2006. Although aerobraking itself reduces the propellant required to reach a final low period orbit, it does so at the expense of additional mission time to accommodate the aerobraking operations phase (typically 3-6 months), a large mission operations staff, and significant Deep Space Network (DSN) coverage. By automating ground based tasks and analyses associated with aerobraking and moving these onboard the spacecraft, a flight project could save millions of dollars in operations staffing and DSN costs (Ref. 1).

  13. Orbital Transfer Vehicle (space taxi) with aerobraking at Earth and Mars

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report shall cover all major aspects of the design of an Aeroassisted Manned Transfer Vehicle (or TAXI) for use as part of advanced manned Mars missions based on a cycling ship concept. Along with the heliocentric orbiting Cycling Spacecraft, such a TAXI would be a primary component of a long-term transportation system for Mars exploration. The Aeroassisted Manned Transfer Vehicle (AMTV) design developed shall operate along transfer trajectories between Earth and a Cycling Spacecraft (designed by the University of Michigan) and Mars. All operations of the AMTV shall be done primarily within the sphere of influence of the two planets. Maximum delta-V's for the vehicle have been established near 9 km/sec, with transfer durations of about 3 days. Acceleration deltaV's will be accomplished using 3 SSME-based hydrogen-oxygen chemical rockets (l(sub sp) = 485 sec & Thrust greater than = 300,00 Ib(sub f)/engine) with a thrust vector directly opposite the aerobraking deceleration vector. The aerobraking deceleration portion of an AMTV mission would be accomplished in this design by a moderate L/D aeroshield of an ellipsoidally-blunt, raked-off, elliptic cone (EBROEC) shape. The reusable thermal protection material comprising the shield will consist of a flexible, multi-layer, ceramic fabric stretched over a lightweight, rigid, shape - defining truss structure. Behind this truss, other components, including the engine supports, would be attached and protected from heating during aerobraking passes. Among these other components would be 2 LOX tanks and 4 LH2 tanks (and their support frames) holding over 670,000 lbm of propellant necessary to impart the required delta-V to the 98,000 lbm burnout mass vehicle. A 20,000 lbm crew module with docking port (oriented parallel to the accel./decel. axis) will provide accommodations for 9 crew members (11 under extreme conditions) for durations up to seven days, thus allowing extra time for emergency situations. This AMTV will be

  14. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  15. Raked circular-cone aerobraking orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Park, Chul (Inventor); Davies, Carol B. (Inventor)

    1990-01-01

    An aerobraking orbital transfer vehicle (AOTV) (80) has aerobrake (82) with a blunted raked-off circular-cone configuration. The other components of the AOTV, including command/control module (95), fuel tanks (86, 88, 89 and 91), rocket engines (94) and afterbody (84), are positioned substantially along resultant force axis (104) of the AOTV (80). The axis (104) coincides with the resultant (sum of lift and drag) force vector. Afterbody (84) is mounted behind the aerobrake (82) with its length extending rearwardly from the aerobrake. The base flow clearance angle .phi. of the aerobrake (80) is 25.degree., thus allowing the afterbody (84) to extend rearwardly from the aerobrake (82) to a much greater extent than possible with a raked-off elliptic-cone aerobraking shield configuration. Afterbody size limitation and other problems associated with the raked-off elliptic-cone aerobraking shield configuration are alleviated by the combination of the aerobrake shape and positioning of the fuel tanks (86, 88, 89 and 91), rocket engines (94) and afterbody (84).

  16. Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam

    2004-01-01

    Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.

  17. An Atmospheric Variability Model for Venus Aerobraking Missions

    NASA Technical Reports Server (NTRS)

    Tolson, Robert T.; Prince, Jill L. H.; Konopliv, Alexander A.

    2013-01-01

    Aerobraking has proven to be an enabling technology for planetary missions to Mars and has been proposed to enable low cost missions to Venus. Aerobraking saves a significant amount of propulsion fuel mass by exploiting atmospheric drag to reduce the eccentricity of the initial orbit. The solar arrays have been used as the primary drag surface and only minor modifications have been made in the vehicle design to accommodate the relatively modest aerothermal loads. However, if atmospheric density is highly variable from orbit to orbit, the mission must either accept higher aerothermal risk, a slower pace for aerobraking, or a tighter corridor likely with increased propulsive cost. Hence, knowledge of atmospheric variability is of great interest for the design of aerobraking missions. The first planetary aerobraking was at Venus during the Magellan mission. After the primary Magellan science mission was completed, aerobraking was used to provide a more circular orbit to enhance gravity field recovery. Magellan aerobraking took place between local solar times of 1100 and 1800 hrs, and it was found that the Venusian atmospheric density during the aerobraking phase had less than 10% 1 sigma orbit to orbit variability. On the other hand, at some latitudes and seasons, Martian variability can be as high as 40% 1 sigmaFrom both the MGN and PVO mission it was known that the atmosphere, above aerobraking altitudes, showed greater variability at night, but this variability was never quantified in a systematic manner. This paper proposes a model for atmospheric variability that can be used for aerobraking mission design until more complete data sets become available.

  18. Preliminary design of a large tetrahedral truss/hexagonal heatshield panel aerobrake

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Mikulas, Martin M., Jr.

    1989-01-01

    An aerobrake structural concept is introduced which consists of two primary components: (1) a lightweight erectable tetrahedral support truss; and (2) sandwich hexagonal heatshield panels which, when attached to the truss, form a continuous impermeable aerobraking surface. Generic finite element models and a general analysis procedure to design tetrahedral truss/hexagonal heatshield panel aerobrakes is developed, and values of the aerobrake design parameters which minimize mass and packaging volume for a 120-foot-diameter aerobrake are determined. Sensitivity of the aerobrake design to variations in design parameters is also assessed. The results show that a 120-foot-diameter aerobrake is viable using the concept presented (i.e., the aerobrake mass is less than or equal to 15 percent of the payload spacecraft mass). Minimizing the aerobrake mass (by increasing the number of rings in the support truss) however, leads to aerobrakes with the highest part count.

  19. Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Prince, Jill L. H.

    2011-01-01

    Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.

  20. Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Long, Stacia M.; You, Tung-Han; Halsell, C. Allen; Bhat, Ramachand S.; Demcak, Stuart W.; Graat, Eric J.; Higa, Earl S.; Highsmith, Dolan E.; Mottinger, Neil A.; Jah, Moriba K.

    2007-01-01

    The Mars Reconnaissance Orbiter reached Mars on March 10, 2006 and performed a Mars orbit insertion maneuver of 1 km/s to enter into a large elliptical orbit. Three weeks later, aerobraking operations began and lasted about five months. Aerobraking utilized the atmospheric drag to reduce the large elliptical orbit into a smaller, near circular orbit. At the time of MRO aerobraking, there were three other operational spacecraft orbiting Mars and the navigation team had to minimize the possibility of a collision. This paper describes the daily operations of the MRO navigation team during this time as well as the collision avoidance strategy development and implementation.

  1. The Next Generation of Mars-GRAM and Its Role in the Autonomous Aerobraking Development Plan

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.; Ramey, Holly S.

    2011-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM 2010 is currently being used to develop the onboard atmospheric density estimator that is part of the Autonomous Aerobraking Development Plan. In previous versions, Mars-GRAM was less than realistic when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3. A comparison analysis has been completed between Mars-GRAM, TES and data from the Planetary Data System (PDS) resulting in updated coefficients for the functions relating density, latitude, and longitude of the sun. The adjustment factors are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The latest release of Mars-GRAM 2010 includes these adjustment factors that alter the in-put data from MGCM and MTGCM for the Mapping Year 0 (user-controlled dust) case. The greatest adjustment occurs at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km as well as better agreement with MGS, ODY and MRO data at approximately 90-135 km. Improved simulations utilizing Mars-GRAM 2010 are vital to developing the onboard atmospheric density estimator for the Autonomous Aerobraking Development Plan. Mars-GRAM 2010 was not the only planetary GRAM utilized during phase 1 of this plan; Titan-GRAM and Venus-GRAM were used to generate density data sets for Aerobraking Design Reference Missions. These data sets included altitude profiles (both vertical and along a trajectory), GRAM perturbations (tides, gravity waves, etc.) and provided density and scale height values for analysis by other Autonomous Aero-braking team members.

  2. Robust control algorithms for Mars aerobraking

    NASA Astrophysics Data System (ADS)

    Shipley, Buford W., Jr.; Ward, Donald T.

    Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.

  3. Aeroheating Thermal Analysis Methods for Aerobraking Mars Missions

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.

    2002-01-01

    Mars missions often employ aerobraking upon arrival at Mars as a low-mass method to gradually reduce the orbit period from a high-altitude, highly elliptical insertion orbit to the final science orbit. Two recent missions that made use of aerobraking were Mars Global Surveyor (MGS) and Mars Odyssey. Both spacecraft had solar arrays as the main aerobraking surface area. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis must be tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. To properly represent the temperatures prior to and during the drag pass, the model must include the orbital solar and planetary heat fluxes. The correlation of the thermal model to flight data allows a validation of the modeling process, as well as information on what processes dominate the thermal behavior. This paper describes the thermal modeling method that was developed for this purpose, as well as correlation for two flight missions, and a discussion of improvements to the methodology.

  4. Structural performance of two aerobrake hexagonal heat shield panel concepts

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Dyess, James W.

    1992-01-01

    Structural sizing and performance are presented for two structural concepts for an aerobrake hexagonal heat shield panel. One concept features a sandwich construction with an aluminum honeycomb core and thin quasi-isotropic graphite-epoxy face sheets. The other concept features a skin-rib isogrid construction with thin quasi-isotropic graphite-epoxy skins and graphite-epoxy ribs oriented at 0, +60, and -60 degs along the panel. Linear static, linear bifurcation buckling, and nonlinear static analyses were performed to compare the structural performance of the two panel concepts and assess their feasibility for a lunar transfer vehicle aerobrake application.

  5. An evaluation of ablative materials for a lunar transfer vehicle aerobrake

    NASA Technical Reports Server (NTRS)

    Lane, J. G.; Salmassy, O. K.

    1993-01-01

    An evaluation of the utility of an ablative thermal protection system (TPS) for use on a lunar mission return aerobrake has been completed. Requirements are established and criteria developed specifically for the ablator application. A quantitative and qualitative multi-attribute utility analysis is employed to establish a relative ranking among candidates and a performance threshold. A review of the applicable existing ablator material database is made and appropriate thermochemical/melting ablation analysis is employed to evaluate thermal performance. Ablatives are shown to be potentially both performance capable and cost effective in single-use roles. Reusable surface insulation is also shown to be competitive as an ablator with certain modifications.

  6. A Study on Earth Re-entry Capsules with Deployable Aerobrakes for Recoverable Microgravity Experiments

    NASA Astrophysics Data System (ADS)

    Carandente, Valerio; Savino, Raffaele; D'Oriano, Vera; Fortezza, Raimondo

    2015-06-01

    Deployable aerobrakes for Earth re-entry capsules may offer many advantages in the near future, including the opportunity to recover on Earth scientific payloads from the Space with reduced risks and costs with respect to conventional systems. Such capsules can be accommodated in the selected launcher in folded configuration optimizing the available volume and, when planned by the mission profile, the aerobrake can be deployed in order to increase the surface exposed to the hypersonic flow and therefore to reduce the ballistic parameter. This can offer as main advantage the opportunity to perform an aerodynamic de-orbit of the system without the need of a dedicated propulsive subsystem and an atmospheric re-entry with reduced aerothermal and mechanical loads making possible the use of relatively lightweight and cheap thermal protection system materials. To ensure the recovery of the capsule, the deployable surface can be modulated to obtain the aerodynamic control of the de-orbit trajectory in order to correctly target the capsule towards the selected landing site for post-flight analyses and operations. The main objective of the work is to present a number of feasible mission profiles for orbital platforms to/from Low Earth Orbit aimed in particular at scientific experiments in microgravity conditions. In addition, a suborbital scenario for a technological demonstrator, useful to experimentally verify the system applicability before the design of orbital missions, is also presented and discussed.

  7. Aerobraking strategies for the sample of comet coma earth return mission

    NASA Technical Reports Server (NTRS)

    Abe, Takashi; Kawaguchi, Jun'ichiro; Uesugi, Kuninori; Yen, Chen-Wan L.

    1990-01-01

    The results of a study to the validate the applicability of the aerobraking concept to the SOCCER (sample of comet coma earth return) mission using a six-DOF computer simulation of the aerobraking process are presented. The SOCCER spacecraft and the aerobraking scenario and power supply problem are briefly described. Results are presented for the spin effect, payload exposure problem, and sun angle effect.

  8. Computational Systems Chemical Biology

    PubMed Central

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2013-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007). The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology / systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology. PMID:20838980

  9. Computational systems chemical biology.

    PubMed

    Oprea, Tudor I; May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.

  10. Preliminary structural design of a lunar transfer vehicle aerobrake. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1992-01-01

    An aerobrake concept for a Lunar transfer vehicle was weight optimized through the use of the Taguchi design method, structural finite element analyses and structural sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter to depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The minimum weight aerobrake configuration resulting from the study was approx. half the weight of the average of all twenty seven experimental configurations. The parameters having the most significant impact on the aerobrake structural weight were identified.

  11. Aeroheating Mapping to Thermal Model for Autonomous Aerobraking Capability

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    2010-01-01

    Thermal modeling has been performed to evaluate the potential for autonomous aerobraking of a spacecraft in the atmosphere of a planet. As part of this modeling, the aeroheating flux during aerobraking must be applied to the spacecraft solar arrays to evaluate their thermal response. On the Mars Reconnaissance Orbiter (MRO) mission, this was done via two separate thermal models and an extensive suite of mapping scripts. That method has been revised, and the thermal analysis of an aerobraking pass can now be accomplished via a single thermal model, using a new capability in the Thermal Desktop software. This capability, Boundary Condition Mapper, has the ability to input heating flux files that vary with time, position on the solar array, and with the skin temperature. A recently added feature to the Boundary Condition Mapper is that this module can also utilize files that describe the variation of aeroheating over the surface with atmospheric density (rather than time); this is the format of the MRO aeroheating files. This capability has allowed a huge streamlining of the MRO thermal process, simplifying the procedure for importing new aeroheating files and trajectory information. The new process, as well as the quantified time savings, is described.

  12. Heavily loaded joints for assembling aerobrake support trusses

    NASA Technical Reports Server (NTRS)

    Bandel, Hannskarl; Olsson, Nils; Levintov, Boris

    1990-01-01

    The major emphasis was to develop erectable joints for large aerobrake support trusses. The truss joints must be able to withstand the large forces experienced by the truss during the aero-pass, as well as be easily assembled and disassembled on orbit by astronauts or robots. Other important design considerations include; strength, stiffness, and allowable error in strut length. Six mechanical joint designs, as well as a seventh joint design, where a high strength epoxy is injected to make the connection rigid, are presented.

  13. Navigating Mars Global Surveyor Through the Martian Atmosphere: Aerobraking 2

    NASA Technical Reports Server (NTRS)

    Esposito, P.; Alwar, V.; Burkhart, P.; Demcak, S.; Graat, E.; Johnston, M.; Portock, B.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft was successfully inserted into an elliptical orbit around Mars on 9/12/97, 01:53:49 UTC. This orbit was near polar (inclination=93.26 deg) with an orbital period of 44.993 hours and apoapsis and periapsis altitudes of 54,025.9 km and 262.9 km respectively. After 201 orbits and 196 days after Mars orbit insertion, the first phase of aerobraking (AB), called AB 1, has ended; after the AB 1 termination maneuver, the orbital period was 11.64 hours with apoapsis and periapsis altitudes of 17,870.3 and 170.7 Ian respectively. Thereafter, MGS was in a science phasing orbit (SPO) and acquired data from the science instruments from 3/28/98 to 9/22/98 (orbits 202 through 572). The second phase of aerobraking (AB2) began on 9/23/98 with the first descent into the atmosphere on P574 and ended with the aerobraking termination maneuver (ABX) on 2/4/99 on A 1284. Just prior to ABX, the apoapsis and periapsis altitudes were 456.5 km and 116.7 km respectively with an orbit period of 1.973 hours, a local mean solar time (LMST) at the descending node of 2 hours, 3.6 minutes and an inclination of 92.9 degrees. AB was responsible for circularization of the MGS orbit. However, two additional orbital conditions had to be satisfied simultaneously. These were a) complete AB2 when the LMST at the descending node was close to 2:00 am and b) the inclination was at 93.0 degrees. This paper describes the navigation of MGS throughout AB2; a companion paper describes the strategy and plan for aerobraking. Navigation challenges involved: a) the estimation of an atmospheric density model for every drag pass or periapsis-passage by analyzing doppler tracking data, b) the generation of a short-term, that is over one to several orbits, accurate atmospheric density predictions, c) maintaining the spacecraft's orbit within upper and lower bounds of atmospheric density or dynamic pressure during each periapsis-passage, and d) the prediction of accurate periapsis

  14. Probabilistic Thermal Analysis During Mars Reconnaissance Orbiter Aerobraking

    NASA Technical Reports Server (NTRS)

    Dec, John A.

    2007-01-01

    A method for performing a probabilistic thermal analysis during aerobraking has been developed. The analysis is performed on the Mars Reconnaissance Orbiter solar array during aerobraking. The methodology makes use of a response surface model derived from a more complex finite element thermal model of the solar array. The response surface is a quadratic equation which calculates the peak temperature for a given orbit drag pass at a specific location on the solar panel. Five different response surface equations are used, one of which predicts the overall maximum solar panel temperature, and the remaining four predict the temperatures of the solar panel thermal sensors. The variables used to define the response surface can be characterized as either environmental, material property, or modeling variables. Response surface variables are statistically varied in a Monte Carlo simulation. The Monte Carlo simulation produces mean temperatures and 3 sigma bounds as well as the probability of exceeding the designated flight allowable temperature for a given orbit. Response surface temperature predictions are compared with the Mars Reconnaissance Orbiter flight temperature data.

  15. Applications of low lift to drag ratio aerobrakes using angle of attack variation for control

    NASA Technical Reports Server (NTRS)

    Mulqueen, J. A.

    1991-01-01

    Several applications of low lift to drag ratio aerobrakes are investigated which use angle of attack variation for control. The applications are: return from geosynchronous or lunar orbit to low Earth orbit; and planetary aerocapture at Earth and Mars. A number of aerobrake design considerations are reviewed. It was found that the flow impingement behind the aerobrake and the aerodynamic heating loads are the primary factors that control the sizing of an aerobrake. The heating loads and other loads, such as maximum acceleration, are determined by the vehicle ballistic coefficient, the atmosphere entry conditions, and the trajectory design. Several formulations for defining an optimum trajectory are reviewed, and the various performance indices that can be used are evaluated. The 'nearly grazing' optimal trajectory was found to provide the best compromise between the often conflicting goals of minimizing the vehicle propulsive requirements and minimizing vehicle loads. The relationship between vehicle and trajectory design is investigated further using the results of numerical simulations of trajectories for each aerobrake application. The data show the sensitivity of the trajectories to several vehicle parameters and atmospheric density variations. The results of the trajectory analysis show that low lift to drag ratio aerobrakes, which use angle of attack variation for control, can potentially be used for a wide range of aerobrake applications.

  16. Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.

  17. The Strategy for the Second Phase of Aerobraking Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Johnston, M. D.; Esposito, P. B.; Alwar, V.; Demcak, S. W.; Graat, E. J.; Burkhart, P. D.; Portock, B. M.

    2000-01-01

    On February 19, 1999, the Mars Global Surveyor (MGS) spacecraft was able to propulsively establish its mapping orbit. This event followed the completion of the second phase of aerobraking for the MGS spacecraft on February 4, 1999. For the first time, a spacecraft at Mars had successfully employed aerobraking methods in order to reach its desired pre-launch mapping orbit. This was accomplished despite a damaged spacecraft solar array. The MGS spacecraft was launched on November 7, 1996, and after a ten month interplanetary transit was inserted into a highly elliptical capture orbit at Mars on September 12, 1997. Unlike other interplanetary missions, the MGS spacecraft was launched with a planned mission delta-V ((Delta)V) deficit of nearly 1250 m/s. To overcome this AV deficit, aerobraking techniques were employed. However, damage discovered to one of the spacecraft's two solar arrays after launch forced major revisions to the original aerobraking planning of the MGS mission. In order to avoid a complete structural failure of the array, peak dynamic pressure levels for the spacecraft were established at a major spacecraft health review in November 1997. These peak dynamic pressure levels were roughly one-third of the original mission design values. Incorporating the new dynamic pressure limitations into mission replanning efforts resulted in an 'extended' orbit insertion phase for the mission. This 'extended' orbit insertion phase was characterized by two distinct periods of aerobraking separated by an aerobraking hiatus that would last for several months in an intermediate orbit called the "Science Phasing Orbit" (SPO). This paper describes and focuses on the strategy for the second phase of aerobraking for the MGS mission called "Aerobraking Phase 2." This description will include the baseline aerobraking flight profile, the trajectory control methodology, as well as the key trajectory metrics that were monitored in order to successfully "guide' the spacecraft to

  18. Chemical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2002-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  19. Equilibrium radiative heating tables for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Sutton, Kenneth; Brauns, Frank

    1990-01-01

    Studies currently underway for Mars missions often envision the use of aerobraking for orbital capture at Mars. These missions generally involve blunt-nosed vehicles to dissipate the excess energy of the interplanetary transfer. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. In addition, the Martian atmosphere contains CO2, whose dissociation products are known to include strong radiators. An inviscid, equilibrium, stagnation point, radiation-coupled flow-field code has been developed for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data for air, and reasonable agreement has been found. In the present work, the method was applied to a matrix of conditions in the Martian atmosphere. These conditions encompass most trajectories of interest for Mars exploration spacecraft. The predicted equilibrium radiative heating to the stagnation point of the vehicle is presented.

  20. Mechanistic model for catalytic recombination during aerobraking maneuvers

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1989-01-01

    Several mechanistic models are developed to predict recombination coefficients for use in heat shield design for reusable surface insulation (RSI) on aerobraking vehicles such as space shuttles. The models are applied over a temperature range of 300 to 1800 K and a stagnation pressure range of 0 to 3,000 Pa. A four parameter model in temperature was found to work best; however, several models (including those with atom concentrations at the surface) were also investigated. Mechanistic models developed with atom concentration terms may be applicable when sufficient data becomes available. The requirement is shown for recombination experiments in the 300 to 1000 K and 1500 to 1850 K temperature range, with deliberate concentration variations.

  1. Venus Upper Atmosphere - Results from the Venus Express Aerobraking Campaign

    NASA Astrophysics Data System (ADS)

    Svedhem, H.

    2015-12-01

    During the last year of operations Venus Express was conducting an experimental aerobraking campaign. The objectives were twofold; firstly, to exercise for the first time the techniques of orbit modification by aerobraking with a European spacecraft, in order to prepare for future scientific ESA missions, and secondly, to collect information on atmospheric density by direct measurements in an environment difficult to sample with other means. Several of the scientific instruments on board Venus Express measured gas abundances of various gasses, including CO2, up to an altitude of 130km, but no reliable measurements could be made of total density and no remote measurements could be done above this altitude. The on board accelerometers gave direct measurements of the deceleration which in turn is directly proportional to the local atmospheric density. This provided an excellent way to study both the total density profile throughout the orbital arc in the atmosphere and small scale density variations in the region of the pericentre. The spacecraft behaved perfectly well throughout the whole campaign and provided a wealth of data both on the atmosphere and on the response of the spacecraft to the harsh environment with strong heat loads and some dynamic stress. At the time of the campaign the pericentre was located near the terminator at about 75 degrees Northern latitude. The so called "walk-in" phase started at an altitude of 190 km on 17 May 2014 and the campaign ended on 11 July, after having reached a lowest altitude of 129.2 km. Subsequently, a series of orbit control manoeuvres lifted up the pericentre to 460 km altitude and the science activities were resumed after a thorough check-out of the spacecraft. We have detected a highly variable atmosphere, both on a day to day basis and within the individual pericentre passes. The duration of each pass was approximately 100 s and the maximum dynamic pressure achieved was more than 0.75 N/m2. The orbital period was

  2. Control algorithms for aerobraking in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Shipley, Buford W., Jr.

    1991-12-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Modifications are made to the APC to improve its robustness to density variations. These modifications include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two hybrid density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. The equilibrium glide entry phase is employed for the first part of the trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called te Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). The four new controllers are tested usig a six degree of freedom computer simulation to evaluate their robustness.

  3. Control algorithms for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Shipley, Buford W., Jr.

    1991-01-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.

  4. Control algorithms for aerobraking in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Ward, Donald T.; Shipley, Buford W., Jr.

    1991-09-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.

  5. Chemical sensor system

    NASA Technical Reports Server (NTRS)

    Darrach, Murray R. (Inventor); Chutjian, Ara (Inventor)

    2008-01-01

    A chemical sensing apparatus and method for the detection of sub parts-per-trillion concentrations of molecules in a sample by optimizing electron utilization in the formation of negative ions is provided. A variety of media may be sampled including air, seawater, dry sediment, or undersea sediment. An electrostatic mirror is used to reduce the kinetic energy of an electron beam to zero or near-zero kinetic energy.

  6. Weight optimization of an aerobrake structural concept for a lunar transfer vehicle

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Unal, Resit; Rowell, Lawrence F.; Rehder, John J.

    1992-01-01

    An aerobrake structural concept for a lunar transfer vehicle was weight optimized through the use of the Taguchi design method, finite element analyses, and element sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter-depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The aerobrake structural configuration with the minimum weight was 44 percent less than the average weight of all the remaining satisfactory experimental configurations. In addition, the results of this study have served to bolster the advocacy of the Taguchi method for aerospace vehicle design. Both reduced analysis time and an optimized design demonstrated the applicability of the Taguchi method to aerospace vehicle design.

  7. Control algorithms for aerobraking in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Shipley, Buford Wiley, Jr.

    1991-02-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These modifications include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. The equilibrium glide entry phase is used for the first part of the trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARS-GRAM is used to develop realistic atmospheres for the study. The atmospheres are then perturbed using square wave density pulses. The MHPC, MPC, LHTC and LRC show dramatic improvements in robustness over the APC and EC. The MHPC, MPC, LHTC and LTC all complete the initial phase of testing (using square wave density pulses) with no failures. The second phase tests the MHPC, MPC, LHTC and LTC against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the

  8. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 2: Cryo/aerobrake vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The cryogenic/aerobrake (CAB) and the cryogenic all-propulsive (CAP) concept designs developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study are presented. The evolution of the CAB and CAP concepts is described along with the requirements, guidelines and assumptions for the designs. Operating modes and options are defined and systems descriptions of the vehicles are presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  9. Mars Aerobraking Spacecraft State Estimation by Processing Inertial Measurement Unit Data

    NASA Technical Reports Server (NTRS)

    Jah, Moriba K.; Lisano, Michael E.,, II; Born, George H.; Axelrad, Penina

    2006-01-01

    Aerobraking is an efficient technique for orbit adjustment of planetary spacecraft, such as Magellan (Venus), Mars Global Surveyor, and Mars Odyssey. Determination of the vehicle state during the aerobraking phase has conventionally been performed using only radiometric tracking data prior to and following the atmospheric drag pass. This approach is sufficiently accurate and timely to meet current mission operational requirements; however, it is expensive in terms of ground support and leads to delayed results because ofthe need for post-drag pass data. This research presents a new approach to estimation of the vehicle state during the atmospheric pass that sequentially incorporates observations from an Inertial Measurement Unit (IMU) and models of the vehicle and environment. The approach, called Inertial Measurements for Aerobraking Navigation (IMAN), is shown to perform at a level comparable to the conventional methods in terms of navigation accuracy and superior to them in terms of availability of the results immediately after completion ofthe pass. Furthermore, the research shows that IMAN can be used to reliably predict subsequent periapsis times and locations over all aerobraking regimes. IMAN also yields accurate peak dynamic pressure and heating rates, critical for a successful corridor control strategy, comparable to navigation team reconstructed values. This research also provides the first instance of the utilization of the Unscented Kalman Filter for the purpose of estimating an actual spacecraft trajectory arc about another planet.

  10. The Development and Evaluation of an Operational Aerobraking Strategy for the Mars 2001 Odyssey Orbiter

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Munk, Michelle M.; Powell, Richard W.

    2002-01-01

    The Mars 2001 Odyssey Orbiter successfully completed the aerobraking phase of its mission on January 11, 2002. This paper discusses the support provided by NASA's Langley Research Center to the navigation team at the Jet Propulsion Laboratory in the planning and operational support of Mars Odyssey Aerobraking. Specifically, the development of a three-degree-of-freedom aerobraking trajectory simulation and its application to pre-flight planning activities as well as operations is described. The importance of running the simulation in a Monte Carlo fashion to capture the effects of mission and atmospheric uncertainties is demonstrated, and the utility of including predictive logic within the simulation that could mimic operational maneuver decision-making is shown. A description is also provided of how the simulation was adapted to support flight operations as both a validation and risk reduction tool and as a means of obtaining a statistical basis for maneuver strategy decisions. This latter application was the first use of Monte Carlo trajectory analysis in an aerobraking mission.

  11. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. The primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-1 10 km) for seasonal dates and locations during Phase 1 aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase I aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  12. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Harberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. ne primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-110 km) for seasonal dates and locations during Phase 1 aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase 1 aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars' middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  13. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.

    2002-01-01

    Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.

  14. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. The primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-110 km) for seasonal dates and locations during Phase I aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase I aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars' middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  15. Chemical Transformation System: Cloud Based ...

    EPA Pesticide Factsheets

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not contain the proprietary chemicals that environmental regulators must consider. We are building the Chemical Transformation System (CTS) to facilitate model parameterization and analysis. CTS integrates a number of physicochemical property calculators into the system including EPI Suite, SPARC, TEST and ChemAxon. The calculators are heterogeneous in their scientific methodologies, technology implementations and deployment stacks. CTS also includes a chemical transformation processing engine that has been loaded with reaction libraries for human biotransformation, abiotic reduction and abiotic hydrolysis. CTS implements a common interface for the disparate calculators accepting molecular identifiers (SMILES, IUPAC, CAS#, user-drawn molecule) before submission for processing. To make the system as accessible as possible and provide a consistent programmatic interface, we wrapped the calculators in a standardized RESTful Application Programming Interface (API) which makes it capable of servicing a much broader spectrum of clients without constraints to interoperability such as operating system or programming language. CTS is hosted in a shared cloud environment, the Quantitative Environmental

  16. Chemical Abstracts Service Chemical Registry System: History, Scope, and Impacts.

    ERIC Educational Resources Information Center

    Weisgerber, David W.

    1997-01-01

    Describes the history, scope, and applications of the Chemical Abstracts Service Chemical Registry System, a computerized database that uniquely identifies chemical substances on the basis of their molecular structures. Explains searching the system is and discusses its use as an international resource. (66 references) (Author/LRW)

  17. Chemically Assisted Photocatalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Andino, Jean; Wu, Chang-Yu; Mazyck, David; Teixeira, Arthur A.

    2009-01-01

    The chemically assisted photocatalytic oxidation system (CAPOS) has been proposed for destroying microorganisms and organic chemicals that may be suspended in the air or present on surfaces of an air-handling system that ventilates an indoor environment. The CAPOS would comprise an upstream and a downstream stage that would implement a tandem combination of two partly redundant treatments. In the upstream stage, the air stream and, optionally, surfaces of the air-handling system would be treated with ozone, which would be generated from oxygen in the air by means of an electrical discharge or ultraviolet light. In the second stage, the air laden with ozone and oxidation products from the first stage would be made to flow in contact with a silica-titania photocatalyst exposed to ultraviolet light in the presence of water vapor. Hydroxyl radicals generated by the photocatalytic action would react with both carbon containing chemicals and microorganisms to eventually produce water and carbon dioxide, and ozone from the first stage would be photocatalytically degraded to O2. The net products of the two-stage treatment would be H2O, CO2, and O2.

  18. High energy chemical laser system

    DOEpatents

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  19. A comparison of two conformal mapping techniques applied to an aerobrake body

    NASA Technical Reports Server (NTRS)

    Hommel, Mark J.

    1987-01-01

    Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.

  20. Thermal Analysis and Correlation of the Mars Odyssey Spacecraft's Solar Array During Aerobraking Operations

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Gasbarre, Joseph F.; George, Benjamin E.

    2002-01-01

    The Mars Odyssey spacecraft made use of multipass aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking operations provided an opportunity to apply advanced thermal analysis techniques to predict the temperature of the spacecraft's solar array for each drag pass. Odyssey telemetry data was used to correlate the thermal model. The thermal analysis was tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. Specifically, the thermal analysis predictions required a calculation of the spacecraft's velocity relative to the atmosphere, a prediction of the atmospheric density, and a prediction of the heat transfer coefficients due to aerodynamic heating. Temperature correlations were performed by comparing predicted temperatures of the thermocouples to the actual thermocouple readings from the spacecraft. Time histories of the spacecraft relative velocity, atmospheric density, and heat transfer coefficients, calculated using flight accelerometer and quaternion data, were used to calculate the aerodynamic heating. During aerobraking operations, the correlations were used to continually update the thermal model, thus increasing confidence in the predictions. This paper describes the thermal analysis that was performed and presents the correlations to the flight data.

  1. A survey of chemical information systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Shaikh, Aneesa Bashir

    1985-01-01

    A survey of the features, functions, and characteristics of a fairly wide variety of chemical information storage and retrieval systems currently in operation is given. The types of systems (together with an identification of the specific systems) addressed within this survey are as follows: patents and bibliographies (Derwent's Patent System; IFI Comprehensive Database; PULSAR); pharmacology and toxicology (Chemfile; PAGODE; CBF; HEEDA; NAPRALERT; MAACS); the chemical information system (CAS Chemical Registry System; SANSS; MSSS; CSEARCH; GINA; NMRLIT; CRYST; XTAL; PDSM; CAISF; RTECS Search System; AQUATOX; WDROP; OHMTADS; MLAB; Chemlab); spectra (OCETH; ASTM); crystals (CRYSRC); and physical properties (DETHERM). Summary characteristics and current trends in chemical information systems development are also examined.

