Science.gov

Sample records for aerodynamic diameter pm10

  1. Overview of PM-10 base year emissions inventories. Final report, January-November 1996

    SciTech Connect

    vanderWilden, P.

    1997-11-01

    The Clean Air Act Amendments (CAAA) of 1990 required areas designated as being in violation of the National Ambient Air Quality Standards for particle matter measuring less than or equal to 10 micrometers in aerodynamic mass median diameter (PM-10) to submit State Implementation Plans (SIPs) beginning with Base Year inventories. In an effort to support the successful implementation of the CAAA and to provide support and information to the transportation community and state planning agencies, the Federal Highway Administration (FHWA) is seeking to provide an overview of PM-10 requirements and SIP contents. This document reviews U.S. EPA`s PM-10 guidance documentation and the contents of 1990 Base Year PM-10 SIPs from various regions throughout the contry including: Denver, CO; Boise, ID; Spokane, WA; Phoenix, AZ; and Presque Isle, ME. The report discusses the contents of PM-10 emissions estimation methodologies, PM-10 modeling techniques, and PM-10 control measures.

  2. Ambient endotoxin concentrations in PM10 from Southern California.

    PubMed Central

    Mueller-Anneling, Linda; Avol, Ed; Peters, John M; Thorne, Peter S

    2004-01-01

    Concentrations of endotoxin in urban air pollution have not previously been extensively characterized. We measured 24-hr levels of PM10 (particulate matter < 10 microm in aerodynamic diameter) and the associated endotoxin component once every 6 weeks for 1 year in 13 communities in Southern California. All the samples collected had detectable PM10 and endotoxin levels. The geometric mean PM10 was 34.6 microg/m3 [geometric SD (GSD), 2.1; range, 3.0-135]. By volume, the endotoxin geometric mean was 0.44 endotoxin units (EU)/m3 (GSD, 3.1; range, 0.03-5.44). Per unit material collected, the geometric mean of endotoxin collected was 13.6 EU/mg (GSD, 3.2; range, 0.7-96.8). No correlation was found between endotoxin concentrations and other ambient pollutants concurrently measured [ozone, nitrogen dioxide, total acids, or PM2.5 (particulate matter < 2.5 micro m in aerodynamic diameter]. PM10 and endotoxin concentrations were significantly correlated, most strongly in summer. Samples collected in more rural and agricultural areas had lower PM10 and mid-range endotoxin levels. The high desert and mountain communities had lower PM10 levels but endotoxin levels comparable with or higher than the rural agricultural sites. By volume, endotoxin levels were highest at sites downwind of Los Angeles, California, which were also the locations of highest PM10. Endotoxin concentrations measured in this study were all < 5.5 EU/m3, which is lower than recognized thresholds for acute adverse health effects for occupational exposures but in the same range as indoor household concentrations. This study provides the first extensive characterization of endotoxin concentration across a large metropolitan area in relation to PM10 and other pollutant monitoring, and supports the need for studies of the role of endotoxin in childhood asthma in urban settings. PMID:15064165

  3. 75 FR 27776 - Adequacy Determination for the Motor Vehicle Emissions Budgets in the Truckee Meadows PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... Determination for the Motor Vehicle Emissions Budgets in the Truckee Meadows PM 10 Maintenance Plan for... motor vehicle emissions budgets (MVEBs) for particles with an aerodynamic diameter of a nominal 10... Protection on May 5, 2010 stating that the motor vehicle emissions budgets for PM 10 in the submitted...

  4. Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City.

    PubMed

    Chirino, Yolanda I; Sánchez-Pérez, Yesennia; Osornio-Vargas, Álvaro Román; Rosas, Irma; García-Cuellar, Claudia María

    2015-09-01

    The PM10 airborne particulate matter with an aerodynamic diameter ≤10 µm is considered as a risk factor of various adverse health outcomes, including lung cancer. Here we described the sampling and composition of PM10 collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City. The PM10 was collected with a high-volume sampler in the above mentioned locations and both types of PM10 sampled were characterized by the content of polycyclic aromatic hydrocarbons (PAHs), metals, and endotoxin. The endotoxin PM10 content from IZ and CZ displayed 138.4 UE/mg and 170.4 UE/mg of PM10, respectively.

  5. 77 FR 32024 - Designation of Areas for Air Quality Planning Purposes; State of Arizona; Pinal County; PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... particles with an aerodynamic diameter less than or equal to a nominal 10 micrometers (PM 10 ), and... includes only those particles with an aerodynamic diameter less than or equal to a nominal 10 micrometers.... The use of a multi-factor test in determining which areas contribute to violations in a nearby...

  6. Monetary Valuation of PM10-Related Health Risks in Beijing China: The Necessity for PM10 Pollution Indemnity

    PubMed Central

    Yin, Hao; Xu, Linyu; Cai, Yanpeng

    2015-01-01

    Severe health risks caused by PM10 (particulate matter with an aerodynamic diameter ≤10 μm) pollution have induced inevitable economic losses and have rendered pressure on the sustainable development of society as a whole. In China, with the “Polluters Pay Principle”, polluters should pay for the pollution they have caused, but how much they should pay remains an intractable problem for policy makers. This paper integrated an epidemiological exposure-response model with economics methods, including the Amended Human Capital (AHC) approach and the Cost of Illness (COI) method, to value the economic loss of PM10-related health risks in 16 districts and also 4 functional zones in Beijing from 2008 to 2012. The results show that from 2008 to 2012 the estimated annual deaths caused by PM10 in Beijing are around 56,000, 58,000, 63,000, 61,000 and 59,000, respectively, while the economic losses related to health damage increased from around 23 to 31 billion dollars that PM10 polluters should pay for pollution victims between 2008 and 2012. It is illustrated that not only PM10 concentration but also many other social economic factors influence PM10-related health economic losses, which makes health economic losses show a time lag discrepancy compared with the decline of PM10 concentration. In conclusion, health economic loss evaluation is imperative in the pollution indemnity system establishment and should be considered for the urban planning and policy making to control the burgeoning PM10 health economic loss. PMID:26308020

  7. Monetary Valuation of PM10-Related Health Risks in Beijing China: The Necessity for PM10 Pollution Indemnity.

    PubMed

    Yin, Hao; Xu, Linyu; Cai, Yanpeng

    2015-08-21

    Severe health risks caused by PM10 (particulate matter with an aerodynamic diameter ≤10 μm) pollution have induced inevitable economic losses and have rendered pressure on the sustainable development of society as a whole. In China, with the "Polluters Pay Principle", polluters should pay for the pollution they have caused, but how much they should pay remains an intractable problem for policy makers. This paper integrated an epidemiological exposure-response model with economics methods, including the Amended Human Capital (AHC) approach and the Cost of Illness (COI) method, to value the economic loss of PM10-related health risks in 16 districts and also 4 functional zones in Beijing from 2008 to 2012. The results show that from 2008 to 2012 the estimated annual deaths caused by PM10 in Beijing are around 56,000, 58,000, 63,000, 61,000 and 59,000, respectively, while the economic losses related to health damage increased from around 23 to 31 billion dollars that PM10 polluters should pay for pollution victims between 2008 and 2012. It is illustrated that not only PM10 concentration but also many other social economic factors influence PM10-related health economic losses, which makes health economic losses show a time lag discrepancy compared with the decline of PM10 concentration. In conclusion, health economic loss evaluation is imperative in the pollution indemnity system establishment and should be considered for the urban planning and policy making to control the burgeoning PM10 health economic loss.

  8. 77 FR 38399 - Approval and Promulgation of Implementation Plans; Arizona; Nogales PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ...EPA is proposing to approve a state implementation plan revision submitted by the Arizona Department of Environmental Quality to address the moderate area PM10, particulate matter with an aerodynamic diameter of less than or equal to a nominal ten micrometers, planning requirements for the Nogales nonattainment area. Consistent with this proposal, EPA is also proposing to approve......

  9. 78 FR 27168 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Mendenhall Valley PM10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Limited Maintenance Plan (LMP) for particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers (PM 10 ) submitted by the State of Alaska on May 8, 2009 for the Mendenhall Valley nonattainment area (Mendenhall Valley NAA), and the State's request to redesignate the area to attainment...

  10. The Impact of African Dust on PM10 Air Quality in the Caribbean Basin

    NASA Astrophysics Data System (ADS)

    Prospero, J. M.

    2015-12-01

    Decades of aerosol measurements on Barbados and Miami have yielded a broad picture of African mineral dust transport to the Caribbean Basin. These measurements show that in summer the aerosol mass is often dominated by dust. At such times over 90% of the dust mass is comprised of particles less than 10 μm aerodynamic diameter and thus fits the EPA criteria for PM10. A number of sites in the Caribbean monitor PM10 using the same instrumentation commonly deployed in European and United States networks. By comparing data from individual islands that have multiple monitoring sites (e.g., Puerto Rico, Martinique, Guadeloupe), it is shown that during dust events PM10 concentrations track very closely and that local sources have a minor impact on PM10 above about 15 to 20 μg m-3. Moreover the PM10 measurements are coherent with the movement of dust clouds over the islands as observed by satellites. In this way dust movement can be tracked at PM10 sites along the Gulf and southeast coasts of the United States. To assess the specific impact of African dust on PM10 in the region, I compare the daily records of dust measurements at Miami and Barbados with concurrent measurements made at proximate PM10 sites. I then use these relationships and the long term dust measurements at Barbados and Miami to assess the long-term variability of PM10 across the region. At Barbados the record goes back 50 years and provides a basis of assessing the effects of climate variability on PM10 transport. This study shows that there is great variability on scales ranging from daily to decadal. The impact of the droughts in the 1970s and 1980s was particularly significant. Across the Caribbean, the rates of exceedances of the WHO PM10 guideline is comparable to those observed in many major urban areas in Europe and the US. The dominance of dust in large PM10 events and the absence of major pollution sources on many islands offers the opportunity to study the health impacts of desert dust in

  11. Evaluation of the Impact of Low Emission Zone and Heavy Traffic Ban in Munich (Germany) on the Reduction of PM10 in Ambient Air

    PubMed Central

    Fensterer, Veronika; Küchenhoff, Helmut; Maier, Verena; Wichmann, Heinz-Erich; Breitner, Susanne; Peters, Annette; Gu, Jianwei; Cyrys, Josef

    2014-01-01

    Concentrations of ambient fine particles (PM10: particles with an aerodynamic diameter ≤ 10 µm) are still exceeding current air quality standards in many European cities. In Munich (Germany), low emission zone and transit bans for heavy-duty vehicles were introduced in 2008 aiming at reduction of traffic emissions contribution to PM10. The effects of those measures on PM10 mass concentrations in Munich were investigated with a semiparametric regression model for modeling PM10 levels adjusted for time, background pollution, public holidays and wind direction. The reduction of PM10 concentration after the introduction of the measures was larger at a traffic monitoring site (13.0 %, 19.6 % in summer, and 6.8 % in winter) and smaller in urban background (4.5 %, 5.7 % in summer, and 3.2 % in winter). The effect was most pronounced on Fridays and on the weekends in summer. PMID:24828081

  12. Temporal analysis of PM10 in Metropolitan Monterrey, México.

    PubMed

    González-Santiago, Omar; Badillo-Castañeda, Christian T; Kahl, Jonathan D W; Ramírez-Lara, Evangelina; Balderas-Renteria, Isaías

    2011-05-01

    The Monterrey Metropolitan Area (MMA) is the third largest city in Mexico. Few studies have been carried out regarding its air pollution. The aim of this study was to analyze the temporal behavior of PM10 (particulate matter < or =10 microm in aerodynamic diameter). Data reported by the "Sistema Integral de Monitoreo Ambiental" (Integrated Environmental Monitoring System) network from 2006 to 2008 were used. PM10 levels were compared among the stations by year, season, and day of week. A bootstrap technique was used to obtain subsamples to which Student's t test and ANOVA were applied. PM10 levels were high and exceeded the annual limit of 50 microg/m3 set up by the Mexican standard Norma Oficial Mexicana NOM-025-SSA1-1993. These levels could have serious health effects. The southwest zone of MMA had the highest levels of PM10 during the period studied. Winter was the most polluted season, and summer was the least polluted season. Thursday and Friday were the most polluted days, and Sunday was the least polluted day. The hours with the highest levels of PM10 were 8:00 to 10:00 a.m., whereas nighttime hours were the cleanest.

  13. CDH13 gene-by-PM10 interaction effect on lung function decline in Korean men.

    PubMed

    Kim, Hyun-Jin; Min, Jin-Young; Min, Kyoung-Bok; Seo, Yong-Seok; Sung, Joohon; Yun, Jae Moon; Kwon, Hyuktae; Cho, Belong; Park, Jin-Ho; Kim, Jong-Il

    2017-02-01

    Lung function can be influenced by genetic factors, which may explain individual differences in susceptibility to the effects of air pollution. This study investigated whether the effect of particulate matter with an aerodynamic diameter ≤10 μm (PM10) on lung function is modified by Cadherin 13 (CDH13) genetic variants in Korean men. This study included a total of 1827 men who were recruited from two health check-up centers, and the annual average PM10 concentrations were used. A total of 200 single-nucleotide polymorphisms (SNPs) of the CDH13 gene were selected for this study. We found that a SNP in CHD13 intron, rs1862830, had the strongest associations with both forced expiratory volume in 1 s (FEV1) (pint = 1.90 × 10(-4)) and forced vital capacity (FVC) (pint = 1.88 × 10(-3)) by interacting with PM10 in a recessive model. A stratified association analysis according to this SNP showed that PM10 in the AG or GG genotype group was not significantly associated with either FEV1 or FVC, whereas in homozygous risk-allele carriers (AA), FEV1 and FVC decreased significantly (by 3.8% and 3.1%, respectively) per 10 μg/m(3) of increase in PM10 concentration. This pattern was also reproducible in the independent subgroups that were classified according to recruitment site. The present study replicated the CDH13 gene-by-PM10 interaction effect on lung function at the gene level, revealing that a genetic variant of CDH13 modified the relationship between PM10 and lung function decline in Korean men.

  14. Dust deposition and ambient PM10 concentration in northwest China: spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Sharratt, Brenton; Chen, Xi; Wang, Zi-Fa; Liu, Lian-You; Guo, Yu-Hong; Li, Jie; Chen, Huan-Sheng; Yang, Wen-Yi

    2017-02-01

    Eolian dust transport and deposition are important geophysical processes which influence global bio-geochemical cycles. Currently, reliable deposition data are scarce in central and east Asia. Located at the boundary of central and east Asia, Xinjiang Province of northwestern China has long played a strategic role in cultural and economic trade between Asia and Europe. In this paper, we investigated the spatial distribution and temporal variation in dust deposition and ambient PM10 (particulate matter in aerodynamic diameter ≤ 10 µm) concentration from 2000 to 2013 in Xinjiang Province. This variation was assessed using environmental monitoring records from 14 stations in the province. Over the 14 years, annual average dust deposition across stations in the province ranged from 255.7 to 421.4 t km-2. Annual dust deposition was greater in southern Xinjiang (663.6 t km-2) than northern (147.8 t km-2) and eastern Xinjiang (194.9 t km-2). Annual average PM10 concentration across stations in the province varied from 100 to 196 µg m-3 and was 70, 115 and 239 µg m-3 in northern, eastern and southern Xinjiang, respectively. The highest annual dust deposition (1394.1 t km-2) and ambient PM10 concentration (352 µg m-3) were observed in Hotan, which is located in southern Xinjiang and at the southern boundary of the Taklamakan Desert. Dust deposition was more intense during the spring and summer than other seasons. PM10 was the main air pollutant that significantly influenced regional air quality. Annual average dust deposition increased logarithmically with ambient PM10 concentration (R2 ≥ 0.81). While the annual average dust storm frequency remained unchanged from 2000 to 2013, there was a positive relationship between dust storm days and dust deposition and PM10 concentration across stations. This study suggests that sand storms are a major factor affecting the temporal variability and spatial distribution of dust deposition in northwest China.

  15. A wood-strand material for wind erosion control: effects on total sediment loss, PM10 vertical flux, and PM10 loss.

    PubMed

    Copeland, N S; Sharratt, B S; Wu, J Q; Foltz, R B; Dooley, J H

    2009-01-01

    Fugitive dust from eroding land poses risks to environmental quality and human health, and thus, is regulated nationally based on ambient air quality standards for particulate matter with mean aerodynamic diameter < or = 10 microm (PM10) established in the Clean Air Act. Agricultural straw has been widely used for rainfall-induced erosion control; however, its performance for wind erosion mitigation has been less studied, in part because straw is mobile at moderate wind velocities. A wood-based long-strand material has been developed for rainfall-induced erosion control and has shown operational promise for control of wind-induced erosion and dust emissions from disturbed sites. The purpose of this study was to evaluate the efficacy of both agricultural straw and wood-strand materials in controlling wind erosion and fugitive dust emissions under laboratory conditions. Wind tunnel tests were conducted to compare wood strands of several geometries to agricultural wheat straw and bare soil in terms of total sediment loss, PM10 vertical flux, and PM10 loss. Results indicate that the types of wood strands tested are stable at wind speeds of up to 18 m s(-1), while wheat straw is only stable at speeds of up to 6.5 m s(-1). Wood strands reduced total sediment loss and PM10 emissions by 90% as compared to bare soil across the range of wind speeds tested. Wheat straw did not reduce total sediment loss for the range of speeds tested, but did reduce PM10 emissions by 75% compared to a bare soil at wind speeds of up to 11 m s(-1).

  16. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    NASA Astrophysics Data System (ADS)

    Bonifacio, Henry F.; Maghirang, Ronaldo G.; Trabue, Steven L.; McConnell, Laura L.; Prueger, John H.; Bonifacio, Edna R.

    2015-01-01

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentration profiles at the feedlot were measured using gravimetric samplers, and micrometeorological parameters were monitored with eddy covariance instrumentation during the nine 4- to 5-day intensive sampling campaigns from May 2010 through September 2011. Emission fluxes were determined from the measured concentration gradients and meteorological parameters using the flux-gradient technique. PM ratios based on calculated emission fluxes were 0.28 for PM2.5/PM10, 0.12 for PM2.5/TSP, and 0.24 for PM10/TSP, indicating that a large fraction of the PM emitted at the studied feedlot was in the coarse range of aerodynamic diameter, >10 μm. Median daily emission factors were 57, 21, and 11 kg 1000-head (hd)-1 d-1 for TSP (n = 20 days), PM10 (n = 19 days), and PM2.5 (n = 11 days), respectively. Cattle pen surface moisture contents of at least 20-30% significantly reduced both TSP and PM10 emissions, but moisture's effect on PM2.5 emissions was not established due to difficulty in measuring PM2.5 concentrations under low-PM conditions.

  17. Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks.

    PubMed

    Abderrahim, Hamza; Chellali, Mohammed Reda; Hamou, Ahmed

    2016-01-01

    Air quality forecasting system has acquired high importance in atmospheric pollution due to its negative impacts on the environment and human health. The artificial neural network is one of the most common soft computing methods that can be pragmatic for carving such complex problem. In this paper, we used a multilayer perceptron neural network to forecast the daily averaged concentration of the respirable suspended particulates with aerodynamic diameter of not more than 10 μm (PM10) in Algiers, Algeria. The data for training and testing the network are based on the data sampled from 2002 to 2006 collected by SAMASAFIA network center at El Hamma station. The meteorological data, air temperature, relative humidity, and wind speed, are used as inputs network parameters in the formation of model. The training patterns used correspond to 41 days data. The performance of the developed models was evaluated on the basis index of agreement and other statistical parameters. It was seen that the overall performance of model with 15 neurons is better than the ones with 5 and 10 neurons. The results of multilayer network with as few as one hidden layer and 15 neurons were quite reasonable than the ones with 5 and 10 neurons. Finally, an error around 9% has been reached.

  18. 75 FR 44142 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... AGENCY 40 CFR Part 81 Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho... determination that the Fort Hall PM-10 nonattainment area on the Fort Hall Indian Reservation in Idaho has... less than or equal to 10 microns (PM-10) under the ] Clean Air Act. EPA's final determination that...

  19. Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and cytoskeletal remodeling are associated with the senescence-like phenotype after airborne particulate matter (PM(10)) exposure in lung cells.

    PubMed

    Sánchez-Pérez, Yesennia; Chirino, Yolanda I; Osornio-Vargas, Álvaro Román; Herrera, Luis A; Morales-Bárcenas, Rocío; López-Saavedra, Alejandro; González-Ramírez, Imelda; Miranda, Javier; García-Cuellar, Claudia María

    2014-02-10

    The exposure to particulate matter with a mean aerodynamic diameter ≤10 μm (PM10) from urban zones is considered to be a risk factor in the development of cancer. The aim of this work was to determine if PM10 exposure induces factors related to the acquisition of a neoplastic phenotype, such as cytoskeletal remodeling, changes in the subcellular localization of p21(CIP1/WAF1), an increase in β-galactosidase activity and changes in cell cycle. To test our hypothesis, PM10 from an industrial zone (IZ) and a commercial zone (CZ) were collected, and human adenocarcinoma lung cell cultures (A549) were exposed to a sublethal PM10 concentration (10 μg/cm(2)) for 24 h and 48 h. The results showed that PM10 exposure induced an increase in F-actin stress fibers and caused the cytoplasmic stabilization of p21(CIP1/WAF1) via phosphorylation at Thr(145) and Ser(146) and the phosphorylation of ERK1/2 on Thr(202). Changes in the cell cycle or apoptosis were not observed, but an increase in β-galactosidase activity was detected. The PM10 from CZ caused more dramatic effects in lung cells. We conclude that PM10 exposure induced cytoplasmic p21(CIP1/WAF1) retention, ERK1/2 activation, cytoskeleton remodeling and the acquisition of a senescence-like phenotype in lung cells. These alterations could have mechanistic implications regarding the carcinogenic potential of PM10.

  20. PM10 Emission, Sandblasting Efficiency and Vertical Entrainment During Successive Wind-Erosion Events: A Wind-Tunnel Approach

    NASA Astrophysics Data System (ADS)

    Panebianco, J. E.; Mendez, M. J.; Buschiazzo, D. E.

    2016-11-01

    A wind-tunnel experiment was carried out to measure saltation and PM10 (particulate matter with a mean aerodynamic diameter less than 10 μm) emission during three successive wind-erosion events on three different surfaces: an unpaved road and two different textured agricultural soils: a sandy loam and a loamy sand. The total horizontal mass transport ( Q) and the PM10 emissions ( E), were measured at two friction velocities: 0.2 and 0.3 m s^{-1}. Results indicated that Q decreased rapidly in time over all surfaces, as the Q values were only 13-17 % of the amount registered during the first event. Similar trends were detected at both wind speeds. However, E values showed a lower relative decrease in the second wind-erosion event at the lower wind speed (25-51 % of the initial amounts) than at the higher wind speed (19-28 % of the initial amounts) over all surfaces. After the second wind-erosion event, both Q and E values remained constant except for the unpaved road, where both values decreased by 50 % in relation to the second event. Emission from the agricultural soils was sustained over successive wind-erosion events even when saltation was low. The sandblasting efficiency for PM10 emission was found to be higher for agricultural soils than for the unpaved road, and increased over wind-erosion events particularly in agricultural soils, and this was also reflected in the PM10 vertical entrainment. Results suggest that sandblasting efficiency and PM10 vertical distribution can change among wind-erosion events even for the same surface. The saltation fraction to PM10 content ratio can be a simple indicator of the general behaviour of an emitting surface during successive wind-erosion events.

  1. Seasonal PM 10 dynamics in Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Aryal, Rupak Kumar; Lee, Byeong-Kyu; Karki, Rahul; Gurung, Anup; Kandasamy, Jaya; Pathak, Bipin Kumar; Sharma, Suman; Giri, Nirita

    Data on ambient PM 10 levels from six locations in the Kathmandu Valley recorded by means of continuous sampling using low volume air samplers from October 2002 to March 2007 were used to investigate PM 10 concentration dynamics in the valley. Monthly average data of the urban areas, which have much higher concentrations than the rural areas, even exceeded the daily standard level of PM 10, in Nepal, 120 μm m -3. Repetitive peaks and troughs each year indicated annual patterns. Monthly average showed seasonal patterns are different between rural area and urban sites. The highest monthly average concentration was observed in February, the end of winter in urban areas where as in rural found in spring, and the lowest concentration was observed in July (monsoon period). The continuous increase in PM 10 concentration from December to February in urban areas showed accumulation of PM 10 in the ambient air during the wintertime. Rainfall in June and September, during the monsoon period, caused a PM 10 concentration decrease, demonstrating that precipitation is effective in removing PM 10 from the valley. Cross correlation analyses among the PM 10 levels measured simultaneously at the sampling stations showed a poor relationship in winter; however, there were good relationships in the monsoon and post-monsoon seasons. Both the PM 10 concentration and the air-mixing environment in the valley were closely associated with the temperature and wind speed.

  2. Daily concentrations trend and change point of particulate matter (PM10) in Pahang, Malaysia - A case study at Balok Baru

    NASA Astrophysics Data System (ADS)

    Wahid, Sharifah Norhuda Syed; Ujang, Suriyati

    2015-02-01

    Daily concentration of particulate matter with aerodynamic diameter less than 10 μm (PM10) could be very harmful to human health such as respiratory and cardiovascular diseases. The purpose of this paper is to describe on the experiences of air pollutants in the state of Pahang, Malaysia during the first quarter of year 2014. Data were gathered from available automatic air quality monitoring stations at Balok Baru, Pahang through the assistance from the Department of Environment. Cumulative sum technique shows that a change occurred at March, 8th with 88 μg/ m3, moderate air quality level. This change point indicated that the PM10 level started to have a potential in moderate or worse level. In addition, time series regression analysis shows that the trend of daily concentrations of Balok Baru station was an upward trend and for additional day, the PM10 level was increased by 0.1117 μg/ m3. It is hoped that this study will give a significant contribution for future researcher in the area of the study on the risk of PM10 or other types of air pollutant to air quality and also human health.

  3. Indoor/outdoor of PM10 relationships and its water-soluble ions composition in selected primary schools in Malaysia

    NASA Astrophysics Data System (ADS)

    Mohamad, Noorlin; Latif, Mohd Talib

    2013-11-01

    Measurements of PM10 and water-soluble ions were carried out on indoor and outdoor PM10 (particles > 10 μm in aerodynamic diameter) aerosols sampled at selected primary schools of Kuala Lumpur (S1) and Putrajaya (S2), respectively. Samples were collected using a low volume sampler on Teflon filters. The water-soluble ions chloride (Cl-), nitrate (NO3-), sulfate (SO42-), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+) and ammonium (NH4+) was analyzed using ion chromatography. The results showed that the indoor PM10 mass concentrations in S1 and S2 were 96.6 and 69.5 μg/m3, while the outdoor PM10 mass concentrations were 80.1 and 85.2 μg/m3, respectively. This indicated that NO3- were the most dominant ions, followed by SO42-, Ca2+, K+ and Na+, while Cl-, Mg2+ and Na+ were present at low concentrations. Pearson's correlation test applied to all the data showed high correlation between SO42- and NO3-, indicating a common anthropogenic origin. In addition, the correlations between Na+ and Ca2+ indicated crustal origins that significantly contributed to human exposure.

  4. Effects of Meteorological Parameters and PM10 on the Incidence of Hand, Foot, and Mouth Disease in Children in China

    PubMed Central

    Huang, Ruixue; Bian, Guolin; He, Tianfeng; Chen, Lv; Xu, Guozhang

    2016-01-01

    Hand, foot, and mouth disease (HFMD) is a globally-prevalent infectious disease. However, few data are available on prevention measures for HFMD. The purpose of this investigation was to evaluate the impacts of temperature, humidity, and air pollution, particularly levels of particulate matter with an aerodynamic diameter 10 micrometers (PM10), on the incidence of HFMD in a city in Eastern China. Daily morbidity, meteorological, and air pollution data for Ningbo City were collected for the period from January 2012 to December 2014. A total of 86,695 HFMD cases were enrolled in this study. We used a distributed lag nonlinear model (DLNM) with Poisson distribution to analyze the nonlinear lag effects of daily mean temperature, daily humidity, and found significant relationships with the incidence of HFMD; in contrast, PM10 level showed no relationship to the incidence of HFMD. Our findings will facilitate the development of effective preventive measures and early forecasting of HFMD outbreaks. PMID:27171104

  5. Optimized circulation and weather type classifications relating large-scale atmospheric conditions to local PM10 concentrations in Bavaria

    NASA Astrophysics Data System (ADS)

    Weitnauer, C.; Beck, C.; Jacobeit, J.

    2013-12-01

    In the last decades the critical increase of the emission of air pollutants like nitrogen dioxide, sulfur oxides and particulate matter especially in urban areas has become a problem for the environment as well as human health. Several studies confirm a risk of high concentration episodes of particulate matter with an aerodynamic diameter < 10 μm (PM10) for the respiratory tract or cardiovascular diseases. Furthermore it is known that local meteorological and large scale atmospheric conditions are important influencing factors on local PM10 concentrations. With climate changing rapidly, these connections need to be better understood in order to provide estimates of climate change related consequences for air quality management purposes. For quantifying the link between large-scale atmospheric conditions and local PM10 concentrations circulation- and weather type classifications are used in a number of studies by using different statistical approaches. Thus far only few systematic attempts have been made to modify consisting or to develop new weather- and circulation type classifications in order to improve their ability to resolve local PM10 concentrations. In this contribution existing weather- and circulation type classifications, performed on daily 2.5 x 2.5 gridded parameters of the NCEP/NCAR reanalysis data set, are optimized with regard to their discriminative power for local PM10 concentrations at 49 Bavarian measurement sites for the period 1980 to 2011. Most of the PM10 stations are situated in urban areas covering urban background, traffic and industry related pollution regimes. The range of regimes is extended by a few rural background stations. To characterize the correspondence between the PM10 measurements of the different stations by spatial patterns, a regionalization by an s-mode principal component analysis is realized on the high-pass filtered data. The optimization of the circulation- and weather types is implemented using two representative

  6. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores

    NASA Astrophysics Data System (ADS)

    Reponen, Tiina; Willeke, Klaus; Ulevicius, Vidmantas; Reponen, Auvo; Grinshpun, Sergey A.

    Exposure to airborne fungal spores may cause respiratory symptoms. The hygroscopicity of airborne spores may significantly affect their aerodynamic diameter, and thus change their deposition pattern in the human respiratory tract. We have investigated the change in aerodynamic diameter of five different fungal species as a function of relative humidity. Liquid and dry dispersion methods were explored for the aerosolization of the fungal spores. A new system that produces non-aggregated spore aerosol directly from a moldy surface was designed and found suitable for this study. The spores were aerosolized from a mold growth on agar by ducting dry air over the surface, and spore chains in the flow were broken up by passing the entire flow through a critical orifice. Size-spectrometric measurements with an Aerodynamic Particle Sizer showed that the aerodynamic diameter of the tested fungal spores does not change significantly when the relative humidity increases from 30% to 90%. A more distinct spore size increase was found at a relative humidity of ˜ 100%. The highest change of the aerodynamic diameter was found with Cladosporium cladosporioides: it increased from 1.8 μm to 2.3 μm when the relative humidity increased from 30% to ˜ 100%. The size increase corresponds to an approximate doubling of the particle volume. In order to estimate the effect of hygroscopic growth on the respiratory deposition of spores, the mean depositions in the human respiratory tract were calculated for fungal spores with various size changes due to hygroscopic growth. A recently developed model of the International Commission of Radiological Protection was used for the respiratory deposition calculations. We found that the 27% increase in Cladosporium size results in a 20-30% increase in the respiratory deposition of these spores. We conclude that most fungal spores are only slightly hygroscopic and the hygroscopic increase does not significantly affect their respiratory deposition. Our

  7. Vertical PM10 Characteristics and their Relation with Tropospheric Meteorology over Hong Kong

    NASA Astrophysics Data System (ADS)

    Hei Tong, Cheuk

    2016-04-01

    Small particulates or PM10, those with aerodynamic diameters less than 10 mm, can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Hong Kong receives significant concentration of cross-boundary particulates but at the same time produce domestic pollutants which altogether contribute to the total pollution problem. Recent research interest is paying more attention on the vertical characteristic of PM in the lower atmosphere as possible correlations exist along different altitude. Besides, there exists potential relationship between PM concentration aloft and the high-level weather condition. Yet, most studies focus only up to around 200 meters above sea level due to the proposed significance and the lack of technology. Undoubtedly, this is not enough in investigating the relation between vertical atmospheric profile and PM vertical characteristics. New technology development has allowed measuring PM concentration along the vertical atmospheric profile up to tropopause. This measurement relies on the Atmospheric Light Detection and Ranging (LiDAR) which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols. The research involves (1) study of the seasonal vertical PM10 characteristics in five studying site of Hong Kong covering urban, suburban and rural area; (2) the relationship of the PM10 characteristics with meteorological parameters; (3) the vertical PM10 characteristics under the approach of tropical cyclones. A portable Micro Pulse Lidar (MPL) is adopted to collect PM data aloft while surface PM data is collected from ground stations. High-level meteorology data is received from Hong Kong Observatory. Statistical analyses are operated to investigate the correlation between weather conditions and PM concentration along the vertical profile. The research study is divided in phrases. The ultimate goal of the study is to develop models

  8. Impact of Middle Eastern dust sources on PM10 in Iran: Highlighting the impact of Tigris-Euphrates basin sources and Lake Urmia desiccation

    NASA Astrophysics Data System (ADS)

    Sotoudeheian, Saeed; Salim, Reza; Arhami, Mohammad

    2016-12-01

    Contribution of different Middle Eastern dust origins to PM10 (PM with aerodynamic diameters less than 10 µm) levels in several receptor large cities in Iran was investigated. Initially, the major regional dust episodes were determined through statistical analysis of recorded PM levels at air quality stations and verified using satellite images. The particles dispersion was simulated by Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) to regenerate PM10 during the dust episodes. The accuracy of the modeled results was rather convincing, with an average squared correlation coefficient (R2) of 0.7 (max = 0.95). Consequently, the contributions of different dust sources to the observed concentrations were determined. Basin of Tigris-Euphrates Rivers encompasses active dust sources with significant rate of emission due to fluvial deposits. The sources in this basin with approximately 70-95% contribution, by far, had the most influence on PM10 levels at the receptor cities. In a finer resolution, northern and central parts of Iraq had the most influence on PM10 level during the dust episodes. Effect of probable improvement or deterioration of the current dust origin conditions on PM10 levels was analyzed by performing a sensitivity analysis through varying threshold friction velocities. The results demonstrated that 10% increase or decrease in threshold friction velocities of major dust sources could lead to average of 51% decrease or 77% increase in the receptor cities' PM10, respectively. Finally, effects of Lake Urmia desiccation, as a new hydrological prospect dust origin were analyzed. The predicted dust from the prospective dried lake bed could result in 30-60% increase in PM10 of nearby cities during the studied dust episodes.

  9. Tillage and straw management affect PM10 emission potential in subarctic Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emission of PM10 (particulates =10 um in diameter regulated by many nations as an air pollutant) from agricultural soils can impact regional air quality. Little information exists that describes the potential for PM10 and airborne dust emissions from subarctic soils or agricultural soils subject to ...

  10. CHARACTERIZATION OF PM-10 EMISSIONS FROM ANTISKID MATERIALS APPLIED TO ICE- AND SNOW-COVERED ROADWAYS

    EPA Science Inventory

    The report gives results of a field program to establish a predictive model for PM-10 (particulate matter with diameters or < 10 micrometers) emission. NOTE: Several areas of the U.S. in violation of the National Ambient Air Quality Standard for PM-10 have conducted studies that ...

  11. Risk of Cardiovascular Hospitalizations from Exposure to Coarse Particulate Matter (PM10) Below the European Union Safety Threshold.

    PubMed

    Vaduganathan, Muthiah; De Palma, Giuseppe; Manerba, Alessandra; Goldoni, Matteo; Triggiani, Marco; Apostoli, Pietro; Dei Cas, Livio; Nodari, Savina

    2016-04-15

    The association between exposure to air pollution and acute cardiovascular (CV) events is well documented; however, limited data are available evaluating the public health safety of various "doses" of particular matter (PM) below currently accepted safety thresholds. We explored the cross-sectional association between PM with aerodynamic diameter <10 μm (PM10) and daily CV hospitalizations in Brescia, Italy, using Poisson regression models adjusted for age, gender, and meteorologic indices. Average daily exposure to PM10 obtained from arithmetic means of air pollution data were captured by 4 selected monitoring stations. PM10 data were expressed as daily means (lag 0-day) or 3-day moving averages (lag 3-day) and categorized according to the European Union daily limit value of 50 μg/m(3). From September 2004 to September 2007, data from 6,000 acute CV admissions to a tertiary referral center were collected. An increase of 1 μg/m(3) PM10 at lag 0-day was independently associated with higher rates of acute hospitalizations for composite CV-related events (relative risk [RR] 1.004, 95% confidence interval [CI] 1.002 to 1.006), acute heart failure (RR 1.004, 95% CI 1.001 to 1.008), acute coronary syndromes (RR 1.002, 95% CI 0.999 to 1.005), malignant ventricular arrhythmias (RR 1.004, 95% CI 0.999 to 1.010), and atrial fibrillation (RR 1.008, 95% CI 1.003 to 1.012). Similar results were obtained using PM10 lag 3-day data. The excess PM10 CV hospitalization risk (by lag 0-day and lag 3-day) did not vary significantly above and below the 50 μg/m(3) safety threshold or by age and gender. In conclusion, increased levels of PM10, even below the current limits set by the European Union, were associated with excess risk for admissions for acute CV events.

  12. Influence of pavement macrotexture on PM10 emissions from paved roads: A controlled study

    NASA Astrophysics Data System (ADS)

    China, Swarup; James, David E.

    2012-12-01

    This paper investigates influence of pavement macrotexture on paved road PM10 emissions. This study was conducted on different paved roadway types (local, collector and minor arterial) in the Las Vegas Valley, Nevada. Pavement macrotexture was measured using the ASTM E 965 sand patch method and the Digital Surface Roughness Meter™ (DSRM™). A controlled constant soil loading with known PM10 fraction was applied to cleaned road surfaces. The Desert Research Institute's (DRI) Mini-PI-SWERL™ (Portable In-Situ Wind ERosion Lab) was used to estimate PM10 mass emissions and cumulative mass emitted from pavement surfaces. PM10 mass emissions using controlled applied soil loadings generally declined with increasing pavement macrotexture at all applied shear levels. The relationships were statistically significant, and indicate that pavement macrotexture may need to be included in future development of revised paved road PM10 emissions factors. A change in the slope of emitted PM10 mass and pavement macrotexture occurred between 0.8 and 0.9 mm mean texture depth (MTD). Anomalies in PM10 mass emissions were observed at MTDs exceeding 1.2 mm. Two-way frequency distributions of pavement surface features obtained from DSRM measurements were analyzed to explain the observed anomalies. Results showed that pavement surface feature size distributions may influence on PM10 emissions from paved roads at similar MTDs. PM10 mass emissions were found to linearly depend on adjusted mode size of the pavement surface aggregate. A sharp decrease in friction velocities, computed from wind erosion theory, at MTDs above 0.9 mm matched an observed sharp decrease in PM10 emissions rates at MTDs above 0.9 mm, indicating that classical wind erosion theory could be adapted for non-erodible pavement surfaces and linearly relate PM10 emissions rates to applied shear stress at an aerodynamic roughness height of 0.075 mm.

  13. 40 CFR 52.378 - Control strategy: PM10

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Connecticut § 52.378 Control strategy: PM10 (a) Approval... in the event the PM10 design value in the maintenance area exceeds 98 µgm/m3 for the 24-hour PM10... on maintaining levels of ambient PM10 below a PM10 design value criteria of 98 µgm/m3 for the...

  14. INTERPOLATING VANCOUVER'S DAILY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we develop a spatial predictive distribution for the ambient space- time response field of daily ambient PM10 in Vancouver, Canada. Observed responses have a consistent temporal pattern from one monitoring site to the next. We exploit this feature of the field b...

  15. Aerodynamic diameter measurement of cellulose acetate fibers from cigarette filters: what is the potential for human exposure?

    PubMed

    Collazo, Humberto; Crow, W Andrew; Gardner, Lonnie; Phillips, Brenda L; Dyer, W Mills; Marple, Virgil A; Utell, Mark J

    2002-03-01

    Aerodynamic diameter is a major determinant of particle and fiber deposition and toxicity in the respiratory tract. To characterize cellulose acetate fibers released from the filter end of cigarettes puffed under conditions approximating smoking, we designed multistage impactors to determine the aerodynamic diameters of large fibers with circumscribed diameters between 20 and 35 microm and aspect ratios ranging from subfiber ratios up to 40. This range of diameters encompasses all of the cellulose acetate fiber sizes that are commercially manufactured. When commercially available cigarettes with filters made from acetate fibers in this circumscribed diameter range were puffed directly into the impactor, on average 10 fibers/cigarette were released and their aerodynamic diameters were determined. In our studies, we found that the aerodynamic diameters of the cellulose acetate fibers were always greater than 23 microm. Using standard lung deposition models, we concluded that the fibers are nonrespirable with a very low probability of penetration to the distal lung. Our findings, which demonstrate release of only a small number of these large fibers with an extremely low likelihood of reaching the distal lung, indicate that these fibers are not a risk for human lung disease.

  16. Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM10 particulates at the two sites of Kolkata, India.

    PubMed

    Karar, Kakoli; Gupta, A K; Kumar, Animesh; Biswas, Arun Kanti

    2006-09-01

    Monitoring of ambient PM10 (particulate matter which passes through a size selective impactor inlet with a 50% efficiency cut-off at 10 microm aerodynamic diameter) has been done at residential (Kasba) and industrial (Cossipore) sites of an urban region of Kolkata during November 2003 to November 2004. These sites were selected depending on the dominant anthropogenic activities. Metal constituents of atmospheric PM10 deposited on glass fibre filter paper were estimated using Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), manganese (Mn) and iron (Fe) are the seven toxic trace metals quantified from the measured PM10 concentrations. The 24 h average concentrations of Cr, Zn, Pb, Cd, Ni, Mn and Fe from ninety PM10 particulate samples of Kolkata were found to be 6.9, 506.1, 79.1, 3.3, 7.4, 2.4 and 103.6 ng/m3, respectively. The 24 h average PM10 concentration exceeded national ambient air quality standard (NAAQS) as specified by central pollution control board, India at both residential (Kasba) and industrial (Cossipore) areas with mean concentration of 140.1 and 196.6 microg/m3, respectively. A simultaneous meteorology study was performed to assess the influence of air masses by wind speed, wind direction, rainfall, relative humidity and temperature. The measured toxic trace metals generally showed inverse relationship with wind speed, relative humidity and temperature. Factor analysis, a receptor modeling technique has been used for identification of the possible sources contributing to the PM10. Varimax rotated factor analysis identified four possible sources of measured trace metals comprising solid waste dumping, vehicular traffic with the influence of road dust, road dust and soil dust at residential site (Kasba), while vehicular traffic with the influence of soil dust, road dust, galvanizing and electroplating industry, and tanning industry at industrial site (Cossipore).

  17. Influence of burning of fireworks on particle size distribution of PM10 and associated barium at Nagpur.

    PubMed

    Khaparde, Vaishali V; Pipalatkar, Pradeep P; Pustode, Tushar; Rao, C V Chalapati; Gajghate, Daulat G

    2012-01-01

    Influence of burning of fireworks on particle size distribution of PM(10) and associated barium (Ba) were studied at a congested residential cum commercial area of Nagpur city, India. Sampling was carried out by cascade impactor having 50% cut-off aerodynamic diameters of <10, 9, 5.8, 4.7, 3.3, 2.1, 1.1, 0.7, and <0.4 μm, 2 days before diwali, during diwali, celebrations of marriage functions, and New Year's Eve. Noticeably, increased levels of PM(10) and Ba were observed during diwali as compared to days before diwali and other activities. PM(10) levels were increased by four to nine times whereas Ba levels were increased by eight to 20 times higher in alveolar region, when compared with the levels observed before diwali. Probability of deposition of Ba mass in alveolar region varied between 14 and 27 ng/h with higher deposition when the burning of fireworks activity was lower near the site. Trimodal distribution of Ba was observed on the first 2 days of diwali at 0.4-2.1, 2.1-4.7, and 4.7 to less than PM(10) micrometer range. While on the third day, it appeared bimodal with 70% contribution in coarse fraction whereas on the fourth day, distribution appeared unimodal with 66% contribution in alveolar region (<0.4-1.1 μm). Distribution of Ba varied with respect to particle size, in accordance with the intensity of the fireworks used on different days and distance between the burning of firecrackers from the monitoring site.

  18. Space shuttle: Aerodynamic characteristics of a 162-inch diameter solid rocket booster with and without strakes

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Radford, W. D.; Rampy, J. M.

    1973-01-01

    Tests conducted at NASA-Langley have shown that a small flap or strake can generate a significant amount of lift on a circular cylinder with large cross flow. If strakes are placed on the opposite sides and ends on a circular body, a moment will be produced about the center of mass of the body. The purpose of this test was to determine the static-aerodynamic forces and moments of a 162-inch diameter SRB (PRR) with and without strakes. The total angle-of-attack range of the SRB test was from -10 to 190 degrees. Model roll angles were 0, 45, 90, and 135 degrees with some intermediate angles. The Mach range was from 0.6 to 3.48. The 0.00494 scale model was designated as MSFC No. 449.

  19. Short-Term Health Impact Assessment of Urban PM10 in Bejaia City (Algeria)

    PubMed Central

    Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella

    2016-01-01

    We used Health Impact Assessment (HIA) to analyze the impact on a given population's health outcomes in terms of all-causes mortality and respiratory and cardiovascular hospitalizations attributable to short-term exposure to particulate matter less than 10 μm diameter (PM10) in Bejaia city, for which health effects of air pollution have never been investigated. Two scenarios of PM10 reduction were considered: first, a scenario where the PM10 annual mean is decreased by 5 µg/m3, and then a scenario where this PM10 mean is decreased to 20 µg/m3 (World Health Organization annual air quality guideline (WHO-AQG)). Annual mean level of PM10 (81.7 µg/m3) was calculated from objective measurements assessed in situ. Each year, about 4 and 55 deaths could be postponed with the first and the second scenarios successfully. Furthermore, decreasing PM10 annual mean by 5 µg/m3 would avoid 5 and 3 respiratory and cardiac hospitalizations, respectively, and not exceeding the PM10 WHO-AQG (20 µg/m3) would result in a potential gain of 36 and 23 per 100000 respiratory and cardiac hospitalizations, respectively. Lowering in current levels of PM10 has a nonnegligible impact in terms of public health that it is expected to be higher in the case of long-term effects. PMID:27594794

  20. Black-pigmented material in airway macrophages from healthy children: association with lung function and modeled PM10.

    PubMed

    Grigg, Jonathan; Kulkarni, Neeta; Pierse, Nevil; Rushton, Lesley; O'Callaghan, Christopher; Rutman, Andrew

    2008-06-01

    Epidemiologic studies in children suggest that chronic inhalation of carbonaceous particulate matter < or = 10 pm in aerodynamic diameter (PM10) attenuates the normal growth of lung function. However, the relation between markers of PM10 exposure and the quantity of particles entering the pediatric airway is unclear. Experimental studies have shown that particles entering the lower airway remain visible in the cytoplasm of airway macrophages (AMs) for several months. We hypothesized that particle loading of AMs, detected as black-pigmented material, reflects individual exposure of healthy children to PM10. In this study, we aimed to establish the relation between the median area of black material in AMs (measured as the two-dimensional area of black material ["black area"] per AM per child) and (1) lung function, and (2) level of primary PM10 at the child's home address as estimated by dispersion modeling (referred to as "modeled primary PM10"). We also performed a series of exploratory analyses assessing the association between the median black area in AMs and (1) variables that could modify individual exposure, and (2) airway inflammation. To achieve these aims, AMs were sampled using induced sputum from children in Leicestershire, United Kingdom, and lung function was determined by spirometry. Data from 64 of 116 children who provided adequate induced sputum samples were analyzed. The area of the black material in AMs was determined by an analysis of digitized light-microscopic images of 100 randomly chosen AMs per child. There was a significant inverse association between size of black area in AMs and lung function: each 1.0-microm2 increase in the area of the black material in AMs was associated with a 17.0% (95% confidence interval [CI], 5.6 to 28.4) reduction in forced expiratory volume in one second (FEV1), a 12.9% (95% CI, 0.9 to 24.8) reduction in forced vital capacity (FVC), and a 34.7% (95% CI, 11.3 to 58.1) reduction in forced expiratory flow between

  1. A correlation equation for the mass median aerodynamic diameter of the aerosol emitted by solution metered dose inhalers.

    PubMed

    Ivey, James W; Lewis, David; Church, Tanya; Finlay, Warren H; Vehring, Reinhard

    2014-04-25

    A correlation equation for the mass median aerodynamic diameter (MMAD) of the aerosol emitted by solution metered dose inhalers (MDIs) is presented. A content equivalent diameter is defined and used to describe aerosols generated by evaporating metered dose inhaler sprays. A large set of cascade impaction data is analyzed, and the MMAD and geometric standard deviation is calculated for each datum. Using dimensional analysis, the mass median content equivalent diameter is correlated with formulation variables. Based on this correlation in combination with mass balance considerations and the definition of the aerodynamic diameter, an equation for prediction of the MMAD of an inhaler given the pressure of the propellant in the metering chamber of the MDI valve and the surface tension of the propellant is derived. The accuracy of the correlation equation is verified by comparison with literature results. The equation is applicable to both HFA (hydrofluoroalkane) propellants 134a and 227ea, with varying levels of co-solvent ethanol.

