Sample records for aerodynamic design problems

  1. Optimum Design of High-Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas Robert

    1993-01-01

    An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.

  2. Formulation for Simultaneous Aerodynamic Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Hou, G. W.; Taylor, A. C., III; Mani, S. V.; Newman, P. A.

    1993-01-01

    An efficient approach for simultaneous aerodynamic analysis and design optimization is presented. This approach does not require the performance of many flow analyses at each design optimization step, which can be an expensive procedure. Thus, this approach brings us one step closer to meeting the challenge of incorporating computational fluid dynamic codes into gradient-based optimization techniques for aerodynamic design. An adjoint-variable method is introduced to nullify the effect of the increased number of design variables in the problem formulation. The method has been successfully tested on one-dimensional nozzle flow problems, including a sample problem with a normal shock. Implementations of the above algorithm are also presented that incorporate Newton iterations to secure a high-quality flow solution at the end of the design process. Implementations with iterative flow solvers are possible and will be required for large, multidimensional flow problems.

  3. Systems design study of the Pioneer Venus spacecraft. Volume 1. Technical analyses and tradeoffs, section 7 (part 3 of 4). [aerodynamic design problems for small probe reentry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The aerodynamic design problems for the Pioneer Venus mission are discussed for a small probe shape that enters the atmosphere, and exhibits good stability for the subsonic portion of the flight. The problems discussed include: heat shield, structures and mechanisms, thermal control, decelerator, probe communication, data handling and command, and electric power.

  4. Aerodynamic optimization by simultaneously updating flow variables and design parameters

    NASA Technical Reports Server (NTRS)

    Rizk, M. H.

    1990-01-01

    The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.

  5. Transonic aerodynamic design experience

    NASA Technical Reports Server (NTRS)

    Bonner, E.

    1989-01-01

    Advancements have occurred in transonic numerical simulation that place aerodynamic performance design into a relatively well developed status. Efficient broad band operating characteristics can be reliably developed at the conceptual design level. Recent aeroelastic and separated flow simulation results indicate that systematic consideration of an increased range of design problems appears promising. This emerging capability addresses static and dynamic structural/aerodynamic coupling and nonlinearities associated with viscous dominated flows.

  6. Research on inverse, hybrid and optimization problems in engineering sciences with emphasis on turbomachine aerodynamics: Review of Chinese advances

    NASA Technical Reports Server (NTRS)

    Liu, Gao-Lian

    1991-01-01

    Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.

  7. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  8. Sensitivity analysis, approximate analysis, and design optimization for internal and external viscous flows

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.; Korivi, Vamshi M.

    1991-01-01

    A gradient-based design optimization strategy for practical aerodynamic design applications is presented, which uses the 2D thin-layer Navier-Stokes equations. The strategy is based on the classic idea of constructing different modules for performing the major tasks such as function evaluation, function approximation and sensitivity analysis, mesh regeneration, and grid sensitivity analysis, all driven and controlled by a general-purpose design optimization program. The accuracy of aerodynamic shape sensitivity derivatives is validated on two viscous test problems: internal flow through a double-throat nozzle and external flow over a NACA 4-digit airfoil. A significant improvement in aerodynamic performance has been achieved in both cases. Particular attention is given to a consistent treatment of the boundary conditions in the calculation of the aerodynamic sensitivity derivatives for the classic problems of external flow over an isolated lifting airfoil on 'C' or 'O' meshes.

  9. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1992-01-01

    Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.

  10. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  11. Development of a Parachute System for Deceleration of Flying Vehicles in Supersonic Regimes

    NASA Astrophysics Data System (ADS)

    Pilyugin, N. N.; Khlebnikov, V. S.

    2010-09-01

    Aerodynamic problems arising during design and development of braking systems for re-entry vehicles are analyzed. Aerodynamic phenomena and laws valid in a supersonic flow around a pair of bodies having different shapes are studied. Results of this research can be used in solving application problems (arrangement and optimization of experiments; design and development of various braking systems for re-entry vehicles moving with supersonic speeds in the atmosphere).

  12. Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Hou, Gene J.-W.

    2001-01-01

    The formulation and implementation of an optimization method called Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) are extended from single discipline analysis (aerodynamics only) to multidisciplinary analysis - in this case, static aero-structural analysis - and applied to a simple 3-D wing problem. The method aims to reduce the computational expense incurred in performing shape optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, Finite Element Method (FEM) structural analysis and sensitivity analysis tools. Results for this small problem show that the method reaches the same local optimum as conventional optimization. However, unlike its application to the win,, (single discipline analysis), the method. as I implemented here, may not show significant reduction in the computational cost. Similar reductions were seen in the two-design-variable (DV) problem results but not in the 8-DV results given here.

  13. Aerodynamic design and optimization in one shot

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo; Kuruvila, G.; Salas, M. D.

    1992-01-01

    This paper describes an efficient numerical approach for the design and optimization of aerodynamic bodies. As in classical optimal control methods, the present approach introduces a cost function and a costate variable (Lagrange multiplier) in order to achieve a minimum. High efficiency is achieved by using a multigrid technique to solve for all the unknowns simultaneously, but restricting work on a design variable only to grids on which their changes produce nonsmooth perturbations. Thus, the effort required to evaluate design variables that have nonlocal effects on the solution is confined to the coarse grids. However, if a variable has a nonsmooth local effect on the solution in some neighborhood, it is relaxed in that neighborhood on finer grids. The cost of solving the optimal control problem is shown to be approximately two to three times the cost of the equivalent analysis problem. Examples are presented to illustrate the application of the method to aerodynamic design and constraint optimization.

  14. Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2001-01-01

    A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

  15. Innovation in Aerodynamic Design Features of Soviet Missiles

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2006-01-01

    Wind tunnel investigations of some tactical and strategic missile systems developed by the former Soviet Union have been included in the basic missile research programs of the NACA/NASA. Studies of the Soviet missiles sometimes revealed innovative design features that resulted in unusual or unexpected aerodynamic characteristics. In some cases these characteristics have been such that the measured performance of the missile exceeds what might have been predicted. In other cases some unusual design features have been found that would alleviate what might otherwise have been a serious aerodynamic problem. In some designs, what has appeared to be a lack of refinement has proven to be a matter of expediency. It is a purpose of this paper to describe some examples of unusual design features of some Soviet missiles and to illustrate the effectiveness of the design features on the aerodynamic behavior of the missile. The paper draws on the experience of the author who for over 60 years was involved in the aerodynamic wind tunnel testing of aircraft and missiles with the NACA/NASA.

  16. High-speed aerodynamic design of space vehicle and required hypersonic wind tunnel facilities

    NASA Astrophysics Data System (ADS)

    Sakakibara, Seizou; Hozumi, Kouichi; Soga, Kunio; Nomura, Shigeaki

    Problems associated with the aerodynamic design of space vehicles with emphasis of the role of hypersonic wind tunnel facilities in the development of the vehicle are considered. At first, to identify wind tunnel and computational fluid dynamics (CFD) requirements, operational environments are postulated for hypervelocity vehicles. Typical flight corridors are shown with the associated flow density: real gas effects, low density flow, and non-equilibrium flow. Based on an evaluation of these flight regimes and consideration of the operational requirements, the wind tunnel testing requirements for the aerodynamic design are examined. Then, the aerodynamic design logic and optimization techniques to develop and refine the configurations in a traditional phased approach based on the programmatic design of space vehicle are considered. Current design methodology for the determination of aerodynamic characteristics for designing the space vehicle, i.e., (1) ground test data, (2) numerical flow field solutions and (3) flight test data, are also discussed. Based on these considerations and by identifying capabilities and limits of experimental and computational methods, the role of a large conventional hypersonic wind tunnel and the high enthalpy tunnel and the interrelationship of the wind tunnels and CFD methods in actual aerodynamic design and analysis are discussed.

  17. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  18. Missile aerodynamics; Proceedings of the Conference, Monterey, CA, Oct. 31-Nov. 2, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendenhall, M.R.; Nixon, D.; Dillenius, M.F.E.

    1989-01-01

    The present conference discusses the development status of predictive capabilities for missile aerodynamic characteristics, the application of experimental techniques to missile-release problems, prospective high-performance missile designs, the use of lateral jet controls for missile guidance, and the integration of stores on modern tactical aircraft. Also discussed are semiempirical aerodynamic methods for preliminary design, high angle-of-attack behavior for an advanced missile, and the dynamic derivatives of missiles and fighter-type configurations at high angles-of-attack.

  19. NASA Perspective on Requirements for Development of Advanced Methods Predicting Unsteady Aerodynamics and Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2008-01-01

    Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they can be evaluated. However, researchers may be required to alter the geometries typically used in their analyses, the types of flows analyzed, and even the techniques by which computational tools are verified and validated. This paper discusses these issues and provides some perspective on the potential for new and innovative approaches to the development of methods to attack problems in nonlinear unsteady aerodynamics.

  20. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  1. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry

    NASA Technical Reports Server (NTRS)

    Rubbert, P. E.

    1978-01-01

    The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

  2. NASTRAN level 16 user's manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.

    1980-01-01

    The NASTRAN aeroelastic and flutter capability was extended to solve a class of problems associated with axial flow turbomachines. The capabilities of the program are briefly discussed. The aerodynamic data pertaining to the bladed disc sector, the associated aerodynamic modeling, the steady aerothermoelastic 'design/analysis' formulations, and the modal, flutter, and subcritical roots analyses are described. Sample problems and their solutions are included.

  3. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  4. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  5. Stochastic Methods for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Pelz, Richard B.; Ogot, Madara

    1998-01-01

    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.

  6. User interface concerns

    NASA Technical Reports Server (NTRS)

    Redhed, D. D.

    1978-01-01

    Three possible goals for the Numerical Aerodynamic Simulation Facility (NASF) are: (1) a computational fluid dynamics (as opposed to aerodynamics) algorithm development tool; (2) a specialized research laboratory facility for nearly intractable aerodynamics problems that industry encounters; and (3) a facility for industry to use in its normal aerodynamics design work that requires high computing rates. The central system issue for industry use of such a computer is the quality of the user interface as implemented in some kind of a front end to the vector processor.

  7. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  8. Aerodynamic optimization studies on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1995-01-01

    The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

  9. Flow Past a Descending Balloon

    NASA Technical Reports Server (NTRS)

    Baginski, Frank

    2001-01-01

    In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.

  10. Multidisciplinary design optimization using multiobjective formulation techniques

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Pagaldipti, Narayanan S.

    1995-01-01

    This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.

  11. The DELTA MONSTER: An RPV designed to investigate the aerodynamics of a delta wing platform

    NASA Technical Reports Server (NTRS)

    Connolly, Kristen; Flynn, Mike; Gallagher, Randy; Greek, Chris; Kozlowski, Marc; Mcdonald, Brian; Mckenna, Matt; Sellar, Rich; Shearon, Andy

    1989-01-01

    The mission requirements for the performance of aerodynamic tests on a delta wind planform posed some problems, these include aerodynamic interference; structural support; data acquisition and transmission instrumentation; aircraft stability and control; and propulsion implementation. To eliminate the problems of wall interference, free stream turbulence, and the difficulty of achieving dynamic similarity between the test and actual flight aircraft that are associated with aerodynamic testing in wind tunnels, the concept of the remotely piloted vehicle which can perform a basic aerodynamic study on a delta wing was the main objective for the Green Mission - the Delta Monster. The basic aerodynamic studies were performed on a delta wing with a sweep angle greater than 45 degrees. These tests were performed at various angles of attack and Reynolds numbers. The delta wing was instrumented to determine the primary leading edge vortex formation and location, using pressure measurements and/or flow visualization. A data acquisition system was provided to collect all necessary data.

  12. Integrated aerodynamic-structural design of a forward-swept transport wing

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  13. Free Wake Techniques for Rotor Aerodynamic Analysis. Volume 1: Summary of Results and Background Theory

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1982-01-01

    Results obtained during the development of a consistent aerodynamic theory for rotors in hovering flight are discussed. Methods of aerodynamic analysis were developed which are adequate for general design purposes until such time as more elaborate solutions become available, in particular solutions which include real fluids effects. Several problems were encountered in the course of this development, and many remain to be solved, however it is felt that a better understanding of the aerodynamic phenomena involved was obtained. Remaining uncertainties are discussed.

  14. A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.

  15. Inflight thermodynamic properties

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.

    1973-01-01

    The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.

  16. Multidisciplinary Approach to Aerospike Nozzle Design

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.

    1997-01-01

    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional finite-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against separate aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single-discipline design strategy.

  17. Biological and aerodynamic problems with the flight of animals

    NASA Technical Reports Server (NTRS)

    Holst, E. V.; Kuchemann, D.

    1980-01-01

    Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.

  18. Aerodynamic Efficiency Analysis on Modified Drag Generator of Tanker-Ship Using Symmetrical Airfoil

    NASA Astrophysics Data System (ADS)

    Moranova, Starida; Rahmat Hadiyatul A., S. T.; Indra Permana S., S. T.

    2018-04-01

    Time reduction of tanker ship spent in the sea should be applied for solving problems occured in oil and gas distribution, such as the unpunctuality of the distribution and oil spilling. The aerodynamic design for some parts that considered as drag generators is presumed to be one of the solution, utilizing our demand of the increasing speed. This paper suggests two examples of the more-aerodynamic design of a part in the tanker that is considered a drag generator, and reports the value of drag generated from the basic and the suggested aerodynamic designs. The new designs are made by adding the NACA airfoil to the cross section of the drag generator. The scenario is assumed with a 39 km/hour speed of tanker, neglecting the hydrodynamic effects occured in the tanker by cutting it at the waterline which separated the drag between air and water. The results of produced drag in each design are calculated by Computational Fluid Dynamic method.

  19. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  20. Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method

    NASA Technical Reports Server (NTRS)

    Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.

    1977-01-01

    The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.

  1. Multi-objective Optimization Strategies Using Adjoint Method and Game Theory in Aerodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Zhili

    2006-08-01

    There are currently three different game strategies originated in economics: (1) Cooperative games (Pareto front), (2) Competitive games (Nash game) and (3) Hierarchical games (Stackelberg game). Each game achieves different equilibria with different performance, and their players play different roles in the games. Here, we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multi-criteria aerodynamic optimization problems. The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments. We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method. The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front. Non-dominated Pareto front solutions are obtained, however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  2. The Sky's the Limit! With Math and Science. Aerodynamics. Book 2.

    ERIC Educational Resources Information Center

    Wiebe, Arthur, Ed.; And Others

    Developed for use primarily with students of grades five through nine, the activities presented in this book provide teachers and students with opportunities of exploring the science of aerodynamics. The activities are designed so that students can practice and apply the 22 skills and concepts related to flight in problem-solving situations. Each…

  3. Journal of Aeronautics.

    DTIC Science & Technology

    1982-07-21

    aerodynamic tool for design of elastic aircraft. Several numerical examples are given and some dynamical problems of elastic aircraft are also discussed...Qiangang, Wu Changlin, Jian Zheng Northwestern Polytechnical University Abstract: A numerical metbod,6* ted for predicting the aerodynamic characte- ristics... Numerical value calculation method is one important means of the present research on elastic aircraft pneumatic characteristics. Be- cause this

  4. Design of off-statistics axial-flow fans by means of vortex law optimization

    NASA Astrophysics Data System (ADS)

    Lazari, Andrea; Cattanei, Andrea

    2014-12-01

    Off-statistics input data sets are common in axial-flow fans design and may easily result in some violation of the requirements of a good aerodynamic blade design. In order to circumvent this problem, in the present paper, a solution to the radial equilibrium equation is found which minimizes the outlet kinetic energy and fulfills the aerodynamic constraints, thus ensuring that the resulting blade has acceptable aerodynamic performance. The presented method is based on the optimization of a three-parameters vortex law and of the meridional channel size. The aerodynamic quantities to be employed as constraints are individuated and their suitable ranges of variation are proposed. The method is validated by means of a design with critical input data values and CFD analysis. Then, by means of systematic computations with different input data sets, some correlations and charts are obtained which are analogous to classic correlations based on statistical investigations on existing machines. Such new correlations help size a fan of given characteristics as well as study the feasibility of a given design.

  5. Aerodynamic design optimization via reduced Hessian SQP with solution refining

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1995-01-01

    An all-at-once reduced Hessian Successive Quadratic Programming (SQP) scheme has been shown to be efficient for solving aerodynamic design optimization problems with a moderate number of design variables. This paper extends this scheme to allow solution refining. In particular, we introduce a reduced Hessian refining technique that is critical for making a smooth transition of the Hessian information from coarse grids to fine grids. Test results on a nozzle design using quasi-one-dimensional Euler equations show that through solution refining the efficiency and the robustness of the all-at-once reduced Hessian SQP scheme are significantly improved.

  6. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  7. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  8. NACA Conference on Aerodynamic Problems of Transonic Airplane Design

    NASA Technical Reports Server (NTRS)

    1949-01-01

    During the past several years it has been necessary for aeronautical research workers to exert a good portion of their effort in developing the means for conducting research in the high-speed range. The transonic range particularly has presented a very acute problem because of the choking phenomena in wind tunnels at speeds close to the speed of sound. At the same time, the multiplicity of design problems for aircraft introduced by the peculiar flow problems of the transonic speed range has given rise to an enormous demand for detail design data. Substantial progress has been made, however, in developing the required research techniques and in supplying the demand for aerodynamic data required for design purposes. In meeting this demand, it has been necessary to resort to new techniques possessing such novel features that the results obtained have had to be viewed with caution. Furthermore, the kinds of measurements possible with these various techniques are so varied that the correlation of results obtained by different techniques generally becomes an indirect process that can only be accomplished in conjunction with the application of estimates of the extent to which the results of measurements by any given technique are modified by differences that are inherent in the techniques. Thus, in the establishment of the validity and applicability of data obtained by any given technique, direct comparisons between data from different sources are a supplement to but not a substitute for the detailed knowledge required of the characteristics of each technique and fundamental aerodynamic flow phenomena.

  9. Specialized computer architectures for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  10. Aerodynamic design of axisymmetric hypersonic wind-tunnel nozzles using least-squares/parabolized Navier-Stokes procedure

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1992-01-01

    A new procedure unifying the best of present classical design practices, CFD and optimization procedures, is demonstrated for designing the aerodynamic lines of hypersonic wind tunnel nozzles. This procedure can be employed to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been demonstrated to break down. Advantages of this procedure allow full utilization of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, may be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure.

  11. An approach for aerodynamic optimization of transonic fan blades

    NASA Astrophysics Data System (ADS)

    Khelghatibana, Maryam

    Aerodynamic design optimization of transonic fan blades is a highly challenging problem due to the complexity of flow field inside the fan, the conflicting design requirements and the high-dimensional design space. In order to address all these challenges, an aerodynamic design optimization method is developed in this study. This method automates the design process by integrating a geometrical parameterization method, a CFD solver and numerical optimization methods that can be applied to both single and multi-point optimization design problems. A multi-level blade parameterization is employed to modify the blade geometry. Numerical analyses are performed by solving 3D RANS equations combined with SST turbulence model. Genetic algorithms and hybrid optimization methods are applied to solve the optimization problem. In order to verify the effectiveness and feasibility of the optimization method, a singlepoint optimization problem aiming to maximize design efficiency is formulated and applied to redesign a test case. However, transonic fan blade design is inherently a multi-faceted problem that deals with several objectives such as efficiency, stall margin, and choke margin. The proposed multi-point optimization method in the current study is formulated as a bi-objective problem to maximize design and near-stall efficiencies while maintaining the required design pressure ratio. Enhancing these objectives significantly deteriorate the choke margin, specifically at high rotational speeds. Therefore, another constraint is embedded in the optimization problem in order to prevent the reduction of choke margin at high speeds. Since capturing stall inception is numerically very expensive, stall margin has not been considered as an objective in the problem statement. However, improving near-stall efficiency results in a better performance at stall condition, which could enhance the stall margin. An investigation is therefore performed on the Pareto-optimal solutions to demonstrate the relation between near-stall efficiency and stall margin. The proposed method is applied to redesign NASA rotor 67 for single and multiple operating conditions. The single-point design optimization showed +0.28 points improvement of isentropic efficiency at design point, while the design pressure ratio and mass flow are, respectively, within 0.12% and 0.11% of the reference blade. Two cases of multi-point optimization are performed: First, the proposed multi-point optimization problem is relaxed by removing the choke margin constraint in order to demonstrate the relation between near-stall efficiency and stall margin. An investigation on the Pareto-optimal solutions of this optimization shows that the stall margin has been increased with improving near-stall efficiency. The second multi-point optimization case is performed with considering all the objectives and constraints. One selected optimized design on the Pareto front presents +0.41, +0.56 and +0.9 points improvement in near-peak efficiency, near-stall efficiency and stall margin, respectively. The design pressure ratio and mass flow are, respectively, within 0.3% and 0.26% of the reference blade. Moreover the optimized design maintains the required choking margin. Detailed aerodynamic analyses are performed to investigate the effect of shape optimization on shock occurrence, secondary flows, tip leakage and shock/tip-leakage interactions in both single and multi-point optimizations.

  12. Charts Showing Relations Among Primary Aerodynamic Variables for Helicopter-performance Estimation

    NASA Technical Reports Server (NTRS)

    Talkin, Herbert W

    1947-01-01

    In order to facilitate solutions of the general problem of helicopter selection, the aerodynamic performance of rotors is presented in the form of charts showing relations between primary design and performance variables. By the use of conventional helicopter theory, certain variables are plotted and other variables are considered fixed. Charts constructed in such a manner show typical results, trends, and limits of helicopter performance. Performance conditions considered include hovering, horizontal flight, climb, and ceiling. Special problems discussed include vertical climb and the use of rotor-speed-reduction gears for hovering.

  13. Lessons Learned in the High-Speed Aerodynamic Research Programs of the NACA/NASA

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2004-01-01

    The achievement of flight with manned, powered, heavier-than-air aircraft in 1903 marked the beginning of a new era in the means of transportation. A special advantage for aircraft was in speed. However, when an aircraft penetrates the air at very high speeds, the disturbed air is compressed and there are changes in the density, pressure and temperature of the air. These compressibility effects change the aerodynamic characteristics of an aircraft and introduce problems in drag, stability and control. Many aircraft designed in the post-World War II era were plagued with the effects of compressibility. Accordingly, the study of the aerodynamic behavior of aircraft, spacecraft and missiles at high-speed became a major part of the research activity of the NACA/NASA. The intent of the research was to determine the causes and provide some solutions for the aerodynamic problems resulting from the effects of compressibility. The purpose of this paper is to review some of the high-speed aerodynamic research work conducted at the Langley Research Center from the viewpoint of the author who has been active in much of the effort.

  14. Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III

    1996-01-01

    Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.

  15. Aerodynamic Design on Unstructured Grids for Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Bonhaus, Daryl L.

    1997-01-01

    An aerodynamic design algorithm for turbulent flows using unstructured grids is described. The current approach uses adjoint (costate) variables for obtaining derivatives of the cost function. The solution of the adjoint equations is obtained using an implicit formulation in which the turbulence model is fully coupled with the flow equations when solving for the costate variables. The accuracy of the derivatives is demonstrated by comparison with finite-difference gradients and a few example computations are shown. In addition, a user interface is described which significantly reduces the time required for setting up the design problems. Recommendations on directions of further research into the Navier Stokes design process are made.

  16. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified with fourth-degree polynomial functions of path distance from the maximum thickness point. Input to the aerodynamic and blading design program includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of input parameters are also used to specify and control the blade row aerodynamics and geometry. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, the blade coordinates in the streamwise direction for internal flow analysis codes and the coordinates on plane sections through blades for fabrication drawings may be stored and printed. The aerodynamic and blading design program for multistage axial-flow compressors is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 470K of 8 bit bytes. This program was developed in 1981.

  17. Novel methodology for wide-ranged multistage morphing waverider based on conical theory

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Liu, Jun; Ding, Feng; Xia, Zhixun

    2017-11-01

    This study proposes the wide-ranged multistage morphing waverider design method. The flow field structure and aerodynamic characteristics of multistage waveriders are also analyzed. In this method, the multistage waverider is generated in the same conical flowfield, which contains a free-stream surface and different compression-stream surfaces. The obtained results show that the introduction of the multistage waverider design method can solve the problem of aerodynamic performance deterioration in the off-design state and allow the vehicle to always maintain the optimal flight state. The multistage waverider design method, combined with transfiguration flight strategy, can lead to greater design flexibility and the optimization of hypersonic wide-ranged waverider vehicles.

  18. An all-at-once reduced Hessian SQP scheme for aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1995-01-01

    This paper introduces a computational scheme for solving a class of aerodynamic design problems that can be posed as nonlinear equality constrained optimizations. The scheme treats the flow and design variables as independent variables, and solves the constrained optimization problem via reduced Hessian successive quadratic programming. It updates the design and flow variables simultaneously at each iteration and allows flow variables to be infeasible before convergence. The solution of an adjoint flow equation is never needed. In addition, a range space basis is chosen so that in a certain sense the 'cross term' ignored in reduced Hessian SQP methods is minimized. Numerical results for a nozzle design using the quasi-one-dimensional Euler equations show that this scheme is computationally efficient and robust. The computational cost of a typical nozzle design is only a fraction more than that of the corresponding analysis flow calculation. Superlinear convergence is also observed, which agrees with the theoretical properties of this scheme. All optimal solutions are obtained by starting far away from the final solution.

  19. Simulation Propulsion System and Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.

    2017-01-01

    A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.

  20. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.

  1. Historical development of worldwide supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    Some major milestones in the progression of airplane speeds from subsonic to supersonic are traced. Historical background is included on work done prior to the Twentieth Century, but the major emphasis is on the Twentieth Century developments after the man carrying airplane became a practical reality. The techniques of increasing airplane speed revolve around means of increasing the propulsive force and means of reducing the airframe resistance (drag). With the changes in speed, the attendant changes in flow patterns due to the compressibility of air introduce some aerodynamic problems. In addition, geometric changes introduced to combat the effects of compressibility also promote aerodynamic problems. Some of the solutions to these problems are illustrated, and many design features that evolved are discussed.

  2. AGARD standard aeroelastic configurations for dynamic response. Candidate configuration I.-wing 445.6

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1987-01-01

    To promote the evaluation of existing and emerging unsteady aerodynamic codes and methods for applying them to aeroelastic problems, especially for the transonic range, a limited number of aerodynamic configurations and experimental dynamic response data sets are to be designated by the AGARD Structures and Materials Panel as standards for comparison. This set is a sequel to that established several years ago for comparisons of calculated and measured aerodynamic pressures and forces. This report presents the information needed to perform flutter calculations for the first candidate standard configuration for dynamic response along with the related experimental flutter data.

  3. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses

    NASA Astrophysics Data System (ADS)

    Yondo, Raul; Andrés, Esther; Valero, Eusebio

    2018-01-01

    Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-order) aerodynamic models or flight testing are some of the fundamental but complex steps in the various design phases of recent civil transport aircrafts. Current aircraft aerodynamic designs have increase in complexity (multidisciplinary, multi-objective or multi-fidelity) and need to address the challenges posed by the nonlinearity of the objective functions and constraints, uncertainty quantification in aerodynamic problems or the restrained computational budgets. With the aim to reduce the computational burden and generate low-cost but accurate models that mimic those full order models at different values of the design variables, Recent progresses have witnessed the introduction, in real-time and many-query analyses, of surrogate-based approaches as rapid and cheaper to simulate models. In this paper, a comprehensive and state-of-the art survey on common surrogate modeling techniques and surrogate-based optimization methods is given, with an emphasis on models selection and validation, dimensionality reduction, sensitivity analyses, constraints handling or infill and stopping criteria. Benefits, drawbacks and comparative discussions in applying those methods are described. Furthermore, the paper familiarizes the readers with surrogate models that have been successfully applied to the general field of fluid dynamics, but not yet in the aerospace industry. Additionally, the review revisits the most popular sampling strategies used in conducting physical and simulation-based experiments in aircraft aerodynamic design. Attractive or smart designs infrequently used in the field and discussions on advanced sampling methodologies are presented, to give a glance on the various efficient possibilities to a priori sample the parameter space. Closing remarks foster on future perspectives, challenges and shortcomings associated with the use of surrogate models by aircraft industrial aerodynamicists, despite their increased interest among the research communities.