  2. Chemical Tracking Systems: Not Your Usual Global Positioning System!

    ERIC Educational Resources Information Center

    Roy, Ken

    2007-01-01

    The haphazard storing and tracking of chemicals in the laboratory is a serious safety issue facing science teachers. To get control of your chemicals, try implementing a "chemical tracking system". A chemical tracking system (CTS) is a database of chemicals used in the laboratory. If implemented correctly, a CTS will reduce purchasing costs,…

  3. Film processing investigation. [improved chemical mixing system

    NASA Technical Reports Server (NTRS)

    Kelly, J. L.

    1972-01-01

    The present operational chemical mixing system for the Photographic Technology Division is evaluated, and the limitations are defined in terms of meeting the present and programmed chemical supply and delivery requirements. A major redesign of the entire chemical mixing, storage, analysis, and supply system is recommended. Other requirements for immediate and future implementations are presented.

  4. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, P.

    1986-01-01

    Progress in the development of computational methods for the characterization of chemical reactions in aerobraking orbit transfer vehicle (AOTV) propulsive flows is reported. Two main areas of code development were undertaken: (1) the implementation of CASSCF (complete active space self-consistent field) and SCF (self-consistent field) analytical first derivatives on the CRAY X-MP; and (2) the installation of the complete set of electronic structure codes on the CRAY 2. In the area of application calculations the main effort was devoted to performing full configuration-interaction calculations and using these results to benchmark other methods. Preprints describing some of the systems studied are included.

  5. Unnatural selection in chemical systems

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1995-01-01

    The theory of evolution through natural selection was proposed by Darwin and Wallace to explain how the characteristics of populations of animals change with time. An examination of their assumptions shows that the theory has much broader application than they originally envisaged. We now know that in appropriate environments RNA molecules or computer viruses, for example, can evolve. The adventure with which we are concerned is the quest for chemical systems that undergo processes analogous to Darwinian selection in the test tube. The search is not restricted to systems that are closely related to nucleic acids, although most of the available experimental evidence concerns such systems. A population of molecules satisfies all the requirements of the theory is there are different kinds of molecules in the population and if each individual molecule can direct the formation of copies of itself, then a population of molecules will adapt to a varying environment by changing its composition so as to maintain as high as possible a rate of replication. Sol Spiegelman is the inventor of 'unnatural selection'. He showed clearly that populations of RNA molecules evolve when replicated repeatedly by Q beta RNA polymerase under a chosen set of adverse reaction conditions. In the systems that he studied, the initial population was fairly homogeneous and much of the variation was created during the course of the experiment by mutation, that is, error of replication. The term 'unnatural selection' will be used loosely to describe evolution of nucleic acids or other replicatable polymers in vitro. The term 'Natural Selection' will be reserved for the evolution of living organisms and their viruses. Natural Section usually involves the coevolution of nucleic acids and proteins, while 'unnatural selection', as practiced so far, allows replicating nucleic acids to evolve but hold constant the enzymes that catalyze replication. It is widely believed that biology based on DNA, RNA, and

  6. Nonequilibrium effects on the aerothermodynamics of transatmospheric and aerobraking vehicles

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Candler, Graham V.

    1993-01-01

    A 3D CFD algorithm is used to study the effect of thermal and chemical nonequilibrium on slender and blunt body aerothermodynamics. Both perfect gas and reacting gas air models are used to compute the flow over a generic transatmospheric vehicle and a proposed lunar transfer vehicle. The reacting air is characterized by a translational-rotational temperature and a vibrational-electron-electronic temperature and includes eight chemical species. The effects of chemical reaction, vibrational excitation, and ionization on lift-to-drag ratio and trim angle are investigated. Results for the NASA Ames All-body Configuration show a significant difference in center of gravity location for a reacting gas flight case when compared to a perfect gas wind tunnel case at the same Mach number, Reynolds number, and angle of attack. For the same center of gravity location, the wind tunnel model trims at lower angle of attack than the full-scale flight case. Nonionized and ionized results for a proposed lunar transfer vehicle compare well to computational results obtained from a previously validated reacting gas algorithm. Under the conditions investigated, effects of weak ionization on the heat transfer and aerodynamic coefficients were minimal.

  7. Emergency destruction system for recovered chemical munitions

    SciTech Connect

    Shepodd, T.J.; Stofleth, J.H.; Haroldsen, B.L.

    1998-04-01

    At the request of the US Army Project Manager for Non-Stockpile Chemical Materiel, Sandia National Laboratories is developing a transportable system for destroying recovered, explosively configured, chemical warfare munitions. The system uses shaped charges to access the agent and burster followed by chemical neutralization to destroy them. The entire process takes place inside a sealed pressure vessel. In this paper, they review the design, operation, and testing of a prototype system capable of containing up to one pound of explosive.

  8. Advanced Chemical Propulsion System Study

    NASA Technical Reports Server (NTRS)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  9. Evidence for Recent Liquid Water on Mars: Seepage Sites in 'Aerobraking Crater' Revisited

    NASA Technical Reports Server (NTRS)

    2000-01-01

    (A) [figure removed for brevity, see original site] (B) [figure removed for brevity, see original site] (C) (D) You will need 3D glasses to view this anaglyph

    The first clue that there might be places on Mars where liquid groundwater seeps out onto the surface came from a picture taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during the pre-mapping Orbit Insertion Phase of the mission. The picture, shown in (A)above, was taken at the end of December 1997 while the spacecraft was still in the midst of aerobraking maneuvers to put it into the circular orbit needed for the Mapping Phase of the project. The Aerobraking 1 image, AB1-07707, showed dark, v-shaped scars on the western wall of a 50 kilometer-(31 mile)-diameter impact crater in southern Noachis Terra at 65oS, 15oW (see B, above, for context). The v-shaped features taper downslope to form narrow, somewhat curved channels. The relationship seen here was interpreted by MOC scientists to be similar to seepage landforms on Earth that form where springs emerge on a slope and water runs downhill.

    Once MGS achieved its Mapping Orbit in March 1999, the MOC was in a better position to take pictures of 10 times higher resolution than the Aerobraking AB1-07707 image. The opportunity to take a new picture of the proposed 'seepage' sites on the wall of the crater in southern Noachis finally arose in January 2000. The result is MOC image M11-00530, shown above in (top) and (C). This new close-up shows that the darkly-shaped scars host many small channels of only a few meters (yards) across. These small channels run downslope and coalesce at the apex (or point) of each 'v'. Amid the small channels are many large boulders, some of them the size of houses, that have eroded out of the crater wall. A 3-D view created using the AB1 and M11 images is shown in (D). The stereo picture (red-blue '3D' glasses required) emphasizes the presence of small channels and valleys, and shows that these valleys start

  10. Environmental Chemicals and Nervous System Dysfunction 1

    PubMed Central

    Damstra, Terri

    1978-01-01

    Selected examples of associations between nervous system diseases and exposures to occupational and environmental chemicals have been reviewed. Recent outbreaks of human neurotoxicity from both wellknown and previously unknown toxicants reemphasize the need for the medical community to give increased attention to chemical causes of nervous system dysfunction. PMID:87062

  11. Dual photochemical replenisher system reduces chemical losses

    NASA Technical Reports Server (NTRS)

    Kolber, J. M.

    1967-01-01

    Dual replenisher system reduces chemical losses and maintains optimum solution concentration during long nonprocessing cycles of photo processing machines. Using a single 3-position switch and solenoid control valves, the system provides instantaneous flow control to each processing tank.

  12. MDO approach for early design of aerobraking orbital transfer vehicles

    NASA Astrophysics Data System (ADS)

    Bérend, N.; Bertrand, S.

    2009-12-01

    This paper presents a new multidisciplinary design optimization (MDO) methodology for preliminary design of an aeroassisted orbital transfer vehicle (AOTV) performing a two-way transfer between a low-Earth "parking" orbit and a high-energy orbit. This work has been performed in the frame of Onera's CENTOR [N. Bérend, C. Jolly, F. Jouhaud, D. Lazaro, Y. Mauriot, C. Monjaret, J.M. Moschetta, M. Parlier, J.L. Pastre, Y. Servouze, J.L. Vérant, Project CENTOR: Preparing the design of future orbital transfer vehicles; IAC-07-D.2.3.07, in: 58th International Astronautical Congress, 24-28/09/2007, Hyderabad, India] project whose objective is to prepare tools and methodology for studying and designing future space transportation systems for new kinds of missions such as on-orbit servicing (OOS), payload ferrying, or in-situ observation of space-debris. Using simplified models and an appropriate low-dimension formulation for the optimization problem the method makes possible to obtain rapidly and easily a global view of the trade-off between the payload mass and the total mass. It also makes possible to discuss the feasibility of the vehicle with regard to different multidisciplinary constraints and technology hypotheses for the heat shield. This approach is illustrated by eight different AOTV design studies, considering two different missions (LEO-MEO and LEO-GEO), two different propulsion technologies (LOX-LH2 and LOX-CH4) and two different thermal protection system (TPS) characteristics. In each case, we discuss the feasibility and characteristics of the lightest vehicle carrying a prescribed 100 kg payload, and, conversely, a heavy vehicle with a prescribed 18 ton total mass, carrying the heaviest possible payload.

  13. Tautomerism in chemical information management systems

    NASA Astrophysics Data System (ADS)

    Warr, Wendy A.

    2010-06-01

    Tautomerism has an impact on many of the processes in chemical information management systems including novelty checking during registration into chemical structure databases; storage of structures; exact and substructure searching in chemical structure databases; and depiction of structures retrieved by a search. The approaches taken by 27 different software vendors and database producers are compared. It is hoped that this comparison will act as a discussion document that could ultimately improve databases and software for researchers in the future.

  14. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  15. HUBBLE WATCHES THE RED PLANET AS MARS GLOBAL SURVEYOR BEGINS AEROBRAKING

    NASA Technical Reports Server (NTRS)

    2002-01-01

    his NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere). This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations. Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking. Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds. Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view. The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this observation. Mars was 158

  16. The NIH-EPA Chemical Information System.

    ERIC Educational Resources Information Center

    Bernstein, Herbert J.; Andrews, Lawrence C.

    1979-01-01

    The NIH-EPA Chemical Information System (CIS) provides facilities useful for the characterization and identification of chemical substances in industrial, academic, regulatory, and emergency response environments. It is comprised of a variety of data bases, retrieval programs, and related processing and display programs with on-line interactive…

  17. Chaos in a chemical system

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.

    2013-07-01

    Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.

  18. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  19. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  20. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples.

  1. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  2. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  3. Engineered Barrier System: Physical and Chemical Environment

    SciTech Connect

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  4. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  5. Hubble Watches the Red Planet as Mars Global Surveyor Begins Aerobraking

    NASA Technical Reports Server (NTRS)

    1997-01-01

    [RIGHT] This NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere).

    This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations.

    Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking.

    Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds.

    Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view.

    The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this

  6. A polarization system for persistent chemical detection

    NASA Astrophysics Data System (ADS)

    Craven-Jones, Julia; Appelhans, Leah; Couphos, Eric; Embree, Todd; Finnegan, Patrick; Goldstein, Dennis; Karelitz, David; LaCasse, Charles; Luk, Ting S.; Mahamat, Adoum; Massey, Lee; Tanbakuchi, Anthony; Washburn, Cody; Vigil, Steven

    2015-09-01

    We report on the development of a prototype polarization tag based system for detecting chemical vapors. The system primarily consists of two components, a chemically sensitive tag that experiences a change in its optical polarization properties when exposed to a specific chemical of interest, and an optical imaging polarimeter that is used to measure the polarization properties of the tags. Although the system concept could be extended to other chemicals, for the initial system prototype presented here the tags were developed to be sensitive to hydrogen fluoride (HF) vapors. HF is used in many industrial processes but is highly toxic and thus monitoring for its presence and concentration is often of interest for personnel and environmental safety. The tags are periodic multilayer structures that are produced using standard photolithographic processes. The polarimetric imager has been designed to measure the degree of linear polarization reflected from the tags in the short wave infrared. By monitoring the change in the reflected polarization signature from the tags, the polarimeter can be used to determine if the tag was exposed to HF gas. In this paper, a review of the system development effort and preliminary test results are presented and discussed, as well as our plan for future work.

  7. Predicting chemical impacts on vertebrate endocrine systems.

    PubMed

    Nichols, John W; Breen, Miyuki; Denver, Robert J; Distefano, Joseph J; Edwards, Jeremy S; Hoke, Robert A; Volz, David C; Zhang, Xiaowei

    2011-01-01

    Animals have evolved diverse protective mechanisms for responding to toxic chemicals of both natural and anthropogenic origin. From a governmental regulatory perspective, these protective responses complicate efforts to establish acceptable levels of chemical exposure. To explore this issue, we considered vertebrate endocrine systems as potential targets for environmental contaminants. Using the hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-gonad (HPG), and hypothalamic-pituitary-adrenal (HPA) axes as case examples, we identified features of these systems that allow them to accommodate and recover from chemical insults. In doing so, a distinction was made between effects on adults and those on developing organisms. This distinction was required because endocrine system disruption in early life stages may alter development of organs and organ systems, resulting in permanent changes in phenotypic expression later in life. Risk assessments of chemicals that impact highly regulated systems must consider the dynamics of these systems in relation to complex environmental exposures. A largely unanswered question is whether successful accommodation to a toxic insult exerts a fitness cost on individual animals, resulting in adverse consequences for populations. Mechanistically based mathematical models of endocrine systems provide a means for better understanding accommodation and recovery. In the short term, these models can be used to design experiments and interpret study findings. Over the long term, a set of validated models could be used to extrapolate limited in vitro and in vivo testing data to a broader range of untested chemicals, species, and exposure scenarios. With appropriate modification, Tier 2 assays developed in support of the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program could be used to assess the potential for accommodation and recovery and inform the development of mechanistically based models.

  8. Compact chemical energy system for seismic applications

    DOEpatents

    Engelke, Raymond P.; Hedges, Robert O.; Kammerman, Alan B.; Albright, James N.

    1998-01-01

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  9. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  10. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  11. The chemical disaster response system in Japan.

    PubMed

    Okumura, Tetsu; Ninomiya, Norifumi; Ohta, Muneo

    2003-01-01

    During the last decade, Japan has experienced the largest burden of chemical terrorism-related events in the world, including the: (1) 1994 Matsumoto sarin attack; (2) 1995 Tokyo subway sarin attack; (3) 1998 Wakayama arsenic incident; (4) 1998 Niigata sodium-azide incident; and (5) 1998 Nagano cyanide incident. Two other intentional cyanide releases in Tokyo subway and railway station restrooms were thwarted in 1995. These events spurred Japan to improve the following components of its chemical disaster-response system: (1) scene demarcation; (2) emergency medical care; (3) mass decontamination; (4) personal protective equipment; (5) chemical detection; (6) information-sharing and coordination; and (7) education and training. Further advances occurred as result of potential chemical terrorist threats to the 2000 Kyushu-Okinawa G8 Summit, which Japan hosted. Today, Japan has an integrated system of chemical disaster response that involves local fire and police services, local emergency medical services (EMS), local hospitals, Japanese Self-Defense Forces, and the Japanese Poison Information Center.

  12. 46 CFR 154.1140 - Dry chemical system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...

  13. 46 CFR 154.1140 - Dry chemical system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...

  14. 46 CFR 154.1140 - Dry chemical system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...

  15. 46 CFR 154.1140 - Dry chemical system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...

  16. 46 CFR 154.1140 - Dry chemical system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...

  17. Lightweight autonomous chemical identification system (LACIS)

    NASA Astrophysics Data System (ADS)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  18. In situ observations of waves in Venus’s polar lower thermosphere with Venus Express aerobraking

    NASA Astrophysics Data System (ADS)

    Müller-Wodarg, Ingo C. F.; Bruinsma, Sean; Marty, Jean-Charles; Svedhem, Håkan

    2016-08-01

    Waves are ubiquitous phenomena found in oceans and atmospheres alike. From the earliest formal studies of waves in the Earth’s atmosphere to more recent studies on other planets, waves have been shown to play a key role in shaping atmospheric bulk structure, dynamics and variability. Yet, waves are difficult to characterize as they ideally require in situ measurements of atmospheric properties that are difficult to obtain away from Earth. Thus, we have incomplete knowledge of atmospheric waves on planets other than our own, and we are thereby limited in our ability to understand and predict planetary atmospheres. Here we report the first ever in situ observations of atmospheric waves in Venus’s thermosphere (130-140 km) at high latitudes (71.5°-79.0°). These measurements were made by the Venus Express Atmospheric Drag Experiment (VExADE) during aerobraking from 24 June to 11 July 2014. As the spacecraft flew through Venus’s atmosphere, deceleration by atmospheric drag was sufficient to obtain from accelerometer readings a total of 18 vertical density profiles. We infer an average temperature of T = 114 +/- 23 K and find horizontal wave-like density perturbations and mean temperatures being modulated at a quasi-5-day period.

  19. Endocrine Disrupting Chemical Impacts on Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Jobling, Susan

    2014-07-01

    We often talk about the importance of water, but one area that's often overlooked is the safety of our water supply. How many people actually think about the purity of their water when they turn on the tap? We may have real reason to be concerned because our water delivery systems and treatment technology seem to be stuck in the past, relying on old water treatment and water delivery systems. While these systems still do a great job filtering out particles, parasites and bacteria, they usually fail to remove 21st century contaminants like pesticides, industrial chemicals, lead, pharmaceuticals and arsenic. Indeed our water contains already a whole plethora of things in daily commerce and pharmaceuticals are increasingly showing up in the water supply, including antibiotics, anti-convulsants, mood altering medications and sex hormones. As the world's dependence on chemicals grows, our water supplies will continue to feel the effects, which inevitably will touch every person on this planet...

  20. Gas phase chemical detection with an integrated chemical analysis system

    SciTech Connect

    CASALNUOVO,STEPHEN A.; FRYE-MASON,GREGORY CHARLES; KOTTENSTETTE,RICHARD; HELLER,EDWIN J.; MATZKE,CAROLYN M.; LEWIS,PATRICK R.; MANGINELL,RONALD P.; BACA,ALBERT G.; HIETALA,VINCENT M.

    2000-04-12

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample preconcentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described.

  1. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  2. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  3. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  4. A Photoacoustic Study of Chemically Active Systems.

    DTIC Science & Technology

    1983-09-01

    unless so designated by other documentation IS. KEY WORDS (Continue w reverse aide If neceeairy wd Identify by block nmber) Photoacoustic, Spectroscopy ...CwcAhnm i, pwo If w M Idntitty by block nin1b9) -,xThe method of gas-microphone photoacoustic spectroscopy and the related photothermal deflection... spectroscopy have been developed for application to chemically active systems. Fourier Transform Infrared Photoacoustic Spectros- copy has been used to study

  5. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  6. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations: Atmospheric Temperatures During Aerobraking and Science Phasing

    NASA Technical Reports Server (NTRS)

    Conrath, Barney J.; Pearl, John C.; Smith, Michael D.; Maguire, William C.; Christensen, Philip R.; Dason, Shymala; Kaelberer, Monte S.

    1999-01-01

    Between September 1997, when the Mars Global Surveyor spacecraft arrived at Mars, and September 1998 when the final aerobraking phase of the mission began, the Thermal Emission Spectrometer (TES) has acquired an extensive data set spanning approximately half of a Martian year. Nadir-viewing spectral measurements from this data set within the 15-micrometers CO2 absorption band are inverted to obtain atmospheric temperature profiles from the surface up to about the 0.1 mbar level. The computational procedure used to retrieve the temperatures is presented. Mean meridional cross sections of thermal structure are calculated for periods of time near northern hemisphere fall equinox, winter solstice, and spring equinox, as well as for a time interval immediately following the onset of the Noachis Terra dust storm. Gradient thermal wind cross sections are calculated from the thermal structure. Regions of possible wave activity are identified using cross sections of rms temperature deviations from the mean. Results from both near-equinox periods show some hemispheric asymmetry with peak eastward thermal winds in the north about twice the magnitude of those in the south. The results near solstice show an intense circumpolar vortex at high northern latitudes and waves associated with the vortex jet core. Warming of the atmosphere aloft at mid-northern latitudes suggests the presence of a strong cross-equatorial Hadley circulation. Although the Noachis dust storm did not become global in scale, strong perturbations to the atmospheric structure are found, including an enhanced temperature maximum aloft at high northern latitudes resulting from intensification of the Hadley circulation. TES results for the various seasonal conditions are compared with published results from Mars general circulation models, and generally good qualitative agreement is found.

  7. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations of Dust Opacity During Aerobraking and Science Phasing

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.

    1999-01-01

    The Mars Global Surveyor (MGS) arrived at Mars in September 1997 near Mars southern spring equinox and has now provided monitoring of conditions in the Mars atmosphere for more than half a Mars year. The large majority of the spectra taken by the Thermal Emission Spectrometer (TES) are in a nadir geometry (downward looking mode) where Mars is observed through the atmosphere. Most of these contain the distinct spectral signature of atmospheric dust. For these nadir-geometry spectra we retrieve column-integrated infrared aerosol (dust) opacities. TES observations during the aerobraking and science-phasing portions of the MGS mission cover the seasonal range L(sub s)=184 deg - 28 deg. Excellent spatial coverage was obtained in the southern hemisphere. Northern hemisphere coverage is generally limited to narrow strips taken during the periapsis pass but is still very valuable. At the beginning of the mission the 9-(micron)meter dust opacity at midsouthern latitudes was low (0.15-0.25). As the season advanced through southern spring and into summer, TES observed several regional dust storms (including the Noachis dust storm of November 1997) where peak 9-(micron)meter dust opacities approached or exceeded unity, as well as numerous smaller local storms. Both large and small dust storms exhibited significant changes in both spatial coverage and intensity over a timescale of a day. Throughout southern spring and summer the region at the edge of the retreating southern seasonal polar ice cap was observed to be consistently more dusty than other latitudes.

  8. Johnston Atoll Chemical Agent Disposal System (JACADS)

    SciTech Connect

    Not Available

    1990-06-01

    This Final Second Supplemental Environmental Impact Statement (SSEIS) to the Johnston Atoll Chemical Agent Disposal System (JACADS) Environmental Impact Statement (EIS) assesses the effects of receiving, storing, and ultimately destructing the United States stockpile of lethal unitary chemical munitions currently stored in the Federal Republic of Germany (FRG) (European stockpile) at the Army's JACADS facility located on Johnston Atoll in the Pacific Ocean. This Final SSEIS addresses the effects of the following proposed European stockpile activities: the transport of the European stockpile from the territorial limit to Johnston Island, the unloading of munitions from transportation ships, the on-island munitions transport and handling, on-island munitions storage, the disposal of munitions in the JACADS facility, the disposal of incineration wastes, and alternatives to the proposed action. This document also updates information in the 1983 EIS and the 1988 SEIS, as appropriate. 46 refs., 10 figs., 9 tabs.

  9. Integrated Assessment Systems for Chemical Warfare Material

    SciTech Connect

    A. M. Snyder; D. A. Verrill; G. L. Thinnes; K. D. Watts; R. J. McMorland

    1999-05-27

    The US Army must respond to a variety of situations involving suspect discovered, recovered, stored, and buried chemical warfare materiel (CWM). In some cases, the identity of the fill materiel and the status of the fusing and firing train cannot be visually determined due to aging of the container, or because the item is contained in an over-pack. In these cases, non-intrusive assessments are required to provide information to allow safe handling, storage, and disposal of the materiel. This paper will provide an overview of the integrated mobile and facility-based CWM assessment system prototypes that have been, and are being developed, at the Idaho National Engineering and Environmental Laboratory (INEEL) for the US Army Non-Stockpile Chemical Materiel Project. In addition, this paper will discuss advanced sensors being developed to enhance the capability of the existing and future assessment systems. The Phase I Mobile Munitions Assessment System (MMAS) is currently being used by the Army's Technical Escort Unit (TEU) at Dugway Proving Ground, Utah. This system includes equipment for non-intrusively identifying the munitions fill materiel and for assessing the condition and stability of the fuzes, firing trains, and other potential safety hazards. The system provides a self-contained, integrated command post including an on-board computer system, communications equipment, video and photographic equipment, weather monitoring equipment, and miscellaneous safety-related equipment. The Phase II MMAS is currently being tested and qualified for use by the INEEL and the US Army. The Phase II system contains several new assessment systems that significantly enhance the ability to assess CWM. A facility-based munitions assessment system prototype is being developed for the assessment of CWM stored in igloos at Pine Bluff Arsenal, Arkansas. This system is currently in the design and fabrication stages. Numerous CWM advanced sensors are being developed and tested, and

  10. Portable chemical detection system with intergrated preconcentrator

    DOEpatents

    Baumann, Mark J.; Brusseau, Charles A.; Hannum, David W.; Linker, Kevin L.

    2005-12-27

    A portable system for the detection of chemical particles such as explosive residue utilizes a metal fiber substrate that may either be swiped over a subject or placed in a holder in a collection module which can shoot a jet of gas at the subject to dislodge residue, and then draw the air containing the residue into the substrate. The holder is then placed in a detection module, which resistively heats the substrate to evolve the particles, and provides a gas flow to move the particles to a miniature detector in the module.

  11. Chemical evolution of primitive solar system bodies

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.

    1989-01-01

    Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.

  12. The smallest chemical reaction system with bistability

    PubMed Central

    Wilhelm, Thomas

    2009-01-01

    Background Bistability underlies basic biological phenomena, such as cell division, differentiation, cancer onset, and apoptosis. So far biologists identified two necessary conditions for bistability: positive feedback and ultrasensitivity. Results Biological systems are based upon elementary mono- and bimolecular chemical reactions. In order to definitely clarify all necessary conditions for bistability we here present the corresponding minimal system. According to our definition, it contains the minimal number of (i) reactants, (ii) reactions, and (iii) terms in the corresponding ordinary differential equations (decreasing importance from i-iii). The minimal bistable system contains two reactants and four irreversible reactions (three bimolecular, one monomolecular). We discuss the roles of the reactions with respect to the necessary conditions for bistability: two reactions comprise the positive feedback loop, a third reaction filters out small stimuli thus enabling a stable 'off' state, and the fourth reaction prevents explosions. We argue that prevention of explosion is a third general necessary condition for bistability, which is so far lacking discussion in the literature. Moreover, in addition to proving that in two-component systems three steady states are necessary for bistability (five for tristability, etc.), we also present a simple general method to design such systems: one just needs one production and three different degradation mechanisms (one production, five degradations for tristability, etc.). This helps modelling multistable systems and it is important for corresponding synthetic biology projects. Conclusion The presented minimal bistable system finally clarifies the often discussed question for the necessary conditions for bistability. The three necessary conditions are: positive feedback, a mechanism to filter out small stimuli and a mechanism to prevent explosions. This is important for modelling bistability with simple systems and for

  13. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry...

  14. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet...

  15. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry...

  16. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet...

  17. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry...

  18. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry...

  19. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet...

  20. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet...

  1. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  2. The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA's Lunar Space Transportation System

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1994-01-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  3. Chemical evolution of primitive solar system bodies.

    PubMed

    Oró, J; Mills, T

    1989-01-01

    In this paper we summarize some of the most salient observations made recently on the organic molecules and other compounds of the biogenic elements present in the interstellar medium and in the primitive bodies of the solar system. They include the discovery of the first phosphorus molecular species in dense interstellar clouds, the presence of complex organic ions in the dust and gas phase of Halley's coma, the finding of unusual, probably presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites, and new developments on the chemical evolution of Titan, the primitive Earth, and early Mars. Some of the outstanding problems concerning the synthesis of organic molecules on different cosmic bodies are also discussed from an exobiological perspective.

  4. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  5. Modeling Complex Chemical Systems: Problems and Solutions

    NASA Astrophysics Data System (ADS)

    van Dijk, Jan

    2016-09-01

    Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

  6. Systems analysis of past, present, and future chemical terrorism scenarios.

    SciTech Connect

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  7. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    , they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  8. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  9. Remediation System Evaluation, Greenwood Chemical Superfund Site

    EPA Pesticide Factsheets

    The Greenwood Chemical Site (“site”) is an inactive chemical manufacturing facility located inNewtown, Albemarle County, Virginia on VA Route 690 approximately 0.75 miles west of the town ofGreenwood, Virginia and approximately 20 miles west...

  10. BIOAVAILABILITY OF CHEMICAL CONTAMINANTS IN AQUATIC SYSTEMS

    EPA Science Inventory

    Before a chemical can elicit toxicity, the animal must accumulate a dose at a target tissue of sufficient magnitude to produce a response. Bioavailability refers to the degree to which this accumulation occurs relative to the amount of chemical present in the environment, and is ...

  11. A thermodynamical framework for chemically reacting systems

    NASA Astrophysics Data System (ADS)

    Kannan, K.; Rajagopal, K. R.

    2011-04-01

    In this paper, we develop a thermodynamic framework that is capable of describing the response of viscoelastic materials that are undergoing chemical reactions that takes into account stoichiometry. Of course, as a special sub-case, we can also describe the response of elastic materials that undergo chemical reactions. The study generalizes the framework developed by Rajagopal and co-workers to study the response of a disparate class of bodies undergoing entropy producing processes. One of the quintessential feature of this framework is that the second law of thermodynamics is formulated by introducing Gibbs' potential, which is the natural way to study problems involving chemical reactions. The Gibbs potential-based formulation also naturally leads to implicit constitutive equations for the stress tensor. Another feature of the framework is that the constraints due to stoichiometry can also be taken into account in a consistent manner. The assumption of maximization of the rate of entropy production due to dissipation, heat conduction, and chemical reactions is invoked to determine an equation for the evolution of the natural configuration κ p( t)( B), the heat flux vector and a novel set of equations for the evolution of the concentration of the chemical constituents. To determine the efficacy of the framework with regard to chemical reactions, those occurring during vulcanization, a challenging set of chemical reactions, are chosen. More than one type of reaction mechanism is considered and the theoretically predicted distribution of mono, di and polysulfidic cross-links agree reasonably well with available experimental data.

  12. Construction of a Linux based chemical and biological information system.

    PubMed

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  13. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a)...

  14. Chemical Stimulation of Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter, E.

    2008-08-08

    The objective of this project is to design, develop and demonstrate methods for the chemical stimulation of candidate EGS reservoirs as well as the chemical treatment of mineral-scaled wellbores. First, a set of candidate chemical compounds capable of dissolving calcite was identified. A series of tests was then performed on each candidate in order to screen it for thermal stability and reactivity towards calcite. A detailed analysis was then performed on each compound that emerged from the screening tests in order to characterize its decay kinetics and reaction kinetics as functions of temperature and chemical composition. From among the compounds emerging from the laboratory studies, one compounds was chosen for a field experiment in order to verify the laboratory predictions.

  15. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2015-02-17

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  16. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  17. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  18. Integrated chemical management system: A tool for managing chemical information at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Costain, D.

    1995-07-01

    The Integrated Chemical Management System is a computer-based chemical information at the Rocky Flats Environmental Technology Site. Chemical containers are identified by bar code labels and information on the type, quantity and location of chemicals are tracked on individual data bases in separate buildings. Chemical inventories from multiple buildings are uploaded to a central sitewide chemical data base where reports are available from Product, Waste, and Chemical Use modules. Hazardous chemical information is provided by a separate Material Safety Data Sheet module and excess chemicals are traded between chemical owners and users with the aid of the Chemical Exchange Module.

  19. Phase and chemical equilibria in multicomponent fluid systems with a chemical reaction

    NASA Astrophysics Data System (ADS)

    Toikka, A. M.; Samarov, A. A.; Toikka, M. A.

    2015-04-01

    Studies of the phase and chemical equilibria in the systems with chemical reaction cover a wide range of problems related to both experimental determination of physicochemical characteristics of these systems and various aspects of thermodynamic analysis of the phase and chemical processes occurring there. The main goal of this review consists in systematization and analysis of available experimental data concerning the vapour-liquid and liquid-liquid equilibria in multicomponent systems where chemical reactions occur. The studies considered here have been mainly published in recent years, and they include rather detailed data on physicochemical properties, phase transitions and chemical processes in fluid systems, i.e., the data which are essential for thermodynamic analysis. Available approaches to the thermodynamic analysis of heterogeneous systems with chemical reactions are also discussed. Particular attention is paid to the studies of the simultaneous phase and chemical equilibria. We hope that this review could be useful both for fundamental studies of heterogeneous reactive systems and for solving applied problems on the design of combined reactive and mass-transfer processes. The bibliography includes 79 references.

  20. Lower and Upper Martian Atmosphere Coupling: Observed (TMHSA) and Numerically Modeled Thermal Tidal Response During the Mars Odyssey Mission Aerobraking Phase

    NASA Astrophysics Data System (ADS)

    Murphy, J. R.; Martin, T. Z.

    2004-11-01

    Longitudinal structure in the 90-120 km martian atmospheric density field has been detected by both the Mars Global Surveyor and Mars Odyssey orbiters during their mission-initiating aerobraking phases. This longitudinal pattern has been demonstrated to result from the presence of so-called 'non-migrating' thermal tidal waves present at those altitudes (Wilson, GRL, 2002). These same waves have been both directly (during aerobraking) and indirectly (during mapping) diagnosed in lower (10-40 km) atmospheric temperatures derived from MGS Thermal Emission Spectrometer (TES) spectra (Wilson, GRL, 2000; Banfield et al., JGR-P, 2000;2003). The Mars Horizon Sensor Assembly (MHSA) engineering instrument onboard MGS provided an additional capability of deriving 25 km level atmospheric temperatures, and did so at 6 local times of sol compared to TES' two local times of sol. This enhanced MHSA temporal coverage enables direct determination of amplitudes and phases of several important migrating and non-migrating tidal components during MGS mapping. Numerical model results obtained with the NASA Ames Mars GCM, from simulations forced with the spatial and temporal pattern of suspended dust opacity (derived from TES spectra), indicate realistic model-generated tidal fields when compared to MHSA analysis results. Though complete MHSA data are available only through August 2001 ( Ls 230 of MGS mapping year 2), comparison of the numerically modeled atmospheric tidal response during late 2001 with the Mars Odyssey aerobraking density measurements at that same time permits for a correlation between the lower atmosphere tidal field and the contemporaneous upper atmosphere manifestation of these same tidal components. This correlation will illustrate the vertical propagation characteristics of these waves and will also provide some guidance in attempting to predict the magnitude of aerobraking altitude density variations based upon derived lower atmosphere temperature fields. This work

  1. FMC Chemicals: Burner Management System Upgrade Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    Not Available

    2004-07-01

    FMC Chemicals Corporation increased the efficiency of two large coal-fired boilers at its soda ash mine in Green River, Wyoming, by upgrading the burner management system. The project yields annual energy savings of 250,000 MMBtu.