  2. Dynamical Behaviors between the PM10 and the meteorological factor using the detrended cross-correlation analysis method

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Lee, Dong-In

    2013-04-01

    There is considerable interest in cross-correlations in collective modes of real data from atmospheric geophysics, seismology, finance, physiology, genomics, and nanodevices. If two systems interact mutually, that interaction gives rise to collective modes. This phenomenon is able to be analyzed using the cross-correlation of traditional methods, random matrix theory, and the detrended cross-correlation analysis method. The detrended cross-correlation analysis method was used in the past to analyze several models such as autoregressive fractionally integrated moving average processes, stock prices and their trading volumes, and taxi accidents. Particulate matter is composed of the organic and inorganic mixtures such as the natural sea salt, soil particle, vehicles exhaust, construction dust, and soot. The PM10 is known as the particle with the aerodynamic diameter (less than 10 microns) that is able to enter the human respiratory system. The PM10 concentration has an effect on the climate change by causing an unbalance of the global radiative equilibrium through the direct effect that blocks the stoma of plants and cuts off the solar radiation, different from the indirect effect that changes the optical property of clouds, cloudiness, and lifetime of clouds. Various factors contribute to the degree of the PM10 concentration. Notable among these are the land-use types, surface vegetation coverage, as well as meteorological factors. In this study, we analyze and simulate cross-correlations in time scales between the PM10 concentration and the meteorological factor (among temperature, wind speed and humidity) using the detrended cross-correlation analysis method through the removal of specific trends at eight cities in the Korean peninsula. We divide time series data into Asian dust events and non-Asian dust events to analyze the change of meteorological factors on the fluctuation of PM10 the concentration during Asian dust events. In particular, our result is

  3. PM(10) episodes in Greece: Local sources versus long-range transport-observations and model simulations.

    PubMed

    Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros

    2017-01-01

    Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM10 pollution episodes (EEs) as days during which PM10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83 μg/m(3

  4. Validation of Satellite AOD Data with the Ground PM10 Data over Islamabad Pakistan

    NASA Astrophysics Data System (ADS)

    Bulbul, Gufran; Shahid, Imran

    2016-07-01

    Introduction The issue of air pollution affects the entire globe, but the countries having huge urban growth and industries are specially confronted with high amounts of suspended particles in atmosphere. According to WHO, for the areas where air pollution is monitored in Pakistan, the air pollution is deteriorating the air quality as time is passing. Pakistan, during the last decade, has seen an extensive rise in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, rise has taken place in the emission of various air pollutants. However, due to the lack of air quality management, the country is suffering from deterioration of air quality. From the air quality point of view, spatial and temporal distribution of aerosols and its variations are very important. The variations in the atmospheric aerosol, land surface properties, greenhouse gases, solar radiations and climatic changes alter the energy balance of the earth's atmospheric system. The addition of aerosol particles to the atmosphere is not only dependent upon the anthropogenic sources but these are also formed by physical and chemical atmospheric processes. Aerosols are a mixture of particles and these are characterized by their shape, their size (from nanometers (nm) to micrometers (µm) in radius) and their chemical composition. PM10 is the designation for particulate matter in the atmosphere that has an aerodynamic diameter of 10µm or less. The sources of PM10 may be natural (volcanoes, dust, storms, forest and grassland fires, living vegetation, or anthropogenic (burning of fossil fuels in vehicles, power plants and industrialization). The current interest in atmospheric particulate matter (PM10) is mainly due to its effect on human health and its role in climate change. Therefore, the particulate matter must be monitored continuously to understand their likely impact on the atmosphere, environment and particularly human

  5. Source identification of different size fraction of PM10 using factor analysis at residential cum commercial area of Nagpur city.

    PubMed

    Pipalatkar, P P; Gajghate, D G; Khaparde, V V

    2012-02-01

    Particulate size distribution of PM(10) and associated trace metal concentrations has been carried out in residential cum commercial area of Mahal at Nagpur city. Sampling for size fraction of particulate matter was performed during winter season using eight-stage cascade impactor with a pre-separator and toxic metals were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The average concentration of PM(10) and fine particulate matter (effective cut of aerodynamic diameter ≤2.2 μm) was found to be 300 and 136.7 μg/m(3), respectively which was exceeding limit of Central Pollution Control Board. Maximum mass concentration of 41 μg/m(3) in size range of 9.0-10.0 μm and minimum mass concentration of 19 μg/m(3) in size range 2.2-3.3 μm was observed. Metals (Sr, Ni and Zn) were found to large proportions in below 0.7 μm particle size and could therefore pass directly into the alveoli region of human respiratory system. Factor analysis results indicated combustion and vehicular emission as the dominant source in fine mode and resuspended dust was dominant in medium mode while crustal along with vehicular source was major in coarse mode of particulate matter.

  6. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false PM10 Committal SIP. 52.2182 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP. On July 12 1988, the State submitted a Committal SIP for the Rapid City Group II PM10 area, as required...

  7. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false PM10 Committal SIP. 52.2182 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP. On July 12 1988, the State submitted a Committal SIP for the Rapid City Group II PM10 area, as required...

  8. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false PM10 Committal SIP. 52.2182 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP. On July 12 1988, the State submitted a Committal SIP for the Rapid City Group II PM10 area, as required...

  9. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false PM10 Committal SIP. 52.2182 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP. On July 12 1988, the State submitted a Committal SIP for the Rapid City Group II PM10 area, as required...

  10. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false PM10 Committal SIP. 52.2182 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP. On July 12 1988, the State submitted a Committal SIP for the Rapid City Group II PM10 area, as required...

  11. Derivation of PM10 size-selected human equivalent concentrations of inhaled nickel based on cancer and non-cancer effects on the respiratory tract.

    PubMed

    Oller, Adriana R; Oberdörster, Günter; Seilkop, Steven K

    2014-08-01

    Abstract Nickel (Ni) in ambient air is predominantly present in the form of oxides and sulfates, with the distribution of Ni mass between the fine (particle aerodynamic diameter < 2.5 µm; PM2.5) and coarser (2.5-10 µm) size-selected aerosol fractions of PM10 dependent on the aerosol's origin. When deriving a long-term health protective reference concentration for Ni in ambient air, the respiratory toxicity and carcinogenicity effects of the predominant Ni compounds in ambient air must be considered. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rats, workers, and the general public were applied to experimentally- and epidemiologically-determined points of departure (PODs) such as no(low)-effect concentrations, for both cancer and non-cancer respiratory effects. This approach resulted in the derivation of threshold-based PM10 size-selected equivalent concentrations (modified PODs) of 0.5 µg Ni/m(3) based on workers' cancer effects and 9-11 µg Ni/m(3) based on rodent respiratory toxicity effects. Sources of uncertainty in exposure extrapolations are described. These are not reference concentrations; rather the derived PM10 size-selected modified PODs can be used as the starting point for the calculation of ambient air reference concentrations for Ni. The described approach is equally applicable to other particulates.

  12. Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production.

    PubMed

    Kuhlbusch, T A J; Neumann, S; Fissan, H

    2004-10-01

    Number size characteristics and PM10 mass concentrations of particles emitted during the packaging of various kinds of carbon blacks were measured continuously in the bag filling areas of three carbon black plants and concurrently at ambient comparison sites. PM10, PM2.5, and PM1 dust fractions were also determined in the bag filling areas. The filter samples were then analyzed for elemental and organic carbon. Comparisons of the measured number size distributions and mass concentrations during bag filling activities with those measured parallel at the ambient site and with those determined during nonworking periods in the work area enabled the characterization of emitted particles. PM10 mass concentrations were consistently elevated (up to a factor of 20 compared to ambient concentrations) during working periods in the bag filling area. Detailed analysis revealed that the carbon black particles released by bag filling activities had a size distribution starting at approximately 400 nm aerodynamic diameter (dae) with modes around 1 microm dae and > 8 microm dae. Ultrafine particles (< 100 nm dae), detected in the bag filling areas, were most likely attributed to noncarbon black sources such as forklift and gas heater emissions.

  13. Association between PM10 and respiratory hospital admissions in different seasons in heavily polluted Lanzhou City.

    PubMed

    An, Xingqin; Yan, Tao; Mi, Shengquan; Sun, Zhaobin; Hou, Qing

    2015-01-01

    Exposure-response relationship between particulate matter less than 10 μm in diameter (PM10) and human health in different seasons from 2001 to 2005 was examined based on hospital admissions data of respiratory system diseases from four major hospitals in Lanzhou, China. To quantify associations of respiratory system diseases with multiple air pollutants and meteorological conditions, a semiparametric generalized additive model was used in the authors' study by implementing daily ambient sulfur dioxide, nitrogen dioxide, and PM10 data collected from the Lanzhou Environmental Monitoring Station and daily meteorological data from Lanzhou Meteorological Bureau. Results showed that daily averaged PM10 increased per interquartile range the hospital admissions number of respiratory diseases by 3.3% in spring, 1.4% in summer, 3.6% in autumn, and 4.0% in winter from a single-pollutant model, or 3.1%, 1.4%, 3.0%, and 4.0% from a multi-pollutant model, respectively. The effect of PM10 on respiratory hospital admissions was lowest in summer and highest in winter. The relative risks of PM10 on female or the elderly (≥ 65 yrs.) were higher, showing a stronger association of PM10 with respiratory diseases in female and elderly groups than in males and people younger than 65.

  14. 75 FR 80117 - Methods for Measurement of Filterable PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ...This action promulgates amendments to Methods 201A and 202. The final amendments to Method 201A add a particle-sizing device to allow for sampling of particulate matter with mean aerodynamic diameters less than or equal to 2.5 micrometers (PM2.5 or fine particulate matter). The final amendments to Method 202 revise the sample collection and recovery procedures of the method to......

  15. Seasonal variations and chemical characterization of ambient PM 10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India

    NASA Astrophysics Data System (ADS)

    Karar, Kakoli; Gupta, A. K.

    2006-07-01

    Monitoring of ambient PM 10 (particulate matter which passes through a size selective impactor inlet with a 50% efficiency cut-off at 10 μm aerodynamic diameter) has been done at residential (Kasba) and industrial (Cossipore) sites of an urban region of Kolkata during November 2003 to November 2004. The measurements have been performed once a week during the study period. PM 10 mass concentrations ranged from 68.2 to 280.6 μg/m 3 at a residential site and 62.4 to 401.2 μg/m 3 at an industrial site. Metal constituents of ambient PM 10 deposited on quartz microfibre filter papers were identified using Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), manganese (Mn) and iron (Fe) are the seven toxic trace metals quantified from the measured PM 10 concentrations. Results identified zinc with maximum contribution of PM 10 among measured metals having concentrations of 0.49 μg/m 3 at the residential site, and 0.53 μg/m 3 at the industrial site. The PAH (polycyclic aromatic hydrocarbon) compounds namely, fluoranthene (Fl), pyrene (Py), benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF) and benzo(a)pyrene (BaP) have been analyzed using gas chromatography. The major PAH compound at the monitoring sites was BbF with 0.03 μg/m 3 at the residential site and 0.02 μg/m 3 at the industrial site. Total carbon (TC), inorganic carbon (IC) and organic carbon (OC) of PM 10 were analyzed using a carbon analyzer. Exposed quartz microfibre filter papers were also analyzed for water-soluble anions of fluoride (F -), chloride (Cl -), nitrate (NO 3-), phosphate (PO 43-) and sulfate (SO 42-) using ion chromatography. Sulfate was found in maximum concentration among anionic species with a value of 1.2 μg/m 3 at the residential site, and 1.7 μg/m 3 at the industrial site. Meteorological parameters such as wind speed, wind direction, rainfall, temperature and relative humidity were collected

  16. Chemical characterization of the PM10 fraction of airborne particulate matter in the urban atmosphere.

    PubMed

    Bagnoli, P; Carrozzino, S; Pisani, B; Righini, F

    1997-01-01

    This study examines the chemical composition of PM10, the thoracic fraction of atmospheric particulate matter. This fraction is characterized by a very complex composition and is able to penetrate the human organism corresponding to a "cut point" at the level of the larynx. We used a sampling device to separate the PM10 from other fractions with different aerodynamic behavior. The high volume sampler collected large amounts of material, making it easier to study the micropollutants. Furthermore, it met EPA performance specifications for the measurement of suspended PM10 fraction. We collected the samples during different metereological conditions in the urban area of the town of Leghorn in Tuscany, Italy. Two sites, characterized by different settings, were chosen in the city. Both sites were marked by intense motor vehicle traffic. A better chemical characterization of the collected material became possible using different analytical techniques. The use of large-size cellulose or glass fiber filters allowed us to subdivide the sample and to submit each portion to a different investigative technique. The PAH content of the PM10 fraction was examined, particularly for those compounds of toxicological interest. The concentrations of the compounds were evaluated by HPLC with diode array UV detection. We further determined the contents of various heavy metals from anthropic or telluric sources (Pb, Cu, Fe, Cr, Cd, Mn, V, and Ni) by means of an HGA Graphite Furnace AAS-Zeeman-Effect technique or AA-Flame spectrophotometry. The results of our experiment show that motor vehicle traffic is the prevailing pollution source. The metereological conditions also play a significant role. The samples taken closer to the industrial area of the town showed a slightly higher mean content of PM10 fraction. The concentrations of both heavy metals and PM10 were lower compared with equivalent data from other European cities.

  17. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality

    PubMed Central

    Pinheiro, Samya de Lara Lins de Araujo; Saldiva, Paulo Hilário Nascimento; Schwartz, Joel; Zanobetti, Antonella

    2014-01-01

    OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter < 10 µm (PM10) on the mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure

  18. BME Estimation of Residential Exposure to Ambient PM10 and Ozone at Multiple Time Scales

    PubMed Central

    Yu, Hwa-Lung; Chen, Jiu-Chiuan; Christakos, George; Jerrett, Michael

    2009-01-01

    Background Long-term human exposure to ambient pollutants can be an important contributing or etiologic factor of many chronic diseases. Spatiotemporal estimation (mapping) of long-term exposure at residential areas based on field observations recorded in the U.S. Environmental Protection Agency’s Air Quality System often suffer from missing data issues due to the scarce monitoring network across space and the inconsistent recording periods at different monitors. Objective We developed and compared two upscaling methods: UM1 (data aggregation followed by exposure estimation) and UM2 (exposure estimation followed by data aggregation) for the long-term PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) and ozone exposure estimations and applied them in multiple time scales to estimate PM and ozone exposures for the residential areas of the Health Effects of Air Pollution on Lupus (HEAPL) study. Method We used Bayesian maximum entropy (BME) analysis for the two upscaling methods. We performed spatiotemporal cross-validations at multiple time scales by UM1 and UM2 to assess the estimation accuracy across space and time. Results Compared with the kriging method, the integration of soft information by the BME method can effectively increase the estimation accuracy for both pollutants. The spatiotemporal distributions of estimation errors from UM1 and UM2 were similar. The cross-validation results indicated that UM2 is generally better than UM1 in exposure estimations at multiple time scales in terms of predictive accuracy and lack of bias. For yearly PM10 estimations, both approaches have comparable performance, but the implementation of UM1 is associated with much lower computation burden. Conclusion BME-based upscaling methods UM1 and UM2 can assimilate core and site-specific knowledge bases of different formats for long-term exposure estimation. This study shows that UM1 can perform reasonably well when the aggregation process does not alter the

  19. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    PubMed Central

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608

  20. PM10 source apportionment in a Swiss Alpine valley impacted by highway traffic.

    PubMed

    Ducret-Stich, Regina E; Tsai, Ming-Yi; Thimmaiah, Devraj; Künzli, Nino; Hopke, Philip K; Phuleria, Harish C

    2013-09-01

    Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter < 10 μm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.

  1. 75 FR 45571 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... AGENCY 40 CFR Part 81 Determination of Attainment for PM 10 for the Las Vegas Valley Nonattainment Area... determine that the Las Vegas Valley nonattainment area in Nevada attained the National Ambient Air Quality... micrometers (PM 10 ) by the applicable attainment date (December 31, 2006), and that the Las Vegas...

  2. Flow Cytometric Analysis of Particle-bound Bet v 1 Allergen in PM10

    PubMed Central

    Süring, Katrin; Bach, Sabine; Höflich, Conny; Straff, Wolfgang

    2016-01-01

    Flow cytometry is a method widely used to quantify suspended solids such as cells or bacteria in a size range from 0.5 to several tens of micrometers in diameter. In addition to a characterization of forward and sideward scatter properties, it enables the use of fluorescent labeled markers like antibodies to detect respective structures. Using indirect antibody staining, flow cytometry is employed here to quantify birch pollen allergen (precisely Bet v 1)-loaded particles of 0.5 to 10 µm in diameter in inhalable particulate matter (PM10, particle size ≤10 µm in diameter). PM10 particles may act as carriers of adsorbed allergens possibly transporting them to the lower respiratory tract, where they could trigger allergic reactions. So far the allergen content of PM10 has been studied by means of enzyme linked immunosorbent assays (ELISAs) and scanning electron microscopy. ELISA measures the dissolved and not the particle-bound allergen. Compared to scanning electron microscopy, which can visualize allergen-loaded particles, flow cytometry may additionally quantify them. As allergen content of ambient air can deviate from birch pollen count, allergic symptoms might perhaps correlate better with allergen exposure than with pollen count. In conjunction with clinical data, the presented method offers the opportunity to test in future experiments whether allergic reactions to birch pollen antigens are associated with the Bet v 1 allergen content of PM10 particles >0.5 µm. PMID:27911374

  3. Spatial and seasonal variations of biogenic tracer compounds in ambient PM 10 and PM 1 samples in Berlin, Germany

    NASA Astrophysics Data System (ADS)

    Wagener, Sandra; Langner, Marcel; Hansen, Ute; Moriske, Heinz-Jörn; Endlicher, Wilfried R.

    2012-02-01

    PM 10 and PM 1 aerosol samples were collected between February and October, 2010 at three sites in Berlin that were characterized by different vegetation influences. The aim of the study was to determine the spatial and seasonal variations of several, mainly biogenic secondary and primary tracers in an urban area. Selected tracers including isoprene and α-pinene markers, fatty acids and levoglucosan were detected with GC-MS. The highest median concentrations, up to 45.1 ng m -3, were found for the combustion product levoglucosan. The concentration range of the secondary compounds was 0.3 ng m -3 for the isoprene markers 2-methyltetrols up to 35.7 ng m -3 for malic acid. The occurrence of these compounds was mainly affected by the seasons, which could be described by three patterns. Whereas secondary compounds were mainly characterized by significantly higher concentrations during the warmer months, levoglucosan showed significantly higher concentrations during the colder months. No significant concentration differences between the two periods were rather observed for the primary compounds but also for the α-pinene degradation product pinonic acid. The secondary compounds and levoglucosan could be associated with the fine mode (particles with an aerodynamic diameter (AD) < 1 μm), while primary compounds are rather associated with the coarse mode (AD > 1 μm). Spatial variations were emphasized with a tendency toward higher concentrations for most compounds at sites that were influenced by vegetation, especially evident for the PM 10 fraction. Besides concentration differences, spatial variations could also be described by differences in seasonal behavior and the size distribution, indicating major complexity in the composition of biogenic PM within the city of Berlin.

  4. Particle size distribution and PM10 of volcanic ashes in Guadeloupe during the major eruption of Soufrière Hills in February 2010

    NASA Astrophysics Data System (ADS)

    Molinie, Jack; Bernard, Marie-Lise; Komorowski, Jean-Christophe; Euphrasie-Clotilde, Lovely; Brute, France-Nor; Roussas, Andre

    2014-05-01

    On the 11 February 2010, fifteen minutes after midday, an explosive eruption of Soufriere Hills volcano sent tephra over the neighbour Caribbean islands. The volcanic ashes benefit from the vertical wind distribution of the moment to reach Guadeloupe island and cover it ground near 5 hours after the ash venting. Since the first ashes arrival over the town of Pointe-a-Pitre (located at 80 km at the South East of Soufriere hills volcano) to the end of the event, we measured the mean particle concentrations and particle size distributions every twenty minutes. Measurements were performed at a building roof of the town using an optical particles counter Lighthouse IAQ 3016 mainly used in indoor air quality studies and which provides up to 6 particle size channels of simultaneous counting with aerodynamic diameters classes ranging from 0.3 to >10 µm. The airborne particulate matter mass concentration, with equivalent aerodynamic diameters less than 10 µm (PM10) were measured by the local air quality network Gwad'air, in the vicinity of the site used to study this ash fall.. The maximum concentration of small particles with diameter lesser than 1µm (D0.3-1) was observed one hour before the larger particles. This result may imply a difference in shape and density between particles D0.3-1 and particles D1-10 (1<diameter< 10), producing a difference in the dry deposition velocity. The mean hourly mass concentration of PM10 has reached a maximum value of 271µg/m3 eleven hours after the major eruption which followed a partial dome collapse in the crater. We found a poor correlation between the PM10 values and the mass concentration calculated from the mean particle concentrations of particles D0.3-1+ D1-10. This result is probably related to the large variability in the density distribution of the particles. Moreover, we observed a variation over time in the shape and the composition of the collected volcanic ashes which impacts on the exposed population, especially their

  5. PM10 and gaseous pollutants trends from air quality monitoring networks in Bari province: principal component analysis and absolute principal component scores on a two years and half data set

    PubMed Central

    2014-01-01

    Background The chemical composition of aerosols and particle size distributions are the most significant factors affecting air quality. In particular, the exposure to finer particles can cause short and long-term effects on human health. In the present paper PM10 (particulate matter with aerodynamic diameter lower than 10 μm), CO, NOx (NO and NO2), Benzene and Toluene trends monitored in six monitoring stations of Bari province are shown. The data set used was composed by bi-hourly means for all parameters (12 bi-hourly means per day for each parameter) and it’s referred to the period of time from January 2005 and May 2007. The main aim of the paper is to provide a clear illustration of how large data sets from monitoring stations can give information about the number and nature of the pollutant sources, and mainly to assess the contribution of the traffic source to PM10 concentration level by using multivariate statistical techniques such as Principal Component Analysis (PCA) and Absolute Principal Component Scores (APCS). Results Comparing the night and day mean concentrations (per day) for each parameter it has been pointed out that there is a different night and day behavior for some parameters such as CO, Benzene and Toluene than PM10. This suggests that CO, Benzene and Toluene concentrations are mainly connected with transport systems, whereas PM10 is mostly influenced by different factors. The statistical techniques identified three recurrent sources, associated with vehicular traffic and particulate transport, covering over 90% of variance. The contemporaneous analysis of gas and PM10 has allowed underlining the differences between the sources of these pollutants. Conclusions The analysis of the pollutant trends from large data set and the application of multivariate statistical techniques such as PCA and APCS can give useful information about air quality and pollutant’s sources. These knowledge can provide useful advices to environmental policies in

  6. Lab Analyses of Fenceline PM10 Air Filters

    EPA Pesticide Factsheets

    These spreadsheets show the analytical data on PM10 concentration, organic carbon, elemental carbon, and several trace metals at KCBX petroleum coke (also known as pet coke or petcoke) storage terminals in Chicago, Illinois.

  7. Enhanced PM10 bounded PAHs from shipping emissions

    NASA Astrophysics Data System (ADS)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  8. Seasonal variation of PM10 chemical constituents in different French urban environments

    NASA Astrophysics Data System (ADS)

    Salameh, Dalia; Golly, Benjamin; Besombes, Jean Luc; Alleman, Laurent; Favez, Olivier; Jaffrezo, Jean Luc

    2016-04-01

    Particulate matter (PM10, with a diameter less than 10 μm) is a heterogeneous mixture of natural and anthropogenic components including organic and elemental carbon (OC, and EC), sulfates, nitrates, ammonium, mineral dust, trace elements, seasalt, which has been linked to adverse impact on human health, visibility, and climate change. Atmospheric PM concentration and composition can vary widely due to different climatic conditions and local features such as anthropogenic source types, emission rates and dispersion patterns. Moreover, the contribution of natural sources (e.g. seasalt and dust) varies from one region to another. However, a fundamental step towards a better understanding and identification of the sources of PM10 is constituted by the study of aerosol chemical composition. Moreover, in order to define cost effective emission abatement strategies, research studies to interpret the variability of PM10 levels and components and to identify the main emission sources influencing ambient air PM10 levels is still needed. In a national context of a better understanding of PM composition and sources, and therefore the implementation of efficient reduction plans of PM in France, various monitoring campaigns were carried out recently within different air quality programs, where PM10 filter samples were collected on a 24 hour basis at various type of French sites (e.g. urban, rural, etc.,), located in different urban environments. An extensive chemical characterization of PM10 composition at these sites was performed, and a large range of analytical techniques was used to determine the concentrations of various chemical species which included the analysis of OC, and EC, major ionic species (SO42-, NO3-, Cl-, NH4+, K+, Na+, Mg2+, and Ca2+), metals and trace elements (e.g. Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn, etc.,), and organic compounds (e.g. sugars, polyols, PAH, methyl PAH, sulfur PAH, alkanes, hopanes, and methoxyphenols). The seasonal and spatial

  9. PM10: results of a one-year monitoring survey in the Netherlands

    SciTech Connect

    van der Meulen, A.; van Elzakker, B.G.; van den Hooff, G.N.

    1987-07-01

    A comprehensive field assessment has been made of the measurement performance of PM10 inlets. Both precision and comparability are approximately 4 percent, complying well with the requirements of the proposed Federal Reference Method (FRM). Fluctuations in sampling efficiency play a dominant role. Hence, both comparability and precision can be interpreted in terms of changes in the 50 percent cutoff diameter D50. In this way a D50 performance of about 0.7 ..mu..m is deduced, clearly within the proposed FRM requirement of D50 = 10 +/- 1 ..mu..m. There exists no fixed linear relationship between PM10 and TSP (total suspended particulate matter): different average situations yield different regression coefficients (Western Europe: 0.7 and USA: 0.5). Furthermore, there are different conversion factors, representative of average (0.5-0.7) or episodic situations of high concentration levels (0.8-0.9). Hence, TSP air quality standards should not be replaced by PM10 ones simply by using the regression results from various national studies because this could yield unequal stringent PM10 standards.

  10. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10.

    PubMed

    Xie, RuiKai; Seip, Hans Martin; Wibetoe, Grethe; Nori, Showan; McLeod, Cameron William

    2006-11-01

    Coal burning generates toxic elements, some of which are characteristic of coal combustion such as arsenic and selenium, besides conventional coal combustion products. Airborne particulate samples with aerodynamic diameter less than 10 microm (PM(10)) were collected in Taiyuan, China, and multi-element analyses were performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of arsenic and selenium from ambient air in Taiyuan (average 43 and 58 ng m(-3), respectively) were relatively high compared to what is reported elsewhere. Arsenic and selenium were found to be highly correlated (r=0.997), indicating an overwhelmingly dominant source. Correlation between these two chalcophile elements and the lithophile element Al is high (r is 0.75 and 0.72 for As and Se, respectively). This prompted the hypothesis that the particles were from coal combustion. The enrichment of the trace elements could be explained by the volatilization-condensation mechanism during coal combustion process. Even higher correlations of arsenic and selenium with PM(10) (r=0.90 and 0.88) give further support that airborne particulate pollution in Taiyuan is mainly a direct result of heavy coal consumption. This conclusion agrees with the results from our previous study of individual airborne particles in Taiyuan.

  11. Resolution of the mediators of in vitro oxidative reactivity in size-segregated fractions that may be masked in the urban PM(10) cocktail.

    PubMed

    Price, Heather D; Jones, Tim P; BéruBé, Kelly A

    2014-07-01

    PM10 (particulate matter 10 μm or less in aerodynamic diameter) has consistently been linked with adverse human health effects, but the physicochemical properties responsible for this effect have not been fully elucidated. The aim of this work was to investigate the potential for carbon black (CB) particles and PM to generate ROS (Reactive Oxygen Species) and to identify the physicochemical properties of the particles responsible for in vitro oxidative reactivity (OR). PM10 was collected in 11 size fractions at a traffic site in Swansea, UK, using an Electrical Low Pressure Impactor (ELPI). The PM physicochemical properties (including size, morphology, type, and transition metals) were tested. The plasmid scission assay (PSA) was used for OR testing of all particles. The ultrafine and fine PM fractions (N28-2399; 28-2399 nm) caused more DNA damage than coarse PM (N2400-10,000), and the increased capacity of the smaller particles to exhibit enhanced (OR) was statistically significant (p<0.05). The most bioreactive fraction of PM was N94-155 with a toxic dose (TD50; mass dose capable of generating 50% plasmid DNA damage) of 69 μg/ml. The mean TD35 was lower for PM than CB particles, indicating enhanced OR for PM. A difference between CB and PM in this study was the higher transition metal content of PM. Zn was the most abundant transition metal (by weight) in the ultrafine-fine PM fractions, and Fe in the fine-coarse PM. Through this comparison, part of the observed increased PM OR was attributed to Zn (and Fe). In this study PM-derived DNA damage was dependent upon; 1) particle size, 2) surface area, and 2) transition metals. This study supports the view that ROS formation by PM10 is related to physicochemistry using evidence with an increased particle size resolution.

  12. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study.

    PubMed

    Medina-Ramón, Mercedes; Zanobetti, Antonella; Schwartz, Joel

    2006-03-15

    A case-crossover study was conducted in 36 US cities to evaluate the effect of ozone and particulate matter with an aerodynamic diameter of < or =10 microm (PM10) on respiratory hospital admissions and to identify which city characteristics may explain the heterogeneity in risk estimates. Respiratory hospital admissions and air pollution data were obtained for 1986-1999. In a meta-analysis based on the city-specific regression models, several city characteristics were evaluated as effect modifiers. During the warm season, the 2-day cumulative effect of a 5-ppb increase in ozone was a 0.27% (95% confidence interval (CI): 0.08, 0.47) increase in chronic obstructive pulmonary disease admissions and a 0.41% (95% CI: 0.26, 0.57) increase in pneumonia admissions. Similarly, a 10-microg/m(3) increase in PM10 during the warm season resulted in a 1.47% (95% CI: 0.93, 2.01) increase in chronic obstructive pulmonary disease at lag 1 and a 0.84% (95% CI: 0.50, 1.19) increase in pneumonia at lag 0. Percentage of households with central air conditioning reduced the effect of air pollution, and variability of summer apparent temperature reduced the effect of ozone on chronic obstructive pulmonary disease. The study confirmed, in a large sample of cities, that exposure to ozone and PM10 is associated with respiratory hospital admissions and provided evidence that the effect of air pollution is modified by certain city characteristics.

  13. Predictability Analysis of PM10 Concentrations in Budapest

    NASA Astrophysics Data System (ADS)

    Ferenczi, Zita

    2013-04-01

    Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.

  14. Algorithm for PM10 Mapping using Landsat TM Data

    NASA Astrophysics Data System (ADS)

    Hwee San, Hslim; Matjafri, M. Z.; Abdullah, Abdul K.; Chow Jeng, C. J.

    section A new algorithm was developed for detecting and mapping air pollution from Landsat TM images PM10 measumenets were collected simultaneously with the satellite image acquisition The algorithm was derived based on the aerosol optical reflectance model and it was calibrated to measure the concentration of the pollutants The measured satellite reflectance at the top of the atmosphere rho TOA was subtracted by the amount given by the surface reflectance to obtain the atmospheric reflectance A total of 7 dates of Landsat TM satellite images were analysed in this study The atmospheric reflectance values corresponding to the locations of the PM10 measurements of the each image ware combined and related to their PM10 values The collected PM10 measurements were combined for algorithm calibration The coefficients of the calibrated algorithm were determined and used to generate the air quality maps for all images This newly developed algorithm was used to estimate PM10 concentration over Penang and produced a high degree of accuracy

  15. Modeling weekly maxima PM10 concentration in Malaysia

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Mansor, Nadiah

    2014-09-01

    Weekly maxima of daily maximum PM10 concentration measures from the Air Pollutant Index (API) for thirteen monitoring stations in Malaysia are modeled using the Generalized Extreme Value (GEV) distribution. The L-moments method was used to estimate the parameter and the type of GEV distribution was determined from the 95% confidence intervals of shape parameter, ξ. The result from the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) show that Alor Setar and Kemaman were the best stations that converged to the distribution. The return levels of PM10 concentration that is expected to exceed the maximum once within a selected period are obtained for all stations.

  16. Spatio-temporal characteristics of PM10 concentration across Malaysia

    NASA Astrophysics Data System (ADS)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin T.; Mansor, Haslina

    The recurrence of forest fires in Southeast Asia and associated biomass burning, has contributed markedly to the problem of trans-boundary haze and the long-range movement of pollutants in the region. Air pollutants, specifically particulate matter in the atmosphere, have received extensive attention, mainly because of their adverse effect on people's health. In this study, the spatial and temporal variability of the PM10 concentration across Malaysia was analyzed by means of the rotated principal component analysis. The results suggest that the variability of the PM10 concentration can be decomposed into four dominant modes, each characterizing different spatial and temporal variations. The first mode characterizes the southwest coastal region of the Malaysian Peninsular with the PM10 showing a peak concentration during the summer monsoon i.e. when the winds are predominantly southerlies or southwesterlies, and a minimal concentration during the winter monsoon. The second mode features the region of western Borneo with the PM10 exhibiting a concentration surge in August-September, which is likely to be the result of the northward shift of the Inter Tropical Convergence Zone (ITCZ) and the subsequent rapid arrival of the rainy season. The third mode delineates the northern region of the Malaysian Peninsular with strong bimodality in the PM10 concentration. Seasonally, this component exhibits two concentration maxima during the late winter and summer monsoons, as well as two minima during the inter-monsoon periods. The fourth dominant mode characterizes the northern Borneo region which exhibits weaker seasonality of the PM10 concentration. Generally, the seasonal fluctuation of the PM10 concentration is largely associated with the seasonal variation of rainfall in the country. However, in addition to this, the PM10 concentration also fluctuates markedly in two timescale bands i.e. 10-20 days quasi-biweekly (QBW) and 30-60 days lower frequency (LF) band of the intra

  17. PM10 regional transport pathways in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Kazadzis, S.; Amiridis, V.; Papaioannou, V.; Karathanasis, S.; Melas, D.

    In this study, the most dominant regional transport pathways for the city of Thessaloniki, Greece were identified and linked to air quality issues with respect to particulate matter (PM). Using air mass trajectories, cluster analysis techniques and PM10 measurements of a background-urban station of the greater Thessaloniki area during 2001-2004, it was found that north-eastern and southern flows were the most frequent in appearance with high potential to influence the city of Thessaloniki, especially when coinciding with biomass burning or Saharan dust events correspondingly. These incidents appeared to occur mostly during summer adding to a PM10 monthly mean up to 10 μg m -3. High concentrations of surface PM10 related to north-eastern flows were in most cases accompanied with high aerosol columnar optical depths implying that particulate matter transport from the North-East was multi-layered. South-southwesterly flows originating from N. Africa, though less frequent, seemed to affect decisively Thessaloniki's aerosol budget especially during transition seasons. These flows were related with an increase of the monthly PM10 average up to 20-30 μg m -3 for the time period studied. Finally, northerly flows were found to transport rather clean air masses that did not seem to contribute to the air quality deterioration of the city.

  18. Health benefits of PM10 reduction in Iran.

    PubMed

    Marzouni, Mohammad Bagherian; Moradi, Mahsa; Zarasvandi, Alireza; Akbaripoor, Shayan; Hassanvand, Mohammad Sadegh; Neisi, Abdolkazem; Goudarzi, Gholamreza; Mohammadi, Mohammad Javad; Sheikhi, Reza; Kermani, Majid; Shirmardi, Mohammad; Naimabadi, Abolfazl; Gholami, Moeen; Mozhdehi, Saeed Pourkarim; Esmaeili, Mehdi; Barari, Kian

    2017-04-05

    Air pollution contains a complex mixture of poisonous compounds including particulate matter (PM) which has wide spectrum of adverse health effects. The main purpose of this study was to estimate the potential health impacts or benefits due to any changes in annual PM10 level in four major megacities of Iran. The required data of PM10 for AirQ software was collected from air quality monitoring stations in four megacities of Iran. The preprocessing was carried out using macro coding in excel environment. The relationship between different presumptive scenarios and health impacts was determined. We also assessed the health benefits of reducing PM10 to WHO Air Quality Guidelines (WHO-AQGs) and National Ambient Air Quality Standards (NAAQSs) levels with regard to the rate of mortality and morbidity in studied cities. We found that the 10 μg/m(3) increase in annual PM10 concentration is responsible for seven (95% CI 6-8) cases increase in total number of deaths per 2 × 10(5) person. We also found that 10.7, 7.2, 5.7, and 5.3% of total death is attributable to short-term exposure to air pollution for Ahvaz, Isfahan, Shiraz, and Tehran, respectively. We found that by attaining the WHO's proposed value for PM10, the potential health benefits of 89, 84, 79, and 78% were obtained in Ahvaz, Isfahan, Shiraz, and Tehran, respectively. The results also indicated that 27, 10, 3, and 1% of health impacts were attributed to dust storm days for Ahvaz, Isfahan, Shiraz, and Tehran, respectively.

  19. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    NASA Astrophysics Data System (ADS)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  20. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy.

    PubMed

    Marcon, Alessandro; Pesce, Giancarlo; Girardi, Paolo; Marchetti, Pierpaolo; Blengio, Gianstefano; de Zolt Sappadina, Simona; Falcone, Salvatore; Frapporti, Guglielmo; Predicatori, Francesca; de Marco, Roberto

    2014-03-01

    Dusts are one of the main air pollutants emitted during cement manufacturing. A substantial part of these are breathable particles that are less than 10 μm in diameter (PM10), which represent a potential threat for the health of the exposed population. This study aimed at evaluating the short-term effects of PM10 concentrations on the health of children, aged 6-14 years, who attended the schools in Fumane (Italy), in proximity (1.2 km) to a large cement plant. School absenteeism was used as a proxy indicator of child morbidity. Time series of daily school absences and PM10 concentrations were collected for 3 school-years from 2007 to 2010 (541 school-days, 462 children on average). The associations between PM10 concentrations and school absence rates in the same day (lag0) and in the following 4 days (lag1 to lag4) were evaluated using generalised additive models, smoothed for medium/long term trends and adjusted for day of the week, influenza outbreaks, daily temperature and rain precipitations. The average concentration of PM10 in the period was 34 (range: 4-183) μg/m(3). An average 10 μg/m(3) increase of PM10 concentration in the previous days (lag0-4) was associated with a statistically significant 2.5% (95%CI: 1.1-4.0%) increase in the rate of school absences. The highest increase in the absence rates (2.4%; 95%CI: 1.2-3.5%) was found 2 days after exposure (lag2). These findings provide epidemiological evidence of the acute health effects of PM10 in areas with annual concentrations that are lower than the legal European Union limit of 40 μg/m(3), and support the need to establish more restrictive legislative standards.

  1. Ambient protein concentration in PM10 in Hefei, central China

    NASA Astrophysics Data System (ADS)

    Kang, Hui; Xie, Zhouqing; Hu, Qihou

    2012-07-01

    The total protein associated with bioaerosol particulate matter (PM) is generally measured as an all-inclusive indicator of airborne biological material, which may enhance the effects of allergens, allergic and asthmatic responses. To investigate the level and seasonal variations of biological loading, PM10 were collected in a metropolitan area of Hefei, central China from June 2008 to February 2009 and analyzed for total protein mass, trace elements, and water-soluble ions. The protein concentration in PM10 ranged from 2.08 to 36.71 μg m-3 with an average of 11.42 μg m-3. This was the highest value reported so far in the literature. The total protein was found to have a significant correlation with the air pollution index (API) and mean visibility (VV), indicating the potential influence of anthropogenic sources and/or crustal sources. The protein content displayed an obvious seasonal variation with respect to weather conditions. In the rainy season the level of protein was low, while in the dry season and foggy weather the level of protein was relatively high. A correlation analysis revealed that the relationship between total protein concentration and water-soluble ions K+ and NO3- in PM10 during the dry season is 0.92 and 0.66 (P < 0.05), respectively, suggesting that anthropogenic pollution and biomass burning are main contributors during this period.

  2. The regional prediction model of PM10 concentrations for Turkey

    NASA Astrophysics Data System (ADS)

    Güler, Nevin; Güneri İşçi, Öznur

    2016-11-01

    This study is aimed to predict a regional model for weekly PM10 concentrations measured air pollution monitoring stations in Turkey. There are seven geographical regions in Turkey and numerous monitoring stations at each region. Predicting a model conventionally for each monitoring station requires a lot of labor and time and it may lead to degradation in quality of prediction when the number of measurements obtained from any õmonitoring station is small. Besides, prediction models obtained by this way only reflect the air pollutant behavior of a small area. This study uses Fuzzy C-Auto Regressive Model (FCARM) in order to find a prediction model to be reflected the regional behavior of weekly PM10 concentrations. The superiority of FCARM is to have the ability of considering simultaneously PM10 concentrations measured monitoring stations in the specified region. Besides, it also works even if the number of measurements obtained from the monitoring stations is different or small. In order to evaluate the performance of FCARM, FCARM is executed for all regions in Turkey and prediction results are compared to statistical Autoregressive (AR) Models predicted for each station separately. According to Mean Absolute Percentage Error (MAPE) criteria, it is observed that FCARM provides the better predictions with a less number of models.

  3. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PM-10 data, to an extent consistent with minimum EPA requirements (note the network description... committed to comply with the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... ambient PM-10 data and report exceedances of the 24-hour PM-10 National Ambient Air Quality...

  4. From Agglomerates of Spheres to Irregularly Shaped Particles: Determination of Dynamic Shape Factors from Measurements of Mobility and Vacuum Aerodynamic Diameters

    SciTech Connect

    Zelenyuk, Alla; Cai, Yong; Imre, Dan G.

    2006-03-01

    With the advert of aerosol instrumentation it has become possible to simultaneously measure individual particle mobility and vacuum aerodynamic diameters. For spherical particles these two diameters yield individual particle density. In contrast, assigning a physical meaning to the mobility or aerodynamic diameter of aspherical particles is not straightforward. This paper presents an experimental exploration of the effect of particle shape on the relationship between mobility and vacuum aerodynamic diameters. We make measurements on systems of three types: 1) Agglomerates of spheres, for which the density and the volume are known; 2) Ammonium sulfate, sodium chloride, succinic acid and lauric acid irregularly shaped particles of known density; and 3) Internally mixed particles, containing organics and ammonium sulfate, of unknown density and shape. For agglomerates of spheres we observed alignment effects in the DMA and report the first measurements of the dynamic shape factors (DSFs) in free molecular regime. We present here the first experimental determination of the DSF of ammonium sulfate particles. We find for ammonium sulfate particles a DSF that increases from 1.03 to 1.07 as particle mobility diameter increases from 160 nm to 500 nm. Three types of NaC1 particles were generated and characterized: nearly spherical particles with DSF of ~1.02; cubic with DSF that increases from 1.065 to 1.17 as particle mobility diameter increases from 200 nm to 900 nm; and compact agglomerates with DSF 1.3-1.4. Organic particles were found very nearly spherical. The data suggest that particles composed of binary mixtures of ammonium sulfate and succinic acid have lower dynamic shape factors than pure ammonium sulfate particles. However, for internally mixed ammonium sulfate and lauric acid particles we cannot distinguish between nearly spherical particles with low density and particles with DSF of 1.17.

  5. Distribution of PM(2.5) and PM(10-2.5) in PM(10) fraction in ambient air due to vehicular pollution in Kolkata megacity.

    PubMed

    Das, Manab; Maiti, Subodh Kumar; Mukhopadhyay, Ujjal

    2006-11-01

    This research paper aims at establishing baseline PM(10) and PM(2.5) concentration levels, which could be effectively used to develop and upgrade the standards in air pollution in developing countries. The relative contribution of fine fractions (PM(2.5)) and coarser fractions (PM(10-2.5)) to PM(10) fractions were investigates in a megacity which is overcrowded and congested due to lack of road network and deteriorated air quality because of vehicular pollution. The present study was carried out during the winter of 2002. The average 24h PM(10) concentration was 304 microg/m(3), which is 3 times more than the Indian National Ambient Air Quality Standards (NAAQS) and higher PM(10) concentration was due to fine fraction (PM(2.5)) released by vehicular exhaust. The 24h average PM(2.5) concentration was found 179 microg/m(3), which is exceeded USEPA and EU standards of 65 and 50 microg/m(3) respectively for the winter. India does not have any PM(2.5) standards. The 24 h average PM(10-2.5) concentrations were found 126 microg/m(3). The PM(2.5) constituted more than 59% of PM(10) and whereas PM(10)-PM(2.5) fractions constituted 41% of PM(10). The correlation between PM(10) and PM(2.5) was found higher as PM(2.5) comprised major proportion of PM(10) fractions contributed by vehicular emissions.

  6. Characterization of PM10 sources in the central Mediterranean

    NASA Astrophysics Data System (ADS)

    Calzolai, G.; Nava, S.; Lucarelli, F.; Chiari, M.; Giannoni, M.; Becagli, S.; Traversi, R.; Marconi, M.; Frosini, D.; Severi, M.; Udisti, R.; di Sarra, A.; Pace, G.; Meloni, D.; Bommarito, C.; Monteleone, F.; Anello, F.; Sferlazzo, D. M.

    2015-07-01

    The Mediterranean Basin atmosphere is influenced by both strong natural and anthropogenic aerosol emissions, and is also subject to important climatic forcings. Several programs have addressed the study of the Mediterranean basin; nevertheless important pieces of information are still missing. In this framework, PM10 samples were collected on a daily basis on the island of Lampedusa (35.5° N, 12.6° E, 45 m a.s.l.), which is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). After mass gravimetric measurements, different portions of the samples were analyzed to determine the ionic content by Ion Chromatography (IC), the soluble metals by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and the total (soluble + insoluble) elemental composition by Particle Induced X-ray Emission (PIXE). Data from years 2007 and 2008 are used in this study. The Positive Matrix Factorization (PMF) model was applied to the 2 year long data set of PM10 mass concentration and chemical composition to assess the aerosol sources affecting the Central Mediterranean basin. Seven sources were resolved: sea-salt, mineral dust, biogenic emissions, primary particulate ship emissions, secondary sulphate, secondary nitrate, and combustion emissions. Source contributions to the total PM10 mass were estimated to be about 40 % for sea-salt, around 25 % for mineral dust, 10 % each for secondary nitrate and secondary sulphate, and 5 % each for primary particulate ship emissions, biogenic emissions, and combustion emissions. Large variations in absolute and relative contributions are found and appear to depend on the season and on transport episodes. In addition, the secondary sulphate due to ship emissions was estimated, and found to contribute by about one third to the total sulphate mass. Results for the sea-salt and mineral dust sources were compared with estimates of the same contributions obtained from independent approaches, leading

  7. Characterization of PM10 sources in the central Mediterranean

    NASA Astrophysics Data System (ADS)

    Calzolai, G.; Nava, S.; Lucarelli, F.; Chiari, M.; Giannoni, M.; Becagli, S.; Traversi, R.; Marconi, M.; Frosini, D.; Severi, M.; Udisti, R.; di Sarra, A.; Pace, G.; Meloni, D.; Bommarito, C.; Monteleone, F.; Anello, F.; Sferlazzo, D. M.

    2015-12-01

    The Mediterranean Basin atmosphere is influenced by both strong natural and anthropogenic aerosol emissions and is also subject to important climatic forcings. Several programs have addressed the study of the Mediterranean basin; nevertheless important pieces of information are still missing. In this framework, PM10 samples were collected on a daily basis on the island of Lampedusa (35.5° N, 12.6° E; 45 m a.s.l.), which is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). After mass gravimetric measurements, different portions of the samples were analyzed to determine the ionic content by ion chromatography (IC), the soluble metals by inductively coupled plasma atomic emission spectrometry (ICP-AES), and the total (soluble + insoluble) elemental composition by particle-induced x-ray emission (PIXE). Data from 2007 and 2008 are used in this study. The Positive Matrix Factorization (PMF) model was applied to the 2-year long data set of PM10 mass concentration and chemical composition to assess the aerosol sources affecting the central Mediterranean basin. Seven sources were resolved: sea salt, mineral dust, biogenic emissions, primary particulate ship emissions, secondary sulfate, secondary nitrate, and combustion emissions. Source contributions to the total PM10 mass were estimated to be about 40 % for sea salt, around 25 % for mineral dust, 10 % each for secondary nitrate and secondary sulfate, and 5 % each for primary particulate ship emissions, biogenic emissions, and combustion emissions. Large variations in absolute and relative contributions are found and appear to depend on the season and on transport episodes. In addition, the secondary sulfate due to ship emissions was estimated and found to contribute by about one-third to the total sulfate mass. Results for the sea-salt and mineral dust sources were compared with estimates of the same contributions obtained from independent approaches, leading to an

  8. Acoustic and aerodynamic performance of a 1.5-pressure-ratio, 1.83-meter (6 ft) diameter fan stage for turbofan engines (QF-2)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Balombin, J. R.

    1977-01-01

    The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans.

  9. Acoustic and aerodynamic performance of a 1.83 meter (6 foot) diameter 1.2 pressure ratio fan (QF-6). [for short takeoff aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Stakolich, E. G.