  4. On the Use of Parmetric-CAD Systems and Cartesian Methods for Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2004-01-01

    Automated, high-fidelity tools for aerodynamic design face critical issues in attempting to optimize real-life geometry arid in permitting radical design changes. Success in these areas promises not only significantly shorter design- cycle times, but also superior and unconventional designs. To address these issues, we investigate the use of a parmetric-CAD system in conjunction with an embedded-boundary Cartesian method. Our goal is to combine the modeling capabilities of feature-based CAD with the robustness and flexibility of component-based Cartesian volume-mesh generation for complex geometry problems. We present the development of an automated optimization frame-work with a focus on the deployment of such a CAD-based design approach in a heterogeneous parallel computing environment.

  5. Overview: Applications of numerical optimization methods to helicopter design problems

    NASA Technical Reports Server (NTRS)

    Miura, H.

    1984-01-01

    There are a number of helicopter design problems that are well suited to applications of numerical design optimization techniques. Adequate implementation of this technology will provide high pay-offs. There are a number of numerical optimization programs available, and there are many excellent response/performance analysis programs developed or being developed. But integration of these programs in a form that is usable in the design phase should be recognized as important. It is also necessary to attract the attention of engineers engaged in the development of analysis capabilities and to make them aware that analysis capabilities are much more powerful if integrated into design oriented codes. Frequently, the shortcoming of analysis capabilities are revealed by coupling them with an optimization code. Most of the published work has addressed problems in preliminary system design, rotor system/blade design or airframe design. Very few published results were found in acoustics, aerodynamics and control system design. Currently major efforts are focused on vibration reduction, and aerodynamics/acoustics applications appear to be growing fast. The development of a computer program system to integrate the multiple disciplines required in helicopter design with numerical optimization technique is needed. Activities in Britain, Germany and Poland are identified, but no published results from France, Italy, the USSR or Japan were found.

  6. Improving precipitation measurement

    NASA Astrophysics Data System (ADS)

    Strangeways, Ian

    2004-09-01

    Although rainfall has been measured for centuries scientifically and in isolated brief episodes over millennia for agriculture, it is still not measured adequately even today for climatology, water resources, and other precise applications. This paper outlines the history of raingauges, their errors, and describes the field testing over 3 years of a first guess design for an aerodynamic rain collector proposed by Folland in 1988. Although shown to have aerodynamic advantage over a standard 5 gauge, the new rain collector was found to suffer from outsplash in heavy rain. To study this problem, and to derive general basic design rules for aerodynamic gauges, its performance was investigated in turbulent, real-world conditions rather than in the controlled and simplified environment of a wind tunnel or mathematical model as in the past. To do this, video records were made using thread tracers to indicate the path of the wind, giving new insight into the complex flow of natural wind around and within raingauges. A new design resulted, and 2 years of field testing have shown that the new gauge has good aerodynamic and evaporative characteristics and minimal outsplash, offering the potential for improved precipitation measurement.

  7. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    NASA Astrophysics Data System (ADS)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  8. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    NASA Technical Reports Server (NTRS)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  9. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    PubMed

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  10. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    PubMed Central

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  11. Aerodynamic optimization by simultaneously updating flow variables and design parameters with application to advanced propeller designs

    NASA Technical Reports Server (NTRS)

    Rizk, Magdi H.

    1988-01-01

    A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.

  12. Review of design optimization methods for turbomachinery aerodynamics

    NASA Astrophysics Data System (ADS)

    Li, Zhihui; Zheng, Xinqian

    2017-08-01

    In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and ;greener; but also need to be developed at on much shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.

  13. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  14. A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1993-01-01

    A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.

  15. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  16. A comparison of two closely-related approaches to aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Shubin, G. R.; Frank, P. D.

    1991-01-01

    Two related methods for aerodynamic design optimization are compared. The methods, called the implicit gradient approach and the variational (or optimal control) approach, both attempt to obtain gradients necessary for numerical optimization at a cost significantly less than that of the usual black-box approach that employs finite difference gradients. While the two methods are seemingly quite different, they are shown to differ (essentially) in that the order of discretizing the continuous problem, and of applying calculus, is interchanged. Under certain circumstances, the two methods turn out to be identical. We explore the relationship between these methods by applying them to a model problem for duct flow that has many features in common with transonic flow over an airfoil. We find that the gradients computed by the variational method can sometimes be sufficiently inaccurate to cause the optimization to fail.

  17. Enhancement of roll maneuverability using post-reversal design

    NASA Astrophysics Data System (ADS)

    Li, Wei-En

    This dissertation consists of three main parts. The first part is to discuss aileron reversal problem for a typical section with linear aerodynamic and structural analysis. The result gives some insight and ideas for this aeroelastic problem. Although the aileron in its post-reversal state will work the opposite of its design, this type of phenomenon as a design root should not be ruled out on these grounds alone, as current active flight-control systems can compensate for this. Moreover, one can get considerably more (negative) lift for positive flap angle in this unusual regime than positive lift for positive flap angle in the more conventional setting. This may have important implications for development of highly maneuverable aircraft. The second part is to involve the nonlinear aerodynamic and structural analyses into the aileron reversal problem. Two models, a uniform cantilevered lifting surface and a rolling aircraft with rectangular wings, are investigated here. Both models have trailing-edge control surfaces attached to the main wings. A configuration that reverses at a relatively low dynamic pressure and flies with the enhanced controls at a higher level of effectiveness is demonstrated. To evaluate how reliable for the data from XFOIL, the data for the wing-aileron system from advanced CFD codes and experiment are used to compare with that from XFOIL. To enhance rolling maneuverability for an aircraft, the third part is to search for the optimal configuration during the post-reversal regime from a design point of view. Aspect ratio, hinge location, airfoil dimension, inner structure of wing section, composite skin, aeroelastic tailoring, and airfoil selection are investigated for cantilevered wing and rolling aircraft models, respectively. Based on these parametric structural designs as well as the aerodynamic characteristics of different airfoils, recommendations are given to expand AAW flight program.

  18. An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi

    1997-01-01

    The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.

  19. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  20. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  1. The impact of emerging technologies on an advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  2. Numerical Aerodynamic Simulation (NAS)

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.

    1983-01-01

    The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.

  3. A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, H Julian; Eggers, A J , Jr

    1958-01-01

    A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  4. Transonic airfoil design for helicopter rotor applications

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed A.; Jackson, B.

    1989-01-01

    Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.

  5. Propeller propulsion system integration: State of technology survey

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Vonlavante, E.

    1985-01-01

    A literature survey was performed to identify and review technical material applicable to the problem area of propeller propulsion system integration. The survey covered only aerodynamic interference aspects of the problem, and was restricted primarily to propeller effects on the airframe. The subject of airframe aerodynamic interference on the propeller was limited to the problem of vibration due to nonuniform inflow. The problem of airframe effects on propeller performance was not included. A total of 1121 references are given. The references are grouped into the subject areas of Aircraft Stability, Propulsive Efficiency, Aerodynamic Interference, Aerodynamic Interference-Propeller Vibration, and Miscellaneous.

  6. On the Use of CAD and Cartesian Methods for Aerodynamic Optimization

    NASA Technical Reports Server (NTRS)

    Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.

    2004-01-01

    The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.

  7. Multifidelity Analysis and Optimization for Supersonic Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory

    2010-01-01

    Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

  8. Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Ta'asan, Shlomo

    1996-01-01

    In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.

  9. Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    1997-01-01

    A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.

  10. A comprehensive plan for helicopter drag reduction

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Montana, P. S.

    1975-01-01

    Current helicopters have parasite drag levels 6 to 10 times as great as fixed wing aircraft. The commensurate poor cruise efficiency results in a substantial degradation of potential mission capability. The paper traces the origins of helicopter drag and shows that the problem (primarily due to bluff body flow separation) can be solved by the adoption of a comprehensive research and development plan. This plan, known as the Fuselage Design Methodology, comprises both nonaerodynamic and aerodynamic aspects. The aerodynamics are discussed in detail and experimental and analytical programs are described which will lead to a solution of the bluff body problem. Some recent results of work conducted at the Naval Ship Research and Development Center (NSRDC) are presented to illustrate these programs. It is concluded that a 75-per cent reduction of helicopter drag is possible by the full implementation of the Fuselage Design Methodology.

  11. Variable-Complexity Multidisciplinary Optimization on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Grossman, Bernard; Mason, William H.; Watson, Layne T.; Haftka, Raphael T.

    1998-01-01

    This report covers work conducted under grant NAG1-1562 for the NASA High Performance Computing and Communications Program (HPCCP) from December 7, 1993, to December 31, 1997. The objective of the research was to develop new multidisciplinary design optimization (MDO) techniques which exploit parallel computing to reduce the computational burden of aircraft MDO. The design of the High-Speed Civil Transport (HSCT) air-craft was selected as a test case to demonstrate the utility of our MDO methods. The three major tasks of this research grant included: development of parallel multipoint approximation methods for the aerodynamic design of the HSCT, use of parallel multipoint approximation methods for structural optimization of the HSCT, mathematical and algorithmic development including support in the integration of parallel computation for items (1) and (2). These tasks have been accomplished with the development of a response surface methodology that incorporates multi-fidelity models. For the aerodynamic design we were able to optimize with up to 20 design variables using hundreds of expensive Euler analyses together with thousands of inexpensive linear theory simulations. We have thereby demonstrated the application of CFD to a large aerodynamic design problem. For the predicting structural weight we were able to combine hundreds of structural optimizations of refined finite element models with thousands of optimizations based on coarse models. Computations have been carried out on the Intel Paragon with up to 128 nodes. The parallel computation allowed us to perform combined aerodynamic-structural optimization using state of the art models of a complex aircraft configurations.

  12. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  13. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  14. Engineering Overview of a Multidisciplinary HSCT Design Framework Using Medium-Fidelity Analysis Codes

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.

    1999-01-01

    An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW). Weights information is obtained from correlations of data from three sources: 1) as-built initial structural and non-structural weights from an existing database, 2) theoretical FEM structural weights and sensitivities from Genesis, and 3) empirical as-built weight increments, non-structural weights, and weight sensitivities from FLOPS. For the aeroelastic analysis, a variable-fidelity aerodynamic analysis has been adopted. This approach uses infrequent CPU-intensive non-linear CFD to calculate a non-linear correction relative to a linear aero calculation for the same aerodynamic surface at an angle of attack that results in the same configuration lift. For efficiency, this nonlinear correction is applied after each subsequent linear aero solution during the iterations between the aerodynamic and structural analyses. Convergence is achieved when the vehicle shape being used for the aerodynamic calculations is consistent with the structural deformations caused by the aerodynamic loads. To make the structural analyses more efficient, a linearized structural deformation model has been adopted, in which a single stiffness matrix can be used to solve for the deformations under all the load conditions. Using the converged aerodynamic loads, a final set of structural analyses are performed to determine the stress distributions and the buckling conditions for constraint calculation. Performance constraints are obtained by running FLOPS using drag polars that are computed using results from non-linear corrections to the linear aero code plus several codes to provide drag increments due to skin friction, wave drag, and other miscellaneous drag contributions. The status of the integration effort will be presented in the proposed paper, and results will be provided that illustrate the degree of accuracy in the linearizations that have been employed.

  15. High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime

    NASA Astrophysics Data System (ADS)

    Turansky, Craig P.

    The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.

  16. Three-Dimensional Viscous Alternating Direction Implicit Algorithm and Strategies for Shape Optimization

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.

  17. RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1997-01-01

    Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.

  18. Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei

    2018-05-01

    Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).

  19. Integrated design and manufacturing for the high speed civil transport (a combined aerodynamics/propulsion optimization study)

    NASA Technical Reports Server (NTRS)

    Baecher, Juergen; Bandte, Oliver; DeLaurentis, Dan; Lewis, Kemper; Sicilia, Jose; Soboleski, Craig

    1995-01-01

    This report documents the efforts of a Georgia Tech High Speed Civil Transport (HSCT) aerospace student design team in completing a design methodology demonstration under NASA's Advanced Design Program (ADP). Aerodynamic and propulsion analyses are integrated into the synthesis code FLOPS in order to improve its prediction accuracy. Executing the integrated product and process development (IPPD) methodology proposed at the Aerospace Systems Design Laboratory (ASDL), an improved sizing process is described followed by a combined aero-propulsion optimization, where the objective function, average yield per revenue passenger mile ($/RPM), is constrained by flight stability, noise, approach speed, and field length restrictions. Primary goals include successful demonstration of the application of the response surface methodolgy (RSM) to parameter design, introduction to higher fidelity disciplinary analysis than normally feasible at the conceptual and early preliminary level, and investigations of relationships between aerodynamic and propulsion design parameters and their effect on the objective function, $/RPM. A unique approach to aircraft synthesis is developed in which statistical methods, specifically design of experiments and the RSM, are used to more efficiently search the design space for optimum configurations. In particular, two uses of these techniques are demonstrated. First, response model equations are formed which represent complex analysis in the form of a regression polynomial. Next, a second regression equation is constructed, not for modeling purposes, but instead for the purpose of optimization at the system level. Such an optimization problem with the given tools normally would be difficult due to the need for hard connections between the various complex codes involved. The statistical methodology presents an alternative and is demonstrated via an example of aerodynamic modeling and planform optimization for a HSCT.

  20. Some remarks on the design of transonic tunnels with low levels of flow unsteadiness

    NASA Technical Reports Server (NTRS)

    Mabey, D. G.

    1976-01-01

    The principal sources of flow unsteadiness in the circuit of a transonic wind tunnel are presented. Care must be taken to avoid flow separations, acoustic resonances and large scale turbulence. Some problems discussed are the elimination of diffuser separations, the aerodynamic design of coolers and the unsteadiness generated in ventilated working sections.

  1. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  2. Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine

    NASA Astrophysics Data System (ADS)

    Mu≁oz, A.; Méndez, B.; Munduate, X.

    2016-09-01

    The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations.

  3. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  4. Overset Grid Methods Applied to Nonlinear Potential Flows

    NASA Technical Reports Server (NTRS)

    Holst, Terry; Kwak, Dochan (Technical Monitor)

    2000-01-01

    The objectives of this viewgraph presentation are to develop Chimera-based potential methodology which is compatible with overflow and overflow infrastructure, creating options for an advanced problem solving environment and to significantly reduce turnaround time for aerodynamic analysis and design (primarily cruise conditions).

  5. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.

  6. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  7. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  8. Aerodynamic characteristics of airplanes at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.

    1977-01-01

    An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.

  9. A PDE Sensitivity Equation Method for Optimal Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Borggaard, Jeff; Burns, John

    1996-01-01

    The use of gradient based optimization algorithms in inverse design is well established as a practical approach to aerodynamic design. A typical procedure uses a simulation scheme to evaluate the objective function (from the approximate states) and its gradient, then passes this information to an optimization algorithm. Once the simulation scheme (CFD flow solver) has been selected and used to provide approximate function evaluations, there are several possible approaches to the problem of computing gradients. One popular method is to differentiate the simulation scheme and compute design sensitivities that are then used to obtain gradients. Although this black-box approach has many advantages in shape optimization problems, one must compute mesh sensitivities in order to compute the design sensitivity. In this paper, we present an alternative approach using the PDE sensitivity equation to develop algorithms for computing gradients. This approach has the advantage that mesh sensitivities need not be computed. Moreover, when it is possible to use the CFD scheme for both the forward problem and the sensitivity equation, then there are computational advantages. An apparent disadvantage of this approach is that it does not always produce consistent derivatives. However, for a proper combination of discretization schemes, one can show asymptotic consistency under mesh refinement, which is often sufficient to guarantee convergence of the optimal design algorithm. In particular, we show that when asymptotically consistent schemes are combined with a trust-region optimization algorithm, the resulting optimal design method converges. We denote this approach as the sensitivity equation method. The sensitivity equation method is presented, convergence results are given and the approach is illustrated on two optimal design problems involving shocks.

  10. Some lessons from NACA/NASA aerodynamic studies following World War II

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    An historical account is presented of the new departures in aerodynamic research conducted by NACA, and subsequently NASA, as a result of novel aircraft technologies and operational regimes encountered in the course of the Second World War. The invention and initial development of the turbojet engine furnished the basis for a new speed/altitude regime in which numerous aerodynamic design problems arose. These included compressibility effects near the speed of sound, with attendant lift/drag efficiency reductions and longitudinal stability enhancements that were accompanied by a directional stability reduction. Major research initiatives were mounted in the investigation of swept, delta, trapezoidal and variable sweep wing configurations, sometimes conducted through flight testing of the 'X-series' aircraft. Attention is also given to the development of the first generation of supersonic fighter aircraft.

  11. Multigrid Methods for Aerodynamic Problems in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1995-01-01

    Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.

  12. Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.

  13. Computational study of engine external aerodynamics as a part of multidisciplinary optimization procedure

    NASA Astrophysics Data System (ADS)

    Savelyev, Andrey; Anisimov, Kirill; Kazhan, Egor; Kursakov, Innocentiy; Lysenkov, Alexandr

    2016-10-01

    The paper is devoted to the development of methodology to optimize external aerodynamics of the engine. Optimization procedure is based on numerical solution of the Reynolds-averaged Navier-Stokes equations. As a method of optimization the surrogate based method is used. As a test problem optimal shape design of turbofan nacelle is considered. The results of the first stage, which investigates classic airplane configuration with engine located under the wing, are presented. Described optimization procedure is considered in the context of multidisciplinary optimization of the 3rd generation, developed in the project AGILE.

  14. Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures

    NASA Astrophysics Data System (ADS)

    Falkiewicz, Nathan J.

    Design and simulation of hypersonic vehicles require consideration of a variety of disciplines due to the highly coupled nature of the flight regime. In order to capture all of the potential effects on vehicle dynamics, one must consider the aerodynamics, aerodynamic heating, heat transfer, and structural dynamics as well as the interactions between these disciplines. The problem is further complicated by the large computational expense involved in capturing all of these effects and their interactions in a full-order sense. While high-fidelity modeling techniques exist for each of these disciplines, the use of such techniques is computationally infeasible in a vehicle design and control system simulation setting for such a highly coupled problem. Early in the design stage, many iterations of analyses may need to be carried out as the vehicle design matures, thus requiring quick analysis turnaround time. Additionally, the number of states used in the analyses must be small enough to allow for efficient control simulation and design. As a result, alternatives to full-order models must be considered. This dissertation presents a fully coupled, reduced-order aerothermoelastic framework for the modeling and analysis of hypersonic vehicle structures. The reduced-order transient thermal solution is a modal solution based on the proper orthogonal decomposition. The reduced-order structural dynamic model is based on projection of the equations of motion onto a Ritz modal subspace that is identified a priori. The reduced-order models are assembled into a time-domain aerothermoelastic simulation framework which uses a partitioned time-marching scheme to account for the disparate time scales of the associated physics. The aerothermoelastic modeling framework is outlined and the formulations associated with the unsteady aerodynamics, aerodynamic heating, transient thermal, and structural dynamics are outlined. Results demonstrate the accuracy of the reduced-order transient thermal and structural dynamic models under variation in boundary conditions and flight conditions. The framework is applied to representative hypersonic vehicle control surface structures and a variety of studies are conducted to assess the impact of aerothermoelastic effects on hypersonic vehicle dynamics. The results presented in this dissertation demonstrate the ability of the proposed framework to perform efficient aerothermoelastic analysis.

  15. Effects of Base Cavity Depth on a Free Spinning Wrap-Around Fin Missile Configuration

    DTIC Science & Technology

    1995-12-01

    packaging problem. Current missile systems which possess wrap-around fin designs are the Army’s Multiple Launch Rocket System (MLRS) and the Hard Target...aerodynamic irregularities (2). Of particular importance to projectile designers is the side force/moment inherent to wrap-around fin configurations. During...virtual instrument programs integrated to perform all necessary aspects of calibration, data collection, and reduction. The details surrounding the design

  16. Application of Reduced Order Transonic Aerodynamic Influence Coefficient Matrix for Design Optimization

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2009-01-01

    Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed, built, and tested at NASA Dryden Flight Research Center. The results from the full order model and the approximate reduced order model are analyzed and compared.

  17. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  18. Space Shuttle stability and control flight test techniques

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1980-01-01

    A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.

  19. Ares-I-X Stability and Control Flight Test: Analysis and Plans

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Derry, Stephen D.; Heim, Eugene H.; Hueschen, Richard M.; Bacon, Barton J.

    2008-01-01

    The flight test of the Ares I-X vehicle provides a unique opportunity to reduce risk of the design of the Ares I vehicle and test out design, math modeling, and analysis methods. One of the key features of the Ares I design is the significant static aerodynamic instability coupled with the relatively flexible vehicle - potentially resulting in a challenging controls problem to provide adequate flight path performance while also providing adequate structural mode damping and preventing adverse control coupling to the flexible structural modes. Another challenge is to obtain enough data from the single flight to be able to conduct analysis showing the effectiveness of the controls solutions and have data to inform design decisions for Ares I. This paper will outline the modeling approaches and control system design to conduct this flight test, and also the system identification techniques developed to extract key information such as control system performance (gain/phase margins, for example), structural dynamics responses, and aerodynamic model estimations.

  20. Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.

  1. A knowledge-based approach to automated flow-field zoning for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1989-01-01

    An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.

  2. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  3. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under extreme conditions. Finally, considering these aerodynamic loads, the blade mass reductions achievable by biplane blades are quantified. The internal structure of the biplane blades are designed using a multi-disciplinary optimization which seeks to minimize mass, subject to constraints which represent realistic design requirements. Using this approach, it is shown that biplane blades can be built more than 45% lighter than a similarly-optimized conventional blade; the reasons for these mass reductions are examined in detail. As blade length is increased, these mass reductions are shown to be even more significant. These large mass reductions are indicative of significant cost of electricity reductions from rotors fitted with biplane blades. Taken together, these results show that biplane blades are a concept which can enable the next generation of larger wind turbine rotors.

  4. Vortex generator design for aircraft inlet distortion as a numerical optimization problem

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.

  5. Predicting Tail Buffet Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.

    2006-01-01

    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.

  6. Selecting Design Parameters for Flying Vehicles

    NASA Astrophysics Data System (ADS)

    Makeev, V. I.; Strel'nikova, E. A.; Trofimenko, P. E.; Bondar', A. V.

    2013-09-01

    Studying the influence of a number of design parameters of solid-propellant rockets on the longitudinal and lateral dispersion is an important applied problem. A mathematical model of a rigid body of variable mass moving in a disturbed medium exerting both wave drag and friction is considered. The model makes it possible to determine the coefficients of aerodynamic forces and moments, which affect the motion of vehicles, and to assess the effect of design parameters on their accuracy

  7. A parallel offline CFD and closed-form approximation strategy for computationally efficient analysis of complex fluid flows

    NASA Astrophysics Data System (ADS)

    Allphin, Devin

    Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative benefits of this technique. For the offline approximation, latin hypercube sampling (LHS) was used for design space filling across four (4) independent design variable degrees of freedom (DOF). Flow solutions at the mapped test sites were converged using STAR-CCM+ with aerodynamic forces from the CFD models then functionally approximated using Kriging interpolation. For the closed-form approximation, the problem was interpreted as an ideal 2-D converging-diverging (C-D) nozzle, where aerodynamic forces were directly mapped by application of the Euler equation solutions for isentropic compression/expansion. A cost-weighting procedure was finally established for creating model-selective discretionary logic, with a synthesized parallel simulation resource summary provided.

  8. Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1989-01-01

    Progress in the direct-inverse wing design method in curvilinear coordinates has been made. This includes the remedying of a spanwise oscillation problem and the assessment of grid skewness, viscous interaction, and the initial airfoil section on the final design. It was found that, in response to the spanwise oscillation problem that designing at every other spanwise station produced the best results for the cases presented, a smoothly varying grid is especially needed for the accurate design at the wing tip, the boundary layer displacement thicknesses must be included in a successful wing design, the design of high and medium aspect ratio wings is possible with this code, and the final airfoil section designed is fairly independent of the initial section.

  9. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.

    PubMed

    Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G

    2011-03-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  10. Overview of the AVT-191 Project to Assess Sensitivity Analysis and Uncertainty Quantification Methods for Military Vehicle Design

    NASA Technical Reports Server (NTRS)

    Benek, John A.; Luckring, James M.

    2017-01-01

    A NATO symposium held in 2008 identified many promising sensitivity analysis and un-certainty quantification technologies, but the maturity and suitability of these methods for realistic applications was not known. The STO Task Group AVT-191 was established to evaluate the maturity and suitability of various sensitivity analysis and uncertainty quantification methods for application to realistic problems of interest to NATO. The program ran from 2011 to 2015, and the work was organized into four discipline-centric teams: external aerodynamics, internal aerodynamics, aeroelasticity, and hydrodynamics. This paper presents an overview of the AVT-191 program content.

  11. Summary Findings from the AVT-191 Project to Assess Sensitivity Analysis and Uncertainty Quantification Methods for Military Vehicle Design

    NASA Technical Reports Server (NTRS)

    Benek, John A.; Luckring, James M.

    2017-01-01

    A NATO symposium held in Greece in 2008 identified many promising sensitivity analysis and uncertainty quantification technologies, but the maturity and suitability of these methods for realistic applications was not clear. The NATO Science and Technology Organization, Task Group AVT-191 was established to evaluate the maturity and suitability of various sensitivity analysis and uncertainty quantification methods for application to realistic vehicle development problems. The program ran from 2011 to 2015, and the work was organized into four discipline-centric teams: external aerodynamics, internal aerodynamics, aeroelasticity, and hydrodynamics. This paper summarizes findings and lessons learned from the task group.

  12. Straight-bladed Darrieus wind turbines - A protagonist's view

    NASA Astrophysics Data System (ADS)

    Migliore, P. G.

    The technology development and market penetration of Darrieus and propeller-type wind turbines is addressed. Important characteristics of competing configurations are compared, and it is claimed that aerodynamic efficiency is not a distinguishing feature. Advantages of the Darrieus machine include omni-directionality and self-limitation, but propeller types require less rotor length per unit swept area. It is argued that the straight-bladed Darrieus is much simpler than the curved-bladed and should be capable of comparable aerodynamic efficiency. Some of the problems of structural design, as well as blade induced drag losses and support-arm counter torque, diminish rapidly as machine size is increased. Taper ratio has similar beneficial effects.

  13. The experimental and calculated characteristics of 22 tapered wings

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond F

    1938-01-01

    The experimental and calculated aerodynamic characteristics of 22 tapered wings are compared, using tests made in the variable-density wind tunnel. The wings had aspect ratios from 6 to 12 and taper ratios from 1:6:1 and 5:1. The compared characteristics are the pitching moment, the aerodynamic-center position, the lift-curve slope, the maximum lift coefficient, and the curves of drag. The method of obtaining the calculated values is based on the use of wing theory and experimentally determined airfoil section data. In general, the experimental and calculated characteristics are in sufficiently good agreement that the method may be applied to many problems of airplane design.

  14. Index for aerodynamic data from the Bumblebee program

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Barnes, G. A.

    1978-01-01

    The Bumblebee program, was designed to provide a supersonic guided missile. The aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles. An index of aerodynamic missile data developed in this program is presented.

  15. Design applications for supercomputers

    NASA Technical Reports Server (NTRS)

    Studerus, C. J.

    1987-01-01

    The complexity of codes for solutions of real aerodynamic problems has progressed from simple two-dimensional models to three-dimensional inviscid and viscous models. As the algorithms used in the codes increased in accuracy, speed and robustness, the codes were steadily incorporated into standard design processes. The highly sophisticated codes, which provide solutions to the truly complex flows, require computers with large memory and high computational speed. The advent of high-speed supercomputers, such that the solutions of these complex flows become more practical, permits the introduction of the codes into the design system at an earlier stage. The results of several codes which either were already introduced into the design process or are rapidly in the process of becoming so, are presented. The codes fall into the area of turbomachinery aerodynamics and hypersonic propulsion. In the former category, results are presented for three-dimensional inviscid and viscous flows through nozzle and unducted fan bladerows. In the latter category, results are presented for two-dimensional inviscid and viscous flows for hypersonic vehicle forebodies and engine inlets.