  2. Microcalibrator system for chemical signature and reagent delivery.

    SciTech Connect

    Staton, Alan W.; Simonson, Robert Joseph; Adkins, Douglas Ray; Rawlinson, Kim Scott; Robinson, Alex Lockwood; Hance, Bradley G.; Manginell, Ronald Paul; Sanchez, Lawrence James; Ellison, Jennifer Anne; Sokolowski, Sara Suzette

    2005-03-01

    Networked systems of low-cost, small, integrable chemical sensors will enable monitoring of Nonproliferation and Materials Control targets and chemical weapons threats. Sandia-designed prototype chemical sensor systems are undergoing extended field testing supported by DOE and other government agencies. A required surety component will be verification of microanalytical system performance, which can be achieved by providing a programmable source of chemical signature(s) for autonomous calibration of analytical systems. In addition, such a controlled chemical source could be used to dispense microaliquots of derivatization reagents, extending the analysis capability of chemical sensors to a wider range of targets. We have developed a microfabricated system for controlled release of selected compounds (calibrants) into the analytical stream of microsensor systems. To minimize pumping and valve requirements of microfluidic systems, and to avoid degradation issues associated with storage of dilute solutions, we have utilized thermally labile organic salts as solid-phase reservoir materials. Reproducible deposition of tetrapropyl ammonium hydroxide onto arrays of microfabricated heating elements can provide a pair of calibration marker compounds (one fast and one slow-eluting compound) for GC analyses. The use of this microaliquot gas source array for hydrogen generation is currently under further development. The goal of the latter effort will be to provide a source of high-pressure, low viscosity GC carrier gas for Sandia's next-generation microfabricated gas-phase chemical analysis systems.

  3. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    SciTech Connect

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  4. Formal modeling of a system of chemical reactions under uncertainty.

    PubMed

    Ghosh, Krishnendu; Schlipf, John

    2014-10-01

    We describe a novel formalism representing a system of chemical reactions, with imprecise rates of reactions and concentrations of chemicals, and describe a model reduction method, pruning, based on the chemical properties. We present two algorithms, midpoint approximation and interval approximation, for construction of efficient model abstractions with uncertainty in data. We evaluate computational feasibility by posing queries in computation tree logic (CTL) on a prototype of extracellular-signal-regulated kinase (ERK) pathway.

  5. Chemical Constraints on the Early Solar System

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan

    2004-01-01

    Chemical abundances of comets and star-forming regions provide p o w d clues to the conditions which prevailed in the outer solar nebula. Hence comparative spectroscopic studies of cometary and molecular cloud gases provide vital insights into conditions in the solar protoplanetary disk at heliocentric distances beyond 5 AU 4.6 Gyr ago. We proposed a research program which combined optical and sub-millimeter techniques with laboratory spectroscopy, and sought to determine key diagnostic constraints on single-star protoplanetary disk models.

  6. Explosive destruction system for disposal of chemical munitions

    DOEpatents

    Tschritter, Kenneth L.; Haroldsen, Brent L.; Shepodd, Timothy J.; Stofleth, Jerome H.; DiBerardo, Raymond A.

    2005-04-19

    An explosive destruction system and method for safely destroying explosively configured chemical munitions. The system comprises a sealable, gas-tight explosive containment vessel, a fragment suppression system positioned in said vessel, and shaped charge means for accessing the interior of the munition when the munition is placed within the vessel and fragment suppression system. Also provided is a means for treatment and neutralization of the munition's chemical fills, and means for heating and agitating the contents of the vessel. The system is portable, rapidly deployable and provides the capability of explosively destroying and detoxifying chemical munitions within a gas-tight enclosure so that there is no venting of toxic or hazardous chemicals during detonation.

  7. A rule-based expert system for chemical prioritization using effects-based chemical categories.

    PubMed

    Schmieder, P K; Kolanczyk, R C; Hornung, M W; Tapper, M A; Denny, J S; Sheedy, B R; Aladjov, H

    2014-01-01

    A rule-based expert system (ES) was developed to predict chemical binding to the estrogen receptor (ER) patterned on the research approaches championed by Gilman Veith to whom this article and journal issue are dedicated. The ERES was built to be mechanistically transparent and meet the needs of a specific application, i.e. predict for all chemicals within two well-defined inventories (industrial chemicals used as pesticide inerts and antimicrobial pesticides). These chemicals all lack structural features associated with high affinity binders and thus any binding should be low affinity. Similar to the high-quality fathead minnow database upon which Veith QSARs were built, the ERES was derived from what has been termed gold standard data, systematically collected in assays optimized to detect even low affinity binding and maximizing confidence in the negatives determinations. The resultant logic-based decision tree ERES, determined to be a robust model, contains seven major nodes with multiple effects-based chemicals categories within each. Predicted results are presented in the context of empirical data within local chemical structural groups facilitating informed decision-making. Even using optimized detection assays, the ERES applied to two inventories of >600 chemicals resulted in only ~5% of the chemicals predicted to bind ER.

  8. New Electronic-Transition Laser Systems. Part 1. Electron Pumped Systems. Part 2. Chemically Pumped Systems

    DTIC Science & Technology

    1976-12-01

    laser development . There has not yet been a demonstration of gain in a visible chemical laser systems, and it appears unlikely that practical lasers of this type will be developed in the near future. Substantial progress has been made

  9. Introduction: Self-organization in nonequilibrium chemical systems.

    PubMed

    Epstein, Irving R; Pojman, John A; Steinbock, Oliver

    2006-09-01

    The field of self-organization in nonequilibrium chemical systems comprises the study of dynamical phenomena in chemically reacting systems far from equilibrium. Systematic exploration of this area began with investigations of the temporal behavior of the Belousov-Zhabotinsky oscillating reaction, discovered accidentally in the former Soviet Union in the 1950s. The field soon advanced into chemical waves in excitable media and propagating fronts. With the systematic design of oscillating reactions in the 1980s and the discovery of Turing patterns in the 1990s, the scope of these studies expanded dramatically. The articles in this Focus Issue provide an overview of the development and current state of the field.

  10. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  11. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  12. High throughput chemical munitions treatment system

    DOEpatents

    Haroldsen, Brent L [Manteca, CA; Stofleth, Jerome H [Albuquerque, NM; Didlake, Jr., John E.; Wu, Benjamin C-P [San Ramon, CA

    2011-11-01

    A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

  13. Development of a Persistent Chemical Agent Simulator System (PCASS)

    NASA Technical Reports Server (NTRS)

    Mcginness, W. G.

    1983-01-01

    The development of a persistent chemical agent simulation system (PCASS) is described. This PCASS is to be used for the military training of troops to simulate actual chemical warfare. The purpose of this system is to facilitate in the determination of chemical contamination and effectiveness of decontamination for training purposes. The fluorescent tracer employed has no daylight activation, but yet is easily removed with a decontaminate solution or water and surfactants. Also employed is a time delayed color developing system. When an individual is subjected to the PCASS and does not decontaminate adequately, red blotches or red coloration will develop as a function of time and temperature. The intent of this is to simulate the delayed chemical reaction of mustard contaminates.

  14. Studies on Semantic Systems Chemical Biology

    ERIC Educational Resources Information Center

    Chen, Bin

    2012-01-01

    Current "one disease, one target and one drug" drug development paradigm is under question as relatively few drugs have reached the market in the last two decades. Increasingly research focus is being placed on the study of drug action against biological systems as a whole rather than against a single component (called "Systems…

  15. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  16. Chemical Pattern Formation in Far-From Systems.

    NASA Astrophysics Data System (ADS)

    Pearson, John Evan

    The diffusive instability was proposed as a mechanism for pattern formation in chemical systems, in the context of biological morphogenesis, by Alan Turing in 1952. The instability gives rise to a chemical pattern with an intrinsic "chemical wavelength" that is independent of the system size. Since 1952, the diffusive instability, or Turing bifurcation, has been invoked to explain pattern formation in a variety of fields. To date there has been no unambiguous observation of such an instability. Model studies of the instability are usually carried out on systems containing two variables. Such works do not address issues that are of fundamental importance in experimental studies. How does one go about finding Turing bifurcations in systems with many parameters and for which the chemical kinetics are only partially known? What is the chemical wavelength? Turing bifurcations cannot occur in systems with all diffusion coefficients exactly equal. How unequal must the diffusion coefficients be for a system to undergo a Turing bifurcation?. Reacting and diffusing systems obey a partial -differential equation which is a sum of a diffusion term and a reaction term. Dropping the diffusion term results in an ordinary differential equation describing the reaction kinetics in a well-mixed system. In this dissertation it is shown that, for systems with an arbitrary number of variables, Turing bifurcations can occur with diffusion coefficients arbitrarily close to equal, provided the corresponding well-mixed system is sufficiently close to a point of coalescence of Hopf and saddle-node bifurcations. Since the bifurcation set can be obtained directly from experiments, one does not need a detailed microscopic theory of the reaction kinetics. Similarly, the chemical wavelength can be estimated from experimental measurements without knowledge of the reaction kinetics.

  17. Anderson localization for chemically realistic systems

    NASA Astrophysics Data System (ADS)

    Terletska, Hanna

    2015-03-01

    Disorder which is ubiquitous for most materials can strongly effect their properties. It may change their electronic structures or even cause their localization, known as Anderson localization. Although, substantial progress has been achieved in the description of the Anderson localization, a proper mean-field theory of this phenomenon for more realistic systems remains elusive. Commonly used theoretical methods such as the coherent potential approximation and its cluster extensions fail to describe the Anderson transition, as the average density of states (DOS) employed in such theories is not critical at the transition. However, near the transition, due to the spatial confinement of carriers, the local DOS becomes highly skewed with a log-normal distribution, for which the most probable and the typical values differ noticeably from the average value. Dobrosavljevic et.al., incorporated such ideas in their typical medium theory (TMT), and showed that the typical (not average) DOS is critical at the transition. While the TMT is able to capture the localized states, as a local single site theory it still has several drawbacks. For the disorder Anderson model in three dimension it underestimates the critical disorder strength, and fails to capture the re-entrance behavior of the mobility edge. We have recently developed a cluster extension of the TMT, which addresses these drawbacks by systematically incorporating non-local corrections. This approach converges quickly with cluster size and allows us to incorporate the effect of interactions and realistic electronic structure. As the first steps towards realistic material modeling, we extended our TMDCA formalisms to systems with the off diagonal disorder and multiple bands structures. We also applied our TMDCA scheme to systems with both disorder and interactions and found that correlations effects tend to stabilize the metallic behavior even in two dimensions. This work was supported by DOE SciDAC Grant No. DE-FC02

  18. Multi-scenario modelling of uncertainty in stochastic chemical systems

    SciTech Connect

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-09-15

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo.

  19. Engineered Barrier System: Physical and Chemical Environment Model

    SciTech Connect

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  20. Membrane-organized Chemical Photoredox Systems

    SciTech Connect

    Britt, R. David

    2016-09-01

    The key photoredox process in photosynthesis is the accumulation of oxidizing equivalents on a tetranuclear manganese cluster that then liberates electrons and protons from water and forms oxygen gas. Our primary goal in this project is to characterize inorganic systems that can perform this same water-splitting chemistry. One such species is the dinuclear ruthenium complex known as the blue dimer. Starting at the Ru(III,III) oxidation state, the blue dimer is oxidized up to a putative Ru(V,V) level prior to O-O bond formation. We employ electron paramagnetic resonance spectroscopy to characterize each step in this reaction cycle to gain insight into the molecular mechanism of water oxidation.

  1. Membrane-Organized Chemical Photoredox Systems

    SciTech Connect

    Hurst, James K.

    2014-09-18

    This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. . In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem, their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens, and H2 photoproduction has been demonstrated in continuous illumination experiments. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2O; and (iii) detected and characterized by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle.

  2. Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document

    SciTech Connect

    Bargelski, C. J.; Berrett, D. E.

    1998-09-01

    The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables.

  3. An Integrated Chemical Geothermometry System for Geothermal Exploration

    NASA Astrophysics Data System (ADS)

    Spycher, N. F.; Sonnenthal, E. L.; Kennedy, B. M.

    2010-12-01

    The objective of this project is to develop a reliable and improved methodology to predict geothermal reservoir temperatures from full and integrated chemical analyses of spring and shallow well water samples, to see through near surface processes, such as dilution, gas loss, etc., that mask or hide the chemical signatures of deep reservoir fluids in near surface waters. The system builds on a multicomponent chemical geothermometry method developed previously for single point sources relying on computed saturation indices of multiple minerals. Taking advantage of recent advances in optimization and geochemical/reactive transport modeling, the system integrates the multicomponent geothermometry method into an optimization system that allows simultaneous processing of multiple water analyses to estimate reservoir temperatures. In doing so, the system will also be able to solve for amounts and compositions of potential mixing end-members diluting the reservoir fluids and/or composition and amounts of gas phase lost as deep geothermal fluids ascend to ground surface. This integrated approach is expected to allow estimations of reservoir temperatures with better reliability and consistency than currently possible using standard chemical geothermometers. The proposed approach is being implemented and tested using an extensive set of water and gas compositions from springs and wells at the geothermal system in Dixie Valley, Nevada, where standard chemical geothermometers yield temperatures inconsistent with measured reservoir temperatures.

  4. Chemical diffusion in ZrNb system

    NASA Astrophysics Data System (ADS)

    Patil, R. V.; Kale, G. B.; Garg, S. P.

    1995-05-01

    The temperature and concentration dependence of interdiffusion coefficients in zirconium-niobium system has been established in the temperature range between 1593 and 1993 K by employing an electron probe micro analyser. The interdiffusion coefficients are found to increase with increase in zirconium content in the alloy and can be described by the relation D˜(C) = A (T)e5.6C Here, A( T) is the temperature dependent parameter and has the value of tracer diffusion coefficient at infinite dilution. C is the mole fraction of the component. The temperature dependence of interdiffusion coefficients can be represented by the Arrhenius expression of the type D˜(C) = D˜A 0eQ˜/RT The activation energy ( Q˜c) and frequency factor ( D˜0) values in the composition range between 5 and 90% Zr lie in the range of 216 to 276 kJ/mol, and 10 -7 to 10 -5 m 2/s, respectively. An attempt has also been made to evaluate the impurity diffusion data by using interdiffusion values.

  5. A rule-based expert system for chemical prioritization using effects-based chemical categories

    EPA Science Inventory

    A rule-based expert system (ES) was developed to predict chemical binding to the estrogen receptor (ER) patterned on the research approaches championed by Gilman Veith to whom this article and journal issue are dedicated. The ERES was built to be mechanistically-transparent and m...

  6. Mechanical-chemical analyses and sub-chronic systemic toxicity of chemical treated organic bovine bone.

    PubMed

    Lee, Kwang-il; Lee, Jung-soo; Lee, Keun-soo; Jung, Hong-hee; Ahn, Chan-min; Kim, Young-sik; Shim, Young-bock; Jang, Ju-woong

    2015-12-01

    Sequentially chemical-treated bovine bone was not only evaluated by mechanical and chemical analyses but also implanted into the gluteal muscles of rats for 12 weeks to investigate potential local pathological effects and systemic toxicities. The test (chemical treated bone) and control (heat treated bone) materials were compared using scanning electron microscope (SEM), x-ray diffraction pattern, inductively coupled plasma analysis, and bending strength test. In the SEM images, the micro-porous structure of heat-treated bone was changed to sintered ceramic-like structure. The structure of bone mineral from test and control materials was analyzed as100% hydroxyapatite. The ratio of calcium (Ca) to potassium (P), the main inorganic elements, was same even though the Ca and P percentages of the control material was relatively higher than the test material. No death or critical symptoms arose from implantation of the test (chemical treated bone) and control (physiological saline) materials during 12 weeks. The implanted sites were macroscopically examined, with all the groups showing non-irritant results. Our results indicate that chemical processed bovine bone has a better mechanical property than the heat treated bone and the implantation of this material does not produce systemic or pathological toxicity.

  7. Interannual Comparison of Temporal and Spatial Structure in the Martian Thermosphere from Atmospheric Accelerometer Measurements of Mars Reconnaissance Orbiter (MRO) during Aerobraking and Stellar Occultation Measurements from the SPICAM Ultraviolet Infrared Atmospheric Spectrometer of Mars Express (MEX)

    NASA Astrophysics Data System (ADS)

    Theriot, Michael; Keating, G.; Blanchard, R.; Bougher, S.; Zurek, R.; Tolson, R.; Murphy, J.; Forget, F.; Bertaux, J.

    2006-09-01

    Before MRO's arrival at Mars, during Mars Express orbits 17 to 2888, SPICAM obtained 617 stellar occultation measurements of density and temperature structure from 40km to 140km. SPICAM measurements give global atmospheric structure over an entire Martian year. Where SPICAM derived atmospheric profiles overlap MRO aerobraking altitudes from 100km to 140km, we have made interannual comparisons with in situ MRO accelerometer derived atmospheric profiles for matching season, local solar time, latitude, longitude and altitude. Designed for aerobraking, MRO launched August 12, 2005, and achieved Mars Orbital Insertion (MOI) March 10, 2006. Atmospheric density decreases exponentially with increasing height. Using small propulsive changes to apoapsis orbital velocity, periapsis altitude was adjusted to the necessary density surfaces for safe aerobraking. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis dramatically shrank from 40,000km at MOI to 460 km at aerobraking completion (ABX) mid-September 2006. Then, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities as requested by The George Washington University, JPL, and Lockheed Martin, enabling good signal-to-noise-ratios up to at least 170km, critical for upper atmospheric science. Each of the 500+ MRO aerobraking orbits provides a distribution of density, scale-height, and temperature along the orbital path, providing key in situ insight into various upper atmosphere (> 100 km) processes. Characterization of key temporal and spatial cycles including: polar vortices, winter polar warming, dust storms, planetary scale waves, gravity waves, and gravitational tides associated with topography, validates and constrains both

  8. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  9. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    SciTech Connect

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-09-29

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium {gamma}-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material.

  10. Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  11. Unusual chemical compounds in flue gas desulfurization systems

    SciTech Connect

    Dille, E.R.

    1996-08-01

    Flue gas desulfurization (FGD) systems continue to have deposits formed on internal surfaces of the materials of which the FGD systems are fabricated. These compounds contribute to crevice corrosion of the alloys of which some of the FGD systems are made. In the process of performing the failure analysis of the FGD fabrication materials, new compounds were discovered. This paper discusses two corrosion failure analysis case histories and the new compounds that were discovered and the chemical environment in which they were discovered.

  12. The choice of internal coordinates in complex chemical systems.

    PubMed

    Németh, Károly; Challacombe, Matt; Van Veenendaal, Michel

    2010-07-30

    This article presents several considerations for the appropriate choice of internal coordinates in various complex chemical systems. The appropriate and black box recognition of internal coordinates is of fundamental importance for the extension of internal coordinate algorithms to all fields where previously Cartesian coordinates were the preferred means of geometry manipulations. Such fields range from local and global geometry optimizations to molecular dynamics as applied to a wide variety of chemical systems. We present a robust algorithm that is capable to quickly determine the appropriate choice of internal coordinates in a wide range of atomic arrangements.

  13. Development of a persistent chemical agent simulation system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A Persistent Chemical Agent Simulation System was developed (PCASS) to simulate, for force-on-force training exercises, the field environment produced by the presence of persistent chemical agents. Such a simulant system must satisfy several requirements to be of value as a training aid. Specifically, it must provide for realistic training which will generate competency in at least the following areas: (1) detection of the persistent agent presence; (2) proper use of protective equipment and procedures; (3) determination of the extent of contamination; and (4) decontamination of equipment and personnel.

  14. Manned Mars Explorer project: Guidelines for a manned mission to the vicinity of Mars using Phobos as a staging outpost; schematic vehicle designs considering chemical and nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Nolan, Sean; Neubek, Deb; Baxmann, C. J.

    1988-01-01

    The Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.

  15. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  16. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  17. Advanced physical-chemical life support systems research

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  18. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  19. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  20. Model reduction for stochastic chemical systems with abundant species

    SciTech Connect

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  1. Discourse for slide presentation: An overview of chemical detection systems

    NASA Technical Reports Server (NTRS)

    Peters, Randy Alan; Galen, Theodore J.; Pierson, Duane L.

    1990-01-01

    A brief overview of some of the analytical techniques currently used in monitoring and analyzing permanent gases and selected volatile organic compound in air are presented. Some of the analytical considerations in developing a specific method are discussed. Four broad groups of hardware are discussed: compound class specific personal monitors, gas chromatographic systems, infrared spectroscopic systems, and mass spectrometric residual gas analyzer systems. Three types of detectors are also discussed: catalytic sensor based systems, photoionization detectors, and wet or dry chemical reagent systems. Under gas chromatograph based systems five detector systems used in combination with a GC are covered: thermal conductivity detectors, photoionization detectors, Fourier transform infrared spectrophotometric systems, quadrapole mass spectrometric systems, and a relatively recent development, a surface acoustic wave vapor detector.

  2. Computer program determines chemical composition of physical system at equilibrium

    NASA Technical Reports Server (NTRS)

    Kwong, S. S.

    1966-01-01

    FORTRAN 4 digital computer program calculates equilibrium composition of complex, multiphase chemical systems. This is a free energy minimization method with solution of the problem reduced to mathematical operations, without concern for the chemistry involved. Also certain thermodynamic properties are determined as byproducts of the main calculations.

  3. A microvascular system for chemical reactions using surface waste heat.

    PubMed

    Nguyen, Du Thai; Esser-Kahn, Aaron P

    2013-12-16

    Coffee-powered chemistry: Low-grade waste heat on surfaces can be used to drive chemical reactions, including the regeneration of a CO2 capture solution. Flowing two-phase heat transfer has been implemented within microvascular systems. This stripping system can be adapted to pre-fabricated surfaces, as demonstrated by a coffee mug containing a 1.2 m long microchannel. MEA=monoethanolamine.

  4. Release mitigation spray safety systems for chemical demilitarization applications.

    SciTech Connect

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  5. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems...

  6. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall... fire-control components of each dry powder chemical system shall be a type approved by the...

  7. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall... fire-control components of each dry powder chemical system shall be a type approved by the...

  8. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    NASA Astrophysics Data System (ADS)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  9. Performance metrics for the evaluation of hyperspectral chemical identification systems

    NASA Astrophysics Data System (ADS)

    Truslow, Eric; Golowich, Steven; Manolakis, Dimitris; Ingle, Vinay

    2016-02-01

    Remote sensing of chemical vapor plumes is a difficult but important task for many military and civilian applications. Hyperspectral sensors operating in the long-wave infrared regime have well-demonstrated detection capabilities. However, the identification of a plume's chemical constituents, based on a chemical library, is a multiple hypothesis testing problem which standard detection metrics do not fully describe. We propose using an additional performance metric for identification based on the so-called Dice index. Our approach partitions and weights a confusion matrix to develop both the standard detection metrics and identification metric. Using the proposed metrics, we demonstrate that the intuitive system design of a detector bank followed by an identifier is indeed justified when incorporating performance information beyond the standard detection metrics.

  10. An expert system for prediction of chemical toxicity

    USGS Publications Warehouse

    Hickey, James P.; Aldridge, Andrew J.; Passino-Reader, Dora R.; Frank, Anthony M.

    1992-01-01

    The National Fisheries Research Center- Great Lakes has developed an interactive computer program that uses the structure of an organic molecule to predict its acute toxicity to four aquatic species. The expert system software, written in the muLISP language, identifies the skeletal structures and substituent groups of an organic molecule from a user-supplied standard chemical notation known as a SMILES string, and then generates values for four solvatochromic parameters. Multiple regression equations relate these parameters to the toxicities (expressed as log10LC50s and log10EC50s, along with 95% confidence intervals) for four species. The system is demonstrated by prediction of toxicity for anilide-type pesticides to the fathead minnow (Pimephales promelas). This software is designed for use on an IBM-compatible personal computer by personnel with minimal toxicology background for rapid estimation of chemical toxicity. The system has numerous applications, with much potential for use in the pharmaceutical industry

  11. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    DOE PAGES

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; ...

    2017-01-25

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to notmore » only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. Furthermore, the algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.« less

  12. Optical chemical sensors for environmental control and system management

    NASA Astrophysics Data System (ADS)

    Tabacco, M. B.; Digiuseppe, T. G.

    Several fiber optic based chemical sensors have been developed for use in plant growth systems and enclosed life support systems. Optical chemical sensors offer several distinct advantages in terms of sensitivity, calibration stability, immunity to biofouling and electrical interference, and ease of multiplexing sensors for multipoint/multiparameter analysis. Also, the ability to locate fiber optic sensors in close proximity to plant roots or leaves should improve the measurement reliability by obviating the need for handling and transport which can compromise sample integrity. Polestar Technologies and GEO-CENTERS have developed and tested many types of optical chemical sensors which utilize novel glass and polymeric materials as the sensor substrate. Analytes are detected using immobilized colorimetric indication systems or molecular recognition elements. Typically transduction is via wavelength specific absorption changes with multiwavelength detection for drift compensation. Sensors have been developed for solution pH, NH_3, ethylene, CO_2, and dissolved metal ions. In addition, unique PC-compatible optoelectronic interfaces, as well as distributed measurement systems, so that integrated detection systems are now available. In this paper recent efforts to develop sensors for critical nutrient ions are presented.

  13. The ram accelerator - A chemically driven mass launcher

    NASA Technical Reports Server (NTRS)

    Kaloupis, P.; Bruckner, A. P.

    1988-01-01

    The ram accelerator, a chemically propelled mass driver, is presented as a viable new approach for directly launching acceleration-insensitive payloads into low earth orbit. The propulsion principle is similar to that of a conventional air-breathing ramjet. The cargo vehicle resembles the center-body of a ramjet and travels through a tube filled with a pre-mixed fuel and oxidizer mixture. The launch tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two drive modes of the ram accelerator propulsion system are described, which when used in sequence are capable of accelerating the vehicle to as high as 10 km/sec. The requirements are examined for placing a 2000 kg vehicle into a 500 km orbit with a minimum of on-board rocket propellant for circularization maneuvers. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. An indirect orbital insertion scenario is selected, utilizing a three step maneuver consisting of two burns and aerobraking. An on-board propulsion system using storable liquid propellants is chosen in order to minimize propellant mass requirements, and the use of a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept. A vehicle design using composite materials is proposed that will best meet the structural requirements, and a preliminary launch tube design is presented.

  14. Modeling Reaction Control System Effects on Mars Odyssey

    NASA Technical Reports Server (NTRS)

    Hanna, Jill L.; Chavis, Zachary Q.; Wilmoth, Richard G.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    During the Mars 2001 Odyssey aerobraking mission, NASA Langley Research Center performed 6 degree of freedom (6-DOF) simulations to determine rotational motion of the spacecraft. The main objective of this study was to assess the reaction control system models and their effects on the atmospheric flight of Odyssey. Based on these models, a comparison was made between data derived from flight measurements to simulated rotational motion of the spacecraft during aerobraking at Mars. The differences between the simulation and flight derived Odyssey data were then used to adjust the aerodynamic parameters to achieve a better correlation.

  15. ChemEx: information extraction system for chemical data curation

    PubMed Central

    2012-01-01

    Background Manual chemical data curation from publications is error-prone, time consuming, and hard to maintain up-to-date data sets. Automatic information extraction can be used as a tool to reduce these problems. Since chemical structures usually described in images, information extraction needs to combine structure image recognition and text mining together. Results We have developed ChemEx, a chemical information extraction system. ChemEx processes both text and images in publications. Text annotator is able to extract compound, organism, and assay entities from text content while structure image recognition enables translation of chemical raster images to machine readable format. A user can view annotated text along with summarized information of compounds, organism that produces those compounds, and assay tests. Conclusions ChemEx facilitates and speeds up chemical data curation by extracting compounds, organisms, and assays from a large collection of publications. The software and corpus can be downloaded from http://www.biotec.or.th/isl/ChemEx. PMID:23282330

  16. Moment estimation for chemically reacting systems by extended Kalman filtering.

    PubMed

    Ruess, J; Milias-Argeitis, A; Summers, S; Lygeros, J

    2011-10-28

    In stochastic models of chemically reacting systems that contain bimolecular reactions, the dynamics of the moments of order up to n of the species populations do not form a closed system, in the sense that their time-derivatives depend on moments of order n + 1. To close the dynamics, the moments of order n + 1 are generally approximated by nonlinear functions of the lower order moments. If the molecule counts of some of the species have a high probability of becoming zero, such approximations may lead to imprecise results and stochastic simulation is the only viable alternative for system analysis. Stochastic simulation can produce exact realizations of chemically reacting systems, but tends to become computationally expensive, especially for stiff systems that involve reactions at different time scales. Further, in some systems, important stochastic events can be very rare and many simulations are necessary to obtain accurate estimates. The computational cost of stochastic simulation can then be prohibitively large. In this paper, we propose a novel method for estimating the moments of chemically reacting systems. The method is based on closing the moment dynamics by replacing the moments of order n + 1 by estimates calculated from a small number of stochastic simulation runs. The resulting stochastic system is then used in an extended Kalman filter, where estimates of the moments of order up to n, obtained from the same simulation, serve as outputs of the system. While the initial motivation for the method was improving over the performance of stochastic simulation and moment closure methods, we also demonstrate that it can be used in an experimental setting to estimate moments of species that cannot be measured directly from time course measurements of the moments of other species.

  17. Department of Defense Hazardous Chemical Warning Labeling System

    DTIC Science & Technology

    1989-06-01

    LAPELING SYSTEM TABLE OF CONTENTS Page Foreword j Table of Contents ii Introduction 1 Data Elements of the DoD Label 4 Hazardous Material Label Sections 5...Material Safety Data Sheet (MSDS) Polyester Phenolic Resin !-I DoD Hazardous Materials Information System Dart - Benz,’nc AR 1-8 Ma terala Safnty Data...129.u 1ion)2ryLabelli ng (A,•,3I Z129.1I - 19837) 2-1 / DEPARTMENT OF DEFENSE HAZARDOUS CHEMICAL WARNING LABELING SYSTEM On August 29, l987, the

  18. Implementation of an Online Database for Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    David B. Owen, II; McRight, Patrick S.; Cardiff, Eric H.

    2009-01-01

    The Johns Hopkins University, Chemical Propulsion Information Analysis Center (CPIAC) has been working closely with NASA Goddard Space Flight Center (GSFC); NASA Marshall Space Flight Center (MSFC); the University of Alabama at Huntsville (UAH); The Johns Hopkins University, Applied Physics Laboratory (APL); and NASA Jet Propulsion Laboratory (JPL) to capture satellite and spacecraft propulsion system information for an online database tool. The Spacecraft Chemical Propulsion Database (SCPD) is a new online central repository containing general and detailed system and component information on a variety of spacecraft propulsion systems. This paper only uses data that have been approved for public release with unlimited distribution. The data, supporting documentation, and ability to produce reports on demand, enable a researcher using SCPD to compare spacecraft easily, generate information for trade studies and mass estimates, and learn from the experiences of others through what has already been done. This paper outlines the layout and advantages of SCPD, including a simple example application with a few chemical propulsion systems from various NASA spacecraft.

  19. Preliminary investigation of parameter sensitivities for atmospheric entry and aerobraking at Mars

    NASA Technical Reports Server (NTRS)

    Lee, Mary C.; Suit, William T.

    1989-01-01

    The proposed manned Mars mission will need to be as weight efficient as possible. A way of lowering the weight of the vehicle by using aeroassist braking instead of retro-rockets to slow a craft once it reaches its destination is discussed. The two vehicles studied are a small vehicle similar in size to the Mars Rover Sample Return (MRSR) vehicle and a larger vehicle similar in size to a six-person Manned Mars Mission (MMM) vehicle. Simulated entries were made using various coefficients of lift (C sub L), coefficients of drag (C sub D), and lift-to-drag ratios (L/D). A range of acceptable flight path angles with their corresponding bank angle profiles was found for each case studied. These ranges were then compared, and the results are reported here. The sensitivity of velocity and acceleration to changes in flight path angle and bank angle is also included to indicate potential problem areas for guidance and navigation system design.

  20. Aerothermodynamic environments for Mars entry, Mars return, and lunar return aerobraking missions

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Bouslog, S. A.; Ting, P. C.; Curry, D. M.

    1990-01-01

    The aeroheating environments to vehicles undergoing Mars aerocapture, earth aerocapture from Mars, and earth aerocapture from the moon are presented. An engineering approach for the analysis of various types of vehicles and trajectories was taken, rather than performing a benchmark computation for a specific point at a selected time point in a trajectory. The radiation into Mars using the Mars Rover Sample Return (MRSR) 2-ft nose radius bionic remains a small contributor of heating for 6 to 10 km/sec; however, at 12 km/sec it becomes comparable with the convection. For earth aerocapture, returning from Mars, peak radiation for the MRSR SRC is only 25 percent of the peak convection for the 12-km/sec trajectory. However, when large vehicles are considered with this trajectory, peak radiation can become 2 to 4 times higher than the peak convection. For both Mars entry and return, a partially ablative Thermal Protection System (TPS) would be required, but for Lunar Transfer Vehicle return an all-reusable TPS can be used.