    1974-01-01

    A 1.2-pressure-ratio, 1.83-meter-(6-ft-) diameter experimental fan stage with characteristics suitable for use in STOL aircraft engines was tested for acoustic and aerodynamic performance. The design incorporated features for low noise, including absence of inlet guide vanes, low rotor-blade-tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator rows. The stage was run with four nozzles of different area. The perceived noise along a 152.4 meter (500-ft) sideline was rear-quadrant dominated with a maximum design-point level of 103.9 PNdb. The acoustic 1/3-octave results were analytically separated into broadband and pure-tone components. It was found that the stage noise levels generally increase with a decrease in nozzle area, with this increase observed primarily in the broadband noise component. A stall condition was documented acoustically with a 90-percent-of-design-area nozzle.

  10. Spatial/temporal variations of elemental carbon, organic carbon, and trace elements in PM10 and the impact of land-use patterns on community air pollution in Paterson, NJ.

    PubMed

    Yu, Chang Ho; Fan, Zhi-Hua; Meng, Qingyu; Zhu, Xianlei; Korn, Leo; Bonanno, Linda J

    2011-06-01

    An urban community PM10 (particulate matter < or = 10 microm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42

  11. Spatial/Temporal Variations of Elemental Carbon, Organic Carbon, and Trace Elements in PM10 and the Impact of Land-Use Patterns on Community Air Pollution in Paterson, NJ

    PubMed Central

    Yu, Chang Ho; Fan, Zhi-Hua; Meng, Qingyu; Zhu, Xianlei; Korn, Leo; Bonanno, Linda J.

    2014-01-01

    An urban community PM10 (particulate matter ≤ 10 μm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42% of

  12. Investigation into the Effect of Atmospheric Particulate Matter (PM2.5 and PM10) Concentrations on GPS Signals

    PubMed Central

    Lau, Lawrence; He, Jun

    2017-01-01

    The Global Positioning System (GPS) has been widely used in navigation, surveying, geophysical and geodynamic studies, machine guidance, etc. High-precision GPS applications such as geodetic surveying need millimeter and centimeter level accuracy. Since GPS signals are affected by atmospheric effects, methods of correcting or eliminating ionospheric and tropospheric bias are needed in GPS data processing. Relative positioning can be used to mitigate the atmospheric effect, but its efficiency depends on the baseline lengths. Air pollution is a serious problem globally, especially in developing countries that causes health problems to humans and damage to the ecosystem. Respirable suspended particles are coarse particles with a diameter of 10 micrometers or less, also known as PM10. Moreover, fine particles with a diameter of 2.5 micrometers or less are known as PM2.5. GPS signals travel through the atmosphere before arriving at receivers on the Earth’s surface, and the research question posed in this paper is: are GPS signals affected by the increased concentration of the PM2.5/PM10 particles? There is no standard model of the effect of PM2.5/PM10 particles on GPS signals in GPS data processing, although an approximate generic model of non-gaseous atmospheric constituents (<1 mm) can be found in the literature. This paper investigates the effect of the concentration of PM2.5/PM10 particles on GPS signals and validates the aforementioned approximate model with a carrier-to-noise ratio (CNR)-based empirical method. Both the approximate model and the empirical results show that the atmospheric PM2.5/PM10 particles and their concentrations have a negligible effect on GPS signals and the effect is comparable with the noise level of GPS measurements. PMID:28273798

  13. Investigation into the Effect of Atmospheric Particulate Matter (PM2.5 and PM10) Concentrations on GPS Signals.

    PubMed

    Lau, Lawrence; He, Jun

    2017-03-03

    The Global Positioning System (GPS) has been widely used in navigation, surveying, geophysical and geodynamic studies, machine guidance, etc. High-precision GPS applications such as geodetic surveying need millimeter and centimeter level accuracy. Since GPS signals are affected by atmospheric effects, methods of correcting or eliminating ionospheric and tropospheric bias are needed in GPS data processing. Relative positioning can be used to mitigate the atmospheric effect, but its efficiency depends on the baseline lengths. Air pollution is a serious problem globally, especially in developing countries that causes health problems to humans and damage to the ecosystem. Respirable suspended particles are coarse particles with a diameter of 10 micrometers or less, also known as PM10. Moreover, fine particles with a diameter of 2.5 micrometers or less are known as PM2.5. GPS signals travel through the atmosphere before arriving at receivers on the Earth's surface, and the research question posed in this paper is: are GPS signals affected by the increased concentration of the PM2.5/PM10 particles? There is no standard model of the effect of PM2.5/PM10 particles on GPS signals in GPS data processing, although an approximate generic model of non-gaseous atmospheric constituents (<1 mm) can be found in the literature. This paper investigates the effect of the concentration of PM2.5/PM10 particles on GPS signals and validates the aforementioned approximate model with a carrier-to-noise ratio (CNR)-based empirical method. Both the approximate model and the empirical results show that the atmospheric PM2.5/PM10 particles and their concentrations have a negligible effect on GPS signals and the effect is comparable with the noise level of GPS measurements.

  14. 78 FR 924 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Eagle River PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...EPA is proposing to approve the Limited Maintenance Plan (LMP) submitted by the State of Alaska on September 29, 2010, for the Eagle River nonattainment area (Eagle River NAA) and the State's request to redesignate the area to attainment for the National Ambient Air Quality Standards (NAAQS) for particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers......

  15. Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.

    1976-01-01

    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy.

  16. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  17. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  18. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... classified as Group II areas for the purpose of PM10 State Implementation Plan (SIP) development. The... accordance with the requirements for PM10 SIP development, the State of Nebraska commits to perform the following PM10 monitoring and SIP development activities for these Group II areas: (1) Gather ambient...

  19. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  20. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  1. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... classified as Group II areas for the purpose of PM10 State Implementation Plan (SIP) development. The... accordance with the requirements for PM10 SIP development, the State of Nebraska commits to perform the following PM10 monitoring and SIP development activities for these Group II areas: (1) Gather ambient...

  2. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... classified as Group II areas for the purpose of PM10 State Implementation Plan (SIP) development. The... accordance with the requirements for PM10 SIP development, the State of Nebraska commits to perform the following PM10 monitoring and SIP development activities for these Group II areas: (1) Gather ambient...

  3. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... classified as Group II areas for the purpose of PM10 State Implementation Plan (SIP) development. The... accordance with the requirements for PM10 SIP development, the State of Nebraska commits to perform the following PM10 monitoring and SIP development activities for these Group II areas: (1) Gather ambient...

  4. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  5. Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium.

    PubMed

    Maenhaut, Willy; Vermeylen, Reinhilde; Claeys, Magda; Vercauteren, Jordy; Matheeussen, Christina; Roekens, Edward

    2012-10-15

    From February 2010 to February 2011 PM10 aerosol samples were simultaneously taken every 4th day at 7 monitoring sites in Flanders, Belgium. Two of the sites (i.e., Borgerhout and Gent) were urban background sites; one (i.e., Mechelen) a suburban background site, and the other four (i.e., Hamme, Lier, Retie, and Houtem) rural background sites, whereby Hamme and Lier were expected to be particularly impacted by biomass burning. The samplings were done for 24h and 47-mm diameter Pallflex® Tissuquartz™ 2500 QAT-UP filters were used. After sampling the PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical transmission analysis and the wood burning tracers levoglucosan, mannosan, and galactosan were determined by means of gas chromatography/mass spectrometry. The atmospheric concentrations of levoglucosan and the other two monosaccharide anhydrides showed a very clear seasonal variation at each site, with highest levels in winter, followed by autumn, spring, and summer. The levoglucosan levels for 5 of our 7 sites (i.e., Retie, Lier, Mechelen, Borgerhout, and Gent) were very highly correlated with each other (all between site correlation coefficients r>0.9, except for one value of 0.86) and the levels in the parallel samples of these 5 sites were similar, indicating that wood burning at these 5 sites was a regional phenomenon and that it was taking place in many individual houses on similar occasions (e.g., on cold days, weekends or holidays). The levoglucosan levels at Houtem and the correlation coefficients of the 5 sites with Houtem were lower, which is explained by the fact that the latter site is at less than 20 km from the North Sea so that the air there is often diluted by rather clean westerly maritime air. A peculiar behavior was seen for Hamme, with on many occasions very high levoglucosan levels, which was attributed to the fact that there is wood burning going on in several houses

  6. Identifying the most hazardous synoptic meteorological conditions for Winter UK PM10 exceedences

    NASA Astrophysics Data System (ADS)

    Webber, Chris; Dacre, Helen; Collins, Bill; Masato, Giacomo

    2016-04-01

    Summary We investigate the relationship between synoptic scale meteorological variability and local scale pollution concentrations within the UK. Synoptic conditions representative of atmospheric blocking highlighted significant increases in UK PM10 concentration ([PM10]), with the probability of exceeding harmful [PM10] limits also increased. Once relationships had been diagnosed, The Met Office Unified Model (UM) was used to replicate these relationships, using idealised source regions of PM10. This helped to determine the PM10 source regions most influential throughout UK PM10 exceedance events and to test whether the model was capable of capturing the relationships between UK PM10 and atmospheric blocking. Finally, a time slice simulation for 2050-2060 helped to answer the question whether PM10 exceedance events are more likely to occur within a changing climate. Introduction Atmospheric blocking events are well understood to lead to conditions, conducive to pollution events within the UK. Literature shows that synoptic conditions with the ability to deflect the Northwest Atlantic storm track from the UK, often lead to the highest UK pollution concentrations. Rossby wave breaking (RWB) has been identified as a mechanism, which results in atmospheric blocking and its relationship with UK [PM10] is explored using metrics designed in Masato, et al., 2013. Climate simulations facilitated by the Met Office UM, enable these relationships between RWB and PM10 to be found within the model. Subsequently the frequency of events that lead to hazardous PM10 concentrations ([PM10]) in a future climate, can be determined, within a climate simulation. An understanding of the impact, meteorology has on UK [PM10] within a changing climate, will help inform policy makers, regarding the importance of limiting PM10 emissions, ensuring safe air quality in the future. Methodology and Results Three Blocking metrics were used to subset RWB into four categories. These RWB categories

  7. Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India

    NASA Astrophysics Data System (ADS)

    Satsangi, P. Gursumeeran; Yadav, Suman; Pipal, Atar Singh; Kumbhar, Navanath

    2014-08-01

    Indoor concentrations of fine (PM2.5: aerodynamic diameter ≤ 2.5) and inhalable (PM10: aerodynamic diameter ≤ 10 μm) particles and its associated toxic metals are of concern now-a-days due to its effects on human health and environment. PM10 and PM2.5 samples were collected from indoor microenvironments on glass fiber and PTFE filter paper using low volume air sampler in Pune. The average concentration of PM2.5 and PM10 were 89.7 ± 43.2 μg m-3 and 138.2 ± 68.2 μg m-3 at urban site while it was 197.5 ± 84.3 and 287 ± 92 μg m-3 at rural site. Trace metals such as Cd, Co, Cr, Cu, Fe, Mn, Pb, Sb and Zn in particulate matter were estimated by ICP-AES. Concentrations of crustal metals were found to be higher than the carcinogenic metals in both the microenvironments. On the contrary the soluble and bio-availability fraction of carcinogenic metals were found higher thus it may cause the higher risk to human health. Therefore, cancer risk assessment of carcinogenic metals; Cr, Ni and Cd was calculated. Among the carcinogenic metals, Ni showed highest cancer risk in indoor PM. The higher cancer risk assessment of Ni has been supported by In-silico study which suggested that Ni actively formed co-ordination complex with histone proteins (i.e. H3-Ni/H4-Ni) by maintaining strong hydrogen bonding interactions with Asp and Glu residues of nucleosomal proteins. Present In-silico study of Ni-histone complexes will help to emphasize the possible role of Asp and Glu residues in DNA methylation, deacetylation and ubiquitinations of nucleosomal proteins. Hence, this study could pave the way to understand the structural consequence of Ni in nucleosomal proteins and its impact on epigenetic changes which ultimately cause lung and nasal cancer.

  8. Assessment of population exposure to PM10 for respiratory disease in Lanzhou (China) and its health-related economic costs based on GIS

    PubMed Central

    2013-01-01

    Background Evaluation of the adverse health effects of PM10 pollution (particulate matter less than 10 microns in diameter) is very important for protecting human health and establishing pollution control policy. Population exposure estimation is the first step in formulating exposure data for quantitative assessment of harmful PM10 pollution. Methods In this paper, we estimate PM10 concentration using a spatial interpolation method on a grid with a spatial resolution 0.01° × 0.01°. PM10 concentration data from monitoring stations are spatially interpolated, based on accurate population data in 2000 using a geographic information system. Then, an interpolated population layer is overlaid with an interpolated PM10 concentration layer, and population exposure levels are calculated. Combined with the exposure-response function between PM10 and health endpoints, economic costs of the adverse health effects of PM10 pollution are analyzed. Results The results indicate that the population in Lanzhou urban areas is distributed in a narrow and long belt, and there are relatively large population spatial gradients in the XiGu, ChengGuan and QiLiHe districts. We select threshold concentration C0 at: 0 μg m-3 (no harmful health effects), 20 μg m-3 (recommended by the World Health Organization), and 50 μg m-3 (national first class standard in China) to calculate excess morbidity cases. For these three scenarios, proportions of the economic cost of PM10 pollution-related adverse health effects relative to GDP are 0.206%, 0.194% and 0.175%, respectively. The impact of meteorological factors on PM10 concentrations in 2000 is also analyzed. Sandstorm weather in spring, inversion layers in winter, and precipitation in summer are important factors associated with change in PM10 concentration. Conclusions The population distribution by exposure level shows that the majority of people live in polluted areas. With the improvement of evaluation criteria, economic damage of

  9. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China.

    PubMed

    Qiu, Xionghui; Duan, Lei; Gao, Jian; Wang, Shulan; Chai, Fahe; Hu, Jun; Zhang, Jingqiao; Yun, Yaru

    2016-02-01

    To elucidate the air pollution characteristics of northern China, airborne PM10 (atmospheric dynamic equivalent diameter ≤ 10 μm) and PM2.5 (atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled in three different functional areas (Yuzhong County, Xigu District and Chengguan District) of Lanzhou, and their chemical composition (elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM10 (369.48 μg/m(3)) and PM2.5 (295.42 μg/m(3)) were detected in Xigu District in the winter, the lowest concentration of PM2.5 (53.15 μg/m(3)) was observed in Yuzhong District in the fall and PM10 (89.60 μg/m(3)) in Xigu District in the fall. The overall average OC/EC (organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA (the sum of sulfate, nitrate, ammonium, SNA) in PM2.5 in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM2.5 and PM10 in Yuzhong County was generally lower than that at other sites in all seasons (0.24-0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization (PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou.

  10. The dynamical impact of Rossby wave breaking upon UK PM10 concentration

    NASA Astrophysics Data System (ADS)

    Webber, Christopher P.; Dacre, Helen F.; Collins, William J.; Masato, Giacomo

    2017-01-01

    Coarse particulate matter (PM10) has long been understood to be hazardous to human health, with mortality rates increasing as a result of raised ground level concentrations. We explore the influence of synoptic-scale meteorology on daily mean observed PM10 concentration ([PM10]) using Rossby wave breaking (RWB). Meteorological reanalysis data for the winter months (DJF) between January 1999 and December 2008 and observed PM10 data for three urban background UK (Midland) sites were analysed. Three RWB diagnostics were used to identify RWB that had significant influence on UK Midland PM10. RWB events were classified according to whether the RWB was cyclonic or anticyclonic in its direction of breaking and whether the RWB event was influenced more by poleward or equatorial air masses. We find that there is a strong link between RWB events and UK [PM10]. Significant increases (p < 0.01) in UK [PM10] were seen 1 day following RWB occurring in spatially constrained northeast Atlantic-European regions. Analysis into episodic PM10 exceedance events shows increased probability of [PM10] exceedance associated with all RWB subsets. The greatest probability of exceeding the UK [PM10] threshold was associated with cyclonic RWB preceded by anticyclonic RWB forming an Ω block synoptic pattern. This mechanism suggests an easterly advection of European PM10 followed by prolonged stagnant conditions within the UK and led to an almost threefold increase in the probability of the UK Midlands exceeding a hazardous [PM10] threshold (0.383), when compared to days where no RWB was detected (0.129).

  11. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant.

    PubMed

    Khaparde, V V; Bhanarkar, A D; Majumdar, Deepanjan; Rao, C V Chalapati

    2016-08-15

    Fugitive emissions of PM10 (particles <10μm in diameter) and associated polycyclic aromatic hydrocarbons (PAHs) were monitored in the vicinity of coking unit, sintering unit, blast furnace and steel manufacturing unit in an integrated iron and steel plant situated in India. Concentrations of PM10, PM10-bound total PAHs, benzo (a) pyrene, carcinogenic PAHs and combustion PAHs were found to be highest around the sintering unit. Concentrations of 3-ring and 4-ring PAHs were recorded to be highest in the coking unit whereas 5-and 6-ring PAHs were found to be highest in other units. The following indicatory PAHs were identified: indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, benzo (k) fluoranthene in blast furnace unit; indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, chrysene in sintering unit; Anthracene, fluoranthene, chrysene in coking unit and acenaphthene, fluoranthene, fluorene in steel making unit. Total-BaP-TEQ (Total BaP toxic equivalent quotient) and BaP-MEQ (Total BaP mutagenic equivalent quotient) concentration levels ranged from 2.4 to 231.7ng/m(3) and 1.9 to 175.8ng/m(3), respectively. BaP and DbA (dibenzo (a,h) anthracene) contribution to total-BaP-TEQ was found to be the highest.

  12. Direct gravimetric measurements of the mass of the antarctic aerosol collected by high volume sampler: PM10 summer seasonal variation at Terra Nova Bay.

    PubMed

    Truzzi, Cristina; Lambertucci, Luca; Illuminati, Silvia; Annibaldi, Anna; Scarponi, Giuseppe

    2005-01-01

    An on-site procedure was set up for direct gravimetric measurement of the mass of aerosol collected using high volume impactors (aerodynamic size cut point of 10 microm, PM10); this knowledge has hitherto been unavailable. Using a computerized microbalance in a clean chemistry laboratory, under controlled temperature (+/-0.5 degrees C) and relative humidity (+/-1%), continuous, long time filter mass measurements (hours) were carried out before and after exposure, after a 48 h minimun equilibration at the laboratory conditions. The effect of the electrostatic charge was exhausted in 30-60 min, after which stable measurements were obtained. Measurements of filters exposed for 7-11 days (1.13 m3 min(-1)) in a coastal site near Terra Nova Bay (December 2000 - February 2001), gave results for aerosol mass in the order of 10-20 mg (SD approximately 2 mg), corresponding to atmospheric concentrations of 0.52-1.27 microg m(-3). Data show a seasonal behaviour in the PM10 content with an increase during December - early January, followed by a net decrease. The above results compare well with estimates obtained from proxy data for the Antarctic Peninsula (0.30 microg m(-3)), the Ronne Ice Shelf (1.49 microg m(-3)), and the South Pole (0.18 microg m(-3), summer 1974-1975, and 0.37 microg m(-3), average summer seasons 1975-1976 and 1977-1978), and from direct gravimetric measurements recently obtained from medium volume samplers at McMurdo station (downwind 3.39 microg m(-3), upwind 4.15 microg m(-3)) and at King George Island (2.5 microg m(-3), summer, particle diameter <20 microm). This finding opens the way to the direct measurement of the chemical composition of the Antarctic aerosol and, in turn, to a better knowledge of the snow/air relationships as required for the reconstruction of the chemical composition of past atmospheres from deep ice core data.

  13. Quiet Clean Short-Haul Experimental Engine (QCSEE) aerodynamic characteristics of 30.5 centimeter diameter inlets

    NASA Technical Reports Server (NTRS)

    Paul, D. L.

    1975-01-01

    A low speed test program was conducted in a 9- by 15-foot V/STOL wind tunnel to investigate internal performance characteristics and determine key design features required for an inlet to meet the demanding operational conditions of the QCSEE application. Four models each having a design average throat Mach number of 0.79 were tested over a range of incidence angle, throat Mach number, and freestream velocity. Principal design variable was internal lip diameter ratio. Stable, efficient inlet performance was found to be feasible at and beyond the 50 deg incidence angle required by the QCSEE application at its 41.2 m/sec (80 knot) nominal takeoff velocity, through suitably designed inlet lip and diffuser components. Forebody design was found to significantly impact flow stability via nose curvature. Measured inlet wall pressures were used to select a location for the inlet throat Mach number control's static pressure port that properly balanced the conflicting demands of relative insensitivity to flow incidence and sufficiently high response to changes in engine flow demand.

  14. Aerodynamic effect of a honeycomb rotor tip shroud on a 50.8-centimeter-tip-diameter core turbine

    NASA Technical Reports Server (NTRS)

    Moffitt, T. P.; Whitney, W. J.

    1983-01-01

    A 50.8-cm-tip-diameter turbine equipped with a rotor tip shroud of hexagonal cell (or honeycomb) cross section has been tested in warm air (416 K) for a range of shroud coolant to primary flow rates. Test results were also obtained for the same turbine operated with a solid shroud for comparison. The results showed that the combined effect of the honeycomb shroud and the coolant flow was to cause a reduction of 2.8 points in efficiency at design speed, pressure ratio, and coolant flow rate. With the coolant system inactivated, the honeycomb shroud caused a decrease in efficiency of 2.3 points. These results and those obtained from a small reference turbine indicate that the dominant factor governing honeycomb tip shroud loss is the ratio of honeycomb depth to blade span. The loss results of the two shrouds could be correlated on this basis. The same honeycomb and coolant effects are expected to occur for the hot (2200 K) version of this turbine.

  15. 76 FR 8300 - Finding of Failure To Submit State Implementation Plan Revisions for Particulate Matter, PM-10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Matter, PM-10, Maricopa County (Phoenix) PM-10 Nonattainment Area, AZ AGENCY: Environmental Protection... Maricopa County (Phoenix) nonattainment area (Maricopa area) for particulate matter of 10 microns or less (PM- 10). The Maricopa area is a serious PM-10 nonattainment area which, having failed to attain...

  16. Effect of PM10 pollution in Bangkok on children with and without asthma.

    PubMed

    Preutthipan, Aroonwan; Udomsubpayakul, Umaporn; Chaisupamongkollarp, Thitida; Pentamwa, Prapat

    2004-03-01

    This study aimed to investigate the effects of PM10 concentrations exceeding the Thai national standard (24-hr average, >120 microg/m3) on daily reported respiratory symptoms and peak expiratory flow rate (PEFR) of schoolchildren with and without asthma in Bangkok. The 93 asthmatic and 40 nonasthmatic schoolchildren were randomly recruited from a school located in a highly congested traffic area. Daily respiratory symptoms and PEFR of each child were evaluated and recorded in the diary for 31 successive school days. During the study period, 24-hr average PM10 levels ranged between 46-201 microg/m3. PM10 levels exceeded 120 microg/m3 for 14 days. We found that when PM10 levels were >120 microg/m3, the daily reported nasal irritation of asthmatic children was significantly higher than when PM10 levels were < or =120 microg/m3. In addition, when PM10 levels were >120 microg/m3, nonasthmatic children had a significantly higher daily reported combination of any respiratory symptoms. PEFR did not change with different ambient PM10 levels in both groups. This study suggests that elevated levels of PM10 concentrations in Bangkok affect respiratory symptoms of schoolchildren with and without asthma.

  17. Update on the development of cotton gin PM10 emission factors for EPA's AP-42

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cotton ginning industry-supported project was initiated in 2008 to update the U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) to include PM10 emission factors. This study develops emission factors from the PM10 emission factor data collected from ...

  18. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... development in group II areas. 52.1423 Section 52.1423 Protection of Environment ENVIRONMENTAL PROTECTION...) Nebraska § 52.1423 PM10 State implementation plan development in group II areas. The state of Nebraska committed to conform to the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay,...

  19. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  20. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  1. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  2. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Committal SIP for the Colorado Group II... SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP for the Colorado Group II PM10 areas. The SIP commits the State to continue to monitor for...

  3. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  4. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Particulate matter (PM-10) Group II SIP... (PM-10) Group II SIP commitments. (a) On December 28, 1988, the Governor's designee for Arizona submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  5. 40 CFR 52.881 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... State implementation plan development in group II areas. The state has submitted a committal SIP for Kansas City, Kansas. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681, except the state will report the PM10 data...

  6. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Committal SIP for the Colorado Group II... SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP for the Colorado Group II PM10 areas. The SIP commits the State to continue to monitor for...

  7. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  8. 40 CFR 52.935 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... committal SIP for the cities of Ashland and Catlettsburg in Boyd County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for PM10, report data...

  9. 40 CFR 52.935 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... committal SIP for the cities of Ashland and Catlettsburg in Boyd County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for PM10, report data...

  10. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  11. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  12. 40 CFR 52.881 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... State implementation plan development in group II areas. The state has submitted a committal SIP for Kansas City, Kansas. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681, except the state will report the PM10 data...

  13. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Particulate matter (PM-10) Group II SIP... (PM-10) Group II SIP commitments. (a) On December 28, 1988, the Governor's designee for Arizona submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  14. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Committal SIP for the Colorado Group II... SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP for the Colorado Group II PM10 areas. The SIP commits the State to continue to monitor for...

  15. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  16. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  17. 40 CFR 52.881 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... State implementation plan development in group II areas. The state has submitted a committal SIP for Kansas City, Kansas. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681, except the state will report the PM10 data...

  18. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  19. 40 CFR 52.935 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... committal SIP for the cities of Ashland and Catlettsburg in Boyd County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for PM10, report data...

  20. 40 CFR 52.935 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... committal SIP for the cities of Ashland and Catlettsburg in Boyd County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for PM10, report data...

  1. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  2. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Particulate matter (PM-10) Group II SIP... (PM-10) Group II SIP commitments. (a) On December 28, 1988, the Governor's designee for Arizona submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  3. 40 CFR 52.881 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... State implementation plan development in group II areas. The state has submitted a committal SIP for Kansas City, Kansas. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681, except the state will report the PM10 data...

  4. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  5. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  6. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Committal SIP for the Colorado Group II... SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP for the Colorado Group II PM10 areas. The SIP commits the State to continue to monitor for...

  7. 40 CFR 52.881 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... State implementation plan development in group II areas. The state has submitted a committal SIP for Kansas City, Kansas. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681, except the state will report the PM10 data...

  8. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Committal SIP for the Colorado Group II... SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP for the Colorado Group II PM10 areas. The SIP commits the State to continue to monitor for...

  9. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  10. 40 CFR 52.935 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... committal SIP for the cities of Ashland and Catlettsburg in Boyd County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for PM10, report data...

  11. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  12. 76 FR 21807 - Approval and Promulgation of Implementation Plans; State of Nevada; PM-10; Determinations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... that, based on complete and quality-assured air monitoring data for 1999-2001, the Truckee Meadows area did not attain the 24-hour National Ambient Air Quality Standard (``NAAQS'') for particulate matter... Meadows area is currently attaining the PM-10 NAAQS, based upon complete, quality-assured PM-10...

  13. 78 FR 34095 - Adequacy Status of the Idaho, Northern Ada County PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... AGENCY Adequacy Status of the Idaho, Northern Ada County PM 10 State Implementation Plan for... 2023 in the Northern Ada County PM 10 State Implementation Plan, Maintenance Plan: Ten-Year Update... in Northern Ada County. The EPA's finding was made pursuant to the adequacy review process...

  14. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-01-01

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557

  15. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-02-14

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities.

  16. Pollution of PM10 in an underground enclosed loading dock in Malaysia

    NASA Astrophysics Data System (ADS)

    Abualqumboz, M. S.; Mohammed, N. I.; Malakahmad, A.; Nazif, A. N.; Albattniji, A. T.

    2016-06-01

    The enclosed nature of underground loading docks results in accumulation of motor vehicles emissions. Thus, concentration of numerous harmful air pollutants including PM10 particles can increase and reach dangerous levels. This paper aims to study short-term and long-term exposure of PM10 particles inside an underground loading dock located in Malaysia. In addition, the correlation with indoor temperature, relative humidity and vehicles flow will be measured. The concentrations of PM10 were measured for three consecutive weeks using the real-time air quality monitoring instrument AQM60. Series of statistical tests and multiple linear regression analysis were applied on the data using SPSS software and MATLAB R2013a. The results illustrated that PM10 daily average concentration was in compliance with the Malaysian guideline of 150 µg/m3. Actually, 95% of instantaneous PM10 concentration readings were below 75 μg/m3. In addition, significant correlation were found between PM10 concentration and indoor temperature, relative humidity and the previous concentration. The multiple R and R2 were 0.91 and 0.83, respectively. PM10 concentration was also correlated with motor vehicles flow. In conclusion, health effects of long-term exposure to small repetitive doses of air pollutant inside underground facilities should be studied and appropriate control measures need to be implemented.

  17. Acute health effects of PM10 pollution on symptomatic and asymptomatic children

    SciTech Connect

    Pope, C.A. 3d.; Dockery, D.W. )

    1992-05-01

    This study assessed the association between daily changes in respiratory health and respirable particulate pollution (PM10) in Utah Valley during the winter of 1990-1991. During the study period, 24-h PM10 concentrations ranged from 7 to 251 micrograms/m3. Participants included symptomatic and asymptomatic samples of fifth- and sixth-grade students. Relatively small but statistically significant (p less than 0.01) negative associations between peak expiratory flow (PEF) and PM10 were observed for both the symptomatic and asymptomatic samples. The association was strongest for the symptomatic children. Large associations between the incidence of respiratory symptoms, especially cough, and PM10 pollution were also observed for both samples. Again the association was strongest for the symptomatic sample. Immediate and delayed PM10 effects were observed. Respiratory symptoms and PEF changes were more closely associated with 5-day moving-average PM10 levels than with concurrent-day levels. These associations were also observed at PM10 levels below the 24-h standard of 150 micrograms/m3. This study indicates that both symptomatic and asymptomatic children may suffer acute health effects of respirable particulate pollution, with symptomatic children suffering the most.

  18. Diurnal changes of PM10-emission from arable soils in NE-Germany

    NASA Astrophysics Data System (ADS)

    Hoffmann, Carsten; Funk, Roger

    2015-06-01

    Repeated loss of fine soil particles by dust emission from arable fields caused by tillage operations, decline soil fertility and reduce air quality. The objective of this study was to quantify the diurnal dynamic of topsoil moisture and the connected PM10-emission of 15 different soils from arable fields around Berlin. As typical for the young moraine landscape in NE Germany, soils from glacial (sand and loam dominated), aeolian (silt loam), and fluvial (organic) sediments were selected. Soil samples were placed outside under hot summer and clear sky conditions for 24 h to reproduce the natural dynamic of soil surface moisture, including dew uptake during the night and evaporation during the day. Dynamic of PM10 emissions of all soils were then measured nine times per day in a stationary wind tunnel. Glacial and fluvial sands showed lowest fine dust emission potential (PM10pot) between 89 and 415 μg PM10 g-1 soil, while PM10pot of loess soils were higher (369-1215 μg PM10 g-1 soil). During the night, the moisture of all samples increased slightly by dew uptake, and fine dust emissions of soil samples were reduced up to 51% directly after sunrise. Highest average reductions in PM10 emissions were found for glacial and fluvial loams. Some hours after sunrise, all soil samples heated up and quickly dried again. Under minimal moisture conditions, highest fine dust emissions were measured between 10 a.m. and 3 p.m.

  19. Source apportionment of speciated PM10 in the United Kingdom in 2008: Episodes and annual averages

    NASA Astrophysics Data System (ADS)

    Redington, A. L.; Witham, C. S.; Hort, M. C.

    2016-11-01

    The Lagrangian atmospheric dispersion model NAME (Numerical Atmospheric-dispersion Modelling Environment), has been used to simulate the formation and transport of PM10 over North-West Europe in 2008. The model has been evaluated against UK measurement data and been shown to adequately represent the observed PM10 at rural and urban sites on a daily basis. The Lagrangian nature of the model allows information on the origin of pollutants (and hence their secondary products) to be retained to allow attribution of pollutants at receptor sites back to their sources. This source apportionment technique has been employed to determine whether the different components of the modelled PM10 have originated from UK, shipping, European (excluding the UK) or background sources. For the first time this has been done to evaluate the composition during periods of elevated PM10 as well as the annual average composition. The episode data were determined by selecting the model data for each hour when the corresponding measurement data was >50 μg/m3. All the modelled sites show an increase in European pollution contribution and a decrease in the background contribution in the episode case compared to the annual average. The European contribution is greatest in southern and eastern parts of the UK and decreases moving northwards and westwards. Analysis of the speciated attribution data over the selected sites reveals that for 2008, as an annual average, the top three contributors to total PM10 are UK primary PM10 (17-25%), UK origin nitrate aerosol (18-21%) and background PM10 (11-16%). Under episode conditions the top three contributors to modelled PM10 are UK origin nitrate aerosol (12-33%), European origin nitrate aerosol (11-19%) and UK primary PM10 (12-18%).

  20. Experimental Study on PM10 Feature During Caol Combustion

    NASA Astrophysics Data System (ADS)

    Du, Y. G.; Sui, J. C.; Yin, G. Z.

    By using Low Pressure Impactor, fly ash is sampled at the ESP inlet and outlet of a 300MW utility boiler. The composition, mass and element size distribution of fly ash was measured by X-ray fluorescence and 0.001mg precision microbalance, respectively. Mass and element size distribution of Si, Al, Fe, Ca, Mg, S, Cu, Pb, Zn and Mn is of bimodal. Fly ash diameters of the fine and the coarse are about O.Ium and 2.36-3.95 μm, respectively. Efficiency of ESP for submicron ash is lower than that for normal variables ranging 62˜83%, while for ash bigger than 10μ it is almost 100%. Mg, S, Cu, Zn and Pb are obviously enriched in fine ash, especially Cu, Zn and Pb. They are found in PM2.5 accounting for 50˜60%. The relative enrichment coefficient of Cu, Zn and Pb is about 30˜40. The relative enrichment coefficient of Si, Al and Ca decreases with the ash size decreasing. No direct connection is found between the change ofrelative enrichment coefficient ofFe, Mn and their ash size.

  1. Particulate matter in California: part 2--Spatial, temporal, and compositional patterns of PM2.5, PM10-2.5, and PM10.

    PubMed

    Motallebi, Nehzat; Taylor, Clinton A; Croes, Bart E

    2003-12-01

    Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 microg/m3 and from 5 to 18 microg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 microg/m3, with observed 24-hr peaks reaching levels as high as 160 microg/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4(2-)) and nitrate (NO3-) components of PM2.5 and PM10) and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10-2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.

  2. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...% 10% 2 10% 2 10% 2 10% 2 Precision of PM2.5 or PM10-2.5 candidate method, CP, each site 10% 2 15% 2 15% 2 15% 2 Slope of regression relationship 1 ± 0.10 1 ± 0.05 1 ± 0.10 1 ± 0.10 1 ± 0.10 1 ±...

  3. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...% 10% 2 10% 2 10% 2 10% 2 Precision of PM2.5 or PM10-2.5 candidate method, CP, each site 10% 2 15% 2 15% 2 15% 2 Slope of regression relationship 1 ± 0.10 1 ± 0.05 1 ± 0.10 1 ± 0.10 1 ± 0.10 1 ±...

  4. Air levels and mutagenicity of PM-10 in an indoor ice arena

    SciTech Connect

    Georghiou, P.E.; Blagden, P.A. ); Snow, D.A.; Winsor, L. ); Williams, D.T. )

    1989-12-01

    The authors report here their results from a preliminary study to evaluate a methodology for surveying air quality by measuring concentrations of PM-10 and the corresponding concentrations of mutagenic activity. The PM-10 was collected, during several hockey games at an ice arena using an Indoor Air Sampling Impactor (IASI) developed by Marple et al. During the course of the study, smoking restrictions were imposed in the stadium and the impact of these restrictions on PM-10 levels was also evaluated. The mutagenic activities of solvent extracts of the PM-10 were determined using the microsuspension modification of the Samonella typhimurium/microsome test. Mutagenic activity has often been used as a rough index of exposure to potential carcinogens and mutagens and to help define their sources.

  5. 78 FR 900 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Eagle River PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... not a result of either economic trends or meteorology. E. Does the area have a fully approved... scenarios if economics or meteorology increased the amount of PM 10 emissions generated by residential...

  6. Increase in dust storm related PM10 concentrations: A time series analysis of 2001-2015.

    PubMed

    Krasnov, Helena; Katra, Itzhak; Friger, Michael

    2016-06-01

    Over the last decades, changes in dust storms characteristics have been observed in different parts of the world. The changing frequency of dust storms in the southeastern Mediterranean has led to growing concern regarding atmospheric PM10 levels. A classic time series additive model was used in order to describe and evaluate the changes in PM10 concentrations during dust storm days in different cities in Israel, which is located at the margins of the global dust belt. The analysis revealed variations in the number of dust events and PM10 concentrations during 2001-2015. A significant increase in PM10 concentrations was identified since 2009 in the arid city of Beer Sheva, southern Israel. Average PM10 concentrations during dust days before 2009 were 406, 312, and 364 μg m(-3) (median 337, 269,302) for Beer Sheva, Rehovot (central Israel) and Modi'in (eastern Israel), respectively. After 2009 the average concentrations in these cities during dust storms were 536, 466, and 428 μg m(-3) (median 382, 335, 338), respectively. Regression analysis revealed associations between PM10 variations and seasonality, wind speed, as well as relative humidity. The trends and periodicity are stronger in the southern part of Israel, where higher PM10 concentrations are found. Since 2009 dust events became more extreme with much higher daily and hourly levels. The findings demonstrate that in the arid area variations of dust storms can be quantified easier through PM10 levels over a relatively short time scale of several years.

  7. PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells.

    PubMed

    Camatini, Marina; Corvaja, Viviana; Pezzolato, Eleonora; Mantecca, Paride; Gualtieri, Maurizio

    2012-02-01

    PM10 was collected in a Milan urban site, representative of the city air quality, during winter and summer 2006. Mean daily PM10 concentration was 48 μg m(-3) during summer and 148 μg m(-3) during winter. Particles collected on Teflon filters were chemically characterized and the endotoxin content determined by the LAL test. PM10-induced cell toxicity, assessed with MTT and LDH methods, and proinflammatory potential, monitored by IL-6 and IL-8 cytokines release, were investigated on the human alveolar epithelial cell line A549 exposed to increasing doses of PM. Besides untreated cells, exposure to inert carbon particles (2-12 μm) was also used as additional control. Both cell toxicity and proinflammatory potency resulted to be higher for summer PM10 with respect of winter PM10, with IL-6 showing the highest dose-dependent release. The relevance of biogenic components adsorbed onto PM10 in eliciting the proinflammatory mediators release was investigated by inhibition experiments. Polymixin B (Poly) was used to inhibit particle-bind LPS while Toll-like receptor-2 antibody (a-TLR2) to specifically block the activation of this receptor. While cell viability was not modulated in cells coexposed to PM10 and Poly or a-TLR2 or both, inflammatory response did it, with IL-6 release being the most inhibited. In conclusion, Milan PM10-induced seasonal-dependent biological effects, with summer particles showing higher cytotoxic and proinflammatory potential. Cytotoxicity seemed to be unaffected by the PM biogenic components, while inflammation was significantly reduced after the inhibition of some biogenic activated pathways. Besides, the PM-associated biogenic activity does not entirely justify the PM-induced inflammatory effects. © 2010 Wiley Periodicals, Inc. Environ Toxicol 2012.

  8. Influence of Southeast Asian Haze episodes on high PM10 concentrations across Brunei Darussalam.

    PubMed

    Dotse, Sam-Quarcoo; Dagar, Lalit; Petra, Mohammad Iskandar; De Silva, Liyanage C

    2016-12-01

    Particulate matter (PM10) is the key indicator of air quality index in Brunei Darussalam and the principal pollutant for haze related episodes in Southeast Asia. This study examined the temporal and spatial distribution of PM10 base on a long-term monitoring data (2009-2014) in order to identify the emission sources and favorable meteorological conditions for high PM10 concentrations across the country. PM10 concentrations measured at the various locations differ significantly but the general temporal characteristics show clear patterns of seasonal variations across the country with the highest concentrations recorded during the southwest monsoon. The high PM10 values defined in the study were not evenly distributed over the years but occurred mostly within the southwest monsoon months of June to September. Further investigations with bivariate polar concentrations plots and k-means clustering demonstrated the significant influence of Southeast Asian regional biomass fires on the high PM10 concentrations recorded across the country. The results of the polar plots and cluster analyses were further confirmed by the evaluations with Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward air masses trajectories analysis and the Moderate Resolution Imaging Spectroradiometer (MODIS) fire records. Among the meteorological variables considered, temperature, rainfall and relative humidity were the most important meteorological variables that influence the concentration throughout the year. High PM10 values are associated with high temperatures and low amounts of rainfall and relative humidity. In addition, wind speed and direction also play significant role in the recorded high PM10 concentrations and were mainly responsible for its seasonality during the study period.

  9. Long-Term Efficiencies of Dust Suppressants to Reduce PM10 Emissions from Unpaved Roads.

    PubMed

    Gillies, John A; Watson, John G; Rogers, C Fred; DuBois, David; Chow, Judith C; Langston, Rodney; Sweet, James

    1999-01-01

    A 14-month study was undertaken to assess the long-term efficiencies of four dust suppressants (i.e., biocatalyst stabilizer, polymer emulsion, petroleum emulsion with polymer, and nonhazardous crude-oil-containing materials) to reduce the emission of PM10 from public unpaved roads. PM10 emission rates were calculated for each test section and for an untreated section for comparison purposes. Emission rates were determined from PM10 concentrations measured from 1.25 m to 9 m upwind and downwind of the road and above its surface. Calculated emission factors ranged between zero and 1,361 g-PM10/vehicle kilometer traveled (VKT) (average uncertainty = ±35 g-PM10/ VKT) for the four types applied. One week after application, suppressant efficiencies ranged between 33% and 100% for the four types applied. After 8-12 months of exposure to weathering and 4,900-6,400 vehicle passes, the suppressant efficiencies ranged from zero to 95%. Roadway surface properties associated with low-emitting, well-suppressed surfaces are (1) surface silt loading and (2) strength and flexibility of suppressant material as a surface layer or cover. Suppressants that create surface conditions resistant to brittle failure are less prone to deterioration and more likely to increase long-term reduction efficiency for PM10 emissions on unpaved roads.

  10. Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys

    SciTech Connect

    Pope CA, I.I.I. )

    1991-03-01

    This study assessed the association between respiratory hospital admissions and PM10 pollution in Utah, Salt Lake, and Cache valleys during April 1985 through March 1989. Utah and Salt Lake valleys had high levels of PM10 pollution that violated both the annual and 24-h standards issued by the Environmental Protection Agency (EPA). Much lower PM10 levels occurred in the Cache Valley. Utah Valley experienced the intermittent operation of its primary source of PM10 pollution: an integrated steel mill. Bronchitis and asthma admissions for preschool-age children were approximately twice as frequent in Utah Valley when the steel mill was operating versus when it was not. Similar differences were not observed in Salt Lake or Cache valleys. Even though Cache Valley had higher smoking rates and lower temperatures in winter than did Utah Valley, per capita bronchitis and asthma admissions for all ages were approximately twice as high in Utah Valley. During the period when the steel mill was closed, differences in per capita admissions between Utah and Cache valleys narrowed considerably. Regression analysis also demonstrated a statistical association between respiratory hospital admissions and PM10 pollution. The results suggest that PM10 pollution plays a role in the incidence and severity of respiratory disease.

  11. Intercomparison of high-volume PM10 samplers at a site with high-particulate concentrations

    SciTech Connect

    Purdue, L.J.; Rodes, C.E.; Rehme, K.A.; Holland, D.M.; Bond, A.E.

    1986-01-01

    Commercially available high-volume PM10 samplers were intercompared at a site in Phoenix characterized by high concentrations of coarse particles. Over a 21-day period, Sierra Andersen 321A (SA 321A) samplers gave PM10 measurements 58% higher than the Wedding IP10 (WED) samplers and 16% higher than a SA 321A sampler that had an oil coating on the internal impaction surfaces of the inlet. WED samplers that were subjected to a simple brush-cleaning procedure after each sampling period gave PM10 results 16% higher than the WED samplers not subjected to cleaning. The oiled SA 321A sampler gave PM10 values 15% higher than the cleaned WED samplers. The results demonstrate that the SA 321A overestimates PM10 when sampling in an environment with high coarse-particle concentrations. The over collection results from pass-through of large particles, and can be minimized by oiling the internal impaction surfaces of the inlet. The WED sampler underestimates PM10 after several days of sampling in such an environment.

  12. PM10 and Pb evolution in an industrial area of the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Vicente, A. B.; Jordán, M. M.; Pallarés, S.; Sanfeliu, T.

    2007-02-01

    The study area is highly industrialized, with businesses involved in the non-metal mineral products sector and ceramic industries (colors, frits and enamel manufacturing) standing out. Air quality evaluation was performed regarding atmospheric particles (PM10 fraction) and Pb in a Spanish coastal area during 2001 and 2002 in order to compare these values with other areas in the Mediterranean basin. Once the samples were collected, their PM10 fraction concentration levels were determined gravimetrically. A Pb analysis in air pollution filters was carried out by ICP-MS. The seasonal and weekly variabilities of these contaminants were also studied, with the objective of being able to explain their origin and thus minimize their possible damaging effects. A similar evolution of PM10 and Pb was observed in both years of the study. Higher PM10 concentrations have been detected during the months of June and July, lower values between March-May, August and October-December, and intermediate values in January and February. A similar tendency has been observed by other authors in European industrialized cities. Regarding Pb, the monthly mean remains constant during the entire year. In the study area, Pb represents 0.6% as a mean of the total PM10 mass, with a variation range between 0.1 and 5.1%. The major crystalline phases in PM10 were quartz, calcite, dolomite, illite, kaolinite and feldspars.

  13. The effect of different transport modes on urban PM(10) levels in two European cities.

    PubMed

    Makra, László; Ionel, Ioana; Csépe, Zoltán; Matyasovszky, István; Lontis, Nicolae; Popescu, Francisc; Sümeghy, Zoltán

    2013-08-01

    The aim of the study is to identify transport patterns that may have an important influence on PM10 levels in two European cities, namely Szeged in East-Central Europe and Bucharest in Eastern Europe. 4-Day, 6-hourly three-dimensional (3D) backward trajectories arriving at these locations at 1200 GMT are computed using the HYSPLIT model over a 5-year period from 2004 to 2008. A k-means clustering algorithm using the Mahalanobis metric is applied in order to develop trajectory types. Two statistical indices are used to evaluate and compare exceedances of critical daily PM10 levels corresponding to the trajectory clusters. For Bucharest, the major PM10 transport can be clearly associated with air masses arriving from Central and Southern Europe, as well as the Western Mediterranean. Occasional North African dust intrusions over Romania are also found. For Szeged, Southern Europe with North Africa, Central Europe and Eastern Europe with regions over the West Siberian Plain are the most important sources of PM10. The occasional appearance of North-African-origin dust over Hungary is also detected. A statistical procedure is developed in order to separate medium- and long-range PM10 transport for both cities. Considering the 500 m arrival height, long-range transport plays a higher role in the measured PM10 concentration both for non-rainy and rainy days for Bucharest and Szeged, respectively.

  14. Heavy metals in urban ambient PM10 and soil background in eight cities around China.

    PubMed

    Wang, Qiong; Bi, Xiao-Hui; Wu, Jian-Hui; Zhang, Yu-Fen; Feng, Yin-Chang

    2013-02-01

    The ambient PM(10) and background soil samples were collected and analyzed with ICP-AES in eight cities around China to investigate the levels of ten heavy metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb). The mean concentrations of ten heavy metals in PM(10) of the eight cities of China followed the order of Zn > Pb > Mn > Cu > Ni > Cr > Co > V. The metals in the ambient PM(10) and soil were compared in each city to evaluate the heavy metal mass fraction from anthropogenic sources in ambient air. The CD values in these cities were all above 0.2, indicating that the ingredients spectrums of PM(10) and soil vary markedly. Most heavy metals were enriched in PM(10), except Fe and Ti. The results showed that almost all the cities suffer important heavy metal pollution from anthropogenic sources. The eight cities were also grouped according to their similarity in heavy metals of ambient PM(10) by cluster analysis to investigate the relationship between the heavy metals and the pollution sources of each city. The conclusion was that the eight cities were divided into three clusters which had similar industrial type and economy scale: the first cluster consisted of Shenzhen, Wuxi, and Guiyang; followed by Jinan and Zhengzhou as the second grouping; and the third group had Taiyuan, Urumqi, and Luoyang.

  15. Final Results from Mexnext-I: Analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German Dutch Wind Tunnel DNW

    NASA Astrophysics Data System (ADS)

    Schepers, J. G.; Boorsma, K.; Munduate, X.

    2014-12-01

    The paper presents the final results from the first phase of IEA Task 29 'Mexnext'. Mexnext was a joint project in which 20 parties from 11 different countries cooperated. The main aim of Mexnext was to analyse the wind tunnel measurements which have been taken in the EU project 'MEXICO'. In the MEXICO project 10 institutes from 6 countries cooperated in doing experiments on an instrumented, 3 bladed wind turbine of 4.5 m diameter placed in the 9.5 by 9.5 m2 open section of the Large Low-speed Facility (LLF) of DNW in the Netherlands. Pressure distributions on the blades were obtained from 148 Kulite pressure sensors, distributed over 5 sections at 25, 35, 60, 82 and 92 % radial position respectively. Blade loads were monitored through two strain-gauge bridges at each blade root. Most interesting however are the extensive PIV flow field measurements, which have been taken simultaneously with the pressure and load measurements. As a result of the international collaboration within this task a very thorough analysis of the data could be carried out and a large number of codes were validated not only in terms of loads but also in terms of underlying flow field. The paper will present several results from Mexnext-I, i.e. validation results and conclusion on modelling deficiencies and directions for model improvement. The future plans of the Mexnext consortium are also briefly discussed. Amongst these are Mexnext-II, a project in which also aerodynamic measurements other than MEXICO are included, and 'New MEXICO' in which additional measurement on the MEXICO model are performed.