  16. The aerodynamic challenges of SRB recovery

    NASA Technical Reports Server (NTRS)

    Bacchus, D. L.; Kross, D. A.; Moog, R. D.

    1985-01-01

    Recovery and reuse of the Space Shuttle solid rocket boosters was baselined to support the primary goal to develop a low cost space transportation system. The recovery system required for the 170,000-lb boosters was for the largest and heaviest object yet to be retrieved from exoatmospheric conditions. State-of-the-art design procedures were ground-ruled and development testing minimized to produce both a reliable and cost effective system. The ability to utilize the inherent drag of the boosters during the initial phase of reentry was a key factor in minimizing the parachute loads, size and weight. A wind tunnel test program was devised to enable the accurate prediction of booster aerodynamic characteristics. Concurrently, wind tunnel, rocket sled and air drop tests were performed to develop and verify the performance of the parachute decelerator subsystem. Aerodynamic problems encountered during the overall recovery system development and the respective solutions are emphasized.

  17. Aerodynamics Of Missiles: Present And Future

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1991-01-01

    Paper reviews variety of topics in aerodynamics of missiles. Describes recent developments and suggests areas in which future research fruitful. Emphasis on stability and control of tactical missiles. Aerodynamic problems discussed in general terms without reference to particular missiles.

  18. Shape optimization for aerodynamic efficiency and low observability

    NASA Technical Reports Server (NTRS)

    Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.

    1993-01-01

    Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.

  19. Survey of lift-fan aerodynamic technology

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Kirk, Jerry V.

    1993-01-01

    Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

  20. A fast approach to designing airfoils from given pressure distribution in compressible flows

    NASA Technical Reports Server (NTRS)

    Daripa, Prabir

    1987-01-01

    A new inverse method for aerodynamic design of airfols is presented for subcritical flows. The pressure distribution in this method can be prescribed as a function of the arc length of the as-yet unknown body. This inverse problem is shown to be mathematically equivalent to solving only one nonlinear boundary value problem subject to known Dirichlet data on the boundary. The solution to this problem determines the airfoil, the freestream Mach number, and the upstream flow direction. The existence of a solution to a given pressure distribution is discussed. The method is easy to implement and extremely efficient. A series of results for which comparisons are made with the known airfoils is presented.

  1. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop limit is reached, or no further design improvement is possible due to active design variable bounds and/or constraints. The resulting shape parameters are then used by the grid generation code to define a new wing surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new design by the automatically-generated adjoint codes. Several optimization iterations may be required to find an optimum wing shape. Results from two sample cases will be discussed. The reader should note that this work primarily represents a demonstration of use of automatically- generated adjoint code within an aerodynamic shape optimization. As such, little significance is placed upon the actual optimization results, relative to the method for obtaining the results.

  2. Development of multidisciplinary design optimization procedures for smart composite wings and turbomachinery blades

    NASA Astrophysics Data System (ADS)

    Jha, Ratneshwar

    Multidisciplinary design optimization (MDO) procedures have been developed for smart composite wings and turbomachinery blades. The analysis and optimization methods used are computationally efficient and sufficiently rigorous. Therefore, the developed MDO procedures are well suited for actual design applications. The optimization procedure for the conceptual design of composite aircraft wings with surface bonded piezoelectric actuators involves the coupling of structural mechanics, aeroelasticity, aerodynamics and controls. The load carrying member of the wing is represented as a single-celled composite box beam. Each wall of the box beam is analyzed as a composite laminate using a refined higher-order displacement field to account for the variations in transverse shear stresses through the thickness. Therefore, the model is applicable for the analysis of composite wings of arbitrary thickness. Detailed structural modeling issues associated with piezoelectric actuation of composite structures are considered. The governing equations of motion are solved using the finite element method to analyze practical wing geometries. Three-dimensional aerodynamic computations are performed using a panel code based on the constant-pressure lifting surface method to obtain steady and unsteady forces. The Laplace domain method of aeroelastic analysis produces root-loci of the system which gives an insight into the physical phenomena leading to flutter/divergence and can be efficiently integrated within an optimization procedure. The significance of the refined higher-order displacement field on the aeroelastic stability of composite wings has been established. The effect of composite ply orientations on flutter and divergence speeds has been studied. The Kreisselmeier-Steinhauser (K-S) function approach is used to efficiently integrate the objective functions and constraints into a single envelope function. The resulting unconstrained optimization problem is solved using the Broyden-Fletcher-Goldberg-Shanno algorithm. The optimization problem is formulated with the objective of simultaneously minimizing wing weight and maximizing its aerodynamic efficiency. Design variables include composite ply orientations, ply thicknesses, wing sweep, piezoelectric actuator thickness and actuator voltage. Constraints are placed on the flutter/divergence dynamic pressure, wing root stresses and the maximum electric field applied to the actuators. Numerical results are presented showing significant improvements, after optimization, compared to reference designs. The multidisciplinary optimization procedure for the design of turbomachinery blades integrates aerodynamic and heat transfer design objective criteria along with various mechanical and geometric constraints on the blade geometry. The airfoil shape is represented by Bezier-Bernstein polynomials, which results in a relatively small number of design variables for the optimization. Thin shear layer approximation of the Navier-Stokes equation is used for the viscous flow calculations. Grid generation is accomplished by solving Poisson equations. The maximum and average blade temperatures are obtained through a finite element analysis. Total pressure and exit kinetic energy losses are minimized, with constraints on blade temperatures and geometry. The constrained multiobjective optimization problem is solved using the K-S function approach. The results for the numerical example show significant improvements after optimization.

  3. Shape matters: improved flight in tapered auto-rotating wings

    NASA Astrophysics Data System (ADS)

    Liu, Yucen; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.

  4. An Integrated Tool for System Analysis of Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  5. X based interactive computer graphics applications for aerodynamic design and education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Higgs, C. Fred, III

    1995-01-01

    Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.

  6. An unstructured-grid software system for solving complex aerodynamic problems

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar; Parikh, Paresh

    1995-01-01

    A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.

  7. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  8. Improved Method for Prediction of Attainable Wing Leading-Edge Thrust

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; McElroy, Marcus O.; Lessard, Wendy B.; McCullers, L. Arnold

    1996-01-01

    Prediction of the loss of wing leading-edge thrust and the accompanying increase in drag due to lift, when flow is not completely attached, presents a difficult but commonly encountered problem. A method (called the previous method) for the prediction of attainable leading-edge thrust and the resultant effect on airplane aerodynamic performance has been in use for more than a decade. Recently, the method has been revised to enhance its applicability to current airplane design and evaluation problems. The improved method (called the present method) provides for a greater range of airfoil shapes from very sharp to very blunt leading edges. It is also based on a wider range of Reynolds numbers than was available for the previous method. The present method, when employed in computer codes for aerodynamic analysis, generally results in improved correlation with experimental wing-body axial-force data and provides reasonable estimates of the measured drag.

  9. Technology requirements for a generic aerocapture system. [for atmospheric entry

    NASA Technical Reports Server (NTRS)

    Cruz, M. I.

    1980-01-01

    The technology requirements for the design of a generic aerocapture vehicle system are summarized. These spacecraft have the capability of completely eliminating fuel-costly retropropulsion for planetary orbit capture through a single aerodynamically controlled atmospheric braking pass from a hyperbolic trajectory into a near circular orbit. This generic system has application at both the inner and outer planets. Spacecraft design integration, navigation, communications, and aerothermal protection system design problems were assessed in the technology requirements study and are discussed in this paper.

  10. Self-adjusting wind turbine rotors: a concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, P.F.

    A conceptual design is described for wind turbine rotor blades that can react to changing wind conditions. Studies indicate that self-adjusting rotors will be more economical to operate with large rotors, although there are still mechanical problems of scaling-up to be solved. Details of the design specifications, accompanied by a schematic drawing, are explained in terms of the aerodynamic test performance date obtained and the expected effect on overall performance. The segmented design concept will make the turbine blades easier to manufacture, transport, erect, and maintain.

  11. Designing divertor targets for uniform power load

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2015-08-01

    Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.

  12. POEMS in Newton's Aerodynamic Frustum

    ERIC Educational Resources Information Center

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  13. Review of aerodynamic design in the Netherlands

    NASA Technical Reports Server (NTRS)

    Labrujere, Th. E.

    1991-01-01

    Aerodynamic design activities in the Netherlands, which take place mainly at Fokker, the National Aerospace Laboratory (NLR), and Delft University of Technology (TUD), are discussed. The survey concentrates on the development of the Fokker 100 wing, glider design at TUD, and research at NLR in the field of aerodynamic design. Results are shown to illustrate these activities.

  14. MIST - MINIMUM-STATE METHOD FOR RATIONAL APPROXIMATION OF UNSTEADY AERODYNAMIC FORCE COEFFICIENT MATRICES

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1994-01-01

    Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the importance of different tabular values in determining the approximations based upon physical characteristics of the system. Specifically, the physical weighting capability is such that each tabulated aerodynamic coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. In both cases, the resulting approximations yield a relatively low number of aerodynamic lag states in the subsequent state-space model. MIST is written in ANSI FORTRAN 77 for DEC VAX series computers running VMS. It requires approximately 1Mb of RAM for execution. The standard distribution medium for this package is a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. MIST was developed in 1991. DEC VAX and VMS are trademarks of Digital Equipment Corporation. FORTRAN 77 is a registered trademark of Lahey Computer Systems, Inc.

  15. Integration of CFD and Experimental Results at VKI in Low-Speed Aerodynamic Design

    DTIC Science & Technology

    2007-06-01

    erosion in wind tunnel behind the building Today, almost all modern Antartic stations have undergone aerodynamic studies at different stages of design...2] J. Sanz Rodrigo, C. Gorle, J. van Beeck, P. Planquart: Aerodynamic Design of the Princess Elizabeth Antartic Research Station, 17th

  16. The Characteristics of Two Model Six-blade Counterrotating Pusher Propellers of Conventional and Improved Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Pepper, Edward; McHugh, James G.

    1942-01-01

    Two airfoil plans were used for propeller blades. One is modified Clark Y section designed for structural reliability and the second an NACA 16 airfoil section designed to produce minimum aerodynamic losses. At low air speeds, the propeller designed for aerodynamic effects showed a gain of from 1.5 to 4.0 percent in propulsive efficiency over the conventional type depending on the pitch. Because of the numerous variables involved, the effect of each one on the aerodynamic characteristics of the propellers could not be isolated.

  17. The aerodynamic design of an advanced rotor airfoil

    NASA Technical Reports Server (NTRS)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  18. Fluid-structure coupling for wind turbine blade analysis using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Dose, Bastian; Herraez, Ivan; Peinke, Joachim

    2015-11-01

    Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.

  19. Wind loading on solar concentrators: Some general considerations

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.

    1984-01-01

    A survey was completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view. Current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed. Recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly.

  20. Process Improvement Through Tool Integration in Aero-Mechanical Design

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2010-01-01

    Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.

  1. An Overview of the Characterization of the Space Launch Vehicle Aerodynamic Environments

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Campbell, John R., Jr.; Bennett, David W.; Rausch, Russ D.; Gomez, Reynaldo J.; Kiris, Cetin C.

    2014-01-01

    Aerodynamic environments are some of the rst engineering data products that are needed to design a space launch vehicle. These products are used in performance predic- tions, vehicle control algorithm design, as well as determing loads on primary and secondary structures in multiple discipline areas. When the National Aeronautics and Space Admin- istration (NASA) Space Launch System (SLS) Program was established with the goal of designing a new, heavy-lift launch vehicle rst capable of lifting the Orion Program Multi- Purpose Crew Vehicle (MPCV) to low-earth orbit and preserving the potential to evolve the design to a 200 metric ton cargo launcher, the data needs were no di erent. Upon commencement of the new program, a characterization of aerodynamic environments were immediately initiated. In the time since, the SLS Aerodynamics Team has produced data describing the majority of the aerodynamic environment de nitions needed for structural design and vehicle control under nominal ight conditions. This paper provides an overview of select SLS aerodynamic environments completed to date.

  2. Algorithms for sum-of-squares-based stability analysis and control design of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Ataei-Esfahani, Armin

    In this dissertation, we present algorithmic procedures for sum-of-squares based stability analysis and control design for uncertain nonlinear systems. In particular, we consider the case of robust aircraft control design for a hypersonic aircraft model subject to parametric uncertainties in its aerodynamic coefficients. In recent years, Sum-of-Squares (SOS) method has attracted increasing interest as a new approach for stability analysis and controller design of nonlinear dynamic systems. Through the application of SOS method, one can describe a stability analysis or control design problem as a convex optimization problem, which can efficiently be solved using Semidefinite Programming (SDP) solvers. For nominal systems, the SOS method can provide a reliable and fast approach for stability analysis and control design for low-order systems defined over the space of relatively low-degree polynomials. However, The SOS method is not well-suited for control problems relating to uncertain systems, specially those with relatively high number of uncertainties or those with non-affine uncertainty structure. In order to avoid issues relating to the increased complexity of the SOS problems for uncertain system, we present an algorithm that can be used to transform an SOS problem with uncertainties into a LMI problem with uncertainties. A new Probabilistic Ellipsoid Algorithm (PEA) is given to solve the robust LMI problem, which can guarantee the feasibility of a given solution candidate with an a-priori fixed probability of violation and with a fixed confidence level. We also introduce two approaches to approximate the robust region of attraction (RROA) for uncertain nonlinear systems with non-affine dependence on uncertainties. The first approach is based on a combination of PEA and SOS method and searches for a common Lyapunov function, while the second approach is based on the generalized Polynomial Chaos (gPC) expansion theorem combined with the SOS method and searches for parameter-dependent Lyapunov functions. The control design problem is investigated through a case study of a hypersonic aircraft model with parametric uncertainties. Through time-scale decomposition and a series of function approximations, the complexity of the aircraft model is reduced to fall within the capability of SDP solvers. The control design problem is then formulated as a convex problem using the dual of the Lyapunov theorem. A nonlinear robust controller is searched using the combined PEA/SOS method. The response of the uncertain aircraft model is evaluated for two sets of pilot commands. As the simulation results show, the aircraft remains stable under up to 50% uncertainty in aerodynamic coefficients and can follow the pilot commands.

  3. Aerobraking Magellan

    NASA Technical Reports Server (NTRS)

    Lyons, Daniel T.; Sjogren, William; Johnson, William T. K.; Schmitt, Durwin; Mcronald, Angus

    1992-01-01

    While the Magellan spacecraft is currently in an elliptical orbit around Venus, its orbit may be circularized by means of an aerobraking maneuver during which a minor amount of aerodynamic drag is applied to 1000-2000 orbits. An evaluation is presently undertaken of the thermal-control and operational problems arising from such a maneuver, in virtue of its not having been considered among the design requirements of the spacecraft. Attention is given to atmospheric erosion and contamination problems to which the spacecraft surfaces could be exposed.

  4. Conducting experimental investigations of wind influence on high-rise constructions

    NASA Astrophysics Data System (ADS)

    Poddaeva, Olga I.; Fedosova, Anastasia N.; Churin, Pavel S.; Gribach, Julia S.

    2018-03-01

    The design of buildings with a height of more than 100 meters is accompanied by strict control in determining the external loads and the subsequent calculation of building structures, which is due to the uniqueness of these facilities. An important factor, the impact of which must be carefully studied at the stage of development of project documentation, is the wind. This work is devoted to the problem of studying the wind impact on buildings above 100 meters. In the article the technique of carrying out of experimental researches of wind influence on high-rise buildings and constructions, developed in the Educational-research-and-production laboratory on aerodynamic and aeroacoustic tests of building designs of NRU MGSU is presented. The publication contains a description of the main stages of the implementation of wind tunnel tests. The article presents the approbation of the methodology, based on the presented algorithm, on the example of a high-rise building under construction. This paper reflects the key requirements that are established at different stages of performing wind impact studies, as well as the results obtained, including the average values of the aerodynamic pressure coefficients, total forces and aerodynamic drag coefficients. Based on the results of the work, conclusions are presented.

  5. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  6. Influence of various unsteady aerodynamic models on the aeromechanical stability of a helicopter in ground resonance

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.; Venkatesan, C.

    1985-01-01

    The aeromechanical stability of a helicopter in ground resonance was analyzed, by incorporating five different aerodynamic models in the coupled rotor/fuselage analysis. The sensitivity of the results to changes in aerodynamic modelling was carefully examined. The theoretical results were compared with experimental data and useful conclusions are drawn regarding the role of aerodynamic modeling on this aeromechanical stability problem. The aerodynamic model which provided the best all around correlation with the experimental data was identified.

  7. Challenges of Aircraft Design Integration

    DTIC Science & Technology

    2003-03-01

    predicted by the conceptual stick model and the full FEM of the Challenger wing without winglets . Advanced aerodynamic wing design methods To design wings...Piperni, E. Laurendeau Advanced Aerodynamics Bombardier Aerospace 400 CMte Vertu Road Dorval, Quebec, Canada, H4S 1Y9 Fassi.Kafyeke @notes.canadair.ca Tel...514) 855-7186 Abstract The design of a modern airplane brings together many disciplines: structures, aerodynamics , controls, systems, propulsion

  8. Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Wrenn, Gregory A.; Dovi, Augustine R.; Coen, Peter G.; Hall, Laura E.

    1992-01-01

    An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars.

  9. Parametric Study and Design of Tab Shape for Improving Aerodynamic Performance of Rotor Blade

    NASA Astrophysics Data System (ADS)

    Han, Jaeseong; Kwon, Oh Joon

    2018-04-01

    In the present study, the parametric study was performed to analyze the effect of the tab on the aerodynamic performance and characteristics of rotor blades. Also, the tab shape was designed to improve the aerodynamic performance of rotor blades. A computational fluid dynamics solver based on three-dimensional Reynolds averaged Navier-Stokes equation using an unstructured mesh was used for the parametric study and the tab design. For airfoils, the effect of length and angle of a tab was studied on the aerodynamic characteristics of airfoils. In addition, including those parameters, the effect of a span of a tab was studied for rotor blades in hovering flight. The results of the parametric study were analyzed in terms of change of the aerodynamic performance and characteristics to understand the effect of a tab. Considering the analysis, the design of tab shape was conducted to improve the aerodynamic performance of rotor blades. The simply attached tab to trailing edge of the rotor blades increases the thrust of the rotor blades without significant changing of aerodynamic characteristics of the rotor blades in hovering and forward flight.

  10. Nash equilibrium and multi criterion aerodynamic optimization

    NASA Astrophysics Data System (ADS)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  11. Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri

    1997-01-01

    Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.

  12. A Unit-Problem Investigation of Blunt Leading-Edge Separation Motivated by AVT-161 SACCON Research

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Boelens, Okko J.

    2011-01-01

    A research effort has been initiated to examine in more detail some of the challenging flow fields discovered from analysis of the SACCON configuration aerodynamics. This particular effort is oriented toward a diamond wing investigation specifically designed to isolate blunt leading-edge separation phenomena relevant to the SACCON investigations of the present workshop. The approach taken to design this new effort is reviewed along with the current status of the program.

  13. A Rapid Computational Model for Estimating the Performance of Compliant Airfoils in Cascades

    DTIC Science & Technology

    1992-07-01

    A.R., "Fluid Dynanics of Axial Compressors ", Proc. Instn. Mech. Engrs., No. 153, p. 445, 1945 7 APPENDIX A CASCADE AERODYNAMICS Initially we wish to...GROUP Turbomachinery Aeroelasticity 19 ABSTRACT (Continue on reverse if necessary and identify by block number) We consider the problem of designing ...Avila SUMMARY By designing the blades in a turbomachine to have a specific schedule of structural stiffness (typically more compliant than normal) it is

  14. Preliminary design optimization of joined-wing aircraft

    NASA Technical Reports Server (NTRS)

    Gallman, John W.; Kroo, Ilan M.; Smith, Stephen C.

    1990-01-01

    The joined wing is an innovative aircraft configuration that has a its tail connected to the wing forming a diamond shape in both top and plan view. This geometric arrangement utilizes the tail for both pitch control and as a structural support for the wing. Several researchers have studied this configuration and predicted significant reductions in trimmed drag or structural weight when compared with a conventional T-tail configuration. Kroo et al. compared the cruise drag of joined wings with conventional designs of the same lifting-surface area and structural weight. This study showed an 11 percent reduction in cruise drag for the lifting system of a joined wing. Although this reduction in cruise drag is significant, a complete design study is needed before any economic savings can be claimed for a joined-wing transport. Mission constraints, such as runway length, could increase the wing area and eliminate potential drag savings. Since other design codes do not accurately represent the interaction between structures and aerodynamics for joined wings, we developed a new design code for this study. The aerodynamic and structural analyses in this study are significantly more sophisticated than those used in most conventional design codes. This sophistication was needed to predict the aerodynamic interference between the wing and tail and the stresses in the truss-like structure. This paper describes these analysis methods, discusses some problems encountered when applying the numerical optimizer NPSOL, and compares optimum joined wings with conventional aircraft on the basis of cruise drag, lifting surface weight, and direct operating cost (DOC).

  15. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    NASA Technical Reports Server (NTRS)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+.

  16. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    NASA Astrophysics Data System (ADS)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  17. Design search and optimization in aerospace engineering.

    PubMed

    Keane, A J; Scanlan, J P

    2007-10-15

    In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams.

  18. The Effect of Systematic Error in Forced Oscillation Testing

    NASA Technical Reports Server (NTRS)

    Williams, Brianne Y.; Landman, Drew; Flory, Isaac L., IV; Murphy, Patrick C.

    2012-01-01

    One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods.

  19. On the Improvement of Convergence Performance for Integrated Design of Wind Turbine Blade Using a Vector Dominating Multi-objective Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.

    2016-09-01

    A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.

  20. Propeller Study. Part 2: the Design of Propellers for Minimum Noise

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Woan, C. J.

    1977-01-01

    The design of propellers which are efficient and yet produce minimum noise requires accurate determinations of both the flow over the propeller. Topics discussed in relating aerodynamic propeller design and propeller acoustics include the necessary approximations and assumptions involved, the coordinate systems and their transformations, the geometry of the propeller blade, and the problem formulations including the induced velocity, required in the determination of mean lines of blade sections, and the optimization of propeller noise. The numerical formulation for the lifting-line model are given. Some applications and numerical results are included.

  1. Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.

  2. Missile Aerodynamics

    DTIC Science & Technology

    1979-02-01

    aimed to emphasize these differences in the aerodynamic design features of both guided and unguided weapons. In addition to treating the component parts...the subject. Lectures generally started with a review of fundamentals and paid particular attention to practical methods of estimation and design and...George G Brebner Aerodynamics Department Royal Aircraft Establishment Farnborough, Hants, GU14 6TD, UK SUMMARY The differences in design objectives and

  3. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a surrogate model, which captures the relationships between input variables and responses into regression equations. Depending on the dimensionality of the problem and the fidelity of the code for which a surrogate model is being created, the initial DOE can itself be computationally prohibitive to run. Cokriging, a modeling approach from the field of geostatistics, provides a desirable compromise between computational expense and fidelity. To do this, cokriging leverages a large body of data generated by a low fidelity analysis, combines it with a smaller set of data from a higher fidelity analysis, and creates a kriging surrogate model with prediction fidelity approaching that of the higher fidelity analysis. When integrated into a multidisciplinary environment, a disciplinary analysis module employing cokriging can raise the analysis fidelity without drastically impacting the expense of design iterations. This is demonstrated through the creation of an aerodynamics analysis module in NASA s OpenMDAO framework. Aerodynamic analyses including Missile DATCOM, APAS, and USM3D are leveraged to create high fidelity aerodynamics decks for parametric vehicle geometries, which are created in NASA s Vehicle Sketch Pad (VSP). Several trade studies are performed to examine the achieved level of model fidelity, and the overall impact to vehicle design is quantified.

  4. Current problems in the dynamics and design of mechanisms and machines

    NASA Astrophysics Data System (ADS)

    Kestel'Man, V. N.

    The papers contained in this volume deal with possible ways of improving the dynamic and structural properties of machines and mechanisms and also with problems associated with the design of aircraft equipment. Topics discussed include estimation of the stressed state of a model of an orbital film structure, a study of the operation of an aerodynamic angle transducer in flow of a hot gas, calculation of the efficiency of aircraft gear drives, and dynamic accuracy of a controlled manipulator. Papers are also presented on optimal synthesis of mechanical systems with variable properties, synthesis of mechanisms using initial kinematic chains, and using shape memory materials in the design of machines and mechanisms. (For individual items see A93-31202 to A93-31214)

  5. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

  6. Coandă configured aircraft: A preliminary analytical assessment

    NASA Astrophysics Data System (ADS)

    Hamid, M. F. Abdul; Gires, E.; Harithuddin, A. S. M.; Abu Talib, A. R.; Rafie, A. S. M.; Romli, F. I.; Harmin, M. Y.

    2017-12-01

    The interest in the use of flow control for enhanced aerodynamic performance has grown, particularly in the use of jets (continuous, synthetic, pulsed, etc.), compliant surface, vortex-cell, and others. It has been widely documented that these active control concepts can dramatically alter the behaviour of aerodynamic components like airfoils, wings and bodies. In this conjunction, with the present demands of low-cost and efficient flights, the use of Coandă effect as a lift enhancer has attracted a lot of interest. Tangential jets that take advantage of the Coandă effect to closely follow the contours of the body have been considered to be simple and particularly effective. For this case, a large mass of surrounding air can be entrained, hence amplifying the circulation. In an effort to optimize the aerodynamic performance of an aircraft, such effect will be critically reviewed by taking advantage of recent progress. For this purpose, in this study, the design of a Coandă-configured aircraft wing will be mathematically idealized and modelled as a two-dimensional flow problem.

  7. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.

  8. Design optimization and uncertainty quantification for aeromechanics forced response of a turbomachinery blade

    NASA Astrophysics Data System (ADS)

    Modgil, Girish A.

    Gas turbine engines for aerospace applications have evolved dramatically over the last 50 years through the constant pursuit for better specific fuel consumption, higher thrust-to-weight ratio, lower noise and emissions all while maintaining reliability and affordability. An important step in enabling these improvements is a forced response aeromechanics analysis involving structural dynamics and aerodynamics of the turbine. It is well documented that forced response vibration is a very critical problem in aircraft engine design, causing High Cycle Fatigue (HCF). Pushing the envelope on engine design has led to increased forced response problems and subsequently an increased risk of HCF failure. Forced response analysis is used to assess design feasibility of turbine blades for HCF using a material limit boundary set by the Goodman Diagram envelope that combines the effects of steady and vibratory stresses. Forced response analysis is computationally expensive, time consuming and requires multi-domain experts to finalize a result. As a consequence, high-fidelity aeromechanics analysis is performed deterministically and is usually done at the end of the blade design process when it is very costly to make significant changes to geometry or aerodynamic design. To address uncertainties in the system (engine operating point, temperature distribution, mistuning, etc.) and variability in material properties, designers apply conservative safety factors in the traditional deterministic approach, which leads to bulky designs. Moreover, using a deterministic approach does not provide a calculated risk of HCF failure. This thesis describes a process that begins with the optimal aerodynamic design of a turbomachinery blade developed using surrogate models of high-fidelity analyses. The resulting optimal blade undergoes probabilistic evaluation to generate aeromechanics results that provide a calculated likelihood of failure from HCF. An existing Rolls-Royce High Work Single Stage (HWSS) turbine blisk provides a baseline to demonstrate the process. The generalized polynomial chaos (gPC) toolbox which was developed includes sampling methods and constructs polynomial approximations. The toolbox provides not only the means for uncertainty quantification of the final blade design, but also facilitates construction of the surrogate models used for the blade optimization. This paper shows that gPC , with a small number of samples, achieves very fast rates of convergence and high accuracy in describing probability distributions without loss of detail in the tails . First, an optimization problem maximizes stage efficiency using turbine aerodynamic design rules as constraints; the function evaluations for this optimization are surrogate models from detailed 3D steady Computational Fluid Dynamics (CFD) analyses. The resulting optimal shape provides a starting point for the 3D high-fidelity aeromechanics (unsteady CFD and 3D Finite Element Analysis (FEA)) UQ study assuming three uncertain input parameters. This investigation seeks to find the steady and vibratory stresses associated with the first torsion mode for the HWSS turbine blisk near maximum operating speed of the engine. Using gPC to provide uncertainty estimates of the steady and vibratory stresses enables the creation of a Probabilistic Goodman Diagram, which - to the authors' best knowledge - is the first of its kind using high fidelity aeromechanics for turbomachinery blades. The Probabilistic Goodman Diagram enables turbine blade designers to make more informed design decisions and it allows the aeromechanics expert to assess quantitatively the risk associated with HCF for any mode crossing based on high fidelity simulations.