  1. Maximum Probability Reaction Sequences in Stochastic Chemical Kinetic Systems

    PubMed Central

    Salehi, Maryam; Perkins, Theodore J.

    2010-01-01

    The detailed behavior of many molecular processes in the cell, such as protein folding, protein complex assembly, and gene regulation, transcription and translation, can often be accurately captured by stochastic chemical kinetic models. We investigate a novel computational problem involving these models – that of finding the most-probable sequence of reactions that connects two or more states of the system observed at different times. We describe an efficient method for computing the probability of a given reaction sequence, but argue that computing most-probable reaction sequences is EXPSPACE-hard. We develop exact (exhaustive) and approximate algorithms for finding most-probable reaction sequences. We evaluate these methods on test problems relating to a recently-proposed stochastic model of folding of the Trp-cage peptide. Our results provide new computational tools for analyzing stochastic chemical models, and demonstrate their utility in illuminating the behavior of real-world systems. PMID:21629860

  2. Results from modeling and simulation of chemical downstream etch systems

    SciTech Connect

    Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

    1996-05-01

    This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

  3. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  4. Predictive spectroscopy and chemical imaging based on novel optical systems

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew Paul

    1998-10-01

    This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first

  5. Acoustic imaging for diagnostics of chemically reacting systems

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.; Seshan, P.

    1983-01-01

    The concept of local diagnostics, in chemically reacting systems, with acoustic imaging is developed. The elements of acoustic imaging through ellipsoidal mirrors are theoretically discussed. In a general plan of the experimental program, the first system is chosen in these studies to be a simple open jet, non premixed turbulent flame. Methane is the fuel and enriched air is the oxidizer. This simple chemically reacting flow system is established at a Reynolds number (based on cold viscosity) of 50,000. A 1.5 m diameter high resolution acoustic mirror with an f-number of 0.75 is used to map the acoustic source zone along the axis of the flame. The results are presented as acoustic power spectra at various distances from the nozzle exit. It is seen that most of the reaction intensity is localized in a zone within 8 diameters from the exit. The bulk reactions (possibly around the periphery of the larger eddies) are evenly distributed along the length of the flame. Possibilities are seen for locally diagnosing single zones in a multiple cluster of reaction zones that occur frequently in practice. A brief outline is given of the future of this work which will be to apply this technique to chemically reacting flows not limited to combustion.

  6. Identification of Heavy and Superheavy Nuclides Using Chemical Separator Systems

    SciTech Connect

    Turler, Andreas

    1999-12-31

    With the recent synthesis of superheavy nuclides produced in the reactions {sup 48}Ca+{sup 238}U and {sup 48}Ca+{sup 242,244}Pu, much longer-lived nuclei than the previously known neutron-deficient isotopes of the heaviest elements have been identified. Half-lives of several hours and up to several years have been predicted for the longest-lived isotopes of these elements. Thus, the sensitivity of radiochemical separation techniques may present a viable alternative to physical separator systems for the discovery of some of the predicted longer-lived heavy and superheavy nuclides. The advantages of chemical separator systems in comparison to kinematic separators lie in the possibility of using thick targets, high beam intensities spread over larger target areas and in providing access to nuclides emitted under large angles and low velocities. Thus, chemical separator systems are ideally suited to study also transfer and (HI, axn) reaction products. In the following, a study of (HI, axn) reactions will be presented and prospects to chemically identify heavy and superheavy elements discussed.

  7. Chemical reaction network approaches to Biochemical Systems Theory.

    PubMed

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed.

  8. New approaches in data integration for systems chemical biology.

    PubMed

    Seoane, Jose A; López-Campos, Guillermo; Dorado, Julian; Martin-Sanchez, Fernando

    2013-01-01

    Advances done in "-Omics" technologies in the last 20 years have made available to the researches huge amounts of data spanning a wide variety of biological processes from gene sequences to the metabolites present in a cell at a particular time. The management, analysis and representation of these data have been facilitated by mean of the advances made by biomedical informatics in areas such as data architecture and integration systems. However, despite the efforts done by biologists in this area, research in drug design adds a new level of information by incorporating data related with small molecules, which increases the complexity of these integration systems. Current knowledge in molecular biology has shown that it is possible to use comprehensive and integrative approaches to understand the biological processes from a systems perspective and that pathological processes can be mapped into biological networks. Therefore, current strategies for drug design are focusing on how to interact with or modify those networks to achieve the desired effects on what is called systems chemical biology. In this review several approaches for data integration in systems chemical biology will be analysed and described. Furthermore, because of the increasing relevance of the development and use of nanomaterials and their expected impact in the near future, the requirements of integration systems that incorporate these new data types associated with nanomaterials will also be analysed.

  9. Propellant management for low thrust chemical propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamlyn, K. M.; Dergance, R. H.; Aydelott, J. C.

    1981-01-01

    Low-thrust chemical propulsion systems (LTPS) will be required for orbital transfer of large space systems (LSS). The work reported in this paper was conducted to determine the propellant requirements, preferred propellant management technique, and propulsion system sizes for the LTPS. Propellants were liquid oxygen (LO2) combined with liquid hydrogen (LH2), liquid methane or kerosene. Thrust levels of 100, 500, and 1000 lbf were combined with 1, 4, and 8 perigee burns for transfer from low earth orbit to geosynchronous earth orbit. This matrix of systems was evaluated with a multilayer insulation (MLI) or a spray-on-foam insulation. Vehicle sizing results indicate that a toroidal tank configuration is needed for the LO2/LH2 system. Multiple perigee burns and MLI allow far superior LSS payload capability. Propellant settling, combined with a single screen device, was found to be the lightest and least complex propellant management technique.

  10. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  11. POTLIB 2001: A potential energy surface library for chemical systems

    NASA Astrophysics Data System (ADS)

    Duchovic, Ronald J.; Volobuev, Yuri L.; Lynch, Gillian C.; Truhlar, Donald G.; Allison, Thomas C.; Wagner, Albert F.; Garrett, Bruce C.; Corchado, Jose C.

    2002-04-01

    POTLIB 2001 is a computer program library of global chemical potential energy surface (PES) functions (91 functions in version 1.0) along with test data, a suite of utility programs, and a convenient user interface. The PES programs are written in ANSI standard FORTRAN77 and can be used to determine the Born-Oppenheimer potential energy of chemical systems as a function of the internal coordinates. The accompanying test data allow users to verify local implementations of this library. Finally, the utility programs permit use of this library in conjunction with a variety of chemical dynamics and chemical kinetics computer codes. Interface routines are provided for the POLYRATE and ABCRATE program packages of Truhlar and co-workers, the VENUS96 program package of Hase and co-workers, and the VARIFLEX program package of Klippenstein and co-workers; the routines in this library can also be used in conjunction with the DYNASOL program package of Zhang and co-workers. This article describes the library and the utility programs and outlines the systematic conventions used for interfaces in the computer programs contained in the library. Adherence to these conventions will allow future PESs to be compatible with this library.

  12. Nine-size system for chemical defense gloves. Technical report

    SciTech Connect

    Robinette, K.M.; Annis, J.F.

    1986-07-01

    The purpose of this effort was to meet the need for improved sizing of chemical defense gloves for Air Force men and women. A nine-size system was developed from available hand data. The development process and size values are presented in this report. Some summary statistics and regression equations are provided to aid investigators who may wish to make modifications. Although the anthropometric sizing system outlined in this report is statistically sound, it is experimental. The authors recommend that anthropometric fit-testing be conducted prior to full-scale glove production.

  13. MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION

    SciTech Connect

    Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

    2009-01-01

    Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

  14. Unique chemical tagging and detection system using encapsulated perfluorocarbon tracers

    NASA Astrophysics Data System (ADS)

    Fraser, Jay; Kaish, Norman

    1997-02-01

    This paper discusses the R&D proposed and underdevelopment by Tracer Detection Technology Corp. (TDT) for a series of commercially viable products that will form the basis of a patented chemical vapor tag system to identify and locate drugs, crops, chemical compounds and currency. TDT has concentrated its efforts on user interface and applications in its R&D planning, and has worked closely with a number of U.S Government agencies to form an inter-agency user group to assist in funding and guidance for our efforts. Based on discussions with U.S. Customs, the Federal Bureau of Investigation, National Institute of Justice (at Rome Air Development Center), DARPA, Department of Defense, Drug Enforcement Agency and the Central Intelligence Agency, there are a number of specific law enforcement problems that can be addressed with this technique.

  15. Noise-enhanced phase locking in a chemical oscillator system

    NASA Astrophysics Data System (ADS)

    Miyakawa, Kenji; Isikawa, Hironobu

    2002-05-01

    Dynamical responses of a chemical oscillator to an external electric field were investigated in the Belousov-Zabotinsky reaction system with the catalyst Ru(bpy)2+3 [tris-(2,2'-bipyridine) ruthenium (II)] immobilized in cation exchange beads. Periodic forcing above the threshold induced phase locking, whose synchronization region has a shape similar to the Arnold tongue. When a certain amount of noise together with a subthreshold periodic signal was imposed on the chemical oscillator, 1:1 phase locking to the periodic signal occurred. Its degree passed through a maximum with increase in the noise intensity, a manifestation of stochastic resonance in the form of noise-enhanced phase locking. The experimentally observed features were reproduced in a numerical simulation with a forced Oregonator reaction-diffusion model.

  16. Computation of transport coefficients of chemically reacting systems

    NASA Astrophysics Data System (ADS)

    Shmelkov, Yu. B.; Samuilov, E. V.

    2013-12-01

    A new method is proposed for computing the thermal conductivity of a gaseous mixture with regard for chemical reactions occurring therein, which enables the estimation of the thermal conductivity from each separate reaction to the chemical component of thermal conductivity. The method for determining the paired collision integrals, which is used in the work, is also briefly presented. The results computed by the proposed method are compared with experimental data and the data obtained by the existing computational methods in the temperature range from 500 to 2500 K under atmospheric pressure. The comparison was done both for pure gases and for the gaseous mixtures, including the combustion products of solid fuels. The obtained results may be applied for the development and design of systems related to heat exchange, gas dynamics, processing of solid and liquid fuels, for example, boiler aggregates, aviation engines, and in other applications.

  17. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    SciTech Connect

    Westbrook, C.K.

    2000-07-07

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  18. PHOTOELECTROCHEMISTRY AND PHOTOCATALYSIS IN NANOSCALE INORGANIC CHEMICAL SYSTEMS

    SciTech Connect

    Thomas E. Mallouk

    2007-05-27

    The goal of our DOE-supported research has been to explore the use of solid state materials as organizing media for, and as active components of, artificial photosynthetic systems. In this work we strive to understand how photoinduced electron and energy transfer reactions occur in the solid state, and to elucidate design principles for using nanoscale inorganic materials in photochemical energy conversion schemes. A unifying theme in this project has been to move beyond the study of simple transient charge separation to integrated chemical systems that can effect permanent charge separation in the form of energy-rich chemicals. This project explored the use of zeolites as organizing media for electron donor-acceptor systems and artificial photosynthetic assemblies. Layer-by-layer synthetic methods were developed using lamellar semiconductors, and multi-step, visible light driven energy/electron transfer cascades were studied by transient specroscopic techniques. By combining molecular photosensitizers with lamellar semiconductors and intercalated catalyst particles, the first non-sacrificial systems for visible light driven hydrogen evolution were developed and studied. Oxygen evolving catalyst particles and semiconductor nanowires were also studied with the goal of achieving photocatalytic water splitting using visible light.

  19. Interpreting chemical compositions of small scale basaltic systems: A review

    NASA Astrophysics Data System (ADS)

    McGee, Lucy E.; Smith, Ian E. M.

    2016-10-01

    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  20. Intelligent Chemical Sensor Systems for In-space Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  1. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined weekly and a functional test of the complete system shall be conducted at least once each year. (b)...

  2. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined weekly and a functional test of the complete system shall be conducted at least once each year. (b)...

  3. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined weekly and a functional test of the complete system shall be conducted at least once each year. (b)...

  4. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined weekly and a functional test of the complete system shall be conducted at least once each year. (b)...

  5. A New Data Management System for Biological and Chemical Oceanography

    NASA Astrophysics Data System (ADS)

    Groman, R. C.; Chandler, C.; Allison, D.; Glover, D. M.; Wiebe, P. H.

    2007-12-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) was created to serve PIs principally funded by NSF to conduct marine chemical and ecological research. The new office is dedicated to providing open access to data and information developed in the course of scientific research on short and intermediate time-frames. The data management system developed in support of U.S. JGOFS and U.S. GLOBEC programs is being modified to support the larger scope of the BCO-DMO effort, which includes ultimately providing a way to exchange data with other data systems. The open access system is based on a philosophy of data stewardship, support for existing and evolving data standards, and use of public domain software. The DMO staff work closely with originating PIs to manage data gathered as part of their individual programs. In the new BCO-DMO data system, project and data set metadata records designed to support re-use of the data are stored in a relational database (MySQL) and the data are stored in or made accessible by the JGOFS/GLOBEC object- oriented, relational, data management system. Data access will be provided via any standard Web browser client user interface through a GIS application (Open Source, OGC-compliant MapServer), a directory listing from the data holdings catalog, or a custom search engine that facilitates data discovery. In an effort to maximize data system interoperability, data will also be available via Web Services; and data set descriptions will be generated to comply with a variety of metadata content standards. The office is located at the Woods Hole Oceanographic Institution and web access is via http://www.bco-dmo.org.

  6. Applications of neural networks in chemical engineering: Hybrid systems

    SciTech Connect

    Ferrada, J.J.; Osborne-Lee, I.W. ); Grizzaffi, P.A. )

    1990-01-01

    Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applications of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.

  7. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    SciTech Connect

    Zhang Xi; Shia Runlie; Yung, Yuk L.

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  8. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  9. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  10. A Self-Calibrating Remote Control Chemical Monitoring System

    SciTech Connect

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  11. From chemical neuroanatomy to an understanding of the olfactory system.

    PubMed

    Oboti, L; Peretto, P; Marchis, S De; Fasolo, A

    2011-10-19

    The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  12. SRS: Site ranking system for hazardous chemical and radioactive waste

    SciTech Connect

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs.

  13. Materials Problems in Chemical Liquid-Propellant Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, L. L.

    1959-01-01

    With the advent of the space age, new adjustments in technical thinking and engineering experience are necessary. There is an increasing and extensive interest in the utilization of materials for components to be used at temperatures ranging from -423 to over 3500 deg F. This paper presents a description of the materials problems associated with the various components of chemical liquid rocket systems. These components include cooled and uncooled thrust chambers, injectors, turbine drive systems, propellant tanks, and cryogenic propellant containers. In addition to materials limitations associated with these components, suggested research approaches for improving materials properties are made. Materials such as high-temperature alloys, cermets, carbides, nonferrous alloys, plastics, refractory metals, and porous materials are considered.

  14. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is...

  15. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is...

  16. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is...

  17. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be...

  18. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately...

  19. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately...

  20. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately...

  1. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately...

  2. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be...

  3. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is...

  4. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be...

  5. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be...

  6. Hazard Classification of Household Chemical Products in Korea according to the Globally Harmonized System of Classification and labeling of Chemicals

    PubMed Central

    2013-01-01

    Objectives This study was conducted to review the validity of the need for the application of the Globally Harmonized System of Classification and Labeling of Chemicals (GHS) to household chemical products in Korea. The study also aimed to assess the severity of health and environmental hazards of household chemical products using the GHS. Methods 135 products were classified as ‘cleaning agents and polishing agents’ and 98 products were classified as ‘bleaches, disinfectants, and germicides.’ The current status of carcinogenic classification of GHS and carcinogenicity was examined for 272 chemical substances contained in household chemical products by selecting the top 11 products for each of the product categories. In addition, the degree of toxicity was assessed through analysis of whether the standard of the Republic of Korea’s regulations on household chemical products had been exceeded or not. Results According to GHS health and environmental hazards, “acute toxicity (oral)” was found to be the highest for two product groups, ‘cleaning agents and polishing agents’, and ‘bleaches, disinfectants, and germicides’ (result of classification of 233 household chemical products) at 37.8% and 52.0% respectively. In an analysis of carcinogenicity assuming a threshold of IARC 2B for the substances in household chemical products, we found ‘cleaning agents and polishing agents’ to contain 12 chemical substances and ‘bleaches, disinfectants, and germicides’ 11 chemical substances. Conclusion Some of the household chemical products were found to have a high hazard level including acute toxicity and germ cell mutagenicity, carcinogenicity, and reproductive toxicity. Establishing a hazard information delivery system including the application of GHS to household chemical products in Korea is urgent as well. PMID:24472347

  7. A Monolithically-Integrated μGC Chemical Sensor System

    PubMed Central

    Manginell, Ronald P.; Bauer, Joseph M.; Moorman, Matthew W.; Sanchez, Lawrence J.; Anderson, John M.; Whiting, Joshua J.; Porter, Daniel A.; Copic, Davor; Achyuthan, Komandoor E.

    2011-01-01

    Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC) system is essential for such applications. We describe the design, fabrication and packaging of μGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%. PMID:22163970

  8. Nonequilibrium dynamics in chemical systems A brief account

    NASA Astrophysics Data System (ADS)

    Nicolis, G.; Baras, F.

    1985-12-01

    During the period of September 3 to 7, 1984 a symposium on “Nonequilibrium Dynamics in Chemical Systems” was organized by the Centre de Recherche Paul Pascal in Bordeaux, France. It was supported, primarily, by the French Centre National de la Recherche Scientifique and attended by about 90 participants from Australia, Belgium, Canada, Denmark, France, Germany, Hungary, Israël, Italy, Japan, The Netherlands, Poland, Tchekoslovakia, Spain, United Kingdom, United States and Zimbabwe. A list of topics and speakers is found in the table below. Two highly successful conferences centered on nonlinear phenomena in chemical systems far from equilibrium had already been organized by the Bordeaux group in the past. The first of them [1], held in September 1978, was dominated by the theme that nonequilibrium can act as a source of order. Sustained oscillations and bistability were the two principal phenomena studied from this point of view. Thanks to the systematic utilization of the continuous stirred tank reactor (CSTR) the study of open systems could finally be realized. Reliable state diagrams were thus produced, notably by the Bordeaux group, in which one could identify the transition points to new states. The Belousov-Zhabotinskii (BZ) reaction and its variants were the main vehicle on which these new ideas could be illustrated. The second Bordeaux conference [2], held in September 1981, was largely dominated by the major progress that had just marked two vital areas of this field: the discovery of new classes of chemical oscillators; and the invasion of chaotic dynamics in chemistry. These themes also dominated the first Gordon Conference on Chemical Oscillations held in New Hampshire in July 1982. In contrast to its two predecessors, the third Bordeaux conference held in September 1984 was not dominated by a single central theme. New questions were raised in situations in which until very recently things were considered to be perfectly clear. Simple,

  9. Mapping of volatile organic chemicals in New Jersey water systems.

    PubMed

    Cohn, P; Savrin, J; Fagliano, J

    1999-01-01

    To characterize volatile organic chemical (VOC) contamination in public water in New Jersey from 1978 through 1990, detailed GIS maps were developed, along with descriptive text and an associated contaminant database, broken into half-year periods. All water providers that served more than 500 service connections were mapped. Contamination status for nine VOCs, including total trihalomethanes (THMs), was estimated for about 90% of the state's population. Many water systems were partitioned into smaller subsystems in order to map service areas that were more homogeneous with regard to water quality in order to minimize exposure misclassification. Data used for this work included test results taken by the New Jersey Department of Environmental Protection or the water utilities (raw, plant, and distribution system samples), an analysis of probable water use and water flow (based on pumpage, population, system architecture, and advice from the water systems), and information on service area extensions during the period. Using GIS applications, these maps and databases were used to estimate the size of the population exposed to contaminants over time, demonstrating a dramatic decrease in exposed population after the New Jersey Safe Drinking Water Act was signed in 1984.

  10. Low level exposure to chemicals and immune system

    SciTech Connect

    Colosio, C. . E-mail: claudio.colosio@icps.it; Birindelli, S.; Corsini, E.; Galli, C.L.; Maroni, M.

    2005-09-01

    Industrialized countries are facing an increase of diseases attributable to an alteration of the immune system function, and concern is growing that this trend could be at least partially attributable to new and modified patterns of exposure to chemicals. Among chemicals matter of concern, pesticides can be included. The Authors have reviewed the existing evidence of pesticide immunotoxicity in humans, showing that existing data are inadequate to raise conclusions on the immunotoxic risk related to these compounds. The limits of existing studies are: poor knowledge on exposure levels, heterogeneity of the approach, and difficulty in giving a prognostic significance to the slight changes often observed. To overcome these limits, the Authors have proposed a tier approach, based on three steps: the first, addressed at pointing out a possible immunomodulation; the second, at refining the results and the third one, when needed, to finalize the study and to point out concordance with previous results. Studies should preferably be carried out through comparison of pre- and post-exposure findings in the same groups of subjects to be examined immediately after the end of the exposure. A simplification of the first step approach can be used by the occupational health physician and the occupational toxicologist. Conclusions on the prognostic significance of the slight changes often observed will be reached only by validating the hypothesis generated by field studies with an epidemiological approach. In this field, the most useful option is represented by longitudinal perspective studies.

  11. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    SciTech Connect

    Not Available

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  12. Illustrating Chemical Concepts through Food Systems: Introductory Chemistry Experiments.

    ERIC Educational Resources Information Center

    Chambers, E., IV; Setser, C. S.

    1980-01-01

    Demonstrations involving foods that illustrate chemical concepts are described, including vaporization of liquids and Graham's law of diffusion, chemical reaction rates, adsorption, properties of solutions, colloidal dispersions, suspensions, and hydrogen ion concentration. (CS)

  13. Remediation System Evaluation, Silresim Chemical Corp. Superfund Site

    EPA Pesticide Factsheets

    The Silresim Superfund Site is located in an industrial area of Lowell, Massachusetts. This Superfund siteaddresses contamination associated with a chemical waste reclamation facility that was operated bySilresim Chemical Corporation between 1971 and..

  14. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... they are used. (2) The employer may not mix together dry chemical extinguishing agents of different... assure that the dry chemical supply is free of moisture which may cause the supply to cake or form...

  15. Flow-Induced Control of Pattern Formation in Chemical Systems

    NASA Astrophysics Data System (ADS)

    Berenstein, Igal; Beta, Carsten

    Since Alan Turing's seminal paper in 1952, the study of spatio-temporal patterns that arise in systems of reacting and diffusing components has grown into an immense and vibrant realm of scientific research. This field includes not only chemical systems but spans many areas of science as diverse as cell and developmental biology, ecology, geosciences, or semiconductor physics. For several decades research in this field has concentrated on the vast variety of patterns that can emerge in reaction-diffusion systems and on the underlying instabilities. In the 1990s, stimulated by the pioneering work of Ott, Grebogi and Yorke, control of pattern formation arose as a new topical focus and gradually developed into an entire new field of research. On the one hand, research interests concentrated on control and suppression of undesired dynamical states, in particular on control of chaos. On the other hand, the design and engineering of particular space-time patterns became a major focus in this field that motivates ongoing scientific effort until today...

  16. A Non-Chemical System for Online Weed Control

    PubMed Central

    Rueda-Ayala, Victor; Peteinatos, Gerassimos; Gerhards, Roland; Andújar, Dionisio

    2015-01-01

    Non-chemical weed control methods need to be directed towards a site-specific weeding approach, in order to be able to compete the conventional herbicide equivalents. A system for online weed control was developed. It automatically adjusts the tine angle of a harrow and creates different levels of intensity: from gentle to aggressive. Two experimental plots in a maize field were harrowed with two consecutive passes. The plots presented from low to high weed infestation levels. Discriminant capabilities of an ultrasonic sensor were used to determine the crop and weed variability of the field. A controlling unit used ultrasonic readings to adjust the tine angle, producing an appropriate harrowing intensity. Thus, areas with high crop and weed densities were more aggressively harrowed, while areas with lower densities were cultivated with a gentler treatment; areas with very low densities or without weeds were not treated. Although the weed development was relatively advanced and the soil surface was hard, the weed control achieved by the system reached an average of 51% (20%–91%), without causing significant crop damage as a result of harrowing. This system is proposed as a relatively low cost, online, and real-time automatic harrow that improves the weed control efficacy, reduces energy consumption, and avoids the usage of herbicide. PMID:25831085

  17. A non-chemical system for online weed control.

    PubMed

    Rueda-Ayala, Victor; Peteinatos, Gerassimos; Gerhards, Roland; Andújar, Dionisio

    2015-03-30

    Non-chemical weed control methods need to be directed towards a site-specific weeding approach, in order to be able to compete the conventional herbicide equivalents. A system for online weed control was developed. It automatically adjusts the tine angle of a harrow and creates different levels of intensity: from gentle to aggressive. Two experimental plots in a maize field were harrowed with two consecutive passes. The plots presented from low to high weed infestation levels. Discriminant capabilities of an ultrasonic sensor were used to determine the crop and weed variability of the field. A controlling unit used ultrasonic readings to adjust the tine angle, producing an appropriate harrowing intensity. Thus, areas with high crop and weed densities were more aggressively harrowed, while areas with lower densities were cultivated with a gentler treatment; areas with very low densities or without weeds were not treated. Although the weed development was relatively advanced and the soil surface was hard, the weed control achieved by the system reached an average of 51% (20%-91%), without causing significant crop damage as a result of harrowing. This system is proposed as a relatively low cost, online, and real-time automatic harrow that improves the weed control efficacy, reduces energy consumption, and avoids the usage of herbicide.

  18. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  19. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  20. TOXICITY-BASED CHEMICAL AGENT DETECTION SYSTEMS: CONTINUOUS MONITOR AND EXPOSURE HISTORY

    EPA Science Inventory

    This project will develop and characterize chemical agent detection systems that will provide broad toxicological screening information to first responders and building decontamination personnel. The primary goal for this technology is to detect the presence of airborne chemic...

  1. Thermal and chemical evolution of The Geysers geothermal system, California

    SciTech Connect

    Moore, J.N.

    1992-01-01

    Fluid inclusions and mineral assemblages provide a reward of the thermal and chemical changes that occurred during the evolution of The Geysers geothermal system. The data document the presence of an extensive liquid dominated geothermal system that developed in response to felsite intrusion and its evolution to a vapor-dominated regime. Temperatures within the early liquid-dominated system ranged from 175 C at a distance of 7200 feet from the felsite to more than 350 C near the contact while salinities varied from 5 equivalent weight percent NaCl (at a distance of 5500 feet) to more than 26 weight percent NaCl. As temperatures around the felsite declined, the liquid-dominated system collapsed upon itself. Downward migration of the low salinity waters resulted in dilution of the fluids present in regions now occupied by the caprock and normal vapor-dominated reservoir. In contrast, dilution was minor in rocks now hosting the high-temperature vapor-dominated reservoir. This suggests that low permeabilities are the primary reason for the development of the high-temperature reservoir. Boiling within the caprock produced late-stage veins of calcite and quartz. As the fluid boiled off, condensate was trapped as low salinity fluid inclusions. Within the main body of the reservoir, a liquid phase with salinities of up to 7 equivalent weight percent NaCl persisted to temperatures between 250 and 270 C. However, except for the presence of vapor-rich inclusions, little evidence of boiling within the reservoir rocks was preserved.

  2. Photoacoustic chemical sensing: layered systems and excitation source analysis

    NASA Astrophysics Data System (ADS)

    Marcus, Logan S.; Holthoff, Ellen L.; Pellegrino, Paul M.

    2015-05-01

    Photoacoustic spectroscopy (PAS) is a versatile tool that is well suited for the ranged interrogation of layered samples. We have previously demonstrated standoff photoacoustic (PA) chemical detection of condensed phase samples at one meter distance using an interferometric sensing platform. Current research investigates layered solid samples constructed from a thin layer of energetic material deposited on a substrate. The PA signal from the system, as measured by the interferometer, changes based on the differing optical and mechanical properties of the substrate. This signal variance must be understood in order to develop a sensor capable of detecting trace quantities of hazardous materials independent of the surface. Optical absorption and modal excitation are the two biggest sources of PA signal generated in the sample/substrate system. Finally, the mode of operation of the excitation source is investigated. Most PA sensing paradigms use a quantum cascade laser (QCL) operating in either pulsed or modulated CW mode. We will discuss photoacoustic signal generation with respect to these different operating modes.

  3. Chemical oxygen demand using closed microwave digestion system.

    PubMed

    Dharmadhikari, Dattatray M; Vanerkar, Atul P; Barhate, Nivedita M

    2005-08-15

    A new approach to determine the chemical oxygen demand (COD) using a closed microwave digestion (CMD) system to replace the conventional, time-consuming open reflux (OR) method is proposed. The procedure uses a laboratory-grade closed microwave digestion system (one magnetron) for the digestion of small volume of samples (3.0 mL) in a completely closed (90 mL) Teflon vessel, digesting 10 samples at a time in the range of COD values of 5-1000 mg L(-1). The digestion time required is 15 min as compared to the 2 h required for the conventional OR method. Chloride ion interference can be removed up to 6000 mg of Cl- ions L(-1) as compared to the 2000 mg of Cl- ions L(-1) removed by conventional OR method. The present work reveals that the filtration of effluent samples by membrane filter or homogenization is not essential to obtain reproducible results. The proposed method is cost-effective; saves time, energy, and reagents with providing precise results for both the pure organic compounds and wastewater samples; and is ecofriendly.

  4. Capillary Action may Cool Systems and Precisely balance Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-10-01

    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  5. Chemical Looping Combustion System-Fuel Reactor Modeling

    SciTech Connect

    Gamwo, I.K.; Jung, J.; Anderson, R.R.; Soong, Y.

    2007-04-01

    Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

  6. Optical disk toxic information online system at Sumitomo Chemical Co. through telecommunication network in Japan

    NASA Astrophysics Data System (ADS)

    Kishida, Fumio; Omodaka, Hisakata; Ishihara, Koichiro; Yamada, Yoshinori; Kato, Hiromi

    Toxicity data about several hundred chemicals, handled and commercialized by Sumitomo Chemical Co., have been collected and estimated. These data are stored in an optical disk filing system "sanfile 8500D". Because the system is mounted with a keyword input panel "Word selecter", information retrieval system is simplified but precised. Online system through telecommunication network is extended between Sumitomo Chemical's works, laboratories, and others. Image informations are mailed from installed facsimili in sanfile 8500D directly.

  7. Assessment of Infrared Remote Chemical Sensing Systems with Numeric Simulations

    SciTech Connect

    Fry, H.; McVey, B.; Schmitt, M.

    1998-11-01

    A general approach to the evaluation of remote chemical sensors is described that can be used to provide evaluation of the chemical detection in a particular chemical scenario. It will be used to make comparisons of a CO{sub 2} laser differential absorption lidar sensor and a passive thermal FTIR sensor. The focus of the study will be to evaluate the advantage of the FTIR sensor's increased spectral coverage and number of frequency channels.

  8. Chemical Management System (CMS) v. 1.0

    SciTech Connect

    Humphrey, Walter R.

    2016-10-24

    CMS is a Windows application for tracking chemical inventories. Partners will use this application to record chemicals that are stored on their site and to perform periodic inventories of those chemicals. The application records information about stored chemicals from user input via the keyboard and barcode readers and stores that information into a single-file database (SQLite). A simple user login mechanism is used to control access to functions in the application. A user interface is provided that allows users to search the database and update data in the database.

  9. A high temperature, plasma-assisted chemical vapor deposition system

    SciTech Connect

    Brusasco, R.M.; Britten, J.A.; Thorsness, C.B.; Scrivener, M.S.; Unites, W.G.; Campbell, J.H. ); Johnson, W.L. )

    1990-02-01

    We have designed and built a high-temperature, plasma-assisted, chemical vapor deposition system to deposit multilayer optical coatings of SiO{sub 2} and doped-SiO{sub 2} flat substrates. The coater concept and design is an outgrowth of our recent work with Schott Glasswerke demonstrating the use of plasma assisted CVD to prepare very high damage threshold optical coatings. The coater is designed to deposit up to several thousand alternating quarterwave layers of SiO{sub 2} and doped SiO{sub 2} substrate at deposition rates up to several microns per minute. The substrate is resistively heated to about 1000{degree}C during the deposition phase of the process. The plasma is driven by a 13.56 MHz RF unit capable of producing power densities of up to 140 W cm{sup {minus}3} in the reaction zone. The coater is designed to be adaptable to microwave generated plasmas, as well as RF. Reactant gas flow rates of up to 10 slm can be achieved at a 10 tar operating pressure. Reactants consist of O{sub 2}, SiCl{sub 4} and a volatile halogenated dopant. These gases react in the plasma volume producing SiO{sub 2} with dopant concentrations of up to a few percent. A variable dopant concentration is used to produce index differences between adjacent optical layers.

  10. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  11. Raman chemical imaging system for food safety and quality inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raman chemical imaging technique combines Raman spectroscopy and digital imaging to visualize composition and structure of a target, and it offers great potential for food safety and quality research. In this study, a laboratory-based Raman chemical imaging platform was designed and developed. The i...

  12. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    SciTech Connect

    Brett, Tobias Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  13. Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system.

    PubMed

    Brett, Tobias; Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  14. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...

  15. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...

  16. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...

  17. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...

  18. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...

  19. A computer-Based System for Handling Chemical Nomenclature and Structural Representations

    ERIC Educational Resources Information Center

    Rowlett, Russell J.; Tate, Fred A.

    1972-01-01

    Among other improvements in chemical nomenclature used in the Chemical Registry System, Chemical Abstracts Service intends to standardize the fundamental principles for naming cyclic structures so that procedures for the derivation of ring names can become more amenable to computer generation and translation. (Author/NH)

  20. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Construction of dry powder chemical systems. 75.1101-15 Section 75.1101-15 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-15 Construction of dry powder chemical systems. (a) Each self-contained dry powder system shall...

  1. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Construction of dry powder chemical systems. 75.1101-15 Section 75.1101-15 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-15 Construction of dry powder chemical systems. (a) Each self-contained dry powder system shall...