  16. Simulation And Forecasting of Daily Pm10 Concentrations Using Autoregressive Models In Kagithane Creek Valley, Istanbul

    NASA Astrophysics Data System (ADS)

    Ağaç, Kübra; Koçak, Kasım; Deniz, Ali

    2015-04-01

    A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built

  17. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  18. Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Mandal, T. K.; Saxena, Mohit; Rashmi; Sharma, A.; Datta, A.; Saud, T.

    2014-06-01

    Variation of organic carbon (OC), elemental carbon (EC), water soluble inorganic ionic components (WSIC) and major and trace elements of particulate matter (PM10) were studied over Delhi, an urban site of the Indo Gangatic Plain (IGP), India in 2010. Strong seasonal variation was noticed in the mass concentration of PM10 and its chemical composition with maxima during winter (PM10: 213.1±14.9 μg m-3; OC: 36.05±11.60 μg m-3; EC: 9.64±2.56 μg m-3) and minima during monsoon (PM10: 134.7±39.9 μg m-3; OC: 14.72±6.95 μg m-3; EC: 3.35±1.45 μg m-3). The average concentration of major and trace elements (Na, Mg, Al, P, S, Cl, K, CA, Cr, Ti, Fe, Zn and Mn) was accounted for ~17% of the PM10 mass. Average values of K+/EC (0.28) and Cl-/EC (0.59) suggest the influences of biomass burning in PM10, whereas, higher concentration of Ca2+ suggests the soil erosion as possible source from the nearby agricultural field. Fe/Al ratio (0.34) indicates mineral dust as a source at the sampling site, similarly, Ca/Al ratio (2.45) indicates that aerosol over this region is rich in Ca mineral compared to average upper continental crust. Positive matrix factorization (PMF) analysis quantifies the contribution of soil dust (20.7%), vehicle emissions (17.0%), secondary aerosols (21.7%), fossil fuel combustion (17.4%) and biomass burning (14.3%) to PM10 mass concentration at the observational site of Delhi.

  19. Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997.

    PubMed

    Chow, Judith C; Watson, John G; Edgerton, Sylvia A; Vega, Elizabeth

    2002-03-27

    PM2.5 and PM10 were measured over 24-h intervals at six core sites and at 25 satellite sites in and around Mexico City from 23 February to 22 March 1997. In addition, four 6-h samples were taken each day at three of the core sites. Sampling locations were selected to represent regional, central city, commercial, residential, and industrial portions of the city. Mass and light transmission concentrations were determined on all of the samples, while elements, ions and carbon were measured on approximately two-thirds of the samples. PM10 concentrations were highly variable, with almost three-fold differences between the highest and lowest concentrations. Fugitive dust was the major cause of PM10 differences, although carbon concentrations were also highly variable among the sampling sites. Approximately 50% of PM10 was in the PM2.5 fraction. The majority of PM mass was comprised of carbon, sulfate, nitrate, ammonium and crustal components, but in different proportions on different days and at different sites. The largest fine-particle components were carbonaceous aerosols, constituting approximately 50% of PM2.5 mass, followed by approximately 30% secondary inorganic aerosols and approximately 15% geological material. Geological material is the largest component of PM10, constituting approximately 50% of PM10 mass, followed by approximately 32% carbonaceous aerosols and approximately 17% secondary inorganic aerosols. Sulfate concentrations were twice as high as nitrate concentrations. Sulfate and nitrate were present as ammonium sulfate and ammonium nitrate. Approximately two-thirds of the ammonium sulfate measured in urban areas appears to have been transported from regions outside of the study domain, rather than formed from emissions in the urban area. Diurnal variations are apparent, with two-fold increases in concentration from night-time to daytime. Morning samples had the highest PM2.5 and PM10 mass, secondary inorganic aerosols and carbon concentrations

  20. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...% 10% 2 10% 2 10% 2 10% 2 Precision of PM2.5 or PM10-2.5 candidate method, CP, each site 10% 2 15% 2 15% 2 15% 2 Slope of regression relationship 1 ±0.10 1 ±0.05 1 ±0.10 1 ±0.10 1 ±0.10 1 ±0.12...

  1. Composition and origin of PM10 in Cape Verde: Characterization of long-range transport episodes

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Almeida, S. M.; Cardoso, J.; Almeida-Silva, M.; Nunes, T.; Cerqueira, M.; Alves, C.; Reis, M. A.; Chaves, P. C.; Artíñano, B.; Pio, C.

    2016-02-01

    A receptor modelling study was performed to identify source categories and their contributions to the PM10 total mass at the Cape Verde archipelago. Trajectory statistical methods were also used to characterize the main atmospheric circulation patterns causing the transport of air masses and to geographically identify the main potential source areas of each PM10 source category. Our findings point out that the variability of the PM10 levels at Cape Verde was prompted by the advections of African mineral dust. The mineral dust load was mainly composed by clay-silicates mineral derived elements (22% of the PM10 total mass on average) with lower amounts of carbonates (9%). A clear northward gradient was observed in carbonates concentration that illustrates the differences in the composition according to the source regions of mineral dust. Mineral dust was frequently linked to industrial emissions from crude oil refineries, fertilizer industries as well as oil and coal power plants, located in the northern and north-western coast of the African continent (29%). Sea salt was also registered in the PM10 mass during most part of the sampling period, with a lower impact in the PM10 levels than the mineral dust one (26%). Combustion aerosols (6%) reached the highest mean values in summer as a consequence of the emissions from local-regional sources. Biomass burning aerosols produced from October to November in sub-sahelian latitudes, had a clear influence in the content of elemental carbon (EC) recorded at Cape Verde but a small impact in the PM10 total mass levels. A minor contribution to the PM10 mass has been associated to secondary inorganic compounds-SIC. Namely, ammonium sulfate and nitrate (SIC 1-5%) and calcium sulfate and nitrate (SIC 2-3%). The main origin of SIC 1 was attributed to emissions of SO2 and NOx from industrial sources located in the northern and north-western African coast and from wildfires produced in the continent. SIC 2 had a clear regional origin

  2. Composition and distribution of particulate matter (PM10) in a mechanically ventilated University building

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Yasreen Mohamed; Hanafiah, Marlia Mohd; Latif, Mohd Talib

    2016-11-01

    This study analyses the composition and distribution of particulate matter (PM10) in the Biology department building, in UKM. PM10 were collected using SENSIDYNE Gillian GilAir-5 Personal Air Sampling System, a low-volume sampler, whereas the concentration of heavy metals was determined using Inductively coupled plasma-mass spectrometry (ICP-MS). The concentration of PM10 recorded in the mechanically ventilated building ranges from 89 µgm-3 to 910 µgm-3. The composition of the selected heavy metals in PM10 were dominated by zinc, followed by copper, lead and cadmium. It was found that the present of indoor-related particulate matter were originated from the poorly maintained ventilation system, the activity of occupants and typical office equipments such as printers and photocopy machines. The haze event occured during sampling periods was also affected the PM10 concentration in the building. This results can serve as a starting point to assess the potential human health damage using the life cycle impact assessment, expressed in term of disability adjusted life year (DALY).

  3. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer

    NASA Astrophysics Data System (ADS)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin

    2011-08-01

    The associations between the variations of PM10 concentration during summer monsoon dry seasons over the Klang Valley, Malaysia and the local meteorological factors, synoptic weather conditions as well as the regional hotspots number were examined based on simple multiple linear regression analysis. The regressive relationships established, suggest that the variation of PM10 in Klang Valley was governed significantly by all of the examined factors. Local meteorological conditions are among those factors which governed the largest day-to-day variations of PM10 concentration in the Klang Valley areas during the dry season. When augmented by synoptic meteorological variables and foreign emission sources, a remarkable increase in the explained variance was apparent. On the other hand, domestic burning sources only had a minimal impact on PM10 fluctuations. Important synoptic weather patterns which influence the air pollution variations were also identified. These synoptic conditions include the strengthening of the summer monsoon southwesterly winds over the equatorial area. In addition, the formation of cyclonic circulation, associated with typhoon formation over the north-west Pacific and the South China Sea as well as over the Bay of Bengal, are found to have had a profound impact on PM10 variations over the Malaysian region through the modulation of regional moisture distributions.

  4. Incremental effect of festive biomass burning on wintertime PM10 in Brahmaputra Valley of Northeast India

    NASA Astrophysics Data System (ADS)

    Deka, Pratibha; Hoque, Raza Rafiqul

    2014-06-01

    PM10 concentration was monitored at a receptor site in the Brahmaputra Valley during a unique, local, episodic festive biomass burning called meji burning. Mean mass concentration of PM10 during monitoring was found to be 149 ± 45 μg m- 3 with maximum and minimum concentrations of 293 μg m- 3 and 93 μg m- 3 respectively. Elemental analysis by Energy Dispersive X-ray Spectrometer (EDX) revealed high carbonaceous and Br content in PM10 samples. Particulate carbon showed high significant correlation with PM10 and dominance in samples taken during night time. Back trajectory analysis supported long range transport of carbonaceous aerosol from the Indo-Gangetic Plain (IGP) to the region under study. Prevailing meteorology - thermal inversion and low mixing heights - was found to have a strong influence on PM10 levels in the post festive burning period. Enrichment factors of several elements ranged above thousand which indicated a strong influence of anthropogenic activities and input of aged particulates driven from long distance. Incremental effect of meji burning, which we coined as Meji Burning Induced Enrichments (MBIEs), was calculated. MBIE values supported incremental effects explicitly.

  5. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provides for the measurement of the mass concentration of coarse particulate matter (PM10-2.5) in ambient..., collocated measurements of PM10 and PM2.5, where the PM10 measurements are obtained with a specially approved... conventional PM10 samplers described in appendix J of this part. Measurements obtained with a PM10c sampler...

  6. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provides for the measurement of the mass concentration of coarse particulate matter (PM10-2.5) in ambient..., collocated measurements of PM10 and PM2.5, where the PM10 measurements are obtained with a specially approved... conventional PM10 samplers described in appendix J of this part. Measurements obtained with a PM10c sampler...

  7. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provides for the measurement of the mass concentration of coarse particulate matter (PM10-2.5) in ambient..., collocated measurements of PM10 and PM2.5, where the PM10 measurements are obtained with a specially approved... conventional PM10 samplers described in appendix J of this part. Measurements obtained with a PM10c sampler...

  8. Measurement of roadway PM10 emission rates using tracer techniques. Final technical report

    SciTech Connect

    Kantamaneni, R.; Claiborn, C.

    1996-03-01

    In the work, stationary and mobile point source tracer release techniques were used to determine PM10 emission rates from 4-lane commercia/residential paved roads under sanded and unsanded conditions, and from unpaved roads relative to site specific vehicular and ambient parameters. Measured stress (4+ lanes; > or = to 10,000 vehicles/day) emission factors for unsanded and sanded roads were respectively 40% and 10% lower than the EPA approved reference value. Preliminary results indicate a consistent relationship between PM10 and relative humidity under unsanded conditions. Evidence suggests that street sweeping has a negligible effect on PM10 emission reduction. Considerable uncertainties were observed with the empirical emission factor equation.

  9. [Concentrations of PM10 and PM2.5 particulate material in the atmosphere of Rome].

    PubMed

    Marconi, A; Menichini, E; Ziemacki, G; Cattani, G; Stacchini, G

    2000-01-01

    Starting from 1993, various monitoring campaigns were carried out in Rome to determine PM10 and PM2.5. Their results are presented here cumulatively, with the aim of obtaining preliminary information on relationships among these size fractions, in various seasonal periods and in two sites with different characteristics (a road site and an urban background site in a public park). Particles were collected on filter and gravimetrically determined. Both PM10 and PM2.5 concentrations show temporal fluctuations with higher values during winter months. Background concentrations are lower than those contemporaneously measured at the road site only to a limited extent (10-17%). The contribution of PM2.5 to PM10 during the winter semester is higher than during the summer one (67 vs. 52%), with no substantial intersite differences.

  10. Sources of atmospheric aerosols controlling PM10 levels in Heraklion, Crete during winter time

    NASA Astrophysics Data System (ADS)

    Kalivitis, Nikolaos; Kouvarakis, Giorgos; Stavroulas, Iasonas; Kandilogiannaki, Maria; Vavadaki, Katerina; Mihalopoulos, Nikolaos

    2016-04-01

    High concentrations of Particulate Matter (PM) in the atmosphere have negative impact to human health. Thresholds for ambient concentrations that are defined by the directive 2008/50/EC are frequently exceeded even at background conditions in the Mediterranean region as shown in earlier studies. The sources of atmospheric particles in the urban environment of a medium size city of eastern Mediterranean are studied in the present work in order to better understand the causes and characteristics of exceedances of the daily mean PM10limit value of 50 μg m-3. Measurements were performed at the atmospheric quality measurement station of the Region of Crete, at the Heraklion city center on Crete island, during the winter/spring period of 2014-2015 and 2015-2016. Special emphasis was given to the study of the contribution of Black Carbon (BC) to the levels of PM10. Continuous measurements were performed using a beta-attenuation PM10monitor and a 7-wavelength Aethalometer with a time resolution of 30 and 5 minutes respectively. For direct comparison to background regional conditions, concurrent routine measurements at the atmospheric research station of University of Crete at Finokalia were used as background reference. Analysis of exceedances in the daily PM10 mass concentration showed that the total of the exceedances was related to long range transport of Saharan dust rather than local sources. However, compared to the Finokalia station it was found that there were 20% more exceedances in Heraklion, the addition of transported dust on the local pollution was the reason for the additional exceedance days. Excluding dust events, it was found that the PM10variability was dependent on the BC abundance, traffic during rush hours in the morning and biomass burning for domestic heating in the evening contributed significantly to PM10levels in Heraklion.

  11. Effect of ceramic industrial particulate emission control on key components of ambient PM10.

    PubMed

    Minguillón, María Cruz; Monfort, Eliseo; Querol, Xavier; Alastuey, Andrés; Celades, Irina; Miró, José Vicente

    2009-06-01

    The relationship between specific particulate emission control and ambient levels of some PM(10) components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits are produced. The PM(10) emissions from the ceramic processes were calculated over the period 2000-2006, taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/EC, leading to a marked decrease in PM(10) emissions. By contrast, emissions from tile manufacture remained relatively constant because of the few changes in the implementation of corrective measures. On the other hand, ambient PM(10) levels and composition measurements were carried out from 2002 to 2006. A high correlation between PM(10) emissions from frit manufacture and ambient levels of Zn, As, Pb and Cs (R(2) from 0.61 to 0.98) was observed. On the basis of these results, the potential impact of the implementation of corrective measures to reduce emissions from tile manufacture was quantified, resulting in a possible decrease of 3-5 microg/m(3) and 2 microg/m(3) in ambient mineral PM(10) (on an annual basis) in urban and suburban areas, respectively. This relatively simple methodology allows us to estimate the direct effect of a reduction in primary particulate emissions on ambient levels of key particulate components, and to make a preliminary quantification of the possibilities of air quality improvement by means of further emission reduction. Therefore, it is a useful tool for developing future air quality plans in the study area and in other industrialised areas.

  12. A wind-tunnel study on saltation and PM10 emission from agricultural soils

    NASA Astrophysics Data System (ADS)

    Avecilla, Fernando; Panebianco, Juan E.; Buschiazzo, Daniel E.

    2016-09-01

    PM10 emission depends on the texture and the aggregation state of a soil. A decisive but less studied factor is the saltation fraction of the soil (fraction between 100 and 500 μm). Six soils of contrasting textures were selected, and a wind tunnel study was carried out under three different saltation conditions: increased saltation, in which a sample of the saltation fraction was added to the air stream prior to the soil bed; no saltation added, in which the soil bed eroded without the addition of extra saltation fraction; and only saltation, in which the saltation fraction was injected into the air stream in the absence of the soil bed. Results indicated that the saltation efficiency for PM10 emission increased with the fine fraction content of the soil and decreased with the sand content, but this process showed a complex behavior depending on the cohesion and stability of the aggregates. An index for describing the saltation efficiency of the studied soils was proposed based on the combination of three parameters: the PM10 content, the amount of saltation fraction available in the soil surface, and an aggregation parameter (clay × organic matter content). Increasing the saltation rate increased the PM10 emission from the eroding soil bed, except for the sandy soil. Results suggest that the main mechanisms of PM10 emission under saltation conditions differ according to the soil texture: detachment of the PM10 adhered to the grains of sand predominates on sandy soils and fragmentation on finer soils, but both processes occur together on high-emitting soils of intermediate textures.

  13. Biologic effects induced in vitro by PM10 from three different zones of Mexico City.

    PubMed Central

    Alfaro-Moreno, Ernesto; Martínez, Leticia; García-Cuellar, Claudia; Bonner, James C; Murray, J Clifford; Rosas, Irma; Rosales, Sergio Ponce de León; Osornio-Vargas, Alvaro R

    2002-01-01

    Exposure to urban airborne particles is associated with an increase in morbidity and mortality. There is little experimental evidence of the mechanisms involved and the role of particle composition. We assessed cytotoxicity (crystal violet assay), apoptosis [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) or annexin V assay], DNA breakage (comet assay), and production of proinflammatory mediators [tumor necrosis factor Alpha (TNF-Alpha), interleukin 6 (IL-6), prostaglandin E2 (PGE2)] (enzyme-linked immunosorbent assay), and E-selectin (flow cytometry) in cell lines exposed to particulate matter < 10 microm in size (PM10) obtained from the northern, central, and southern zones of Mexico City. Particle concentrations ranged from 2.5 to 160 microg/cm(2). We used epithelial, endothelial, fibroblastic, and monocytic cells and assessed DNA damage in Balb-c cells, TNF-Alpha and IL-6 production in mouse monocytes, and PGE2 in rat lung fibroblasts. We determined the expression of E-selectin in human endothelial cells and evaluated the cytotoxic potential of the PM10 samples in all cell types. PM10 from all three zones of Mexico City caused cell death, DNA breakage, and apoptosis, with particles from the north and central zones being the most toxic. All of these PM10 samples induced secretion of proinflammatory molecules, and particles from the central zone were the most potent. Endothelial cells exposed to PM10 from the three zones expressed similar E-selectin levels. Mexico City PM10 induced biologic effects dependent on the zone of origin, which could be caused by differences in the mixture or size distribution within particle samples. Our data suggest that particle composition as well as particle size should be considered in assessing the adverse effects of airborne particulate pollution. PMID:12117649

  14. eNOS gene polymorphisms modify the association of PM(10) with oxidative stress.

    PubMed

    Kim, Jin Hee; Choi, Yoon-Hyeong; Bae, Sanghyuk; Park, Hye-Yin; Hong, Yun-Chul

    2012-11-15

    Previous studies have suggested that air pollution increases various health outcomes through oxidative stress and oxidative stress-related genes modify the relationship between air pollution and health outcomes. Therefore, we evaluated the effect of PM(10) on the levels of malondialdehyde (MDA), oxidative stress biomarker, and the effect modification by genetic polymorphisms of eNOS, oxidative stress-related gene, in the 560 Korean elderly. We obtained urine samples repeatedly from participants during five medical examinations between 2008 and 2010 and all ambient air pollutant concentration data from the Korea National Institute of Environmental Research air quality monitoring system. We measured urinary levels of MDA to assess oxidative stress and genotyped eNOS (rs1799983, rs2853796, and rs7830). Mixed-effect model was used to estimate the effect of PM(10) on the level of oxidative stress biomarker and their modification by genotypes. PM(10) showed apparent positive effect on MDA level after adjusting for age, sex, BMI, cotinine level, temperature, dew point, levels of SO(2), O(3), NO(2), and CO, and season (p=0.0133). Moreover, the association of PM(10) with MDA was found only in participants with eNOS GG genotype for rs1799983 (p=0.0107), TT genotype for rs2853796 (p=0.0289), or GT genotype for rs7830 (p=0.0158) and in participants with a set of risky haplotypes (GTT, GTG, GGT, and TGT) (p=0.0093). Our results suggest that PM(10) affect oxidative stress in the elderly and eNOS genotype affect the oxidative stress level in regard of exposure to PM(10).

  15. Milano Summer Particulate Matter (PM10) Triggers Lung Inflammation and Extra Pulmonary Adverse Events in Mice

    PubMed Central

    Battaglia, Cristina; Tinaglia, Valentina; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2013-01-01

    Recent studies have suggested a link between particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS), cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17) for a putative pro-carcinogenic marker (Cyp1B1) and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1) and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO). Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO) and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity of PM10sum

  16. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    NASA Astrophysics Data System (ADS)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high

  17. Evaluation of PM 10 emission rates from paved and unpaved roads using tracer techniques

    NASA Astrophysics Data System (ADS)

    Claiborn, Candis; Mitra, Arundhati; Adams, Glenn; Bamesberger, Lee; Allwine, Gene; Kantamaneni, Ravi; Lamb, Brian; Westberg, Hal

    Spokane, WA, is a nonattainment area for airborne particulate matter smaller than 10μm (PM 10), so that a detailed emission inventory for PM 10 is needed to evaluate various control strategies. It is thought that emissions from paved and unpaved roads in Spokane contribute three-fourths of the anthropogenic PM 10 (neglecting wind-blown dust from agricultural areas). A study was conducted in the summer and fall of 1992 and again in the spring and summer of 1994 to measure PM 10 emission rates from paved and unpaved roads in Eastern Washington state using a novel tracer technique. A known amount of an inert tracer (SF 6) was released and concentrations of PM 10 and SF 6 downwind of the road, along with meteorological parameters and traffic volume, were measured. The results of the tracer experiments showed that within experimental uncertainties the PM 10 and the tracer gas disperse in the same manner, suggesting that the use of a tracer in a line source to simulate roadway PM 10 emissions can provide a tool for improving the existing emission inventories from roads. The emission factors obtained from two unpaved road experiments (136 g per vehicle per kilometer traveled, or g VKT -1, and 336 g VKT -1) were similar in magnitude to those predicted using currently accepted empirical algorithms. The factors determined from six paved road experiments were approximately 80% higher than that predicted using current formulae (6.7 ± 3.7 g VKT -1 compared to 3.7 g VKT -1) for two-lane roads with daily traffic less than 10,000 vehicles. For major highways (4 + lanes and traffic in excess of 10,000 vehicles per day) the emission factors obtained from the tracer experiments were, on average, 44% lower than those predicted using standard formulae (1.0 ± 0.5 g VKT -1 compared to 1.8 g VKT -1). The calculated emission factors for paved roads exhibited a wide range of variability, suggesting that in order to quantify PM 10 emission rates from paved roads, more investigation is

  18. Pulmonary toxicity study in rats with PM 10 and PM 2.5: Differential responses related to scale and composition

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lei, Tian; Lin, Zhi-Qing; Zhang, Hua-Shan; Yang, Dan-Feng; Xi, Zhu-Ge; Chen, Jian-Hua; Wang, Wei

    2011-02-01

    ObjectionTo study the pollution of atmospheric particles at winter in Beijing and compare the lung toxicity which induced by particle samples from different sampling sites. MethodWe collected samples from two sampling points during the winter for toxicity testing and chemical analysis. Wistar rats were administered with particles by intratracheal instillation. After exposure, biochemically index, esimmunity indexes, histopathology and DNA damage were detected in rat pulmonary cells. ResultThe elements with enrichment factors (EF) larger than 10 were As, Cd, Cu, Zn, S and Pb in the four experiment groups. The priority control of the total concentration of polycyclic aromatic hydrocarbons (PAHs) in PM 10 and PM 2.5 of Near-traffic source was much higher than that of Far-traffic source, it demonstrated that near the traffic source of PAHs pollution was heavier than that of Far-traffic source, as it was close to main roads Beiyuan Road, motor vehicle emissions were much higher. The pathology of lung showed that the degree of inflammation was increased with the particle diameter minished, it was the same as the detection of biochemical parameters such as lactate dehydrogenase (LDH), Total antioxidant status(T-AOC) and total protein (TP) in BALF and inflammation cytokine(interleukin-1, interleukin-6 and tumor necrosis factor-alpha) in lung homogenate. The indexes of DNA damage including the content of DNA and Olive empennage of PM 2.5 were significant higher than that of PM 10 at the same surveillance point ( P < 0.05), near-traffic particles were higher than the far-traffic particles at the same diameter, ( P < 0.05). ConclusionNear-traffic area particles had certain pollution at winter in Beijing. Meanwhile, atmospheric particulate matters on lung toxicity were related to the particles size and distance related sites which were exposed: smaller size, more toxicity; nearer from traffic, more toxicity.

  19. 77 FR 31268 - Determination of Attainment for the Paul Spur/Douglas PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    .../Douglas nonattainment area (NA) in Arizona is currently attaining the National Ambient Air Quality.... Based on our proposed determination that the Paul Spur/Douglas NA is currently attaining the PM 10 NAAQS.../Douglas NA continues to attain the NAAQS and that the obligation on EPA to promulgate a...

  20. 77 FR 45965 - Determination of Attainment for the Paul Spur/Douglas PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... the Paul Spur/Douglas nonattainment area (NA) \\1\\ is currently attaining the 24-hour PM 10 NAAQS based... to attain the standard. See 77 FR 31268; (May 25, 2012). \\1\\ The Paul Spur/Douglas NA covers... designation and classification of the Paul Spur/Douglas NA for that standard. We then discussed how EPA...

  1. 75 FR 63139 - Approval and Promulgation of Implementation Plans-Maricopa County (Phoenix) PM-10 Nonattainment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans--Maricopa County (Phoenix) PM-10... County (Phoenix) nonattainment area (Maricopa area). Specifically, EPA proposed to disapprove provisions... County (Phoenix) nonattainment area (Maricopa area). These requirements apply to the Maricopa...

  2. PM10 data assimilation over Europe with the optimal interpolation method

    NASA Astrophysics Data System (ADS)

    Tombette, M.; Mallet, V.; Sportisse, B.

    2009-01-01

    This paper presents experiments of PM10 data assimilation with the optimal interpolation method. The observations are provided by BDQA (Base de Données sur la Qualité de l'Air), whose monitoring network covers France. Two other databases (EMEP and AirBase) are used to evaluate the improvements in the analyzed state over January 2001 and for several outputs (PM10, PM2.5 and chemical composition). The method is then applied in operational-forecast conditions. It is found that the assimilation of PM10 observations significantly improves the one-day forecast of total mass (PM10 and PM2.5), whereas the improvement is non significant for the two-day forecast. The errors on aerosol chemical composition are sometimes amplified by the assimilation procedure, which shows the need for chemical data. Since the observations cover a limited part of the domain (France versus Europe) and since the method used for assimilation is sequential, we focus on the horizontal and temporal impacts of the assimilation and we study how several parameters of the assimilation system modify these impacts. The strategy followed in this paper, with the optimal interpolation, could be useful for operational forecasts. Meanwhile, considering the weak temporal impact of the approach (about one day), the method has to be improved or other methods have to be considered.

  3. PM10 data assimilation over Europe with the optimal interpolation method

    NASA Astrophysics Data System (ADS)

    Tombette, M.; Mallet, V.; Sportisse, B.

    2008-05-01

    This paper presents experiments of PM10 data assimilation with the optimal interpolation method. The observations are provided by BDQA (Base de Données sur la Qualité de l'Air), whose monitoring network covers France. Two other databases (EMEP and AirBase) are used to evaluate the improvements in the analyzed state over one month (January, 2001) and for several outputs (PM10, PM2.5 and chemical composition). Then, the method is applied in operational conditions. The results show that the assimilation of PM10 observations significantly improves the one-day forecast for total mass (PM10 and PM2.5). The errors on aerosol chemical composition are not reduced and are sometimes amplified by the assimilation procedure, which shows the need for chemical data. As the observations cover a limited part of the domain (France versus Europe) and as the method used for assimilation is sequential, we focus on the horizontal and temporal impacts of assimilation in the last part of this paper. To conclude, we discuss the perspectives, especially the use of a variational method for assimilation or the investigation of the sensitivity to a few choices (e.g., the error statistics, etc.).

  4. Development of cotton gin PM10 emission factors for EPA’s AP-42

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  5. INDOOR AND OUTDOOR PM10 AND ASSOCIATED METALS AND PESTICIDES IN ARIZONA

    EPA Science Inventory

    The National Human Exposure Assessment Survey study in Arizona (AZ NHEXAS) sampled trace metals in multimedia in and outside of 176 representative homes in Arizona. PM10 was collected using low-flow impactors indoors and out. Primary metals evaluated from monitoring of indoor...

  6. [Emission characteristics of PM10 from coal-fired industrial boiler].

    PubMed

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  7. Health risk assessment on tunnel workers' exposure to PM10 based on triangular fuzzy numbers

    NASA Astrophysics Data System (ADS)

    Li, Fei; Xiao, Minsi; Zhang, Jingdong; Yang, Jun; Zhu, Liyun

    2017-03-01

    The triangular fuzzy numbers were introduced to environmental assessment system, health risk assessment model based on triangular fuzzy numbers was built to calculate exposure dose and characterize the health risk of tunnel workers' exposure to PM10. PM10 was measured on the site at 7 sampling spots of the tunnel. In order to ensure the accuracy of the assessment, the exposure factors of tunnel workers were obtained through questionnaires instead of handbooks. 176 workers including 5 types of workers were selected as samples. The results showed that PM10 exposure concentrations of different types of workers from high to low were excavation workers, blasting workers, secondary-lining workers, slag-out workers, and supporting workers. According to health risk assessment, all of the five types of tunnel workers had health risk. Excavation workers' highest hazard quotient was mainly due to extremely high concentration of PM10. For secondary-lining workers, their hazard quotient was second only to excavation workers for their relatively high inhalation rate and exposure time.

  8. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.823 PM10 State Implementation Plan Development in Group II Areas. The Iowa Department of Natural Resources..., dated October 28, 1988, Mr. Larry J. Wilson, Director, Iowa Department of Natural Resources,...

  9. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.823 PM10 State Implementation Plan Development in Group II Areas. The Iowa Department of Natural Resources..., dated October 28, 1988, Mr. Larry J. Wilson, Director, Iowa Department of Natural Resources,...

  10. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.823 PM10 State Implementation Plan Development in Group II Areas. The Iowa Department of Natural Resources..., dated October 28, 1988, Mr. Larry J. Wilson, Director, Iowa Department of Natural Resources,...

  11. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.823 PM10 State Implementation Plan Development in Group II Areas. The Iowa Department of Natural Resources..., dated October 28, 1988, Mr. Larry J. Wilson, Director, Iowa Department of Natural Resources,...

  12. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  13. 40 CFR 52.63 - PM10 State Implementation Plan development in group II areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... committal SIP for the cities of Leeds and North Birmingham in Jefferson County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for...

  14. 40 CFR 52.63 - PM10 State Implementation Plan development in group II areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... committal SIP for the cities of Leeds and North Birmingham in Jefferson County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for...

  15. 40 CFR 52.63 - PM10 State Implementation Plan development in group II areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... committal SIP for the cities of Leeds and North Birmingham in Jefferson County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for...

  16. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  17. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  18. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  19. 40 CFR 52.63 - PM10 State Implementation Plan development in group II areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... committal SIP for the cities of Leeds and North Birmingham in Jefferson County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for...

  20. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  1. 40 CFR 52.63 - PM10 State Implementation Plan development in group II areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... committal SIP for the cities of Leeds and North Birmingham in Jefferson County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for...

  2. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environmental Quality, for implementing all of the required activities including monitoring, reporting, emission... commitments. 52.146 Section 52.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...) The Arizona Department of Environmental Quality has committed to comply with the PM-10 Group II...

  3. PM2.5 and PM10 Emission from agricultural soils by wind erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil tillage and wind erosion are a major source of particulate matter less than 2.5 and 10 µm (PM2.5 and PM10) emission from cultivated soil. Fifteen cultivated soils collected from 5 states were tested as crushed (<2.0 mm) and uncrushed (natural aggregation) at 8, 10, and 13 m s-1 wind velocity in...

  4. 77 FR 58962 - Approval and Promulgation of Implementation Plans; Arizona; Nogales PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... designee. (i) (ii) Additional material. (A) Arizona Department of Environmental Quality. (1) ``Final 2012... approving a state implementation plan revision submitted by the Arizona Department of Environmental Quality... the Nogales nonattainment area is attaining the National Ambient Air Quality Standard for PM 10 ,...

  5. Real-time PM10 concentration monitoring on Penang Bridge by using traffic monitoring CCTV

    NASA Astrophysics Data System (ADS)

    Low, K. L.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Wong, C. J.

    2007-04-01

    For this study, an algorithm was developed to determine concentration of particles less than 10μm (PM10) from still images captured by a CCTV camera on the Penang Bridge. The objective of this study is to remotely monitor the PM10 concentrations on the Penang Bridge through the internet. So, an algorithm was developed based on the relationship between the atmospheric reflectance and the corresponding air quality. By doing this, the still images were separated into three bands namely red, green and blue and their digital number values were determined. A special transformation was then performed to the data. Ground PM10 measurements were taken by using DustTrak TM meter. The algorithm was calibrated using a regression analysis. The proposed algorithm produced a high correlation coefficient (R) and low root-mean-square error (RMS) between the measured and produced PM10. Later, a program was written by using Microsoft Visual Basic 6.0 to download still images from the camera over the internet and implement the newly developed algorithm. Meanwhile, the program is running in real time and the public will know the air pollution index from time to time. This indicates that the technique using the CCTV camera images can provide a useful tool for air quality studies.

  6. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; He, Jiang; Zhao, Boyi; Zhang, Lijun; Fan, Qingyun; Lü, Changwei; Dudagula; Liu, Tao; Yuan, Yinghui

    2016-09-01

    Particulate matter (PM), including PM10 and PM2.5, is one of the major impacts on air quality, visibility, climate change, earth radiation balance, and public health. Organic carbon (OC) and elemental carbon (EC) are the major components of PM. 804 samples (PM10 and PM2.5) were simultaneously collected from six urban sites covering 3 districts in Baotou, in January, April, September, and November 2014. As to a long-term study on the effects of carbonaceous aerosol, data were collected annually at Environmental Protection Agency of Baotou (EPB). The concentrations of PM10 and PM2.5, the spatial distribution and content of OC and EC, the relationship between OC and EC, and the formation of secondary organic carbon (SOC) have been investigated. The findings indicated that the concentrations of these particle matter are higher than that in US or European standards. The average concentrations of OC in PM10 and PM2.5 follow the order: January > November > April > September; and for EC in PM10 and PM2.5 follow the order: January > November > September > April. Affected by metrological factors, it was indicated that high wind speed and low relative humidity were beneficial for removal of OC and EC in January and November. Pearson correlations and cluster analysis on OC and EC concentrations in PM10 and PM2.5 with gaseous pollutants (SO2, NO2, and CO) suggested that OC shared the same emission sources with SO2 and CO from combustion, while EC's sources mainly came from vehicles exhaust and combustion which contributed to NO2 as well. The OC concentration is mainly primary in warm months, while it appears secondary in cold months in Baotou. There is a common characteristic among the cities with higher SOC in winter, wherever the coal combustion can lead to the severe pollution. This work is important for the construction of the database of OC and EC concentrations in PM10 and PM2.5 at spatial and time intervals, and it can provide scientific suggestion for similar PM

  7. Empirical Model for Evaluating PM10 Concentration Caused by River Dust Episodes.

    PubMed

    Lin, Chao-Yuan; Chiang, Mon-Ling; Lin, Cheng-Yu

    2016-06-02

    Around the estuary of the Zhuo-Shui River in Taiwan, the waters recede during the winter, causing an increase in bare land area and exposing a large amount of fine earth and sand particles that were deposited on the riverbed. Observations at the site revealed that when northeastern monsoons blow over bare land without vegetation or water cover, the fine particles are readily lifted by the wind, forming river dust, which greatly endangers the health of nearby residents. Therefore, determining which factors affect river dust and constructing a model to predict river dust concentration are extremely important in the research and development of a prototype warning system for areas at risk of river dust emissions. In this study, the region around the estuary of the Zhuo-Shui River (from the Zi-Qiang Bridge to the Xi-Bin Bridge) was selected as the research area. Data from a nearby air quality monitoring station were used to screen for days with river dust episodes. The relationships between PM10 concentration and meteorological factors or bare land area were analyzed at different temporal scales to explore the factors that affect river dust emissions. Study results showed that no single factor alone had adequate power to explain daily average or daily maximum PM10 concentration. Stepwise regression analysis of multiple factors showed that the model could not effectively predict daily average PM10 concentration, but daily maximum PM10 concentration could be predicted by a combination of wind velocity, temperature, and bare land area; the coefficient of determination for this model was 0.67. It was inferred that river dust episodes are caused by the combined effect of multiple factors. In addition, research data also showed a time lag effect between meteorological factors and hourly PM10 concentration. This characteristic was applied to the construction of a prediction model, and can be used in an early warning system for local residents.

  8. Empirical Model for Evaluating PM10 Concentration Caused by River Dust Episodes

    PubMed Central

    Lin, Chao-Yuan; Chiang, Mon-Ling; Lin, Cheng-Yu

    2016-01-01

    Around the estuary of the Zhuo-Shui River in Taiwan, the waters recede during the winter, causing an increase in bare land area and exposing a large amount of fine earth and sand particles that were deposited on the riverbed. Observations at the site revealed that when northeastern monsoons blow over bare land without vegetation or water cover, the fine particles are readily lifted by the wind, forming river dust, which greatly endangers the health of nearby residents. Therefore, determining which factors affect river dust and constructing a model to predict river dust concentration are extremely important in the research and development of a prototype warning system for areas at risk of river dust emissions. In this study, the region around the estuary of the Zhuo-Shui River (from the Zi-Qiang Bridge to the Xi-Bin Bridge) was selected as the research area. Data from a nearby air quality monitoring station were used to screen for days with river dust episodes. The relationships between PM10 concentration and meteorological factors or bare land area were analyzed at different temporal scales to explore the factors that affect river dust emissions. Study results showed that no single factor alone had adequate power to explain daily average or daily maximum PM10 concentration. Stepwise regression analysis of multiple factors showed that the model could not effectively predict daily average PM10 concentration, but daily maximum PM10 concentration could be predicted by a combination of wind velocity, temperature, and bare land area; the coefficient of determination for this model was 0.67. It was inferred that river dust episodes are caused by the combined effect of multiple factors. In addition, research data also showed a time lag effect between meteorological factors and hourly PM10 concentration. This characteristic was applied to the construction of a prediction model, and can be used in an early warning system for local residents. PMID:27271642

  9. Relations between PM10 composition and cell toxicity: a multivariate and graphical approach.

    PubMed

    Rosas Pérez, Irma; Serrano, Jesús; Alfaro-Moreno, Ernesto; Baumgardner, Darrel; García-Cuellar, Claudia; Martín Del Campo, Javier Miranda; Raga, G B; Castillejos, Margarita; Colín, René Drucker; Osornio Vargas, Alvaro R

    2007-04-01

    Previous studies have used particle mass and size as metrics to link airborne particles with deleterious health effects. Recent evidence suggests that particle composition can play an important role in PM-toxicity; however, little is known about the specific participation of components (individually or acting in groups) present in such a complex mixture that accounts for toxicity. This work explores relationships among PM(10) components in order to identify their covariant structure and how they vary in three sites in Mexico City. Relationships between PM(10) with cell toxicity and geographical location were also explored. PM(10) was analyzed for elemental composition, organic and elemental carbon, endotoxins and the induction of inhibition of cell proliferation, IL-6, TNFalpha and p53. PM(10) variables were evaluated with principal component analysis and one-way ANOVA. The inhibition of cell proliferation, IL-6 and TNFalpha were evaluated with factorial ANOVA and p53 with the Welch test. The results indicate that there is heterogeneity in particle mass, composition and toxicity in samples collected at different sites. Multivariate analysis identified three major groups: (1) S/K/Ca/Ti/Mn/Fe/Zn/Pb; (2) Cl/Cr/Ni/Cu; and (3) endotoxins, organic and elemental carbon. Groups 1 and 3 showed significant differences among sites. Factorial ANOVA modeling indicated that cell proliferation was affected by PM concentration; TNFalpha and IL-6 by the interaction of concentration and site, and p53 was different by site. Radial plots suggest the existence of complex interactions between components, resulting in characteristic patterns of toxicity by site. We conclude that interactions of PM(10) components determine specific cellular outcomes.

  10. Assessing PM10 source reduction in urban agglomerations for air quality compliance.

    PubMed

    Aleksandropoulou, Victoria; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Torseth, Kjetil; Lazaridis, Mihalis

    2012-01-01

    The objective of this work was to study PM(10) and PM(2.5) concentration data available from monitoring stations in two large urban agglomerations in Greece and to estimate the emissions reduction required for compliance with the EU Air Quality Standards (AQS) for particulate matter. The cities studied are namely the Athens and Thessaloniki Metropolitan Areas (AMA and TMA, respectively). PM(10) concentrations during the period 2001-2010 have been evaluated for 15 air quality monitoring stations in the two urban areas. It was found that the concentrations of PM(10) during the period studied constantly exceeded the threshold values at the traffic and industrial stations in TMA and most of the traffic sites in AMA. Most of the occurrences of non-attainment to the daily AQSs were observed during the winter period at all stations (more pronounced for TMA stations). The reduction in current emission source strength to meet the air quality goal was calculated by the rollback equation using PM(10) day-averaged concentrations over the selected period at each station. Among the lognormal and Weibull distributions, the lognormal distribution was found to best fit the frequency distributions of PM(10) concentrations at the selected stations. The results showed that the minimum reduction required in order to meet the AQS in the AMA ranges from approximately 20 to 38% and up to 11% for traffic and background stations, respectively. Reductions in the range of 31% for traffic and 44% for industrial areas in TMA are also required. The same methodology was applied to PM(2.5) concentrations in the AMA and showed that emission reductions up to 31% are necessary in order to meet the 2020 EU AQS. Finally, continuous concentration data of organic (OC) and elementary carbon (EC) in PM(2.5) were used to study the possibility of achieving specific emission attenuation objectives in AMA.

  11. Bedrock controls on the mineralogy and chemistry of PM10 extracted from Australian desert sediments

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Amato, Fulvio; Querol, Xavier; Alastuey, Andrés; Elvira, Josep; Gibbons, Wes

    2009-03-01

    Given the relevance of desert aerosols to environmental issues such as dust storms, climate change and human health effects, we provide a demonstration of how the bedrock geology of an arid area influences the mineralogy and geochemistry of even the finest particulate matter (i.e., the inhalable fraction <10 μm in size: PM10). PM10 samples extracted from desert sediments at geologically contrasting off-road sites in central and southeastern Australia (granitic, high grade metamorphic, quartzitic sandstone) were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The “granitic” PM10 are highly alkali feldspathic and illitic, with a wide range of accessory minerals including rutile (TiO2), monazite [(Ce, La, Nd, Th, Y) PO4], xenotime (YPO4), apatite [Ca5(PO4)3 (F, OH, Cl)], hematite (Fe3O4), zircon (ZrSiO4) and thorite (ThSiO4). This mineralogy is reflected in the geochemistry which shows notable enrichments in rare earth elements (REE) and most high field strength elements (both held in the accessory minerals), and higher than normal levels of low (<2.0) ionic potential elements (Na, K, Li, Cs, Rb: held in alkali feldspar and illite). The “metamorphic” resuspended PM10 define a mineralogy clearly influenced by local exposures of pelitic and calc-silicate schists (sillimanite, muscovite, calcite, Ca-amphibole), a dominance of monazite over other REE-bearing phases, and a geochemistry distinguished by enrichments in alkaline earth metals (Ca, Mg, Ba, Sr) and depletion in heavy REE. The “quartzite” PM10, derived from rocks already recycled by Precambrian erosion and sedimentary transport, show a sedimentologically mature mineralogy of mostly quartz and kaolinite, detrital accessory ilmenite, rutile, monazite and hematite, and the strongest geochemical depletion (especially K, Rb, Cs, Na, Ca, Mg, Ba).

  12. Application of positive matrix factorization in characterization of PM(10) and PM(2.5) emission sources at urban roadside.

    PubMed

    Srimuruganandam, B; Shiva Nagendra, S M

    2012-06-01

    The 24-h average coarse (PM(10)) and fine (PM(2.5)) fraction of airborne particulate matter (PM) samples were collected for winter, summer and monsoon seasons during November 2008-April 2009 at an busy roadside in Chennai city, India. Results showed that the 24-h average ambient PM(10) and PM(2.5) concentrations were significantly higher in winter and monsoon seasons than in summer season. The 24-h average PM(10) concentration of weekdays was significantly higher (12-30%) than weekends of winter and monsoon seasons. On weekends, the PM(2.5) concentration was found to slightly higher (4-15%) in monsoon and summer seasons. The chemical composition of PM(10) and PM(2.5) masses showed a high concentration in winter followed by monsoon and summer seasons. The U.S.EPA-PMF (positive matrix factorization) version 3 was applied to identify the source contribution of ambient PM(10) and PM(2.5) concentrations at the study area. Results indicated that marine aerosol (40.4% in PM(10) and 21.5% in PM(2.5)) and secondary PM (22.9% in PM(10) and 42.1% in PM(2.5)) were found to be the major source contributors at the study site followed by the motor vehicles (16% in PM(10) and 6% in PM(2.5)), biomass burning (0.7% in PM(10) and 14% in PM(2.5)), tire and brake wear (4.1% in PM(10) and 5.4% in PM(2.5)), soil (3.4% in PM(10) and 4.3% in PM(2.5)) and other sources (12.7% in PM(10) and 6.8% in PM(2.5)).

  13. Inlet noise on 0.5-meter-diameter NASA QF-1 fan as measured in an unmodified compressor aerodynamic test facility and in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Soltis, R. F.

    1975-01-01

    Narrowband analysis revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. From one-third octave bandwidth sound power analyses the BPF noise (harmonics combined), and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 db or less over the range of speeds and flows tested. Detailed noise and aerodynamic performance is also presented.

  14. Basic statistics of PM2.5 and PM10 in the atmosphere of Mexico City.

    PubMed

    Vega, E; Reyes, E; Sánchez, G; Ortiz, E; Ruiz, M; Chow, J; Watson, J; Edgerton, S

    2002-03-27

    The high levels of fine particulate matter in Mexico City are of concern since they may induce severe public health effects as well as the attenuation of visible light. Sequential filter samplers were used at six different sites from 23 February to 22 March 1997. The sampling campaign was carried out as part of the project 'Investigación sobre Materia Particulada y Deterioro Atmosferico-Aerosol and Visibility Evaluation Research'. This research was a cooperative project sponsored by PEMEX and by the US Department of Energy. Sampling sites represent the different land uses along the city, the northwest station, Tlalnepantla, is located in a mixed medium income residential and industrial area. The northeast station, Xalostoc, is located in a highly industrialized area, Netzahualcoyotl is located in a mixed land use area, mainly commercial and residential. Station La Merced is located in the commercial and administrative district downtown. The southwest station is located in the Pedregal de San Angel, in a high-income neighborhood, and the southeast station located in Cerro de la Estrella is a mixed medium income residential and commercial area. Samples were collected four times a day in Cerro de la Estrella (CES), La Merced (MER) and Xalostoc (XAL) with sampling periods of 6 h. In Pedregal (PED), Tlalnepantla (TLA) and Netzahualcoyot1 (NEZ) sampling periods were every 24 h. In this paper the basic statistics of PM2.5 and PM10 mass concentrations are presented. The average results showed that 49, 61, 46, 57, 51 and 44% of the PM10 consisted of PM2.5 for CES, MER, XAL, PED, TLA and NEZ, respectively. The 24-h average highest concentrations of PM25 and PM10 were registered at NEZ (184 and 267 microg/m3) and the lowest at PED (22 and 39 microg/m3). The highest PM10 correlations were between XAL-CES (0.79), PED-TLA (0.80). In contrast, the highest PM2.5 correlations were between CES-PED (0.74), MER-CES (0.73) and TLA-PED (0.72), showing a lower correlation than the PM10

  15. Spatial and chemical patterns of PM 10 in road dust deposited in urban environment

    NASA Astrophysics Data System (ADS)

    Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T.

    Recent research interest has been focused on road dust resuspension as one of the major sources of atmospheric particulate matter in an urban environment. Given the dearth of studies on the variability of the PM 10 fraction of road deposited sediments, our understanding of the main factors controlling this pollutant is incomplete. In the present study a new sampling methodology was devised and applied to collect PM 10 deposited mass from 1 m 2 of road pavement. PM 10 road dust fraction was sampled directly from active traffic lanes at 23 sampling sites during a campaign in Barcelona (Spain) in June 2007. The aim of the study was to gain more insight into the variability of mass and chemistry of road dust in different urban environments, such as the city centre, ring roads, and locations nearby demolition/construction sites. The city centre showed values of PM 10 road dust within a range of 3-23 mg m -2, whereas levels reached 24-80 mg m -2 in locations affected by transport of uncovered heavy trucks. The largest dust loads were measured in the proximity of demolition/construction sites and the harbor entry with values up to 328 mg m -2. The city centre road dust profiles (%) were enriched in OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO 42-, NO 3-, Cl - and NH 4+, but several crustal components such as Ca, Ti, Na, and Mg were also considerably concentrated. Locations affected by construction and demolition activities had high levels of crustal components such as Ca, Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load of uncovered heavy trucks showed an intermediate composition. Levels of PM 10 components per area were also evaluated to quantify the resuspendable amount of each element from 1 m 2. In the inner city environment mean values of 1363 μg Ca m -2, 816 μg OC m -2, 239 μg EC m -2, 13 μg Cu m -2, 12 μg Zn m -2, 1.9 μg Sb m -2 and 2.0 μg Pb m -2, in PM 10 in all cases, were registered. Moreover the

  16. Evolving Pb isotope signatures of London airborne particulate matter (PM 10)-constraints from on-filter and solution-mode MC-ICP-MS.