  9. A Discussion of Knowledge Based Design

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A discussion of knowledge and Knowledge- Based design as related to the design of aircraft is presented. The paper discusses the perceived problem with existing design studies and introduces the concepts of design and knowledge for a Knowledge- Based design system. A review of several Knowledge-Based design activities is provided. A Virtual Reality, Knowledge-Based system is proposed and reviewed. The feasibility of Virtual Reality to improve the efficiency and effectiveness of aerodynamic and multidisciplinary design, evaluation, and analysis of aircraft through the coupling of virtual reality technology and a Knowledge-Based design system is also reviewed. The final section of the paper discusses future directions for design and the role of Knowledge-Based design.

  10. Aerodynamic characteristics at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.

    1977-01-01

    An overview is presented of the aerodynamic inputs required for analysis of flight dynamics in the high-angle-of-attack regime wherein large-disturbance, nonlinear effects predominate. An outline of the presentation is presented. The discussion includes: (1) some important fundamental phenomena which determine to a large extent the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area.

  11. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  12. Reentry-Vehicle Shape Optimization Using a Cartesian Adjoint Method and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2006-01-01

    A DJOINT solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (e.g., geometric parameters that control the shape). Classic aerodynamic applications of gradient-based optimization include the design of cruise configurations for transonic and supersonic flow, as well as the design of high-lift systems. are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric computer-aided design (CAD). In previous work on Cartesian adjoint solvers, Melvin et al. developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the two-dimensional Euler equations using a ghost-cell method to enforce the wall boundary conditions. In Refs. 18 and 19, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm were the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The accuracy of the gradient computation was verified using several three-dimensional test cases, which included design variables such as the free stream parameters and the planform shape of an isolated wing. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Factors under consideration include the computation of mesh sensitivities that provide a reliable approximation of the objective function gradient, as well as the computation of surface shape sensitivities based on a direct-CAD interface. We present detailed gradient verification studies and then focus on a shape optimization problem for an Apollo-like reentry vehicle. The goal of the optimization is to enhance the lift-to-drag ratio of the capsule by modifying the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design.

  13. Turbine design review text

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Three-volume publication covers theoretical, design, and performance aspects of turbines. Volumes cover thermodynamic and fluid-dynamic concepts, velocity diagram design, turbine blade aerodynamic design, turbine energy losses, supersonic turbines, radial-inflow turbines, turbine cooling, and aerodynamic performance testing.

  14. High altitude aerodynamic platform concept evaluation and prototype engine testing

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1984-01-01

    A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.

  15. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  16. Economical Unsteady High-Fidelity Aerodynamics for Structural Optimization with a Flutter Constraint

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Stanford, Bret K.

    2017-01-01

    Structural optimization with a flutter constraint for a vehicle designed to fly in the transonic regime is a particularly difficult task. In this speed range, the flutter boundary is very sensitive to aerodynamic nonlinearities, typically requiring high-fidelity Navier-Stokes simulations. However, the repeated application of unsteady computational fluid dynamics to guide an aeroelastic optimization process is very computationally expensive. This expense has motivated the development of methods that incorporate aspects of the aerodynamic nonlinearity, classical tools of flutter analysis, and more recent methods of optimization. While it is possible to use doublet lattice method aerodynamics, this paper focuses on the use of an unsteady high-fidelity aerodynamic reduced order model combined with successive transformations that allows for an economical way of utilizing high-fidelity aerodynamics in the optimization process. This approach is applied to the common research model wing structural design. As might be expected, the high-fidelity aerodynamics produces a heavier wing than that optimized with doublet lattice aerodynamics. It is found that the optimized lower skin of the wing using high-fidelity aerodynamics differs significantly from that using doublet lattice aerodynamics.

  17. Three-dimensional aerodynamic shape optimization of supersonic delta wings

    NASA Technical Reports Server (NTRS)

    Burgreen, Greg W.; Baysal, Oktay

    1994-01-01

    A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.

  18. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  19. Aerodynamics of the Viggen 37 aircraft. Part 1: General characteristics at low speed

    NASA Technical Reports Server (NTRS)

    Karling, K.

    1986-01-01

    A description of the aerodynamics of the Viggen 37 and its performances, especially at low speeds is presented. The aerodynamic requirements for the design of the Viggen 37 aircraft are given, including the basic design, performance requirement, and aerodynamic characteristics, static and dynamic load test results and flight test results. The Viggen 37 aircraft is designed to be used for air attack, surveillance, pursuit, and training applications. It is shown that this aircraft is suitable for short runways, and has good maneuvering, acceleration, and climbing characteristics. The design objectives for this aircraft were met by utilizing the effect produced by the interference between two triangular wings, positioned in tandem.

  20. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap

    NASA Astrophysics Data System (ADS)

    Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho

    2014-07-01

    The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests.

  1. Airfoil Design and Optimization by the One-Shot Method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1995-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  2. Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization

    NASA Astrophysics Data System (ADS)

    Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane

    2003-01-01

    The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.

  3. State-of-the-Art Study for High-speed Deceleration and Stabilization Devices

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Lau, R. A.

    1966-01-01

    Documented aerodynamic deployable decelerator performance data above Mach 1. 0 is presented. The state of the art of drag and stability characteristics for reentry and recovery applications is defined for a wide range of decelerator configurations. Structural and material data and other design information also are presented. Emphasis is given to presentation of basic aero, thermal, and structural design data, which points out basic problem areas and voids in existing technology. The basic problems and voids include supersonic "buzzing" of towed porous decelerators in the wake of the forebody, the complete lack of dynamic stability data, and the general lack of aerothermal data at speeds above Mach 5.

  4. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  5. The design and development of transonic multistage compressors

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Steinke, R. J.; Newman, F. A.

    1988-01-01

    The development of the transonic multistage compressor is reviewed. Changing trends in design and performance parameters are noted. These changes are related to advances in compressor aerodynamics, computational fluid mechanics and other enabling technologies. The parameters normally given to the designer and those that need to be established during the design process are identified. Criteria and procedures used in the selection of these parameters are presented. The selection of tip speed, aerodynamic loading, flowpath geometry, incidence and deviation angles, blade/vane geometry, blade/vane solidity, stage reaction, aerodynamic blockage, inlet flow per unit annulus area, stage/overall velocity ratio, and aerodynamic losses are considered. Trends in these parameters both spanwise and axially through the machine are highlighted. The effects of flow mixing and methods for accounting for the mixing in the design process are discussed.

  6. Wind loading on solar concentrators: some general considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roschke, E. J.

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results onmore » heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.« less

  7. Aerodynamic analysis of Pegasus - Computations vs reality

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan

    1993-01-01

    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  8. Design of bearings for rotor systems based on stability

    NASA Technical Reports Server (NTRS)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  9. On simple aerodynamic sensitivity derivatives for use in interdisciplinary optimization

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.

    1991-01-01

    Low-aspect-ratio and piston aerodynamic theories are reviewed as to their use in developing aerodynamic sensitivity derivatives for use in multidisciplinary optimization applications. The basic equations relating surface pressure (or lift and moment) to normal wash are given and discussed briefly for each theory. The general means for determining selected sensitivity derivatives are pointed out. In addition, some suggestions in very general terms are included as to sample problems for use in studying the process of using aerodynamic sensitivity derivatives in optimization studies.

  10. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  11. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  12. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Dwyer Ciancio, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. NASA's Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed to sustain human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. Understanding how these choices affect the performance of the lander will allow a balanced optimization of this complex system of systems problem. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators, one of several entry system technologies currently considered for human missions.

  13. Neural network identification of aircraft nonlinear aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Egorchev, M. V.; Tiumentsev, Yu V.

    2018-02-01

    The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.

  14. Numerical investigations on the aerodynamic performance of wind turbine: Downwind versus upwind configuration

    NASA Astrophysics Data System (ADS)

    Zhou, Hu; Wan, Decheng

    2015-03-01

    Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.

  15. Supersonic civil airplane study and design: Performance and sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.

  16. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  17. Development of a linearized unsteady Euler analysis for turbomachinery blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.

    1995-01-01

    A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

  18. CAN-DO, CFD-based Aerodynamic Nozzle Design and Optimization program for supersonic/hypersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.

    1992-01-01

    A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.

  19. Application and flight test of linearizing transformations using measurement feedback to the nonlinear control problem

    NASA Technical Reports Server (NTRS)

    Antoniewicz, Robert F.; Duke, Eugene L.; Menon, P. K. A.

    1991-01-01

    The design of nonlinear controllers has relied on the use of detailed aerodynamic and engine models that must be associated with the control law in the flight system implementation. Many of these controllers were applied to vehicle flight path control problems and have attempted to combine both inner- and outer-loop control functions in a single controller. An approach to the nonlinear trajectory control problem is presented. This approach uses linearizing transformations with measurement feedback to eliminate the need for detailed aircraft models in outer-loop control applications. By applying this approach and separating the inner-loop and outer-loop functions two things were achieved: (1) the need for incorporating detailed aerodynamic models in the controller is obviated; and (2) the controller is more easily incorporated into existing aircraft flight control systems. An implementation of the controller is discussed, and this controller is tested on a six degree-of-freedom F-15 simulation and in flight on an F-15 aircraft. Simulation data are presented which validates this approach over a large portion of the F-15 flight envelope. Proof of this concept is provided by flight-test data that closely matches simulation results. Flight-test data are also presented.

  20. Hypersonic nozzle design

    NASA Technical Reports Server (NTRS)

    Griffith, Wayland C.

    1989-01-01

    Possible experimental facilities appropriate to a university environment that could make meaningful contributions to the solution of problems in hypersonic aerodynamics are investigated. Needs for the National Aerospace Plane and interplanetary flights with atmospheric aerobraking are used to scope the problem. Relevant events of the past two decades in universities and at the national laboratories are examined for their implications regarding both problems and prospects. Most striking is the emergence of computational fluid dynamics, which is viewed here as an equal partner with laboratory experimentation and flight test in relating theory with reality. Also significant are major advances in instrumentation and data processing methods, especially optical techniques. The direction of the study was guided by the concept of a companion program, i.e., the university effort should complement a major area of endeavor at NASA-Langley. Through this, both faculty and student participants gain a natural and effective working relationship. Existing and proposed major hypersonic aerodynamic facilities in industry and at the national laboratories are examined by type; hypersonic wind tunnels, arc-heated tunnels, shock tubes and tunnels, and ballistic ranges. Of these, the free piston tunnel and shock tube/tunnel are most appropriate for a university.

  1. Membrane wing aerodynamics for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  2. Design of a high capacity long range cargo aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1994-01-01

    This report examines the design of a long range cargo transport to attempt to reduce ton-mile shipping costs and to stimulate the air cargo market. This design effort involves the usual issues but must also include consideration of: airport terminal facilities; cargo loading and unloading; and defeating the 'square-cube' law to design large structures. This report reviews the long range transport design problem and several solutions developed by senior student design teams at Purdue University. The results show that it will be difficult to build large transports unless the infrastructure is changed and unless the basic form of the airplane changes so that aerodynamic and structural efficiencies are employed.

  3. An information driven strategy to support multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rangan, Ravi M.; Fulton, Robert E.

    1990-01-01

    The design of complex engineering systems such as aircraft, automobiles, and computers is primarily a cooperative multidisciplinary design process involving interactions between several design agents. The common thread underlying this multidisciplinary design activity is the information exchange between the various groups and disciplines. The integrating component in such environments is the common data and the dependencies that exist between such data. This may be contrasted to classical multidisciplinary analyses problems where there is coupling between distinct design parameters. For example, they may be expressed as mathematically coupled relationships between aerodynamic and structural interactions in aircraft structures, between thermal and structural interactions in nuclear plants, and between control considerations and structural interactions in flexible robots. These relationships provide analytical based frameworks leading to optimization problem formulations. However, in multidisciplinary design problems, information based interactions become more critical. Many times, the relationships between different design parameters are not amenable to analytical characterization. Under such circumstances, information based interactions will provide the best integration paradigm, i.e., there is a need to model the data entities and their dependencies between design parameters originating from different design agents. The modeling of such data interactions and dependencies forms the basis for integrating the various design agents.

  4. The Influence of Hoop Diameter on Aerodynamic Performance of O-Ring Paper Plane

    NASA Astrophysics Data System (ADS)

    Ismail, N. I.; Sharudin, Hazim; Talib, R. J.; Hassan, A. A.; Yusoff, H.

    2018-05-01

    The O-ring paper plane can be categorized as one of the Micro Air Vehicle (MAV) based on their characteristics and size. However, the aerodynamics performance of the O-ring paper plane was not fully discovered by previous researchers due to its aerodynamics complexity and various hoop diameters. Thus, the objective of this research is to study the influence of hoop diameters towards the aerodynamics performance of O-ring paper plane. In this works, three types of O-ring paper plane known as Design 1, 2 and 3 with different hoop diameter were initially developed by using the ANSYS-Design Modeler. All the design was analyzed based on aerodynamic simulations works executed on ANSYS-CFX solver. The results suggested that Design 3 (with larger hoop size) produced better CL, CLmax and AoAstall magnitude compared to other design. In fact, O-ring paper plane with larger hoop size configurations showed potential in providing at least 5.2% and 5.9% better performance in stability (ΔCM/ΔCL) and aerodynamic efficiency (CL/CDmax), respectively. Despite the advantages found in lift performances, however, O-ring paper plane with larger hoop size configurations slightly suffered from larger drag increment (CDincrement) compared to smaller hoop size configurations. Based on these results, it can be presumed that O-Ring paper plane with larger hoop sizes contributed into better lift, stability and aerodynamic efficiency performances but slightly suffered from larger drag penalty.

  5. Aerodynamics of advanced axial-flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

    1980-01-01

    A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

  6. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  7. Aerodynamic shape optimization using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  8. Multidisciplinary Optimization of Tilt Rotor Blades Using Comprehensive Composite Modeling Technique

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas R.; Rajadas, John N.

    1997-01-01

    An optimization procedure is developed for addressing the design of composite tilt rotor blades. A comprehensive technique, based on a higher-order laminate theory, is developed for the analysis of the thick composite load-carrying sections, modeled as box beams, in the blade. The theory, which is based on a refined displacement field, is a three-dimensional model which approximates the elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. The aerodynamic loads on the blade are calculated using the classical blade element momentum theory. Analytical expressions for the lift and drag are obtained based on the blade planform with corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled with the structural model to formulate the complete coupled equations of motion for aeroelastic analyses. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt rotor aircraft. The objective functions include the figure of merit in hover and the high speed cruise propulsive efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem. The search direction is determined by the Broyden-Fletcher-Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt rotor blade.

  9. The aerodynamic challenges of the design and development of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Young, J. C.; Underwood, J. M.; Hillje, E. R.; Whitnah, A. M.; Romere, P. O.; Gamble, J. D.; Roberts, B. B.; Ware, G. M.; Scallion, W. I.; Spencer, B., Jr.

    1985-01-01

    The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies.

  10. Wind turbine design codes: A preliminary comparison of the aerodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buhl, M.L. Jr.; Wright, A.D.; Tangler, J.L.

    1997-12-01

    The National Wind Technology Center of the National Renewable Energy Laboratory is comparing several computer codes used to design and analyze wind turbines. The first part of this comparison is to determine how well the programs predict the aerodynamic behavior of turbines with no structural degrees of freedom. Without general agreement on the aerodynamics, it is futile to try to compare the structural response due to the aerodynamic input. In this paper, the authors compare the aerodynamic loads for three programs: Garrad Hassan`s BLADED, their own WT-PERF, and the University of Utah`s YawDyn. This report documents a work in progressmore » and compares only two-bladed, downwind turbines.« less

  11. Aerodynamic Analyses Requiring Advanced Computers, part 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

  12. A Comparison of Metallic, Composite and Nanocomposite Optimal Transonic Transport Wings

    NASA Technical Reports Server (NTRS)

    Kennedy, Graeme J.; Kenway, Gaetan K. W.; Martins, Joaquim R. R.

    2014-01-01

    Current and future composite material technologies have the potential to greatly improve the performance of large transport aircraft. However, the coupling between aerodynamics and structures makes it challenging to design optimal flexible wings, and the transonic flight regime requires high fidelity computational models. We address these challenges by solving a series of high-fidelity aerostructural optimization problems that explore the design space for the wing of a large transport aircraft. We consider three different materials: aluminum, carbon-fiber reinforced composites and an hypothetical composite based on carbon nanotubes. The design variables consist of both aerodynamic shape (including span), structural sizing, and ply angle fractions in the case of composites. Pareto fronts with respect to structural weight and fuel burn are generated. The wing performance in each case is optimized subject to stress and buckling constraints. We found that composite wings consistently resulted in lower fuel burn and lower structural weight, and that the carbon nanotube composite did not yield the increase in performance one would expect from a material with such outstanding properties. This indicates that there might be diminishing returns when it comes to the application of advanced materials to wing design, requiring further investigation.

  13. PAN AIR summary document (version 1.0)

    NASA Technical Reports Server (NTRS)

    Derbyshire, T.; Sidwell, K. W.

    1982-01-01

    The capabilities and limitations of the panel aerodynamics (PAN AIR) computer program system are summarized. This program uses a higher order panel method to solve boundary value problems involving the Prandtl-Glauert equation for subsonic and supersonic potential flows. Both aerodynamic and hydrodynamic problems can be solved using this modular software which is written for the CDC 6600 and 7600, and the CYBER 170 series computers.

  14. Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2006-01-01

    Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.

  15. Measurements and Predictions for a Distributed Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Brown, Martha C.; Schein, David B.; Solomon, W. David, Jr.

    2001-01-01

    The acoustic and aerodynamic performance characteristics of a distributed exhaust nozzle (DEN) design concept were evaluated experimentally and analytically with the purpose of developing a design methodology for developing future DEN technology. Aerodynamic and acoustic measurements were made to evaluate the DEN performance and the CFD design tool. While the CFD approach did provide an excellent prediction of the flowfield and aerodynamic performance characteristics of the DEN and 2D reference nozzle, the measured acoustic suppression potential of this particular DEN was low. The measurements and predictions indicated that the mini-exhaust jets comprising the distributed exhaust coalesced back into a single stream jet very shortly after leaving the nozzles. Even so, the database provided here will be useful for future distributed exhaust designs with greater noise reduction and aerodynamic performance potential.

  16. Developments in steady and unsteady aerodynamics for use in aeroelastic analysis and design. [for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Bland, S. R.

    1976-01-01

    A review is given of seven research projects which are aimed at improving the generality, accuracy, and computational efficiency of steady and unsteady aerodynamic theory for use in aeroelastic analysis and design. These projects indicate three major thrusts of current research efforts: (1) more realistic representation of steady and unsteady subsonic and supersonic loads on aircraft configurations of general shape with emphasis on structural-design applications, (2) unsteady aerodynamics for application in active-controls analyses, and (3) unsteady aerodynamics for the frequently critical transonic speed range. The review of each project includes theoretical background, description of capabilities, results of application, current status, and plans for further development and use.

  17. Secondary flow and heat transfer control in gas turbine inlet nozzle guide vanes

    NASA Astrophysics Data System (ADS)

    Burd, Steven Wayne

    1998-12-01

    Endwall heat transfer is a very serious problem in the inlet nozzle guide vane region of gas turbine engines. To resolve heat transfer concerns and provide the desired thermal protection, modern cooling flows for the vane endwalls tend to be excessive leading to lossy and inefficient designs. Coolant introduction is further complicated by the flow patterns along vane endwall surfaces. They are three-dimensional and dominated by strong, complex secondary flows. To achieve performance goals for next-generation engines, more aerodynamically efficient and advanced cooling concepts, including combustor bleed cooling, must be investigated. To this end, the overall performance characteristics of several combustor bleed flow designs are assessed in this experimental study. In particular, their contributions toward secondary flow control and component cooling are documented. Testing is performed in a large-scale, guide vane simulator comprised of three airfoils encased between one contoured and one flat endwall. Core flow is supplied to this simulator at an inlet chord Reynolds number of 350,000 and turbulence intensity of 9.5%. Combustor bleed cooling flow is injected through the contoured endwall via inclined slots. The slots vary in cross-sectional area, have equivalent slot widths, and are positioned with their leeward edges 10% of the axial chord ahead of the airfoil leading edges. Measurements with hot-wire anemometry characterize the inlet and exit flow fields of the cascade. Total and static pressure measurements document aerodynamic performance. Thermocouple measurements detail thermal fields and permit evaluation of surface adiabatic effectiveness. To elucidate the effects of bleed injection, data are compared to an experiment taken without bleed. The influence of bleed mass flow rate and slot geometry on the aerodynamic losses and thermal protection arc given. This study suggests that such combustor bleed flow cooling offers significant thermal protection without imposing aerodynamic penalties. Such performance is contrary to the performance of present vane cooling schemes. The results of this investigation support designs which incorporate combustor coolant injection upstream of the airfoil leading edges. To complement, a short exploratory study regarding the effects of surface roughness was also performed. Results indicate modified cooling performance and significantly higher aerodynamic losses with rough surfaces.

  18. Wind-tunnel measurement of noise emitted by helicopter rotors at high speed

    NASA Astrophysics Data System (ADS)

    Prieur, J.

    Measurements of high-speed impulsive helicopter rotor noise in a wind-tunnel are presented. High-speed impulsive noise measurements have been performed in 1988 in the ONERA S2ch wind-tunnel, fitted with an acoustic lining, on two types of rotors. They show that substantial noise reduction is obtained with sweptback tips, initially designed for aerodynamic purposes, which lower transonic effects on the advancing blade tip. Emphasis is placed on the necessity of taking into account the acoustic annoyance problem, using noise prediction tools, when designing new helicopter blades.

  19. Results of the Low Speed Aeroelastic Buffet Test with a 0.046-scale Model (747-ax1322-d-3/orbiter 8-0) of the 747 Cam/orbiter in the University of Washington Wind Tunnel (CS 3)

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1976-01-01

    A series of wind tunnel studies designed to assess the potential buffet problems resulting from orbiter wake characteristics with its tailcone removed are presented to provide design loads and acceleration environments, and to develop data on buffet sensitivity to various aerodynamic configurations and flight parameters. Data are intended to support subsequent analyses of structural fatigue life, crew efficiency, and equipment vibrations.

  20. High-angle-of-attack aerodynamics - Lessons learned

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.

    1986-01-01

    Recently, the military and civil technical communities have undertaken numerous studies of the high angle-of-attack aerodynamic characteristics of advanced airplane and missile configurations. The method of approach and the design methodology employed have necessarily been experimental and exploratory in nature, due to the complex nature of separated flows. However, despite the relatively poor definition of many of the key aerodynamic phenomena involved for high-alpha conditions, some generic guidelines for design consideration have been identified. The present paper summarizes some of the more important lessons learned in the area of high angle-of-attack aerodynamics with examples of a number of key concepts and with particular emphasis on high-alpha stability and control characteristics of high performance aircraft. Topics covered in the discussion include the impact of design evolution, forebody flows, control of separated flows, configuration effects, aerodynamic controls, wind-tunnel flight correlation, and recent NASA research activities.

  1. Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.

    1979-01-01

    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.

  2. Estimation et validation des derivees de stabilite et controle du modele dynamique non-lineaire d'un drone a voilure fixe

    NASA Astrophysics Data System (ADS)

    Courchesne, Samuel

    Knowledge of the dynamic characteristics of a fixed-wing UAV is necessary to design flight control laws and to conceive a high quality flight simulator. The basic features of a flight mechanic model include the properties of mass, inertia and major aerodynamic terms. They respond to a complex process involving various numerical analysis techniques and experimental procedures. This thesis focuses on the analysis of estimation techniques applied to estimate problems of stability and control derivatives from flight test data provided by an experimental UAV. To achieve this objective, a modern identification methodology (Quad-M) is used to coordinate the processing tasks from multidisciplinary fields, such as parameter estimation modeling, instrumentation, the definition of flight maneuvers and validation. The system under study is a non-linear model with six degrees of freedom with a linear aerodynamic model. The time domain techniques are used for identification of the drone. The first technique, the equation error method is used to determine the structure of the aerodynamic model. Thereafter, the output error method and filter error method are used to estimate the aerodynamic coefficients values. The Matlab scripts for estimating the parameters obtained from the American Institute of Aeronautics and Astronautics (AIAA) are used and modified as necessary to achieve the desired results. A commendable effort in this part of research is devoted to the design of experiments. This includes an awareness of the system data acquisition onboard and the definition of flight maneuvers. The flight tests were conducted under stable flight conditions and with low atmospheric disturbance. Nevertheless, the identification results showed that the filter error method is most effective for estimating the parameters of the drone due to the presence of process noise and measurement. The aerodynamic coefficients are validated using a numerical analysis of the vortex method. In addition, a simulation model incorporating the estimated parameters is used to compare the behavior of states measured. Finally, a good correspondence between the results is demonstrated despite a limited number of flight data. Keywords: drone, identification, estimation, nonlinear, flight test, system, aerodynamic coefficient.

  3. Aerodynamic Design of a Four-Stage Low-Speed Axial Compressor for Cantilevered Stator Research

    NASA Astrophysics Data System (ADS)

    Wallace, James N.

    This research is focused on the baseline aerodynamic design of a four-stage low-speed axial compressor with the intent to achieve similarity of cantilevered stator hub leakage flows with those in the rear stages of Siemens large gas turbine compressors. The baseline airfoil design is to act as a comparison for all future research completed in the low speed compressor and, therefore, will not include possible future research topics such as 3-D airfoil geometry or end-wall contouring. Following the design of the airfoils is the aerodynamic design of the facility including the inlet and exhaust. These components were designed to eliminate interactions of the compressor with the facility and to accommodate instrumentation. A baseline set of aerodynamic instrumentation is then suggested to characterize compressor performance. Fully 3-D steady CFD was used extensively during the design of both the facility and the compressor, as well as determining the locations and types of instrumentation.

  4. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    NASA Technical Reports Server (NTRS)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  5. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  6. Prediction of Hyper-X Stage Separation Aerodynamics Using CFD

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Wong, Tin-Chee; Dilley, Arthur D.; Pao, Jenn L.

    2000-01-01

    The NASA X-43 "Hyper-X" hypersonic research vehicle will be boosted to a Mach 7 flight test condition mounted on the nose of an Orbital Sciences Pegasus launch vehicle. The separation of the research vehicle from the Pegasus presents some unique aerodynamic problems, for which computational fluid dynamics has played a role in the analysis. This paper describes the use of several CFD methods for investigating the aerodynamics of the research and launch vehicles in close proximity. Specifically addressed are unsteady effects, aerodynamic database extrapolation, and differences between wind tunnel and flight environments.

  7. Aerodynamic Shape Optimization Design of Wing-Body Configuration Using a Hybrid FFD-RBF Parameterization Approach

    NASA Astrophysics Data System (ADS)

    Liu, Yuefeng; Duan, Zhuoyi; Chen, Song

    2017-10-01

    Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.

  8. Aerodynamic Design and Computational Analysis of a Spacecraft Cabin Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue in a cost-effective way, early attention to fan design, selection, and installation has been recommended. Toward that end, NASA has begun to investigate the potential for small-fan noise reduction through improvements in fan aerodynamic design. Using tools and methodologies similar to those employed by the aircraft engine industry, most notably computational fluid dynamics (CFD) codes, the aerodynamic design of a new cabin ventilation fan has been developed, and its aerodynamic performance has been predicted and analyzed. The design, intended to serve as a baseline for future work, is discussed along with selected CFD results

  9. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  10. Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Persova, Marina G.; Soloveichik, Yury G.; Belov, Vasiliy K.; Kiselev, Dmitry S.; Vagin, Denis V.; Domnikov, Petr A.; Patrushev, Ilya I.; Kurskiy, Denis N.