  2. Remediation System Evaluation, Reilly Tar and Chemical Superfund Site

    EPA Pesticide Factsheets

    The Reilly Industries site is an active chemical manufacturing facility surrounded by a mix of residential,industrial and commercial properties. All residences in the area of contaminated ground water have beenconnected to the municipal water supply.

  3. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species

  4. Study of electrical and chemical propulsion systems for auxiliary propulsion of large space systems, volume 2

    NASA Technical Reports Server (NTRS)

    Smith, W. W.

    1981-01-01

    The five major tasks of the program are reported. Task 1 is a literature search followed by selection and definition of seven generic spacecraft classes. Task 2 covers the determination and description of important disturbance effects. Task 3 applies the disturbances to the generic spacecraft and adds maneuver and stationkeeping functions to define total auxiliary propulsion systems requirements for control. The important auxiliary propulsion system characteristics are identified and sensitivities to control functions and large space system characteristics determined. In Task 4, these sensitivities are quantified and the optimum auxiliary propulsion system characteristics determined. Task 5 compares the desired characteristics with those available for both electrical and chemical auxiliary propulsion systems to identify the directions technology advances should take.

  5. Attrition Rate of Oxygen Carriers in Chemical Looping Combustion Systems

    NASA Astrophysics Data System (ADS)

    Feilen, Harry Martin

    This project developed an evaluation methodology for determining, accurately and rapidly, the attrition resistance of oxygen carrier materials used in chemical looping technologies. Existing test protocols, to evaluate attrition resistance of granular materials, are conducted under non-reactive and ambient temperature conditions. They do not accurately reflect the actual behavior under the unique process conditions of chemical looping, including high temperatures and cyclic operation between oxidizing and reducing atmospheres. This project developed a test method and equipment that represented a significant improvement over existing protocols. Experimental results obtained from this project have shown that hematite exhibits different modes of attrition, including both due to mechanical stresses and due to structural changes in the particles due to chemical reaction at high temperature. The test methodology has also proven effective in providing reactivity changes of the material with continued use, a property, which in addition to attrition, determines material life. Consumption/replacement cost due to attrition or loss of reactivity is a critical factor in the economic application of the chemical looping technology. This test method will allow rapid evaluation of a wide range of materials that are best suited for this technology. The most important anticipated public benefit of this project is the acceleration of the development of chemical looping technology for lowering greenhouse gas emissions from fossil fuel combustion.

  6. The development of the globally harmonized system (GHS) of classification and labelling of hazardous chemicals.

    PubMed

    Winder, Chris; Azzi, Rola; Wagner, Drew

    2005-10-17

    The hazards of chemicals can be classified using classification criteria that are based on physical, chemical and ecotoxicological endpoints. These criteria may be developed be iteratively, based on scientific or regulatory processes. A number of national and international schemes have been developed over the past 50 years, and some, such as the UN Dangerous Goods system or the EC system for hazardous substances, are in widespread use. However, the unnecessarily complicated multiplicity of existing hazard classifications created much unnecessary confusion at the user level, and a recommendation was made at the 1992 Rio Earth summit to develop a globally harmonized chemical hazard classification and compatible labelling system, including material safety data sheets and easily understandable symbols, that could be used for manufacture, transport, use and disposal of chemical substances. This became the globally harmonized system for the Classification and Labelling of Chemicals (GHS). The developmental phase of the GHS is largely complete. Consistent criteria for categorising chemicals according to their toxic, physical, chemical and ecological hazards are now available. Consistent hazard communication tools such as labelling and material safety data sheets are also close to finalisation. The next phase is implementation of the GHS. The Intergovernmental Forum for Chemical Safety recommends that all countries implement the GHS as soon as possible with a view to have the system fully operational by 2008. When the GHS is in place, the world will finally have one system for classification of chemical hazards.

  7. Chemical geothermometers and mixing models for geothermal systems

    USGS Publications Warehouse

    Fournier, R.O.

    1977-01-01

    Qualitative chemical geothermometers utilize anomalous concentrations of various "indicator" elements in groundwaters, streams, soils, and soil gases to outline favorable places to explore for geothermal energy. Some of the qualitative methods, such as the delineation of mercury and helium anomalies in soil gases, do not require the presence of hot springs or fumaroles. However, these techniques may also outline fossil thermal areas that are now cold. Quantitative chemical geothermometers and mixing models can provide information about present probable minimum subsurface temperatures. Interpretation is easiest where several hot or warm springs are present in a given area. At this time the most widely used quantitative chemical geothermometers are silica, Na/K, and Na-K-Ca. ?? 1976.

  8. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-13 Dry powder chemical systems;...

  9. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    EPA Science Inventory

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends

    A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  10. Strategic Considerations in the Design of a Screening System for Substructure Searches of Chemical Structure Files

    ERIC Educational Resources Information Center

    Adamson, George W.; And Others

    1973-01-01

    A major problem in the design of screening systems for substructure searches of chemical structure files is the development of a methodology for selection of an optimal set of structural characteristics to act as screens. Distributions of several structural characteristics of the Chemical Abstracts Service Registry System are summarized. (13…

  11. Component pattern analysis of chemicals using multispectral THz imaging system

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuki

    2004-04-01

    We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  12. Method and system for extraction of chemicals from aquifer remediation effluent water

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Barker, Donna L.

    2003-01-01

    A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  13. Steady-State Multiplicity Features of Chemically Reacting Systems.

    ERIC Educational Resources Information Center

    Luss, Dan

    1986-01-01

    Analyzes steady-state multiplicity in chemical reactors, focusing on the use of two mathematical tools, namely, the catastrophe theory and the singularity theory with a distinguished parameter. These tools can be used to determine the maximum number of possible solutions and the different types of bifurcation diagrams. (JN)

  14. Computer program determines chemical equilibria in complex systems

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Zeleznik, F. J.

    1966-01-01

    Computer program numerically solves nonlinear algebraic equations for chemical equilibrium based on iteration equations independent of choice of components. This program calculates theoretical performance for frozen and equilibrium composition during expansion and Chapman-Jouguet flame properties, studies combustion, and designs hardware.

  15. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    SciTech Connect

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  16. CD-REST: a system for extracting chemical-induced disease relation in literature.

    PubMed

    Xu, Jun; Wu, Yonghui; Zhang, Yaoyun; Wang, Jingqi; Lee, Hee-Jin; Xu, Hua

    2016-01-01

    Mining chemical-induced disease relations embedded in the vast biomedical literature could facilitate a wide range of computational biomedical applications, such as pharmacovigilance. The BioCreative V organized a Chemical Disease Relation (CDR) Track regarding chemical-induced disease relation extraction from biomedical literature in 2015. We participated in all subtasks of this challenge. In this article, we present our participation system Chemical Disease Relation Extraction SysTem (CD-REST), an end-to-end system for extracting chemical-induced disease relations in biomedical literature. CD-REST consists of two main components: (1) a chemical and disease named entity recognition and normalization module, which employs the Conditional Random Fields algorithm for entity recognition and a Vector Space Model-based approach for normalization; and (2) a relation extraction module that classifies both sentence-level and document-level candidate drug-disease pairs by support vector machines. Our system achieved the best performance on the chemical-induced disease relation extraction subtask in the BioCreative V CDR Track, demonstrating the effectiveness of our proposed machine learning-based approaches for automatic extraction of chemical-induced disease relations in biomedical literature. The CD-REST system provides web services using HTTP POST request. The web services can be accessed fromhttp://clinicalnlptool.com/cdr The online CD-REST demonstration system is available athttp://clinicalnlptool.com/cdr/cdr.html. Database URL:http://clinicalnlptool.com/cdr;http://clinicalnlptool.com/cdr/cdr.html.

  17. A Cellular System for Spatial Signal Decoding in Chemical Gradients.

    PubMed

    Hegemann, Björn; Unger, Michael; Lee, Sung Sik; Stoffel-Studer, Ingrid; van den Heuvel, Jasmin; Pelet, Serge; Koeppl, Heinz; Peter, Matthias

    2015-11-23

    Directional cell growth requires that cells read and interpret shallow chemical gradients, but how the gradient directional information is identified remains elusive. We use single-cell analysis and mathematical modeling to define the cellular gradient decoding network in yeast. Our results demonstrate that the spatial information of the gradient signal is read locally within the polarity site complex using double-positive feedback between the GTPase Cdc42 and trafficking of the receptor Ste2. Spatial decoding critically depends on low Cdc42 activity, which is maintained by the MAPK Fus3 through sequestration of the Cdc42 activator Cdc24. Deregulated Cdc42 or Ste2 trafficking prevents gradient decoding and leads to mis-oriented growth. Our work discovers how a conserved set of components assembles a network integrating signal intensity and directionality to decode the spatial information contained in chemical gradients.

  18. Kinetics with chemical reactions and nonequilibrium structures in open systems

    NASA Astrophysics Data System (ADS)

    Aristov, Vladimir; Frolova, Anna; Zabelok, Sergei

    2013-10-01

    Simulations of flows on the basis of kinetic equations for mixtures with chemical reactions are performed. The Nonuniform Relaxation Problems (NRP) are formulated and solved. The Unified Flow Solver (UFS) is used for 1D and 2D NRP. The nonequilibrium kinetics can provide results outside the traditional theory of macroscopic phenomena based on the Navier-Stokes equations. Nonequilibrium flows with different properties in relaxation zones are described.

  19. Fieldable Fourier Transform Spectrometer: System Construction, Background Variability Measurements, and Chemical Attack Warning Experiments

    SciTech Connect

    Hatchell, Brian K.; Harper, Warren W.; Batishko, Charles R.; Johnson, Timothy J.; Sheen, David M.; Stewart, Timothy L.; Schultz, John F.

    2002-10-01

    The infrared sensors task at the Pacific Northwest National Laboratory (PNNL) is focused on the science and technology of remote and in-situ chemical sensors for detecting proliferation and countering terrorism. Missions to be addressed by remote chemical sensor development will include detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology relevant to these primary missions is also likely to be useful for battlefield chemical weapons defense, air operations support, monitoring emissions from chemical weapons destruction facilities or industrial chemical plants, and law enforcement applications. PNNL will seek to serve organizations with direct interest in these missions through collaborative research and development efforts approved by NA-22. During FY02, PNNL began assembling a remote IR detection capability that would allow field experiments to be conducted. The capability consists of a commercially available FTIR (Fourier Transform Infrared) emission spectrometer and a frequency-modulation differential-absorption LIDAR (FM-DIAL) system being developed at PNNL. To provide environmental protection for these systems, a large, well insulated, temperature controlled trailer was specified and procured. While the FTIR system was field-ready, the FM-DIAL system required many modifications to prepare for field deployment. This document provides an overview of the FTIR system, summarizes the modifications made to the FM-DIAL system, and describes the salient features of the remote systems trailer.

  20. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    PubMed

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  1. Systemic bone marrow disorders: Characterization with proton chemical shift imaging

    SciTech Connect

    Gueckel, F.B.; Brix, G.; Semmler, W.; Zuna, I.; Knauf, W.; Ho, A.D.; van Kaick, G. )

    1990-07-01

    In a prospective clinical study, 26 patients (22 with malignant lymphoma and 4 with myelofibrosis) and 9 healthy volunteers were examined by conventional magnetic resonance and proton chemical shift imaging (CSI; modified Dixon method). On the basis of the CSI data, a quantitative evaluation of the relative fat and water signal fractions in regions of interest of the femur, pelvis, and spine was performed. In 16 of 17 patients with biopsy-proven bone marrow disorders, CSI revealed a significant reduction in the fat fraction of the bone marrow relative to that of normal volunteers. The visual assessment could detect only 14 of the 17 pathological cases.

  2. Application of chemical dehumidification system to a roof fan house at Michoud Assembly Facility at New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of a chemical dehumidification system to reduce the energy consumption associated with dehumidification of the chilled air is assessed. A comparative energy consumption and cost analysis of the chemical dehumidification and existing systems and the savings offered by the proposed chemical dehumidification system over the existing air washer-reheat system are presented.

  3. WAR DSS: A DECISION SUPPORT SYSTEM FOR ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    The second generation of the Waste Reduction (WAR) Algorithm is constructed as a decision support system (DSS) in the design of chemical manufacturing facilities. The WAR DSS is a software tool that can help reduce the potential environmental impacts (PEIs) of industrial chemical...

  4. Lunar missions using chemical propulsion: System design issues

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1991-01-01

    To transport lunar base elements to the Moon, large high-energy propulsion systems will be required. Advanced propulsion systems for lunar missions can significantly reduce launch mass and increase the delivered payload, resulting in significant launch cost savings. In this report, the masses in low Earth orbit (LEO) are compared for several propulsion systems: nitrogen tetroxide/monomethyl hydrazine (NTO/MMH), oxygen/methane (O2/CH4), oxygen/hydrogen (O2/H2), and metallized O2/H2/Al propellants. Also addressed are payload mass increases enabled with these systems; system design issues involving the engine thrust levels, engine commonality between the transfer vehicle and the excursion vehicle; the number of launches to place the lunar mission vehicles into LEO; and analyses of small lunar missions launched from a single Space Transportation System-Cargo (STS-C) flight.

  5. Roadmap to Secure Control Systems in the Chemical Sector

    DTIC Science & Technology

    2009-09-01

    analysis of all risk factors, including physical, cyber, and human. The interaction of both internal and external process and business systems must also be...interconnectivity, but restricts its scope by addressing the cyber issues of ICS.b Interactions with physical, business, and safety systems and their security...and the fully explored ramifications as a loss of control incident propagates through multi-industry and multi-sector interactions . CONTROL SYSTEMS

  6. Chemical tools selectively target components of the PKA system

    PubMed Central

    Bertinetti, Daniela; Schweinsberg, Sonja; Hanke, Susanne E; Schwede, Frank; Bertinetti, Oliver; Drewianka, Stephan; Genieser, Hans-Gottfried; Herberg, Friedrich W

    2009-01-01

    Background In the eukaryotic cell the cAMP-dependent protein kinase (PKA) is a key enzyme in signal transduction and represents the main target of the second messenger cAMP. Here we describe the design, synthesis and characterisation of specifically tailored cAMP analogs which can be utilised as a tool for affinity enrichment and purification as well as for proteomics based analyses of cAMP binding proteins. Results Two sets of chemical binders were developed based on the phosphorothioate derivatives of cAMP, Sp-cAMPS and Rp-cAMPS acting as cAMP-agonists and -antagonists, respectively. These compounds were tested via direct surface plasmon resonance (SPR) analyses for their binding properties to PKA R-subunits and holoenzyme. Furthermore, these analogs were used in an affinity purification approach to analyse their binding and elution properties for the enrichment and improvement of cAMP binding proteins exemplified by the PKA R-subunits. As determined by SPR, all tested Sp-analogs provide valuable tools for affinity chromatography. However, Sp-8-AEA-cAMPS displayed (i) superior enrichment properties while maintaining low unspecific binding to other proteins in crude cell lysates, (ii) allowing mild elution conditions and (iii) providing the capability to efficiently purify all four isoforms of active PKA R-subunit in milligram quantities within 8 h. In a chemical proteomics approach both sets of binders, Rp- and Sp-cAMPS derivatives, can be employed. Whereas Sp-8-AEA-cAMPS preferentially binds free R-subunit, Rp-AHDAA-cAMPS, displaying antagonist properties, not only binds to the free PKA R-subunits but also to the intact PKA holoenzyme both from recombinant and endogenous sources. Conclusion In summary, all tested cAMP analogs were useful for their respective application as an affinity reagent which can enhance purification of cAMP binding proteins. Sp-8-AEA-cAMPS was considered the most efficient analog since Sp-8-AHA-cAMPS and Sp-2-AHA-cAMPS, demonstrated

  7. Design of multiplexed fiber optic chemical sensing system using clad-removable optical fibers

    NASA Astrophysics Data System (ADS)

    Yun, Chang-Yong; Dhital, Dipesh; Lee, Jung-Ryul; Park, Gyuhae; Kwon, Il-Bum

    2012-02-01

    To prevent possible threats to public safety and economic loss from chemical leakage accidents, novel chemical sensing techniques for regular monitoring and leakage detection have been developed for various fields. We propose a fiber optic liquid chemical sensor (FOCS) system using specialty optical fibers and an optical time domain reflectometer (OTDR), and is based on the leaky wave mode sensing principle. OTDR enables simple multiplexing where individual sensor nodes along the fiber length could be interrogated by a common OTDR. The sensor node in the optical fiber is prepared by removing the desired length of a protective layer using mechanical stripping and chemical etching techniques. A novel laser stripping technique with superior capability to fabricate quasi-distributed dense sensor nodes is devised as well. The FOCS system is further analyzed to characterize the sensor response behavior in relation to the sensor node length and possible environmental and chemical temperature effect. Under the condition satisfying the leaky wave mode principle and within the minimum acceptable refractive index (RI) range by the system, this FOCS system could monitor numerous liquid chemicals with variable refractive indices and has been tested with positive results. In addition, the system shows the possibility for multi-point detection and is further expanded into a hybrid technique capable of estimating the refractive index range of the detected chemical.

  8. Violation of the mass-action law in dilute chemical systems

    NASA Astrophysics Data System (ADS)

    Brogioli, Doriano

    2013-11-01

    The mass-action law, which predicts the rates of chemical reactions, is widely used for modeling the kinetics of the chemical reactions and their stationary states, also for complex chemical reaction networks. However, violations of the mass-action equations have been reported in various cases: in confined systems with a small number of molecules, in non-ideally-stirred systems, when the reactions are limited by the diffusion, at high concentrations of reactants, or in chemical reaction networks with marginally stable mass-action equations. In this paper, I describe a new mechanism, leading to the violation of the mass-action equations, that takes place at a low concentration of at least one of the reactants; in this limit, the reaction rates can be easily inferred from the chemical reaction network. I propose that this mechanism underlies the replication stability of the hypercycles, a class of chemical reaction networks hypothetically connected with abiogenesis. I provide two simple examples of chemical reaction networks in which the mechanism leading to the violation of the mass-action law is present. I study the two chemical reaction networks by means of a simulation performed with a cellular automaton model. The results have a general validity and represent a limitation of the validity of the mass-action law, which has been overlooked up to now in the studies about the chemical reaction networks.

  9. Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems.

    PubMed

    Grima, Ramon

    2015-10-01

    It is well known that the linear-noise approximation (LNA) agrees with the chemical master equation, up to second-order moments, for chemical systems composed of zero and first-order reactions. Here we show that this is also a property of the LNA for a subset of chemical systems with second-order reactions. This agreement is independent of the number of interacting molecules.

  10. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    EPA Science Inventory

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  11. Chemical analysis of a triple system of A-type stars

    NASA Astrophysics Data System (ADS)

    Frémat, Y.; Lampens, P.; Hensberge, H.

    2004-12-01

    Components of multiple systems generally originate from the same protostellar environment. Their similarities or differences in surface chemical composition therefore relates to their individual evolutionary paths (stellar evolution, rotation) and the possible influence of a close companion.

  12. EXPOSURE METHODOLOGIES AND SYSTEMS FOR LONG-TERM CHEMICAL CARCINOGENICITY STUDIES WITH SMALL FISH SPECIES

    EPA Science Inventory

    Testing waterborne chemical carcinogens in fish models requires accurate, reliable, and reproducible exposures. Because carcinogenesis is a chronic toxicological process and is often associated with prolonged latency periods, systems must accommodate lengthy in-life test periods ...

  13. Development and testing of dry chemicals in advanced extinguishing systems for jet engine nacelle fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Ling, A. C. (Editor); Mayer, L. A.; Myronik, D. J.

    1979-01-01

    The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented.

  14. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOEpatents

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  15. Chemical Safety Alert: Fire Hazard from Carbon Adsorption Deodorizing Systems

    EPA Pesticide Factsheets

    Activated carbon systems used to adsorb vapors for odor control may pose a fire hazard when used for certain types of substances, such as crude sulfate turpentine. Facilities should take precautions and proper procedures to avoid or mitigate these hazards.

  16. IMMUNE SYSTEM MATURITY AND SENSITIVITY TO CHEMICAL EXPOSURE

    EPA Science Inventory

    It is well established that human diseases associated with abnormal immune function, including some common infectious diseases and asthma, are considerably more prevalent at younger ages. The immune system continues to mature after birth, and functional immaturity accounts for m...

  17. Formulation of engineered particulate systems for chemical mechanical polishing applications

    NASA Astrophysics Data System (ADS)

    Basim, Gul Bahar

    Chemical mechanical polishing (CMP) is widely used in the microelectronics industry to achieve planarization and patterning of metal and dielectric layers for microelectronic device manufacturing. Rapid advances in the microelectronics industry demand a decrease in the sizes of the devices, resulting in the requirement of a very thin layer of material removal with atomically flat and clean surface finish by CMP. Furthermore, new materials, such as copper and polymeric dielectrics, are introduced to build faster microprocessors, which are more vulnerable to defect formation and also demand more complicated chemistries. These trends necessitate improved control of the CMP that can be achieved by studying the slurry chemical and particulate properties to gain better fundamental understanding on the process. In this study, the impacts of slurry particle size distribution and stability on pad-particle-surface interactions during polishing are investigated. One of the main problems in CMP is the scratch or pit formation as a result of the presence of larger size particles in the slurries. Therefore, in this investigation, impacts of hard and soft (transient) agglomerates on polishing performance are quantified in terms of the material removal rate and the quality of the surface finish. It is shown that the presence of both types of agglomerates must be avoided in CMP slurries and robust stabilization schemes are needed to prevent the transient agglomerate formation. To stabilize the CMP slurries at extreme pH and ionic strength environments, under applied shear and normal forces, repulsive force barriers provided by the self-assembled surfactant structures at the solid/liquid interface are utilized. A major finding of this work is that slurry stabilization has to be achieved by controlling not only the particle-particle interactions, but also the pad-particle-substrate interactions. Perfect lubrication of surfaces by surfactants prevented polishing. Thus, effective

  18. Chemical evolution of a high-level magma system: the Black Mountain volcanic center, southern Nevada

    SciTech Connect

    Vogel, T.A.; Noble, D.C.; Younker, L.W.

    1983-09-01

    A comprehensive study of stratigraphically controlled samples of both lavas and ash-flow tuffs from the Black Mountain volcanic center enables us to evaluate magmatic processes. The results of this study are used to: (1) determine how this high-level magma system developed; (2) compare this system with other similar systems; and (3) correlate ash-flow sheets using their chemical characteristics.

  19. Chemical and morphological filters in a specialized floral mimicry system.

    PubMed

    Martos, Florent; Cariou, Marie-Louise; Pailler, Thierry; Fournel, Jacques; Bytebier, Benny; Johnson, Steven D

    2015-07-01

    Many plant species attract insect pollinators through chemical mimicry of their oviposition sites, often detaining them in a trap chamber that ensures pollen transfer. These plant mimics are considered to be unspecialized at the pollinator species level, yet field observations of a mycoheterotrophic rainforest orchid (Gastrodia similis), which emits an odour reminiscent of rotting fruit, indicate that it is pollinated by a single drosophilid fly species (Scaptodrosophila bangi). We investigated the roles of floral volatiles and the dimensions of the trap chamber in enforcing this specialization, using gas chromatography-mass spectrometry analyses, bioassays and scanning electron microscopy. We showed that G. similis flowers predominantly emit three fatty-acid esters (ethyl acetate, ethyl isobutyrate and methyl isobutyrate) that were shown in experiments to attract only Scaptodrosophila flies. We additionally showed that the trap chamber, which flies enter into via a touch-sensitive 'trapdoor', closely matches the body size of the pollinator species S. bangi and plays a key role in pollen transfer. Our study demonstrates that specialization in oviposition site mimicry is due primarily to volatile chemistry and is reflected in the dimensions of the trapping apparatus. It also indicates that mycoheterotrophic plants can be specialized both on mycorrhizal fungi and insect pollinators.

  20. Ram accelerator direct launch system for space cargo

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new method of efficiently accelerating relatively large masses (up to several metric tons) to velocities of 0.6 km/sec up to 12 km/sec using chemical energy has been developed. The vehicle travels through a tube filled with a premixed gaseous fuel and oxidizer mixture. There is no propellant on-board the vehicle. The tube acts as the outer cowling of a ram jet and the energy release process travels with the vehicle. The ballistic efficiency remains high up to extremely high velocities and the acceleration can be maintained at a nearly constant level. Five modes of ram accelerator operation have been investigated; these modes differ primarily in the method of chemical heat release and the operational velocity range, and include two subsonic combustion modes (one of which involves thermally choke a combustion behind the vehicle) and three detonation drive modes. These modes of propulsion are capable of efficient acceleration in the range of 0.6-12 km/sec, although aerodynamic heating becomes severe above about 8 km/sec. Experiments carried out to date at the University of Washington up to 2 km/sec have established proof of principle of the ram accelerator concept and have shown close agreement between predicted and measured performance. A launch system capable of delivering two metric tons into low earth orbit was selected for the purposes of the present study. The preliminary analysis indicates that the overall dimensions of a restricted acceleration (less than approx. 1000 g) launch facility would require a tube 1 m in diameter, with an overall length of approximately 4 km. As in any direct launch scheme, a small on-board rocket is required to circularize the otherwise highly elliptical orbit which intersects the Earth. Various orbital insertion scenarios have been explored for the case of a 9 km/sec ram accelerator launch. These include direct insertion through a single circularization maneuver (i.e., on rocket burn), insertion involving two burns, and a

  1. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    NASA Astrophysics Data System (ADS)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  2. Chemical energy system for a borehole seismic source. [Final report

    SciTech Connect

    Engelke, R.; Hedges, R.O.

    1996-03-01

    We describe a detonation system that will be useful in the seismological examination of geological structures. The explosive component of this system is produced by the mixing of two liquids; these liquids are classified as non-explosive materials by the Department of Transportation. This detonation system could be employed in a borehole tool in which many explosions are made to occur at various points in the borehole. The explosive for each explosion would be mixed within the tool immediately prior to its being fired. Such an arrangement ensures that no humans are ever in proximity to explosives. Initiation of the explosive mixture is achieved with an electrical slapper detonator whose specific parameters are described; this electrical initiation system does not contain any explosive. The complete electrical/mechanical/explosive system is shown to be able to perform correctly at temperatures {le}120{degrees}C and at depths in a water-filled borehole of {le} 4600 ft (i.e., at pressures of {le}2000 psig).

  3. Lunar missions using advanced chemical propulsion: System design issues

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1994-01-01

    To provide the transportation of lunar base elements to the moon, large high-energy propulsion systems will be required. Advanced propulsion systems for lunar missions can provide significant launch mass reductions and payload increases. These mass reductions and added payload masses can be translated into significant launch cost savings for the lunar base missions. The masses in low Earth orbit (LEO) were compared for several propulsion systems: nitrogen tetroxide/monomethyl hydrazine (NTO/MMH), oxygen/methane (O2/CH4), oxygen/hydrogen (O2/H2), and metallized O2/H2/Al propellants. Also, the payload mass increases enabled with O2/H2 and O2/H2/Al systems were addressed. In addition, many system design issues involving the engine thrust levels, engine commonality between the transfer vehicle and the excursion vehicle, and the number of launches to place the lunar mission vehicles into LEO will be discussed. Analyses of small lunar missions launched from a single STS-C flight are also presented.

  4. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  5. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-20

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.

  6. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System

    PubMed Central

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  7. Advanced polychromator systems for remote chemical sensing (LDRD project 52575).

    SciTech Connect

    Sinclair, Michael B.; Pfeifer, Kent Bryant; Allen, James Joe

    2005-01-01

    The objective of this LDRD project was to develop a programmable diffraction grating fabricated in SUMMiT V{trademark}. Two types of grating elements (vertical and rotational) were designed and demonstrated. The vertical grating element utilized compound leveraged bending and the rotational grating element used vertical comb drive actuation. This work resulted in two technical advances and one patent application. Also a new optical configuration of the Polychromator was demonstrated. The new optical configuration improved the optical efficiency of the system without degrading any other aspect of the system. The new configuration also relaxes some constraint on the programmable diffraction grating.

  8. Large-Area Chemical and Biological Decontamination Using a High Energy Arc Lamp (HEAL) System.

    SciTech Connect

    Duty, Chad E; Smith, Rob R; Vass, Arpad Alexander; Ilgner, Ralph H; Brown, Gilbert M

    2008-01-01

    Methods for quickly decontaminating large areas exposed to chemical and biological (CB) warfare agents can present significant logistical, manpower, and waste management challenges. Oak Ridge National Laboratory (ORNL) is pursuing an alternate method to decompose CB agents without the use of toxic chemicals or other potentially harmful substances. This process uses a high energy arc lamp (HEAL) system to photochemically decompose CB agents over large areas (12 m2). Preliminary tests indicate that more than 5 decades (99.999%) of an Anthrax spore simulant (Bacillus globigii) were killed in less than 7 seconds of exposure to the HEAL system. When combined with a catalyst material (TiO2) the HEAL system was also effective against a chemical agent simulant, diisopropyl methyl phosphonate (DIMP). These results demonstrate the feasibility of a rapid, large-area chemical and biological decontamination method that does not require toxic or corrosive reagents or generate hazardous wastes.

  9. A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Coverstone, Vicki

    2003-01-01

    Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.

  10. CD-REST: a system for extracting chemical-induced disease relation in literature

    PubMed Central

    Xu, Jun; Wu, Yonghui; Zhang, Yaoyun; Wang, Jingqi; Lee, Hee-Jin; Xu, Hua

    2016-01-01

    Mining chemical-induced disease relations embedded in the vast biomedical literature could facilitate a wide range of computational biomedical applications, such as pharmacovigilance. The BioCreative V organized a Chemical Disease Relation (CDR) Track regarding chemical-induced disease relation extraction from biomedical literature in 2015. We participated in all subtasks of this challenge. In this article, we present our participation system Chemical Disease Relation Extraction SysTem (CD-REST), an end-to-end system for extracting chemical-induced disease relations in biomedical literature. CD-REST consists of two main components: (1) a chemical and disease named entity recognition and normalization module, which employs the Conditional Random Fields algorithm for entity recognition and a Vector Space Model-based approach for normalization; and (2) a relation extraction module that classifies both sentence-level and document-level candidate drug–disease pairs by support vector machines. Our system achieved the best performance on the chemical-induced disease relation extraction subtask in the BioCreative V CDR Track, demonstrating the effectiveness of our proposed machine learning-based approaches for automatic extraction of chemical-induced disease relations in biomedical literature. The CD-REST system provides web services using HTTP POST request. The web services can be accessed from http://clinicalnlptool.com/cdr. The online CD-REST demonstration system is available at http://clinicalnlptool.com/cdr/cdr.html. Database URL: http://clinicalnlptool.com/cdr; http://clinicalnlptool.com/cdr/cdr.html PMID:27016700

  11. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    NASA Astrophysics Data System (ADS)

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun

    2013-12-01

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  12. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    SciTech Connect

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun

    2013-12-15

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  13. Linear noise approximation is valid over limited times for any chemical system that is sufficiently large.

    PubMed

    Wallace, E W J; Gillespie, D T; Sanft, K R; Petzold, L R

    2012-08-01

    The linear noise approximation (LNA) is a way of approximating the stochastic time evolution of a well-stirred chemically reacting system. It can be obtained either as the lowest order correction to the deterministic chemical reaction rate equation (RRE) in van Kampen's system-size expansion of the chemical master equation (CME), or by linearising the two-term-truncated chemical Kramers-Moyal equation. However, neither of those derivations sheds much light on the validity of the LNA. The problematic character of the system-size expansion of the CME for some chemical systems, the arbitrariness of truncating the chemical Kramers-Moyal equation at two terms, and the sometimes poor agreement of the LNA with the solution of the CME, have all raised concerns about the validity and usefulness of the LNA. Here, the authors argue that these concerns can be resolved by viewing the LNA as an approximation of the chemical Langevin equation (CLE). This view is already implicit in Gardiner's derivation of the LNA from the truncated Kramers-Moyal equation, as that equation is mathematically equivalent to the CLE. However, the CLE can be more convincingly derived in a way that does not involve either the truncated Kramers-Moyal equation or the system-size expansion. This derivation shows that the CLE will be valid, at least for a limited span of time, for any system that is sufficiently close to the thermodynamic (large-system) limit. The relatively easy derivation of the LNA from the CLE shows that the LNA shares the CLE's conditions of validity, and it also suggests that what the LNA really gives us is a description of the initial departure of the CLE from the RRE as we back away from the thermodynamic limit to a large but finite system. The authors show that this approach to the LNA simplifies its derivation, clarifies its limitations, and affords an easier path to its solution.

  14. Initiating nuclear-chemical transformations in native systems: Phenomenology

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2016-10-01

    A possible mechanism of nuclear transformations in biological systems in vivo is proposed. Reasons why there is no ionizing radiation that could be detrimental to native systems during the corresponding nuclear reactions are given. It is established that the initial stage of these processes is associated with that of ATP hydrolysis, which initiates the action of the inner-shell electron of an atom participating in the reaction on its nucleus according to the mechanism of weak nuclear interaction. This results in the formation of a nucleus in a metastable state with a disturbed nucleon structure and a charge one unit lower than that of the initial nucleus. It is also assumed that the atom participating in the reaction is adsorbed near the mouth of one of the transport ATPases in the cell's cytoplasmic membrane, and the reason for the initiating impact the electron has on the nucleus is due to the emergence of a local electric field formed during ATP hydrolysis near the ion channel of a donor-acceptor pair of charges that is opposite to the direction of the average membrane field. It is concluded that as a result of the key role of weak nuclear interaction in these processes, the energy of nuclear transformations in biological systems in vivo is released through the emission of neutrino-antineutrino pairs that are harmless to living organisms.