    PubMed

    Noble, Stephen R; Horstwood, Matthew S A; Davy, Pamela; Pashley, Vanessa; Spiro, Baruch; Smith, Steve

    2008-07-01

    Pb isotope compositions of biologically significant PM(10) atmospheric particulates from a busy roadside location in London UK were measured using solution- and laser ablation-mode MC-ICP-MS. The solution-mode data for PM(10) sampled between 1998-2001 document a dramatic shift to increasingly radiogenic compositions as leaded petrol was phased out. LA-MC-ICP-MS isotope analysis, piloted on a subset of the available samples, is shown to be a potential reconnaissance analytical technique. PM(10) particles trapped on quartz filters were liberated from the filter surface, without ablating the filter substrate, using a 266 nm UV laser and a dynamic, large diameter, low-fluence ablation protocol. The Pb isotope evolution noted in the London data set obtained by both analytical protocols is similar to that observed elsewhere in Western Europe following leaded petrol elimination. The data therefore provide important baseline isotope composition information useful for continued UK atmospheric monitoring through the early 21(st) century.

  17. Modeling extreme PM10 concentration in Malaysia using generalized extreme value distribution

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Mansor, Nadiah; Salleh, Nur Hanim Mohd

    2015-05-01

    Extreme PM10 concentration from the Air Pollutant Index (API) at thirteen monitoring stations in Malaysia is modeled using the Generalized Extreme Value (GEV) distribution. The data is blocked into monthly selection period. The Mann-Kendall (MK) test suggests a non-stationary model so two models are considered for the stations with trend. The likelihood ratio test is used to determine the best fitted model and the result shows that only two stations favor the non-stationary model (Model 2) while the other eleven stations favor stationary model (Model 1). The return level of PM10 concentration that is expected to exceed the maximum once within a selected period is obtained.

  18. Inverse Modeling to Improve Emission Inventory for PM10 Forecasting in East Asia Region Focusing on Korea.

    NASA Astrophysics Data System (ADS)

    Koo, Y. S.; Choi, D.; Kwon, H. Y.; Han, J.

    2014-12-01

    The aerosol transports from China and Mongolia along the Northwestern wind have large influence on the air quality in Korea and the assessment of the emission in the East Asia region is an important factor in air quality forecasting in Korea. In order to obtain working PM10 emission inventory for the PM10 forecast modeling over East Asia, the Bayesian approach with CAMx (Comprehensive Air-quality Model with extension) forward model was applied. The surface observations of PM10 from EANET (Acid Deposition Monitoring Network in East Asia), API (Air Pollution Index) sites over China and AAQMS (Ambient Air Quality Monitoring Stations) in Korea were used for the inverse modelling. The predicted PM10 concentrations with a priori emission were compared with observations at monitoring sites in China and Korea. The comparison showed that PM10 concentrations with a priori emissions were generally under-predicted. The result also indicated that anthropogenic PM10 emissions in the industrialized and urbanized areas in China were under-estimated in particular. Optimized a posteriori PM10 emissions over East Asia from inverse modelling analysis ware proposed. A posteriori PM10 emissions were much lower than the a priori emission where the soil dust emissions were prevailing. This implied that the dust emission module still had large uncertainty and it was necessary to further research on the improvement of in-line emission modelling for the soil dust. In contrast, a posteriori anthropogenic emissions from industrialized areas such as Beijing and Shenyang sites were slightly higher than a priori emission at regions. Especially, a posteriori PM10 emissions increased in Korea and in Northeast region of China. The predictions of PM10 with proposed a posteriori emission showed better agreement with the observations, implying that the inverse modelling minimized the discrepancies in the model estimation by improving PM10 emissions in East Asia. Further details of inverse modeling

  19. Chemical composition and mass closure of ambient PM10 at urban sites

    NASA Astrophysics Data System (ADS)

    Terzi, Eleni; Argyropoulos, George; Bougatioti, Aikaterini; Mihalopoulos, Nikolaos; Nikolaou, Kostas; Samara, Constantini

    2010-06-01

    The chemical composition of PM10 was studied during summer and winter sampling campaigns conducted at two different urban sites in the city of Thessaloniki, Greece (urban-traffic, UT and urban-industrial, UI). PM10 samples were chemically analysed for minerals (Si, Al, Ca, Mg, Fe, Ti, K), trace elements (Cd, Cr, Cu, Mn, Pb, V, Zn, Te, Co, Ni, Se, Sr, As, and Sb), water-soluble ions (Cl -, NO 3-, SO 42-, Na +, K +, NH 4+, Ca 2+, Mg 2+) and carbonaceous compounds (OC, EC). Spatial variations of atmospheric concentrations showed significantly higher levels of minerals, some trace metals and TC at the UI site, while at the UT site significantly higher levels of elements like Cd, Ba, Sn, Sb and Te were observed. Crustal elements, excepting Ca at the UI site, did not exhibit significant seasonal variations at any site pointing to constant emissions throughout the year. In order to reconstruct the particle mass, the determined components were classified into six classes as follows: mineral matter (MIN), trace elements (TE), organic matter (OM), elemental carbon (EC), sea salt (SS) and secondary inorganic aerosol (SIA). Good correlations with slopes close to 1 were found between chemically determined and gravimetrically measured PM10 masses for both sites. According to the chemical mass closure obtained, the major components of PM10 at both sites were MIN (soil-derived compounds), followed by OM and SIA. The fraction unaccounted for by chemical analysis comprised on average 8% during winter and 15% during summer at the urban-industrial site, while at the urban-traffic site the percentages were 21.5% in winter and 4.8% in summer.

  20. Estimating PM 10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Draxler, Roland R.; Gillette, Dale A.; Kirkpatrick, Jeffrey S.; Heller, Jack

    A model for the emission of PM 10 dust has been constructed using the concept of a threshold friction velocity which is dependent on surface roughness. Surface roughness in turn was correlated with geomorphology or soil properties for Kuwait, Iraq, part of Syria, Saudi Arabia, the United Arab Emirates and Oman. The PM 10 emission algorithm was incorporated into a Lagrangian transport and dispersion model. PM 10 air concentrations were computed from August 1990 through August 1991. The model predicted about the right number of dust events over Kuwait (events occur 18% of the time). The model results agreed quantitatively with measurements at four locations in Saudi Arabia and one in Kuwait for one major dust event (>1000 μg/m 3). However, for smaller scale dust events (200-1000 μg/m 3), especially at the coastal sampling locations, the model substantially over-predicted the air concentrations. Part of the over-prediction was attributed to the entrainment of dust-free air by the sea breeze, a flow feature not represented by the large-scale gridded meteorological data fields used in the model computation. Another part of the over-prediction was the model's strong sensitivity to threshold friction velocity and the surface soil texture coefficient (the soil emission factor), and the difficulty in accurately representing these parameters in the model. A comparison of the model predicted PM 10 spatial pattern with the TOMS satellite aerosol index (AI) yielded a spatial pattern covering a major portion of Saudi Arabia that was quite similar to the observed AI pattern.

  1. Intervention assessments in the control of PM10 emissions from an urban waste transfer station.

    PubMed

    Barratt, B M; Fuller, G W

    2014-05-01

    While vehicle emissions present the most widespread cause of breaches of EU air quality standards in urban areas of the UK, the greatest PM10 concentrations are often recorded close to small industrial sites with significant and long-term public exposure within close proximity. This is particularly the case in London, where monitoring in densely populated locations, adjacent to waste transfer stations (WTS), routinely report the highest PM10 concentrations in the city. This study aims to assess the impact of dust abatement measures taken at a WTS in west London and, in so doing, develop analysis techniques transferrable to other similar industrial situations. The study was performed in a 'blinded fashion', i.e., no details of operating times, activities or remediation measures were provided prior to the analysis. The study established that PM10 concentrations were strongly related to the industrial area's working hours and atmospheric humidity. The primary source of local particulate matter during working hours was found to be from the industrial area itself, not from the adjacent road serving the site. CUSUM analysis revealed a strong, sustained change point coinciding with a number of modifications at the WTS. Analysis suggested that introducing a vehicle washer bay, leading to a less dry and dusty yard, and ceasing stock piling and waste handling activities outside of the open shed had the greatest effect on PM10 concentrations. The techniques developed in this study should empower licensing authorities to more effectively characterise and mitigate particulate matter generated by urban industrial activities, thereby improving the health and quality of life of the local population.

  2. Spatio-temporal modeling of chronic PM 10 exposure for the Nurses' Health Study

    NASA Astrophysics Data System (ADS)

    Yanosky, Jeff D.; Paciorek, Christopher J.; Schwartz, Joel; Laden, Francine; Puett, Robin; Suh, Helen H.

    2008-06-01

    Chronic epidemiological studies of airborne particulate matter (PM) have typically characterized the chronic PM exposures of their study populations using city- or county-wide ambient concentrations, which limit the studies to areas where nearby monitoring data are available and which ignore within-city spatial gradients in ambient PM concentrations. To provide more spatially refined and precise chronic exposure measures, we used a Geographic Information System (GIS)-based spatial smoothing model to predict monthly outdoor PM10 concentrations in the northeastern and midwestern United States. This model included monthly smooth spatial terms and smooth regression terms of GIS-derived and meteorological predictors. Using cross-validation and other pre-specified selection criteria, terms for distance to road by road class, urban land use, block group and county population density, point- and area-source PM10 emissions, elevation, wind speed, and precipitation were found to be important determinants of PM10 concentrations and were included in the final model. Final model performance was strong (cross-validation R2=0.62), with little bias (-0.4 μg m-3) and high precision (6.4 μg m-3). The final model (with monthly spatial terms) performed better than a model with seasonal spatial terms (cross-validation R2=0.54). The addition of GIS-derived and meteorological predictors improved predictive performance over spatial smoothing (cross-validation R2=0.51) or inverse distance weighted interpolation (cross-validation R2=0.29) methods alone and increased the spatial resolution of predictions. The model performed well in both rural and urban areas, across seasons, and across the entire time period. The strong model performance demonstrates its suitability as a means to estimate individual-specific chronic PM10 exposures for large populations.

  3. Evaluating urban PM 10 pollution benefit induced by street cleaning activities

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Querol, Xavier; Alastuey, Andrés; Pandolfi, Marco; Moreno, Teresa; Gracia, José; Rodriguez, Pau

    Despite their burden in urban particulate air pollution, road traffic non-exhaust emissions are often uncontrolled and information about the effectiveness of mitigation measures on paved roads is still scarce. The present study is aimed to evaluate the effectiveness of mechanical sweeping/water flushing treatments in mitigating urban road dust resuspension and to quantify the real benefit in terms of ambient PM 10 concentrations. To this aim a specific campaign was carried out in a heavily trafficked central road of Barcelona (Spain), a Mediterranean city suffering from a traffic-related pollution, both for a high car density and a frequent lack of precipitation. Several street washings were performed by means of mechanical sweepers and pressure water during night in all traffic lanes and sidewalks. PM 10 levels were simultaneously compared with four reference urban background air quality stations to interpret any meteorological variability. At the downwind measurement site, PM 10 concentrations registered a mean daily decrease of 8.8 μg m -3 during the 24 h after street washing treatments. However 3.7-4.9 μg m -3 of such decrease were due to the meteorological variability detected at the upwind site, as well as at two of the reference sites. This reveals that an effective decrease of 4-5 μg m -3 (7-10%) can be related to street washing efficiency. Mitigation of road dust resuspension was confirmed by investigating the chemical composition of airborne-PM 10 filters. Concentrations of Cu, Sb, Fe and mineral matter decrease significantly with respect to concentrations of elemental carbon, used as tracer for exhaust diesel emissions. High efficiency of street washing in reducing road dust loads was found by performing periodic samplings both on the treated and the untreated areas.

  4. Influence of tobacco smoke on indoor PM 10 particulate matter characteristics

    NASA Astrophysics Data System (ADS)

    Paoletti, L.; De Berardis, B.; Arrizza, L.; Granato, V.

    In this study we evaluate the influence of tobacco smoke on the physico-chemical characteristics of PM 10 in different environments: outdoors, a smoking room, the same room after a 7-day absence of smokers and in a smoke-free office. The latter office was close to the smoking room, separated by a corridor. The coarse (PM 10-2.1) and fine (PM 2.1) fractions of PM 10 collected in the monitored areas were analysed by scanning electron microscopy, equipped with a thin-window system for X-ray microanalysis (SEM/EDX). Photo-electron spectroscopy (XPS) was used to study the elemental composition of the particulate and to identify the chemical state of atomic species detected. Four clusters of particles for both "fine" and "coarse" fractions were identified: carbonaceous particles, soil erosion particles, Ca-sulphates and metal compound particles. EDX spectra showed that a percentage of carbonaceous particles carried S, Si and metal traces. High-resolution XPS spectra of the C1s region showed a significant greater occurrence of the C-O/C-N functional group in the particulate fine fraction collected in the smoking room compared to that collected outdoors. The carbonaceous component of coarse fraction collected in the smoking room appeared dissimilar from the same component detected in the other areas. After the 7-day absence of smokers this component of the PM 10-2.1 fraction was similar to the corresponding coarse fraction collected at the outdoor location. The carbonaceous component of fine fraction collected in the smoking room, containing tobacco smoke products, such as organic carbon and nicotine, was traceable in the neighbouring areas, even several days after suspension of smoking activity.

  5. Chemical composition, mass closure and sources of atmospheric PM10 from industrial sites in Shenzhen, China.

    PubMed

    Wu, Gang; Du, Xin; Wu, Xuefang; Fu, Xiao; Kong, Shaofei; Chen, Jianhua; Wang, Zongshuang; Bai, Zhipeng

    2013-08-01

    Concentrations of atmospheric PM10 and chemical components (including twenty-one elements, nine ions, organic carbon (OC) and elemental carbon (EC)) were measured at five sites in a heavily industrial region of Shenzhen, China in 2005. Results showed that PM10 concentrations exhibited the highest values at 264 microg/m3 at the site near a harbor with the influence of harbor activities. Sulfur exhibited the highest concentrations (from 2419 to 3995 ng/m3) of all the studied elements, which may be related to the influence of coal used as fuel in this area for industrial plants. This was verified by the high mass percentages of SO4(2-), which accounted for 34.3%-39.7% of the total ions. NO3-/SO4(2-) ratios varied from 0.64-0.71, which implies coal combustion was predominant compared with vehicle emission. The anion/cation ratios range was close to 0.95, indicating anion deficiency in this region. The harbor site showed the highest OC and EC concentrations, with the influence of emission from vessels. Secondary organic carbon accounted for about 22.6%-38.7% of OC, with the highest percentage occurring at the site adjacent to a coal-fired power plant and wood plant. The mass closure model performed well in this heavily industrial region, with significant correlation obtained between chemically determined and gravimetrically measured PM10 mass. The main constituents of PM10 were found to be organic materials (30.9%-69.5%), followed by secondary inorganic aerosol (7.9%-25.0%), crustal materials (6.7%-13.8%), elemental carbon (3.5%-10.8%), sea salt (2.4%-6.2%) and trace elements (2.0%-4.9%) in this heavily industrialized region. Principal component analysis indicated that the main sources for particulate matter in this industrial region were crustal materials and coal/wood combustion, oil combustion, secondary aerosols, industrial processes and vehicle emission.

  6. Chemical characterization of extractable water soluble matter associated with PM10 from Mexico City during 2000.

    PubMed

    Gutiérrez-Castillo, M E; Olivos-Ortiz, M; De Vizcaya-Ruiz, A; Cebrián, M E

    2005-11-01

    We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.

  7. Source Apportionment of PM10 by Positive Matrix Factorization in Urban Area of Mumbai, India

    PubMed Central

    Gupta, Indrani; Salunkhe, Abhaysinh; Kumar, Rakesh

    2012-01-01

    Particulate Matter (PM10) has been one of the main air pollutants exceeding the ambient standards in most of the major cities in India. During last few years, receptor models such as Chemical Mass Balance, Positive Matrix Factorization (PMF), PCA–APCS and UNMIX have been used to provide solutions to the source identification and contributions which are accepted for developing effective and efficient air quality management plans. Each site poses different complexities while resolving PM10 contributions. This paper reports the variability of four sites within Mumbai city using PMF. Industrial area of Mahul showed sources such as residual oil combustion and paved road dust (27%), traffic (20%), coal fired boiler (17%), nitrate (15%). Residential area of Khar showed sources such as residual oil combustion and construction (25%), motor vehicles (23%), marine aerosol and nitrate (19%), paved road dust (18%) compared to construction and natural dust (27%), motor vehicles and smelting work (25%), nitrate (16%) and biomass burning and paved road dust (15%) in Dharavi, a low income slum residential area. The major contributors of PM10 at Colaba were marine aerosol, wood burning and ammonium sulphate (24%), motor vehicles and smelting work (22%), Natural soil (19%), nitrate and oil burning (18%). PMID:22645437

  8. A Model Chain Application to Estimate Mixing Layer Height Related to PM10 Dispersion Processes.

    PubMed

    Guarnieri, F; Calastrini, F; Busillo, C; Messeri, G; Gozzini, B

    2015-01-01

    The mixing layer height (MLH) is a crucial parameter in order to investigate the near surface concentrations of air pollutants. The MLH can be estimated by measurements of some atmospheric variables, by indirect estimates based on trace gases concentration or aerosol, or by numerical models. Here, a modelling approach is proposed. The developed modelling system is based on the models WRF-ARW and CALMET. This system is applied on Firenze-Prato-Pistoia area (Central Italy), during 2010, and it is compared with in situ measurements. The aim of this work is to evaluate the use of MLH model estimates to characterize the critical episodes for PM10 in a limited area. In order to find out the meteorological conditions predisposing accumulation of PM10 in the atmosphere's lower level, some indicators are used: daily mean wind speed, cumulated rainfall, and mean MLH estimates from CALMET model. This indicator is linked to orography, which has important consequences on local weather dynamics. However, during critical events the local emission sources are crucial to the determination of threshold exceeding of PM10. Results show that the modelled MLH, together with cumulative rainfall and wind speed, can identify the meteorological conditions predisposing accumulation of air pollutant at ground level.

  9. Pulmonary Function and Incidence of Selected Respiratory Diseases Depending on the Exposure to Ambient PM10

    PubMed Central

    Badyda, Artur; Gayer, Anna; Czechowski, Piotr Oskar; Majewski, Grzegorz; Dąbrowiecki, Piotr

    2016-01-01

    It is essential in pulmonary disease research to take into account traffic-related air pollutant exposure among urban inhabitants. In our study, 4985 people were examined for spirometric parameters in the presented research which was conducted in the years 2008–2012. The research group was divided into urban and rural residents. Traffic density, traffic structure and velocity, as well as concentrations of selected air pollutants (CO, NO2 and PM10) were measured at selected areas. Among people who live in the city, lower percentages of predicted values of spirometric parameters were noticed in comparison to residents of rural areas. Taking into account that the difference in the five-year mean concentration of PM10 in the considered city and rural areas was over 17 μg/m3, each increase of PM10 by 10 μg/m3 is associated with the decline in FEV1 (forced expiratory volume during the first second of expiration) by 1.68%. These findings demonstrate that traffic-related air pollutants may have a significant influence on the decline of pulmonary function and the growing rate of respiratory diseases. PMID:27879677

  10. Relevant aspects of air quality in Oporto (Portugal): PM10 and O3.

    PubMed

    Pereira, M C; Alvim-Ferraz, M C M; Santos, R C

    2005-02-01

    The air quality Framework Directive (FWD) and the correspondent Daughter Directives defined the new strategy for air quality management in Europe. In general, the new standards are more restrictive than those established by the previous legislation. In Portugal, some difficulties can be previewed to achieve those new standards. Thus, this paper aims at evaluating the impact of application of the FWD to Oporto Metropolitan Area in what concerns to the most critical air pollutants in the area (PM10 and O3). The specific objectives were: (i) to analyse the concentration exceedances between 1999 and 2001; (ii) to identify the main emission sources; (iii) to evaluate the possibility of a new redistribution of the existing monitoring sites; (iv) to contribute to the definition of a new strategy for air quality management. The results showed that; (i) the standard values for PM10 and O3 were largely surpassed, possibly concluding that the FWD application implies a strong impact on the air quality management strategies; (ii) the main emission sources (road traffic and the neighbour stationary sources localised upwind) affect all the Metropolitan area through intra-region pollutant transport; (iii) it is safer maintaining the site localisation to avoid previewing exceedances through mathematical correlations; (iv) the reduction of PM10 and of ozone precursors must be performed considering new technologies for 'cleaner production' and gaseous depuration, a rigorous urban and territory planning, the creation of an efficient public transport network and the definition of strict measures for car maintenance.

  11. Modelling of PM10 concentration for industrialized area in Malaysia: A case study in Shah Alam

    NASA Astrophysics Data System (ADS)

    N, Norazian Mohamed; Abdullah, M. M. A.; Tan, Cheng-yau; Ramli, N. A.; Yahaya, A. S.; Fitri, N. F. M. Y.

    In Malaysia, the predominant air pollutants are suspended particulate matter (SPM) and nitrogen dioxide (NO2). This research is on PM10 as they may trigger harm to human health as well as environment. Six distributions, namely Weibull, log-normal, gamma, Rayleigh, Gumbel and Frechet were chosen to model the PM10 observations at the chosen industrial area i.e. Shah Alam. One-year period hourly average data for 2006 and 2007 were used for this research. For parameters estimation, method of maximum likelihood estimation (MLE) was selected. Four performance indicators that are mean absolute error (MAE), root mean squared error (RMSE), coefficient of determination (R2) and prediction accuracy (PA), were applied to determine the goodness-of-fit criteria of the distributions. The best distribution that fits with the PM10 observations in Shah Alamwas found to be log-normal distribution. The probabilities of the exceedences concentration were calculated and the return period for the coming year was predicted from the cumulative density function (cdf) obtained from the best-fit distributions. For the 2006 data, Shah Alam was predicted to exceed 150 μg/m3 for 5.9 days in 2007 with a return period of one occurrence per 62 days. For 2007, the studied area does not exceed the MAAQG of 150 μg/m3

  12. Developing a methodology to predict PM10 concentrations in urban areas using generalized linear models.

    PubMed

    Garcia, J M; Teodoro, F; Cerdeira, R; Coelho, L M R; Kumar, Prashant; Carvalho, M G

    2016-09-01

    A methodology to predict PM10 concentrations in urban outdoor environments is developed based on the generalized linear models (GLMs). The methodology is based on the relationship developed between atmospheric concentrations of air pollutants (i.e. CO, NO2, NOx, VOCs, SO2) and meteorological variables (i.e. ambient temperature, relative humidity (RH) and wind speed) for a city (Barreiro) of Portugal. The model uses air pollution and meteorological data from the Portuguese monitoring air quality station networks. The developed GLM considers PM10 concentrations as a dependent variable, and both the gaseous pollutants and meteorological variables as explanatory independent variables. A logarithmic link function was considered with a Poisson probability distribution. Particular attention was given to cases with air temperatures both below and above 25°C. The best performance for modelled results against the measured data was achieved for the model with values of air temperature above 25°C compared with the model considering all ranges of air temperatures and with the model considering only temperature below 25°C. The model was also tested with similar data from another Portuguese city, Oporto, and results found to behave similarly. It is concluded that this model and the methodology could be adopted for other cities to predict PM10 concentrations when these data are not available by measurements from air quality monitoring stations or other acquisition means.

  13. Source apportionment of PM10 in the Western Mediterranean based on observations from a cruise ship

    NASA Astrophysics Data System (ADS)

    Schembari, C.; Bove, M. C.; Cuccia, E.; Cavalli, F.; Hjorth, J.; Massabò, D.; Nava, S.; Udisti, R.; Prati, P.

    2014-12-01

    Two intensive PM10 sampling campaigns were performed in the summers of 2009 and 2010 on the ship Costa Pacifica during cruises in the Western Mediterranean. Samples, mainly collected on an hourly basis, were analysed with different techniques (Particle Induced X-Ray Emission, PIXE; Energy Dispersive - X Ray Fluorescence, ED-XRF; Ion Chromatography, IC; Thermo-optical analysis) to retrieve the PM10 composition and its time pattern. The data were used for obtaining information about the sources of aerosol, with a focus on ship emissions, through apportionment using chemical marker compounds, correlation analysis and Positive Matrix Factorization (PMF) receptor modelling. For the campaign in 2010, 66% of the aerosol sulphate was found to be anthropogenic, only minor contributions of dust and sea salt sulphate were observed while the biogenic contribution, estimated based on the measurements of MSA, was found to be more important (26%), but influenced by large uncertainties. V and Ni were found to be suitable tracers of ship emissions during the campaigns. Four sources of aerosol were resolved by the PMF analysis; the source having the largest impact on PM10, BC and sulphate was identified as a mixed source, comprising emissions from ships. The correlations between sulphate and V and Ni showed the influence of ship emissions on sulphate in marine air masses. For the leg Palma-Tunis crossing a main ship route, the correlations between aerosol sulphate and V and Ni were particularly strong (r2 = 0.9 for both elements).

  14. Urban enhancement of PM10 bioaerosol tracers relative to background locations in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Rathnayake, Chathurika M.; Metwali, Nervana; Baker, Zach; Jayarathne, Thilina; Kostle, Pamela A.; Thorne, Peter S.; O'Shaughnessy, Patrick T.; Stone, Elizabeth A.

    2016-05-01

    Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and copollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from Gram-negative bacteria (and a few Gram-positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol, and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins, and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point toward windblown soil as an important source of bioaerosols in urban areas.

  15. Categorisation of air quality monitoring stations by evaluation of PM(10) variability.

    PubMed

    Barrero, M A; Orza, J A G; Cabello, M; Cantón, L

    2015-08-15

    Air Quality Monitoring Networks (AQMNs) are composed by a number of stations, which are typically classified as urban, suburban or rural, and background, industrial or traffic, depending on the location and the influence of the immediate surroundings. These categories are not necessarily homogeneous and distinct from one another, regarding the levels of the monitored pollutants. A classification providing groups with these features is of interest for air quality management and research purposes, and therefore, other classification criteria should be explored. In this work, the variations of PM10 concentrations in 43 stations in the AQMN of the Basque Country in the period 2005-2012 have been studied to group them according to common characteristics. The characteristic variations in time are synthesised by the autocorrelation function (ACF), with both daily and hourly data, and by the average diurnal evolution pattern of the normalised concentrations on a seasonal basis (Evol-P). A methodology based on k-means clustering of these features is proposed. Each classification gives a different piece of information that has been phenomenologically related with specific dispersion and emission dynamics. The classification based on Evol-Ps is found to be the most influential one when comparing PM10 levels between groups. A combination of these categorisations provides 5 groups with significantly different levels of PM10, improving the discrimination of the conventional classification. Our results indicate that the time series of the pollutant concentrations contain enough information to provide an objective classification of the monitoring stations in an AQMN.

  16. Effect of travel restriction on PM10 concentrations in Naples: One year of experience

    NASA Astrophysics Data System (ADS)

    Polichetti, Giuliano

    2017-02-01

    The PM10 is an ubiquitarian and most common pollutant in the world, especially in the Western countries, and it is responsible onset of many pathologies from cancer to cardiorespiratory diseases and human reproduction, on the pregnant women and birth outcomes, in addition to recently has been associated with metabolic diseases (like diabetes). In the light of this scenario, the city of Naples decided in 2010, attempting to reduce PM10 concentrations, to establish a travel restriction for the cars over the city to time slots and on alternate days. We have analyzed the PM10 data from eight monitoring stations dislocated on the city ground. The period of analysis was a year, from July 2010 to July 2011. The results were not absolutely close to expectations, having practically demonstrated that there is no statistically significant difference between the days and hours when the travel restriction was active and those where no have the travel restriction. In conclusion, the travel restriction at time slots and alternate days as structured in the city of Naples seems have not significant improvement of air quality but should need further studies to obtain more reliable data.

  17. [Compositions of organic acids in PM10 emission sources in Xiamen urban atmosphere].

    PubMed

    Yang, Bing-Yu; Huang, Xing-Xing; Zheng, An; Liu, Bi-Lian; Wu, Shui-Ping

    2013-01-01

    The possible organic acid emission sources in PM10 in Xiamen urban atmosphere such as cooking, biomass burning, vehicle exhaust and soil/dust were obtained using a re-suspension test chamber. A total of 15 organic acids including dicarboxylic acids, fatty acids and aromatic acids were determined using GC/MS after derivatization with BF3/n-butanol. The results showed that the highest total concentration of 15 organic acids (53%) was found in cooking emission and the average concentration of the sum of linoleic acid and oleic acid was 24% +/- 14%. However, oxalic acid was the most abundant species followed by phthalic acid in gasoline vehicle exhaust. The ratios of adipic to azelaic acid in gasoline combustion emissions were significantly higher than those in other emission sources, which can be used to qualitatively differentiate anthropogenic and biological source of dicarboxylic acids in atmospheric samples. The ratios of malonic to succinic acid in source emissions (except gasoline generator emissions) were lower (0.07-0.44) than ambient PM10 samples (0.61-3.93), which can be used to qualitatively differentiate the primary source and the secondary source of dicarboxylic acids in urban PM10.

  18. Forecasting of PM10 time series using wavelet analysis and wavelet-ARMA model in Taiyuan, China.

    PubMed

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-02-23

    PM10 forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-time series of the PM10 concentrations. It was evaluated by experiments using a 10-year dataset of daily PM10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: 1) PM10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but it was increased in 2013. PM10 concentrations had an obvious seasonal fluctuation related with coal fired heating in winter and early spring. 2) Spatial difference among four stations showed that the PM10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. 3) Wavelet analysis revealed that the trend variation and the changes of the PM10 concentration of Taiyuan were complicated. 4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multi-time scale prediction.

  19. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Largeron, Yann; Staquet, Chantal

    2016-06-01

    The present study investigates persistent inversions dynamics during a whole winter in Alpine valleys of the area of Grenoble (French Alps), and their relationship to PM10 air pollution episodes and synoptic scale meteorology. For this purpose, hourly time series from November to March of PM10 concentration measurements at the bottom of the valleys and of ground-based temperature data at different altitudes are used. A methodology is developed to quantify a simple estimate of the inversion strength from temperature profiles deduced from the ground-based observations. This estimate is shown to be equivalent to the boundary layer heat deficit. A criterion based on this estimate is proposed to identify persistent (more than 3 days) inversions. Persistent inversions are found to occur from November to February and span 35% of the time. It is shown that they are closely related to PM10 pollution episodes, the PM10 concentration increasing with the boundary layer stability as the inversion develops. Polluted episodes are primarily driven by persistent inversions and consequently, pollution is of fully local origin from November to February. In March local dynamics become less important and long-range transport can dominate. Persistent inversions occur systematically during a high-pressure regime, which first triggers a synoptic scale elevated inversion due to the advection of warm air masses in the mid-troposphere. In valleys, the sheltered boundary layer becomes decoupled from the free troposphere, which allows a ground-based inversion to intensify in the following days. An inversion layer of quasi-constant temperature gradient, greater than 5 K km-1, then forms up to an altitude of about 1600 m, close to the average elevation of the summits. If the episode is sufficiently long, a stagnation stage is reached during which daytime insolation produces a shallow convective surface layer which does not destroy the persistent inversion. The inversion break-up occurs rapidly

  20. Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland

    NASA Astrophysics Data System (ADS)

    Werner, Małgorzata; Kryza, Maciej; Skjøth, Carsten Ambelas; Wałaszek, Kinga; Dore, Anthony J.; Ojrzyńska, Hanna; Kapłon, Jan

    2017-02-01

    We have implemented the WRF-Chem model version 3.5 over Poland to quantify the direct and indirect feedback effects of aerosols on simulated meteorology and aerosol concentrations. Observations were compared with results from three simulations at high spatial resolutions of 5 × 5 km: (1) BASE—without any aerosol feedback effects; (2) DIR—with direct aerosol-radiative effects (3) INDIR—with direct and indirect aerosol-radiative effects. We study the overall effect during January 2011 as well as selected episodes of the highest differences in PM10 concentrations between the three simulations. For the DIR simulation, the decrease in monthly mean incoming solar radiation (SWDOWN) appears for the entire study area. It changes geographically, from about -8.0 to -2.0 W m-2, respectively for the southern and northern parts of the country. The highest changes do not correspond to the highest PM10 concentration. Due to the solar radiation changes, the surface mean monthly temperature (T2) decreases for 96 % of the area of Poland, but not more than 1.0 °C. Monthly mean PBLH changes by more than ±5 m for 53 % of the domain. Locally the differences in PBLH between the DIR and BASE are higher than ± 20 m. Due to the direct effect, for 84 % of the domain, the mean monthly PM10 concentrations increase by up to 1.9 µg m-3. For the INDIR simulation the spatial distribution of changes in incoming solar radiation as well as air temperature is similar to the DIR simulation. The decrease of SWDOWN is noticed for the entire domain and for 23 % of the domain is higher than -5.0 W m-2. The absolute differences of PBLH are slightly higher for INDIR than DIR but similarly distributed spatially. For daily episodes, the differences between the simulations are higher, both for meteorology and PM10 concentrations, and the pattern of changes is usually more complex. The results indicate the potential importance of the aerosol feedback effects on modelled meteorology and PM10

  1. Relationships between mild PM10 and ozone urban air levels and spontaneous abortion: clues for primary prevention.

    PubMed

    Di Ciaula, Agostino; Bilancia, Massimo

    2015-01-01

    The effects of environmental pollution on spontaneous abortion (SAB) are still unclear. Records of SAB were collected from five cities (514,996 residents) and correlated with PM10, NO(2) and ozone levels. Median pollutant concentrations were below legal limits. Monthly SABs positively correlated with PM10 and ozone levels but not with NO(2) levels. The mean monthly SAB rate increase was estimated equal to 19.7 and 33.6 % per 10 μg/m(3) increase in PM10 or ozone concentration, respectively. Higher values of PM10 and SABs were evident in cities with- than in those without pollutant industries, with a number of SABs twofolds higher in the former group. In conclusion, SAB occurrence is affected by PM10 (particularly if industrial areas are present) and ozone concentrations, also at levels below the legal limits. Thus, SAB might be considered, at least in part, a preventable condition.

  2. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, Mariola; Dall'Osto, Manuel; Amato, Fulvio; Cruz Minguillón, María; Karanasiou, Angeliki; Alastuey, Andrés; Querol, Xavier

    2016-06-01

    During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 µg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 µg m-3, 8-12 %), (3) mineral dust (5 µg m-3, 13-26 %), (4) aged marine (3-5 µg m-3, 13-20 %), (5) heavy oil (0.4-0.6 µg m-3, 2 %), (6) industrial (1 µg m-3, 3-5 %), (7) sulfate (3-4 µg m-3, 11-17 %) and (8) nitrate (4-6 µg m-3, 17-21 %). Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and

  3. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    NASA Astrophysics Data System (ADS)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P < 0.001) in the urban-traffic site (NA02) than in the urban-background site (NA01). The filters were then extracted with dichloromethane using an ultrasonicator (SONICA) to perform a detailed characterization of 12 priority PAHs proposed by the USEPA, by gas chromatography-mass spectrometer (GC-MS) analysis. The concentration of Benzo[a]Pyrene, BaP (EU and National limit value: 1 ng m-3 in PM10), varied from 0.065 ng m-3 during autumn time to 0.872 ng m-3 in spring time (NA01) and from 0.120 ng m-3 during autumn time to 1.48 ng m-3 of winter time (NA02) with four overshoots. In NA02 the trend of Σ12 PAHs was comparable to NA01 but were observed higher values than NA01. In fact, the mean concentration of Σ12 PAHs, in urban-traffic site was generally 2 times greater than in urban-background site in all the campaigns. PAHs with 5 and 6 ring, many of which are suspected carcinogens or genotoxic agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a

  4. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Amato, F.; Minguillón, M. C.; Karanasiou, A.; Alastuey, A.; Querol, X.

    2015-11-01

    During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at twelve hours resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (Positive Matrix Factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 μg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 μg m-3, 8-12 %), (3) mineral dust (5 μg m-3, 13-26 %), (4) aged marine (3-5 μg m-3, 13-20 %), (5) heavy oil (0.4-0.6 μg m-3, 2 %), (6) industrial (1 μg m-3, 3-5 %), (7) sulphate (3-4 μg m-3, 11-17 %) and (8) nitrate (4-6 μg m-3, 17-21 %). Three aerosol sources were found enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factors concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and

  5. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan

    NASA Astrophysics Data System (ADS)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ghauri, Badar M.; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2016-03-01

    A mass balance method is applied to assess main source contributions to PM2.5 and PM10 levels in Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl-, NO3-, SO4-), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were determined in atmospheric fine (PM2.5) and coarse (PM10) aerosol samples collected under pre-monsoon conditions (March-April 2009) at an urban site in Karachi (Pakistan). The concentrations of PM2.5 and PM10 were found to be 75 μg/m3 and 437 μg/m3 respectively. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and "siliceous dust" were the over all dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. Combustion particles and secondary organics (EC + OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of "EC + OM" in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. In case of secondary inorganic aerosols, ammonium sulphate (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity were found in fraction PM10-2.5. The sea salt contribution is about 2% both to PM2.5 and PM10-2.5.

  6. Assesment of PM10 pollution episodes in a ceramic cluster (NE Spain): proposal of a new quality index for PM10, As, Cd, Ni and Pb.

    PubMed

    Vicente, A B; Sanfeliu, T; Jordan, M M

    2012-10-15

    Environmental pollution control is one of the most important goals in pollution risk assessment today. In this sense, modern and precise tools that allow scientists to evaluate, quantify and predict air pollution are of particular interest. Monitoring atmospheric particulate matter is a challenge faced by the European Union. Specific rules on this subject are being developed (Directive 2004/107/EC, Directive 2008/50/EC) in order to reduce the potential adverse effects on human health caused by air pollution. Air pollution has two sources: natural and anthropogenic. Contributions from natural sources can be assessed but cannot be controlled, while emissions from anthropogenic sources can be controlled; monitoring to reduce this latter type of pollution should therefore be carried out. In this paper, we describe an air quality evaluation in terms of levels of atmospheric particles (PM10), as outlined by European Union legislation, carried out in an industrialised Spanish coastal area over a five-year period with the purpose of comparing these values with those of other areas in the Mediterranean Basin with different weather conditions from North of Europe. The study area is in the province of Castellón. This province is a strategic area in the frame work of European Union (EU) pollution control. Approximately 80% of European ceramic tiles and ceramic frit manufacturers are concentrated in two areas, forming the so-called "ceramics clusters"; ones in Modena (Italy) and the other in Castellón. In this kind of areas, there are a lot of air pollutants from this industry then it is difficult to fulfill de European limits of PM10 so it is necessary to control the air quality in them. The seasonal differences in the number of days in which pollutant level limits were exceeded were evaluated and the sources of contamination were identified. Air quality indexes for each pollutant have been established to determine easily and clearly the quality of air breathed. Furthermore

  7. The stable isotope compositions of mercury in atmospheric particles (PM10) from Paris (France) and vicinity

    NASA Astrophysics Data System (ADS)

    Widory, D.; Petelet-Giraud, E.; Johnson, T.; Quétel, C.; Snell, J.; van Bocxstaele, M.; Bullen, T. D.

    2010-12-01

    Solid mercury (Hg) in atmospheric particles in the environment can be derived from a variety of primary sources and cycled through numerous secondary processes, complicating identification of its origin. Using the PM10 fraction of aerosols from Paris and vicinity, we investigated the possibility that Hg stable isotope compositions could help identify the origins of atmospheric Hg and processes affecting the atmospheric Hg budget. Characterization of Hg isotope compositions of emissions from the different potential sources (e.g. waste incinerators, coal-fired power plants, metal refining plants, road traffic, heating sources and volcanic gases) shows that those containing Hg are clearly discriminated by specific Hg isotope signatures. PM10 were sampled in three different locations: A) downtown Paris, characterized by diffuse pollution, B) nearby suburb of the city, close to suspected Hg emitters, and C) in distant suburb of the city, having only a few industrial activities in the area. Results indicate that Hg in most of the PM10 samples is explained by binary mixings. The mixing end-members include at least two distinct sources at low Hg concentrations in the aerosols, compatible with industrial activity. At high Hg concentration in the aerosols, the isotopes may likewise indicate two distinct sources with δ202Hg compositions of -4.1 and -11.4 ‰. This range is significantly less than that measured on the potential sources of Hg pollution, and may indicate secondary processes, such as gas to solid phase transfers. The occurrence of post-emission processes is reinforced by the strong correlations existing between these low δ202Hg and MIF Δ201Hg values.

  8. PM 10 concentrations and mass transport during "Red Dawn" - Sydney 23 September 2009

    NASA Astrophysics Data System (ADS)

    Leys, John F.; Heidenreich, Stephan K.; Strong, Craig L.; McTainsh, Grant H.; Quigley, Suzanne

    2011-12-01

    The dust storm on 22 and 23 September 2009, called "Red Dawn", was the largest to pass over Sydney in term of reduced visibility (400 m) since reliable records began in 1940. The maximum hourly PM 10 concentration measured near Sydney was 15,366 μg/m 3 at Bringelly and is the highest ever recorded for Sydney and possibly any Australian capital city. The Australian air quality standard of 50 μg/m 3 per 24 h was massively exceeded at Randwick (1734 μg/m 3) and Newcastle (2426 μg/m 3). Red Dawn was caused by drought and the extreme wind conditions caused by a low pressure trough and cold front associated with a deep cut-off low pressure system. The source of the dust was the red sandplains of western New South Wales, the sandplains, riverine channels and lakes of the lower Lake Eyre Basin and Channel Country of Queensland. Between 22 September 2009 at 1400 and 23 September 2009, 0.3 Mt of PM 10 dust was transported off the coast between Albion Park and Newcastle (182 km length) near Sydney. The maximum hourly rate of PM 10 dust lost off the coast near Sydney was 71,015 t/h on 22 September at 2100. Calculating the total suspended particulate sediment lost off the Australian coast for the 3000 km long Red Dawn dust storm gives an estimate of 2.54 Mt for a plume height of 2500 m. This is the first and largest off-continent loss of soil ever reported using measured, as apposed to modelled, dust concentrations for Australia.

  9. Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust.

    PubMed

    Li, Xu; Félix, Omar I; Gonzales, Patricia; Sáez, Avelino Eduardo; Ela, Wendell P

    2016-03-01

    The overall project objective at the Iron King Mine Superfund site is to determine the level and potential risk associated with heavy metal exposure of the proximate population emanating from the site's tailings pile. To provide sufficient size-fractioned dust for multi-discipline research studies, a dust generator was built and is now being used to generate size-fractioned dust samples for toxicity investigations using in vitro cell culture and animal exposure experiments as well as studies on geochemical characterization and bioassay solubilization with simulated lung and gastric fluid extractants. The objective of this study is to provide a robust method for source identification by comparing the tailing sample produced by dust generator and that collected by MOUDI sampler. As and Pb concentrations of the PM10 fraction in the MOUDI sample were much lower than in tailing samples produced by the dust generator, indicating a dilution of Iron King tailing dust by dust from other sources. For source apportionment purposes, single element concentration method was used based on the assumption that the PM10 fraction comes from a background source plus the Iron King tailing source. The method's conclusion that nearly all arsenic and lead in the PM10 dust fraction originated from the tailings substantiates our previous Pb and Sr isotope study conclusion. As and Pb showed a similar mass fraction from Iron King for all sites suggesting that As and Pb have the same major emission source. Further validation of this simple source apportionment method is needed based on other elements and sites.

  10. A pragmatic approach to estimate the number of days in exceedance of PM10 limit value

    NASA Astrophysics Data System (ADS)

    Beauchamp, Maxime; Malherbe, Laure; de Fouquet, Chantal

    2015-06-01

    European legislation on ambient air quality requests that Member States report the annual number of exceedances of short-term concentration regulatory thresholds for PM10 and delimit the concerned areas. Measurements at the monitoring stations do not allow to fully describe those areas. We present a methodology to estimate the number of exceedances of the daily limit value over a year, that can be extended to any similar issue. This methodology is applied to PM10 concentrations in France for which the daily limit value is 50 μg m-3, not to be exceeded more that 35 days. A probabilistic model is built using preliminary mapping of daily mean concentrations. First, daily atmospheric concentration fields are estimated at 1 km resolution by external drift kriging, combining surface monitoring observations and outputs from the CHIMERE chemistry transport model. Setting a conventional Gaussian hypothesis for the estimation error, the kriging variance is used to compute the probability of exceeding the daily limit value and to identify three areas: those where we can suppose as certain that the concentrations exceed or not the daily limit value and those where the situation is indeterminate because of the estimation uncertainty. Then, from the set of 365 daily mappings of the probability to exceed the daily limit value, the parameters of a translated Poisson distribution is fitted on the annual number of exceedances of the daily limit value at each grid cell, which enables to compute the probability for this number to exceed 35. The methodology is tested for three years (2007, 2009 and 2011) which present numerous exceedances of the daily limit concentration at some monitoring stations. A cross-validation analysis is carried out to check the efficiency of the methodology. The way to interpret probability maps is discussed. A comparison is made with simpler kriging approaches using indicator kriging of exceedances. Lastly, estimation of the population exposed to PM10

  11. Major component contributions to PM 10 composition in the UK atmosphere

    NASA Astrophysics Data System (ADS)

    Turnbull, Alan B.; Harrison, Roy M.

    Physical and chemical characteristics of PM 10, including chloride, nitrate, sulphate, and black smoke, have been measured on a seasonal basis at four coastal, rural, and urban sites across the UK. Weekly campaigns with 6 h sample resolution were conducted, and the results related to meteorological conditions and air mass back trajectories. Seasonal and location- specific mean values are reported, along with an indication of diurnal characteristics. Although the urban site reflected generally higher values for the anthropogenic pollutants, long-range transport of primary and secondary particles was significant. The data have been analysed using a four-component multi-linear regression model including black smoke as a surrogate for primary combustion particles, secondary particles (sulphate and nitrate), chloride, and a constant which describes "other", mainly coarse mode particles. Regression coefficients have been calculated on a site and seasonal basis. "Other" particles were higher during the summer and in the urban environment with an overall mean value of 5 μg m -3. Secondary nitrate and sulphate were strongly related to meteorological conditions and less to location. Overall, the four-component model accounts quite well ( r 2=0.76 for all data) for PM 10 mass and for some sites and seasons gives an excellent fit to the data. Addition of dummy variables representing season, urban/rural location and time of sampling gives an improvement in fit, with r 2=0.84 . Application of the coefficients derived from the "all data" model shows secondary particles contributing 28-35% of site-mean PM 10, primary combustion particles from 20 to 57%, sodium chloride, 11-34% and "other", mainly crustal particles, 3-21%. It is felt that this probably underestimates the crustal contribution, but the reasons are unclear.

  12. GC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain

    NASA Astrophysics Data System (ADS)

    Hart, Elizabeth; Coscollà, Clara; Pastor, Agustín; Yusà, Vicent

    2012-12-01

    Better knowledge of the occurrence of pesticides in the inhalable fraction of particulate matter (PM10) could be very useful for future exposure assessment in individuals of the general public. The present work studies the spatial and temporal distribution of the occurrence of currently used pesticides (CUPs) in PM10. Ambient air samples were collected from January through December 2010 at one remote, one urban and three rural sites in Valencia Region (Spain) and analyzed for 42 CUPs using a gas chromatography coupled to mass spectrometry in tandem (GC-MS/MS) approach. Overall, 24 pesticides were detected in the PM10 fraction, four of them currently banned pesticides. Among those detected, concentrations of two particle-bound pesticides (permethrin and pyrimethanil) were, to our knowledge, reported for the first time in air in the literature. The detected pesticides appeared at frequencies ranging from <1 to 47%, with chlorpyrifos, bifenthrin and diazinon presenting the highest frequencies. The concentrations detected ranged from a few to several hundred pg m-3, with ethoprophos showing the highest average concentration (149.2 pg m-3). Each station shows its own specific pesticide profile, which is linked to the different types of crops around each site. Seasonal patterns were observed in the rural stations of Alzira and Sant Jordi, correlating pesticide detection with their application in agricultural practices, mostly in spring and early summer. These findings suggest that more efforts are required to implement an extensive air monitoring network in Europe for pesticide control and to develop regulations or recommendations regarding pesticide levels in ambient air.

  13. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand).