    2017-07-01

    In this paper, the problem of numerical modeling of thermoelastic behavior of nose caps of hypersonic vehicles at different angles of attack is considered. 3D finite element modeling is performed by solving the coupled heat and elastic problems taking into account thermal and mechanical properties variations with temperature. A special method for calculating the aerodynamic heat flux entering the nose cap from its surface is proposed. This method is characterized by very low computational costs and allows calculating the aerodynamic heat flux at different values of the Mach number and angles of attack which may vary during the aerodynamic heating. The numerical results obtained by the proposed approach are compared with the numerical results and experimental data obtained by other authors. The developed approach has been used for studying the impact of the angle of attack on the thermoelastic behavior of nose caps main components.

  11. Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 1: Orbiter aerodynamics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1976-01-01

    An analysis of the steady and unsteady aerodynamics of the space shuttle orbiter has been performed. It is shown that slender wing theory can be modified to account for the effect of Mach number and leading edge roundness on both attached and separated flow loads. The orbiter unsteady aerodynamics can be computed by defining two equivalent slender wings, one for attached flow loads and another for the vortex-induced loads. It is found that the orbiter is in the transonic speed region subject to vortex-shock-boundary layer interactions that cause highly nonlinear or discontinuous load changes which can endanger the structural integrity of the orbiter wing and possibly cause snap roll problems. It is presently impossible to simulate these interactions in a wind tunnel test even in the static case. Thus, a well planned combined analytic and experimental approach is needed to solve the problem.

  12. Design and Analysis of Winglets for Military Aircraft. Phase 2

    DTIC Science & Technology

    1977-05-01

    determine the effect of the AFFDI/Boeing winglets on the KC-135A’s aerodynamic performance and longitudinal and lateral-directional stability. A... Aerodynamic Synthesis and Flight Research, task 143101, Unified Flight Mechanics Technology, work unit 14310125, Design and Analysis of Winglets for...1 TI LOW-SPEED AERODYNAMIC ANALYSIS OF L ~AFFDLIBOEING WINGLET ON THE KC-135A ......................... 1 1 Description of Analytic Model

  13. Autonomous Aerodynamic Control of Micro Air Vehicles

    DTIC Science & Technology

    2009-10-19

    Wind tunnel studies have also begun in which detailed aerodynamic quantification can be mad regarding MAV performance with flexible airframes...research. The design is similar to existing MAVs. The airframe has a conventional aircraft design to allow for easy determination of aerodynamic...exceeded in normal flight by conventional aircraft ; however, it is not uncommon for a MAV to surpass the limits due to its low inertia. While collecting

  14. Aerodynamic Design of Axial Flow Compressors

    NASA Technical Reports Server (NTRS)

    Bullock, R. O. (Editor); Johnsen, I. A.

    1965-01-01

    An overview of 'Aerodynamic systems design of axial flow compressors' is presented. Numerous chapters cover topics such as compressor design, ptotential and viscous flow in two dimensional cascades, compressor stall and blade vibration, and compressor flow theory. Theoretical aspects of flow are also covered.

  15. Interactive Graphics Analysis for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1983-01-01

    Program uses higher-order far field drag minimization. Computer program WDES WDEM preliminary aerodynamic design tool for one or two interacting, subsonic lifting surfaces. Subcritical wing design code employs higher-order far-field drag minimization technique. Linearized aerodynamic theory used. Program written in FORTRAN IV.

  16. Application of empirical and linear methods to VSTOL powered-lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Margason, Richard; Kuhn, Richard

    1988-01-01

    Available prediction methods applied to problems of aero/propulsion interactions for short takeoff and vertical landing (STOVL) aircraft are critically reviewed and an assessment of their strengths and weaknesses provided. The first two problems deal with aerodynamic performance effects during hover: (1) out-of-ground effect, and (2) in-ground effect. The first can be evaluated for some multijet cases; however, the second problem is very difficult to evaluate for multijets. The ground-environment effects due to wall jets and fountain flows directly affect hover performance. In a related problem: (3) hot-gas ingestion affects the engine operation. Both of these problems as well as jet noise affect the ability of people to work near the aircraft and the ability of the aircraft to operate near the ground. Additional problems are: (4) the power-augmented lift due to jet-flap effects (both in- and out-of-ground effects), and (5) the direct jet-lift effects during short takeoff and landing (STOL) operations. The final problem: (6) is the aerodynamic/propulsion interactions in transition between hover and wing-borne flight. Areas where modern CFD methods can provide improvements to current computational capabilities are identified.

  17. Cryogenic balances for the US NTF

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.

    1989-01-01

    Force balances were used to obtain aerodynamic data in the National Transonic Facility (NTF) wind tunnel since it became operational in 1983. These balances were designed, fabricated, gaged, and calibrated to Langley Research Center's specifications to operate over the temperature range of -320 F to +140 F without thermal control. Some of the materials and procedures developed to obtain a balance that would perform in this environment are reviewed. The degree of success in using these balances thus far is reported. Some of the problem areas that need additional work are specified and some of the progress addressing these problems is described.

  18. The finite element method in low speed aerodynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1975-01-01

    The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics.

  19. Recent advances in aerodynamic energy concept for flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1977-01-01

    Control laws are derived, by using realizable transfer functions, which permit relaxation of the stability requirements of the aerodynamic energy concept. The resulting aerodynamic eigenvalues indicate that both the trailing edge and the leading edge-trailing edge control systems can be made more effective. These control laws permit the introduction of aerodynamic damping and stiffness terms in accordance with the requirements of any specific system. Flutter suppression and gust alleviation problems can now be treated by either a trailing edge control system or by a leading edge-trailing edge control system by using the aerodynamic energy concept. Results are applicable to a wide class of aircraft operating at subsonic Mach numbers.

  20. Bibliography on aerodynamics of airframe/engine integration of high-speed turbine-powered aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. R.

    1980-01-01

    This bibliography was developed as a first step in the preparation of a monograph on the subject of the aerodynamics of airframe/engine integration of high speed turbine powered aircraft. It lists 1535 unclassified documents published mainly in the period from 1955 to 1980. Primary emphasis was devoted to aerodynamic problems and interferences encountered in the integration process; however, extensive coverage also was given to the characteristics and problems of the isolated propulsion system elements. A detailed topic breakdown structure is used. The primary contents of the individual documents are indicated by the combination of the document's title and its location within the framework of the bibliography.

  1. A flight experiment to measure rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.

    1990-01-01

    A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.

  2. Generation of Aerodynamics Via Physics-Based Virtual Flight Simulations

    DTIC Science & Technology

    2008-12-01

    problems associated with projectile and missile aerodynamics. For maneuvering munitions, the effect of many new weapon control mechanisms being...dynamic simulation. The terms containing YPAC constitute the Magnus air load acting at the Magnus center of pressure while the terms containing 0 2...an unsteady aerodynamic moment along with terms due to the fact that the center of pressure and center of Magnus are not located at the mass

  3. [Disturbances of nasal aerodynamics in patients with the curved nasal septum and the rationale for its surgical correction].

    PubMed

    Tulebaev, R K; Mustafin, A A; Zholdybaeva, Z T

    2011-01-01

    Serious disturbances of nasal aerodynamics contribute to the development of diseases of the broncho-pulmonary apparatus. The early recognition of ventilation problems in patients with the curved nasal septum is paramount for the efficacious prevention and treatment of respiratory complications. The authors describe principles of rhinosurgical correction of affected nasal aerodynamics in patients with the curved nasal septum.

  4. Aerodynamics as a subway design parameter

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1976-01-01

    A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.

  5. Effective L/D: A Theoretical Approach to the Measurement of Aero-Structural Efficiency in Aircraft Design

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2015-01-01

    There are many trade-offs in aircraft design that ultimately impact the overall performance and characteristics of the final design. One well recognized and well understood trade-off is that of wing weight and aerodynamic efficiency. Higher aerodynamic efficiency can be obtained by increasing wing span, usually at the expense of higher wing weight. The proper balance of these two competing factors depends on the objectives of the design. For example, aerodynamic efficiency is preeminent for sailplanes and long slender wings result. Although the wing weight-drag trade is universally recognized, aerodynamic efficiency and structural efficiency are not usually considered in combination. This paper discusses the concept of "aero-structural efficiency," which combines weight and drag characteristics. A metric to quantify aero-structural efficiency, termed effective L/D, is then derived and tested with various scenarios. Effective L/D is found to be a practical and robust means to simultaneously characterize aerodynamic and structural efficiency in the context of aircraft design. The primary value of the effective L/D metric is as a means to better communicate the combined system level impacts of drag and structural weight.

  6. Comprehensive helicopter analysis: A state of the art review

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1978-01-01

    An assessment of the status of helicopter theory and analysis is presented. The technology level embodied in available design tools (computer programs) is examined, considering the problem areas of performance, loads and vibration, handling qualities and simulation, and aeroelastic stability. The effectiveness of the present analyses is discussed. The characteristics of the technology in the analyses are reviewed, including the aerodynamics technology, induced velocity and wake geometry, dynamics technology, and machine limitations.

  7. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  8. Constrained Aerothermodynamic Design of Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gally, Tom; Campbell, Dick

    2002-01-01

    An investigation was conducted into possible methods of incorporating a hypersonic design capability with aerothermodynamic constraints into the CDISC aerodynamic design tool. The work was divided into two distinct phases: develop relations between surface curvature and hypersonic pressure coefficient which are compatible with CDISC's direct-iterative design method; and explore and implement possible methods of constraining the heat transfer rate over all or portions of the design surface. The main problem in implementing this method has been the weak relationship between surface shape and pressure coefficient at the stagnation point and the need to design around the surface blunt leading edge where there is a slope singularity. The final results show that some success has been achieved, but further improvements are needed.

  9. Hydrogen powered sports car series (internal combustion engine and fuel cells)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotthold, J.P.

    The electric hybrid vehicle can solve the problems which today make the pure electric car limited in its acceptance. The primary limitations are excess weight and short range due to a heavy battery pack of limited energy density. Our basic vehicular design makes use of three power technologies in a balanced way. The chassis is the standard Volkswagen Beetle type which carried many millions of the {open_quotes}beetles{close_quotes} across all the Earth`s continents. The body is a fiberfab replica of a 1970s design sports car which provides three compartments from it`s original mid engine design and a classic aerodynamic shape.

  10. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation

    PubMed Central

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-01-01

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411

  11. Dual throat thruster cold flow analysis

    NASA Technical Reports Server (NTRS)

    Lundgreen, R. B.; Nickerson, G. R.; Obrien, C. J.

    1978-01-01

    The concept was evaluated with cold flow (nitrogen gas) testing and through analysis for application as a tripropellant engine for single-stage-to-orbit type missions. Three modes of operation were tested and analyzed: (1) Mode 1 Series Burn, (2) Mode 1 Parallel Burn, and (3) Mode 2. Primary emphasis was placed on the Mode 2 plume attachment aerodynamics and performance. The conclusions from the test data analysis are as follows: (1) the concept is aerodynamically feasible, (2) the performance loss is as low as 0.5 percent, (3) the loss is minimized by an optimum nozzle spacing corresponding to an AF-ATS ratio of about 1.5 or an Le/Rtp ratio of 3.0 for the dual throat hardware tested, requiring only 4% bleed flow, (4) the Mode 1 and Mode 2 geometry requirements are compatible and pose no significant design problems.

  12. Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Feo, A.; Vargas, M.; Sor, A.

    2012-01-01

    This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.

  13. Design conceptuel d'un avion blended wing body de 200 passagers

    NASA Astrophysics Data System (ADS)

    Ammar, Sami

    The Blended Wing Body is built based on the flying wing concept and performance improvements compared to conventional aircraft. Contrariwise, most studies have focused on large aircraft and it is not sure whether the gains are the same for smaller aircraft. The main of objective is to perform the conceptual design of a BWB of 200 passengers and compare the performance obtained with a conventional aircraft equivalent in terms of payload and range. The design of the Blended Wing Body was carried out under the CEASIOM environment. This platform design suitable for conventional aircraft design has been modified and additional tools have been integrated in order to achieve the aerodynamic analysis, performance and stability of the aircraft fuselage built. A plane model is obtained in the geometric module AcBuilder CEASIOM from the design variables of a wing. Estimates of mass are made from semi- empirical formulas adapted to the geometry of the BWB and calculations centering and inertia are possible through BWB model developed in CATIA. Low fidelity methods, such as TORNADO and semi- empirical formulas are used to analyze the aerodynamic performance and stability of the aircraft. The aerodynamic results are validated using a high-fidelity analysis using FLUENT CFD software. An optimization process is implemented in order to obtain improved while maintaining a feasible design performance. It is an optimization of the plan form of the aircraft fuselage integrated with a number of passengers and equivalent to that of a A320.Les performance wing aircraft merged optimized maximum range are compared to A320 also optimized. Significant gains were observed. An analysis of the dynamics of longitudinal and lateral flight is carried out on the aircraft optimized BWB finesse and mass. This study identified the stable and unstable modes of the aircraft. Thus, this analysis has highlighted the stability problems associated with the oscillation of incidence and the Dutch roll for the absence of stabilizers.

  14. Integrated Aerodynamic and Control System Design of Oblique Wing Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Morris, Stephen James

    1990-01-01

    An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission performance (drag, weight, etc.). Examples are presented which show how performance can be maximized while maintaining a desired level of handling quality.

  15. Spectral methods and their implementation to solution of aerodynamic and fluid mechanic problems

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    1987-01-01

    Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and compared with results from test problems. A number of practical aspects of the construction and use of spectral methods are detailed, along with several solution schemes which have found utility in applications of spectral methods to practical problems. Results from a few of the successful applications of spectral methods to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the problem areas in spectral methods and the current research under way to overcome these difficulties.

  16. Airfoil optimization by the one-shot method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1994-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  17. Evaluation of aerodynamic derivatives from a magnetic balance system

    NASA Technical Reports Server (NTRS)

    Raghunath, B. S.; Parker, H. M.

    1972-01-01

    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.

  18. Design of Multistage Axial-Flow Compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1983-01-01

    Program developed for computing aerodynamic design of multistage axialflow compressor and associated blading geometry input for internal flow analysis. Aerodynamic solution gives velocity diagrams on selected streamlines of revolution at blade row edges. Program written in FORTRAN IV.

  19. Aerodynamics of magnetic levitation (MAGLEV) trains

    NASA Technical Reports Server (NTRS)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  20. Aerodynamic design of electric and hybrid vehicles: A guidebook

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  1. Aerodynamics of an airfoil with a jet issuing from its surface

    NASA Technical Reports Server (NTRS)

    Tavella, D. A.; Karamcheti, K.

    1982-01-01

    A simple, two dimensional, incompressible and inviscid model for the problem posed by a two dimensional wing with a jet issuing from its lower surface is considered and a parametric analysis is carried out to observe how the aerodynamic characteristics depend on the different parameters. The mathematical problem constitutes a boundary value problem where the position of part of the boundary is not known a priori. A nonlinear optimization approach was used to solve the problem, and the analysis reveals interesting characteristics that may help to better understand the physics involved in more complex situations in connection with high lift systems.

  2. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  3. After 40 Years Why Hasn’t the Computer Replaced the Wind Tunnel?

    DTIC Science & Technology

    2010-09-01

    transform the aerodynamic design process. Many of his CFD projections have been exceeded over the last 30 years. (He was forecasting breakthroughs only...frequently found late in the development cycle for a flight system usually occur at the interface of major subsystems (e.g., aerodynamically induced...the causative relations between aerodynamic shapes and vehicle performance. The tools also allow relatively rapid evaluation of changes to the design

  4. Aerodynamic Characterization of a Modern Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  5. Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vegendla, Prasad; Sofu, Tanju; Saha, Rohit

    2017-01-31

    Aerodynamic analysis of the medium-duty delivery truck was performed to achieve vehicle design optimization. Three dimensional CFD simulations were carried out for several improved designs, with a detailed external component analysis of wheel covers, side skirts, roof fairings, and rounded trailer corners. The overall averaged aerodynamics drag reduction through the design modifications were shown up to 22.3% through aerodynamic considerations alone, which is equivalent to 11.16% fuel savings. The main identified fuel efficiencies were based on second generation devices, including wheel covers, side skirts, roof fairings, and rounded trailer corners. The important findings of this work were; (i) the optimummore » curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm, (ii) aerodynamic drag reduction increases with dropping clearance of side skirts between wheels and ground, and (iii) aerodynamic drag reduction increases with an extension of front bumper towards the ground.« less

  6. Computational and theoretical investigation of Mars's atmospheric impact on the descent module "Exomars-2018" under aerodynamic deceleration

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Ivankov, A. A.

    2016-12-01

    Methods for calculating the aerodynamic impact of the Martian atmosphere on the descent module "Exomars-2018" intended for solving the problem of heat protection of the descent module during aerodynamic deceleration are presented. The results of the investigation are also given. The flow field and radiative and convective heat exchange are calculated along the trajectory of the descent module until parachute system activation.

  7. Actuator Placement Via Genetic Algorithm for Aircraft Morphing

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Cook, Andrea M.

    2001-01-01

    This research continued work that began under the support of NASA Grant NAG1-2119. The focus of this effort was to continue investigations of Genetic Algorithm (GA) approaches that could be used to solve an actuator placement problem by treating this as a discrete optimization problem. In these efforts, the actuators are assumed to be "smart" devices that change the aerodynamic shape of an aircraft wing to alter the flow past the wing, and, as a result, provide aerodynamic moments that could provide flight control. The earlier work investigated issued for the problem statement, developed the appropriate actuator modeling, recognized the importance of symmetry for this problem, modified the aerodynamic analysis routine for more efficient use with the genetic algorithm, and began a problem size study to measure the impact of increasing problem complexity. The research discussed in this final summary further investigated the problem statement to provide a "combined moment" problem statement to simultaneously address roll, pitch and yaw. Investigations of problem size using this new problem statement provided insight into performance of the GA as the number of possible actuator locations increased. Where previous investigations utilized a simple wing model to develop the GA approach for actuator placement, this research culminated with application of the GA approach to a high-altitude unmanned aerial vehicle concept to demonstrate that the approach is valid for an aircraft configuration.

  8. Effect of wing design on the longitudinal aerodynamic characteristics of a wing-body model at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.; Huffman, J. K.

    1972-01-01

    An investigation has been conducted to determine the effects of wing camber and twist on the longitudinal aerodynamic characteristics of a wingbody configuration. Three wings were used each having the same planform (aspect ratio of 2.5 and leading-edge sweep angle of 44 deg.) but differing in amounts of camber and twist (wing design lift coefficient). The wing design lift coefficients were 0, 0.35, and 0.70. The investigation was conducted over a Mach number range from 0.20 to 0.70 at angles of attack up to about 22 deg. The effect of wing strakes on the aerodynamic characteristics of the cambered wings was also studied. A comparison of the experimentally determined aerodynamic characteristics with theoretical estimates is also included.

  9. Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1995-01-01

    This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.

  10. Multilevel decomposition approach to integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1994-01-01

    This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.

  11. Experimental Determination of Aerodynamic Damping in a Three-Stage Transonic Axial-Flow Compressor. Degree awarded by Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gauge output power spectra. The combined damping consists of aerodynamic and structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given equivalent speed, equivalent mass flow, and pressure ratio while structural and mechanical damping are assumed to be constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third stage rotor blade aerodynamic damping is presented and discussed for 70, 80, 90, and 100 percent design equivalent speed. The compressor overall performance and experimental Campbell diagrams for the third stage rotor blade row are also presented.

  12. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  13. Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

    1999-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  14. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  15. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  16. Design aspects of zeppelin operations from case histories

    NASA Technical Reports Server (NTRS)

    Maiersperger, W. P.

    1975-01-01

    Some widely held beliefs concerning the practicability of rigid airships in air carrier operations are discussed. It is shown by a review of past operational experience, and some basic aerostatic theory, their actual record and the reasons for their demise. Problems of atmospheric density and temperature variations, meteorological factors, aerodynamic stability and control, and mooring difficulties are discussed and related to actual case histories. Structural and flight efficiencies are compared to airplane efficiencies for airplanes contemporary with the zeppelin as well as modern designs. The difficulty of supporting new, commercial airship developments on an economic basis is made clear.

  17. A summary of NASA/Air Force full scale engine research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.

  18. Development of Improved Surface Integral Methods for Jet Aeroacoustic Predictions

    NASA Technical Reports Server (NTRS)

    Pilon, Anthony R.; Lyrintzis, Anastasios S.

    1997-01-01

    The accurate prediction of aerodynamically generated noise has become an important goal over the past decade. Aeroacoustics must now be an integral part of the aircraft design process. The direct calculation of aerodynamically generated noise with CFD-like algorithms is plausible. However, large computer time and memory requirements often make these predictions impractical. It is therefore necessary to separate the aeroacoustics problem into two parts, one in which aerodynamic sound sources are determined, and another in which the propagating sound is calculated. This idea is applied in acoustic analogy methods. However, in the acoustic analogy, the determination of far-field sound requires the solution of a volume integral. This volume integration again leads to impractical computer requirements. An alternative to the volume integrations can be found in the Kirchhoff method. In this method, Green's theorem for the linear wave equation is used to determine sound propagation based on quantities on a surface surrounding the source region. The change from volume to surface integrals represents a tremendous savings in the computer resources required for an accurate prediction. This work is concerned with the development of enhancements of the Kirchhoff method for use in a wide variety of aeroacoustics problems. This enhanced method, the modified Kirchhoff method, is shown to be a Green's function solution of Lighthill's equation. It is also shown rigorously to be identical to the methods of Ffowcs Williams and Hawkings. This allows for development of versatile computer codes which can easily alternate between the different Kirchhoff and Ffowcs Williams-Hawkings formulations, using the most appropriate method for the problem at hand. The modified Kirchhoff method is developed primarily for use in jet aeroacoustics predictions. Applications of the method are shown for two dimensional and three dimensional jet flows. Additionally, the enhancements are generalized so that they may be used in any aeroacoustics problem.

  19. Nonlinear problems in flight dynamics

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Tobak, M.

    1984-01-01

    A comprehensive framework is proposed for the description and analysis of nonlinear problems in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of nonlinearities in the flight dynamic system. Four aerodynamic flows are examined to illustrate the richness and regularity of the flow structures and the nature of the flow structures and the nature of the resulting nonlinear aerodynamic forces and moments. A framework to facilitate the study of the aerodynamic system is proposed having parallel observational and mathematical components. The observational component, structure is described in the language of topology. Changes in flow structure are described via bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear dynamical systems characterized by the existence of strange attractors having fractal dimensionality. Scales of the flow are considered in the light of ideas from group theory. Several one and two degree of freedom dynamical systems with various mathematical models of the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows are shown to be similarly useful in the description of flight dynamic behavior.

  20. Optimization of aerodynamic form of projectile for solving the problem of shooting range increasing

    NASA Astrophysics Data System (ADS)

    Lipanov, Alexey M.; Korolev, Stanislav A.; Rusyak, Ivan G.

    2017-10-01

    The article is devoted to the development of methods for solving the problem of external ballistics using a more complete system of motion equation taken into account the rotation and oscillation about the mass center and using aerodynamic coefficients of forces and moments which are calculated on the basis of modeling the hydrodynamics of flow around the projectile. Developed methods allows to study the basic ways of increasing the shooting range or artillery.

  1. Aerodynamic instability: A case history

    NASA Technical Reports Server (NTRS)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  2. Variational Methods in Design Optimization and Sensitivity Analysis for Two-Dimensional Euler Equations

    NASA Technical Reports Server (NTRS)

    Ibrahim, A. H.; Tiwari, S. N.; Smith, R. E.

    1997-01-01

    Variational methods (VM) sensitivity analysis employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite difference sensitivity analysis.

  3. Evaluation of feasibility of prestressed concrete for use in wind turbine blades

    NASA Technical Reports Server (NTRS)

    Leiblein, S.; Londahl, D. S.; Furlong, D. B.; Dreier, M. E.

    1979-01-01

    A preliminary evaluation of the feasibility of the use of prestressed concrete as a material for low cost blades for wind turbines was conducted. A baseline blade design was achieved for an experimental wind turbine that met aerodynamic and structural requirements. Significant cost reductions were indicated for volume production. Casting of a model blade section showed no fabrication problems. Coupled dynamic analysis revealed that adverse rotor tower interactions can be significant with heavy rotor blades.

  4. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag

    NASA Astrophysics Data System (ADS)

    Erofeev, A. I.; Nikiforov, A. P.; Popov, G. A.; Suvorov, M. O.; Syrin, S. A.; Khartov, S. A.

    2017-12-01

    Problems on designing the air-breathing ramjet electric propulsion thruster for controlling loworbit spacecraft motion are examined in the paper. Information for choosing orbits' altitudes for reasonable application of an air-breathing ramjet electric propulsion thruster and propellant exhaust velocity is presented. Estimates of the probable increase of gas concentration in the area of air-breathing ramjet ionization are presented. The test results of the thruster are also given.

  5. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-gi

    2011-01-01

    A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.

  6. High speed civil transport: Sonic boom softening and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1994-01-01

    An improvement in sonic boom extrapolation techniques has been the desire of aerospace designers for years. This is because the linear acoustic theory developed in the 60's is incapable of predicting the nonlinear phenomenon of shock wave propagation. On the other hand, CFD techniques are too computationally expensive to employ on sonic boom problems. Therefore, this research focused on the development of a fast and accurate sonic boom extrapolation method that solves the Euler equations for axisymmetric flow. This new technique has brought the sonic boom extrapolation techniques up to the standards of the 90's. Parallel computing is a fast growing subject in the field of computer science because of its promising speed. A new optimizer (IIOWA) for the parallel computing environment has been developed and tested for aerodynamic drag minimization. This is a promising method for CFD optimization making use of the computational resources of workstations, which unlike supercomputers can spend most of their time idle. Finally, the OAW concept is attractive because of its overall theoretical performance. In order to fully understand the concept, a wind-tunnel model was built and is currently being tested at NASA Ames Research Center. The CFD calculations performed under this cooperative agreement helped to identify the problem of the flow separation, and also aided the design by optimizing the wing deflection for roll trim.

  7. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  8. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    NASA Technical Reports Server (NTRS)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  9. Conversion of the Aerodynamic Preliminary Analysis System (APAS) to an IBM PC Compatible Format

    NASA Technical Reports Server (NTRS)

    Kruep, John M.

    1995-01-01

    The conversion of the Aerodynamic Preliminary Analysis System (APAS) software from a Silicon Graphics UNIX-based platform to a DOS-based IBM PC compatible is discussed. Relevant background information is given, followed by a discussion of the steps taken to accomplish the conversion and a discussion of the type of problems encountered during the conversion. A brief comparison of aerodynamic data obtained using APAS with data from another source is also made.

  10. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  11. SUPIN: A Computational Tool for Supersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2016-01-01

    A computational tool named SUPIN is being developed to design and analyze the aerodynamic performance of supersonic inlets. The inlet types available include the axisymmetric pitot, three-dimensional pitot, axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flow-field is divided into parts to provide a framework for the geometry and aerodynamic modeling. Each part of the inlet is defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick design and analysis. SUPIN provides inlet geometry in the form of coordinates, surface angles, and cross-sectional areas. SUPIN can generate inlet surface grids and three-dimensional, structured volume grids for use with higher-fidelity computational fluid dynamics (CFD) analysis. Capabilities highlighted in this paper include the design and analysis of streamline-traced external-compression inlets, modeling of porous bleed, and the design and analysis of mixed-compression inlets. CFD analyses are used to verify the SUPIN results.

  12. Optimization of Root Section for Ultra-long Steam Turbine Rotor Blade

    NASA Astrophysics Data System (ADS)

    Hála, Jindřich; Luxa, Martin; Šimurda, David; Bobčík, Marek; Novák, Ondřej; Rudas, Bartoloměj; Synáč, Jaroslav

    2018-04-01

    This study presents the comparison of aerodynamic performances of two successive designs of the root profiles for the ultra-long rotor blade equipped with a straight fir-tree dovetail. Since aerodynamic and strength requirements laid upon the root section design are contradictory, it is necessary to aerodynamically optimize the design within the limits given by the foremost strength requirements. The most limiting criterion of the static strength is the size of the blade cross-section, which is determined by the number of blades in a rotor and also by the shape and size of a blade dovetail. The aerodynamic design requires mainly the zero incidence angle at the inlet of a profile and in the ideal case ensures that the load does not exceed a limit load condition. Moreover, the typical root profile cascades are transonic with supersonic exit Mach number, therefore, the shape of a suction side and a trailing edge has to respect transonic expansion of a working gas. In this paper, the two variants of root section profile cascades are compared and the aerodynamic qualities of both variants are verified using CFD simulation and two mutually independent experimental methods of measurements (optical and pneumatic).