  15. An ontology on property for physical, chemical, and biological systems.

    PubMed

    Dybkaer, René

    2004-01-01

    Current metrological literature, including the International vocabulary of basic and general terms in metrology (VIM 1993), presents a special language slowly evolved without consistent use of the procedures of terminological work; furthermore, nominal properties are excluded by definition. Both deficiencies create problems in fields, such as laboratory medicine, which have to report results of all types of property, preferably in a unified systematic format. The present text aims at forming a domain ontology around "property", with intensional definitions and systematic terms, mainly using the terminological tools--with some additions--provided by the International Standards ISO 704, 1087-1, and 10241. "System" and "component" are defined, "quantity" is discussed, and the generic concept "property" is given as 'inherent state- or process-descriptive feature of a system including any pertinent components'. Previously, the term 'kind-of-quantity' and quasi-synonyms have been used as primitives; the proposed definition of "kind-of-property" is 'common defining aspect of mutually comparable properties'. "Examination procedure", "examination method", "examination principle", and "examination" are defined, avoiding the term 'test'. The need to distinguish between instances of "characteristic", "property", "type of characteristic", "kind-of-property", and "property value" is emphasized; the latter is defined together with "property value scale". These fundamental concepts are presented in a diagram, and the effect of adding essential characteristics to give expanded definitions is exemplified. Substitution usually leads to unwieldy definitions, but reveals circularity as does exhaustive consecutive listing of defining concepts. The top concept may be generically divided according to many terminological dimensions, especially regarding which operators are allowed among the four sets =, not equal to; <, >; +, -; and x, :. The coordinate concepts defined are

  16. Chemical Model Systems for Cellular Nitros(yl)ation Reactions

    PubMed Central

    Daiber, Andreas; Schildknecht, Stefan; Müller, Johanna; Bachschmid, Markus M.; Ullrich, Volker

    2014-01-01

    S-nitros(yl)ation belongs to the redox-based posttranslational modifications of proteins but the underlying chemistry is controversial. In contrast to current concepts involving the autoxidation of nitric oxide (•NO, nitrogen monoxide), we and others have proposed the formation of peroxynitrite (oxoperoxonitrate(1-)) as an essential intermediate. This requires low cellular fluxes of •NO and superoxide (•O2−), for which model systems have been introduced. We here propose two new systems for nitros(yl)ation that avoid the shortcomings of previous models. Based on the thermal decomposition of 3-morpholinosydnonimine, equal fluxes of •NO and •O2− were generated and modulated by the addition of •NO donors or Cu,Zn-superoxide dismutase. As reactants for S-nitros(yl)ation, NADP+-dependent isocitrate dehydrogenase and glutathione were employed, for which optimal S-nitros(yl)ation was observed at nanomolar fluxes of •NO and •O2− at a ratio of about 3:1. The previously used reactants phenol and diaminonaphthalene, (C- and N-nitrosation) demonstrated potential participation of multiple pathways for nitros(yl)ation. According to our data, neither peroxynitrite nor autoxidation of •NO was as efficient as the 3•NO/1•O2− system in mediating S-nitros(yl)ation. In theory this could lead to an elusive nitrosonium (nitrosyl cation)-like species in the first step and to N2O3 in the subsequent reaction. Which of these two species or whether both together will participate in biological S-nitros(yl)ation remains to be elucidated. Finally, we developed several hypothetical scenarios to which the described U flux model could apply, providing conditions that allow either direct electrophilic substitution at a thiolate or S-nitros(yl)ation via transnitrosation from S-nitrosoglutathione. PMID:19477267

  17. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Sabiers, R. L.; Siebenhaar, A.

    1981-01-01

    Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.

  18. A study of chemical systems using signal flow graph theory: application to Neptune

    NASA Astrophysics Data System (ADS)

    Dobrijevic, M.; Parisot, J. P.; Dutour, I.

    1995-02-01

    Photochemistry of giant planets and their satellites is characterized by numerous reactions involving many chemical species. In the present paper, chemical systems are modeled by signal flow graphs. Such a technique evaluates the transmission of any input into the system (solar flux, electrons…) and gives access to the identification of the most important mechanisms in the chemical system. For a given chemical system, we first evaluate rate coefficients. Then, in order to obtain concentrations of each compound, we integrate the set of continuity equations by Gear's method. Gear's method is chosen rather than another classical method because it is recommended for a system of stiff equations due to the existence of greatly differing time constants. Finally, the technique of signal flow graphs is used. This method is applied to the production of hydrocarbons in the atmospheres of giant planets. In particular, the production of C 2H 6 in the atmosphere of Neptune from the photodissociation of CH 4 is investigated. Different paths of dissociation of CH 4 are possible from L α radiations. A chemical system containing 14 species and 30 reactions including these different paths of dissociation is integrated. The main mechanism of production of C 2H 6 is identified and evaluated for each model of dissociation. The importance of various reaction paths as a function of time is discussed.

  19. Chemical Applications of a Programmable Image Acquisition System

    NASA Astrophysics Data System (ADS)

    Ogren, Paul J.; Henry, Ian; Fletcher, Steven E. S.; Kelly, Ian

    2003-06-01

    Image analysis is widely used in chemistry, both for rapid qualitative evaluations using techniques such as thin layer chromatography (TLC) and for quantitative purposes such as well-plate measurements of analyte concentrations or fragment-size determinations in gel electrophoresis. This paper describes a programmable system for image acquisition and processing that is currently used in the laboratories of our organic and physical chemistry courses. It has also been used in student research projects in analytical chemistry and biochemistry. The potential range of applications is illustrated by brief presentations of four examples: (1) using well-plate optical transmission data to construct a standard concentration absorbance curve; (2) the quantitative analysis of acetaminophen in Tylenol and acetylsalicylic acid in aspirin using TLC with fluorescence detection; (3) the analysis of electrophoresis gels to determine DNA fragment sizes and amounts; and, (4) using color change to follow reaction kinetics. The supplemental material in JCE Online contains information on two additional examples: deconvolution of overlapping bands in protein gel electrophoresis, and the recovery of data from published images or graphs. The JCE Online material also presents additional information on each example, on the system hardware and software, and on the data analysis methodology.

  20. Chemical abundances of giant stars in the Crater stellar system

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Zaggia, S.; François, P.; Sbordone, L.; Andrievsky, S. M.; Korotin, S. A.

    2015-07-01

    Aims: We obtained spectra for two giants of Crater (Crater J113613-105227 and Crater J113615-105244) using X-Shooter at the VLT, with the purpose of determining their radial velocities and metallicities. Methods: Radial velocities were determined by cross-correlating the spectra with that of a standard star. The spectra were analysed with the MyGIsFOS code using a grid of synthetic spectra computed from one-dimensional, local thermodynamic equilibrium (LTE) model atmospheres. Effective temperature and surface gravity were derived from photometry measured from images obtained by the Dark Energy Survey. Results: The radial velocities are 144.3 ± 4.0 km s-1 for Crater J113613-105227 and and 134.1 ± 4.0km s-1 for Crater J113615-105244. The metallicities are [Fe/H] = -1.73 and [Fe/H] = -1.67, respectively. In addition to the iron abundance, we were able to determine abundances for nine elements: Na, Mg, Ca, Ti, V, Cr, Mn, Ni, and Ba. For Na and Ba we took into account deviations from LTE because the corrections are significant. The abundance ratios are similar in the two stars and resemble those of Galactic stars of the same metallicity. In the deep photometric images we detected several stars that lie to the blue of the turn-off. Conclusions: The radial velocities imply that both stars are members of the Crater stellar system. The difference in velocity between the two taken at face value implies a velocity dispersion >3.7 km s-1 at a 95% confidence level. Our spectroscopic metallicities agree excellently well with those determined by previous investigations using photometry. Our deep photometry and the spectroscopic metallicity imply an age of 7 Gyr for the main population of the system. The stars to the blue of the turn-off can be interpreted as a younger population that is of the same metallicity and an age of 2.2 Gyr. Finally, spatial and kinematical parameters support the idea that this system is associated with the galaxies Leo IV and Leo V. All the

  1. Design and development of a space station hazardous material system for assessing chemical compatibility

    NASA Technical Reports Server (NTRS)

    Congo, Richard T.

    1990-01-01

    As the Space Station nears reality in funding support from Congress, NASA plans to perform over a hundred different missions in the coming decade. Incrementally deployed, the Space Station will evolve into modules linked to an integral structure. Each module will have characteristic functions, such as logistics, habitation, and materials processing. Because the Space Station is to be user friendly for experimenters, NASA is anticipating that a variety of different chemicals will be taken on-board. Accidental release of these potentially toxic chemicals and their chemical compatibility is the focus of this discourse. The Microgravity Manufacturing Processing Facility (MMPF) will contain the various facilities within the U.S. Laboratory (USL). Each facility will have a characteristic purpose, such as alloy solidification or vapor crystal growth. By examining the proposed experiments for each facility, identifying the chemical constituents, their physical state and/or changes, byproducts and effluents, those payloads can be identified which may contain toxic, explosive, or reactive compounds that require processing or containment in mission peculiar waste management systems. Synergistic reactions from mixed effluent streams is of major concern. Each experiment will have it own data file, complete with schematic, chemical listing, physical data, etc. Chemical compatibility information from various databases will provide assistance in the analysis of alternate disposal techniques (pretreatment, separate storage, etc.). Along with data from the Risk Analysis of the Proposed USL Waste Management System, accidental release of potentially toxic and catastrophic chemicals would be eliminated or reduced.

  2. Time travel and chemical evolution: a look at the outer solar system.

    PubMed

    Owen, T

    1987-01-01

    Many space scientists think that the chemical conditions today on planets and moons of the outer solar system are similar to conditions on Earth soon after it formed. If so, we can learn much about the chemistry that led to life on this planet. We can also speculate about exotic habitats that might have given rise to other types of life. And if we are able to discern the chemical reactions now occurring in the outer solar system, we may be able to extrapolate these rules to other solar systems, and so define the habitable zones around other stars where the potential for life is high.

  3. System, device, and methods for real-time screening of live cells, biomarkers, and chemical signatures

    DOEpatents

    Sundaram, S Kamakshi [Richland, WA; Riley, Brian J [West Richland, WA; Weber, Thomas J [Richland, WA; Sacksteder, Colette A [West Richland, WA; Addleman, R Shane [Benton City, WA

    2011-06-07

    An ATR-FTIR device and system are described that defect live-cell responses to stimuli and perturbations in real-time. The system and device can monitor perturbations resulting from exposures to various physical, chemical, and biological materials in real-time, as well as those sustained over a long period of time, including those associated with stimuli having unknown modes-of-action (e.g. nanoparticles). The device and system can also be used to identify specific chemical species or substances that profile cellular responses to these perturbations.

  4. Self-construction of complex forms in a simple chemical system

    NASA Astrophysics Data System (ADS)

    Maselko, Jerzy; Geldenhuys, Adeline; Miller, John; Atwood, David

    2003-05-01

    We observed spontaneous formation of very complex structures, measurable on the centimeter and millimeter scales, in a simple dual-component inorganic chemical system. The diffusion, convection, and chemical reactions self-organize in space and time and produce domes, multi-arms, or more complex structures with different spatial organization depending on the concentration of reagents in the aqueous environment into which the 'seed' is immersed.

  5. The electron spectroscopy for chemical analysis microscopy beamline data acquisition system at ELETTRA

    NASA Astrophysics Data System (ADS)

    Gariazzo, C.; Krempaska, R.; Morrison, G. R.

    1996-07-01

    The electron spectroscopy for chemical analysis (ESCA) microscopy data acquisition system enables the user to control the imaging and spectroscopy modes of operation of the beamline ESCA microscopy at ELETTRA. It allows the user to integrate all experiment, beamline and machine operations in one single environment. The system also provides simple data analysis for both spectra and images data to guide further data acquisition.

  6. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.

  7. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    ERIC Educational Resources Information Center

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  8. Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds

    DOEpatents

    Grindstaff, Quirinus G.

    1992-01-01

    Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

  9. PHYSIO-CHEMICAL CHARACTERIZATION OF IRON TUBERCULATION FROM A SINGLE DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Corrosion of iron pipes in Drinking Water Distribution Systems (DWDS) contributes to the formation of tubercles whose physio-chemical properties are influenced by the composition of the waters in the distribution system. Thus the objective of this study was to assess the extent o...

  10. Chemical Signatures of Interstellar Dusts Preserved in Primitive Chondrites and Inner Planets of the Solar System

    NASA Technical Reports Server (NTRS)

    Yin, Qing-Zhu

    2002-01-01

    We show that the inheritance of interstellar materials by the solar system is not only documented by the presence of presolar grains, various isotopic anomalies, but also expressed in the chemical element distribution in the inner solar system. Additional information is contained in the original extended abstract.

  11. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  12. Development of a real-time chemical injection system for air-assisted variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A chemical injection system is an effective method to minimize chemical waste and reduce the environmental pollution in pesticide spray applications. A microprocessor controlled injection system implementing a ceramic piston metering pump was developed to accurately dispense chemicals to be mixed wi...

  13. 40 CFR 63.149 - Control requirements for certain liquid streams in open systems within a chemical manufacturing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... streams in open systems within a chemical manufacturing process unit. 63.149 Section 63.149 Protection of... Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage... open systems within a chemical manufacturing process unit. (a) The owner or operator shall comply...

  14. An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory

    NASA Astrophysics Data System (ADS)

    Baum, David A.; Vetsigian, Kalin

    2016-11-01

    Most experimental work on the origin of life has focused on either characterizing the chemical synthesis of particular biochemicals and their precursors or on designing simple chemical systems that manifest life-like properties such as self-propagation or adaptive evolution. Here we propose a new class of experiments, analogous to artificial ecosystem selection, where we select for spontaneously forming self-propagating chemical assemblages in the lab and then seek evidence of a response to that selection as a key indicator that life-like chemical systems have arisen. Since surfaces and surface metabolism likely played an important role in the origin of life, a key experimental challenge is to find conditions that foster nucleation and spread of chemical consortia on surfaces. We propose high-throughput screening of a diverse set of conditions in order to identify combinations of "food," energy sources, and mineral surfaces that foster the emergence of surface-associated chemical consortia that are capable of adaptive evolution. Identification of such systems would greatly advance our understanding of the emergence of self-propagating entities and the onset of adaptive evolution during the origin of life.

  15. Three Compact, Robust Chemical Characterization Systems Suited To Sensitive, High Time Resolution Measurements Of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Barrie, L. A.; Cowin, J. P.; Worsnop, D. R.

    2001-12-01

    In the past decade, the advancement of compact, robust and sensitive instrumentation to measure the chemical characteristics of atmospheric aerosols has lagged behind their physical characterization. There is a need for chemical instrumentation with these three qualities for use on airborne platforms and at infrequently attended ground level surveillance sites. Now chemical techniques are appearing that promise to fill this need. We discuss three chemical characterization systems that are emerging in atmospheric chemistry and climate research applications. These are: (i) the Aerodyne mass spectrometer for real time measurement of particle composition and two post-collection analysis techniques (ii) non-destructive, multi-elemental chemical analysis of size-resolved samples by high spatial resolution synchrotron x-ray and proton beams (S-XRF/PIXE/PESA/STIM) (iii) single particle characterization by automated scanning electron microscopy with energy-dispersed detection of X-rays (SEM/EDX). The key to post-collection analysis is automated aerosol sizing and collection systems and automated chemical analysis systems. Together these techniques provide unique, comprehensive information on the organic and inorganic composition and morphology of particles and yet are easy to deploy in the field. The sensitivity of each technique is high enough to permit the rapid sampling needed to resolve spatial gradients in composition from a moving platform like the Battelle Gulfstream-159 aircraft, traveling at 100m/s.

  16. Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems.

    PubMed

    Ankley, Gerald T; LaLone, Carlie A; Gray, L Earl; Villeneuve, Daniel L; Hornung, Michael W

    2016-11-01

    The US Environmental Protection Agency has responsibility for assessing endocrine activity of more than 10 000 chemicals, a task that cannot reasonably be achieved solely through use of available mammalian and nonmammalian in vivo screening assays. Hence, it has been proposed that chemicals be prioritized for in vivo testing using data from in vitro high-throughput assays for specific endocrine system targets. Recent efforts focused on potential estrogenic chemicals-specifically those that activate estrogen receptor-alpha (ERα)-have broadly demonstrated feasibility of the approach. However, a major uncertainty is whether prioritization based on mammalian (primarily human) high-throughput assays accurately reflects potential chemical-ERα interactions in nonmammalian species. The authors conducted a comprehensive analysis of cross-species comparability of chemical-ERα interactions based on information concerning structural attributes of estrogen receptors, in vitro binding and transactivation data for ERα, and the effects of a range of chemicals on estrogen-signaling pathways in vivo. Overall, this integrated analysis suggests that chemicals with moderate to high estrogenic potency in mammalian systems also should be priority chemicals in nonmammalian vertebrates. However, the degree to which the prioritization approach might be applicable to invertebrates is uncertain because of a lack of knowledge of the biological role(s) of possible ERα orthologs found in phyla such as annelids. Further, comparative analysis of in vitro data for fish and reptiles suggests that mammalian-based assays may not effectively capture ERα interactions for low-affinity chemicals in all vertebrate classes. Environ Toxicol Chem 2016;35:2806-2816. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  17. A Preliminary Study for Chemical Ranking System in Terms of Soil and Groundwater Contamination by Chemical Accidents

    NASA Astrophysics Data System (ADS)

    Park, J.; Jeong, Y. C.; Kim, K. E.; Lee, D.; Yoo, K.; Kim, J.; Hwang, S.

    2015-12-01

    A variety of chemicals could affect human health and ecosystems by chemical accidents such as fire, explosion, and/or spill. Chemical accidents make chemicals spread to the environment via various routes such as dispersion into ambient air, soil, and surface/ground water media. Especially, soil and groundwater contamination by chemical accidents become a secondary source to have a long term effect on human health and environment. Strength of long term effect by soil and groundwater contamination depends largely on inherent characteristics of a chemical and its fate in soil and groundwater. Therefore, in this study, we developed a framework on how to determine what kind of chemicals is more important in management scheme in terms of soil and groundwater contamination during chemical accidents. We ranked approximately fifty chemicals using this framework which takes into account an exposure into soil and groundwater, toxicity, persistence, and bioaccumulation of a chemical. This framework helps to prepare systematically the management plan for chemical related facilities. Furthermore, results from our study can make a policy maker have interests in highly ranked chemicals and facilities.

  18. Computer prediction of possible toxic action from chemical structure; the DEREK system.

    PubMed

    Sanderson, D M; Earnshaw, C G

    1991-07-01

    1. The development of DEREK, a computer-based expert system (derived from the LHASA chemical synthesis design program) for the qualitative prediction of possible toxic action of compounds on the basis of their chemical structure is described. 2. The system is able to perceive chemical sub-structures within molecules and relate these to a rulebase linking the sub-structures with likely types of toxicity. 3. Structures can be drawn in directly at a computer graphics terminal or retrieved automatically from a suitable in-house database. 4. The system is intended to aid the selection of compounds based on toxicological considerations, or separately to indicate specific toxicological properties to be tested for early in the evaluation of a compound, so saving time, money and some laboratory animals and resources.

  19. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  20. Chemical/hydrogen energy storage systems. Annual report, January 1, 1979-December 31, 1979

    SciTech Connect

    Not Available

    1980-05-01

    The progress made in 1979 in the Chemical/Hydrogen Energy Storage Systems Program is described. The program is managed by Brookhaven National Laboratory for the Division of Energy Storage Systems of the Department of Energy. The program consists of research and development activities in the areas of Hydrogen Production, Storage and Materials, End-Use Applications/Systems Studies, and in Chemical Heat Pumps. The report outlines the progress made by key industrial contractors such as General Electric in the development of SPE water electrolyzers; INCO in the studies of surface poisoning (and reactivation) of metal hydrides; and Air Products and Chemicals in the evaluation of hydrogen production at small hydropower sites. The BNL in-house supporting research, as well as that at universities and other national laboratories for which BNL has technical oversight, is also described.

  1. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    NASA Technical Reports Server (NTRS)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  2. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  3. Slurry-based chemical hydrogen storage systems for automotive fuel cell applications

    NASA Astrophysics Data System (ADS)

    Brooks, Kriston P.; Semelsberger, Troy A.; Simmons, Kevin L.; van Hassel, Bart

    2014-12-01

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80-kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE-developed set of system-level targets for onboard storage. While most DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry accounts for the majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance-of-plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  4. Systems Toxicology of Male Reproductive Development: Profiling 774 Chemicals for Molecular Targets and Adverse Outcomes

    EPA Pesticide Factsheets

    Background: Trends in male reproductive health have been reported for increased rates of testicular germ cell tumors, low semen quality, cryptorchidism, and hypospadias, which have been associated with prenatal environmental chemical exposure based on human and animal studies.Objective: In the present study we aimed to identify significant correlations between environmental chemicals, molecular targets, and adverse outcomes across a broad chemical landscape with emphasis on developmental toxicity of the male reproductive system.Methods: We used U.S. EPA??s animal study database (ToxRefDB) and a comprehensive literature analysis to identify 774 chemicals that have been evaluated for adverse effects on male reproductive parameters, and then used U.S. EPA??s in vitro high-throughput screening (HTS) database (ToxCastDB) to profile their bioactivity across approximately 800 molecular and cellular features. Results: A phenotypic hierarchy of testicular atrophy, sperm effects, tumors, and malformations, a composite resembling the human testicular dysgenesis syndrome (TDS) hypothesis, was observed in 281 chemicals. A subset of 54 chemicals with male developmental consequences had in vitro bioactivity on molecular targets that could be condensed into 156 gene annotations in a bipartite network. Conclusion: Computational modeling of available in vivo and in vitro data for chemicals that produce adverse effects on male reproductive end points revealed a phenotypic hierarch

  5. Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens.

    PubMed

    Viancelli, A; Kunz, A; Steinmetz, R L R; Kich, J D; Souza, C K; Canal, C W; Coldebella, A; Esteves, P A; Barardi, C R M

    2013-01-01

    Swine effluents must be correctly handled to avoid negative environmental impacts. In this study, the profiles of two swine manure treatment systems were evaluated: a solid-liquid separation step, followed by an anaerobic reactor, and an aerobic step (System 1); and a biodigester followed by serial lagoons (System 2). Both systems were described by the assessment of chemical, bacterial and viral parameters. The results showed that in System 1, there was reduction of chemicals (COD, phosphorus, total Kjeldhal nitrogen - TKN - and NH(3)), total coliforms and Escherichia coli; however, the same reduction was not observed for Salmonella sp. Viral particles were significantly reduced but not totally eliminated from the effluent. In System 2, there was a reduction of chemicals, bacteria and viruses with no detection of Salmonella sp., circovirus, parvovirus, and torque teno virus in the effluent. The chemical results indicate that the treated effluent can be reused for cleaning swine facilities. However, the microbiological results show a need of additional treatment to achieve a complete inactivation for cases when direct contact with animals is required.

  6. Biodegradation of organic chemicals in soil/water microcosms system: Model development

    USGS Publications Warehouse

    Liu, L.; Tindall, J.A.; Friedel, M.J.; Zhang, W.

    2007-01-01

    The chemical interactions of hydrophobic organic contaminants with soils and sediments may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. In order to illustrate the recalcitrance of chemical to degradation on sites, a sorption mechanism of intraparticle sequestration was postulated to operate on chemical remediation sites. Pseudo-first order sequestration kinetics is used in the study with the hypothesis that sequestration is an irreversibly surface-mediated process. A mathematical model based on mass balance equations was developed to describe the fate of chemical degradation in soil/water microcosm systems. In the model, diffusion was represented by Fick's second law, local sorption-desorption by a linear isotherm, irreversible sequestration by a pseudo-first order kinetics and biodegradation by Monod kinetics. Solutions were obtained to provide estimates of chemical concentrations. The mathematical model was applied to a benzene biodegradation batch test and simulated model responses correlated well compared to measurements of biodegradation of benzene in the batch soil/water microcosm system. A sensitivity analysis was performed to assess the effects of several parameters on model behavior. Overall chemical removal rate decreased and sequestration increased quickly with an increase in the sorption partition coefficient. When soil particle radius, a, was greater than 1 mm, an increase in radius produced a significant decrease in overall chemical removal rate as well as an increase in sequestration. However, when soil particle radius was less than 0.1 mm, an increase in radius resulted in small changes in the removal rate and sequestration. As pseudo-first order sequestration rate increased, both chemical removal rate and sequestration increased slightly. Model simulation results showed that desorption resistance played an important role in the bioavailability of organic chemicals in porous

  7. Mathematical Formalism of Nonequilibrium Thermodynamics for Nonlinear Chemical Reaction Systems with General Rate Law

    NASA Astrophysics Data System (ADS)

    Ge, Hao; Qian, Hong

    2017-01-01

    This paper studies a mathematical formalism of nonequilibrium thermodynamics for chemical reaction models with N species, M reactions, and general rate law. We establish a mathematical basis for J. W. Gibbs' macroscopic chemical thermodynamics under G. N. Lewis' kinetic law of entire equilibrium (detailed balance in nonlinear chemical kinetics). In doing so, the equilibrium thermodynamics is then naturally generalized to nonequilibrium settings without detailed balance. The kinetic models are represented by a Markovian jumping process. A generalized macroscopic chemical free energy function and its associated balance equation with nonnegative source and sink are the major discoveries. The proof is based on the large deviation principle of this type of Markov processes. A general fluctuation dissipation theorem for stochastic reaction kinetics is also proved. The mathematical theory illustrates how a novel macroscopic dynamic law can emerges from the mesoscopic kinetics in a multi-scale system.

  8. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  9. Spacecraft Chemical Propulsion Systems at NASA's Marshall Space Flight Center: Heritage and Capabilities

    NASA Technical Reports Server (NTRS)

    McRight, Patrick S.; Sheehy, Jeffrey A.; Blevins, John A.

    2005-01-01

    NASA Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V and the Space Shuttle. This paper highlights a lesser known but equally rich side of MSFC - its heritage in spacecraft chemical propulsion systems and its current capabilities for in-space propulsion system development and chemical propulsion research. The historical narrative describes the efforts associated with developing upper-stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology, X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and several technology development activities. Also discussed are MSFC chemical propulsion research capabilities, along with near- and long-term technology challenges to which MSFC research and system development competencies are relevant.

  10. Systems Toxicology of Male Reproductive Development: Profiling 774 Chemicals for Molecular Targets and Adverse Outcomes

    PubMed Central

    Leung, Maxwell C.K.; Phuong, Jimmy; Baker, Nancy C.; Sipes, Nisha S.; Klinefelter, Gary R.; Martin, Matthew T.; McLaurin, Keith W.; Setzer, R. Woodrow; Darney, Sally Perreault; Judson, Richard S.; Knudsen, Thomas B.

    2015-01-01

    Background: Trends in male reproductive health have been reported for increased rates of testicular germ cell tumors, low semen quality, cryptorchidism, and hypospadias, which have been associated with prenatal environmental chemical exposure based on human and animal studies. Objective: In the present study we aimed to identify significant correlations between environmental chemicals, molecular targets, and adverse outcomes across a broad chemical landscape with emphasis on developmental toxicity of the male reproductive system. Methods: We used U.S. EPA’s animal study database (ToxRefDB) and a comprehensive literature analysis to identify 774 chemicals that have been evaluated for adverse effects on male reproductive parameters, and then used U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) to profile their bioactivity across approximately 800 molecular and cellular features. Results: A phenotypic hierarchy of testicular atrophy, sperm effects, tumors, and malformations, a composite resembling the human testicular dysgenesis syndrome (TDS) hypothesis, was observed in 281 chemicals. A subset of 54 chemicals with male developmental consequences had in vitro bioactivity on molecular targets that could be condensed into 156 gene annotations in a bipartite network. Conclusion: Computational modeling of available in vivo and in vitro data for chemicals that produce adverse effects on male reproductive end points revealed a phenotypic hierarchy across animal studies consistent with the human TDS hypothesis. We confirmed the known role of estrogen and androgen signaling pathways in rodent TDS, and importantly, broadened the list of molecular targets to include retinoic acid signaling, vascular remodeling proteins, G-protein coupled receptors (GPCRs), and cytochrome P450s. Citation: Leung MC, Phuong J, Baker NC, Sipes NS, Klinefelter GR, Martin MT, McLaurin KW, Setzer RW, Darney SP, Judson RS, Knudsen TB. 2016. Systems toxicology of male

  11. Next generation physico-chemical systems for water reclamation aboard spacecraft, lunar and planetary habitats.

    PubMed

    Atwater, J E; Akse, J R

    1998-01-01

    The extent to which bioregenerative processes will be incorporated into future life support systems is not known. Until biologically based processes reach a higher state of readiness, more advanced physico-chemical systems will be required that are capable of reliable operation for long periods with a minimal resupply penalty by minimizing the requirement for expendables. Water reclamation systems must perform three primary functions: 1) removal of suspended solids, 2) removal of dissolved contaminants, 3) and control of microbial growth. In this article, regenerable physico-chemical systems capable of performing these tasks are discussed. These systems may be appropriate for near-term deployments such as a space station retrofit, a lunar outpost, or a Mars transit vehicle.

  12. A two-scale system to identify environmental risk of chemical industry clusters.

    PubMed

    Huang, Lei; Wan, Wenbo; Li, Fengying; Li, Bing; Yang, Jie; Bi, Jun

    2011-02-15

    Recent reform policies in China have spurred rapid industrial development. This has led to a large increase in chemical accidents, which may have catastrophic impacts on the local population and environment. As industrial facilities become more complex, it becomes more difficult to control and mitigate the risks associated with chemical accidents. In this study, we propose a two-scale system for assessing the environmental risk level of chemical industry clusters. A series of risk early warning indices for both the plant-specific level and regional clusters level are used in this system. Firstly, at the enterprise scale, a risk early warning index is constructed using inputs such as the presence of hazardous materials, the operation of critical plant equipment and the efficiency of extant management techniques. Secondly, an index for quantifying risks on regional scales depends on environmental, economic, and social conditions as well as the specific enterprises' components. As an illustration, the system is applied to a case study involving a five-plant chemical industry cluster in Jiangsu province, China. A geographical information system-based methodology is used to obtain a composite index score for each mesh of the five plants. The results prove that the proposed two-scale early warning system can efficiently identify environmental risk and help guide emergency responses at both the enterprise and cluster level.

  13. A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems.

    PubMed

    Neimark, Alexander V; Vishnyakov, Aleksey

    2005-06-15

    We present a modification of the gauge cell Monte Carlo simulation method [A. V. Neimark and A. Vishnyakov, Phys. Rev. E 62, 4611 (2000)] designed for chemical potential calculations in small confined inhomogeneous systems. To measure the chemical potential, the system under study is set in chemical equilibrium with the gauge cell, which represents a finite volume reservoir of ideal particles. The system and the gauge cell are immersed into the thermal bath of a given temperature. The size of the gauge cell controls the level of density fluctuations in the system. The chemical potential is rigorously calculated from the equilibrium distribution of particles between the system cell and the gauge cell and does not depend on the gauge cell size. This scheme, which we call a mesoscopic canonical ensemble, bridges the gap between the canonical and the grand canonical ensembles, which are known to be inconsistent for small systems. The ideal gas gauge cell method is illustrated with Monte Carlo simulations of Lennard-Jones fluid confined to spherical pores of different sizes. Special attention is paid to the case of extreme confinement of several molecular diameters in cross section where the inconsistency between the canonical ensemble and the grand canonical ensemble is most pronounced. For sufficiently large systems, the chemical potential can be reliably determined from the mean density in the gauge cell as it was implied in the original gauge cell method. The method is applied to study the transition from supercritical adsorption to subcritical capillary condensation, which is observed in nanoporous materials as the pore size increases.

  14. Utilising Physical, Chemical, And Stable Isotope Techniques To Delineate The Flows Within A Coastal Wetlands System

    NASA Astrophysics Data System (ADS)

    Marimuthu, S.; Reynolds, D. A.

    2004-12-01

    The coastal wetlands system under study comprises a series of small lakes and is very unique in the sense that the lakes within the system display different hydrochemistry and stable isotopic composition although they are connected by channels and form as a cluster of inter-connected lakes. The complex flow systems and the transient nature of the interactions between surface water and groundwater present in the wetlands system were delineated using both chemical and stable isotope data to supplement existing classical hydraulic data. The spatial and temporal variations of chemical and isotopic composition of the individual water bodies within the system were measured for an annual cycle, to provide a unique data set for the analysis. A purely hydraulic analysis of the region surrounding the wetlands would indicate that the wetlands are flow-through bodies, however the chemical and isotope information indicates the lakes almost invariably act as discharge points for the surface water flows and the north south regional groundwater flow. Large volumes of groundwater flow were found within an observed northeast-southwest trending paleochannel within the wetlands system, and in this case, the chemical and isotopic evidence are complimentary with the hydraulic study. The isotope and chloride results from the surface water bodies allowed for the accurate determination of the composition of the major creeks in the system, and a simple portioning model indicated that groundwater is the predominant source for the inflowing creeks. Similarly, the deuterium versus Oxygen-18 and deuterium versus chloride relationships observed in the system portray two distinct evaporation trends, one through the hypersaline lakes and the other through less saline lakes which indicates that the isotopic composition of the water bodies are affected to a great extent by high dissolved salts content. The superposition of these data sets provided a unique vision of the flow system and clearly shows

  15. Chemical delivery systems and soft drugs: Retrometabolic approaches of drug design.

    PubMed

    Bhardwaj, Yashumati Ratan; Pareek, Ashutosh; Jain, Vivek; Kishore, Dharma

    2014-09-01

    Inclusion of metabolic considerations in the drug design process leads to significant development in the field of chemical drug targeting and the design of safer drugs during past few years which is a part of an approach now designated as Retro metabolic drug design (RMDD). This approach represents systematic methodologies that integrate structure-activity and structure-metabolism relationships and are aimed to design safe, locally active compounds with an improved therapeutic index. It embraces two distinct methods, chemical delivery systems and a soft drug approach. Present review recapitulates an impression of RMDD giving reflections on the chemical delivery system and the soft drug approach and provides a variety of examples to embody its concepts. Successful application of such design principles has already been applied to a number of marketed drugs like esmolol; loteprednol etc., and many other candidates like beta blockers, ACE inhibitors, alkylating agents, antimicrobials etc., are also under investigation.