    PubMed

    Pongpiachan, Siwatt; Iijima, Akihiro

    2016-02-01

    Estimating the atmospheric concentrations of PM10-bounded selected metals in urban air is crucial for evaluating adverse health impacts. In the current study, a combination of measurements and multivariate statistical tools was used to investigate the influence of anthropogenic activities on variations in the contents of 18 metals (i.e., Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, La, Ce and Pb) in ambient air. The concentrations of PM10-bounded metals were measured simultaneously at eight air quality observatory sites during a half-year period at heavily trafficked roads and in urban residential zones in Bangkok, Thailand. Although the daily average concentrations of Al, V, Cr, Mn and Fe were almost equivalent to those of other urban cities around the world, the contents of the majority of the selected metals were much lower than the existing ambient air quality guidelines and standard limit values. The sequence of average values of selected metals followed the order of Al > Fe > Zn > Cu > Pb > Mn > Ba > V > Sb > Ni > As > Cr > Cd > Se > Ce > La > Co > Sc. The probability distribution function (PDF) plots showed sharp symmetrical bell-shaped curves in V and Cr, indicating that crustal emissions are the predominant sources of these two elements in PM10. The comparatively low coefficients of divergence (COD) that were found in the majority of samples highlight that site-specific effects are of minor importance. A principal component analysis (PCA) revealed that 37.74, 13.51 and 11.32 % of the total variances represent crustal emissions, vehicular exhausts and the wear and tear of brakes and tires, respectively.

  14. Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia

    PubMed Central

    Khodeir, Mamdouh; Shamy, Magdy; Alghamdi, Mansour; Zhong, Mianhua; Sun, Hong; Costa, Max; Chen, Lung-Chi; Maciejczyk, Polina

    2014-01-01

    This paper presents the first comprehensive investigation of PM2.5 and PM10 composition and sources in Saudi Arabia. We conducted a multi-week multiple sites sampling campaign in Jeddah between June and September, 2011, and analyzed samples by XRF. The overall mean mass concentration was 28.4 ± 25.4 μg/m3 for PM2.5 and 87.3 ± 47.3 μg/m3 for PM10, with significant temporal and spatial variability. The average ratio of PM2.5/PM10 was 0.33. Chemical composition data were modeled using factor analysis with varimax orthogonal rotation to determine five and four particle source categories contributing significant amount of for PM2.5 and PM10 mass, respectively. In both PM2.5 and PM10 sources were (1) heavy oil combustion characterized by high Ni and V; (2) resuspended soil characterized by high concentrations of Ca, Fe, Al, and Si; and (3) marine aerosol. The two other sources in PM2.5 were (4) Cu/Zn source; (5) traffic source identified by presence of Pb, Br, and Se; while in PM10 it was a mixed industrial source. To estimate the mass contributions of each individual source category, the CAPs mass concentration was regressed against the factor scores. Cumulatively, resuspended soil and oil combustion contributed 77 and 82% mass of PM2.5 and PM10, respectively. PMID:24634602

  15. Release of IL-1 β triggered by Milan summer PM10: molecular pathways involved in the cytokine release.

    PubMed

    Bengalli, Rossella; Molteni, Elisabetta; Longhin, Eleonora; Refsnes, Magne; Camatini, Marina; Gualtieri, Maurizio

    2013-01-01

    Particulate matter (PM) exposure is related to pulmonary and cardiovascular diseases, with increased inflammatory status. The release of the proinflammatory interleukin- (IL-) 1β, is controlled by a dual pathway, the formation of inactive pro-IL-1β, through Toll-like receptors (TLRs) activation, and its cleavage by NLRP3 inflammasome. THP-1-derived macrophages were exposed for 6 h to 2.5  μg/cm(2) of Milan PM10, and the potential to promote IL-1β release by binding TLRs and activating NLRP3 has been examined. Summer PM10, induced a marked IL-1β response in the absence of LPS priming (50-fold increase compared to unexposed cells), which was reduced by caspase-1 inhibition (91% of inhibition respect summer PM10-treated cells) and by TLR-2 and TLR-4 inhibitors (66% and 53% of inhibition, resp.). Furthermore, summer PM10 increased the number of early endosomes, and oxidative stress inhibition nearly abolished PM10-induced IL-1β response (90% of inhibition). These findings suggest that summer PM10 contains constituents both related to the activation of membrane TLRs and activation of the inflammasome NLPR3 and that TLRs activation is of pivotal importance for the magnitude of the response. ROS formation seems important for PM10-induced IL-1β response, but further investigations are needed to elucidate the molecular pathway by which this effect is mediated.

  16. Forest fires and PM10 pollution: the March 2012 case in Northern Spain

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, Domingo; García Codron, Juan Carlos; Carracedo Martín, Virginia

    2016-04-01

    Forest fires are one of the largest sources of particulate matter, carbon monoxide, volatile organic compounds and other pollutants at regional scale. They significantly impact on local air quality and human health, even far from their original sources. March 2012 was one of the largest fire activity late winter and early spring seasons across northern Spain and Portugal. Official statistics from the Spanish and Portuguese authorities show that, during that month, approximately 35.000 ha were burned, representing the top March season in Cantabria (N. Spain) and the northern distritos of Portugal since 1981, most of them occurring in the mountainous areas, as depicted from the FIRMS database (https://firms.modaps.eosdis.nasa.gov/). At the same time, an analysis of the pollution data (Airbase dataset; http://www.eea.europa.eu/) show an increase in PM10 average values and exceedences of the limit values across the same area simultaneously or immediately after the main fire activity episodes. A comprehensive analysis of this fire and pollution event was undertaken to analyze the possible contribution of forest fires and other sources of PM10 to the high levels of this pollutant at ground level. Besides statistics of fire activity, satellite "hot spots" and ground level pollution data, we have included in our analysis meteorological records (synoptic stations, upper air soundings), backtrajectories (http://ready.arl.noaa.gov/HYSPLIT.php) and dust forecast models (https://www.bsc.es/earth-sciences/mineral-dust/catalogo-datos-dust). The results show a good agreement between the spatial and temporal variability of the levels of PM10 and the direction of the pollution plumes downwind the forest fires. The activity was mostly concentrated during 3 events, the first one between February 25th to March 3rd; the second spanning from 10th to 17th, and the last one, the most severe of the three, at the end of March. The climatological background was favourable, because most of the

  17. Feasibility of including fugitive PM-10 emissions estimates in the EPA emissions trends report

    SciTech Connect

    Barnard, W.; Carlson, P.

    1990-09-01

    The report describes the results of Part 2 of a two part study. Part 2 was to evaluate the feasibility of developing regional emission trends for PM-10. Part 1 was to evaluate the feasibility of developing VOC emission trends, on a regional and temporal basis. These studies are part of the effort underway to improve the national emission trends. Part 1 is presented in a separate report. The categories evaluated for the feasibility of developing regional emissions estimates were: unpaved roads, paved roads, wind erosion, agricultural tilling, construction activities, feedlots, burning, landfills, mining and quarrying unpaved parking lots, unpaved airstrips and storage piles.

  18. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of

  19. Alternative dry separation of PM10 from soils for characterization by kinetic extraction: example of new Caledonian mining soils.

    PubMed

    Pasquet, Camille; Gunkel-Grillon, Peggy; Laporte-Magoni, Christine; Serres, Arnaud; Quiniou, Thomas; Rocca, François; Monna, Fabrice; Losno, Remi; van Oort, Folkert; Chateau, Carmela

    2016-12-01

    A simple new device for dry separation of fine particulate matter from bulk soil samples is presented here. It consists of a stainless steel tube along which a nitrogen flow is imposed, resulting in the displacement of particles. Taking into account particle transport, fluid mechanics, and soil sample composition, a tube 6-m long, with a 0.04-m diameter, was found best adapted for PM10 separation. The device rapidly produced several milligrams of particulate matter, on which chemical extractions with EDTA were subsequently performed to study the kinetic parameters of extractable metals. New Caledonian mining soils were chosen here, as a case-study. Although the easily extracted metal pool represents only 0.5-6.4 % of the total metal content for the elements studied (Ni, Co, Mn), the total concentrations are extremely high. This pool is therefore far from negligible, and can be troublesome in the environment. This dry technique for fine particle separation from bulk parent soil eliminates the metal-leaching risks inherent in wet filtration and should therefore ensure safe assessment of environmental quality in fine-textured, metal-contaminated soils.

  20. Acoustic and aerodynamic performance of a variable-pitch 1.83-meter-(6-ft) diameter 1.20-pressure-ratio fan stage (QF-9)

    NASA Technical Reports Server (NTRS)

    Glaser, F. W.; Woodward, R. P.; Lucas, J. G.

    1977-01-01

    Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds.

  1. Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model

    NASA Astrophysics Data System (ADS)

    Escudero, M.; Stein, A.; Draxler, R. R.; Querol, X.; Alastuey, A.; Castillo, S.; Avila, A.

    2006-03-01

    A source apportionment methodology has been implemented to estimate the contribution from different arid geographical areas to the levels of measured atmospheric particulate matter with diameters less than 10 μm (PM10). Toward that end, the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) has been used to quantify the proportions of mineral dust originated from specific geographical areas in northern Africa. HYSPLIT simulates the transport, dispersion, and deposition of dust plumes as they travel from the source areas to the receptors. This model has been configured to reproduce high daily ambient PM10 levels recorded at three Spanish EMEP (Cooperative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air pollutants in Europe) regional background monitoring stations, located over the central Iberian Peninsula, during a North African dust outbreak from 12 to 15 March 2003. Different model setups have been utilized to determine the best suite of parameters needed to better represent the observed concentrations. Once the simulation has been configured, the model has been run for individual scenarios which include eight specific source areas over northern Africa considered as possible contributors to the PM10 levels measured at the monitoring stations. One additional run has been carried out to account for the rest of the dust sources in northern Africa. Furthermore, the fractional contribution to the PM10 air concentrations at the receptors from each run has been used to estimate the source apportionment. According to these calculations, the contribution from each area to the PM10 recorded over central Iberia for the March 2003 episode can be detailed as follows: 20-30% of the PM10 dust originated in Mauritania and the western Sahara, 15-20% from Mali, Mauritania and the western flanks of the Ahaggar Mountains, and 55-60% from other northwestern African sources within the rest of the desert source area.

  2. Composition of Organic Compounds Adsorbed on PM10 in the Air Above Maribor.

    PubMed

    Miuc, Alen; Vončina, Ernest; Lečnik, Uroš

    2015-01-01

    Organic compounds in atmospheric particulate matterabove Maribor were analysed in 120 samples of PM10 sampled according to the EN 12341:2014 reference method. Organic compounds compositions were investigated together with the primary and secondary sources of air pollution. Silylation as derivatisation method was used for the GC/MS determination of volatile and semi-volatile polar organic compounds. Distribution of fatty acids, n-alkanes and iso-alkanes, phthalate esters, siloxanes, different sterols, various sugars and sugar alcohols, compounds of lignin and resin acids, dicarboxylic acids from photochemical reactions, PAHs, organic nitrogen compounds and products from secondary oxidation of monoterpenes were determined. The use of silicone grease for the purpose of lubricating the impact surface of the air sampler caused higher values of gravimetric determination. Solid particles may have been bounced from the surface of a greasy impact plate and re-entrained within the air stream and then collected on a sample filter. The carryover of siloxanes was at least from 5% up to 15% of the accumulated particles weight, depending on ambient temperature. This was the reason that the gravimetric results for determination of PM10 according to the standard EN 12341:2014 were overestimated.

  3. [Experimental study on emission characteristics of PM10 in coal-fired boilers].

    PubMed

    Guo, Xin; Chen, Dan; Zheng, Chu-Guang; Sui, Jian-Cai; Xu, Ming-Hou

    2008-03-01

    Fly ash was sampled at the inlet and outlet of ash collectors in four different coal-fired utility boilers using 13-stage low pressure impactor (LPI). The mass distribution, emission characteristics and the composition at different size particle of PM10 were studied. The results show that PM10 of the four boilers have a similar himodal distribution, with two peaks formed around 0.1 microm and 2.36 - 3.95 microm, respectively. The lowest efficiency of ash collectors was between 50% - 65% when the particle sizes were around 0.1 - 1 microm, no matter Venturi water membrane dust collector or ESP was used. Ash collectors show different removal efficiencies to various particle sizes PM. The removal efficiency of ash collectors was about 96% around 10 microm, while under 1 microm it was between 62% - 83%. The chemical composition of the size-segregated ash showed that the element S and Na were obvious enrichment in finer ash, which is possibly formed via vaporization and subsequent condensation of inorganic matter. While the refractory oxides were the major composition in bigger size ash, which may be formed via char fragmentation, excluded mineral fragmentation and included mineral coalescence.

  4. An interlaboratory comparison study on the measurement of elements in PM10

    NASA Astrophysics Data System (ADS)

    Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna

    2016-01-01

    An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.

  5. The contribution of Saharan dust in PM(10) concentration levels in Anatolian Peninsula of Turkey.

    PubMed

    Kabatas, B; Unal, A; Pierce, R B; Kindap, T; Pozzoli, L

    2014-08-01

    Sahara-originated dust is the most significant natural source of particulate matter; however, this contribution is still unclear in the Eastern Mediterranean especially in Western Turkey, where significant industrial sources and metropolitan areas are located. The Real-time Air Quality Modeling System (RAQMS) is utilized to explore the possible effects of Saharan dust on high levels of PM10 measured in Turkey. RAQMS model is compared with 118-air quality stations distributed throughout Turkey (81 cities) for April 2008. MODIS aerosol product (MOD04 for Terra and MYD04 for Aqua) is used to see columnar aerosol loading of the atmosphere at 550 nm (Aerosol optical depth (AOD) values found to be between 0.6 and 0.8 during the episode). High-resolution vertical profiles of clouds and aerosols are provided from CALIOP, on board of CALISPO satellite. The results suggest a significant contribution of Sahara dust to high levels of PM10 in Turkey with RAQMS and in situ time series showing similar patterns. The two data sets are found to be in agreement with a correlation of 0.87.

  6. LC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Hart, Elizabeth; Pastor, Agustín; Yusà, Vicent

    2013-10-01

    Pesticides in the inhalable fraction of particulate matter (PM10) should be well tracked in order to contribute information to future exposure assessment in individuals of the general public. A total of 40 current-used pesticides and metabolites were searched for in ambient air samples collected from January through December 2010. The samples were taken from one remote, one urban and three rural sites in Valencia Region (Spain) and analyzed using liquid chromatography coupled to mass spectrometry in tandem (LC-MS/MS). In the PM10 fraction 17 pesticides and metabolites were detected overall, two of them currently banned (carbofuran and omethoate, although the latter is a metabolite of the permitted pesticide dimethoate). The detected pesticides appeared at frequencies ranging from 1 to 75%, with omethoate, terbuthylazine and its metabolites, and carbendazim presenting the highest frequencies. The concentrations detected ranged from few pg m-3 to thousands of pg m-3, with omethoate having the highest average concentration (141.15 pg m-3) in the 5 sites overall. Each station showed its own specific pesticide profile, which is linked to the different types of crops around each site. In the rural stations pesticide levels were greater in spring and early summer, which correlates with their application in agricultural practices. These findings suggest that more efforts are required to implement an extensive air monitoring network in Europe for pesticide control and to develop regulations or recommendations regarding safer pesticide levels in ambient air.

  7. Chemical mass balance source apportionment of PM 10 in an industrialized urban area of Northern Greece

    NASA Astrophysics Data System (ADS)

    Samara, C.; Kouimtzis, Th; Tsitouridou, R.; Kanias, G.; Simeonov, V.

    Ambient PM 10 were sampled at three sites in an industrialized urban area of Northern Greece during June 1997-June 1998 and analyzed for 17 chemical elements, 5 water-soluble ions and 13 polycyclic aromatic hydrocarbons. In addition, chemical source profiles consisting of the same particulate components were obtained for a number of industrial activities (cement, fertilizer and asphalt production, quarry operations, metal electroplating, metal welding and tempering, steel manufacture, lead and bronze smelters, metal scrap incineration), residential oil burning, non-catalyst and catalyst-equipped passenger cars, diesel fuelled taxis and buses, as well as for geological fugitive sources (paved road dust and soil from open lands). Ambient and source data were used in a chemical mass balance (CMB) receptor model for source identification and apportionment. Results of CMB modeling showed that major source of ambient PM 10 at all three sites was diesel vehicle exhaust. Significant contribution from industrial oil burning was also evidenced at the site located closest to the industrial area.

  8. Characteristics, Sources and Health Risk Assessment of Trace Metals in PM10 in Panzhihua, China.

    PubMed

    Cheng, Xin; Huang, Yi; Long, Zhijie; Ni, Shijun; Shi, Zeming; Zhang, Chengjiang

    2017-01-01

    Ambient PM10 air samples were collected at two industrial sites and one urban residential site in the mining city of Panzhihua, China, from April, 2014, to January, 2015. Mass concentrations of ten trace metals (As, Cd, Cr, Ni, Co, V, Mn, Cu, Pb, and Zn) in PM10 were determined by inductively coupled plasma-mass spectrometry. The results showed Zn, Pb, Cu, Mn and V were the most abundant elements from the industrial sites. Concentrations for Cd, Cr, Co, Ni, Mn and Cu at industrial sites greatly exceeded the air quality standards of the World Health Organization and the Chinese Ministry of Environmental Protection. Principal component analysis indicated that the main sources of the trace metals were steel smelting, fuel combustion, geological and mineral dust. Four different clusters of particles (i.e., mineral, calcium-containing, soot and aluminosilicate) were identified by scanning electron microscopy coupled with energy dispersive X-ray spectrometry. Chromium (Cr) was found to present the highest excess cancer risk, implying the potential for carcinogenic health effects in local inhabitants. Manganese (Mn) presented a non-carcinogenic health risk to children and adults, while the other metals were within acceptable limits.

  9. Motor vehicle contributions to ambient PM10 and PM2.5 at selected urban areas in the USA.

    PubMed

    Abu-Allaban, Mahmoud; Gillies, John A; Gertler, Alan W; Clayton, Russ; Proffitt, David

    2007-09-01

    A source apportionment study was carried out to estimate the contribution of motor vehicles to ambient particulate matter (PM) in selected urban areas in the USA. Measurements were performed at seven locations during the period September 7, 2000 through March 9, 2001. Measurements included integrated PM(2.5) and PM(10) concentrations and polycyclic aromatic hydrocarbons (PAHs). Ambient PM(2.5) and PM(10) were apportioned to their local sources using the chemical mass balance (CMB) receptor model and compared with results obtained using scanning electron microscopy (SEM). Results indicate that PM(2.5) components were mainly from combustion sources, including motor vehicles, and secondary species (nitrates and sulfates). PM(10) consisted mainly of geological material, in addition to emissions from combustion sources. The fractional contributions of motor vehicles to ambient PM were estimated to be in the range from 20 to 76% and from 35 to 92% for PM(2.5) and PM(10), respectively.

  10. Owens Valley Serious Area Plan for the 1987 24-Hour PM10; Final Approval of California Air Plan

    EPA Pesticide Factsheets

    EPA is taking final action to approve a state implementation plan (SIP) revision submitted by the State of California to meet Clean Air Act equirements applicable to the Owens Valley PM10 nonattainment area.

  11. 77 FR 31351 - Adequacy Determination for Aspen PM10 and Fort Collins Carbon Monoxide Maintenance Plans' Motor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Vehicle Emissions Budgets for Transportation Conformity Purposes; State of Colorado AGENCY: Environmental... that the Agency has found the following adequate for transportation conformity purposes: The ``Revised... will affect future transportation conformity determinations. \\1\\ PM 10 refers to particulate...

  12. Wind erosion from a sagebrush steppe burned by wildfire: measurements of PM10 and total horizontal sediment flux

    USGS Publications Warehouse

    Wagenbrenner, Natalie S.; Germino, Matthew J.; Lamb, Brian K.; Robichaud, Peter R.; Foltz, Randy B.

    2013-01-01

    above the soil surface, had a maximum PM10 vertical flux of 100 mg m-2 s-1, and generated a large dust plume that was visible in satellite imagery. The peak PM10 concentration measured on-site at a height of 2 m in the downwind portion of the burned area was 690 mg m-3. Our results indicate that wildfire can convert a relatively stable landscape into one that is a major dust source.

  13. Source apportionment and health risk assessment of PM10 in a naturally ventilated school in a tropical environment.

    PubMed

    Mohamad, Noorlin; Latif, Mohd Talib; Khan, Md Firoz

    2016-02-01

    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible.

  14. Linking Endotoxins, African Dust PM10 and Asthma in an Urban and Rural Environment of Puerto Rico

    PubMed Central

    Ortiz-Martínez, Mario G.; Rodríguez-Cotto, Rosa I.; Ortiz-Rivera, Mónica A.; Pluguez-Turull, Cedric W.; Jiménez-Vélez, Braulio D.

    2015-01-01

    African Dust Events (ADE) are a seasonal phenomenon that has been suggested to exacerbate respiratory and proinflammatory diseases in Puerto Rico (PR). Increases in PM10 concentration and the effects of biological endotoxins (ENX) are critical factors to consider during these storms. ENX promote proinflammatory responses in lungs of susceptible individuals through activation of the Toll-like receptors (TLR2/4) signaling pathways. The objective of the study was to evaluate the toxicological and proinflammatory responses stimulated by ADE PM10 ENX reaching PR using human bronchial epithelial cells. PM10 organic extracts from a rural and urban site in PR (March 2004) were obtained from ADE and non-ADE and compared. A retrospective data analysis (PM10 concentration, aerosol images, and pediatric asthma claims) was performed from 2000 to 2012 with particular emphasis in 2004 to classify PM samples. Urban extracts were highly toxic, proinflammatory (IL-6/IL-8 secretion), and induced higher TLR4 expression and NF-κB activation compared to rural extracts. ENX were found to contribute to cytotoxicity and inflammatory responses provoked by urban ADE PM10 exposure suggesting a synergistic potency of local and natural ENX incoming from ADE. The contribution of ADE PM10 ENX is valuable in order to understand interactions and action mechanisms of airborne pollutants as asthma triggers in PR. PMID:26681839

  15. Influence of road traffic, residential heating and meteorological conditions on PM10 concentrations during air pollution critical episodes.

    PubMed

    Gualtieri, Giovanni; Toscano, Piero; Crisci, Alfonso; Di Lonardo, Sara; Tartaglia, Mario; Vagnoli, Carolina; Zaldei, Alessandro; Gioli, Beniamino

    2015-12-01

    The importance of road traffic, residential heating and meteorological conditions as major drivers of urban PM10 concentrations during air pollution critical episodes has been assessed in the city of Florence (Italy) during the winter season. The most significant meteorological variables (wind speed and atmospheric stability) explained 80.5-85.5% of PM10 concentrations variance, while a marginal role was played by major emission sources such as residential heating (12.1%) and road traffic (5.7%). The persistence of low wind speeds and unstable atmospheric conditions was the leading factor controlling PM10 during critical episodes. A specific PM10 critical episode was analysed, following a snowstorm that caused a "natural" scenario of 2-day dramatic road traffic abatement (-43%), and a massive (up to +48%) and persistent (8 consecutive days) increase in residential heating use. Even with such a strong variability in local PM10 emissions, the role of meteorological conditions was prominent, revealing that short-term traffic restrictions are insufficient countermeasures to reduce the health impacts and risks of PM10 critical episodes, while efforts should be made to anticipate those measures by linking them with air quality and weather forecasts.

  16. The Exposure Uncertainty Analysis: The Association between Birth Weight and Trimester Specific Exposure to Particulate Matter (PM2.5 vs. PM10)

    PubMed Central

    Kumar, Naresh

    2016-01-01

    Often spatiotemporal resolution/scale of environmental and health data do not align. Therefore, researchers compute exposure by interpolation or by aggregating data to coarse spatiotemporal scales. The latter is often preferred because of sparse geographic coverage of environmental monitoring, as interpolation method cannot reliably compute exposure using the small sample of sparse data points. This paper presents a methodology of diagnosing the levels of uncertainty in exposure at a given distance and time interval, and examines the effects of particulate matter (PM) ≤2.5 µm and ≤10 µm in diameter (PM2.5 and PM10, respectively) on birth weight (BW) and low birth weight (LBW), i.e., birth weight <2500 g in Chicago (IL, USA), accounting for exposure uncertainty. Two important findings emerge from this paper. First, uncertainty in PM exposure increases significantly with the increase in distance from the monitoring stations, e.g., 50.6% and 38.5% uncertainty in PM10 and PM2.5 exposure respectively for 0.058° (~6.4 km) distance from the monitoring stations. Second, BW was inversely associated with PM2.5 exposure, and PM2.5 exposure during the first trimester and entire gestation period showed a stronger association with BW than the exposure during the second and third trimesters. But PM10 did not show any significant association with BW and LBW. These findings suggest that distance and time intervals need to be chosen with care to compute exposure, and account for the uncertainty to reliably assess the adverse health risks of exposure. PMID:27649214

  17. The contribution of biomass burning to PAH levels in PM10

    NASA Astrophysics Data System (ADS)

    Belis, Claudio; Larsen, Bo; Piazzalunga, Andrea; Vecchi, Roberta; Colombi, Cristina; Gianelle, Vorne

    2010-05-01

    The objective of the present study is to identify the contribution of wood burning and biomass burning to the levels of toxic polycyclic aromatic hydrocarbons (PAH) in the atmospheric particulate matter. Benzo(a)pyrene has been selected as a marker of PAHs since it is predominantly present in the solid phase and is the only isomer having a target value for its atmospheric concentrations in the European Union. The levels of BaP have been evaluated both as ambient air concentration (ng/m3) as required by directive 2007/104/EC and as mass fraction of PM10 (mg/g). The levels of BaP were estimated by computing multiple linear regression and non linear factorial regression. The model parameters were fitted using two independent datasets of PM10 samples collected between 2005 and 2007 in 3 urban sites located in the Po Valley and in the southern Alps. The explanatory variables used for estimating BaP were selected using forward selection based on F test from a pool of variables representing: biomass burning (levoglucosan), emissions from unspecified combustion processes (CO, NOx, EC, OC and trace elements) and atmospheric properties (wind speed, temperature, and height of the mixing layer). The uncertainty of the model was estimated by propagating the standard uncertainties of the corresponding variables. An analysis of sensitivity was conducted by evaluating the influence of the variation of the measured variables along a range comparable to their standard deviations on the model outputs. In the background sites levoglucosan explained between 55% (s.e. 16%) and 87% (s.e. 8 %) of the BaP contribution to the PM10 mass and between 53% (s.e.16%) and 84% (s.e.10%) of the BaP concentration. Levoglucosan was the most important single variable to explain BaP levels. Other variables explaning significant part of BaP variance were NOx, CO , OC, wind speed, and air temperature. In a kerbside site, the influence of levoglucosan on BaP variance decreased but was still relevant (44

  18. The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems

    NASA Astrophysics Data System (ADS)

    Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.

    2015-10-01

    Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of time series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.

  19. The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems

    SciTech Connect

    Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.

    2015-10-22

    Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of time series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.

  20. Biodirected mutagenic chemical assay of PM(10) extractable organic matter in Southwest Mexico City.

    PubMed

    Villalobos-Pietrini, Rafael; Hernández-Mena, Leonel; Amador-Muñoz, Omar; Munive-Colín, Zenaida; Bravo-Cabrera, José Luis; Gómez-Arroyo, Sandra; Frías-Villegas, Alejandro; Waliszewski, Stefan; Ramírez-Pulido, José; Ortiz-Muñiz, Rocío

    2007-12-01

    The concentration of breathable particles (PM(10)) in urban areas has been associated with increases in morbidity and mortality of the exposed populations, therein the importance of this study. Organic compounds adsorbed to PM(10) are related to the increased risk to human health. Although some studies have shown the lack of correlation between specific mutagenic compounds in an organic complex mixture (OCM) and the mutagenic response in several bioassays, the same organic compounds selectively separated in less complex groups can show higher or lower mutagenic responses than in the OCM. In this study, we fractionated the OCM, from the PM(10) in four organic fractions of increasing polarity (F1-F4). The Salmonella bioassay with plate incorporation was applied for each one using TA98, with and without S9 (mammalian metabolic activation), and YG1021 (without S9) strains. The most polar fraction (F4) contained the greatest mass followed by F1 (non-polar), F2 and F3 (moderately polar). The concentrations of the OCM as well as the F4 were the only variables correlated with PM(10), atmospheric thermal inversions, fire-prone area, NO(2), SO(2), CO, rain and relative humidity. This indicated that polar organic compounds were originated in gas precursors formed during the atmospheric thermal inversions as well as the product of the incomplete combustion of vehicular exhausts and of burned vegetation. The percentages of the total PAH, and the individual PAH with molecular weight > or = 228 g mol(-1) (except retene) correlated with the percentages of indirect-acting mutagenicity in TA98+S9. The percentages of the total nitro-PAH and most of the analyzed individual nitro-PAH correlated with percentages of the direct-acting mutagenicity in both TA98-S9 and YG1021, the latter being more sensitive. In general, the highest mutagenic activity (indirect and direct) was found in F3 (moderately polar) and in F4 (polar). The non-polar fraction (F1) did not exhibit any kind of

  1. Global emissions of PM10 and PM2.5 from agricultural tillage and harvesting operations

    NASA Astrophysics Data System (ADS)

    Chen, W.; Tong, D.; Lee, P.

    2014-12-01

    Soil particles emitted during agricultural activities is a major recurring source contributing to atmospheric aerosol loading. Emission inventories of agricultural dust emissions have been compiled in several regions. These inventories, compiled based on historic survey and activity data, may reflect the current emission strengths that introduce large uncertainties when they are used to drive chemical transport models. In addition, there is no global emission inventory of agricultural dust emissions required to support global air quality and climate modeling. In this study, we present our recent efforts to develop a global emission inventory of PM10 and PM2.5 released from field tillage and harvesting operations using an emission factors-based approach. Both major crops (e.g., wheat and corn) and forage production were considered. For each crop or forage, information of crop area, crop calendar, farming activities and emission factors of specified operations were assembled. The key issue of inventory compilation is the choice of suitable emission factors for specified operations over different parts of the world. Through careful review of published emission factors, we modified the traditional emission factor-based model by multiplying correction coefficient factors to reflect the relationship between emission factors, soil texture, and climate conditions. Then, the temporal (i.e., monthly) and spatial (i.e., 0.5º resolution) distribution of agricultural PM10 and PM2.5 emissions from each and all operations were estimated for each crop or forage. Finally, the emissions from individual crops were aggregated to assemble a global inventory from agricultural operations. The inventory was verified by comparing the new data with the existing agricultural fugitive dust inventory in North America and Europe, as well as satellite observations of anthropogenic agricultural dust emissions.

  2. Evaluation of standardless EDXRF analysis for the determination of elements on PM10 loaded filters

    NASA Astrophysics Data System (ADS)

    Yatkin, S.; Gerboles, M.; Borowiak, A.

    2012-07-01

    Energy Dispersive X-ray Fluorescence (EDXRF) was compared to Inductively Coupled Plasma Mass Spectrometer (ICP-MS) for the measurements of elements (Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Fe, Co, Ni, Mn, Cu, Zn, As, Br, Sr, Pb, Mo, Cd, Sn and Sb) in particulate matter (PM10) collected on Teflon and two types of quartz filters at different sites. Two different methods of EDXRF analysis, linear calibration and standardless analysis, were studied. For the linear calibration, Pb, Mn, Fe, Cu, Ti and Zn were found to be site and filter type independent whereas Ca was only site independent. The site effect was evidenced for K, As, Ni, and V for quartz filter. The standardless EDXRF analysis showed better results than linear calibrations except for As, Co and V for Teflon filters and Cr and V for quartz filters. The measurement uncertainty of standardless EDXRF analysis was estimated by establishing a model equation. The measurement uncertainty estimated with this model equation was confirmed by field experiments provided that elemental masses exceeded observed thresholds. It was found that standardless EDXRF analysis is able to quantify most of the elements studied, particularly on Teflon filters rather than quartz filters. The standardless EDXRF analysis complies with the data quality objectives (DQO) of European Directives to measure Pb in PM10 for three types of filters, even at concentrations lower than limit values (LV). The detection limits (MDL) of standardless EDXRF analysis for measuring As and Cd were found to be insufficient to meet the legislative requirements. The MDL of Ni was sufficiently low for measurements; however, measurement uncertainties remained higher than the DQO at the lower concentrations than LV.

  3. Contribution of mineral dust sources to street side ambient and suspension PM10 samples

    NASA Astrophysics Data System (ADS)

    Kupiainen, Kaarle; Ritola, Roosa; Stojiljkovic, Ana; Pirjola, Liisa; Malinen, Aleksi; Niemi, Jarkko

    2016-12-01

    The aim of this study was to determine the relative contributions of mineral dust sources, particularly pavement wear and traction sanding in the PM10 samples collected from 1) street side ambient air and 2) street dust suspension emission samples. The study was conducted between autumn 2011 and spring 2012 at Suurmetsäntie in Helsinki, Finland. The results showed that dust from pavement aggregates was the largest source during spring, accounting for 40-50 percent of the particulate matter in the air and suspension samples. Based on studies on formation of dust, major source of the dust from pavement aggregates is the wear by studded tyres. Traction sanding (1-5.6 mm wet sieved crushed stone) and road salting (NaCl) were applied frequently during the winter 2011/2012. Sanding material explained about 25 percent of the street dust in the air and suspension samples. Traction sanding is estimated to account for approximately few percent of the pavement dust via "the sandpaper effect". Effect of road salt was few percent in the samples. The source contributions from pavement and traction sanding observed in spring 2012 at Suurmetsäntie are similar to what has been estimated in a previous study conducted in the early 2000s in Finland. The general perception in Finland has been that traction sanding is the main source of airborne street dust. Studies conducted in 2000s and the results of this study, however, indicate that traction sanding has been an important but not the main source of dust in PM10 even in winters with extensive use of sanding for traction control.

  4. Assessing the contribution of water to the mass closure of PM10

    NASA Astrophysics Data System (ADS)

    Perrino, C.; Catrambone, M.; Farao, C.; Canepari, S.

    2016-09-01

    The data obtained during a number of field studies aimed at determining the chemical composition of atmospheric particulate matter (PM) have shown that the measurement of the main PM components (main elements, ions, elemental carbon, organic carbon) was generally sufficient to obtain a reasonable mass closure. Notwithstanding, a wide gap between PM mass concentration and reconstructed mass was observed in two peculiar environmental conditions: desert dust intrusion and severe atmospheric stability episodes characterized by very high ammonium nitrate concentration. In these two cases, the mass closure improved significantly by adding the concentration of PM-bound water. Water was determined by using a coulometric Karl-Fisher system equipped with a controlled heating device; the method was able to separate different water contributions released in different temperature ranges from 50 to 250 °C. In our field studies the amount of water associated to ammonium salts in winter stability conditions was mostly dependent on ammonium nitrate concentration and constituted up to 22% of the total PM10 mass; the specific water contribution linked to ammonium salts (released in the temperature range 180-250 °C) constituted up to 30% of the ammonium nitrate mass. It was confirmed that in these extreme conditions quartz and Teflon filters behave differently: when measured on quartz filters, PM concentration was lower than on Teflon, the mass closure was satisfactory and the concentration of water was presumably very low. In the case of desert dust episodes, water was up to 10% of total PM10 mass; the specific water contribution linked to desert dust (released in the temperature range 100-180 °C) constituted about 5% of the mass of soil components. In other environmental situations, such as urban environments, marine atmosphere and rural areas, the concentration of PM-bound water was below 2-3 μg/m3.

  5. Large chemical characterisation of PM10 emitted from graphite material production: Application in source apportionment.

    PubMed

    Golly, B; Brulfert, G; Berlioux, G; Jaffrezo, J-L; Besombes, J-L

    2015-12-15

    This work focuses on emissions from industrial sources that are still poorly understood in Europe, especially the "carbon industry". The study is based on two intensive sampling campaigns performed in a graphite material production plant for 2weeks in July 2013 and November 2013 in alpine valleys. The chemical characterization of PM10 was conducted at three sampling sites (outdoor and indoor sites) located inside one industrial area, which is considered as the highest emissions source of polycyclic aromatic hydrocarbons (PAHs) in the Arve valley. The identification of specific tracers among metals and trace elements is commonly used to characterize industrial emissions. In our study, original enrichment factors relative to the "rural exposed background" have been calculated, and the metallic fraction was not affected by this industrial source. In contrast, the organic fraction of PM10 has a number of features, providing a complete organic source profile and referred to as the "carbon industry". In particular, polycyclic aromatic sulfur heterocycles (PASH) have been largely detected from fugitive emissions with rather large concentrations. The average concentrations of benzo(b)naphtho(2,1-d)thiophene (BNT(2,1)) reached 2.35-6.56ng·m(-3) and 60.5-376ng·m(-3) for outdoor and indoor sites, respectively. The use of this reference profile in the chemical mass balance model (CMB) applied to samples collected in two sites near industrial areas shows that this source had an average contribution of 6% of the organic matter (OM) mass during the sampling period during the winter of 2013.

  6. Characterisation of PM 10 emissions from woodstove combustion of common woods grown in Portugal

    NASA Astrophysics Data System (ADS)

    Gonçalves, Cátia; Alves, Célia; Evtyugina, Margarita; Mirante, Fátima; Pio, Casimiro; Caseiro, Alexandre; Schmidl, Christoph; Bauer, Heidi; Carvalho, Fernando

    2010-11-01

    A series of source tests was performed to evaluate the chemical composition of particle emissions from the woodstove combustion of four prevalent Portuguese species of woods: Pinus pinaster (maritime pine), Eucalyptus globulus (eucalyptus), Quercus suber (cork oak) and Acacia longifolia (golden wattle). Analyses included water-soluble ions, metals, radionuclides, organic and elemental carbon (OC and EC), humic-like substances (HULIS), cellulose and approximately l80 organic compounds. Particle (PM 10) emission factors from eucalyptus and oak were higher than those from pine and acacia. The carbonaceous matter represented 44-63% of the particulate mass emitted during the combustion process, regardless of species burned. The major organic components of smoke particles, for all the wood species studied, with the exception of the golden wattle (0.07-1.9% w/w), were anhydrosugars (0.2-17% w/w). Conflicting with what was expected, only small amounts of cellulose were found in wood smoke. As for HULIS, average particle mass concentrations ranged from 1.5% to 3.0%. The golden wattle wood smoke presented much higher concentrations of ions and metal species than the emissions from the other wood types. The results of the analysis of radionuclides revealed that the 226Ra was the naturally occurring radionuclide more enriched in PM 10. The chromatographically resolved organics included n-alkanes, n-alkenes, PAH, oxygenated PAH, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl ester acids.

  7. Spatial Correlation Analysis between Particulate Matter 10 (PM10) Hazard and Respiratory Diseases in Chiang Mai Province, Thailand

    NASA Astrophysics Data System (ADS)

    Trang, N. Ha; Tripathi, N. K.

    2014-11-01

    Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in

  8. Meteo-climatic conditions influence the contribution of endotoxins to PM10 in an urban polluted environment.

    PubMed

    Traversi, D; Alessandria, L; Schilirò, T; Chiadò Piat, S; Gilli, G

    2010-02-01

    A decrease in inhalable particulate matter (PM10) pollution is a top priority in urban areas of northern Italy. The sources of PM10 are both anthropogenic and natural. The former have been broadly investigated while the latter are less well known. Endotoxins are natural compounds of PM10 and are potentially toxic. Endotoxins are part of the outer membrane of Gram-negative bacteria. Their health effects are linked to environmental exposure. The effects mainly consist of respiratory symptoms, including pulmonary function decline. The occurrence of endotoxins has been proven in several occupational environments where organic materials supply an optimal substrate for bacteria growth. Knowledge about the presence of these contaminants in the environment is limited. The aim of this work is to evaluate the endotoxin levels of PM10 in the urban air of Turin, and to investigate the influence of seasonal and meteo-climatic factors. The sampling was conducted from January to December 2007. Endotoxin determination was performed by an LAL assay after extraction optimization. The PM10 levels ranged from 11.90 to 104.74 microg/m(3) (48.28 +/- 23.09) while the endotoxin levels ranged between 0.09 and 0.94 EU/m(3) (0.42 +/- 0.23). The seasonal trends of PM10 and endotoxin are inversely proportional. There is a statistically significant correlation between endotoxin and temperature (r = 0.532 p < 0.01), as well as between endotoxin and relative humidity (r = -0.457 p < 0.01). However, temperature has a predominant role. We observed that urban endotoxin concentrations are narrow in range and that the contribution of endotoxins to the total PM10 is only two millionths.

  9. Quantitative analysis on windblown dust concentrations of PM10 (PM2.5) during dust events in Mongolia

    NASA Astrophysics Data System (ADS)

    Jugder, Dulam; Shinoda, Masato; Kimura, Reiji; Batbold, Altangerel; Amarjargal, Danzansambuu

    2014-09-01

    Dust concentration, wind speed and visibility, measured at four sites in the Gobi Desert and at a site in the steppe zone of Mongolia over a period of 4.5 years (January 2009 to May 2013), have been analyzed for their relationships, their effects on visibility, and for an estimate of the threshold wind necessary for dust emission in the region. Based on quantitative analysis on measurements, we evaluated that dust emission concentrations of 41-61 (20-24) μg m-3 of PM10 (PM2.5) are as the criterion between normal and hazy atmospheric conditions. With the arrival of dust events, wind-borne soil particulate matter (PM10, PM2.5) that originates in the Gobi Desert is changed dramatically. PM10 (PM2.5) concentrations increase by at least double or by several tens of times during severe dust events in comparison with the normal atmospheric condition. Ratio (PM2.5/PM10) between monthly means of PM10 and PM2.5 concentrations showed that anthropogenic particles were dominant in the ambient air of province centers in cool months (November to February). Threshold values of the onset of dust events were determined for PM10 (PM2.5) concentrations. According to the definition of dust storms, dust concentrations of PM10 corresponding to visibility of 1 km or less were determined at sites in the Gobi Desert and the steppe region. The threshold wind speeds during days with dust events were estimated at four sites in the Gobi Desert and compared each other. The threshold wind was higher at Sainshand and its cause might be due to smaller silt and clay fractions of soil.

  10. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  11. Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden

    NASA Astrophysics Data System (ADS)

    Ferm, Martin; Sjöberg, Karin

    2015-10-01

    PM10 concentrations exceed the guidelines in some Swedish cities and the limit values will likely be further reduced in the future. In order to gain more knowledge of emission factors for road traffic and concentrations of PM10 and PM2.5, existing monitoring stations in two cities, Gothenburg and Umeå, with international E-road thoroughfares, were complemented with some PM2.5 measurements. Emission factors for PM10 and PM2.5 were estimated using NOX as a tracer. Monitoring data from kerbside and urban background sites in Gothenburg during 2006-2010 and in Umeå during 2006-2012 were used. NOX emissions were estimated from the traffic flow and emission factors calculated from the HBEFA3.1 model. PM2.5 constitutes the finer part of PM10. Emissions of the coarser part of PM10 (PM10-PM2.5) are suppressed when roads are wet and show a maximum during spring when the roads dry up and studded tyres are still used. Less than 1% of the road wear caused by studded tyres give rise to airborne PM2.5-10 particles. The NOX emission factors decrease with time in the used model, due to the renewal of the vehicle fleet. However, the NOX concentrations resulting from the roads show no clear trend. The air dispersion is an important factor controlling the PM concentration near the road. The dispersion has a minimum in winter and during midnight. The average street level concentrations of PM10 and PM2.5 in Gothenburg were 21 ± 20 and 8 ± 6 μg m-3 respectively, which is 36% and 22% higher than the urban background concentrations. Despite the four times lower traffic flow in Umeå compared to Gothenburg, the average particle concentrations were very similar; 21 ± 31 and 7 ± 5 μg m-3 for PM10 and PM2.5 respectively. These concentrations were, however, 108% and 55% higher than the urban background concentrations in Umeå. The emission factors for PM10 decreased with time, and the average factor was 0.06 g km-1 vehichle-1. The emission factors for PM2.5 are very uncertain due to the

  12. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Hu, Zimei; Chen, Yuanyuan; Chen, Zhenlou; Xu, Shiyuan

    2013-04-01

    From July 2009 through September 2010, PM10 and PM2.5 were collected at two different functional areas in Shanghai (Baoshan district, an industrial area, and Putuo district, a mixed-use area of residential, commercial, and educational compounds). In our analysis, 15 elements were determined using a 710-ES Inductively Coupled Plasma-Emission Spectrometer (ICP-AES). The contents of PM2.5, PM10, and metal elements at the two different sites were comparatively analyzed. The results show that the mean annual concentrations of PM10 and PM2.5 (149.22 μg m-3 and 103.07 μg m-3, respectively) in Baoshan district were significantly higher than those in Putuo district (97.44 μg m-3 and 62.25 μg m-3 respectively). The concentrations of PM10 and PM2.5 were both greatest in winter and lowest in summer, with the two different sites exhibiting the same seasonal variation. It was found that the proportions of 15 metal elements in PM10 and PM2.5 in Baoshan district were 20.49% and 20.56%, respectively, while the proportions in Putuo district were higher (25.98% and 25.93%, respectively). In addition, the proportions of eight heavy metals in PM10 and PM2.5 were 5.50% and 3.07%, respectively, for Baoshan district, while these proportions in Putuo district were 3.18% and 2.77%, respectively, indicating that heavy metal pollution is more pronounced in Baoshan district. Compared with cities in developed countries, the total levels of PM10, PM2.5 and heavy metals in Shanghai were slightly higher. Scanning electron microscopy (SEM) and principal component analysis (PCA) suggested that the possible sources of PM10 in Baoshan district were ground level fugitive dust, traffic sources, and industrial activities, whereas PM2.5 mainly originated from industrial activities, coal combustion, and traffic sources. The sources are same for PM10 and PM2.5 in Putuo region, which originate from traffic sources and ground level fugitive dust.

  13. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.

    PubMed

    Kim, Ki Youn; Kim, Yoon Shin; Roh, Young Man; Lee, Cheol Min; Kim, Chi Nyon

    2008-06-15

    The aims of this study are to examine the concentrations of PM10 and PM2.5 in areas within the Seoul Metropolitan Subway network and to provide fundamental data in order to protect respiratory health of subway workers and passengers from air pollutants. A total of 22 subway stations located on lines 1-4 were selected based on subway official's guidance. At these stations both subway worker areas (station offices, rest areas, ticket offices and driver compartments) and passengers areas (station precincts, subway carriages and platforms) were the sites used for measuring the levels of PM. The mean concentrations of PM10 and PM2.5 were relatively higher on platforms, inside subway carriages and in driver compartments than in the other areas monitored. The levels of PM10 and PM2.5 for station precincts and platforms exceeded the 24-h acceptable threshold limits of 150 microg/m3 for PM10 and 35 microg/m3 for PM2.5, which are regulated by the U.S. Environmental Protection Agency (EPA). However, levels measured in station and ticket offices fell below the respective threshold. The mean PM10 and PM2.5 concentrations on platforms located underground were significantly higher than those at ground level (p<0.05).

  14. Assessment of PM10 and heavy metals concentration in a Ceramic Cluster (NE Spain)

    NASA Astrophysics Data System (ADS)

    Belen Vicente, Ana; Pardo, Francisco; Sanfeliu, Teofilo; Bech, Joan

    2013-04-01

    Environmental pollution control is one of the most important goals in pollution risk assessment today. The aim of this study is conducting a retrospective view of the evolution of particulate matter (PM10) and heavy metals (As, Cd, Ni and Pb) at different localities in the Spanish cluster ceramic in the period between January 2007 and December 2011. The study area is in the province of Castellón. This province is a strategical area in the framework of European Union Pollution control. Approximately 80% of European ceramic tiles and ceramic frits manufacturers are concentrated in two areas, forming the so-called "Ceramics Clusters"; one is in Modena (Italy) and the other in Castellón (Spain). In this kind of areas, there are a lot of pollutants from this industry that represent an important contribution to soil contamination so it is necessary to control the air quality in them. These atmospheric particles are deposited in the ground through both dry and wet deposition. Soil is a major sink for heavy metals released into the environment. The level of pollution of soils by heavy metals depends on the retention capacity of the soil, especially on physical-chemical properties (mineralogy, grain size, organic matter) affecting soil particle surfaces and also on the chemical properties of the metal. The most direct consequences on the ground of air pollutants are acidification, salinization and the pollutions that can cause heavy metals as components of suspended particulate matter. For this purpose the levels of PM10 in ambient air and the corresponding annual and weekly trend were calculated. The results of the study show that the PM10 and heavy metals concentrations are below the limit values recommended by European Union Legislation for the protection of human health and ecosystems in the study period. There is an important reduction of them from 2009 in all control stations due to the economic crisis. References Moral, R., Gilkes, R.J., Jordán, M.M., 2005

  15. Analysis of the possible measurement errors for the PM10 concentration measurement at Gosan, Korea

    NASA Astrophysics Data System (ADS)

    Shin, S.; Kim, Y.; Jung, C.

    2010-12-01

    The reliability of the measurement of ambient trace species is an important issue, especially, in a background area such as Gosan in Jeju Island, Korea. In a previous episodic study in Gosan (NIER, 2006), it was found that the measured PM10 concentration by the β-ray absorption method (BAM) was higher than the gravimetric method (GMM) and the correlation between them was low. Based on the previous studies (Chang et al., 2001; Katsuyuki et al., 2008) two probable reasons for the discrepancy are identified; (1) negative measurement error by the evaporation of volatile ambient species at the filter in GMM such as nitrate, chloride, and ammonium and (2) positive error by the absorption of water vapor during measurement in BAM. There was no heater at the inlet of BAM in Gosan during the sampling period. In this study, we have analyzed negative and positive error quantitatively by using a gas/particle equilibrium model SCAPE (Simulating Composition of Atmospheric Particles at Equilibrium) for the data between May 2001 and June 2008 with the aerosol and gaseous composition data. We have estimated the degree of the evaporation at the filter in GMM by comparing the volatile ionic species concentration calculated by SCAPE at thermodynamic equilibrium state under the meteorological conditions during the sampling period and mass concentration measured by ion chromatography. Also, based on the aerosol water content calculated by SCAPE, We have estimated quantitatively the effect of ambient humidity during measurement in BAM. Subsequently, this study shows whether the discrepancy can be explained by some other factors by applying multiple regression analyses. References Chang, C. T., Tsai, C. J., Lee, C. T., Chang, S. Y., Cheng, M. T., Chein, H. M., 2001, Differences in PM10 concentrations measured by β-gauge monitor and hi-vol sampler, Atmospheric Environment, 35, 5741-5748. Katsuyuki, T. K., Hiroaki, M. R., and Kazuhiko, S. K., 2008, Examination of discrepancies between beta

  16. MLP based models to predict PM10, O3 concentrations, in Sines industrial area

    NASA Astrophysics Data System (ADS)

    Durao, R.; Pereira, M. J.