  13. Scramjet exhaust simulation technique for hypersonic aircraft nozzle design and aerodynamic tests

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Talcott, N. A., Jr.; Cubbage, J. M.

    1977-01-01

    Current design philosophy for scramjet-powered hypersonic aircraft results in configurations with the entire lower fuselage surface utilized as part of the propulsion system. The lower aft-end of the vehicle acts as a high expansion ratio nozzle. Not only must the external nozzle be designed to extract the maximum possible thrust force from the high energy flow at the combustor exit, but the forces produced by the nozzle must be aligned such that they do not unduly affect aerodynamic balance. The strong coupling between the propulsion system and aerodynamics of the aircraft makes imperative at least a partial simulation of the inlet, exhaust, and external flows of the hydrogen-burning scramjet in conventional facilities for both nozzle formulation and aerodynamic-force data acquisition. Aerodynamic testing methods offer no contemporary approach for such vehicle design requirements. NASA-Langley has pursued an extensive scramjet/airframe integration R&D program for several years and has recently developed a promising technique for simulation of the scramjet exhaust flow for hypersonic aircraft. Current results of the research program to develop a scramjet flow simulation technique through the use of substitute gas blends are described in this paper.

  14. Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2004-01-01

    This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.

  15. Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. 1: Experimental performance

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.

    1980-01-01

    The aerodynamic performances of four stator-blade rows are presented and evaluated. The aerodynamic designs of two of these stators were compromised to reduce noise, a third design was not. On a calculated operating line passing through the design point pressure ratio, the best stator had overall pressure-ratio and efficiency decrements of 0.031 and 0.044, respectively, providing a stage pressure ratio of 1.483 and efficiency of 0.865. The other stators showed some correctable deficiencies due partly to the design compromises for noise. In the end-wall regions blade-element losses were significantly less for the shortest chord studied.

  16. Aerodynamic design of a rotor blade for minimum noise radiation

    NASA Technical Reports Server (NTRS)

    Karamcheti, K.; Yu, Y. H.

    1974-01-01

    An analysis of the aerodynamic design of a hovering rotor blade for obtaining minimum aerodynamic rotor noise has been carried out. In this analysis, which is based on both acoustical and aerodynamic considerations, attention is given only to the rotational noise due to the pressure fluctuations on the blade surfaces. The lift distribution obtained in this analysis has different characteristics from those of the conventional distribution. The present distribution shows negative lift values over a quarter of the span from the blade tip, and a maximum lift at about the midspan. Results are presented to show that the noise field is considerably affected by the shape of the lift distribution along the blade and that noise reduction of about 5 dB may be obtained by designing the rotor blade to yield minimum noise.

  17. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  18. COMOC 2: Two-dimensional aerodynamics sequence, computer program user's guide

    NASA Technical Reports Server (NTRS)

    Manhardt, P. D.; Orzechowski, J. A.; Baker, A. J.

    1977-01-01

    The COMOC finite element fluid mechanics computer program system is applicable to diverse problem classes. The two dimensional aerodynamics sequence was established for solution of the potential and/or viscous and turbulent flowfields associated with subsonic flight of elementary two dimensional isolated airfoils. The sequence is constituted of three specific flowfield options in COMOC for two dimensional flows. These include the potential flow option, the boundary layer option, and the parabolic Navier-Stokes option. By sequencing through these options, it is possible to computationally construct a weak-interaction model of the aerodynamic flowfield. This report is the user's guide to operation of COMOC for the aerodynamics sequence.

  19. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1987-01-01

    Unsteady rotor wake interactions with the empenage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and amount of vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies has been developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interaction of a rotor wake with the flow about a 4:1 elliptic cylinder at 45-deg incidence was calculated for a Reynolds number of 3000.

  20. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W., Jr.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.

  1. Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.

  2. Experimental and analytical research on the aerodynamics of wind driven turbines. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbach, C.; Wainauski, H.; Worobel, R.

    1977-12-01

    This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basismore » for further method development and refinement.« less

  3. High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow

    NASA Astrophysics Data System (ADS)

    Rashad, Ramy

    To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies. In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified eN envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition criteria. Using the eN transition criterion, the proposed framework is applied to the single and multipoint optimization of subsonic and transonic airfoils, leading to robust NLF designs. The aerodynamic design requirements over a range of cruise flight conditions are cast into a multipoint optimization problem through a composite objective defined using a weighted integral of the operating points. To study and quantify off-design performance, a Pareto front is formed using a weighted objective combining free-transition and fully-turbulent operating conditions. Next we examine the sensitivity of NLF design to the freestream disturbance environment, highlighting the on- and off-design performance at different critical N-factors. Finally, we propose and demonstrate a technique to enable the design of airfoils with robust performance over a range of critical N-factors.

  4. Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model

    NASA Technical Reports Server (NTRS)

    Woods, J. A.; Gilbert, Michael G.

    1990-01-01

    The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented.

  5. Aerodynamic shape optimization using preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Burgreen, Greg W.; Baysal, Oktay

    1993-01-01

    In an effort to further improve upon the latest advancements made in aerodynamic shape optimization procedures, a systematic study is performed to examine several current solution methodologies as applied to various aspects of the optimization procedure. It is demonstrated that preconditioned conjugate gradient-like methodologies dramatically decrease the computational efforts required for such procedures. The design problem investigated is the shape optimization of the upper and lower surfaces of an initially symmetric (NACA-012) airfoil in inviscid transonic flow and at zero degree angle-of-attack. The complete surface shape is represented using a Bezier-Bernstein polynomial. The present optimization method then automatically obtains supercritical airfoil shapes over a variety of freestream Mach numbers. Furthermore, the best optimization strategy examined resulted in a factor of 8 decrease in computational time as well as a factor of 4 decrease in memory over the most efficient strategies in current use.

  6. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.

    PubMed

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-08-13

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  8. Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

    2002-01-01

    Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

  9. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag minimization demonstrates the effectiveness of the proposed solution. In-flight structural loads are also an important consideration. As wing flexibility increases, maneuver load and gust load responses can be significant and therefore can pose safety and flight control concerns. In this paper, we will extend the multi-objective flight control framework to include load alleviation control. The study will focus initially on maneuver load minimization control, and then subsequently will address gust load alleviation control in future work.

  10. High Speed Civil Transport Design Using Collaborative Optimization and Approximate Models

    NASA Technical Reports Server (NTRS)

    Manning, Valerie Michelle

    1999-01-01

    The design of supersonic aircraft requires complex analysis in multiple disciplines, posing, a challenge for optimization methods. In this thesis, collaborative optimization, a design architecture developed to solve large-scale multidisciplinary design problems, is applied to the design of supersonic transport concepts. Collaborative optimization takes advantage of natural disciplinary segmentation to facilitate parallel execution of design tasks. Discipline-specific design optimization proceeds while a coordinating mechanism ensures progress toward an optimum and compatibility between disciplinary designs. Two concepts for supersonic aircraft are investigated: a conventional delta-wing design and a natural laminar flow concept that achieves improved performance by exploiting properties of supersonic flow to delay boundary layer transition. The work involves the development of aerodynamics and structural analyses, and integration within a collaborative optimization framework. It represents the most extensive application of the method to date.

  11. Numerical Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

  12. Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 1: Aerodynamic and mechanical design report

    NASA Technical Reports Server (NTRS)

    Norton, J. M.; Tari, U.; Weber, R. M.

    1979-01-01

    A quasi three dimensional design system and multiple-circular-arc airfoil sections were used to design a fan rotor. An axisymmetric intrablade flow field calculation modeled the shroud of an isolated splitter and radial distribution. The structural analysis indicates that the design is satisfactory for evaluation of aerodynamic performance of the fan stage in a test facility.

  13. Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1978-01-01

    Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.

  14. Microspoiler Actuation for Guided Projectiles

    DTIC Science & Technology

    2016-01-06

    and be hardened to gun -launch. Several alternative designs will be explored using various actuation techniques, and downselection to an optimal design...aerodynamic optimization of the microspoiler mechanism, mechanical design/ gun hardening, and parameter estimation from experimental data. These...performed using the aerodynamic parameters in Table 2. Projectile trajectories were simulated without gravity at zero gun elevation. The standard 30mm

  15. The present status and the future of missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1989-01-01

    Recent developments in the state of the art in missile aerodynamics are reviewed. Among the subjects covered are: (1) Tri-service/NASA data base, (2) wing-body interference, (3) nonlinear controls, (4) hypersonic transition, (5) vortex interference, (6) airbreathers, supersonic inlets, (7) store separation problems, (8) correlation of missile data, (9) CFD codes for complete configurations, (10) engineering prediction methods, and (11) future configurations. Suggestions are made for future research and development to advance the state of the art of missile aerodynamics.

  16. The present status and the future of missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    Some recent developments in the state of the art in missile aerodynamics are reviewed. Among the subjects covered are: (1) tri-service/NASA data base, (2) wing-body interference, (3) nonlinear controls, (4) hypersonic transition, (5) vortex interference, (6) airbreathers, supersonic inlets, (7) store separation problems, (8) correlation of missile data, (9) CFD codes for complete configurations, (10) engineering prediction methods, and (11) future configurations. Suggestions are made for future research and development to advance the state of the art of missile aerodynamics.

  17. Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis,Michael J.

    2006-01-01

    Cartesian-mesh methods are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods with an eficient computation of design sensitivities. We address this issue using the adjoint method, where the computational cost of the design sensitivities, or objective function gradients, is esseutially indepeudent of the number of design variables. In previous work, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable approximation of the objective finction gradient. Motivated by the success of mesh-perturbation schemes commonly used in body-fitted unstructured formulations, we propose an approach based on a local linearization of a mesh-perturbation scheme similar to the spring analogy. This approach circumvents most of the difficulties that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides a consistent approximation tot he exact gradient of the discretized abjective function. A detailed gradient accurace study is presented to verify our approach. Thereafter, we focus on a shape optimization problem for an Apollo-like reentry capsule. The optimization seeks to enhance the lift-to-drag ratio of the capsule by modifyjing the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design. This abstract presents only a brief outline of the numerical method and results; full details will be given in the final paper.

  18. Validation of a pair of computer codes for estimation and optimization of subsonic aerodynamic performance of simple hinged-flap systems for thin swept wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1988-01-01

    Extensive correlations of computer code results with experimental data are employed to illustrate the use of linearized theory attached flow methods for the estimation and optimization of the aerodynamic performance of simple hinged flap systems. Use of attached flow methods is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. A variety of swept wing configurations are considered ranging from fighters to supersonic transports, all with leading- and trailing-edge flaps for enhancement of subsonic aerodynamic efficiency. The results indicate that linearized theory attached flow computer code methods provide a rational basis for the estimation and optimization of flap system aerodynamic performance at subsonic speeds. The analysis also indicates that vortex flap design is not an opposing approach but is closely related to attached flow design concepts. The successful vortex flap design actually suppresses the formation of detached vortices to produce a small vortex which is restricted almost entirely to the leading edge flap itself.

  19. Aerodynamic preliminary analysis system. Part 2: User's manual and program description

    NASA Technical Reports Server (NTRS)

    Divan, P.; Dunn, K.; Kojima, J.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple nonplanar surfaces of arbitrary planform and open or closed slender bodies or noncircular contour are analyzed. Longitudinal and lateral-directional static and rotary derivative solutions are generated. The analysis is implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  20. Ascent performance feasibility for next-generation spacecraft

    NASA Astrophysics Data System (ADS)

    Mancuso, Salvatore Massimo

    This thesis deals with the optimization of the ascent trajectories for single-stage suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem has been solved using the sequential gradient-restoration algorithm. For the TSTO case, some modifications to the original version of the algorithm have been necessary in order to deal with discontinuities due to staging and the fact that the functional being minimized depends on interface conditions. The optimization problem is studied for different values of the initial thrust-to-weight ratio in the range 1.3 to 1.6, engine specific impulse in the range 400 to 500 sec, and spacecraft structural factor in the range 0.08 to 0.12. For the TSTO configuration, two subproblems are studied: uniform structural factor between stages and nonuniform structural factor between stages. Due to the regular behavior of the results obtained, engineering approximations have been developed which connect the maximum payload weight to the engine specific impulse and spacecraft structural factor; in turn, this leads to useful design considerations. Also, performance sensitivity to the scale of the aerodynamic drag is studied, and it is shown that its effect on payload weight is relatively small, even for drag changes approaching ± 50%. The main conclusions are that: the design of a SSSO configuration appears to be feasible; the design of a SSTO configuration might be comfortably feasible, marginally feasible, or unfeasible, depending on the parameter values assumed; the design of a TSTO configuration is not only feasible, but its payload appears to be considerably larger than that of a SSTO configuration. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, it appears that aerodynamic improvements do not yield significant improvements in payload weight.

  1. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  2. Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Kumar, Renjith R.; Qu, Min; Seywald, Hans

    2000-01-01

    The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.

  3. Analysis of Aerodynamic Load of LSU-03 (LAPAN Surveillance UAV-03) Propeller

    NASA Astrophysics Data System (ADS)

    Rahmadi Nuranto, Awang; Jamaludin Fitroh, Ahmad; Syamsudin, Hendri

    2018-04-01

    The existing propeller of the LSU-03 aircraft is made of wood. To improve structural strength and obtain better mechanical properties, the propeller will be redesigned usingcomposite materials. It is necessary to simulate and analyze the design load. This research paper explainsthe simulation and analysis of aerodynamic load prior to structural design phase of composite propeller. Aerodynamic load calculations are performed using both the Blade Element Theory(BET) and the Computational Fluid Dynamic (CFD)simulation. The result of both methods show a close agreement, the different thrust forces is only 1.2 and 4.1% for two type mesh. Thus the distribution of aerodynamic loads along the surface of the propeller blades of the 3-D CFD simulation results are considered valid and ready to design the composite structure. TheCFD results is directly imported to the structure model using the Direct Import CFD / One-Way Fluid Structure Interaction (FSI) method. Design load of propeller is chosen at the flight condition at speed of 20 km/h at 7000 rpm.

  4. Recent theoretical developments and experimental studies pertinent to vortex flow aerodynamics - With a view towards design

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Luckring, J. M.

    1978-01-01

    A review is presented of recent progress in a research program directed towards the development of an improved vortex-flow technology base. It is pointed out that separation induced vortex-flows from the leading and side edges play an important role in the high angle-of-attack aerodynamic characteristics of a wide range of modern aircraft. In the analysis and design of high-speed aircraft, a detailed knowledge of this type of separation is required, particularly with regard to critical wind loads and the stability and performance at various off-design conditions. A description of analytical methods is presented. The theoretical methods employed are divided into two classes which are dependent upon the underlying aerodynamic assumptions. One conical flow method is considered along with three different nonconical flow methods. Comparisons are conducted between the described methods and available aerodynamic data. Attention is also given to a vortex flow drag study and a vortex flow wing design using suction analogy.

  5. GRACE Mission Design: Impact of Uncertainties in Disturbance Environment and Satellite Force Models

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Qu, Min

    2000-01-01

    The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude, near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.

  6. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  7. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  8. Aerodynamic Design of Axial-flow Compressors. Volume III

    NASA Technical Reports Server (NTRS)

    Johnson, Irving A; Bullock, Robert O; Graham, Robert W; Costilow, Eleanor L; Huppert, Merle C; Benser, William A; Herzig, Howard Z; Hansen, Arthur G; Jackson, Robert J; Yohner, Peggy L; hide

    1956-01-01

    Chapters XI to XIII concern the unsteady compressor operation arising when compressor blade elements stall. The fields of compressor stall and surge are reviewed in Chapters XI and XII, respectively. The part-speed operating problem in high-pressure-ratio multistage axial-flow compressors is analyzed in Chapter XIII. Chapter XIV summarizes design methods and theories that extend beyond the simplified two-dimensional approach used previously in the report. Chapter XV extends this three-dimensional treatment by summarizing the literature on secondary flows and boundary layer effects. Charts for determining the effects of errors in design parameters and experimental measurements on compressor performance are given in Chapters XVI. Chapter XVII reviews existing literature on compressor and turbine matching techniques.

  9. Design of control laws for flutter suppression based on the aerodynamic energy concept and comparisons with other design methods

    NASA Technical Reports Server (NTRS)

    Nissim, Eli

    1990-01-01

    The aerodynamic energy method is used to synthesize control laws for NASA's drone for aerodynamic and structural testing-aerodynamic research wing 1 (DAST-ARW1) mathematical model. The performance of these control laws in terms of closed-loop flutter dynamic pressure, control surface activity, and robustness is compared with other control laws that relate to the same model. A control law synthesis technique that makes use of the return difference singular values is developed. It is based on the aerodynamic energy approach and is shown to yield results that are superior to those results given in the literature and are based on optimal control theory. Nyquist plots are presented, together with a short discussion regarding the relative merits of the minimum singular value as a measure of robustness as compared with the more traditional measure involving phase and gain margins.

  10. Design of control laws for flutter suppression based on the aerodynamic energy concept and comparisons with other design methods

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1989-01-01

    The aerodynamic energy method is used in this paper to synthesize control laws for NASA's Drone for Aerodynamic and Structural Testing-Aerodynamic Research Wing 1 (DAST-ARW1) mathematical model. The performance of these control laws in terms of closed-loop flutter dynamic pressure, control surface activity, and robustness is compared against other control laws that appear in the literature and relate to the same model. A control law synthesis technique that makes use of the return difference singular values is developed in this paper. it is based on the aerodynamic energy approach and is shown to yield results superior to those given in the literature and based on optimal control theory. Nyquist plots are presented together with a short discussion regarding the relative merits of the minimum singular value as a measure of robustness, compared with the more traditional measure of robustness involving phase and gain margins.

  11. Computational methods of robust controller design for aerodynamic flutter suppression

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1981-01-01

    The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.

  12. Aerostructural Shape and Topology Optimization of Aircraft Wings

    NASA Astrophysics Data System (ADS)

    James, Kai

    A series of novel algorithms for performing aerostructural shape and topology optimization are introduced and applied to the design of aircraft wings. An isoparametric level set method is developed for performing topology optimization of wings and other non-rectangular structures that must be modeled using a non-uniform, body-fitted mesh. The shape sensitivities are mapped to computational space using the transformation defined by the Jacobian of the isoparametric finite elements. The mapped sensitivities are then passed to the Hamilton-Jacobi equation, which is solved on a uniform Cartesian grid. The method is derived for several objective functions including mass, compliance, and global von Mises stress. The results are compared with SIMP results for several two-dimensional benchmark problems. The method is also demonstrated on a three-dimensional wingbox structure subject to fixed loading. It is shown that the isoparametric level set method is competitive with the SIMP method in terms of the final objective value as well as computation time. In a separate problem, the SIMP formulation is used to optimize the structural topology of a wingbox as part of a larger MDO framework. Here, topology optimization is combined with aerodynamic shape optimization, using a monolithic MDO architecture that includes aerostructural coupling. The aerodynamic loads are modeled using a three-dimensional panel method, and the structural analysis makes use of linear, isoparametric, hexahedral elements. The aerodynamic shape is parameterized via a set of twist variables representing the jig twist angle at equally spaced locations along the span of the wing. The sensitivities are determined analytically using a coupled adjoint method. The wing is optimized for minimum drag subject to a compliance constraint taken from a 2 g maneuver condition. The results from the MDO algorithm are compared with those of a sequential optimization procedure in order to quantify the benefits of the MDO approach. While the sequentially optimized wing exhibits a nearly-elliptical lift distribution, the MDO design seeks to push a greater portion of the load toward the root, thus reducing the structural deflection, and allowing for a lighter structure. By exploiting this trade-off, the MDO design achieves a 42% lower drag than the sequential result.

  13. Rotationally Adaptive Flight Test Surface

    NASA Technical Reports Server (NTRS)

    Barrett, Ron

    1999-01-01

    Research on a new design of flutter exciter vane using adaptive materials was conducted. This novel design is based on all-moving aerodynamic surface technology and consists of a structurally stiff main spar, a series of piezoelectric actuator elements and an aerodynamic shell which is pivoted around the main spar. The work was built upon the current missile-type all-moving surface designs and change them so they are better suited for flutter excitation through the transonic flight regime. The first portion of research will be centered on aerodynamic and structural modeling of the system. USAF DatCom and vortex lattice codes was used to capture the fundamental aerodynamics of the vane. Finite element codes and laminated plate theory and virtual work analyses will be used to structurally model the aerodynamic vane and wing tip. Following the basic modeling, a flutter test vane was designed. Each component within the structure was designed to meet the design loads. After the design loads are met, then the deflections will be maximized and the internal structure will be laid out. In addition to the structure, a basic electrical control network will be designed which will be capable of driving a scaled exciter vane. The third and final stage of main investigation involved the fabrication of a 1/4 scale vane. This scaled vane was used to verify kinematics and structural mechanics theories on all-moving actuation. Following assembly, a series of bench tests was conducted to determine frequency response, electrical characteristics, mechanical and kinematic properties. Test results indicate peak-to-peak deflections of 1.1 deg with a corner frequency of just over 130 Hz.

  14. Advanced Aerodynamic Design of Passive Porosity Control Effectors

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.

  15. Preliminary aerodynamic design considerations for advanced laminar flow aircraft configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Yip, Long P.; Jordan, Frank L., Jr.

    1986-01-01

    Modern composite manufacturing methods have provided the opportunity for smooth surfaces that can sustain large regions of natural laminar flow (NLF) boundary layer behavior and have stimulated interest in developing advanced NLF airfoils and improved aircraft designs. Some of the preliminary results obtained in exploratory research investigations on advanced aircraft configurations at the NASA Langley Research Center are discussed. Results of the initial studies have shown that the aerodynamic effects of configuration variables such as canard/wing arrangements, airfoils, and pusher-type and tractor-type propeller installations can be particularly significant at high angles of attack. Flow field interactions between aircraft components were shown to produce undesirable aerodynamic effects on a wing behind a heavily loaded canard, and the use of properly designed wing leading-edge modifications, such as a leading-edge droop, offset the undesirable aerodynamic effects by delaying wing stall and providing increased stall/spin resistance with minimum degradation of laminar flow behavior.

  16. A method for the design of transonic flexible wings

    NASA Technical Reports Server (NTRS)

    Smith, Leigh Ann; Campbell, Richard L.

    1990-01-01

    Methodology was developed for designing airfoils and wings at transonic speeds which includes a technique that can account for static aeroelastic deflections. This procedure is capable of designing either supercritical or more conventional airfoil sections. Methods for including viscous effects are also illustrated and are shown to give accurate results. The methodology developed is an interactive system containing three major parts. A design module was developed which modifies airfoil sections to achieve a desired pressure distribution. This design module works in conjunction with an aerodynamic analysis module, which for this study is a small perturbation transonic flow code. Additionally, an aeroelastic module is included which determines the wing deformation due to the calculated aerodynamic loads. Because of the modular nature of the method, it can be easily coupled with any aerodynamic analysis code.

  17. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  18. Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.

    1979-01-01

    The fundamentals of cryogenic testing are validated both analytically and experimentally employing the 0.3-m transonic cryogenic tunnel. The tunnel with its unique Reynolds number capability has been used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects have been developed and cryogenic tunnel conditions are set and maintained accurately. It is shown that cryogenic cooling, by injecting nitrogen directly into the tunnel circuit, imposes no problems with temperature distribution or dynamic response characteristics.

  19. Numerical aerodynamic simulation facility preliminary study: Executive study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.

  20. On problems of analyzing aerodynamic properties of blunted rotary bodies with small random surface distortions under supersonic and hypersonic flows

    NASA Astrophysics Data System (ADS)

    Degtyar, V. G.; Kalashnikov, S. T.; Mokin, Yu. A.

    2017-10-01

    The paper considers problems of analyzing aerodynamic properties (ADP) of reenetry vehicles (RV) as blunted rotary bodies with small random surface distortions. The interactions of math simulation of surface distortions, selection of tools for predicting ADPs of shaped bodies, evaluation of different-type ADP variations and their adaptation for dynamic problems are analyzed. The possibilities of deterministic and probabilistic approaches to evaluation of ADP variations are considered. The practical value of the probabilistic approach is demonstrated. The examples of extremal deterministic evaluations of ADP variations for a sphere and a sharp cone are given.

  1. Admitting the Inadmissible: Adjoint Formulation for Incomplete Cost Functionals in Aerodynamic Optimization

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Salas, Manuel D.

    1997-01-01

    We derive the adjoint equations for problems in aerodynamic optimization which are improperly considered as "inadmissible." For example, a cost functional which depends on the density, rather than on the pressure, is considered "inadmissible" for an optimization problem governed by the Euler equations. We show that for such problems additional terms should be included in the Lagrangian functional when deriving the adjoint equations. These terms are obtained from the restriction of the interior PDE to the control surface. Demonstrations of the explicit derivation of the adjoint equations for "inadmissible" cost functionals are given for the potential, Euler, and Navier-Stokes equations.

  2. Modelling the effect of changing design fineness ratio of an airship on its aerodynamic lift and drag performance

    NASA Astrophysics Data System (ADS)

    Jalasabri, J.; Romli, F. I.; Harmin, M. Y.

    2017-12-01

    In developing successful airship designs, it is important to fully understand the effect of the design on the performance of the airship. The aim of this research work is to establish the trend for effects of design fineness ratio of an airship towards its aerodynamic performance. An approximate computer-aided design (CAD) model of the Atlant-100 airship is constructed using CATIA software and it is applied in the computational fluid dynamics (CFD) simulation analysis using Star-CCM+ software. In total, 36 simulation runs are executed with different combinations of values for design fineness ratio, altitude and velocity. The obtained simulation results are analyzed using MINITAB to capture the effects relationship on lift and drag coefficients. Based on the results, it is concluded that the design fineness ratio does have a significant impact on the generated aerodynamic lift and drag forces on the airship.

  3. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  4. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  5. Study of aerodynamic technology for VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.

    1978-01-01

    A conceptual design study was performed of a vertical attitude takeoff and landing (VATOL) fighter/attack aircraft. The configuration has a close-coupled canard-delta wing, side two-dimensional ramp inlets, and two augmented turbofan engines with thrust vectoring capability. Performance and sensitivities to objective requirements were calculated. Aerodynamic characteristics were estimated based on contractor and NASA wind tunnel data. Computer simulations of VATOL transitions were performed. Successful transitions can be made, even with series post-stall instabilities, if reaction controls are properly phased. Principal aerodynamic uncertainties identified were post-stall aerodynamics, transonic aerodynamics with thrust vectoring and inlet performance in VATOL transition. A wind tunnel research program was recommended to resolve the aerodynamic uncertainties.

  6. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattice method, L216 (DUBFLEX). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Harrison, B. A.; Richard, M.

    1979-01-01

    The information necessary for execution of the digital computer program L216 on the CDC 6600 is described. L216 characteristics are based on the doublet lattice method. Arbitrary aerodynamic configurations may be represented with combinations of nonplanar lifting surfaces composed of finite constant pressure panel elements, and axially summetric slender bodies composed of constant pressure line elements. Program input consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic field (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  7. Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekeyser, W., E-mail: Wouter.Dekeyser@kuleuven.be; Reiter, D.; Baelmans, M.

    As magnetic confinement fusion progresses towards the development of first reactor-scale devices, computational tokamak divertor design is a topic of high priority. Presently, edge plasma codes are used in a forward approach, where magnetic field and divertor geometry are manually adjusted to meet design requirements. Due to the complex edge plasma flows and large number of design variables, this method is computationally very demanding. On the other hand, efficient optimization-based design strategies have been developed in computational aerodynamics and fluid mechanics. Such an optimization approach to divertor target shape design is elaborated in the present paper. A general formulation ofmore » the design problems is given, and conditions characterizing the optimal designs are formulated. Using a continuous adjoint framework, design sensitivities can be computed at a cost of only two edge plasma simulations, independent of the number of design variables. Furthermore, by using a one-shot method the entire optimization problem can be solved at an equivalent cost of only a few forward simulations. The methodology is applied to target shape design for uniform power load, in simplified edge plasma geometry.« less

  8. Tradeoff methods in multiobjective insensitive design of airplane control systems

    NASA Technical Reports Server (NTRS)

    Schy, A. A.; Giesy, D. P.