  16. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources.

  17. A Fibre-Optic Based System For Chemical In Vivo Mapping Of The Human Body

    NASA Astrophysics Data System (ADS)

    Hougham, B.; Brown, R. S.; Krull, U. J.

    1987-01-01

    In vivo chemical mapping of the human body could be very useful in the treatment of patients undergoing surgery such as heart surgery, with acute conditions such as hepatitis, or chronic conditions such as diabetes. Chemical mapping would be a continuous analytical profile of physical parameters such as blood pressure, chemical parameters such as pH, pCO2 and p02, simple molecules such as glucose and large biomolecules such as serum glutamate-oxoloacetate trans-aminase (SGOT), serum glutamate-pyruvate transaminase (SGPT) and billirubin. The advantage of a particular mapping strategy employing fibre-optic sensors is that all these different chemical signals arriving from different sensors can be multiplexed and detected concurrently. Although physical sensors for parameters such as temperature, pressure and blood viscosity have not yet found their way into routine use, those which employ fibre-optics do already exist. Fibre-optic chemical sensors (FOCS) have been developed for pH, pCO2, p02 and 3lucose (for review see Ref. 1). The existing FOCS utilize absorption, reflectance and fluorescence spectro-photometry. An integrated system for chemical mapping could utilize FOCS which exclusively use fluorescence probes which have a high signal to noise ratio and are sensitive to trace amounts of chemicals and biochemicals. One proposed strategy for detecting physiological analytes is the use of fluorescently labelled immunochemicals. These are useful in that the antibodies can be tailored to selectively bind almost any antigen conceivable (2) but are limited in that these reactions are mainly irreversible which is an important consideration for in vivo probes. A second strategy proposed is a receptor-based system (3). While agonist-receptor systems are slightly less selective than antigen-antibody systems, these reactions are reversible which is an important consideration for in vivo probes. Using existing FOCS and a new family of fluorescent chemical sensors that use

  18. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  19. Distribution of chemical and microbial pesticides delivered through drip irrigation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientific information is needed on distribution uniformity and mobility of environmental-friendly pest control agents through drip irrigation system and in the soil to help improve soil insect control efficiency. The uniformity and recovery rate of water soluble and insoluble materials of chemical ...

  20. 33 CFR 149.416 - What are the requirements for a dry chemical fire suppression system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the requirements for a dry chemical fire suppression system? 149.416 Section 149.416 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Firefighting and...

  1. Toward a Modern Secondary Information System for Chemistry and Chemical Engineering

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Describes the information processing system employed by Chemical Abstracts Service which utilizes computers to organize material from the data base, convert it to the appropriate type face and format, and photocompose it in a form suitable for conversion to offset printing plates. (GS)

  2. Silica Retention and Enrichment in Open-System Chemical Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Clark, B. C.; Mittlefehldt, D. W.; Morris, R. V.; Thompson, L. M.; Berger, J.

    2015-01-01

    Chemical signatures of weathering are evident in the Alpha Particle X-ray Spectrometer (APXS) datasets from Gusev Crater, Meridiani Planum, and Gale Crater. Comparisons across the landing sites show consistent patterns indicating silica retention and/or enrichment in open-system aqueous alteration.

  3. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling (proceedings)

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  4. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction of dry powder chemical systems. 75.1101-15 Section 75.1101-15 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-15 Construction of dry powder...

  5. Proceedings of the DOE chemical/hydrogen energy contractor review systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Chemical/hydrogen energy system contracts were reviewed. The review served as an effective means to (1) give all contracts an insight into the background and objectives of thirty-nine hydrogen-related tasks, (2) show the status of the studies or technical effort, (3) relate any problems that had impeded the progress, and (4) state projected solutions for resolving the identified problems.

  6. Flow Injection Analysis and Liquid Chromatography for Multifunctional Chemical Analysis (MCA) Systems

    ERIC Educational Resources Information Center

    Mayo, Ana V.; Loegel, Thomas N.; Bretz, Stacey Lowery; Danielson, Neil D.

    2013-01-01

    The large class sizes of first-year chemistry labs makes it challenging to provide students with hands-on access to instrumentation because the number of students typically far exceeds the number of research-grade instruments available to collect data. Multifunctional chemical analysis (MCA) systems provide a viable alternative for large-scale…

  7. CONCEPTUAL FRAMEWORK FOR THE CHEMICAL EFFECTS IN BIOLOGICAL SYSTEMS (CEBS) TOXICOGENOMICS KNOWLEDGE BASE

    EPA Science Inventory

    Conceptual Framework for the Chemical Effects in Biological Systems (CEBS) T oxicogenomics Knowledge Base

    Abstract
    Toxicogenomics studies how the genome is involved in responses to environmental stressors or toxicants. It combines genetics, genome-scale mRNA expressio...

  8. EVALUATION OF REAL-TIME INNOVATIVE BIOLOGICAL AND CHEMICAL MONITORING SYSTEMS TO PROTECT SOURCE WATERS

    EPA Science Inventory

    Evaluation of Real-Time Innovative Biological and Chemical Monitoring Systems
    To Protect Source Waters

    Drinking water supplies have in recent years come under increasing pressure from regulatory concerns regarding TMDL designations and restoration strategies as well ...

  9. Electronic Structure of Pi Systems: Part III--Applications in Spectroscopy and Chemical Reactivity.

    ERIC Educational Resources Information Center

    Fox, Marye Anne; Matsen, F. A.

    1985-01-01

    Shows that electronic structure diagrams make more accurate predictions of spectral properties and chemical reactivity for simple pi systems than do either Huckel molecular orbital or valence bond theory alone. Topics addressed include absorption and photoelectron spectra, spin density distribution in radicals, and several problems regarding…

  10. ASSESSMENT OF CHEMICAL EFFECTS ON NEURONAL DIFFERENTIATION USING THE ARRAYSCAN HIGH CONTENT SCREENING SYSTEM

    EPA Science Inventory

    The development of alternative methods for toxicity testing is driven by the need for scientifically valid data that can be obtained in a rapid and cost-efficient manner. In vitro systems provide a model in which chemical effects on cellular events can be examined using technique...

  11. Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system.

    PubMed

    Al-ShaikhAli, Anaam H; Jedidi, Abdesslem; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-08-21

    Methylcyclohexane (MCH)-toluene (TOL) chemical hydride cycles as hydrogen carrier systems are successful with the selective dehydrogenation of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

  12. The mass balance approach: application to interpreting the chemical evolution of hydrologic systems.

    USGS Publications Warehouse

    Plummer, L.N.; Back, W.

    1980-01-01

    Mass balance calculations are applied to observed chemical and isotopic data of three natural water systems involving carbonate reactions in order to define mineral stoichiometry of reactants and products, relative rates of reactions, and mass transfer. One study evaluates reactions in a lagoon on the east coast of the Yucatan Peninsula, Mexico.- from Authors

  13. A line-scan hyperspectral system for high-throughput Raman chemical imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line-laser, based on a scanning mirror, serves as an excitation source. A 45° dichroic beamsplitter reflects the laser light to form a 24 cm × 1 mm excitation line normall...

  14. Development and testing of a long-range airborne CO2 DIAL chemical detection system

    NASA Astrophysics Data System (ADS)

    Higdon, N. Scott; Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Kelly, Brian T.; Dowling, James A.; Pierrottet, Diego F.; Dean, David R.; Richter, Dale A.; Bousek, Ronald R.

    1998-11-01

    The Air Force Research Laboratory has developed and tested an airborne CO2 differential absorption lidar system for the remote detection of chemicals. The Laser Airborne Remote Sensing DIAL system uses topographic backscatter to provide a long-range measurement of the column-content absorption of chemical plumes in the path of the laser beam. A high-power CO2 laser, capable of operation on multiple isotopes, and a Mersenne telescope constitute the major transceiver components. In addition to the laser, telescope, and transceiver optics, several onboard diagnostic instruments were mounted on the flight bench to monitor and optimize the system performance during airborne operation. The flight bench, electronics racks, and data acquisition and experiment control stations were designed to be integrated onto the AFRL C-135E research aircraft, and to utilize the existing pointing and tracking system on the aircraft.

  15. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  16. A Chemical and Biological Warfare Threat: USAF Water Systems at Risk

    DTIC Science & Technology

    1999-09-01

    the water is pumped into the distribution system. The system is an underground network of iron, concrete or PVC ( plastic ) pipes that transport the...doses, resulting in the death or disablement of all personnel who drank the water , causing major operational disruptions. Chemical Agents There are...safe bottled water should be provided for drinking and cooking. Concurrent with the high threat area assessments, the USAF must embark on a

  17. A Novel Water Delivery System for Administering Volatile Chemicals while Minimizing Chemical Waste in Rodent Toxicity Studies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drin...

  18. A novel water delivery system for administering volatile chemicals while minimizing chemical waste in rodent toxicity sutdies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drinki...

  19. Chemical effects in ion mixing of a ternary system (metal-SiO2)

    NASA Technical Reports Server (NTRS)

    Banwell, T.; Nicolet, M.-A.; Sands, T.; Grunthaner, P. J.

    1987-01-01

    The mixing of Ti, Cr, and Ni thin films with SiO2 by low-temperature (- 196-25 C) irradiation with 290 keV Xe has been investigated. Comparison of the morphology of the intermixed region and the dose dependences of net metal transport into SiO2 reveals that long range motion and phase formation probably occur as separate and sequential processes. Kinetic limitations suppress chemical effects in these systems during the initial transport process. Chemical interactions influence the subsequent phase formation.

  20. Methods for and approaches to evaluating susceptibility of ecological systems to hazardous chemicals.

    PubMed

    Burger, J

    1997-06-01

    Differences in genetic susceptibility to hazardous chemicals affect individuals of both human and nonhuman populations. In both cases, differences in response to chemicals or general ill health result as a function of these differences in genetic susceptibility. However, ecological systems are a compilation of hundreds or even thousands of different species, resulting in structural and functional characteristics that are themselves affected by differences in susceptibility. Although individual and population differences in susceptibility to hazardous chemicals underlie effects at the community and the ecosystem level, they do not account for all differences. I propose a two-tiered approach to evaluating susceptibility to ecological systems: a general susceptibility as a function of ecosystem type (based on structure and function of that system) and a differential in susceptibility within broad ecosystem types as a function of biotic and abiotic factors. In terrestrial ecosystems, the two factors that most affect overall susceptibility are species diversity and hydrology; evaluation of the effects of hazardous chemicals involves measuring species diversity and water movement. This same methodological approach can be applied to aquatic ecosystems and to highly altered ecosystems such as agriculture, forestry, fisheries, and urbanization.

  1. Space power systems: Producing transportation (and other chemical) fuels as an alternative to electricity generation

    NASA Astrophysics Data System (ADS)

    Wegeng, Robert S.; Mankins, John C.

    2009-11-01

    While most studies on space power systems target electricity generation as the energy product, industrialized nations also have a need for chemicals to support transportation and other purposes. This paper therefore describes an alternative target for the application of space power systems: the production of chemical fuels based on radiant energy beamed or reflected from orbiting platforms. If cost and efficiency targets can be achieved, Solar Thermochemical Plants—occupying a few square kilometers each—can potentially generate substantial quantities of transportation fuels, therefore enabling reductions in the consumption of petroleum and the emission of carbon dioxide. The specifics of the approach that are described in this paper include the concentration of radiant energy within ground-based systems so that high temperature heat is provided for thermochemical process networks. This scoping study includes the evaluation of various feedstock chemicals as input to the Solar Thermochemical Plant: natural gas, biomass and zero-energy chemicals (water and carbon dioxide); and the production of either hydrogen or long-chain hydrocarbons (i.e., Fischer-Tropsch fuels) as the Solar Fuel product of the plant.

  2. Chemical sensing system for classification of minelike objects by explosives detection

    NASA Astrophysics Data System (ADS)

    Chambers, William B.; Rodacy, Philip J.; Jones, Edwin E.; Gomez, Bernard J.; Woodfin, Ronald L.

    1998-09-01

    Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. Our focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). We will describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. We will present the results of field and laboratory tests on buried landmines, which demonstrate our ability to detect the explosive signatures associated with these objects.

  3. Chemical sensing system for classification of mine-like objects by explosives detection

    SciTech Connect

    Chambers, W.B.; Rodacy, P.J.; Jones, E.E.; Gomez, B.J.; Woodfin, R.L.

    1998-04-01

    Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. The authors focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). The authors describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. They present the results of field and laboratory tests on buried landmines which demonstrate their ability to detect the explosive signatures associated with these objects.

  4. METHODOLOGY FOR EXAMINING SYSTEM AGING DUE TO INTERACTIONS BETWEEN CHEMICALLY INCOMPATIBLE MATERIALS

    SciTech Connect

    J. DENINGER; J. TANSKI

    1999-04-01

    We start with a stored and unused population of fielded engineered units that are composed of chemically incompatible materials. The units age primarily through heterogeneous chemical reactions between the materials resulting in possible degradation in performance. The engineered units are unused in storage, but may be called into actual service at any time. We sample several units from the population per year and perform a number of non-destructive evaluation (NDE) techniques, such as radiography, low-frequency vibration analysis, and ultrasonic imaging on the selected units. From those units, some are selected for destructive testing (D-test) involving disassembly and testing of internal parts and components. Chemical analyses, mechanical properties measurements and other tests are performed. All of the above steps provide information that is used in the system simulation mathematical model. The system simulation model incorporates chemical reactions and gas-solid transport processes, along with changes in both the surface and bulk properties of the solids. Model results are used to suggest improvements in NDE analyses of the units and improvements in component and material analyses. Model results give trending indications of individual component and overall system changes over time, plus some understanding of the mechanisms involved which allow science-based predictions of the aged state of the units in future times. The NDE, D-test, and model results can also be used to assess statistically the reliability and performance of the overall aging population of units.

  5. Final Report: Technical Support for Innovative Energy Systems the U.S. Chemical Industry -- Innovative Energy Systems Pilot Project - Chemicals Project Integrator

    SciTech Connect

    John Cuttica - Principal Investigator; Dr Steffen Mueller - Lead Engineer

    2008-10-30

    The University of Illinois at Chicago Energy Resources Center (UIC/ERC) was originally selected to carry out the role of project integrator for a planned solicitation calling for proposals for innovative concepts for energy efficient systems in the chemical industry. The selection was made as a result of a DOE Announcement of Funding Opportunity issued by the DOE Golden Field Office. The U.S. DOE, due to funding constraints, decided to change the role of project integrator into one of technical support to DOE and the Vision 2020 Steering Committee in carrying out the oversight and management of the projects selected from the planned innovative concepts solicitation. This project, initiated in April, 2005, was established to provide that technical support to the U.S. DOE Innovative Energy Systems Pilot Project for the US Chemical Industry. In the late summer of 2006, and as a continuation of the baseline technology analysis conducted by UIC/ERC under this project, DOE requested that UIC/ERC assist in the development of “technology briefs” in support of the DOE Save Energy Now program. The 100 technology briefs developed under this contract were utilized by the Energy Experts as part of their Energy Saving Assessments (ESA).

  6. Fabrication of NiAl intermetallic reactors for microtechnology-based energy chemical systems (MECS)

    SciTech Connect

    Alman, D.A.; Wilson, R.D.; Paul, B.K.

    2001-01-01

    Microtechnology-based energy chemical systems (MECS) offer opportunities for portable power generation, on-site waste remediation, point-of-use chemical synthesis, and heat-transfer. The material requirements for this application include chemical inertness and the ability to be fabricated into structures that contain internal features of complex geometries and small (<250 micrometer) dimensions. It has been recognized that materials with limited formability, like ceramics and intermetallics, may be required for high temperature applications. In this paper, a method for forming an array of internal microchannels in a NiAl device is presented. Microchannels are precision machined (via laser ablation) into elemental Ni and Al foils. During bonding, these foils are converted into NiAl. Results show that this is a viable method for producing aluminide-based structure containing complex, internal features.

  7. Integrated chemical and biological systems in nanowire structures towards nano-scale sensors

    NASA Astrophysics Data System (ADS)

    Hernandez, Rose M.

    Nanowires composed of metal and conducting polymers with integrated proteins and chemical systems have been investigated as building blocks for next-generation nano-scale sensors and assemblies. These nanowires were fabricated by combining chemical and electrochemical methods of synthesis of gold and conducting polymers in nanopores of anodized alumina membranes. Polymer nanowires were synthesized from buffer solutions as a mean to promote a biocompatible environment for the incorporation of proteins. A variety of proteins were incorporated into the polymer matrix by entrapment during polymerization that imparted the polymer material with biological functionality. Another class of composite nanowires containing electro-active conducting polymer junctions was developed for applications in chemical sensor arrays. The methodologies described in this thesis provide an inexpensive and straightforward approach to the synthesis of anisotropic nanoparticles incorporating a variety of biological and inorganic species that can be integrated to current microelectronic technologies for the development of nano-scale sensor arrays.

  8. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    SciTech Connect

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  9. Research on the chemical mechanism in the polyacrylate latex modified cement system

    SciTech Connect

    Wang, Min; Wang, Rumin; Zheng, Shuirong; Farhan, Shameel; Yao, Hao; Jiang, Hao

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  10. [Globally harmonized system of classification and labelling of chemicals (GHS) and its implementation in Japan].

    PubMed

    Miyagawa, Muneyuki

    2010-01-01

    The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is a set of recommendations by the United Nations, first issued in 2003 as a communication tool for the sound management of chemicals, comprising harmonized classification criteria for physical, health and environmental hazards, a unified format for material safety data sheets (MSDS), and labeling elements including pictograms and hazard statements preassigned to each classification category. The GHS has been introduced into Japan and implemented in the regulatory framework for chemical safety. The Japanese Industrial Standards (JIS) adopted the GHS, and the GHS-based JIS rules have become the Japanese standards for labels and MSDS. The use of the JIS format for labels and MSDS is recommended by several competent authorities in Japan although mostly on a voluntary basis. In the workplace, however, GHS-based JIS labels and MSDS have become legal requirements by the Industrial Safety and Health Law since 2006; namely, issuing MSDS in such a format is mandatory for the 640 specified chemicals and also labeling for the 99 targeted chemicals*. Although the GHS provides definitions and classification criteria for 10 classes of health hazards (acute toxicity, skin and eye corrosion/irritation, sensitization, germ cell mutagenicity, carcinogenicity, reproductive toxicity, specific target organ toxicity single/repeated exposures, and aspiration hazard), it does not provide actual classification of chemicals, so that competent authorities and industries need to classify a number of chemicals and/or mixtures. Weight-of-evidence judgment and/or expert judgment would be necessary in many cases. In this paper, the outline of the GHS classification is described and problems of the GHS and its implementation are discussed.

  11. A chemical specialty semantic network for the Unified Medical Language System

    PubMed Central

    2012-01-01

    Background Terms representing chemical concepts found the Unified Medical Language System (UMLS) are used to derive an expanded semantic network with mutually exclusive semantic types. The UMLS Semantic Network (SN) is composed of a collection of broad categories called semantic types (STs) that are assigned to concepts. Within the UMLS’s coverage of the chemical domain, we find a great deal of concepts being assigned more than one ST. This leads to the situation where the extent of a given ST may contain concepts elaborating variegated semantics. A methodology for expanding the chemical subhierarchy of the SN into a finer-grained categorization of mutually exclusive types with semantically uniform extents is presented. We call this network a Chemical Specialty Semantic Network (CSSN). A CSSN is derived automatically from the existing chemical STs and their assignments. The methodology incorporates a threshold value governing the minimum size of a type’s extent needed for inclusion in the CSSN. Thus, different CSSNs can be created by choosing different threshold values based on varying requirements. Results A complete CSSN is derived using a threshold value of 300 and having 68 STs. It is used effectively to provide high-level categorizations for a random sample of compounds from the “Chemical Entities of Biological Interest” (ChEBI) ontology. The effect on the size of the CSSN using various threshold parameter values between one and 500 is shown. Conclusions The methodology has several potential applications, including its use to derive a pre-coordinated guide for ST assignments to new UMLS chemical concepts, as a tool for auditing existing concepts, inter-terminology mapping, and to serve as an upper-level network for ChEBI. PMID:22577759

  12. Chemical speciation of inorganic pollutants in river-estuary-sea water systems.

    PubMed

    Tepavitcharova, Stefka; Todorov, Tihomir; Rabadjieva, Diana; Dassenakis, Manos; Paraskevopoulou, Vasiliki

    2009-02-01

    Monitoring studies and thermodynamic modeling were used to reveal the changes of inorganic chemical species of some water pollutants (nutrients and trace metals such as Fe, Mn, Zn, Cu, Cd and Pb) inthe river-estuary-sea water system. The case studies were two rivers, Kamchiya and Ropotamo, representing part of the Bulgarian Black Sea water catchment area, and having different flow characteristics. There were no major differences in inorganic chemical species of the two river systems. NO3(-) and NO2(-) chemical species showed no changes along the river-estuary-sea water system. Concerning phosphates six different species were calculated and differences between the three parts of the systems were established. The HPO4(2-) and H2PO4(-) species were found to be dominant in river waters. The H2PO4(-) species quickly decreased at the expense of HPO4(2-) and Ca, Mg and Na phosphate complexes in estuary and seawater. Trace metals showed a great variety of chemical species. Fe(OH)2(+) species prevailed in river waters, and Fe(OH)3(0) species--in sea waters. Me2+ and MeCO3(0) (Me = Cu, Pb) and PbHCO3(+) were dominant in river waters, while Cu(CO3)2(2-) and PbCl(-) species appear also in sea waters. Cd2+ species prevailed in river and estuary waters, and CdCln(2-n) (n = 1-3) species, in seawater. Free Zn2+ species predominated in all systems but downstream their percentage decreased at the expense of Zn phosphates, carbonates,sulfates and chlorides complexes. Only free Mn2+ species were dominant along the systems.

  13. Intrinsic and Extrinsic Chemical and Isotopic Tracers for Characterization Of Groundwater Systems

    SciTech Connect

    Moran, J E; Singleton, M J; Carle, S F; Esser, B K

    2007-09-13

    In many regions, three dimensional characterization of the groundwater regime is limited by coarse well spacing or borehole lithologic logs of low quality. However, regulatory requirements for drinking water or site remediation may require collection of extensive chemical and water quality data from existing wells. Similarly, for wells installed in the distant past, lithologic logs may not be available, but the wells can be sampled for chemical and isotopic constituents. In these situations, a thorough analysis of trends in chemical and isotopic constituents can be a key component in characterizing the regional groundwater system. On a basin or subbasin scale, especially in areas of intensive groundwater management where artificial recharge is important, introduction of an extrinsic tracer can provide a robust picture of groundwater flow. Dissolved gases are particularly good tracers since a large volume of water can be tagged, there are no real or perceived health risks associated with the tracer, and a very large dynamic range allows detection of a small amount of tagged water in well discharge. Recent applications of the application of extrinsic tracers, used in concert with intrinsic chemical and isotopic tracers, demonstrate the power of chemical analyses in interpreting regional subsurface flow regimes.

  14. In vitro model systems for studying the impact of organic chemicals on the skin barrier lipids.

    PubMed

    Groen, Daniël; Berthaud, Fabienne; Bouwstra, Joke A; Chapuis, Christian; Gooris, Gert S; Boncheva, Mila

    2014-01-01

    This paper describes two synthetic lipid models designed to replace human stratum corneum (SC) in studies of the impact of volatile organic chemicals on the molecular organization of the skin barrier lipids. The models built upon previously developed self-assembled lipid membranes which have composition and 3D organization similar to those of the lipid matrix in SC. In one model the target chemicals were incorporated in the lipids before their self-assembly, and in the other one they were applied on top of a preformed lipid membrane. The chemicals could be incorporated within the model membranes in quantities close to those reached within human SC upon heavy surface loading. The dose-dependent effects of the chemicals on the lateral molecular organization in the models were qualitatively identical to those observed by infrared spectroscopy in human SC. The models facilitated the interpretation of X-ray diffraction profiles used to determine the nature of the interactions between the chemicals and the lipid lamellae and the position of the exogenous molecules within the unit cell of the lipid phases. These model systems are suitable for in vitro studies in the areas of skin biophysics, dermatology, transdermal drug delivery, and risk assessment.

  15. Feasibility study of a novel pressure recovery system for CO2-COIL based on chemical absorption

    NASA Astrophysics Data System (ADS)

    Li, Qingwei; Jin, Yuqi; Geng, Zicai; Li, Yongzhao; Zhang, Yuelong; Sang, Fengting

    2015-02-01

    A chemical oxygen-iodine laser (COIL) is an electronic transition, low pressure, high throughput system. The use of this laser demands a suitable pressure recovery system. This paper proposed a novel pressure recovery system based on chemical absorption and the feasibility for COIL with CO2 as buffer gas (CO2-COIL) was investigated. The novel pressure recovery system works by chemisorbing the CO2-COIL effluents into two fixed-beds maintained at initial temperature of around 293-323K. Compared with the cryosorption system for N2-COIL based on physical absorption, the novel chemisorptions based pressure recovery system has a simpler logistics and a shorter run-to-run preparation time. Two kinds of solid chemo-sorbents were designed and synthesized. One was used for chemisorbing the oxidizing gases such as O2 ,Cl2 and I2, another was used for chemisorbing the acidic gas such as CO2. The capacities of the two sorbents were measured to be 3.12 mmol(O2)/g and 3.84 mmol (CO2) /g, respectively. It indicated that the synthesized sorbents could effectively chemosorb the CO2-COIL effluents. Secondly, analog test equipment was set up and used to study the feasibility of the novel pressure recovery system used for CO2-COIL. The test results showed that the novel pressure recovery system could maintain the pressure under 6 Torr for tens seconds under the continuous gas flow. It showed that the novel pressure recovery system for CO2-COIL based on chemical absorption is feasible.

  16. Attempts to identify a control system for chemical reactivity in the living state using virtual energy.

    PubMed

    Reid, B L; Bourke, C

    2001-07-01

    This thesis explores the activation of chemicals in metabolic systems from the viewpoint that this activation is under the control of elements of the space-sea in which the chemicals are immersed. Themselves inert, the chemicals are theorised to exploit a force or action issuing from space (fluctuation) and characterized by the homogeneity (termed symmetry) of this medium. The fluctuation is heterogenized upon collision with matter from the intervention of well recognized fields of gravity and electromagnetism at the instant of its issue to form the near field of radiation. Fractions of original space waves and of their intrinsic spin are produced resulting in the activation of the orbitals (valency) in the chemical itself. The thesis continues: the disturbed fluctuation must return to space, obliging in turn, a prior return to the homogeneous state requiring special restorative wave rearrangements known as resonance. The success of the restorative resonance is signalled by a singularity of the fluctuation now propelled to infinity (space), and the contingent chemical reactions thereby terminated. Compromise to this return can occur from many causes and, in its presence, activation of the orbitals continues. They now effectively constitute autonomous reactions alienated from the system as a whole. The thesis is supported from evidence from diverse fields such as space theory, history of quantum field theory in attempts to derive its meaning, dielectrics and the near field of electromagnetic radiation, electron-space interactions at the Fermi surface during phase transitions and evolution of equilibrium conditions in resonance phenomena. The utility of the hypothesis rests on recognition of the resonance condition at various points in the system sufficiently macroscopic as to be available clinically as an abrupt interface between physiology and pathology.

  17. Innovative permeable cover system to reduce risks at a chemical munitions burial site

    SciTech Connect

    Powels, C.C.; Bon, I.; Okusu, N.M.

    1997-12-31

    An innovative permeable sand cover with various integrated systems has been designed to contain and treat the Old O-Field chemical munitions landfill at Aberdeen Proving Ground, Maryland. The 18,200 m{sup 2} (4.5 acre) landfill was used from the mid 1930s to the mid 1950s for the disposal of chemical, incendiary, and explosive munitions from domestic and foreign origins, together with contaminated wastes associated with the development and production of chemical warfare agents (CWA). The site is suspected to be contaminated with white phosphorous (WP) (which when dry, spontaneously burns when exposed to air), shock sensitive picric acid fuses and has the potential to contain large quantities of CWA-filled munitions. Historically, one to three explosions or fires occurred per ten-year period at the landfill. Such events have the potential to cause a CWA release to the environment, which could potentially affect densely populated areas. Recovery and decontamination projects conducted at the site in the late 1940s and early 1950s used large amounts of decontamination chemicals (containing solvents) and fuels which further contaminated the area. The groundwater downgradient of the landfill is contaminated with volatile organic compounds, metals, explosives and CWA degradation compounds and is currently being contained by a groundwater extraction and treatment system. This report describes a remedial action program for the site.

  18. Understanding the Nature of Stellar Chemical Abundance Distributions in Nearby Stellar Systems

    NASA Astrophysics Data System (ADS)

    Lee, Duane Morris

    Since stars retain signatures of their galactic origins in their chemical compositions, we can exploit the chemical abundance distributions that we observe in stellar systems to put constraints on the nature of their progenitors. In this thesis, I present results from three projects aimed at understanding how high resolution spectroscopic observations of nearby stellar systems might be interpreted. The first project presents one possible explanation for the origin of peculiar abundance distributions observed in ultra-faint dwarf satellites of the Milky Way. The second project explores to what extent the distribution of chemical elements in the stellar halo can be used to trace Galactic accretion history from the birth of the Galaxy to the present day. Finally, a third project focuses on developing an input optimization algorithm for the second project to produce better estimates of halo accretion histories. In conclusion, I propose some other new ways to use statistical models and techniques along with chemical abundance distribution data to uncover galactic histories.

  19. The trouble with chemical energy: why understanding bond energies requires an interdisciplinary systems approach.

    PubMed

    Cooper, Melanie M; Klymkowsky, Michael W

    2013-06-01

    Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K-12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems.

  20. The Trouble with Chemical Energy: Why Understanding Bond Energies Requires an Interdisciplinary Systems Approach

    PubMed Central

    Cooper, Melanie M.; Klymkowsky, Michael W.

    2013-01-01

    Helping students understand “chemical energy” is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K–12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems. PMID:23737636

  1. Chemically Functionalized Arrays Comprising Micro and Nano-Electro-Mechanizal Systems for Reliable and Selective Characterization of Tank Waste

    SciTech Connect

    Michael J. Sepaniak

    2008-10-08

    Innovative technology of sensory and selective chemical monitoring of hazardous wastes present in storage tanks are of continued importance to the environment. This multifaceted research program exploits the unique characteristics of micro and nano-fabricated cantilever-based, micro-electro-mechanical systems (MEMES) and nano-electro-mechanical systems (NEMS) in chemical sensing.

  2. Integrated Baseline System (IBS), Version 1.03. User guide: Chemical Stockpile Emergency Preparedness Program

    SciTech Connect

    Bailey, B.M.; Burford, M.J.; Downing, T.R.; Matsumoto, S.W.; Schrank, E.E.; Williams, J.R.; Winters, C.

    1993-01-01

    The Integrated Baseline System (IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planing and analysis. This document is the user guide for the IBS and explains how to operate the IBS system. The fundamental function of the IBS is to provide tools that civilian emergency management personnel can use in developing emergency plans and in supporting emergency management activities to cope with a chemical-releasing event at a military chemical stockpile. Emergency management planners can evaluate concepts and ideas using the IBS system. The results of that experience can then be factored into refining requirements and plans. This document provides information for the general system user, and is the primary reference for the system features of the IBS. It is designed for persons who are familiar with general emergency management concepts, operations, and vocabulary. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other LBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary. IBS is a dynamic system. Its capabilities are in a state of continuing expansion and enhancement.

  3. Integrated Baseline System (IBS), Version 1. 03. [Chemical Stockpile Emergency Preparedness Program

    SciTech Connect

    Bailey, B.M.; Burford, M.J.; Downing, T.R.; Matsumoto, S.W.; Schrank, E.E.; Williams, J.R.; Winters, C.

    1993-01-01

    The Integrated Baseline System (IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planing and analysis. This document is the user guide for the IBS and explains how to operate the IBS system. The fundamental function of the IBS is to provide tools that civilian emergency management personnel can use in developing emergency plans and in supporting emergency management activities to cope with a chemical-releasing event at a military chemical stockpile. Emergency management planners can evaluate concepts and ideas using the IBS system. The results of that experience can then be factored into refining requirements and plans. This document provides information for the general system user, and is the primary reference for the system features of the IBS. It is designed for persons who are familiar with general emergency management concepts, operations, and vocabulary. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other LBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary. IBS is a dynamic system. Its capabilities are in a state of continuing expansion and enhancement.

  4. A lunar transportation system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.

  5. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    SciTech Connect

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  6. Ultraviolet-curable polymers with chemically bonded carbon nanotubes for microelectromechanical system applications

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Zhang, Nanyan; Guers, Manton; Varadan, Vijay K.

    2002-08-01

    Current UV-curable polymer techniques for microelectromechanical system fabrication pose certain challenges due to the electrical and mechanical properties of the polymer. A novel UV-curable polymer uniformly bonded with functionalized nanotubes was synthesized via a modified three-step in situ polymerization. Purified multi-walled nanotubes, obtained by the microwave chemical vapor deposition method, were functionalized by oxidation. X-ray photoelectron spectroscopy was used to identify the -OH and -COOH groups attached to the nanotube surface. The UV-curable polymer was prepared from toluene diisocyanate (TDI), functionalized nanotubes, and 2-hydroxyethyl methacrylate (HEMA). The chemical bonds between the -NCO groups of TDI and the -OH, -COOH groups of functionalized nanotubes were confirmed by Fourier transform infrared spectra. This new UV-curable polymer is expected to be a cost-effective solution with a variety of applications in UV coating, phase shifters for telecommunications and global positioning systems, and polymer and BioMEMS devices.