    2012-04-01

    Sines is an important Portuguese industrial area located southwest cost of Portugal with important nearby protected natural areas. The main economical activities are related with this industrial area, the deep-water port, petrochemical and thermo-electric industry. Nevertheless, tourism is also an important economic activity especially in summer time with potential to grow. The aim of this study is to develop prediction models of pollutant concentration categories (e.g. low concentration and high concentration) in order to provide early warnings to the competent authorities who are responsible for the air quality management. The knowledge in advanced of pollutant high concentrations occurrence will allow the implementation of mitigation actions and the release of precautionary alerts to population. The regional air quality monitoring network consists in three monitoring stations where a set of pollutants' concentrations are registered on a continuous basis. From this set stands out the tropospheric ozone (O3) and particulate matter (PM10) due to the high concentrations occurring in the region and their adverse effects on human health. Moreover, the major industrial plants of the region monitor SO2, NO2 and particles emitted flows at the principal chimneys (point sources), also on a continuous basis,. Therefore Artificial neuronal networks (ANN) were the applied methodology to predict next day pollutant concentrations; due to the ANNs structure they have the ability to capture the non-linear relationships between predictor variables. Hence the first step of this study was to apply multivariate exploratory techniques to select the best predictor variables. The classification trees methodology (CART) was revealed to be the most appropriate in this case.. Results shown that pollutants atmospheric concentrations are mainly dependent on industrial emissions and a complex combination of meteorological factors and the time of the year. In the second step, the Multi

  17. PM 2.5 and PM 10: The influence of sugarcane burning on potential cancer risk

    NASA Astrophysics Data System (ADS)

    Silva, Flavio S.; Cristale, Joyce; André, Paulo A.; Saldiva, Paulo H. N.; Marchi, Mary R. R.

    2010-12-01

    In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM 2.5 and PM 10) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM 2.5 and PM 10 fractions were collected using a dichotomous sampler (10 L min -1, 24 h) with Teflon™ filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM 2.5 in 2009) was 0.99 ng m -3 (NHV) and 3.3 ng m -3 (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m -3 and 0.12 ng m -3 for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaP eq), where the overall toxicity of a PAH mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaP eq median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m -3 and 1.2-1.4 ng m -3 for the NHV and HV seasons, respectively. Considering that the maximum permissible BaP eq in ambient air is 1 ng m -3, related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used

  18. Contribution of vehicular traffic and industrial facilities to PM10 concentrations in a suburban area of Caserta (Italy).

    PubMed

    Iovino, Pasquale; Canzano, Silvana; Leone, Vincenzo; Berto, Chiara; Salvestrini, Stefano; Capasso, Sante

    2014-12-01

    PM10 levels have been recorded in the suburban area of Caserta (Italy) from February to October 2012. The daily limit was exceeded in 13 % of the determinations, with no significant difference between weekdays and weekends. Benzo[a]pyrene concentrations were in the range 0.01-0.46 ng/m(3), thus, never exceeding the National Standard. The B(a)P-eq was 0.20 ng/m(3). PM10 peaks were associated with wind from east-northeast. The same was observed for Ca concentrations, whereas no relation with wind direction was observed for organic pollutants. The results point to a local limestone quarry and cement factory as the likely major source of PM10 pollution in the area investigated.

  19. Saharan dust aerosol over the central Mediterranean Sea: PM10 chemical composition and concentration versus optical columnar measurements

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Sferlazzo, D. M.; Becagli, S.; Bommarito, C.; Calzolai, G.; Chiari, M.; di Sarra, A.; Ghedini, C.; Gómez-Amo, J. L.; Lucarelli, F.; Meloni, D.; Monteleone, F.; Nava, S.; Pace, G.; Piacentino, S.; Rugi, F.; Severi, M.; Traversi, R.; Udisti, R.

    2014-02-01

    This study aims to determine the mineral contribution to PM10 in the central Mediterranean Sea, based on 7 yr of daily PM10 samplings made on the island of Lampedusa (35.5° N, 12.6° E). The chemical composition of the PM10 samples was determined by ion chromatography for the main ions, and, on selected samples, by particle-induced X-ray emission (PIXE) for the total content of crustal markers. Aerosol optical depth measurements were carried out in parallel to the PM10 sampling. The average PM10 concentration at Lampedusa over the period June 2004-December 2010 is 31.5 μg m-3, with low interannual variability. The annual means are below the EU annual standard for PM10, but 9.9% of the total number of daily data exceeds the daily threshold value established by the European Commission for PM (50 μg m-3, European Community, EC/30/1999). The Saharan dust contribution to PM10 was derived by calculating the contribution of Al, Si, Fe, Ti, non-sea-salt (nss) Ca, nssNa, and nssK oxides in samples in which PIXE data were available. Cases in which crustal content exceeded the 75th percentile of the crustal oxide content distribution were identified as elevated dust events. Using this threshold, we obtained 175 events. Fifty-five elevated dust events (31.6%) displayed PM10 higher than 50 μg m-3, with dust contributing by 33% on average. The crustal contribution to PM10 has an annual average value of 5.42 μg m-3, and reaches a value as high as 67.9 μg m-3 (corresponding to 49% of PM10) during an intense Saharan dust event. The crustal content estimated from a single tracer, such as Al or Ca, is in good agreement with the one calculated as the sum of the metal oxides. Conversely, larger crustal contents are derived by applying the EU guidelines for demonstration and subtraction of exceedances in PM10 levels due to high background of natural aerosol. The crustal aerosol amount and contribution to PM10 showed a very small seasonal dependence; conversely, the dust columnar

  20. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 <18% of Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( p<0.05) than in traffic streets, and the differences in exposure levels between new urban streets and old urban streets were highly significant ( p<0.01). Pedestrian exposure to toxic VOCs and PM 10 was higher than those reported in other public transportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  1. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    PubMed

    Rizzo, Angela Maria; Corsetto, Paola Antonia; Farina, Francesca; Montorfano, Gigliola; Pani, Giuseppe; Battaglia, Cristina; Sancini, Giulio; Palestini, Paola

    2014-01-01

    Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.

  2. Concentration and composition variations of metals in the outdoor PM10 of elementary schools during river dust episodes.

    PubMed

    Kuo, Chung-Yih; Yang, Hao-Jan; Chiang, Yi-Chen; Lai, Dian-Jheng; Shen, Ying-Hsuan; Liu, Pang-Min

    2014-11-01

    Aeolian river dust can seriously affect the air quality in central Taiwan. The main purpose of this study was to assess the concentration variations of PM10 and metals at different elementary schools during river dust episodes. River dust samples were taken from eight sites in the main bare soil areas of the Choshui River. PM10 aerosols from four elementary schools in Yulin County were collected by means of high-volume samplers. Fifteen elements (Fe, Al, Ca, Mg, Mn, Zn, Ti, Ni, V, Cr, As, Pb, Cu, Co, and Cd) in the river dust and PM10 were analyzed in this study. The coefficients of divergence (CDs) were obtained by comparing the metal compositions in PM10 aerosols at the four schools on the sampling days with the mean metal contents in the river soil samples as reference. The CD values showed that metal compositions in the aerosols at high-exposure sites during river dust episodes were similar to those compositions in the river dust. The concentrations of PM10 at the high-exposure schools during river dust episodes were much higher than those during non-river-dust episodes. This study also indicated that at the high-exposure sites, both the PM10 and metal concentrations were higher than at the low-exposure and control sites, not only during the river dust episodes, but also after the river dust episodes. The concentrations of toxic metals (Ni, Cr, As, and Cd) at the high-exposure sites were about 11.3 times higher during the river dust episodes (189 ng/m(3)) than during non-river-dust episodes (16.7 ng/m(3)) and about 8.9 times higher during the same periods at the control site (21.3 ng/m(3)).

  3. Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM 10) using multivariate methods

    NASA Astrophysics Data System (ADS)

    Dallarosa, Juliana Braga; Teixeira, Elba Calesso; Pires, Marçal; Fachel, Jandyra

    The scope of the present study is to identify and quantify the main sources of polycyclic aromatic hydrocarbons (PAHs) in the Candiota region, Rio Grande do Sul, Brazil. Four sampling sites at a distance of 50 km from the emission source were selected: Aceguá, Aeroporto, 8 de Agosto and Pedras Altas. Samples were collected from February 2001 to October 2001, using an HV PM 10 sampler for high volumes during a continuous period of 24 h every 15 days. The filters containing the particulate matter were extracted with dichloromethane in soxhlet and later analyzed by gas chromatography/mass spectrometry (GC/MS). The average concentrations of PAHs varied from 0.051 to 1.791 ng m -3. The analysis of their distribution amongst the main emission sources was done through the diagnosis of concentration ratios of PAHs, as well as using statistical methods like factor analysis. The statistical analysis separated the 13 compounds studied in 3 Factors, grouping under Factor 1 emissions from the combustion of coal and wood, under Factor 2 vehicular emissions from the combustion of diesel oil and gasoline and under Factor 3 emissions from unburned diesel oil and gasoline.

  4. Exposure assessment of a cyclist to PM10 and ultrafine particles.

    PubMed

    Berghmans, P; Bleux, N; Int Panis, L; Mishra, V K; Torfs, R; Van Poppel, M

    2009-02-01

    Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. In Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust. In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM(10) were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers.

  5. Properties of nitrate, sulfate and ammonium in typical polluted atmospheric aerosols (PM 10) in Beijing

    NASA Astrophysics Data System (ADS)

    Kai, Zhang; Yuesi, Wang; Tianxue, Wen; Yousef, Meslmani; Frank, Murray

    2007-03-01

    To gain an understanding of the characteristics of nitrate, sulfate and ammonium in the urban atmosphere of Beijing, an experiment was conducted in October 2004, using a method involving the rapid collection of particles and analysis using an ion chromatography system. The study shows that the mean concentration of water soluble ions (WSI) increased during heavily polluted weather, and this change in the concentration of pollutants was related to the meteorological background. The concentration of nitrate, sulfate and ammonium increased 7.9, 4.1 and 5.4 times, respectively, during heavily polluted periods. The concentration of nitrate increased most among the WSI in PM 10. The diurnal variations of nitrate, sulfate and ammonium in more polluted periods were different from those in less polluted periods. The highest concentration of nitrate (NO 3-), sulfate (SO 42-), and ammonium (NH 4+) appeared at 19:00 during more polluted periods. In contrast, the highest concentrations of these compounds occurred at noon during less polluted periods. A correlation analysis showed that NO 3-, SO 42-, NH 4+, nitrogen oxides (NO x) and sulfur dioxide (SO 2) had significant positive correlations in more polluted periods. The transformation ratio from SO 2 and NO x to SO 42- and NO 3- was higher in more polluted than that in less polluted periods.

  6. Synergistic inflammatory effect of PM10 with mycotoxin deoxynivalenol on human lung epithelial cells.

    PubMed

    Capasso, Laura; Longhin, Eleonora; Caloni, Francesca; Camatini, Marina; Gualtieri, Maurizio

    2015-09-15

    The presence of deoxynivalenol (DON), a mycotoxin produced by Fusarium species, has been reported worldwide in food and feedstuffs. Even though oral intake is the main route of exposure, DON inhalation is also of concern in workers and exposed population. Particulate matter (PM) is one of the most important causes of air quality detriment and it induces several adverse health effects. Therefore it is of primary importance to understand possible combined effects of DON and PM. The alveolar type II, A549, and the bronchial epithelial, BEAS-2B, cell lines were exposed for 24 h to different concentrations of DON (10-1000 ng/ml), PM10 (5 μg/cm(2), sampled in summer or winter season), and a combination of these pollutants. Cell death, interleukins release and cell cycle alteration were analysed; protein array technique was also applied to evaluate proteins activation related to MAP-kinases cascade. Our results demonstrate that low doses of PM and DON used alone have scarce toxic effects, while induce cytotoxicity and inflammation when used in combination. This observation outlines the importance of investigation on the combined effects of air pollutants for their possible outcomes on human health.

  7. Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10.

    PubMed

    Escrig, Alberto; Monfort, Eliseo; Celades, Irina; Querol, Xavier; Amato, Fulvio; Minguillón, María Cruz; Hopke, Philip K

    2009-11-01

    Speciated coarse particulate matter (PM10) data obtained at three air quality monitoring sites in a highly industrialized area in Spain between 2002 and 2007 were analyzed for assessing source contribution of ambient particulate matter (PM). The source apportionment of PM in this area is an especially difficult task. There are industrial mineral dust emissions that need to be separately quantified from the natural sources of mineral PM. On the other hand, the diversity of industrial processes in the area results in a puzzling industrial emissions scenario. To solve this complex problem, a two-step methodology based on the possibilities of the Multilinear Engine was used. Application of positive matrix factorization to the dataset allowed the identification of nine factors relevant to the study area. This preliminary analysis permitted resolving two mineral factors. As a second step, a target rotation was implemented for transforming the mineral factors into experimentally characterized soil resuspension and industrial clay sources. In addition to improving the physical interpretation of these factors, the target rotation reduced the errors arising from the rotational freedom of the solution and the multicollinearity among sources. In this way, the main primary industrial emissions of PM in the zone were identified by this target factor analysis. A marked decrease was observed between 2002 and 2007 for the contributions of industrial sources coinciding with the implementation of mitigation measures in their processes. This study supports the utility of source apportionment methodologies for quantitatively evaluating the effectiveness of the abatement programs for air quality improvement.

  8. Aerodynamic characteristics of a 0.00563 scale 142-inch diameter solid rocket booster (MSFC model 449 and 480) with side mounted stings in the NASA/MSFC 14-inch trisonic wind tunnel (SA14FA)

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1976-01-01

    An experimental investigation (SA14FA, TWT 620) was conducted in the MSFC 14-inch Trisonic Wind Tunnel (TWT) to determine the entry static stability of a 0.00563 scale shuttle solid rocket booster (SRB). The primary objective was to determine the effects of four side mounted sting configurations and to improve the definition of the aerodynamic characteristics in the vicinity of the SRB entry trim point. Data were obtained for two 60 and two 90 degree side mounted stings and a straight nose mounted sting. The angle of attack range for the side-mounted stings was 100 to 170 degrees while that for the nose mounted sting was 150 to 170 degrees. The Mach number range consisted of 0.6 to 3.48. Except for the aft attach ring, no protuberances were considered and the side slip and roll angles were zero. The test model was scaled from the 142-inch diameter SRB known as configuration 139 which was used during test TWT 572 (SA5F).

  9. PM10 and PM2.5 and health risk assessment for heavy metals in a typical factory for cathode ray tube television recycling.

    PubMed

    Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2013-01-01

    The representative waste television recycling process was chosen as the object of this study, including manual dismantling and mechanical separation of printed circuit boards (PCBs) and cathode ray tubes (CRTs) in two independent workshops. During these recycling processes, fine particulate matter and heavy metals will be released into the air to impact the environment and the health of the workers. The mass concentrations of PM2.5 (particles below 2.5 μm diameter) in mechanical and dismantling workshops ranged from 252.6 to 290.8 μg/m(3) and from 112.7 to 169.4 μg/m(3), respectively. The average concentration of PM2.5 around the workshop was 98.5 μg/m(3). Meanwhile, the contents of PM10 (particles below 10 μm diameter) were all below the risk threshold, except that (360.4 μg/m(3)) monitored in the mechanical workshop. In two workshops, Pb (20.46 and 6.935 mg/g) was the most enriched metal in the PM2.5 samples, while in PM10, the concentration of Cu (27.76 and 31.80 mg/g) was the largest. The concentration of Cd was the least in both PM10 and PM2.5. Health risk assessment showed that the total hazard indexes for non-carcinogenic metal in PM2.5 monitored in mechanical and dismantling workshops and in the southeast of the workshops were 7.61, 3.01, and 1.57, respectively, all above the safety level. Furthermore, Pb (7.28 and 3.01) might possibly have a non-carcinogenic effect on the workers in two workshops, and the sequence of the hazard quotient (HQ) through the three exposure ways was ingestion > dermal contact > inhalation. The lifetime cancer risk of four targeted metals was Cr > Ni > Pb > Cd, which could be proven in all monitoring samples. This study aims to provide a large amount of valid data for the State Environmental Protection Department to develop relevant environmental standards and for companies to improve the waste television recycling system to be more efficiently and environmentally friendly.

  10. The oxidative potential of PM10 from coal, briquettes and wood charcoal burnt in an experimental domestic stove

    NASA Astrophysics Data System (ADS)

    Shao, Longyi; Hou, Cong; Geng, Chunmei; Liu, Junxia; Hu, Ying; Wang, Jing; Jones, Tim; Zhao, Chengmei; BéruBé, Kelly

    2016-02-01

    Coal contains many potentially harmful trace elements. Coal combustion in unvented stoves, which is common in most parts of rural China, can release harmful emissions into the air that when inhaled cause health issues. However, few studies have dealt specifically with the toxicological mechanisms of the particulate matter (PM) released by coal and other solid fuel combustion. In this paper, PM10 particles that were generated during laboratory stove combustion of raw powdered coal, clay-mixed honeycomb briquettes, and wood charcoal were analysed for morphology, trace element compositions, and toxicity as represented by oxidative DNA damage. The analyses included Field Emission Scanning Electron Microscopy (FESEM), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Plasmid Scission Assay (PSA). Gravimetric analysis indicated that the equivalent mass concentration of PM10 emitted by burning raw powdered coal was higher than that derived by burning honeycomb briquette. FESEM observation revealed that the coal burning-derived PM10 particles were mainly soot aggregates. The PSA results showed that the PM10 emitted by burning honeycomb briquettes had a higher oxidative capacity than that from burning raw powdered coal and wood charcoal. It is also demonstrated that the oxidative capacity of the whole particle suspensions were similar to those of the water soluble fractions; indicating that the DNA damage induced by coal burning-derived PM10 were mainly a result of the water-soluble fraction. An ICP-MS analysis revealed that the amount of total analysed water-soluble elements in the PM10 emitted by burning honeycomb briquettes was higher than that in PM produced by burning raw powdered coal, and both were higher than PM from burning wood charcoal. The total analysed water-soluble elements in these coal burning-derived PM10 samples had a significantly positive correlation with the level of DNA damage; indicating that the oxidative capacity of the coal burning

  11. The use of total susceptibility in the analysis of long term PM10 (PM2.5) collected at Hungarian air quality monitoring stations

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Domján, Ádám; Lautner, Péter; Szentmarjay, Tibor; Uram, János

    2013-04-01

    Air monitoring stations in Hungary are operated by Environmental, Nature Conservancy and Water Pollution Inspectorates, according to the CEN/TC 264 European Union standards. PM10 samples are collected on a 24-hour basis, for two weeks in February, in May, in August and in November. About 720m3 air is pumped through quartz filters daily. Mass measurements and toxic metal analysis (As, Pb, Cd, Ni) are made on each filter (Whatmann DHA-80 PAH, 150 mm diameter) by the inspectorates. We have carried out low field magnetic susceptibility measurements using a KLY-2 instrument on all PM10 samples collected at 9 stations from 2009 on (a total of more than 2000 filters). One station, located far from direct sources, monitors background pollution. Here PM2.5 was also collected in two-week runs, seven times during the period of 2009-2012 and made available for the non-destructive magnetic susceptibility measurements. Due to the rather weak magnetic signal, the susceptibility of each PM-10 sample was computed from 10, that of each PM2.5 sample from 20 measurements. Corrections were made for the susceptibility of the sample holder, for the unpolluted filter (provided with each of the two-week runs), and for the plastic bag containing the samples. The susceptibilities of the PM10 samples were analyzed from different aspects, like the degree of magnetic pollution at different stations, daily and seasonal variations of the total and mass susceptibilities compared to the mass of the pollutants and in relation to the concentrations of the toxic elements. As expected, the lowest total and mass susceptibilities characterize the background station (pollution arrives mostly from distant sources, Vienna, Bratislava or even the Sudeten), while the highest values were measured for an industrial town with heavy traffic. At the background station the mass of the PM10 and PM2.5, respectively for the same period are quite similar, while the magnetic susceptibilities are usually higher in the

  12. Contribution of Fugitive Emissions for PM10 Concentrations in an Industrial Area of Portugal

    NASA Astrophysics Data System (ADS)

    Marta Almeida, Susana; Viana Silva, Alexandra; Garcia, Silvia; Miranda, Ana Isabel

    2013-04-01

    Significant atmospheric dust arises from the mechanical disturbance of granular material exposed to the air. Dust generated from these open sources is termed "fugitive" because it is not discharged to the atmosphere in a confined flow stream. Common sources of fugitive dust include unpaved roads, agricultural tilling operations, aggregate storage piles, heavy construction and harbor operations. The objective of this work was to identify the likeliness and extend of the PM10 limit value exceedences due to fugitive emissions in a particularly zone where PM fugitive emissions are a core of environmental concerns - Mitrena, Portugal. Mitrena, is an industrial area that coexists with a high-density urban region (Setúbal) and areas with an important environmental concern (Sado Estuary and Arrábida which belongs to the protected area Natura 2000 Network). Due to the typology of industry sited in Mitrena (e.g. power plant, paper mill, cement, pesticides and fertilized productions), there are a large uncontrolled PM fugitive emissions, providing from heavy traffic and handling and storage of raw material on uncover stockyards in the harbor and industries. Dispersion modeling was performed with the software TAPM (The Air Pollution Model) and results were mapped over the study area, using GIS (Geographic Information Systems). Results showed that managing local particles concentrations can be a frustrating affair because the weight of fugitive sources is very high comparing with the local anthropogenic stationary sources. In order to ensure that the industry can continue to meet its commitments in protecting air quality, it is essential to warrant that the characteristics of releases from all fugitive sources are fully understood in order to target future investments in those areas where maximum benefit will be achieved.

  13. Characterization of metal aerosols in PM10 from urban, industrial, and Asian Dust sources.

    PubMed

    Park, Kihong; Dam, Hung Duy

    2010-01-01

    Metallic elements (As, Be, Ca, Cd, Co, Cr, Fe, K, Mn, Ni, Pb, Sb, Se, and Zn) in PM10 aerosols were determined at urban and industrial sites, which are affected by traffic and residential sources, metallurgical activity, and petrochemical and steel works. The effect of the long-range transported Asian Dust on the metal content of aerosols was also examined. At the urban sampling site, concentrations of As, Cd, Pb, Se, and Zn were assigned to road traffic and combustion sources, Ca and Fe to soil dust sources from long-range transported Asian Dusts, and Cr and Ni to metallurgical sources transported from the nearby industrial complex, based on Principal Component Analysis (PCA). Enhanced Cr and Ni concentrations at the metallurgical industrial site suggest that local emissions from metal-assembly facilities and manufacture of alloys contributed to elevated levels of those metals. We also observed that petrochemical activities contributed to increased levels of Sb and Zn. When Asian Dust events occurred, Ca, Fe, K, and Zn concentrations dramatically increased compared to values without the Asian Dust. Two different types of Asian Dust events were observed. For the Asian Dust event 1 (4/1/2007), the Fe and K concentrations were much higher by a factor of 2-3 than those for the Asian Dust event 2 (3/2/2008), while As, Mn, and Zn concentrations were significantly higher on the Asian Dust event 2. Backward trajectory analysis showed that for the Asian Dust event 2, the air mass had passed over the heavily industrialized zones in China during long-range transport to the current sampling site, suggesting that the As, Mn, and Zn may have originated from industrial sources.

  14. Assessment of ozone and PM-10 precursor emissions from the dairy industry

    SciTech Connect

    Schmidt, C.E.; Ungvarsky, J.; Winegar, E.

    1997-12-31

    Many new regulations have resulted in the need to assess and better understand a variety of industries with air emission sources that have not been studied in the past. The dairy industry is one such industry with area air emission sources that are now being studied for evaluation and ranking with the intent to control air emissions that exceed regulatory acceptance standards, especially for ozone precursors. The area sources at a dairy include facility processes such as dry feed lot, flushed lanes, settling ponds, liquid waste storage, waste windrows, cow washing area, milk parlor, dry cow area birthing area, feed storage, and livestock waste fertilizer usage areas. Given that these processes are area sources and dynamic and highly variable, assessment requires proper selection of measurement technology and innovative applications. Direct assessment flux chamber technology was used to assess the air emissions from dairies located in northern California. All process were screened and evaluated for testing, and all significant air emission sources were studied. A variety of compounds were studied in order to satisfy program objectives, including: volatile organic compounds, semi-volatile organic compounds, amine, ammonia, reduced sulfur compounds, aldehydes, ketones, and fixed gases. Analytical development work extending applicability of methods, such as EPA TO-14 for semi-volatile compounds, assessing total content was also conducted. This paper presents a summary of the assessment approach used to gain a better understanding of air emissions from livestock waste at California dairies. Data are presented as emission factors (per surface area and per head) and as emissions from various size dairies. These data were used to evaluate ozone and PM-10 precursor emissions from the dairy industry.

  15. Source contributions to PM2.5 and PM10 at an urban background and a street location

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Röckmann, T.; Dusek, U.

    2013-06-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC and OC concentrations was also determined, to distinguish the contribution from "modern" carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM2.5 and PM10 is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The 14C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM2.5 and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM10. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  16. CONTENDING WITH SPACE-TIME INTERACTION IN THE SPATIAL PREDICTION OF POLLUTION: VANCOUVER'S HOURLY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we describe an approach for predicting average hourly concentrations of ambient PM10 in Vancouver. We know our solution also applies to hourly ozone fields and believe it may be quite generally applicable. We use a hierarchal Bayesian approach. At the primary ...

  17. CHANGES IN OPERATING PROCEDURES FOR AEROSOL CONCENTRATION UNIFORMITY FOR PM2.5 AND PM10 SAMPLER TESTING

    EPA Science Inventory

    This technical note documents changes in the standard operating procedures used at the Environmental Protection Agency's (U.S. EPA) aerosol testing wind tunnel facility for testing of particulate matter monitoring methods of PM2.5 and PM10. These changes are relative to the op...

  18. Development of cotton gin PM10 emission factors for EPA’s AP-42-DUPLICATE DO NOT USE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  19. PM10 source apportionment applying PMF and chemical tracer analysis to ship-borne measurements in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Bove, M. C.; Brotto, P.; Calzolai, G.; Cassola, F.; Cavalli, F.; Fermo, P.; Hjorth, J.; Massabò, D.; Nava, S.; Piazzalunga, A.; Schembari, C.; Prati, P.

    2016-01-01

    A PM10 sampling campaign was carried out on board the cruise ship Costa Concordia during three weeks in summer 2011. The ship route was Civitavecchia-Savona-Barcelona-Palma de Mallorca-Malta (Valletta)-Palermo-Civitavecchia. The PM10 composition was measured and utilized to identify and characterize the main PM10 sources along the ship route through receptor modelling, making use of the Positive Matrix Factorization (PMF) algorithm. A particular attention was given to the emissions related to heavy fuel oil combustion by ships, which is known to be also an important source of secondary sulphate aerosol. Five aerosol sources were resolved by the PMF analysis. The primary contribution of ship emissions to PM10 turned out to be (12 ± 4)%, while secondary ammonium sulphate contributed by (35 ± 5)%. Approximately, 60% of the total sulphate was identified as secondary aerosol while about 20% was attributed to heavy oil combustion in ship engines. The measured concentrations of methanesulphonic acid (MSA) indicated a relevant contribution to the observed sulphate loading by biogenic sulphate, formed by the atmospheric oxidation of dimethyl sulphide (DMS) emitted by marine phytoplankton.

  20. 78 FR 21547 - Approval and Promulgation of Air Quality Implementation Plans; Oregon: Eugene-Springfield PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... parts 51 and 93) apply to nonattainment areas and maintenance areas covered by an approved maintenance...: Eugene-Springfield PM10 Nonattainment Area Limited Maintenance Plan and Redesignation Request AGENCY... Eugene-Springfield nonattainment area (Eugene-Springfield NAA) and the State's request to redesignate...

  1. Dust Monitoring on the Hanford Site: An Investigation into the Relationship Between TSP, PM-10, and PM-2.5

    SciTech Connect

    Schwartz, T.; Fitz, B.G.

    2004-01-01

    High levels of particulate matter (PM) are linked to some health problems and environmental issues. Air quality standards have been developed in hopes to reduce particulate matter problems. The most common fractions of particulate matter measured include PM2.5, PM10, and total suspended particles (TSP). The focus of this study was to evaluate relationships between PM2.5, PM10, and TSP concentrations specific to the Hanford Site, near Richland, Washington. Measurements of PM2.5 and PM10 concentrations continued while additional measurements of TSP were made over several summer months. Four sampling locations on the Hanford Site were used to compare spatial differences in the data. Comparison of the data revealed a strong linear correlation between PM10 and TSP for the time period evaluated. The correlation between PM2.5 and TSP was not as strong, and indicated that local sources rarely were above background measurements. This was supported by the correlation of ground level PM2.5 with PM2.5 concentrations measured on a near by mountain.

  2. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentr...

  3. Disentangling the contribution of Saharan dust and marine aerosol to PM10 levels in the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Scerri, Mark M.; Kandler, Konrad; Weinbruch, Stephan

    2016-12-01

    The Għarb rural background station located on the northernmost island in the Maltese archipelago has been used to gather PM10 data since 2008. 224 samples from a monitoring campaign carried out from March 2012 to May 2013, were characterized for various metals and ions by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. This speciation data was used in conjunction with the positive matrix factorization (PMF) model in order to determine the contribution of Saharan dust and marine aerosol to PM10 levels at the receptor. PMF managed to isolate two different crustal source contributions: a local crustal component and a trans-boundary component of North African origin. Marine aerosol, secondary nitrate/aged aerosol, and ammonium sulphate were other source contributions, which were isolated by the model. The trans-boundary crustal component (Saharan aerosol) and the marine aerosol are considered to be of natural origin and their joint contribution to PM10 levels at the site was estimated to be 39%. This value is in the upper part of the range derived from previous studies, for natural contributions to PM10 in Europe (0.5%-58%).

  4. 75 FR 60680 - Designation of Areas for Air Quality Planning Purposes; State of Arizona; Pinal County; PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... commuting patterns, growth rates and patterns, meteorology, geography/topography, jurisdictional boundaries... Interstate corridors and areas with the highest employment densities; the significant growth areas along... existing PM 10 nonattainment area), is largely undeveloped and has limited growth potential. As set...

  5. CHARACTERIZATION OF PM-10 EMISSIONS FROM ANTISKID MATERIALS APPLIED TO ICE- AND SNOW-COVERED ROADWAYS - PHASE II

    EPA Science Inventory

    The report gives results of field sampling on 47th Street in Kansas City, MO, during February and March 1993 to quantify the PM-10 emissions associated with the use of rock salt (NaCl) for ice and snow control. A baseline test was conducted in September 1993. The emissions were d...

  6. Water-soluble organic compounds (WSOCs) in PM2.5 and PM10 at a subtropical site of India

    NASA Astrophysics Data System (ADS)

    Khare, Puja; Baruah, B. P.; Rao, P. G.

    2011-11-01

    PM2.5 and PM10 samples collected at a suburban site of northeastern part of India have been analysed for particle mass, total carbon (TC), water-soluble total carbon (WSTC), water-soluble organic carbon (WSOC), water-soluble inorganic carbon (WSIC), organic acids (formic, acetic, proponoic and oxalic acids) along with inorganic ions (NO3-, SO42- and NH4-). Most of the PM10 consists of PM2.5 in the present site (ratio 54-74%). WSTC content in PM2.5 and PM10 corresponds to 21% and 16%, respectively, of their total particle masses. Thermo gravimetric analysis showed the presence of humic-like substances (16-22%) in particulate samples. Domestic heating and stagnant atmospheric conditions enhanced the levels of these carbonaceous compounds in PM2.5 and PM10 in winter. Qualitative estimation of various functional groups by Fourier transform infrared (FTIR) analysis indicates the presence of carboxylic, hydroxyl, aliphatic and aromatic hydrocarbons, amines and sulphurous compounds in these aerosols. Absolute principal component analysis applied on the aerosol data resolves four factors. These factors are associated with carbonaceous aerosols released from combustion of coal and wood, secondary inorganic and organic aerosols and water-soluble inorganic fraction.

  7. PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino.

    PubMed

    Romanazzi, Valeria; Casazza, Marco; Malandrino, Mery; Maurino, Valter; Piano, Angelo; Schilirò, Tiziana; Gilli, Giorgio

    2014-10-01

    The mechanisms responsible for negative biological effects due to airborne particulate matter (PM) exposure are still being studied, however the interactions between metals and biologic systems seem to be of primary importance. The aim of the study was to estimate a healthy risk linked to exposure to airborne PM10 metals by means of an environmental-sanitary risk assessment. Metals PM10 size distribution analysis was carried out in a central site of Torino city - Italy, then the Target Hazard Quotient (THQ) and the Cancer Risk (CR) were applied, according to standard EPA methods. All sampled metals were present on the different PM10 fractions, however some metals were distributed in some specific fractions: ANOVA test shows Cr, Cu, Mo and Pb as differently distributed among the eight fractions, rising the hypothesis of potential effects in specific tracts of respiratory system. Regarding the risk assessment, in general the CR was higher for an adult than for a child, conversely the THQ resulted higher for a child. While the concentrations of all the sampled metals appeared to be under control, their presence in the different PM10 fractions and their THQ and CR provided indications related to the body districts potentially in contact with these substances.

  8. Mapping of PM10 surface concentrations derived from satellite observations of aerosol optical thickness over South-Eastern France

    NASA Astrophysics Data System (ADS)

    Péré, J.-C.; Pont, V.; Mallet, M.; Bessagnet, B.

    2009-01-01

    This work aims at developing a methodology based on in-situ experimental observations in order to use satellite retrievals as a tool for monitoring air particulate pollution. This methodology is applied during summer time on the South-Eastern France, which is one of the most polluted zones over Europe, enclosing further large cities and industrial sites. In a first time, we consider correlations between daily mean AERONET AOT and PM10 concentrations at five sites located as well close to as far from pollution sources. Our results show significant correlation coefficients, ranging from 0.68 to 0.79, following the site studied. Several factors like aerosol vertical distribution or hygroscopic growth factor could affect the link between PM10 ground measurements and aerosol optical thickness. To statistically strengthen this approach, we gather data sets from three types of sites (urban, near urban and rural) and establish a linear relationship between daily mean AOT measured from AERONET and PM10 mass concentrations. Secondly and thanks to good agreements between AOT measured from AERONET and AOT retrieved from the MODIS sensor, we calculate estimated concentrations of PM10 by using MODIS retrievals above the South-Eastern France. Uncertainties about this approach are discussed.

  9. The PM10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential.

    PubMed

    Pant, Pallavi; Baker, Stephen J; Shukla, Anuradha; Maikawa, Caitlin; Godri Pollitt, Krystal J; Harrison, Roy M

    2015-10-15

    Most studies of road dust composition have sampled a very wide range of particle sizes, but from the perspective of respiratory exposure to resuspended dusts, it is the PM10 fraction which is of most importance. The PM10 fraction of road dust samples was collected at two sites in Birmingham, UK (major highway and road tunnel) and one site in New Delhi, India. Dust loadings were found to be much higher for New Delhi compared to Birmingham, while concentrations of several species were much higher in the case of Birmingham. Detailed chemical source profiles were prepared for both cities and previously generated empirical factors for source attribution to brake wear, tyre wear, and crustal dust were successfully applied to the UK sites. However, 100% of the mass for the Indian site could not be accounted for using these factors. This study highlights the need for generation of local empirical estimation factors for non-exhaust vehicle emissions. A limited number of bulk road dust and brake pad samples were also characterized. Oxidative potential (OP) was also determined for a limited number of PM10 and bulk road dust samples, and Cu was found to be a factor significantly associated with OP in PM10 and bulk road dust.

  10. PM10 Concentration levels at an urban and background site in Cyprus: The impact of urban sources and dust storms

    PubMed Central

    Achilleos, Souzana; Evans, John S.; Yiallouros, Panayiotis K.; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2016-01-01

    Air quality in Cyprus is influenced by both local and transported pollution including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993 through December 11, 2008, and Ayia Marina (rural background representative) from January 1, 1999 through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records and satellite data were used to identify dust storm days. We investigated long term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. PMID:25562931

  11. Influence of tobacco smoke on carcinogenic PAH composition in indoor PM 10 and PM 2.5

    NASA Astrophysics Data System (ADS)

    Slezakova, K.; Castro, D.; Pereira, M. C.; Morais, S.; Delerue-Matos, C.; Alvim-Ferraz, M. C.

    2009-12-01

    Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM 10 and PM 2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE-LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM 10, and 720% for PM 2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600-21 000% and 5100-20 800% higher than at the reference site for PM 10 and PM 2.5, respectively, accounting for 49% of total PAH (Σ PAH). Higher molecular weight PAH (5-6 rings) reached concentrations 300-1300% and 140-1700% higher for PM 10 and PM 2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM 10 and PM 2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of Σ PAH in PM 10 and PM 2.5, respectively, and at the smoking site 56% and 55% of Σ PAH in PM 10 and PM 2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk

  12. [Health Risk Assessment of Tunnel Workers Based on the Investigation and Analysis of Occupational Exposure to PM10].

    PubMed

    Xiang, Hua-li; Yang, Jun; Qiu, Zhen-zhen; Lei, Wan-xiong; Zeng, Ting-ting; Lan, Zhi-cai

    2015-08-01

    The health risk of tunnel workers' occupational exposure to PM10, was evaluated applying public health exposure evaluation nodel. A questionnaire survey of 250 tunnel workers was conducted in a construction site of Ma-zhu Highway in Hubei Province, and the concentrations of PM10 were monitored. The results showed that the PM10 exposure concentrations of different types of tunnel workers were extremely high. Compared with the limited value, the PM10 exposure concentrations were 83 times, 18 times, 8 times, 9 times Emd 9 times for excavation workers, blasting workers, supporting workers, slag-out workers and secondary-lining workers, respectively. For secondary-lining workers, the average daily exposure time was the longest, which was 11.48 h x d(-1), and the energy metabolism rate was also the highest, which was 1067.43 kj x (m2 x h)(-1). Regarding the inhalation rates, secondary-lining workers could be classified to high-level working intensity, and the other four types of tunnel workers could he classified to middle-level working intensity. The health risk assessment results showed that all tunnel workers had health risk. High exposure concentration of PM10 was the main reason for excavation workers' highest hazard quotient, and it was the same for the blasting workers. The reason for secondary-lining workers' high hazard quotient was that they had higher inhalation rates and longer average daily exposure time. In order to reduce the health risk of tunnel workers, firstly the workers should be equipped with appropriate respiratory protective equipment; secondly an appropriate tunnel working standard should be developed to set a reasonable working-years for reducing the exposure time.

  13. Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA)

    NASA Astrophysics Data System (ADS)

    Ul-Saufie, Ahmad Zia; Yahaya, Ahmad Shukri; Ramli, Nor Azam; Rosaida, Norrimi; Hamid, Hazrul Abdul

    2013-10-01

    Future PM10 concentration prediction is very important because it can help local authorities to enact preventative measures to reduce the impact of air pollution. The aims of this study are to improve prediction of Multiple Linear Regression (MLR) and Feedforward backpropagation (FFBP) by combining them with principle component analysis for predicting future (next day, next two-day and next three-day) PM10 concentration in Negeri Sembilan, Malaysia. Annual hourly observations for PM10 in Negeri Sembilan, Malaysia from January 2003 to December 2010 were selected for predicting PM10 concentration level. Eighty percent of the monitoring records were used for training and twenty percent were used for validation of the models. Three accuracy measures - Prediction Accuracy (PA), Coefficient of Determination (R2) and Index of Agreement (IA), as well as two error measures - Normalized Absolute Error (NAE) and Root Mean Square Error (RMSE) were used to evaluate the performance of the models. Results show that PCA models combined with MLR and PCA with FFBP improved MLR and FFBP models for all three days in advance of predicting PM10 concentration, with reduced errors by as much as 18.1% (PCA-MLR) and 17.68% (PCA-FFBP) for next day, 19.2% (PCA-MLR) and 22.1% (PCA-FFBP) for next two-day and 18.7% (PCA-MLR) and 22.79% (PCA-FFBP) for next three-day predictions. Including PCA improved the accuracy of the models by as much as by 12.9% (PCA-MLR) and 13.3% (PCA-FFBP) for next day, 32.3% (PCA-MLR) and 14.7% (PCA-FFBP) for next two-day and 46.1% (PCA-MLR) and 19.3% (PCA-FFBP) for next three-day predictions.

  14. Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece.

    PubMed

    Argyropoulos, Georgios; Manoli, Evangelia; Kouras, Athanasios; Samara, Constantini

    2012-08-15

    Ambient concentrations of PM(10) and associated major and trace elements were measured over the cold and the warm season of 2007 at two sites located in the Rhodes Island (Greece), in Eastern Mediterranean, aimed at source apportionment by Chemical Mass Balance (CMB) receptor modeling. Source chemical profiles, necessary in CMB modeling, were obtained for a variety of emission sources that could possibly affect the study area, including sea spray, geological material, soot emissions from the nearby oil-fuelled thermal power plant, and other anthropogenic activities, such as vehicular traffic, residential oil combustion, wood burning, and uncontrolled open-air burning of agricultural biomass and municipal waste. Source apportionment of PM(10) and elemental components was carried out by employing an advanced CMB version, the Robotic Chemical Mass Balance model (RCMB). Vehicular emissions were found to be major PM(10) contributor accounting, on average, for 36.8% and 31.7% during the cold period, and for 40.9% and 39.2% in the warm period at the two sites, respectively. The second largest source of ambient PM(10), with minor seasonal variation, was secondary sulfates (mainly ammonium and calcium sulfates), with total average contribution around 16.5% and 18% at the two sites. Soil dust was also a remarkable source contributing around 22% in the warm period, whereas only around 10% in the cold season. Soot emitted from the thermal power plant was found to be negligible contributor to ambient PM(10) (<1%), however it appeared to appreciably contribute to the ambient V and Ni (11.3% and 5.1%, respectively) at one of the sites during the warm period, when electricity production is intensified. Trajectory analysis did not indicate any transport of Sahara dust; on the contrary, long range transport of soil dust from arid continental regions of Minor Asia and of biomass burning aerosol from the countries surrounding the Black Sea was considered possible.

  15. Comparison of short-term exposure to particle number, PM10 and soot concentrations on three (sub) urban locations.

    PubMed

    Boogaard, Hanna; Montagne, Denise R; Brandenburg, Alexander P; Meliefste, Kees; Hoek, Gerard

    2010-09-15

    Recent interest has focused on the health effects of ultrafine particles because of the documented toxicity and the larger concentration contrast near motorways of UFP than for PM10 or PM2.5. There are only few studies that have measured UFP at inner-city streets simultaneously with other PM components. The aim of this study was to compare the contrast of UFP, PM(10) and soot measured simultaneously at 3 inner-city locations, namely a moderately busy street (15,000 vehicles/day), a city and a suburban background location. Simultaneously, measurements of particle number concentrations (PNC), PM(10) and soot have been conducted on three locations in and around Utrecht, a medium-sized city in the Netherlands for 20 weekdays in autumn 2008. Measurements were done for 6-h during afternoon and early evening. The mean PNC at the street location was more than 3 times higher than at the two background locations. The contrast was similar for soot concentrations. In PM(10) concentrations less contrast was found, namely 1.8 times. Mean PNC concentrations were poorly correlated with PM(10) and soot. At the street location, high temporal variation of PNC concentrations occurred within each sampling day, probably related to variations in traffic volumes, high-emission individual vehicles and wind direction. Temporal variation was smaller at the two background locations. Occasional unexplained short-term peaks occurred at the suburban background location. A relatively high correlation between PNC minute values at the two background locations was found, pointing to similar area-wide sources. Typically low correlations were found with the street locations, consistent with the dominant impact of local traffic. A large contrast between two background locations and a moderately busy urban street location was found for PNC and soot, comparable to previous studies of much busier motorways. Temporal variation of PNC was higher at the street location and uncorrelated with background

  16. Understanding intra-neighborhood patterns in PM2.5 and PM10 using mobile monitoring in Braddock, PA

    PubMed Central

    2012-01-01

    Background Braddock, Pennsylvania is home to the Edgar Thomson Steel Works (ETSW), one of the few remaining active steel mills in the Pittsburgh region. An economically distressed area, Braddock exceeds average annual (>15 μg/m3) and daily (>35 μg/m3) National Ambient Air Quality Standards (NAAQS) for particulate matter (PM2.5). Methods A mobile air monitoring study was designed and implemented in morning and afternoon hours in the summer and winter (2010–2011) to explore the within-neighborhood spatial and temporal (within-day and between-day) variability in PM2.5 and PM10. Results Both pollutants displayed spatial variation between stops, and substantial temporal variation within and across study days. For summer morning sampling runs, site-specific mean PM2.5 ranged from 30.0 (SD = 3.3) to 55.1 (SD = 13.0) μg/m3. Mean PM10 ranged from 30.4 (SD = 2.5) to 69.7 (SD = 51.2) μg/m3, respectively. During summer months, afternoon concentrations were significantly lower than morning for both PM2.5 and PM10, potentially owing to morning subsidence inversions. Winter concentrations were lower than summer, on average, and showed lesser diurnal variation. Temperature, wind speed, and wind direction predicted significant variability in PM2.5 and PM10 in multiple linear regression models. Conclusions Data reveals significant morning versus afternoon variability and spatial variability in both PM2.5 and PM10 concentrations within Braddock. Information obtained on peak concentration periods, and the combined effects of industry, traffic, and elevation in this region informed the design of a larger stationary monitoring network. PMID:23051204

  17. Trends in arsenic levels in PM10 and PM 2.5 aerosol fractions in an industrialized area.

    PubMed

    García-Aleix, J R; Delgado-Saborit, J M; Verdú-Martín, G; Amigó-Descarrega, J M; Esteve-Cano, V

    2014-01-01

    Arsenic is a toxic element that affects human health and is widely distributed in the environment. In the area of study, the main Spanish and second largest European industrial ceramic cluster, the main source of arsenic aerosol is related to the impurities in some boracic minerals used in the ceramic process. Epidemiological studies on cancer occurrence in Spain points out the study region as one with the greater risk of cancer. Concentrations of particulate matter and arsenic content in PM10 and PM2.5 were measured and characterized by ICP-MS in the area of study during the years 2005-2010. Concentrations of PM10 and its arsenic content range from 27 to 46 μg/m(3) and from 0.7 to 6 ng/m(3) in the industrial area, respectively, and from 25 to 40 μg/m(3) and from 0.7 to 2.8 ng/m(3) in the urban area, respectively. Concentrations of PM2.5 and its arsenic content range from 12 to 14 μg/m(3) and from 0.5 to 1.4 ng/m(3) in the urban background area, respectively. Most of the arsenic content is present in the fine fraction, with ratios of PM2.5/PM10 in the range of 0.65-0.87. PM10, PM2.5, and its arsenic content show a sharp decrease in recent years associated with the economic downturn, which severely hit the production of ceramic materials in the area under study. The sharp production decrease due to the economic crisis combined with several technological improvements in recent years such as substitution of boron, which contains As impurities as raw material, have reduced the concentrations of PM10, PM2.5, and As in air to an extent that currently meets the existing European regulations.

  18. Influence of synoptic and local atmospheric patterns on PM10 air pollution levels: a model application to Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Fortelli, Alberto; Scafetta, Nicola; Mazzarella, Adriano

    2016-10-01

    We investigate the relationship between synoptic/local meteorological patterns and PM10 air pollution levels in the metropolitan area of Naples, Italy. We found that severe air pollution crises occurred when the 850 and 500 hpa geopotential heights and their relative temperatures present maximum values above the city. The most relevant synoptic parameter was the 850 hPa geopotential height, which is located about 1500 m of altitude. We compared local meteorological conditions (specifically wind stress, rain amount and thermal inversion) against the urban air pollution levels from 2009 to 2013. We found several empirical criteria for forecasting high daily PM10 air pollution levels in Naples. Pollution crises occurred when (a) the wind stress was between 1 and 2 m/s, (b) the thermal inversion between two strategic locations was at least 3°C/200 m and (c) it did not significantly rain for at least 7 days. Beside these meteorological conditions, severe pollution crises occurred also during festivals when fireworks and bonfires are lighted, and during anomalous breeze conditions and severe fire accidents. Finally, we propose a basic model to predict PM10 concentration levels from local meteorological conditions that can be easily forecast a few days in advance. The synthetic PM10 record predicted by the model was found to correlate with the PM10 observations with a correlation coefficient close to 0.80 with a confidence level greater than 99%. The proposed model is expected to provide reliable information to city officials to carry out practical strategies to mitigate air pollution effects. Although the proposed model equation is calibrated on the topographical and meteorological conditions of Naples, it should be easily adaptable to alternative locations.

  19. Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000-2011

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.

    2015-12-01

    Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.