    1984-01-01

    The latest results of an ongoing study of computer-aided design of airplane control systems are given. Constrained minimization algorithms are used, with the design objectives in the constraint vector. The concept of Pareto optimiality is briefly reviewed. It is shown how an experienced designer can use it to find designs which are well-balanced in all objectives. Then the problem of finding designs which are insensitive to uncertainty in system parameters are discussed, introducing a probabilistic vector definition of sensitivity which is consistent with the deterministic Pareto optimal problem. Insensitivity is important in any practical design, but it is particularly important in the design of feedback control systems, since it is considered to be the most important distinctive property of feedback control. Methods of tradeoff between deterministic and stochastic-insensitive (SI) design are described, and tradeoff design results are presented for the example of the a Shuttle lateral stability augmentation system. This example is used because careful studies have been made of the uncertainty in Shuttle aerodynamics. Finally, since accurate statistics of uncertain parameters are usually not available, the effects of crude statistical models on SI designs are examined.

  9. Web-Based Integrated Research Environment for Aerodynamic Analyses and Design

    NASA Astrophysics Data System (ADS)

    Ahn, Jae Wan; Kim, Jin-Ho; Kim, Chongam; Cho, Jung-Hyun; Hur, Cinyoung; Kim, Yoonhee; Kang, Sang-Hyun; Kim, Byungsoo; Moon, Jong Bae; Cho, Kum Won

    e-AIRS[1,2], an abbreviation of ‘e-Science Aerospace Integrated Research System,' is a virtual organization designed to support aerodynamic flow analyses in aerospace engineering using the e-Science environment. As the first step toward a virtual aerospace engineering organization, e-AIRS intends to give a full support of aerodynamic research process. Currently, e-AIRS can handle both the computational and experimental aerodynamic research on the e-Science infrastructure. In detail, users can conduct a full CFD (Computational Fluid Dynamics) research process, request wind tunnel experiment, perform comparative analysis between computational prediction and experimental measurement, and finally, collaborate with other researchers using the web portal. The present paper describes those services and the internal architecture of the e-AIRS system.

  10. Passive control of discrete-frequency tones generated by coupled detuned cascades

    NASA Astrophysics Data System (ADS)

    Sawyer, S.; Fleeter, S.

    2003-07-01

    Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.

  11. Experimental Vibration Damping Characteristics of the Third-stage Rotor of a Three-stage Transonic Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  12. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  13. Efficient computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    NASA Technical Reports Server (NTRS)

    Janetzke, David C.; Murthy, Durbha V.

    1991-01-01

    Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.

  14. Structural/aerodynamic Blade Analyzer (SAB) User's Guide, Version 1.0

    NASA Technical Reports Server (NTRS)

    Morel, M. R.

    1994-01-01

    The structural/aerodynamic blade (SAB) analyzer provides an automated tool for the static-deflection analysis of turbomachinery blades with aerodynamic and rotational loads. A structural code calculates a deflected blade shape using aerodynamic loads input. An aerodynamic solver computes aerodynamic loads using deflected blade shape input. The two programs are iterated automatically until deflections converge. Currently, SAB version 1.0 is interfaced with MSC/NASTRAN to perform the structural analysis and PROP3D to perform the aerodynamic analysis. This document serves as a guide for the operation of the SAB system with specific emphasis on its use at NASA Lewis Research Center (LeRC). This guide consists of six chapters: an introduction which gives a summary of SAB; SAB's methodology, component files, links, and interfaces; input/output file structure; setup and execution of the SAB files on the Cray computers; hints and tips to advise the user; and an example problem demonstrating the SAB process. In addition, four appendices are presented to define the different computer programs used within the SAB analyzer and describe the required input decks.

  15. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed over the upper and lower surfaces of a standard airfoil, proves to be an effective alternative to standard control surfaces by increasing the flight capability of bird-scale UAVs. The results obtained for this wing design under various flight and flap configurations provide insight into its aerodynamic behavior, which enhance the maneuverability and controllability. The overall method acts as an important tool to create an aerodynamic database to develop a distributed control system for autonomous operation of the multi-flap morphing wing, supporting the use of viscous-inviscid methods as a tool in rapid aerodynamic analysis.

  16. Multidisciplinary design integration system for a supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Dovi, A. R.; Wrenn, G. A.; Barthelemy, J.-F. M.; Coen, P. G.; Hall, L. E.

    1992-01-01

    An aircraft preliminary design system which provides the multidisciplinary communications and couplings between several engineering disciplines is described. A primary benefit of this system is to demonstrate advanced technology multidisciplinary design integration methodologies. The current version includes the disciplines of aerodynamics and structures. Contributing engineering disciplines are coupled using the Global Sensitivity Equation approach to influence the global design optimization problem. A high speed civil transport configuration is used for configuration trade studies. Forty four independent design variables are used to control the cross-sectional areas of wing rib and spar caps and the thicknesses of wingskincover panels. A total of 300 stress, strain, buckling and displacement behavioral constraints and minimum gages on the design variables were used to optimize the idealized wing structure. The goal of the designs to resize the wing cover panels and internal structure for minimum mass.

  17. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  18. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  19. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.

    2000-01-01

    An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.

  20. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system: Comprehensive data report

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.

  1. Computation of aeroelastic characteristics and stress-strained state of parachutes

    NASA Astrophysics Data System (ADS)

    Dneprov, Igor'v.

    The paper presents computation results of the stress-strained state and aeroelastic characteristics of different types of parachutes in the process of their interaction with a flow. Simulation of the aerodynamic part of the aeroelastic problem is based on the discrete vortex method, while the elastic part of the problem is solved by employing either the finite element method, or the finite difference method. The research covers the following problems of the axisymmetric parachutes dynamic aeroelasticity: parachute inflation, forebody influence on the aerodynamic characteristics of the object-parachute system, parachute disreefing, parachute inflation in the presence of the engagement parachute. The paper also presents the solution of the spatial problem of static aeroelasticity for a single-envelope ram-air parachute. Some practical recommendations are suggested.

  2. Computational methods for aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Peeters, M. F.

    1983-01-01

    Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.

  3. Investigation of aerodynamic design issues with regions of separated flow

    NASA Technical Reports Server (NTRS)

    Gally, Tom

    1993-01-01

    Existing aerodynamic design methods have generally concentrated on the optimization of airfoil or wing shapes to produce a minimum drag while satisfying some basic constraints such as lift, pitching moment, or thickness. Since the minimization of drag almost always precludes the existence of separated flow, the evaluation and validation of these design methods for their robustness and accuracy when separated flow is present has not been aggressively pursued. However, two new applications for these design tools may be expected to include separated flow and the issues of aerodynamic design with this feature must be addressed. The first application of the aerodynamic design tools is the design of airfoils or wings to provide an optimal performance over a wide range of flight conditions (multipoint design). While the definition of 'optimal performance' in the multipoint setting is currently being hashed out, it is recognized that given a wide range of flight conditions, it will not be possible to ensure a minimum drag constraint at all conditions, and in fact some amount of separated flow (presumably small) may have to be allowed at the more demanding flight conditions. Thus a multipoint design method must be tolerant of the existence of separated flow and may include some controls upon its extent. The second application is in the design of wings with extended high speed buffet boundaries of their flight envelopes. Buffet occurs on a wing when regions of flow separation have grown to the extent that their time varying pressures induce possible destructive effects upon the wing structure or adversely effect either the aircraft controllability or passenger comfort. A conservative approach to the expansion of the buffet flight boundary is to simply expand the flight envelope of nonseparated flow under the assumption that buffet will also thus be alleviated. However, having the ability to design a wing with separated flow and thus to control the location, extent and severity of the separated flow regions may allow aircraft manufacturers to gain an advantage in the early design stages of an aircraft, when configuration changes are relatively inexpensive to make. The goal of the summer research at NASA Langley Research Center (LaRC) was twofold: first, to investigate a particular airfoil design problem observed under conditions of strong shock induced flow separation on the upper surface of an airfoil at transonic conditions; and second, to suggest and investigate design methodologies for the prediction (or detection) and control of flow separation. The context of both investigations was to use an existing two dimensional Navier-Stokes flow solver and the constrained direct/iterative surface curvature (CDISC) design algorithm developed at LaRC. As a lead in to the primary task, it was necessary to gain a familiarity with both the design method and the computational analysis and to perform the FORTRAN coding needed to couple them together.

  4. Preliminary design of nine high speed civil transports

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral; Vantriet, Robert; Soban, Dani; Hoang, TY

    1992-01-01

    Sixty senior design students at Cal Poly, SLO have completed a year-long project to design the next generation of High Speed Civil Transports (HSCT). The design process was divided up into three distinct phases. The first third of the project was devoted entirely to research into the special problems associated with an HSCT. These included economic viability, airport compatibility, high speed aerodynamics, sonic boom minimization, environmental impact, and structures and materials. The result of this research was the development of nine separate Requests for Proposal (RFP) that outlined reasonable yet challenging design criteria for the aircraft. All were designed to be technically feasible in the year 2015. The next phase of the project divided the sixty students into nine design groups. Each group, with its own RFP, completed a Class 1 preliminary design of an HSCT. The nine configurations varied from conventional double deltas to variable geometry wings to a pivoting oblique wing design. The final phase of the project included a more detailed Class 2 sizing as well as performance and stability and control analysis. Cal Poly, San Luis Obispo presents nine unique solutions to the same problem: that of designing an economically viable, environmentally acceptable, safe and comfortable supersonic transport.

  5. Low Speed Rot or/Fuselage Interactional Aerodynamics

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Prichard, Devon S.

    2003-01-01

    This report presents work performed under a Cooperative Research Agreement between Virginia Tech and the NASA Langley Research Center. The work involved development of computational techniques for modeling helicopter rotor/airframe aerodynamic interaction. A brief overview of the problem is presented, the modeling techniques are described, and selected example calculations are briefly discussed.

  6. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE PAGES

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    2017-08-24

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less

  7. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less

  8. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  9. Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2012-01-01

    The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.

  10. Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  11. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  12. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  13. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  14. Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties

    NASA Technical Reports Server (NTRS)

    He, Cheng-Jian; Peters, David A.

    1990-01-01

    Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.

  15. Design, fabrication, and test of a composite material wind turbine rotor blade

    NASA Technical Reports Server (NTRS)

    Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.

    1977-01-01

    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.

  16. Aerodynamic design of the National Rotor Testbed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Christopher Lee

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbinemore » in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.« less

  17. Generic aerocapture atmospheric entry study, volume 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An atmospheric entry study to fine a generic aerocapture vehicle capable of missions to Mars, Saturn, and Uranus is reported. A single external geometry was developed through atmospheric entry simulations. Aerocapture is a system design concept which uses an aerodynamically controlled atmospheric entry to provide the necessary velocity depletion to capture payloads into planetary orbit. Design concepts are presented which provide the control accuracy required while giving thermal protection for the mission payload. The system design concepts consist of the following elements: (1) an extendable biconic aerodynamic configuration with lift to drag ratio between 1.0 and 2.0; (2) roll control system concepts to control aerodynamic lift and disturbance torques; (3) aeroshell design concepts capable of meeting dynamic pressure loads during aerocapture; and (4) entry thermal protection system design concepts to meet thermodynamic loads during aerocapture.

  18. Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.

    1998-01-01

    The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.

  19. Use of water towing tanks for aerodynamics and hydrodynamics

    NASA Technical Reports Server (NTRS)

    Gadelhak, Mohamed

    1987-01-01

    Wind tunnels and flumes have become standard laboratory tools for modeling a variety of aerodynamic and hydrodynamic flow problems. Less available, although by no means less useful, are facilities in which a model can be towed (or propelled) through air or water. This article emphasizes the use of the water towing tank as an experimental tool for aerodynamic and hydrodynamic studies. Its advantages and disadvantages over other flow rigs are discussed, and its usefullness is illustrated through many examples of research results obtained over the past few years in a typical towing tank facility.

  20. Aerodynamic studies of delta-wing shuttle orbiters. Part 1: Low speed

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Ellison, J. C.

    1972-01-01

    Numerous wind tunnel tests conducted on the evolving delta-wing orbiters have generated a fairly large aerodynamic data base over the entire entry operation range of these vehicles. A limited assessment is made of some of the aerodynamics of the current HO type orbiters, and several specific problem areas selected from the broad data base are discussed. These include, from a subsonic viewpoint, discussions of trim drag effect; effects of the installation of main rocket engine nozzles, OMS and RCS packages, Reynolds number effects, lateral-directional stability characteristics, and landing characteristics.

  1. National Transonic Facility model and model support vibration problems

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.

    1990-01-01

    Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.

  2. A framework for simultaneous aerodynamic design optimization in the presence of chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günther, Stefanie, E-mail: stefanie.guenther@scicomp.uni-kl.de; Gauger, Nicolas R.; Wang, Qiqi

    Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimizationmore » that is independent of the time domain length, even in the presence of chaos.« less

  3. Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Wang, Zhijin; Hou, Tianjiao

    2017-11-01

    This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.

  4. Aerodynamic flight control to increase payload capability of future launch vehicles

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.; Cheng, Y.-M.; Leleux, Todd; Bigelow, Scott; Hasbrook, William

    1993-01-01

    In this report, we provide some examples of French, Russian, Chinese, and Japanese launch vehicles that have utilized fins in their designs. Next, the aerodynamic design of the fins is considered in Section 3. Some comments on basic static stability and control theory are followed by a brief description of an aerodynamic characteristics prediction code that was used to estimate the characteristics of a modified NLS 1.5 Stage vehicle. Alternative fin designs are proposed and some estimated aerodynamic characteristics presented and discussed. Also included in Section 3 is a discussion of possible methods of enhancement of the aerodynamic efficiency of fins, such as vortex generators and jet flaps. We consider the construction of fins for launch vehicles in Section 4 and offer an assessment of the state-of-the-art in the use of composites for aerodynamic control surfaces on high speed vehicles. We also comment on the use of smart materials for launch vehicle fins. The dynamic stability and control of a launch vehicle that utilizes both thrust vector control (engine nozzle gimballing) and movable fins is the subject addressed in Section 5. We give a short derivation of equations of motion for a launch vehicle moving in a vertical plane above a spherical earth, discuss the use of a gravity-turn nominal trajectory, and give the form of the period equations linearized about such a nominal. We then consider feedback control of vehicle attitude using both engine gimballing and fin deflection. Conclusions are stated and recommendations made in Section 6. An appendix contains aerodynamic data in tabular and graphical formats.

  5. Basic Aerodynamics of Combustion Chambers,

    DTIC Science & Technology

    1981-05-20

    engineering circles, the trend in the design of new tyres of combustion chambers is to combine the use of aerodynamics , ;he science of heat transfer and...7. FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AF8 ON F/6 21/2 BASIC AERODYNAMICS OF COMBUSTION CHAMBERS,(U) MAY 81 N HUANG UNCLASSIFIED FTD-ID(RS)T...160󈨔 NL so EEEEEE 0hEEEEEEmollllmmlllll mEImmmmmEEE mEEEEEmmEEmmmE IilillilillEEE FTD-1D(RS)T-1684-80 FOREIGN TECHNOLOGY DIVISION BASIC AERODYNAMICS CF

  6. An analysis of aerodynamic requirements for coordinated bank-to-turn autopilots

    NASA Technical Reports Server (NTRS)

    Arrow, A.

    1982-01-01

    Two planar missile airframes were compared having the potential for improved bank-to-turn control but having different aerodynamic properties. The comparison was made with advanced level autopilots using both linear and nonlinear 3-D aerodynamic models to obtain realistic missile body angular rates and control surface incidence. Cortical cross-coupling effects are identified and desirable aerodynamics are recommended for improved coordinated (BTT) (CBTT) performance. In addition, recommendations are made for autopilot control law analyses and design techniques for improving CBTT performance.

  7. Aerodynamic optimization of wind turbine rotor using CFD/AD method

    NASA Astrophysics Data System (ADS)

    Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang

    2018-05-01

    The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.

  8. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  9. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  10. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  11. Aerodynamic design and analysis of a highly loaded turbine exhaust

    NASA Technical Reports Server (NTRS)

    Huber, F. W.; Montesdeoca, X. A.; Rowey, R. J.

    1993-01-01

    The aerodynamic design and analysis of a turbine exhaust volute manifold is described. This turbine exhaust system will be used with an advanced gas generator oxidizer turbine designed for very high specific work. The elevated turbine stage loading results in increased discharge Mach number and swirl velocity which, along with the need for minimal circumferential variation of fluid properties at the turbine exit, represent challenging volute design requirements. The design approach, candidate geometries analyzed, and steady state/unsteady CFD analysis results are presented.

  12. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  13. Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.

    2001-01-01

    The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.

  14. Improvement of the cruise performances of a wing by means of aerodynamic optimization. Validation with a Far-Field method

    NASA Astrophysics Data System (ADS)

    Jiménez-Varona, J.; Ponsin Roca, J.

    2015-06-01

    Under a contract with AIRBUS MILITARY (AI-M), an exercise to analyze the potential of optimization techniques to improve the wing performances at cruise conditions has been carried out by using an in-house design code. The original wing was provided by AI-M and several constraints were posed for the redesign. To maximize the aerodynamic efficiency at cruise, optimizations were performed using the design techniques developed internally at INTA under a research program (Programa de Termofluidodinámica). The code is a gradient-based optimizaa tion code, which uses classical finite differences approach for gradient computations. Several techniques for search direction computation are implemented for unconstrained and constrained problems. Techniques for geometry modifications are based on different approaches which include perturbation functions for the thickness and/or mean line distributions and others by Bézier curves fitting of certain degree. It is very e important to afford a real design which involves several constraints that reduce significantly the feasible design space. And the assessment of the code is needed in order to check the capabilities and the possible drawbacks. Lessons learnt will help in the development of future enhancements. In addition, the validation of the results was done using also the well-known TAU flow solver and a far-field drag method in order to determine accurately the improvement in terms of drag counts.

  15. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  16. Recent advances in integrated multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.

    1992-01-01

    A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.

  17. Recent advances in multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.

    1992-01-01

    A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.

  18. Post-Stall Aerodynamic Modeling and Gain-Scheduled Control Design

    NASA Technical Reports Server (NTRS)

    Wu, Fen; Gopalarathnam, Ashok; Kim, Sungwan

    2005-01-01

    A multidisciplinary research e.ort that combines aerodynamic modeling and gain-scheduled control design for aircraft flight at post-stall conditions is described. The aerodynamic modeling uses a decambering approach for rapid prediction of post-stall aerodynamic characteristics of multiple-wing con.gurations using known section data. The approach is successful in bringing to light multiple solutions at post-stall angles of attack right during the iteration process. The predictions agree fairly well with experimental results from wind tunnel tests. The control research was focused on actuator saturation and .ight transition between low and high angles of attack regions for near- and post-stall aircraft using advanced LPV control techniques. The new control approaches maintain adequate control capability to handle high angle of attack aircraft control with stability and performance guarantee.

  19. Deployable wing model considering structural flexibility and aerodynamic unsteadiness for deployment system design

    NASA Astrophysics Data System (ADS)

    Otsuka, Keisuke; Wang, Yinan; Makihara, Kanjuro

    2017-11-01

    In future, wings will be deployed in the span direction during flight. The deployment system improves flight ability and saves storage space in the airplane. For the safe design of the wing, the deployment motion needs to be simulated. In the simulation, the structural flexibility and aerodynamic unsteadiness should be considered because they may lead to undesirable phenomena such as a residual vibration after the deployment or a flutter during the deployment. In this study, the deployment motion is simulated in the time domain by using a nonlinear folding wing model based on multibody dynamics, absolute nodal coordinate formulation, and two-dimensional aerodynamics with strip theory. We investigate the effect of the structural flexibility and aerodynamic unsteadiness on the time-domain deployment simulation.

  20. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic coefficients to an accuracy of 110% . In our problem, we would like to get an optimized neural network architecture and minimum data set. This has been accomplished within 500 training cycles of a neural network. After removing training pairs (outliers), the GA has produced much better results. The neural network constructed is a feed forward neural network with a back propagation learning mechanism. The main goal has been to free the network design process from constraints of human biases, and to discover better forms of neural network architectures. The automation of the network architecture search by genetic algorithms seems to have been the best way to achieve this goal.

  1. Theoretical and Numerical Studies of a Vortex - Interaction Problem

    NASA Astrophysics Data System (ADS)

    Hsu, To-Ming

    The problem of vortex-airfoil interaction has received considerable interest in the helicopter industry. This phenomenon has been shown to be a major source of noise, vibration, and structural fatigue in helicopter flight. Since unsteady flow is always associated with vortex shedding and movement of free vortices, the problem of vortex-airfoil interaction also serves as a basic building block in unsteady aerodynamics. A careful study of the vortex-airfoil interaction reveals the major effects of the vortices on the generation of unsteady aerodynamic forces, especially the lift. The present work establishes three different flow models to study the vortex-airfoil interaction problem: a theoretical model, an inviscid flow model, and a viscous flow model. In the first two models, a newly developed aerodynamic force theorem has been successfully applied to identify the contributions to unsteady forces from various vortical systems in the flow field. Through viscous flow analysis, different features of laminar interaction, turbulent attached interaction, and turbulent separated interaction are examined. Along with the study of the vortex-airfoil interaction problem, several new schemes are developed for inviscid and viscous flow solutions. New formulas are derived to determine the trailing edge flow conditions, such as flow velocity and direction, in unsteady inviscid flow. A new iteration scheme that is faster for higher Reynolds number is developed for solving the viscous flow problem.

  2. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  3. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  4. Application of supercomputers to computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.

    1984-01-01

    Computers are playing an increasingly important role in the field of aerodynamics such that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. Example results obtained from the successively refined forms of the governing equations are discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to problems of practical importance. Finally, the Numerical Aerodynamic Simulation (NAS) Program - with its 1988 target of achieving a sustained computational rate of 1 billion floating point operations per second and operating with a memory of 240 million words - is discussed in terms of its goals and its projected effect on the future of computational aerodynamics.

  5. Dual wing, swept forward swept rearward wing, and single wing design optimization for high performance business airplanes

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.; Selberg, B. P.

    1982-01-01

    An investigation was performed to compare closely coupled dual wing and swept forward swept rearward wing aircraft to corresponding single wing 'baseline' designs to judge the advantages offered by aircraft designed with multiple wing systems. The optimum multiple wing geometry used on the multiple wing designs was determined in an analytic study which investigated the two- and three-dimensional aerodynamic behavior of a wide range of multiple wing configurations in order to find the wing geometry that created the minimum cruise drag. This analysis used a multi-element inviscid vortex panel program coupled to a momentum integral boundary layer analysis program to account for the aerodynamic coupling between the wings and to provide the two-dimensional aerodynamic data, which was then used as input for a three-dimensional vortex lattice program, which calculated the three-dimensional aerodynamic data. The low drag of the multiple wing configurations is due to a combination of two dimensional drag reductions, tailoring the three dimensional drag for the swept forward swept rearward design, and the structural advantages of the two wings that because of the structural connections permitted higher aspect ratios.

  6. Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1997-01-01

    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.

  7. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley Waisang; Pak, Chan-Gi

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle

  8. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    PubMed

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  9. Unsteady transonic flow calculations for two-dimensional canard-wing configurations with aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Batina, J. T.

    1985-01-01

    Unsteady transonic flow calculations for aerodynamically interfering airfoil configurations are performed as a first step toward solving the three dimensional canard wing interaction problem. These calculations are performed by extending the XTRAN2L two dimensional unsteady transonic small disturbance code to include an additional airfoil. Unsteady transonic forces due to plunge and pitch motions of a two dimensional canard and wing are presented. Results for a variety of canard wing separation distances reveal the effects of aerodynamic interference on unsteady transonic airloads. Aeroelastic analyses employing these unsteady airloads demonstrate the effects of aerodynamic interference on aeroelastic stability and flutter. For the configurations studied, increases in wing flutter speed result with the inclusion of the aerodynamically interfering canard.

  10. Integration of a CAD System Into an MDO Framework

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.

    1998-01-01

    NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.

  11. Knowledge Discovery for Transonic Regional-Jet Wing through Multidisciplinary Design Exploration

    NASA Astrophysics Data System (ADS)

    Chiba, Kazuhisa; Obayashi, Shigeru; Morino, Hiroyuki

    Data mining is an important facet of solving multi-objective optimization problem. Because it is one of the effective manner to discover the design knowledge in the multi-objective optimization problem which obtains large data. In the present study, data mining has been performed for a large-scale and real-world multidisciplinary design optimization (MDO) to provide knowledge regarding the design space. The MDO among aerodynamics, structures, and aeroelasticity of the regional-jet wing was carried out using high-fidelity evaluation models on the adaptive range multi-objective genetic algorithm. As a result, nine non-dominated solutions were generated and used for tradeoff analysis among three objectives. All solutions evaluated during the evolution were analyzed for the tradeoffs and influence of design variables using a self-organizing map to extract key features of the design space. Although the MDO results showed the inverted gull-wings as non-dominated solutions, one of the key features found by data mining was the non-gull wing geometry. When this knowledge was applied to one optimum solution, the resulting design was found to have better performance compared with the original geometry designed in the conventional manner.

  12. Optimization of composite tiltrotor wings with extensions and winglets

    NASA Astrophysics Data System (ADS)

    Kambampati, Sandilya

    Tiltrotors suffer from an aeroelastic instability during forward flight called whirl flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major obstacle for tiltrotors in achieving high-speed flight. The conventional approach to assure adequate whirl flutter stability margins for tiltrotors is to design the wings with high torsional stiffness, typically using 23% thickness-to-chord ratio wings. However, the large aerodynamic drag associated with these high thickness-to-chord ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wingtip devices such as wing extensions and winglets have the potential to increase the whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However, wing-tip devices can add more weight to the aircraft. In this study, multi-objective parametric and optimization methodologies for tiltrotor aircraft with wing extensions and winglets are investigated. The objectives are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model that predicts the whirl flutter speed and a wing structural model that computes strength and weight of a composite wing are developed. An existing aerodynamic model (that predicts the aerodynamic efficiency) is merged with the developed structural and aeroelastic models for the purpose of conducting parametric and optimization studies. The variables of interest are the wing thickness and structural properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor aircraft the chosen as the parent aircraft for this study. Parametric studies reveal that a wing extension of span 25% of the inboard wing increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic efficiency by 8%. Structurally tapering the wing of a tiltrotor equipped with an extension and a winglet can increase the whirl flutter speed by 15% while reducing the wing weight by 7.5%. The baseline design for the optimization is the optimized wing with no extension or winglet. The optimization studies reveal that the optimum design for a cruise speed of 250 knots has an increased aerodynamic efficiency of 7% over the baseline design for only a weight penalty of 3% - thus a better transport range of 5.5% more than the baseline. The optimal design for a cruise speed of 300 knots has an increased aerodynamic efficiency of 5%, a weight penalty of 2.5%, and a better transport range of 3.5% more than the baseline.

  13. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  14. Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1991-01-01

    Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.