  7. Chemical/hydrogen energy systems: Annual report summary, January 1, 1987-December 31, 1987

    SciTech Connect

    Not Available

    1988-03-01

    The 1987 Annual Report provides background and rationale as well as technical status summaries of investigations into Chemical/Hydrogen Energy Systems. Brookhaven National Laboratory, serving as Program Field Manager on behalf of the US Department of Energy Office of Energy Storage and Distribution, manages and oversees R and D in: Water Vapor Electrolysis; Photochemical Processes for Hydrogen Production; Hydrogen Storage on Activated Carbons; and, Metal Hydride Slurry Applications.

  8. Integrated defense system overlaps as a disease model: with examples for multiple chemical sensitivity.

    PubMed Central

    Rowat, S C

    1998-01-01

    The central nervous, immune, and endocrine systems communicate through multiple common messengers. Over evolutionary time, what may be termed integrated defense system(s) (IDS) have developed to coordinate these communications for specific contexts; these include the stress response, acute-phase response, nonspecific immune response, immune response to antigen, kindling, tolerance, time-dependent sensitization, neurogenic switching, and traumatic dissociation (TD). These IDSs are described and their overlap is examined. Three models of disease production are generated: damage, in which IDSs function incorrectly; inadequate/inappropriate, in which IDS response is outstripped by a changing context; and evolving/learning, in which the IDS learned response to a context is deemed pathologic. Mechanisms of multiple chemical sensitivity (MCS) are developed from several IDS disease models. Model 1A is pesticide damage to the central nervous system, overlapping with body chemical burdens, TD, and chronic zinc deficiency; model 1B is benzene disruption of interleukin-1, overlapping with childhood developmental windows and hapten-antigenic spreading; and model 1C is autoimmunity to immunoglobulin-G (IgG), overlapping with spreading to other IgG-inducers, sudden spreading of inciters, and food-contaminating chemicals. Model 2A is chemical and stress overload, including comparison with the susceptibility/sensitization/triggering/spreading model; model 2B is genetic mercury allergy, overlapping with: heavy metals/zinc displacement and childhood/gestational mercury exposures; and model 3 is MCS as evolution and learning. Remarks are offered on current MCS research. Problems with clinical measurement are suggested on the basis of IDS models. Large-sample patient self-report epidemiology is described as an alternative or addition to clinical biomarker and animal testing. Images Figure 1 Figure 2 Figure 3 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9539008

  9. Chemical and microbiological experimentation for development of environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Whitman, G. A.; Wilson, M. E.; Cole, H. E.; Traweek, M.

    1992-01-01

    Microbiological techniques are under study with a view to the identification of viable microorganisms in liquid cultures, improve the identification of stressed organisms, and determine the biocidal activity of iodine and other chemicals on isolates from recycled water. A quality-assurance program has been implemented to validate data employed in making decisions concerning engineering and human health and safety. Analytical laboratory refinements will strongly aid the development of environmental control and life-support systems.

  10. Systems Engineering of Chemical Hydrogen Storage, Pressure Vessel and Balance of Plant for Onboard Hydrogen Storage

    SciTech Connect

    Brooks, Kriston P.; Simmons, Kevin L.; Weimar, Mark R.

    2014-09-02

    This is the annual report for the Hydrogen Storage Engineering Center of Excellence project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done with cryo-sorbent based and chemical-based hydrogen storage materials. Balance of plant components were developed, proof-of-concept testing performed, system costs estimated, and transient models validated as part of this work.

  11. The approach to risk analysis in three industries - Nuclear power, space systems, and chemical process

    NASA Astrophysics Data System (ADS)

    Garrick, B. J.

    A review is presented of how safety and risk analysis is conducted in the three major industries of space flight, nuclear power, and chemical and petroleum processes. This review is presented in the belief that safety enhancements and efficiencies may result from a greater exchange of risk assessment technology between these industries. The focus of this review relates to the engineered systems involved in the three industries.

  12. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    PubMed

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations.

  13. Icon of chemistry: the periodic system of chemical elements in the new century.

    PubMed

    Wang, Shu-Guang; Schwarz, W H Eugen

    2009-01-01

    A closer look: A deeper theoretical understanding of the multifaceted periodic system of elements (PSE) has been achieved in recent years. The large energy gaps above the noble gas shells 1s(2) and np(6) (n=2-6) impress periodicity onto the whole PSE, which is complete with Period 7. The electron configurations of unbound atoms are chemically misleading. The common n+l rule is an example of the "invention of facts" even in the hard sciences.

  14. Nonvariational real Swift-Hohenberg equation for biological, chemical, and optical systems.

    PubMed

    Kozyreff, G; Tlidi, M

    2007-09-01

    We derive asymptotically an order parameter equation in the limit where nascent bistability and long-wavelength modulation instabilities coalesce. This equation is a variant of the Swift-Hohenberg equation that generally contains nonvariational terms of the form psinabla(2)psi and /nablapsi/(2). We briefly review some of the properties already derived for this equation and derive it on three examples taken from chemical, biological, and optical contexts. Finally, we derive the equation on a general class of partial differential systems.

  15. Midwave Infrared (2-6{micro}m) Emitter-Based Chemical Sensor Systems

    SciTech Connect

    Allerman, A.A.; Biefeld, R.M.; Kurtz, S.R.

    1999-02-01

    Long wavelength (2-6 {micro}m) diode emitters are desirable for many applications including monitoring of chemical species in the environment and manufacturing, long wavelength fiber-optic communications, lidar, and JR detector counter-measures. No practical diode lasers are available for any of these applications because the band structure of bulk III-V, II-VI, and IV-VI semiconductor alloys results in large Auger recombination rates at these wavelengths. Experimental and theoretical work at Sandia has resulted in new understanding of the electronic properties of narrow bandgap III-V heterostructures, and we have found methods of reducing the Auger rates in certain InAsSb superlattices and quantum wells. These devices enable us to begin chemical sensing demonstrations of important species such as CO-CO{sub 2} and numerous other compounds. This project will involve developing chemical sensing systems and determining the sensitivity and limitations of these systems. Concurrently, we will improve upon infrared emitters used in these systems.

  16. Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage

    SciTech Connect

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

    2012-02-01

    Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

  17. [Advances in novel carrier systems of chemical constituents from spice volatile oils].

    PubMed

    Zhang, Jia-jia; Zhu, Yuan; Yu, Jiang-nan; Xu, Xi-ming

    2015-10-01

    Recent years, chemical constituents from spice volatile oils have gained worldwide concern owing to its multiple pharmacological effects and safety for using as the natural antibacterial agents. However, their poor dissolution, strong volatility, serious irritation, weak stability, easy oxidation and low bioavailability characteristics are the major obstacle in the preparation of effective oral formulation and practical application. Therefore, there is an urgent need to select a novel carrier system that can delivery the chemical constituents from spice volatile oils more efficiently with improving their stability as well as alleviating the irritation, and develop the functional food, health products and even medicine for exerting their pharmacological effects, which also is the focus and nodus of the research on their application. This review presents recent systematic studies on their novel carrier systems, including cyclodextrin inclusion complex, liposomes, nanoemulsions, nanoparticles, solid dispersion and so on, and summarizes the characteristics, application range and problems of each novel carrier systems, in order to provide some beneficial thoughts in further developing new products of chemical constituents from spice volatile oils.

  18. [Chemical Potentials of Hydrothermal Systems and Formation of Coupled Modular Metabolic Pathways].

    PubMed

    Marakushev, S A; Belonogova, O V

    2015-01-01

    According to Gibbs J.W. the number of independent components is the least number of those chemical constituents, by combining which the compositions of all possible phases in the system can be obtained, and at the first stages of development of the primary metabolism of the three-component system C-H-O different hydrocarbons and molecular hydrogen were used as an energy source for, it. In the Archean hydrothermal conditions under the action of the phosphorus chemical potential the C-H-O system was transformed into a four-component system C-H-O-P setting up a gluconeogenic system, which became the basis of power supply for a protometabolism, and formation of a new cycle of CO2 fixation (reductive pentose phosphate pathway). It is shown that parageneses (association) of certain substances permitted the modular constructions of the central metabolism of the system C-H-O-P and the formed modules appear in association with each other in certain physicochemical hydrothermal conditions. Malate, oxaloacetate, pyruvate and phosphoenolpyruvate exhibit a turnstile-like mechanism of switching reaction directions.

  19. Low thrust chemical orbit to orbit propulsion system propellant management study

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.; Hamlyn, K. M.; Tegart, J. R.

    1981-01-01

    Low thrust chemical propulsion systems were sized for transfer of large space systems from LEO to GEO. The influence of propellant combination, tankage and insulation requirements, and propellant management techniques on the LTPS mass and volume were studied. Liquid oxygen combined with hydrogen, methane or kerosene were the propellant combinations. Thrust levels of 445, 2230, and 4450 N were combined with 1, 4 and 8 perigee burn strategies. This matrix of systems was evaluated using multilayer insulation and spray-on-foam insulation systems. Various combinations of toroidal, cylindrical with ellipsoidal domes, and ellipsoidal tank shapes were investigated. Results indicate that low thrust (445 N) and single perigee burn approaches are considerably less efficient than the higher thrust level and multiple burn strategies. A modified propellant settling approach minimized propellant residuals and decreased system complexity, in addition, the toroid/ellipsoidal tank combination was predicted to be shortest.

  20. Chemical Stimulation of Adherent Cells by Localized Application of Acetylcholine from a Microfluidic System

    PubMed Central

    Zibek, Susanne; Hagmeyer, Britta; Stett, Alfred; Stelzle, Martin

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup microdroplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution traveled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose–response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively. Numerical modeling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 μm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 μM acetylcholine independent of pore size were determined. PMID:21151808

  1. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system.

    PubMed

    Zibek, Susanne; Hagmeyer, Britta; Stett, Alfred; Stelzle, Martin

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup microdroplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution traveled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose-response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively. Numerical modeling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 μm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 μM acetylcholine independent of pore size were determined.

  2. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    PubMed

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  3. A Soil-free System for Assaying Nematicidal Activity of Chemicals.

    PubMed

    Preiser, F A; Babu, J R; Haidri, A A

    1981-10-01

    A biological assay system for studying the nematicidal activity of chemicals has been devised using a model consisting of cucumber (Cucumis sativus L. cv. Long Marketer) seedlings growing in the diSPo(R) growth-pouch apparatus. Meloidogyne incognita was used as the test organism. The response was quantified in terms of the numbers of galls produced. Statistical procedures were applied to estimate the ED(50) values of currently available nematicides. This system permits accurate quantification of galling and requires much less space and effort than the currently used methods.

  4. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  5. Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems. Rev. 1

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    2003-01-01

    The Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems was planned for June 3-6, 2003, in Cleveland, Ohio, near the NASA John H. Glenn Research Center at Lewis Field. The new name for the workshop is based on the decision to broaden our scope to encompass support for future space exploration through basic and applied research in reacting systems that in some cases may not look like combustion. The workshop has been lengthened to 4 days with focus sessions on spacecraft fire safety and exploration-related research. We believe that the microgravity combustion science community is almost uniquely positioned to make substantial contributions to this new effort.

  6. Primary propulsion of electrothermal, ion and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using electrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  7. Primary propulsion of electrothermal, ion, and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using eiectrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  8. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems

    SciTech Connect

    Liu Di

    2008-10-01

    We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples.

  9. Chemical movement in relation to tillage system and simulated rainfall intensity

    SciTech Connect

    Myers, J.L.; Wagger, M.G.; Leidy, R.B.

    1995-11-01

    The Piedmont region in the southeastern USA is characterized by sloping, crust-prone soils conducive to runoff losses of agricultural chemicals. Three tillage-residue management systems were compared for their effect on concentrations of atrazine [2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine], metolachlor [2-chloro-N-(2-ethyl-6- rnethylphenyl)-N-(2-methoxy-1-methylethyl)] acetamidel, and bromide in surface runoff and in the soil profile of a Pacolet sandy clay loam (clayey, kaolinitic, thermic Typic Kanhapludults). These systems included conventional tillage (CT), no-tillage grain production with corn (Zea mays L.) residue (NTG), and no-tillage silage production without residue (INTS). The first simulated rainfall event consisted of a low (1.27 cm h{sup -1}) or high (5.08 cm h{sup -1}) rainfall rate applied for 30 min following herbicide and bromide application. One week later, the high rate was simulated on all plots. The CT treatment generally produced less surface runoff, and accompanying lower chemical concentrations. compared with both no-tillage treatments on the first date. Runoff differences due to tillage system were less on the second date because of surface sealing processes under CT. Averaged over 2 yr, the percent-age of applied atrazine lost on the first runoff event was 6.2% for NTG, 4.4% for NTS, and 1.5% for CT. Losses of atrazine in runoff on the second date were 1.5, 1.4, and 1.0% of that applied for NTG, NTS, and CT, respectively. The surface 7.5 cm of soil contained the highest concentrations of chemicals for all treatments, with treatment differences occurring primarily in the surface 0 to 15 cm of soil. Lower runoff values under CT generally resulted in higher soil chemical concentrations. 31 refs., 6 figs., 7 tabs.

  10. The Ansel Adams zone system: HDR capture and range compression by chemical processing

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2010-02-01

    We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.

  11. EU alerting and reporting systems for potential chemical public health threats and hazards.

    PubMed

    Orford, R; Crabbe, H; Hague, C; Schaper, A; Duarte-Davidson, R

    2014-11-01

    A number of European and international IT platforms are used to notify competent authorities of new potential chemical exposures. Recently the European Parliament and the Council of European Union adopted new legislation that aims to improve the co-ordinated response to cross border health threats (Decision 1082/2013/EU). The Decision, inter alia, sets provisions on notification, ad hoc monitoring and coordination of public health measures following serious cross border threats to health from biological, chemical and environmental events as well as events that have an unknown origin. The legal instrument applies to all European Union Member States and is comparable to the International Health Regulations in its content, requirements and adoption of a multiple hazards approach. An inter-sectoral and multidisciplinary response to events with potentially dangerous cross border exposure pathways is often required. For example, European Poisons Centres may be aware of cases of toxic exposure to a product and, in parallel, trading standards may be aware of the same product due to a breach of consumer product standards. Whilst both cases would have been recorded for separate purposes in different alerting systems, they relate to the same exposure pathway; therefore a process for linking these records would allow a more robust approach to risk assessment and risk mitigation. The Decision seeks to reconcile this issue for serious threats by linking relevant platforms into one overarching higher level risk management IT platform called the Early Warning Response System (EWRS). This system will serve to link other sectors within the European Commission (EC) to public health (e.g. medicines), as well as other EU agencies and international bodies via co-notification features. Other European alert systems will be linked to EWRS to facilitate information sharing at both the assessment and management levels. This paper provides a timely overview of the main systems run by the EC

  12. Preliminary Evaluation of a Regional Atmospheric Chemical Data Assimilation System for Environmental Surveillance

    PubMed Central

    Lee, Pius; Liu, Yang

    2014-01-01

    We report the progress of an ongoing effort by the Air Resources Laboratory, NOAA to build a prototype regional Chemical Analysis System (ARLCAS). The ARLCAS focuses on providing long-term analysis of the three dimensional (3D) air-pollutant concentration fields over the continental U.S. It leverages expertise from the NASA Earth Science Division-sponsored Air Quality Applied Science Team (AQAST) for the state-of-science knowledge in atmospheric and data assimilation sciences. The ARLCAS complies with national operational center requirement protocols and aims to have the modeling system to be maintained by a national center. Meteorology and chemistry observations consist of land-, air- and space-based observed and quality-assured data. We develop modularized testing to investigate the efficacies of the various components of the ARLCAS. The sensitivity testing of data assimilation schemes showed that with the increment of additional observational data sets, the accuracy of the analysis chemical fields also increased incrementally in varying margins. The benefit is especially noted for additional data sets based on a different platform and/or a different retrieval algorithm. We also described a plan to apply the analysis chemical fields in environmental surveillance at the Centers for Disease Control and Prevention. PMID:25514141

  13. Bioelectrocatalysts: engineered oxidoreductase system for utilization of fumarate reductase in chemical synthesis, detection, and fuel cells.

    PubMed

    Park, Doo Hyun; Vieille, C; Zeikus, J G

    2003-10-01

    Fumarate reductase was used as a model oxidoreductase to demonstrate continuous electrical cofactor reduction-oxidation during the bioelectrochemical synthesis and detection of chemicals. The enzyme preparation was immobilized onto a graphite felt electrode that was modified with carboxymethylcellulose (CMC). Nicotinamide adenine dinucleotide (NAD), neutral red, and fumarate reductase (which contained menaquinone) were covalently linked by peptide bonds to the CMC. The electron mediator neutral red allowed NAD and menaquinone to be recycled electrically during enzymatic chemical synthesis. Succinate detection by the bioelectrocatalyst was linear from 5 microM to 10 mM succinate. Fumarate synthesis using this bioelectrode was dependent on succinate utilization and resulted in proportional production of electricity and fumarate. Succinate synthesis using this bioelectrocatalyst was dependent on current and fumarate concentration. This bioelectrocatalyst system may enhance the utility of menaquinone- and/or pyridine nucleotide-linked oxidoreductases in diverse enzymatic fuel cells and sensors. It may also enhance the utility of oxidoreductase-based chemical synthesis systems because it eliminates the problem of cofactor recycling.

  14. Ring system-based chemical graph generation for de novo molecular design

    NASA Astrophysics Data System (ADS)

    Miyao, Tomoyuki; Kaneko, Hiromasa; Funatsu, Kimito

    2016-05-01

    Generating chemical graphs in silico by combining building blocks is important and fundamental in virtual combinatorial chemistry. A premise in this area is that generated structures should be irredundant as well as exhaustive. In this study, we develop structure generation algorithms regarding combining ring systems as well as atom fragments. The proposed algorithms consist of three parts. First, chemical structures are generated through a canonical construction path. During structure generation, ring systems can be treated as reduced graphs having fewer vertices than those in the original ones. Second, diversified structures are generated by a simple rule-based generation algorithm. Third, the number of structures to be generated can be estimated with adequate accuracy without actual exhaustive generation. The proposed algorithms were implemented in structure generator Molgilla. As a practical application, Molgilla generated chemical structures mimicking rosiglitazone in terms of a two dimensional pharmacophore pattern. The strength of the algorithms lies in simplicity and flexibility. Therefore, they may be applied to various computer programs regarding structure generation by combining building blocks.

  15. Preliminary evaluation of a regional atmospheric chemical data assimilation system for environmental surveillance.

    PubMed

    Lee, Pius; Liu, Yang

    2014-12-01

    We report the progress of an ongoing effort by the Air Resources Laboratory, NOAA to build a prototype regional Chemical Analysis System (ARLCAS). The ARLCAS focuses on providing long-term analysis of the three dimensional (3D) air-pollutant concentration fields over the continental U.S. It leverages expertise from the NASA Earth Science Division-sponsored Air Quality Applied Science Team (AQAST) for the state-of-science knowledge in atmospheric and data assimilation sciences. The ARLCAS complies with national operational center requirement protocols and aims to have the modeling system to be maintained by a national center. Meteorology and chemistry observations consist of land-, air- and space-based observed and quality-assured data. We develop modularized testing to investigate the efficacies of the various components of the ARLCAS. The sensitivity testing of data assimilation schemes showed that with the increment of additional observational data sets, the accuracy of the analysis chemical fields also increased incrementally in varying margins. The benefit is especially noted for additional data sets based on a different platform and/or a different retrieval algorithm. We also described a plan to apply the analysis chemical fields in environmental surveillance at the Centers for Disease Control and Prevention.

  16. Laboratory experiments to determine if crayfish can communicate chemically in a flow-through system

    SciTech Connect

    Itagaki, H.; Thorp, J.H.

    1981-01-01

    The importance of chemical cues for transmitting information concerning sexual identity, agonistic state, and stress-related condition in the crayfish Procambarus clarkii (Girard) was examined in a flow-through system. Experiments tested the effects of conditioned water from stimulus tanks on the behavior of solitary male or female crayfish. Twenty males and 20 females were subjected to a random sequence of five treatments: unconditioned water (control), conditioned water flowing through tanks containing a solitary male or female, and conditioned water from tanks holding either two males or two females. Durations of the following behaviors were recorded: chelae up, chela(e) in baffle hole, chela waving, climbing, digging, grooming, gross body movement, and meral spread. Results indicated that crayfish chemically detected another animal within 0.25 m without additional visual or tactile stimuli; however, crayfish apparently did not communicate information on sexual identity, agonistic state, or stress condition, nor does this detection necessarily imply discrimination between stimuli from crayfish and other taxa (e.g., fish). Our conclusions are contrasted with the two previous reports on chemical communication in crayfish in which experimental animals were tested in static systems. We suggest that a temporal separation of molting and copulation and a long reproductive receptivity period for females (which would allow abundant intersexual encounters) could account for a lack of selective pressure to evolve long-distance sex pheromones.

  17. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    PubMed Central

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  18. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    PubMed

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  19. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    NASA Astrophysics Data System (ADS)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  20. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kavosh Tehrani, M.; Mohammad, M. Malek; Jaafari, E.; Mobashery, A.

    2015-03-01

    The mobile light detection and ranging DIAL system of Malek Ashtar University of Technology has been developed for the detection of chemical warfare agents whose absorption wavelengths are in the range of 9.2-10.8 μm tunable CO2 lasers of the system. In this paper, this system is first described and then ammonia detection is analyzed experimentally. Also, experimental results of detecting a sarin agent simulant, dimethyl-methyl phosphonate (DMMP), are presented. The power levels received from different ranges to detect specific concentrations of NH3 and DMMP have been measured and debated. The primary test results with a 150 ns clipped pulse width by passive pinhole plasma shutter indicate that the system is capable of monitoring several species of pollutants in the range of about 1 km, with a 20 m spatial and 2 min temporal resolution.

  1. What do molecules do when we are not looking? State sequence analysis for stochastic chemical systems.

    PubMed

    Levin, Pavel; Lefebvre, Jérémie; Perkins, Theodore J

    2012-12-07

    Many biomolecular systems depend on orderly sequences of chemical transformations or reactions. Yet, the dynamics of single molecules or small-copy-number molecular systems are significantly stochastic. Here, we propose state sequence analysis--a new approach for predicting or visualizing the behaviour of stochastic molecular systems by computing maximum probability state sequences, based on initial conditions or boundary conditions. We demonstrate this approach by analysing the acquisition of drug-resistance mutations in the human immunodeficiency virus genome, which depends on rare events occurring on the time scale of years, and the stochastic opening and closing behaviour of a single sodium ion channel, which occurs on the time scale of milliseconds. In both cases, we find that our approach yields novel insights into the stochastic dynamical behaviour of these systems, including insights that are not correctly reproduced in standard time-discretization approaches to trajectory analysis.

  2. Knowledge system and method for simulating chemical controlled release device performance

    DOEpatents

    Cowan, Christina E.; Van Voris, Peter; Streile, Gary P.; Cataldo, Dominic A.; Burton, Frederick G.

    1991-01-01

    A knowledge system for simulating the performance of a controlled release device is provided. The system includes an input device through which the user selectively inputs one or more data parameters. The data parameters comprise first parameters including device parameters, media parameters, active chemical parameters and device release rate; and second parameters including the minimum effective inhibition zone of the device and the effective lifetime of the device. The system also includes a judgemental knowledge base which includes logic for 1) determining at least one of the second parameters from the release rate and the first parameters and 2) determining at least one of the first parameters from the other of the first parameters and the second parameters. The system further includes a device for displaying the results of the determinations to the user.

  3. Chemical transport in geothermal systems in Iceland: Evidence from hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Franzson, Hjalti; Zierenberg, Robert; Schiffman, Peter

    2008-06-01

    This study focuses on the chemical changes in basaltic rocks in fossil low- and high-temperature hydrothermal systems in Iceland. The method used takes into account the amount of dilution caused by vesicle and vein fillings in the rocks. The amount of dilution allows a calculation of the primary concentration of the immobile element Zr, and by multiplying the composition of the altered rock by the ratio of Zr (protolith)/Zr (altered rock) one can compute the mass addition caused by the dilution of the void fillings, and also make a direct comparison with the likely protoliths from the same areas. The samples were divided into three groups; two from Tertiary fossil high-temperature systems (Hafnarfjall, Geitafell), and the third group from a low temperature, zeolite-altered plateau basalt succession. The results show that hydrothermally altered rocks are enriched in Si, Al, Fe, Mg and Mn, and that Na, K and Ca are mobile but show either depletion or enrichment. The elements that are immobile include Zr, Y, Nb and probably Ti. The two high-temperature systems show quite similar chemical alteration trends, an observation which may apply to Icelandic fresh water high-temperature systems in general. The geochemical data show that the major changes in the altered rocks from Icelandic geothermal systems may be attributed to addition of elements during deposition of pore-filling alteration minerals. A comparison with seawater-dominated basalt-hosted hydrothermal systems shows much greater mass flux within the seawater systems, even though both systems have similar alteration assemblages. The secondary mineral assemblages seem to be controlled predominantly by the thermal stability of the alteration phases and secondarily by the composition of the hydrothermal fluids.

  4. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    SciTech Connect

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    1995-09-01

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. The phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.

  5. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    SciTech Connect

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  6. PACSY, a relational database management system for protein structure and chemical shift analysis.

    PubMed

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  7. Quantitative investigation of chemical shrinkage stress in flip chip using a 3D moire interferometry system

    NASA Astrophysics Data System (ADS)

    Su, Fei; Liu, Lie; Yi, Sung; Chian, Kerm S.

    2002-06-01

    Thermo-mechanical reliability is a key issue of IC packaging. In this paper, the chemical shrinkage stress caused by the underfill curing is quantitatively investigated: DSC test result provides the basis for the determination of temperature profile for the curing of underfill. The 3D deformation of the flip chip during the underfill curing process is measured with 3D Moire interferometry system. Also a simple theoretical model is set up for this problem, DMA test provide the necessary parameters for this model. The experimental and theoretical results agree well with each other, both results show that the chemical shrinkage stress is fairly small when compared with the thermal residual stress, so this part of residual stress can be neglected in the commonly used finite element analysis (FEA) model.

  8. Time travel and chemical evolution - a look at the outer solar system

    SciTech Connect

    Owen, T.

    1987-12-01

    It has been hypothesized that the chemical conditions today on the planets and moons of the outer solar system are similar to conditions on earth soon after it formed. If this is so, much can be learned about the chemistry that led to life on earth. While Jupiter is a poor terrestrial analog, its satellite Europa has a smooth icy surface that may cover a layer of liquid water tens of kilometers deep. It is possible that sunlight could filter through cracks in the ice, providing energy to drive chemical reactions in the water below the ice. It is noted that the surface of Titan may include lakes or oceans of ethane and that Triton may also have liquids on its surface. Studies of cometary nuclei will be undertaken during the Comet Rendezvous-Asteroid Flyby mission.

  9. Chemical evolution of a magmatic system: The Paintbrush Tuff, SW Nevada volcanic field

    SciTech Connect

    Flood, T.P.; Vogel, T.A.; Schuraytz, B.C.

    1987-09-01

    The chemical and thermal evolution of a single magmatic system is recorded in a series of four ash-flow sheets, the Paintbrush Tuff, that were erupted from the same caldera within a span of 600,000 years. The chemistry of individual glassy pumices, collected from the tops and bottoms of the ash-flow sheets, are used to quantitatively evaluate possible fractionation mechanisms, such as magma mixing and fractional crystallization. The glassy pumices are used because they most nearly approximate the magma in the chamber. All of the chemical variation within the Paintbrush Tuff can be accounted for by fractional crystallization or magma mixing operating alone and/or in conjunction. No other fractionation processes need by invoked. Also, volume estimates based on quantitative modeling reveal that the size of the ash-flow sheets do not reflect the size of their associated reservoirs.

  10. Chiral symmetry breaking in complex chemical systems during formation of life on earth

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Konstantinov, K. K.

    2015-09-01

    The chiral symmetry in complex chemical systems containing many amino acids and characterized by many similar chemical reactions (a situation corresponding to the formation of life on Earth) is considered. It is shown that effective averaging over similar reaction channels may lead to very weak effective enantioselectivity, which does not allow for chiral symmetry breaking in most known models. A class of models with simple and catalytic synthesis of one amino acid, the formation of peptides with a length reaching three, and the precipitation of one insoluble pair of materials is analyzed. It is proven that chiral symmetry breaking may occur in one possible version from an insoluble pair of materials even in the complete absence of catalytic synthesis of amino acid. It is shown that the presence of weakly enantioselective catalytic synthesis in a model significantly increases the number of possible versions in which chiral symmetry breaks.

  11. A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems.

    PubMed

    Kan, Xingye; Lee, Chang Hyeong; Othmer, Hans G

    2016-11-01

    We consider stochastic descriptions of chemical reaction networks in which there are both fast and slow reactions, and for which the time scales are widely separated. We develop a computational algorithm that produces the generator of the full chemical master equation for arbitrary systems, and show how to obtain a reduced equation that governs the evolution on the slow time scale. This is done by applying a state space decomposition to the full equation that leads to the reduced dynamics in terms of certain projections and the invariant distributions of the fast system. The rates or propensities of the reduced system are shown to be the rates of the slow reactions conditioned on the expectations of fast steps. We also show that the generator of the reduced system is a Markov generator, and we present an efficient stochastic simulation algorithm for the slow time scale dynamics. We illustrate the numerical accuracy of the approximation by simulating several examples. Graph-theoretic techniques are used throughout to describe the structure of the reaction network and the state-space transitions accessible under the dynamics.

  12. Biological and chemical terrorism scenarios and implications for detection systems needs

    NASA Astrophysics Data System (ADS)

    Gordon, Susanna P.; Chumfong, Isabelle; Edwards, Donna M.; Gleason, Nathaniel J.; West, Todd; Yang, Lynn

    2007-04-01

    Terrorists intent on causing many deaths and severe disruption to our society could, in theory, cause hundreds to tens of thousands of deaths and significant contamination of key urban facilities by using chemical or biological (CB) agents. The attacks that have occurred to date, such as the 1995 Aum Shinrikyo CB attacks and the 2001 anthrax letters, have been very small on the scale of what is possible. In order to defend against and mitigate the impacts of large-scale terrorist attacks, defensive systems for protection of urban areas and high-value facilities from biological and chemical threats have been deployed. This paper reviews analyses of such scenarios and of the efficacy of potential response options, discusses defensive systems that have been deployed and detectors that are being developed, and finally outlines the detection systems that will be needed for improved CB defense in the future. Sandia's collaboration with San Francisco International Airport on CB defense will also be briefly reviewed, including an overview of airport facility defense guidelines produced in collaboration with Lawrence Berkeley National Laboratory. The analyses that will be discussed were conducted by Sandia National Laboratories' Systems Studies Department in support of the U.S. Department of Homeland Security (DHS) Science and Technology Directorate, and include quantitative analyses utilizing simulation models developed through close collaboration with subject matter experts, such as public health officials in urban areas and biological defense experts.

  13. A line-scan hyperspectral system for high-throughput Raman chemical imaging.

    PubMed

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S

    2014-01-01

    A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line laser based on a scanning mirror serves as an excitation source. A 45° dichroic beam splitter reflects the laser light to form a 24 cm × 1 mm excitation line normally incident on the sample surface. Raman signals along the laser line are collected by a detection module consisting of a dispersive imaging spectrograph and a CCD camera. A hypercube is accumulated line by line as a motorized table moves the samples transversely through the laser line. The system covers a Raman shift range of -648.7 to 2889.0 cm(-1) and a 23 cm wide area. An example application for authenticating milk powder is presented to demonstrate the system performance. In 4 min the system acquired a 512 × 110 × 1024 hypercube (56  320 spectra) from four, 47 mm diameter Petri dishes containing four powder samples. Chemical images were created for detecting two adulterants (melamine and dicyandiamide) that had been mixed into the milk powder.

  14. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China.

    PubMed

    Duan, Weili; He, Bin

    2015-07-10

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  15. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    PubMed Central

    Duan, Weili; He, Bin

    2015-01-01

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency. PMID:26184260

  16. A Chemical Sensor Pattern Recognition System Using a Self-Training Neural Network Classifier With Automated Outlier Detection

    DTIC Science & Technology

    1998-04-17

    A device and method for a pattern recognition system using a self-training neural network classifier with automated outlier detection for use in...chemical sensor array systems. The pattern recognition system uses a Probabilistic Neural Network (PNN) training computer system to develop automated

  17. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    SciTech Connect

    Not Available

    1991-06-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  18. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  19. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  20. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review

    NASA Astrophysics Data System (ADS)

    Macalady, Donald L.; Tratnyek, Paul G.; Grundl, Timothy J.

    1986-02-01

    This review is predicated upon the need for a detailed process-level understanding of factors influencing the reduction of anthropogenic organic chemicals in natural aquatic systems. In particular, abiotic reductions of anthropogenic organic chemicals are reviewed. The most important reductive reaction is alkyl dehalogenation (replacement of chloride with hydrogen) which occurs in organisms, sediments, sewage sludge, and reduced iron porphyrin model systems. An abiotic mechanism involving a free radical intermediate has been proposed. The abstraction of vicinal dihalides (also termed dehalogenation) is another reduction that may have an abiotic component in natural systems. Reductive dehalogenation of aryl halides has recently been reported and further study of this reaction is needed. Several other degradation reactions of organohalides that occur in anaerobic environments are mentioned, the most important of which is dehydrohalogenation. The reduction of nitro groups to amines has also been thoroughly studied. The reactions can occur abiotically, and are affected by the redox conditions of the experimental system. However, a relationship between nitro-reduction rate and measured redox potential has not been clearly established. Reductive dealkylation of the N- and O-heteroatom of hydrocarbon pollutants has been observed but not investigated in detail. Azo compounds can be reduced to their hydrazo derivatives and a thorough study of this reaction indicates that it can be caused by extracellular electron transfer agents. Quinone-hydroquinone couples are important reactive groups in humic materials and similar structures in resazurin and indigo carmine make them useful as models for environmental redox conditions. The interconversion of sulfones, sulfoxides, and sulfides is a redox process and is implicated in the degradation of several pesticides though the reactions need more study. Two reductive heterocyclic cleavage reactions are also mentioned. Finally, several