  15. Consideration of Unsteady Aerodynamics and Boundary-Layer Transition in Rotorcraft Airfoil Design

    NASA Astrophysics Data System (ADS)

    Oliveira Vieira, Bernardo Augusto de

    Traditional rotorcraft airfoil design is based on steady-flow aerodynamic requirements. The approach assumes a strong correlation between steady and unsteady aerodynamic characteristics, which is often not observed in practice. This is particularly relevant at high speed and high thrust conditions, when the rotor is susceptible to dynamic stall and its many negative consequences. Given the abrupt nature of the phenomena, large margins are typically established to prevent fatigue loads on the blades and pitch links; thus, limiting operation under high altitudes, high payloads, high temperatures, as well as during maneuvers. This work addresses the problem from the perspective of passive airfoil design. Typical design requirements are revisited to include metrics for improved dynamic stall and new ways to qualifying rotorcraft airfoils are proposed. A number of design studies are conducted to better understand the relation between airfoil shape and dynamic stall behavior. The design manipulations are handled by an inversedesign, conformal mapping method, and unsteady Reynolds-averaged Navier-Stokes equations are used to predict the aerodynamic performance under pitch motion. In unsteady flow, the occurrence of aerodynamic lags in the development of pressures, boundary-layer separation, and viscous-inviscid interactions suggest more strict requirements than in steady flow. In order to postpone the onset of dynamic stall, the design needs to handle competing leading- and trailing-edge separation mechanisms, which are heavily influenced by local supersonic flow, strong shock waves, and laminar-turbulent transition effects. It is found that a particular tailoring of the trailing-edge separation development can provide adequate dynamic stall characteristics and minimize penalties in drag and nose-down pitching moment. At the same time, a proper design of the nose shape is required to avoid strong shock waves and prevent premature leading-edge stall. A proof-of-concept airfoil is developed to improve dynamic stall behavior, while meeting stringent requirements on flight conditions away from stall. Trade-offs to the achievement of typical rotor design requirements are discussed. Performance calculations using information obtained from comprehensive analysis (RCAS) based on a UH-60A helicopter are conducted to estimate gains in the rotor stall boundaries. Results are compared to the baseline UH-60A rotor, as well as a blade that uses a VR-12 airfoil inboard. It is found that the new airfoil can provide expansion of the operational envelope compared to the other two configurations, while still reducing hover drag and maintaining very low pitching moments. Some compromises in the drag rise at high Mach numbers are found in comparison to the VR-12 airfoil. By placing the new airfoil up to r/R = 0.80 on the rotor, the baseline UH-60A maximum speed (mu = 0.37) can be achieved with considerable margins to drag rise. Finally, pitching wing calculations are conducted to demonstrate the proposed concepts in three-dimensional flow. Differences in the development of stall between wings using a VR-12 airfoil and the new airfoil are discussed. Despite the complex evolution of 3-D flow structures, the stall onset mechanisms seem to follow the trends obtained with 2-D simulations. The new wing experiences a more favorable dynamic stall inception and considerable decreases in the integrated (3-D) peak pitching moments. The results are promising and give confidence in the design approach. The applied methodology can aid with the design of airfoils that are more suited for operation at high loading conditions.

  16. In-flight Evaluation of Aerodynamic Predictions of an Air-launched Space Booster

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1992-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus (registered trademark) air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which the design margins may be more stringent.

  17. In-flight evaluation of aerodynamic predictions of an air-launched space booster

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1993-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent.

  18. Grid sensitivity for aerodynamic optimization and flow analysis

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1993-01-01

    After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.

  19. Problem of glider models

    NASA Technical Reports Server (NTRS)

    Lippisch, Espenlaub

    1922-01-01

    Any one endeavoring to solve the problem of soaring flight is confronted not only by structural difficulties, but also by the often far more difficult aerodynamic problem of flight properties and efficiency, which can only be determined by experimenting with the finished glider.

  20. Aerodynamic tailoring of the Learjet Model 60 wing

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  1. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  2. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  3. The influence of a yacht's heeling stability on optimum sail design

    NASA Astrophysics Data System (ADS)

    Sneyd, A. D.; Sugimoto, T.

    1997-01-01

    This paper presents fundamental results concerning the optimum design of yacht sails and masts. The aerodynamics of a high aspect ratio sail in uniform flow is analysed using lifting line theory to maximise thrust for a given sail area. The novel feature of this work is that thrust is optimised subject to the constraint that the aerodynamic heeling moment generated by the sail is balanced by the righting moment due to hull buoyancy (and the weight of the keel). Initially, the heel angle is therefore unknown, and determined as part of the solution process. Under the assumption of small heel angle, the problem reduces to minimising a quadratic form in the Fourier coefficients for the circulation distribution along the mast, and a simple analytic solution can be derived. It is found that if the mast is too high, the upper section is unused, and as a consequence there is a theoretically ideal mast height for a yacht of given heeling stability. Under the constraints of given sail area and heeling equilibrium it is found that no advantage is to be gained by allowing reverse circulation near the top of the mast. Various implications for yacht performance are discussed.

  4. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design

    NASA Astrophysics Data System (ADS)

    Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro

    2018-06-01

    A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.

  5. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

  6. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  7. Turbomachinery Airfoil Design Optimization Using Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.

  8. Application of Laminar Flow Control Technology to Long-Range Transport Design

    NASA Technical Reports Server (NTRS)

    Gratzer, L. B.; George-Falvy, D.

    1978-01-01

    The impact of laminar flow control (LFC) technology on aircraft structural design concepts and systems was discussed and the corresponding benefits were shown in terms of performance and fuel economy. Specific topics discussed include: (1) recent advances in laminar boundary layer development and stability analysis techniques in terms of suction requirements and wing suction surface design; (2) validation of theory and realistic simulation of disturbances and off-design conditions by wind tunnel testing; (3) compatibility of aerodynamic design of airfoils and wings with LFC requirements; (4) structural alternatives involving advanced alloys or composites in combinations made possible by advanced materials processing and manufacturing techniques; (5) addition of suction compressor and drive units and their location on the aircraft; and (6) problems associated with operation of LFC aircraft, including accumulation of insects at low altitudes and environmental considerations.

  9. Advanced Design Methodology for Robust Aircraft Sizing and Synthesis

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    1997-01-01

    Contract efforts are focused on refining the Robust Design Methodology for Conceptual Aircraft Design. Robust Design Simulation (RDS) was developed earlier as a potential solution to the need to do rapid trade-offs while accounting for risk, conflict, and uncertainty. The core of the simulation revolved around Response Surface Equations as approximations of bounded design spaces. An ongoing investigation is concerned with the advantages of using Neural Networks in conceptual design. Thought was also given to the development of systematic way to choose or create a baseline configuration based on specific mission requirements. Expert system was developed, which selects aerodynamics, performance and weights model from several configurations based on the user's mission requirements for subsonic civil transport. The research has also resulted in a step-by-step illustration on how to use the AMV method for distribution generation and the search for robust design solutions to multivariate constrained problems.

  10. Some aerodynamic discoveries and related NACA/NASA research programs following World War 2

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    The World War 2 time period ushered in a new era in aeronautical research and development. The air conflict during the war highlighted the need of aircraft with agility, high speed, long range, large payload capability, and in addition, introduced a new concept in air warfare through the use of guided missiles. Following the war, the influx of foreign technology, primarily German, led to rapid advances in jet propulsion and speed, and a host of new problem areas associated with high-speed flight designs were revealed. The resolution of these problems led to a rash of new design concepts and many of the lessons learned, in principle, are still effective today. In addition to the technical lessons learned related to aircraft development programs, it might also be noted that some lessons involving the political and philosophical nature of aircraft development programs are worth attention.

  11. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  12. Forced response unsteady aerodynamics in a multistage compressor

    NASA Astrophysics Data System (ADS)

    Capece, Vincent Ralph

    The fundamental flow physics of the unsteady aerodynamics associated with forced vibrations in turbomachinery are investigated. Unique data are obtained through a series of experiments in a three stage axial flow research compressor which quantify the unsteady harmonic gust interaction phenomena over a range of operating and geometric conditions at high values of reduced frequency. In these experiments the effects of the following on the stator vane unsteady aerodynamics were quantified: (1) the steady aerodynamic loading, (2) the detailed waveform of the aerodynamic forcing function, including the chordwise and transverse gust components, (3) multistage blade row interactions, and (4) the solidity, ranging from a design value of 1.09 to an isolated airfoil. In addition, the effect of flow separation on the unsteady aerodynamics of an isolated airfoil was also investigated.

  13. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight design of the wing, subject to flutter constraints, lift requirement constraints for level flight and side constraints on the planform parameters of the wing using the IMSL subroutine NCONG, which uses successive quadratic programming.

  14. Assessment Of The Aerodynamic And Aerothermodynamic Performance Of The USV-3 High-Lift Re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Richiello, Camillo; Russo, Gennaro

    2011-05-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis carried out with the aim to design a hypersonic flying test bed (FTB), namely USV3. Such vehicle will have to be launched with a small expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. Then, a summary review of the aerodynamic characteristics of two FTB concepts, compliant with a phase-A design level, has been provided hereinafter. Indeed, several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

  15. Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.

  16. Development of a three-dimensional multistage inverse design method for aerodynamic matching of axial compressor blading

    NASA Astrophysics Data System (ADS)

    van Rooij, Michael P. C.

    Current turbomachinery design systems increasingly rely on multistage Computational Fluid Dynamics (CFD) as a means to assess performance of designs. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and evaluation of aerodynamic performance. A design methodology is presented which greatly improves the process of achieving design-point aerodynamic matching. It is based on a three-dimensional viscous inverse design method which generates the blade camber surface based on prescribed pressure loading, thickness distribution and stacking line. This inverse design method has been extended to allow blading analysis and design in a multi-blade row environment. Blade row coupling was achieved through a mixing plane approximation. Parallel computing capability in the form of MPI has been implemented to reduce the computational time for multistage calculations. Improvements have been made to the flow solver to reach the level of accuracy required for multistage calculations. These include inclusion of heat flux, temperature-dependent treatment of viscosity, and improved calculation of stress components and artificial dissipation near solid walls. A validation study confirmed that the obtained accuracy is satisfactory at design point conditions. Improvements have also been made to the inverse method to increase robustness and design fidelity. These include the possibility to exclude spanwise sections of the blade near the endwalls from the design process, and a scheme that adjusts the specified loading area for changes resulting from the leading and trailing edge treatment. Furthermore, a pressure loading manager has been developed. Its function is to automatically adjust the pressure loading area distribution during the design calculation in order to achieve a specified design objective. Possible objectives are overall mass flow and compression ratio, and radial distribution of exit flow angle. To supplement the loading manager, mass flow inlet and exit boundary conditions have been implemented. Through appropriate combination of pressure or mass flow inflow/outflow boundary conditions and loading manager objectives, increased control over the design intent can be obtained. The three-dimensional multistage inverse design method with pressure loading manager was demonstrated to offer greatly enhanced blade row matching capabilities. Multistage design allows for simultaneous design of blade rows in a mutually interacting environment, which permits the redesigned blading to adapt to changing aerodynamic conditions resulting from the redesign. This ensures that the obtained blading geometry and performance implied by the prescribed pressure loading distribution are consistent with operation in the multi-blade row environment. The developed methodology offers high aerodynamic design quality and productivity, and constitutes a significant improvement over existing approaches used to address design-point aerodynamic matching.

  17. An Approach for the Adaptive Solution of Optimization Problems Governed by Partial Differential Equations with Uncertain Coefficients

    DTIC Science & Technology

    2012-05-01

    Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1947(37):79, 1947. [65] G. E. Karniadakis, C.-H. Su, D. Xiu, D. Lucor, C. Schwab, and R. A. Todor ...treatment of uncertainties in aerodynamic design. AIAA Journal, 47(3):646–654, 2009. [106] C. Schwab and R. A. Todor . Karhunen-Loève approximation of random...integrals. Prentice-Hall Inc., Englewood Cliffs, N.J., 1971. Prentice-Hall Series in Automatic Computation. [113] R. A. Todor and C. Schwab

  18. Minimum fuel trajectory for the aerospace-plane

    NASA Technical Reports Server (NTRS)

    Breakwell, John V.; Golan, Oded; Sauvageot, Anne

    1990-01-01

    An overall trajectory for a single-stage-to-orbit vehicle with an initial weight of 234 tons is calculated, and four different propulsion models including turbojet, ramjet, scramjet, and rocket are considered. First, the atmospheric flight in the thicker atmosphere is discussed with emphasis on trajectory optimization, optimization problem, aerodynamic problem, propulsion model, and initial conditions. The performance of turbojet and ramjet-scramjet engines is analyzed; and then the flight to orbit is assessed from the optimization point of view. It is shown that roll modulation saves little during the trajectory, and the combined application of airbreathing propulsion and aerodynamic lift is suggested.

  19. Optimal Spacecraft Attitude Control Using Aerodynamic Torques

    DTIC Science & Technology

    2007-03-01

    His design resembles a badminton shuttlecock and “uses passive aerodynamic drag torques to stabilize pitch and yaw” and active magnetic torque...Ravindran’s and Hughes’ ‘arrow-like’ design. Psiaki notes that “this arrow concept has been modified to become a badminton shuttlecock-type design...panels were placed to the rear of the center-of-mass, similar to a badminton shuttlecock, to provide passive stability about the pitch and yaw axes

  20. Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.

    2013-01-01

    The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

  1. Aerodynamic flight control to increase payload capability of future launch vehicles

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.

    1995-01-01

    The development of new launch vehicles will require that designers use innovative approaches to achieve greater performance in terms of pay load capability. The objective of the work performed under this delivery order was to provide technical assistance to the Contract Officer's Technical Representative (COTR) in the development of ideas and concepts for increasing the payload capability of launch vehicles by incorporating aerodynamic controls. Although aerodynamic controls, such as moveable fins, are currently used on relatively small missiles, the evolution of large launch vehicles has been moving away from aerodynamic control. The COTR reasoned that a closer investigation of the use of aerodynamic controls on large vehicles was warranted.

  2. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  3. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays configurations. Under controlled flow conditions in a wind tunnel, the counter-rotating configuration resulted in a slight improvement in the aerodynamic performance of each turbine compared to the isolated installation. Moreover, the counter-rotating pair improved the power generation of a turbine located downstream of the pair substantially.

  4. Study on Design of High Efficiency and Light Weight Composite Propeller Blade for a Regional Turboprop Aircraft

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lee, Kyungsun

    2013-03-01

    In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.

  5. Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral

    2002-01-01

    Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.

  6. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  7. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1993-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.

  8. Large-scale aeroacoustic research feasibility and conceptual design of test-section inserts for the Ames 80- by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olsen, Larry E.

    1990-01-01

    An engineering feasibility study was made of aeroacoustic inserts designed for large-scale acoustic research on aircraft models in the 80 by 120 foot Wind Tunnel at NASA Ames Research Center. The advantages and disadvantages of likely designs were analyzed. Results indicate that the required maximum airspeed leads to the design of a particular insert. Using goals of 200, 150, and 100 knots airspeed, the analysis indicated a 30 x 60 ft open-jet test section, a 40 x 80 ft open jet test section, and a 70 x 100 ft closed test section with enhanced wall lining, respectively. The open-jet inserts would be composed of a nozzle, collector, diffuser, and acoutic wedges incorporated in the existing 80 x 120 test section. The closed test section would be composed of approximately 5 ft acoustic wedges covered by a porous plate attached to the test section walls of the existing 80 x 120. All designs would require a double row of acoustic vanes between the test section and fan drive to attenuate fan noise and, in the case of the open-jet designs, to control flow separation at the diffuser downstream end. The inserts would allow virtually anechoic acoustic studies of large helicopter models, jets, and V/STOL aircraft models in simulated flight. Model scale studies would be necessary to optimize the aerodynamic and acoustic performance of any of the designs. In all designs studied, the existing structure would have to be reinforced. Successful development of acoustically transparent walls, though not strictly necessary to the project, would lead to a porous-wall test section that could be substituted for any of the open-jet designs, and thereby eliminate many aerodynamic and acoustic problems characteristic of open-jet shear layers. The larger size of the facility would make installation and removal of the insert components difficult. Consequently, scheduling of the existing 80 x 120 aerodynamic test section and scheduling of the open-jet test section would likely be made on an annual or longer basis. The enhanced wall-lining insert would likely be permanent. Although the modifications are technically feasible, the economic practicality of the project was not evaluated.

  9. D/B/F 98: Final Report Of the AIAA Student Aircraft Design, Build & Fly Competition

    DTIC Science & Technology

    1998-01-17

    Jason Nichol Configuration, Materials (Leader) Greg Mondeau Aerodynamics (Leader) April Register Configuration Sung-LiehLin Aerodynamics Jefferson...and Astronautics Team Members: Aruni Athuada Lashan Athuada Jason Bachelor Sebastian Echinique Shelly Ellis Wayne Fulford Benjamin Goff...hierarchy of our design team: AIAA OFFICERS Jennifer Huddle - President Benjamin Goff- Vice President Cheree Kiernan - Secretary Jason Bachelor

  10. Effect of rear end spoiler angle of a sedan car

    NASA Astrophysics Data System (ADS)

    Mashud, Mohammad; Das, Rubel Chandra

    2017-06-01

    Automotive vehicle's performance, safety, maneuverability can be influenced by multi-disciplinary factors such as car engine, tires, aerodynamics, and ergonomics of design. With the recent years, inflation in the fuel prices & the demand to have reduced greenhouse emissions has played a significant role in redefining the car aerodynamics. The shape of the vehicle uses about 3% of fuel to overcome the resistance in urban driving, while it takes 11% of fuel for the highway driving. This considerable high value of fuel usage in highway driving attracts several design engineers to enhance the aerodynamics of the vehicle using minimal design changes. Besides, automotive vehicles have become so much faster experiencing uplift force which creates unexpected accidents. This brings the idea of using external devices, which could be attached to the present vehicle without changing the body. This paper is based on the design, developments and numeral calculation of the effects of external device, which will be spoiler that mounted at the rear side of the sedan car to make the present vehicles more aerodynamically attractive. The influence of rear spoiler on the generated lift, drag, and pressure distributions are investigated and reported using commercially available Autodesk Simulation CFD software tool.

  11. Feasibility study for a numerical aerodynamic simulation facility. Volume 2: Hardware specifications/descriptions

    NASA Technical Reports Server (NTRS)

    Green, F. M.; Resnick, D. R.

    1979-01-01

    An FMP (Flow Model Processor) was designed for use in the Numerical Aerodynamic Simulation Facility (NASF). The NASF was developed to simulate fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The facility is applicable to studying aerodynamic and aircraft body designs. The following general topics are discussed in this volume: (1) FMP functional computer specifications; (2) FMP instruction specification; (3) standard product system components; (4) loosely coupled network (LCN) specifications/description; and (5) three appendices: performance of trunk allocation contention elimination (trace) method, LCN channel protocol and proposed LCN unified second level protocol.

  12. Quiet High Speed Fan (QHSF) Flutter Calculations Using the TURBO Code

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Min, James B.; Mehmed, Oral

    2006-01-01

    A scale model of the NASA/Honeywell Engines Quiet High Speed Fan (QHSF) encountered flutter wind tunnel testing. This report documents aeroelastic calculations done for the QHSF scale model using the blade vibration capability of the TURBO code. Calculations at design speed were used to quantify the effect of numerical parameters on the aerodynamic damping predictions. This numerical study allowed the selection of appropriate values of these parameters, and also allowed an assessment of the variability in the calculated aerodynamic damping. Calculations were also done at 90 percent of design speed. The predicted trends in aerodynamic damping corresponded to those observed during testing.

  13. Aerodynamic and structural studies of joined-wing aircraft

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Smith, Stephen; Gallman, John

    1991-01-01

    A method for rapidly evaluating the structural and aerodynamic characteristics of joined-wing aircraft was developed and used to study the fundamental advantages attributed to this concept. The technique involves a rapid turnaround aerodynamic analysis method for computing minimum trimmed drag combined with a simple structural optimization. A variety of joined-wing designs are compared on the basis of trimmed drag, structural weight, and, finally, trimmed drag with fixed structural weight. The range of joined-wing design parameters resulting in best cruise performance is identified. Structural weight savings and net drag reductions are predicted for certain joined-wing configurations compared with conventional cantilever-wing configurations.

  14. Suborbital spaceplane optimization using non-stationary Gaussian processes

    NASA Astrophysics Data System (ADS)

    Dufour, Robin; de Muelenaere, Julien; Elham, Ali

    2014-10-01

    This paper presents multidisciplinary design optimization of a sub-orbital spaceplane. The optimization includes three disciplines: the aerodynamics, the structure and the trajectory. An Adjoint Euler code is used to calculate the aerodynamic lift and drag of the vehicle as well as their derivatives with respect to the design variables. A new surrogate model has been developed based on a non-stationary Gaussian process. That model was used to estimate the aerodynamic characteristics of the vehicle during the trajectory optimization. The trajectory of thevehicle has been optimized together with its geometry in order to maximize the amount of payload that can be carried by the spaceplane.

  15. Thermophysical fundamentals of cyclonic recirculating heating devices

    NASA Astrophysics Data System (ADS)

    Karpov, S. V.; Zagoskin, A. A.

    2017-10-01

    This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.

  16. Aerodynamics of High-Lift Configuration Civil Aircraft Model in JAXA

    NASA Astrophysics Data System (ADS)

    Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Yamamoto, Kazuomi

    This paper presents basic aerodynamics and stall characteristics of the high-lift configuration aircraft model JSM (JAXA Standard Model). During research process of developing high-lift system design method, wind tunnel testing at JAXA 6.5m by 5.5m low-speed wind tunnel and Navier-Stokes computation on unstructured hybrid mesh were performed for a realistic configuration aircraft model equipped with high-lift devices, fuselage, nacelle-pylon, slat tracks and Flap Track Fairings (FTF), which was assumed 100 passenger class modern commercial transport aircraft. The testing and the computation aimed to understand flow physics and then to obtain some guidelines for designing a high performance high-lift system. As a result of the testing, Reynolds number effects within linear region and stall region were observed. Analysis of static pressure distribution and flow visualization gave the knowledge to understand the aerodynamic performance. CFD could capture the whole characteristics of basic aerodynamics and clarify flow mechanism which governs stall characteristics even for complicated geometry and its flow field. This collaborative work between wind tunnel testing and CFD is advantageous for improving or has improved the aerodynamic performance.

  17. Experimental vibration damping characteristics of the third-stage rotor of a three-stage transonic axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  18. Small, high pressure ratio compressor: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Bryce, C. A.; Erwin, J. R.; Perrone, G. L.; Nelson, E. L.; Tu, R. K.; Bosco, A.

    1973-01-01

    The Small, High-Pressure-Ratio Compressor Program was directed toward the analysis, design, and fabrication of a centrifugal compressor providing a 6:1 pressure ratio and an airflow rate of 2.0 pounds per second. The program consists of preliminary design, detailed areodynamic design, mechanical design, and mechanical acceptance tests. The preliminary design evaluate radial- and backward-curved blades, tandem bladed impellers, impeller-and diffuser-passage boundary-layer control, and vane, pipe, and multiple-stage diffusers. Based on this evaluation, a configuration was selected for detailed aerodynamic and mechanical design. Mechanical acceptance test was performed to demonstrate that mechanical design objectives of the research package were met.

  19. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    PubMed

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Experimental Investigation of Trailing Edge Crenulation Effects on Losses in a Compressor Cascade

    DTIC Science & Technology

    1991-12-01

    useful in designing axial flow compressors . Two dimensional flow may not be attainable, and the lack of 2D flow does not invalidate cascade data...Seymour. "Experimental Flow in Two-dimensional Cascades," Aerodynamic Design of Axial Flow Compressors (Revised), edited by Irving A. Johnson and Robert...34Viscous Flow in Two-dimensional Cas- cades," Aerodynamic Design of Axial Flow Compressors (Revised) edited by Irving A. Johnson and Robert 0. Bullock

  1. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    NASA Astrophysics Data System (ADS)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  2. Design Guide for Aerodynamics Testing of Earth and Planetary Entry Vehicles in a Ballistic Range

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    2017-01-01

    The purpose of this manual is to aid in the design of an aerodynamics test of an earth or planetary entry capsule in a ballistic range. In this manual, much use is made of the results and experience gained in 50 years of ballistic range aerodynamics testing at the NASA Ames Research Center, and in particular, that gained in the last 27 years, while the author was working at NASA Ames. The topics treated herein include: Data to be obtained; flight data needed to design test; Reynolds number and dynamic similarity of flight trajectory and ballistic range test; capabilities of various ballistic ranges; Calculations of swerves due to average and oscillating lift and of drag-induced velocity decreases; Model and sabot design; materials, weights and stresses; Sabot separation; Launches at angle of attack and slapping with paper to produce pitch/yaw oscillations.

  3. Design and Analysis Tool for External-Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2012-01-01

    A computational tool named SUPIN has been developed to design and analyze external-compression supersonic inlets for aircraft at cruise speeds from Mach 1.6 to 2.0. The inlet types available include the axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced Busemann inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flowfield is divided into parts to provide a framework for the geometry and aerodynamic modeling and the parts are defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick analysis. SUPIN provides inlet geometry in the form of coordinates and surface grids useable by grid generation methods for higher-fidelity computational fluid dynamics (CFD) analysis. SUPIN is demonstrated through a series of design studies and CFD analyses were performed to verify some of the analysis results.

  4. Preliminary Structural Sensitivity Study of Hypersonic Inflatable Aerodynamic Decelerator Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2014-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.

  5. Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2001-01-01

    The combined radiation/conduction heat transfer in high-temperature multi-layer insulations was modeled using a finite volume numerical model. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements, and by transient thermal tests simulating re-entry aerodynamic heating conditions. A design of experiments technique was used to investigate optimum design of multi-layer insulations for re-entry aerodynamic heating. It was found that use of 2 mm foil spacing and locating the foils near the hot boundary with the top foil 2 mm away from the hot boundary resulted in the most effective insulation design. A 76.2 mm thick multi-layer insulation using 1, 4, or 16 foils resulted in 2.9, 7.2, or 22.2 percent mass per unit area savings compared to a fibrous insulation sample at the same thickness, respectively.

  6. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  7. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20xmore » to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.« less

  8. Study of Automotive Aerodynamic Drag

    DOT National Transportation Integrated Search

    1975-09-01

    Reductions of aerodynamic drag in the 20-25% range through the use of several established drag-reduction devices and minor design changes have been demonstrated on three large sales-volume 1974 and 1975 model American automobiles. Comparisons of test...

  9. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    NASA Technical Reports Server (NTRS)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  10. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  11. Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter

    NASA Astrophysics Data System (ADS)

    Summers, Alexander

    The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.

  12. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  13. Study on aerodynamics characteristics an urban concept car for energy-efficient race

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Siregar, M. R.; Kawai, H.

    2018-03-01

    "Horas Mesin USU" is a prototype of urban concept vehicle designed by University of Sumatera Utara to participate in the energy-efficient competition. This paper deals with a numerical study on aerodynamic characteristics of the Horas Mesin USU. The numerical analyses are carried out by solving the governing equations using CFD FLUENT commercial code. The turbulent flow is closed using k-epsilon turbulence model. In the results, pathline, velocity vector and pressure distribution are plotted. By using the pressure distributions, drag and lift coefficients are calculated. In order to make a comparison, the aerodynamic characteristics of the present design are compared with commercial city car Ford-Fiesta. The averaged drag coefficients of Horas Mesin USU and Ford-Fiesta are 0.24320 and 0.29598, respectively. On the other hand, the averaged lift coefficients of the Horas Mesin USU and Ford-Fiesta are 0.03192202 and 0.09485621, respectively. This fact suggests that Ford-Fiesta has a better aerodynamic performance in comparison with Horas Mesin USU. The flow field analysis shows that there are many modifications can be proposed to improve the aerodynamic performance of the Horas Mesin USU. It is suggested to perform further analysis to improve the aerodynamic performance of Horas Mesin USU.

  14. An assessment of the future roles of the National Transonic Facility and the Langley Transonic Dynamics Tunnel in aeroelastic and unsteady aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1980-01-01

    The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.

  15. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.

  16. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    NASA Astrophysics Data System (ADS)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  17. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

  18. Aerodynamic Forces and Moments of a Seaplane on the Water

    NASA Technical Reports Server (NTRS)

    Kohler, M

    1933-01-01

    This report gives the results of wind-tunnel tests with a seaplane model as a contribution to the solution of the aerodynamic problems. In the tests it was assumed that the seaplane rested motionless on the water and was exposed, in various positions with respect to the supposedly flat surface of the water, to a uniform air current 0 to 360 degrees.

  19. Determination of aerodynamic sensitivity coefficients for wings in transonic flow

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.; El-Banna, Hesham M.

    1992-01-01

    The quasianalytical approach is applied to the 3-D full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. The quasianalytical approach is believed to be reasonably accurate and computationally efficient for 3-D problems.

  20. Supersonic compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are providedmore » having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less

Top