  20. Attributable risk of ambient PM10 on daily mortality and years of life lost in Chengdu, China.

    PubMed

    Chen, Fei; Deng, Zibing; Deng, Ying; Qiao, Zhijiao; Lan, Lan; Meng, Qiong; Luo, Bin; Zhang, Wei; Ji, Kui; Qiao, Xue; Fan, Zhiwei; Zhang, Meixia; Cui, Yan; Zhao, Xing; Li, Xiaosong

    2017-03-01

    Attributable risk is an important indicator for planning and evaluating public health interventions. However, most current measures of the attributable risk of air pollutants have not considered temporal relationships between exposure and risk. More importantly, limited information is available regarding the attributable risk due to ambient air pollutants in basin regions like the Sichuan Basin, China. To quantify the association between PM10 and deaths in the Basin region, we used a measure proposed recently within the framework of the distributed lag non-linear model to estimate the attributable risk in Chengdu, China. Meanwhile, we examined the association between PM10 and years of life lost (YLL). Our analysis showed that population-attributable fractions for non-accidental, respiratory, and cardiovascular mortality were 0.569% (95% CI: -3.474%, 4.374%), 0.695% (95% CI: -5.260%, 6.457%), and 0.631% (95% CI: -6.973%, 7.390%), respectively. On average, a 1μg/m(3) increase in PM10 was associated with cumulative increases of 0.26893, 0.30437, and 0.21924 YLL for non-accidental, respiratory, and cardiovascular mortality, respectively, referring to 20μg/m(3). In addition, we found an inverse U-shaped pattern for the cumulative risk with 350μg/m(3) as the reverse point. With a 1μg/m(3) increase in PM10, YLL changed more significantly than mortality. Moreover, PM10 demonstrated remarkable effects on YLL among men and the elderly.

  1. 40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM10 Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pb in PM10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10 Methods Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10...

  2. 40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM10 Methods

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pb in PM10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10 Methods Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10...

  3. Particle-induced oxidative damage of indoor PM10 from coal burning homes in the lung cancer area of Xuan Wei, China

    NASA Astrophysics Data System (ADS)

    Shao, Longyi; Hu, Ying; Wang, Jing; Hou, Cong; Yang, Yuanyuan; Wu, Mingyuan

    2013-10-01

    The lung cancer mortality rate in the rural area of the Xuan Wei, Yunnan, is among the highest in China, especially in women. In this paper, the coal-burning indoor and corresponding outdoor PM10 samples were collected at the Hutou village, representing the case of high lung cancer rate, and the Xize village, representing the case of low lung cancer rate. Plasmid scission assay was used to investigate the bioreactivity of the PM10. The inductively coupled plasma-mass spectrometry (ICP-MS) was employed to investigate the trace element compositions of the PM10. The results showed that the oxidative damage caused by both indoor and outdoor PM10 at the Hutou village was obviously higher than that at the Xize village, with the indoor PM10 having higher oxidative damage than corresponding outdoors. Among all analyzed samples, the indoor night PM10 samples from the Hutou village have the highest oxidative capacity. The levels of total water-soluble elements had a higher level in the PM10 of the Hutou village than that of the Xize village. It is interesting that the levels of water-soluble As, Cd, Cs, Pb, Sb, Tl and Zn in PM10 had better positive correlation with DNA damage rates, implying that these elements in their water-soluble state should be one of the main factors responsible for the high oxidative capacity of PM10, thus possibly the higher lung cancer rates, at the Hutou village.

  4. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning.

    PubMed

    Maenhaut, Willy; Vermeylen, Reinhilde; Claeys, Magda; Vercauteren, Jordy; Roekens, Edward

    2016-08-15

    From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions were measured by ion chromatography, and 15 elements were determined by a combination of inductively coupled plasma atomic emission spectrometry and mass spectrometry. The multi-species dataset was subjected to receptor modeling by PMF. The 10 retained factors (with their overall average percentage contributions to the experimental PM10 mass) were wood burning (9.5%), secondary nitrate (24%), secondary sulfate (12.6%), sea salt (10.0%), aged sea salt (19.2%), crustal matter (9.7%), non-ferrous metals (1.81%), traffic (10.3%), non-exhaust traffic (0.52%), and heavy oil burning (3.0%). The average contributions of wood smoke for the four sites were quite substantial in winter and ranged from 12.5 to 20% for the PM10 mass and from 47 to 64% for PM10 OC. Wood burning appeared to be also a notable source of As, Cd, and Pb. The contribution from wood burning to the PM10 mass and OC was also assessed by making use of levoglucosan as single marker compound and the conversion factors of Schmidl et al. (2008), as done in our previous study on wood burning in Flanders (Maenhaut et al., 2012). However, the apportionments were much lower than those deduced from PMF. It seems that the conversion factors of Schmidl et al. (2008) may not be applicable to wood burning in Flanders. From scatter plots of the PMF-derived wood smoke OC and PM versus levoglucosan, we arrived at conversion factors of 9.7 and 22.6, respectively.

  5. Comparison between light scattering and gravimetric samplers for PM10 mass concentration in poultry and pig houses

    NASA Astrophysics Data System (ADS)

    Cambra-López, María; Winkel, Albert; Mosquera, Julio; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    The objective of this study was to compare co-located real-time light scattering devices and equivalent gravimetric samplers in poultry and pig houses for PM10 mass concentration, and to develop animal-specific calibration factors for light scattering samplers. These results will contribute to evaluate the comparability of different sampling instruments for PM10 concentrations. Paired DustTrak light scattering device (DustTrak aerosol monitor, TSI, U.S.) and PM10 gravimetric cyclone sampler were used for measuring PM10 mass concentrations during 24 h periods (from noon to noon) inside animal houses. Sampling was conducted in 32 animal houses in the Netherlands, including broilers, broiler breeders, layers in floor and in aviary system, turkeys, piglets, growing-finishing pigs in traditional and low emission housing with dry and liquid feed, and sows in individual and group housing. A total of 119 pairs of 24 h measurements (55 for poultry and 64 for pigs) were recorded and analyzed using linear regression analysis. Deviations between samplers were calculated and discussed. In poultry, cyclone sampler and DustTrak data fitted well to a linear regression, with a regression coefficient equal to 0.41, an intercept of 0.16 mg m-3 and a correlation coefficient of 0.91 (excluding turkeys). Results in turkeys showed a regression coefficient equal to 1.1 (P = 0.49), an intercept of 0.06 mg m-3 (P < 0.0001) and a correlation coefficient of 0.98. In pigs, we found a regression coefficient equal to 0.61, an intercept of 0.05 mg m-3 and a correlation coefficient of 0.84. Measured PM10 concentrations using DustTraks were clearly underestimated (approx. by a factor 2) in both poultry and pig housing systems compared with cyclone pre-separators. Absolute, relative, and random deviations increased with concentration. DustTrak light scattering devices should be self-calibrated to investigate PM10 mass concentrations accurately in animal houses. We recommend linear regression

  6. Source apportionment of PM 10 at residential and industrial sites of an urban region of Kolkata, India

    NASA Astrophysics Data System (ADS)

    Karar, Kakoli; Gupta, A. K.

    2007-03-01

    PM 10 and its chemical species mass concentrations were measured once in a week at residential (Kasba) and industrial (Cossipore) sites of an urban region of Kolkata for a period of 24 h during November 2003 to November 2004. At each monitoring site, 53 sets of daily average PM 10 samples were collected during the study period. Approximately 55% of the monitoring days are weekdays, while 45% are weekends. The PM 10 mass concentrations ranged from 68.2 to 280.6 μg m - 3 at the residential site, and 62.4 to 401.2 μg m - 3 at the industrial site. Polycyclic aromatic hydrocarbon compounds (PAH), fluoranthene (Fl), pyrene (Py), benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF) and benzo(a)pyrene (BaP) have been analyzed using Gas Chromatoghaphy. Metals in PM 10 deposited on quartz microfibre filter papers were measured using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), manganese (Mn) and iron (Fe) are the seven toxic trace metals quantified from the measured PM 10 concentrations. Total carbon (TC), inorganic carbon (IC) and organic carbon (OC) were analyzed using a Carbon analyzer. Exposed quartz microfibre filter papers were also analyzed for water-soluble anions of fluoride (F -), chloride (Cl -), nitrate (NO 3-), phosphate (PO 43-) and sulfate (SO 42-) using ion chromatography. In this study, principal component analysis (PCA)/absolute principal component scores (APCS) model was applied to the mass concentrations of PM 10 and its chemical species. Principal component analysis with varimax rotation identified five possible sources; solid waste dumping, vehicular emission, coal combustion, cooking and soil dust at residential site. The extracted possible sources at the industrial site were vehicular emissions, coal combustion, electroplating industry, tyre wear and secondary aerosol. A quantitative estimation by principal component analysis-multiple linear regression (PCA-MLR) model

  7. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    PubMed

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta.

  8. Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models.

    PubMed

    Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj

    2016-10-01

    Source apportionment study of PM10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM10.

  9. Size-fractionated PM10 monitoring in relation to the contribution of endotoxins in different polluted areas

    NASA Astrophysics Data System (ADS)

    Traversi, D.; Alessandria, L.; Schilirò, T.; Gilli, G.

    2011-07-01

    Particulate pollution is an environmental concern that is widespread and difficult to resolve. Recently various regulatory improvements around the world have been agreed upon to tackle this problem, especially as related to the fine fraction of particulates, which more closely correlates to human health effects than other fractions. The size-fractionation of inhalable particles and their organic composition represent a new area of research that has been poorly explored thus far. Endotoxins are a type of natural organic compound that can be found in particulate matter. They are correlated with Gram-negative bacterial contamination. Health outcomes associated with exposure to these toxins are not specific and often overlap with the health effects of PM (Particulate Matter) exposure, including asthma, bronchitis, acute respiratory distress syndrome and organic dust toxic syndrome. Very little information is available on the endotoxin distribution in different PM10 size fractions. This study examined PM10 size fractions and their endotoxin content. Sampling was conducted at five different locations: one urban, two rural and two rural sites that were highly influenced by large-scale farm animal production facilities. For each location, six different PM10 fractions were evaluated. PM10 sub-fractions were categorised as follows: PM 10-7.2 (1.15-31.30 μg m -3); PM 7.2-3.0 (1.86-30.73 μg m -3); PM 3.0-1.5 (1.74-13.90 μg m -3); PM 1.5-0.95 (0.24-10.57 μg m -3); PM 0.95-0.49 (1.22-14.33 μg m -3) and PM <0.49 (13.15-85.49 μg m -3). The ranges of endotoxin levels determined were: PM 10-7.2 (0.051-5.401 endotoxin units (EU) m -3); PM 7.2-3.0 (0.123-7.801 EU m -3); PM 3.0-1.5 (0.057-1.635 EU m -3); PM 1.5-0.95 (0.040-2.477 EU m -3); PM 0.95-0.49 (0.007-3.159 EU m -3) and PM <0.49 (0.039-3.975 EU m -3). Our results indicated consistency of the PM1 fraction at all of the sites and the predominant presence of endotoxins in the coarse fraction. The observed abatement of the PM

  10. Polar organic and inorganic markers in PM10 aerosols from an inland city of China--seasonal trends and sources.

    PubMed

    Xie, Mingjie; Wang, Gehui; Hu, Shuyuan; Gao, Shixiang; Han, Qingyou; Xu, Yajuan; Feng, Jianfang

    2010-10-15

    Polar organic compounds and elements were quantified in PM(10) aerosols collected in urban and rural areas of Baoji, an inland city of China, during winter and spring 2008. Concentrations of biomass burning markers and high molecular weight n-alkanoic acids (HMW, >C(22:0)) were heavily increased in winter. In contrast, sugars presented in higher levels in the spring, among which sucrose was the most abundant with an average of 219ngm(-3) in winter and 473ngm(-3) in spring respectively. This suggests enhanced biotic activity in the warm season, whereas no obvious trend was observed for sugar alcohols, concentrations of the three sugar alcohols in spring were only 0.94-2.3 times as those in winter, indicating a second pathway of their formation other than fungal spores in cold season. Major crustal elements (i.e., Fe, K, Mn and Ti) in PM(10) aerosols were also observed in larger concentrations in spring samples than those in winter due to an enhancement of coarse particles from soil minerals. By using principal component analysis (PCA) and positive matrix factorization (PMF), sources and their contributions to the PM components were also investigated in this study. Four factors were extracted with both models, and the sources represented by different factors were based on the highest loaded marker species as follows: factor 1, soil and road dust (Fe, Sr and Ti); factor 2, biomass burning (levoglucosan, galactosan and syringic acid); factor 3, microbial emissions (fructose and sucrose); and factor 4, fossil fuel combustion and fungal spores influence (Pb, Zn, arabitol and mannitol). The high correlation between PM(10) and factor 1 suggested that PM(10) pollution in Baoji was dominated by soil and dust re-suspension.

  11. Origins of PM10 determined by the micro-proton induced X-ray emission spectra of single aerosol particles.

    PubMed

    Yue, Weisheng; Li, Xiaolin; Wan, Tianmin; Liu, Jiangfeng; Zhang, Guilin; Li, Yan

    2006-06-01

    The micro-proton induced X-ray emission (micro-PIXE) spectrum of a single aerosol particle (SAP) was considered as its fingerprint for tracing its origin. A proton microprobe was used to extract fingerprints of SAPs. Environmental monitoring samples of PM(10) were collected from a heavy industrial area of Shanghai and were analyzed by proton microprobe for finding their pollution sources. In order to find the sources of SAPs collected from environmental monitoring sites, a fingerprint database of SAPs collected from various pollution sources was established. The origins of samples collected through environmental monitoring were identified by comparison of the micro-PIXE spectra of SAPs with those of SAPs in the fingerprint database using a pattern recognition technique. The results of this study show that most of the measured PM(10) is derived from metallurgic industry, soil dust, coal combustion, automobile exhaust, and motorcycle exhaust. The study also shows that the proton microprobe is an ideal tool for the analysis of SAPs. The unidentified particles of PM(10) are classified into seven classes by hierarchical cluster analysis based on the element peak intensity in the spectra.

  12. Characteristics of atmospheric non-methane hydrocarbons during high PM 10 episodes and normal days in Foshan, China

    NASA Astrophysics Data System (ADS)

    Guo, Songjun; Tan, Jihua; Ma, Yongliang; Yang, Fumo; Yu, Yongchan; Wang, Jiewen

    2011-08-01

    Atmospheric non-methane hydrocarbons (NMHCs) were firstly studied during high PM 10 episodes and normal days in December 2008 in Foshan, China. Ethyne, ethene, i-pentane, toluene, ethane and propane are six abundant hydrocarbons, accounting for round 80% of total NMHCs. Both diurnal variations and concentration ratios of morning (evening)/afternoon implied vehicular emission for most hydrocarbons. Correlation coefficients (R 2) of ethene, propene, i-butene, benzene, toluene and i-/n-butanes with ethyne were 0.60-0.88 (they were 0.64-0.88 during high PM 10 episode and 0.60-0.85 in normal days) except for ethene and i-butene in normal days, indicating these hydrocarbons are mainly related to vehicular emission. It suggests liquefied petroleum gas (LPG) and natural gas (NG) leakages are responsible for propane and ethane, respectively. The measured mean benzene/toluene (B/T) ratio (wt/wt) was 0.45 ± 0.29 during total sampling periods together with R 2 analysis, again indicating vehicular emission is main contributor to ambient hydrocarbons. And the lower B/T ratio (0.29 ± 0.11) during high PM 10 episodes than that (0.75 ± 0.29) in normal days is likely caused by air transport containing low B/T value (0.23) from Guangzhou as well as solvent application containing toluene in Foshan.

  13. Origins of PM10 determined by the micro-proton induced X-ray emission spectra of single aerosol particles

    SciTech Connect

    Yue, W.S.; Li, X.L.; Wan, T.M.; Liu, J.F.; Zhang, G.L.; Li, Y.

    2006-06-15

    The micro-proton induced X-ray emission (micro-PIXE) spectrum of a single aerosol particle (SAP) was considered as its fingerprint for tracing its origin. A proton microprobe was used to extract fingerprints of SAPs. Environmental monitoring samples of PM10 were collected from a heavy industrial area of Shanghai and were analyzed by proton microprobe for finding their pollution sources. In order to find the sources of SAPs collected from environmental monitoring sites, a fingerprint database of SAPS collected from various pollution Sources was established. The origins of samples collected through environmental monitoring were identified by comparison of the micro-PIXE spectra of SAPs with those of SAPs in the fingerprint database using a pattern recognition technique. The results of this study show that most of the measured PM10 is derived from metallurgic industry, soil dust, coal combustion, automobile exhaust, and motorcycle exhaust. The study also shows that the proton microprobe is an ideal tool for the analysis of SAPs. The unidentified particles of PM10 are classified into seven classes by hierarchical cluster analysis based on the element peak intensity in the spectra.

  14. Evaluation of static pressure drops and PM10 and TSP emissions for modified 1D-3D cyclones

    SciTech Connect

    Holt, G.A.; Baker, R.V.; Hughs, S.E.

    1999-12-01

    Five modifications of a standard 1D3D cyclone were tested and compared against the standard 1D3D design in the areas of particulate emissions and static pressure drop across the cyclone. The modifications to the 1D3D design included a 2D2D inlet, a 2D2D air outlet, a D/3 trash exit, an expansion chamber with a D/3 trash exit, and a tapered air outlet duct. The 1D3D modifications that exhibited a significant improvement in reducing both PM10 and total suspended particulate (TSP) emissions were the designs with the 2D2D inlet and air exhaust combined with either the conical D/3 tail cone or the expansion chamber. In reference to the standard 1D3D cyclone, the average reduction in PM10 emissions was 24 to 29% with a 29 to 35% reduction observed in TSP emissions. The modifications with the tapered air outlets did not show any significant improvements in controlling PM10 emissions. However, the modification with the tapered air outlet/expansion chamber combination exhibited statistical significance in reducing TSP emissions by 18% compared to the 1D3D cyclone. All modifications tested exhibited lower static pressure drops than the standard 1D3D.

  15. Physicochemical characterization of winter PM10 aerosol impacted by sugarcane burning from São Paulo city, Brazil

    NASA Astrophysics Data System (ADS)

    Caumo, Sofia E. S.; Claeys, Magda; Maenhaut, Willy; Vermeylen, Reinhilde; Behrouzi, Shabnam; Safi Shalamzari, Mohammad; Vasconcellos, Pérola C.

    2016-11-01

    Atmospheric particulate matter samples (PM10) were collected at an urban site in São Paulo (SPA) city in winter episodes of 2012 and 2013. Several organic compounds were determined in the samples to characterize the composition of the particulate matter with emphasis on marker compounds for biomass burning. Organic carbon (OC), elemental carbon (EC), monosaccharide anhydrides, monosaccharides, nitroaromatic compounds, isoprene secondary organic aerosol markers, and polyols were measured. The PM10, OC and EC median concentrations were higher for samples collected in 2013 than in 2012, with the contribution of OC to the PM10 mass being 17% and 11% in 2012 and 2013. The three anhydrosugars, levoglucosan, mannosan and galactosan together, accounted, on average, for 2.0 and 2.2% of the OC mass in 2012 and 2013, whereas the nitro-aromatic compounds, including 4-nitrophenol, 4-nitrocatechol, isomeric methyl nitrocatechols and dimethyl catechols, showed the same trend, contributing, on average, for 0.28% and 0.35% to the OC mass in 2012 and 2013, and thus indicating a higher contribution from biomass burning in 2013 compared to 2012. The methyl nitrocatechols were substantially correlated with levoglucosan, consistent with their proposed origin from biomass burning. The results demonstrate that biomass burning compounds are important contributors to the OC mass, especially in winter. Furthermore, it is suggested that a levoglucosan/galactosan ratio smaller than about 30 may be indicative for regional sugarcane burning and not for advected air from sites that are impacted by tropical forest fires.

  16. The direct influence of ship traffic on atmospheric PM2.5, PM10 and PAH in Venice.

    PubMed

    Contini, D; Gambaro, A; Belosi, F; De Pieri, S; Cairns, W R L; Donateo, A; Zanotto, E; Citron, M

    2011-09-01

    The direct influence of ship traffic on atmospheric levels of coarse and fine particulate matter (PM(2.5), PM(10)) and fifteen polycyclic aromatic hydrocarbons (PAHs) has been estimated in the urban area of Venice. Data analysis has been performed on results collected at three sites over the summer, when ship traffic is at a maximum. Results indicate that monitoring of the PM daily concentrations is not sufficiently detailed for the evaluation of this contribution, even though it could be useful for specific markers such as PAHs. Therefore a new methodology, based on high temporal resolution measurements coupled with wind direction information and the database of ship passages of the Harbour Authority of Venice has been developed. The sampling sites were monitored with optical detectors (DustTrack(®) and Mie pDR-1200) operating at a high temporal resolution (20s and 1s respectively) for PM(2.5) and PM(10). PAH in the particulate and gas phases were recovered from quartz fibre filters and polyurethane foam plugs using pressurised solvent extraction, the extracts were then analysed by gas chromatography- high-resolution mass spectrometry. Our results shows that the direct contribution of ships traffic to PAHs in the gas phase is 10% while the contribution to PM(2.5) and to PM(10) is from 1% up to 8%.

  17. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Criteria and procedures: Localized CO....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph applies at all times. The FHWA/FTA project must not cause or contribute to any new localized CO, PM10,...

  18. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Criteria and procedures: Localized CO....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph applies at all times. The FHWA/FTA project must not cause or contribute to any new localized CO, PM10,...

  19. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Criteria and procedures: Localized CO....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph applies at all times. The FHWA/FTA project must not cause or contribute to any new localized CO, PM10,...

  20. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of.... or the Federal Transit Laws § 93.123 Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by §...

  1. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of.... or the Federal Transit Laws § 93.123 Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by §...

  2. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of.... or the Federal Transit Laws § 93.123 Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by §...

  3. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Procedures for determining localized CO... Transit Laws § 93.123 Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by § 93.116 (“Localized CO, PM10,...

  4. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Criteria and procedures: Localized CO....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph applies at all times. The FHWA/FTA project must not cause or contribute to any new localized CO, PM10,...

  5. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of.... or the Federal Transit Laws § 93.123 Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by §...

  6. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Criteria and procedures: Localized CO....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph applies at all times. The FHWA/FTA project must not cause or contribute to any new localized CO, PM10,...

  7. 40 CFR Figure C-3 to Subpart C of... - Illustration of the Slope and Intercept Limits for Class II and Class III PM 10-2,5 Candidate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Illustration of the Slope and Intercept Limits for Class II and Class III PM 10-2,5 Candidate Equivalent Methods C Figure C-3 to Subpart C of...—Illustration of the Slope and Intercept Limits for Class II and Class III PM 10-2,5 Candidate...

  8. 40 CFR Figure C-3 to Subpart C of... - Illustration of the Slope and Intercept Limits for Class II and Class III PM 10-2.5 Candidate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Illustration of the Slope and Intercept Limits for Class II and Class III PM 10-2.5 Candidate Equivalent Methods C Figure C-3 to Subpart C of...—Illustration of the Slope and Intercept Limits for Class II and Class III PM 10-2.5 Candidate...

  9. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Principle 1.1This method provides for the measurement of the lead (Pb) concentration in particulate matter... O to Part 50 using the same sample period, measurement procedures, and requirements specified in appendix L of Part 50. The PM10c sampler is also being used for measurement of PM10−2.5 mass by...

  10. Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10: Health risk and sources in southwest Mexico City

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, Omar; Bazán-Torija, S.; Villa-Ferreira, S. A.; Villalobos-Pietrini, Rafael; Bravo-Cabrera, José Luis; Munive-Colín, Zenaida; Hernández-Mena, Leonel; Saldarriaga-Noreña, H.; Murillo-Tovar, M. A.

    2013-03-01

    This study reports the measurement of polycyclic aromatic hydrocarbons (PAHs) in airborne particles ≤ 10 μm (PM10) during four years. Seasonal variation was observed for PM10 and PAH in southwest Mexico City, with major mass concentrations during the dry season (November-April). A non linear decreasing trend of PM10 was observed during this period, while a linear increase (in the four years) was obtained for benzo[a]pyrene (88 pg m- 3), phenanthrene (29 pg m- 3), fluoranthene (88 pg m- 3), and benzo[ghi]perylene (438 pg m- 3). Coronene also showed an increasing trend but it was nonlinear. This suggests that air control strategies implemented by the government contributed to maintaining PM10 under the 24 h maximum limit and resulted in a decreasing trend during this period. However, these strategies did not result in controlling some organic constituents with mutagenic and/or carcinogenic properties as it is the case of benzo[a]pyrene. The annual average of this PAH exceeded the UK recommendation. It was estimated a median (10th-90th) lifetime health risk of 7.6 (3.4-17.2) additional cases of cancer per 10 million people in this zone exists and the health risk of PAH is almost three times greater in dry seasons than it is in rainy seasons. Specific humidity, temperature and wind speed acted as cleaners for PM10 and PAH from the atmosphere. PAH diagnostic ratios and correlation and principal component analyses suggest incomplete combustion from gasoline and diesel engines as the main contributor to PAH found in southwest Mexico City, where factor 1 grouped all PAH emitted from gasoline engines during first three years. During last year, factor 1 only grouped PAH markers of diesel engines. This suggests a change of emission amounts between gasoline and diesel combustion sources or a contribution of other source(s) which changed the PAH profiles. During four years retene was always separated from factors which grouped the rest of PAH, due to its wood combustion

  11. Lidar-derived PM10 and comparison with regional modeling in the frame of the MEGAPOLI Paris summer campaign

    NASA Astrophysics Data System (ADS)

    Royer, P.; Chazette, P.; Artelet, K. S.; Zhang, Q. J.; Beekmann, M.; Raut, J.-C.

    2011-04-01

    An original approach using mobile lidar measurements was implemented to validate mass concentrations (PM10) predicted by chemistry-transport models. A ground-based mobile lidar (GBML) was deployed around Paris onboard a van during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) summer experiment in July 2009. The measurements performed with this Rayleigh-Mie lidar are converted into PM10 profiles using optical-to-mass relationships previously established from in situ measurements performed around Paris for urban and peri-urban aerosols. The method is described here and applied to the 10 measurements days (MD). MD of 1, 15, 16 and 26 July 2009 correspond to contrasted levels of pollution and atmospheric conditions. They are analyzed here in more details. Lidar-derived PM10 are compared with results of simulations from POLYPHEMUS and CHIMERE chemistry-transport models (CTM) and with ground-based observations from AIRPARIF network. GBML-derived and AIRPARIF in situ measurements have been found to be in good agreement with a mean Root Mean Square Error RMSE (and a Mean Absolute Percentage Error MAPE) of 5.9 μg m-3 (21.0%) with peri-urban and 8.7 μg m-3 (25.4%) with urban relationships, respectively. The comparisons between CTMs and lidar have shown that CTMs tend to underestimate wet PM10 concentrations as revealed by the mean wet PM10 observed during the 10 MD of 22.7, 20.0 and 17.5 μg m-3 for lidar with peri-urban relationship, POLYPHEMUS and CHIMERE models, respectively. This leads to a RMSE (and a MAPE) of 7.2 μg m-3 (33.4%) and 7.4 μg m-3 (32.0%) when considering POLYPHEMUS and CHIMERE CTMs, respectively. Wet integrated PM10 computed (between the ground and 1 km above the ground level) from lidar, POLYPHEMUS and CHIMERE results have been compared and have shown similar results with a RMSE (and MAPE) of 6.7 μg m-2 (30.7%) and 7.1 μg m-2 (28.4%) with

  12. [Size distribution characteristics of polycyclic aromatic hydrocarbons of PM10 in foggy days in the north suburb of Nanjing].

    PubMed

    Fan, Shu-Xian; Huang, Hong-Li; Fan, Tao; Tang, Li-Li; Yang, Xue-Zhen; Li, Hong-Shuang

    2009-09-15

    Based on meteorological data and aerosol samples from Nov.15 to Dec.30,2007 in the north suburb of Nanjing, size distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in PM10 in foggy and sunny days were studied, and the concentrations of 16 PAHs were analyzed by gas chromatography with mass selective detection (GC-MS). The average concentrations of aerosols in the night (PM2.1 : 120.34 microg x m(-3; PM10 : 215.92 microg*m(-3) are close to those in the daytime (PM2.1 : 26.76 microg.m(-3); PM9.0 : 213.41 microg x m(-3)) in foggy days. The average concentrations of aerosols are higher in the night (PM2.1 : 71.45 microg x m(-3); PM9.0 : 114.33 microg x m(-3)) than those in the daytime (PM2.1 : 41.02 microg x m(-3); PM9.0 : 74.38 microg x m(-3)) in fine days. And we also find that the total concentrations of 16 PAHs in PM2.1 (49.97 ng x m(-3)) and PM9.0 (59.45 ng x m(-3)) in foggy days are 1.50 and 1.46 times of those (PM2.1 : 33.30 ng x m(-3); PM9.0 : 40.80 ng x m(-3)) in fine days separately. The average maximum concentrations of individual PAHs are fluoranthene, which are higher (PM2.1 : 7.98 ng x m(-3); PM9.0 : 9.99 ng x m(-3)) in foggy days than those (PM2.5 : 5.23 ng x m(-3); PM9.0 : 6.77 ng x m(-3)) in fine days, and the average concentrations of benzo-apyrene are higher in fog days (PM2.1 : 1.77 ng x m(-3); PM9.0 : 1.99 ng x m(-3)) than those in fine days (PM2.1 : 1.46 microg x m(-3); PM9.0 : 1.84 ng x m(-3)).Those results indicate that the fog processing could aggravate the pollution of PM2.5 and PM10 near the ground layer. Diurnal size distribution of total PAHs in PM10 is consistent with that of PM10 in foggy and sunny days, and size distribution investigated was bi-modal with a peak in accumulation particle mode and another peak in coarse particle mode aerosol. Size distributions of PM10 and total PAHs in PM10 are affected greatly by the day fog in daytime, while those are affected little by the night fog in night.

  13. Comparisons of urban and rural PM10-2.5 and PM2.5 mass concentrations and semi-volatile fractions in Northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, N.; Hannigan, M. P.; Miller, S. L.; Peel, J. L.; Milford, J. B.

    2015-09-01

    Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), for three years in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 μg m-3 and mean PM10-2.5/PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m s-1. Little wind speed dependence was observed for the residential sites in Denver and Greeley.

  14. Comparisons of urban and rural PM10-2.5 and PM2.5 mass concentrations and semi-volatile fractions in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas; Hannigan, Michael P.; Miller, Shelly L.; Peel, Jennifer L.; Milford, Jana B.

    2016-06-01

    Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), from 2009 to early 2012 in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg m-3 and mean PM10-2.5 / PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m s-1. Little wind speed dependence was observed for the residential sites in Denver and Greeley. The mass

  15. Source apportionment of PM10, organic carbon and elemental carbon at Swiss sites: an intercomparison of different approaches.

    PubMed

    Gianini, M F D; Piot, C; Herich, H; Besombes, J-L; Jaffrezo, J-L; Hueglin, C

    2013-06-01

    In this study, the results of source apportionment of particulate matter (PM10), organic carbon (OC), and elemental carbon (EC) - as obtained through different approaches at different types of sites (urban background, urban roadside, and two rural sites in Switzerland) - are compared. The methods included in this intercomparison are positive matrix factorisation modelling (PMF, applied to chemical composition data including trace elements, inorganic ions, OC, and EC), molecular marker chemical mass balance modelling (MM-CMB), and the aethalometer model (AeM). At all sites, the agreement of the obtained source contributions was reasonable for OC, EC, and PM10. Based on an annual average, and at most of the considered sites, secondary organic carbon (SOC) is the component with the largest contribution to total OC; the most important primary source of OC is wood combustion, followed by road traffic. Secondary aerosols predominate in PM10. All considered techniques identified road traffic as the dominant source of EC, while wood combustion emissions are of minor importance for this constituent. The intercomparison of different source apportionment approaches is helpful to identify the strengths and the weaknesses of the different methods. Application of PMF has limitations when source emissions have a strong temporal correlation, or when meteorology has a strong impact on PM variability. In these cases, the use of PMF can result in mixed source profiles and consequently in the under- or overestimation of the real-world sources. The application of CMB models can be hampered by the unavailability of source profiles and the non-representativeness of the available profiles for local source emissions. This study also underlines that chemical transformations of molecular markers in the atmosphere can lead to the underestimation of contributions from primary sources, in particular during the summer period or when emission sources are far away from the receptor sites.

  16. Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013

    NASA Astrophysics Data System (ADS)

    Alastuey, Andrés; Querol, Xavier; Aas, Wenche; Lucarelli, Franco; Pérez, Noemí; Moreno, Teresa; Cavalli, Fabrizia; Areskoug, Hans; Balan, Violeta; Catrambone, Maria; Ceburnis, Darius; Cerro, José C.; Conil, Sébastien; Gevorgyan, Lusine; Hueglin, Christoph; Imre, Kornelia; Jaffrezo, Jean-Luc; Leeson, Sarah R.; Mihalopoulos, Nikolaos; Mitosinkova, Marta; O'Dowd, Colin D.; Pey, Jorge; Putaud, Jean-Philippe; Riffault, Véronique; Ripoll, Anna; Sciare, Jean; Sellegri, Karine; Spindler, Gerald; Espen Yttri, Karl

    2016-05-01

    The third intensive measurement period (IMP) organised by the European Monitoring and Evaluation Programme (EMEP) under the UNECE CLTRAP took place in summer 2012 and winter 2013, with PM10 filter samples concurrently collected at 20 (16 EMEP) regional background sites across Europe for subsequent analysis of their mineral dust content. All samples were analysed by the same or a comparable methodology. Higher PM10 mineral dust loadings were observed at most sites in summer (0.5-10 µg m-3) compared to winter (0.2-2 µg m-3), with the most elevated concentrations in the southern- and easternmost countries, accounting for 20-40 % of PM10. Saharan dust outbreaks were responsible for the high summer dust loadings at western and central European sites, whereas regional or local sources explained the elevated concentrations observed at eastern sites. The eastern Mediterranean sites experienced elevated levels due to African dust outbreaks during both summer and winter. The mineral dust composition varied more in winter than in summer, with a higher relative contribution of anthropogenic dust during the former period. A relatively high contribution of K from non-mineral and non-sea-salt sources, such as biomass burning, was evident in winter at some of the central and eastern European sites. The spatial distribution of some components and metals reveals the influence of specific anthropogenic sources on a regional scale: shipping emissions (V, Ni, and SO42-) in the Mediterranean region, metallurgy (Cr, Ni, and Mn) in central and eastern Europe, high temperature processes (As, Pb, and SO42-) in eastern countries, and traffic (Cu) at sites affected by emissions from nearby cities.

  17. Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban environment

    NASA Astrophysics Data System (ADS)

    Titos, G.; Lyamani, H.; Pandolfi, M.; Alastuey, A.; Alados-Arboledas, L.

    2014-06-01

    PM10 and PM1 samples were collected at an urban site in southeastern Spain during 2006-2010. The chemical composition of all samples has been determined and analyzed by Positive Matrix Factorization (PMF) technique for fine and coarse source identification. The PMF results have been analyzed for working and non-working days in order to evaluate the change in PM sources contribution and possible future abatement strategies. A decreasing trend in PM10 levels and in its constituents has been observed, being partly associated to a reduction in anthropogenic activities due to the economic crisis. The use of fine and coarse PM in the PMF analysis allowed us for the identification of additional sources that could not be identified using only one size fraction. The mineral dust source was identified in both fractions and comprised 36 and 22% of the total mass in the coarse and fine fractions, respectively. This high contribution of the mineral source to the fine fraction may be ascribed to contamination of the source profile. The regional re-circulation source was traced by secondary sulfate, V and Ni. It was the most important source concerning PM1 mass concentration (41% of the total mass in this fraction). Although V and Ni are commonly associated to fuel oil combustion the seasonality of this source with higher concentrations in summer compared with winter suggest that the most important part of this source can be ascribed to regional pollution episodes. A traffic exhaust source was identified but only in the fine fraction, comprising 29% of the fine mass. The celestite mines source associated with nearby open-pit mines was typified by strontium, sulfate and mineral matter. PM10-1 levels were higher in working days, whereas PM1 levels remained fairly constant throughout the whole week. As a conclusion, traffic seems to be the main source to target in Granada.

  18. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal

    NASA Astrophysics Data System (ADS)

    Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.

    2009-04-01

    A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.

  19. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, Natalie S.; Germino, Matthew J.; Lamb, Brian K.; Robichaud, Peter R.; Foltz, Randy B.

    2013-09-01

    Wind erosion and aeolian transport processes are under studied compared to rainfall-induced erosion and sediment transport on burned landscapes. Post-fire wind erosion studies have predominantly focused on near-surface sediment transport and associated impacts such as on-site soil loss and site fertility. Downwind impacts, including air quality degradation and deposition of dust or contaminants, are also likely post-fire effects; however, quantitative field measurements of post-fire dust emissions are needed for assessment of these downwind risks. A wind erosion monitoring system was installed immediately following a desert sagebrush and grass wildfire in southeastern Idaho, USA to measure wind erosion from the burned landscape. This paper presents measurements of horizontal sediment flux and PM10 vertical flux from the burned area. We determined threshold wind speeds and corresponding threshold friction velocities to be 6.0 and 0.20 m s-1, respectively, for the 4 months immediately following the fire and 10 and 0.55 m s-1 for the following spring months. Several major wind erosion events were measured in the months following the July 2010 Jefferson Fire. The largest wind erosion event occurred in early September 2010 and produced 1495 kg m-1 of horizontal sediment transport within the first 2 m above the soil surface, had a maximum PM10 vertical flux of 100 mg m-2 s-1, and generated a large dust plume that was visible in satellite imagery. The peak PM10 concentration measured on-site at a height of 2 m in the downwind portion of the burned area was 690 mg m-3. Our results indicate that wildfire can convert a relatively stable landscape into one that is a major dust source.

  20. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe

    PubMed Central

    Kistler, Magdalena; Schmidl, Christoph; Padouvas, Emmanuel; Giebl, Heinrich; Lohninger, Johann; Ellinger, Reinhard; Bauer, Heidi; Puxbaum, Hans

    2012-01-01

    In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as “common oak”), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, “garden biomass” such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ−1 for CO; 89 mg MJ−1 for NOx, 311 mg MJ−1 for CxHy, 67 mg MJ−1 for particulate matter PM10 and average odor concentration was at 2430 OU m−3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx – comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m−3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m−3 for hornbeam to 5217 OU m−3 for fir, indicating a considerable influence of the wood type on odor concentration. PMID:23471123

  1. Characterization of PM10 chemical composition and its variability in relation to different sources in the central Mediterranean

    NASA Astrophysics Data System (ADS)

    Calzolai, Giulia; Nava, Silvia; Chiari, Massimo; Lucarelli, Franco; Becagli, Silvia; Traversi, Rita; Marconi, Miriam; Rugi, Francesco; Udisti, Roberto; di Sarra, Alcide; Pace, Giovanni; Meloni, Daniela; Bommarito, Carlo; Sferlazzo, Damiano

    2013-04-01

    Atmospheric aerosols are estimated to play a relevant role in climate change, also in relation to global warming and to the hydrological cycle; information on aerosol sources and impact are among the data needed to constrain uncertainties in climate change models. This is particularly important in the Mediterranean basin, whose atmosphere is heavily polluted and characterized by strong influences from both natural and anthropogenic emissions. An investigation aimed at assessing the aerosol sources affecting the Central Mediterranean basin has been carried out by applying the Positive Matrix Factorization (PMF) model to a 2-year long data set of PM10 mass concentration and chemical composition of samples collected on the island of Lampedusa (35.5° N, 12.6° E, 45 m a.s.l.). Lampedusa is an ideal site for this kind of studies, as it is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). Samples were collected on a daily basis; after mass gravimetric measurements, different portions of the samples were analyzed for the ionic content by Ion Cromatography (IC), for soluble metals by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES), and for the total (soluble + insoluble) elemental composition by Particle Induced X-ray Emission (PIXE). Data from years 2007 and 2008 are used in this study. Seven sources were resolved: sea-salt, mineral dust, biogenic emissions, primary ship emissions, secondary sulphate, secondary nitrate, and biomass burning emissions. The chemical profiles of each source were identified and compared with literature data; the temporal evolution of each source was studied, in relation to seasonal changes and influence of different source regions. Air mass backward trajectories were also used in the analysis. Daily absolute and relative contributions of the aerosol produced by each of the seven resolved sources to the PM10 in Lampedusa were also obtained. On average, each of the sources

  2. Chemical and morphological properties of particulate matter (PM 10, PM 2.5) in school classrooms and outdoor air

    NASA Astrophysics Data System (ADS)

    Fromme, H.; Diemer, J.; Dietrich, S.; Cyrys, J.; Heinrich, J.; Lang, W.; Kiranoglu, M.; Twardella, D.

    Studies have shown high concentrations of particulate matter (PM) in schools. Further insights into the sources and the composition of these particles are needed. During school hours for a period of 6 weeks, outdoor air and the air in two classrooms were sampled. PM was measured gravimetrically, and PM filters were used for the determination of the elemental and organic carbon, light absorbance, and 10 water-soluble ions. Some filters were further analyzed by scanning electron microscopy (SEM) and energy dispersive microanalysis (EDX). The median PM 10 concentrations were 118.2 μg m -3 indoors and 24.2 μg m -3 outdoors; corresponding results for PM 2.5 were 37.4 μg m -3 indoors and 17.0 μg m -3 outdoors. Using PM 10 and PM 2.5 data, we calculated the following indoor/outdoor ratios: 0.3 and 0.4 (sulfate), 0.1 and 0.2 (nitrate), 0.1 and 0.3 (ammonium), and 1.4 and 1.6 (calcium). Using the measured sulfate content on PM filters as an indicator for ambient PM sources, we estimated that 43% of PM 2.5 and 24% of PM 10, respectively, were of ambient origin. The composition of the classrooms' PM (e.g., high calcium concentrations) and the findings from SEM/EDX suggest that the indoor PM consists mainly of earth crustal materials, detrition of the building materials and chalk. Physical activity of the pupils leads to resuspension of mainly indoor coarse particles and greatly contributes to increased PM 10 in classrooms. The concentration of fine particles caused by combustion processes indoors and outdoors is comparable. We conclude that PM measured in classrooms has major sources other than outdoor particles. Assuming that combustion-related particles and crustal materials vary in toxicity, our results support the hypothesis that indoor-generated PM may be less toxic compared to PM in ambient air.

  3. Spatial distribution and potential sources of trace elements in PM10 monitored in urban and rural sites of Piedmont Region.

    PubMed

    Padoan, Elio; Malandrino, Mery; Giacomino, Agnese; Grosa, Mauro M; Lollobrigida, Francesco; Martini, Sara; Abollino, Ornella

    2016-02-01

    The results on elemental composition of aerosol (PM10) sampled during 2011 in Piedmont region (Italy) are interpreted using meteorological data, Enrichment Factors (EF), chemometric processing by Principal Component Analysis (PCA), Factor Analysis (FA) and Hierarchical Cluster Analysis (HCA). Daily concentrations of about 30 elements were measured using HR-ICP-MS in five monitoring sites. A clear seasonal pattern, with higher concentrations in autumn and winter, was observed, particularly in the urban sites. Levels of As, Cd, Ni and Pb in most of the samples were within the limits imposed by the European legislation. Spatial differences in PM10 and metal concentrations were significant, with rural and urban sites showing different metal patterns, indicating different sources. K and Ca were used, respectively, as marker of biomass burning and industrial marker (cement plant); EFs showed that Ca was enriched just in one area and K was enriched only in the winter period considered and in some stations. Data analysis through PCA, FA and HCA allowed us to identify correlations among the investigated elements and similarities between sampling sites in order to individuate specific emission sources, such as non-exhaust vehicle emission.

  4. In vitro tests to assess toxic effects of airborne PM(10) samples. Correlation with metals and chlorinated dioxins and furans.

    PubMed

    Roig, Neus; Sierra, Jordi; Rovira, Joaquim; Schuhmacher, Marta; Domingo, José L; Nadal, Martí

    2013-01-15

    Inhalation is an important exposure pathway to airborne pollutants such as heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and particulate matter. Chronic exposure to those chemicals, which form part of complex environmental mixtures, may mean important human health risks. In the present study, the suitability of different in vitro tests to evaluate the toxic effects of air PM(10) pollutants is investigated. In addition, it is also assessed how to distinguish the contribution of chemical pollutants to toxicity. Sixty-three air samples were collected in various areas of Catalonia (Spain), and the levels of ecotoxicity, cytotoxicity and genotoxicity were evaluated. Aqueous acidic extractions of quartz fiber filters, where PM(10) had been retained, were performed. The photo-luminescent bacteria Vibrio fischeri (Microtox®) bioassay was performed to assess ecotoxicity. Moreover, MTT and Comet Assays, both using human lung epithelial cells A549 as target cells, were applied to assess the cytotoxicity and genotoxicity of air samples, respectively. The results show that Microtox® is an excellent screening test to perform a first evaluation of air quality, as it presented a significant correlation with chemical contaminants, contrasting with MTT Assay. Although none of the samples exhibited genotoxicity, a high correlation was found between this in vitro test and carcinogenic agents. Urban samples from traffic-impacted areas would be significantly more toxic. Finally, environmental temperature was identified as a key parameter, as higher values of ecotoxicity were found in winter.

  5. PM-10 exhaust samples collected during IM-240 dyanamometer tests of in-service vehicles in Nevada

    SciTech Connect

    Sagebiel, J.C.; Zielinska, B.; Walsh, P.A.; Chow, J.C.; Cadle, S.H.; Mulawa, P.A.; Knapp, K.T.; Zweidinger, R.B.; Snow, R.

    1997-01-01

    Twenty-three vehicles that were recruited by remote sensing and roadside inspection and maintenance (I/M) checks during the 1994 Clark and Washoe Remote Sensing Study (CAWRSS) were tested on the IM240 cycle using a transportable dynamometer. Six of these vehicles emitted visible smoke. Total gas-phase hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) exhaust concentrations were continuously measured in the diluted exhaust stream from the constant volume sampler (CVS) during IM240 testing. Two isokinetic PM-10 samples were collected simultaneously using cyclones and filter holders connected to a dilution tube. Teflon filters were collected for total mass and then extracted for chloride, nitrate, and sulfate ions. Quartz filters were analyzed by the thermal/optical reflectance method for organic and elemental carbon. The quartz filters and backup vapor traps were then extracted and analyzed by GC/MS for 28 separate polynuclear aromatic hydrocarbons. Mass emission rates of PM-10 per vehicle ranged from 5.6 to over 1300 mg/mi, with most of the mass attributable to carbon. Except for one vehicle with high sulfate emissions, the ion emissions were relatively low. Total PAH emissions were in the range of 10-200 mg/mi. 10 refs., 8 figs., 5 tabs.

  6. Source Apportionment of PM10-Bound Polycyclic Aromatic Hydrocarbons by Positive Matrix Factorization in Córdoba City, Argentina.

    PubMed

    Amarillo, Ana C; Mateos, Ana C; Carreras, Hebe

    2017-04-01

    The composition and concentration of polycyclic aromatic hydrocarbons (PAHs) adsorbed on particles smaller than 10 microns (PM10) were analyzed in an urban area during a 2-year period from August 2011 to August 2013. Diagnostic ratios (DR) and positive matrix factorization (PMF) were employed to assess emission sources. To discount weather influence, a multiple linear regression model was generated and also a photodecomposition index was calculated for each sample. Despite the fact that mean PM10 levels showed a similar pattern all around the year, majority of PAHs showed higher concentrations during the cold than the warm period, indicating a strong seasonal variation. A 38% of PAHs variation could be explained by meteorological variables, with wind speed, wind direction, and dew point being the significant regressor variables in the model. The source apportionment of PAHs was performed using PMF although they are photosensitive compounds. The sampling period was separated in warm and cold seasons according to a photodecomposition index and cold period was used. Also, DR were calculated. DR as well as PMF analysis suggested that both gasoline and diesel vehicular emissions are the main PAHs emission sources in this urban area.

  7. [Analysis of Component Spectral Characteristics of PM10-Bound PAHs and the Influence of Weather Conditions During Spring in Xiamen].

    PubMed

    Zhang, Jian; Fan, Shu-xian; Sun, Yu; Zhang, Yue; Wei, Jin-cheng

    2015-04-01

    In order to study pollution status and distribution characteristics of PAHs in PM10 during the spring in city and suburban Xiamen. A total of 18 PAHs were analyzed in the aerosol samples collected in daytime and nighttime during 11th to 21st of April, 2013 in city and suburban Xiamen. Results showed diurnal variation of Σ PAHs in suburban was weaker than that in city. In the city, the concentration of PAHs during daytimes was higher than that during nighttimes, close to 1.83 times, and it is still under the national environmental standards. In different times and space scales, PAHs were a bimodal distribution, the components of PAHs gave the priority to low and middle rings in urban and suburban during daytimes and nighttimes. PAHs with high molecular weight decreased gradually by the increase of particle size, and the proportion of low molecular weight PAHs increased gradually in the meantime. In the city, the change of size distribution among 2-4 rings PAHs in PM10 during days and nights was bigger than these among 5-7 rings. The main sources of PAHs were estimated by DR, the main contributions included gasoline and diesel combustion, the smelting furnace exhaust emissions. During sampling periods, the relationship between the concentration of PAHs, temperature and WD is negative, PAHs had a positive correlation with the visibility and WS in suburban. And in urban, the relationship with temperature during the day was negative, and with an opposite correlation between other meteorological elements.

  8. March 10, 2006, Transportation Conformity Rule That Addresses Requirements for Project-level Conformity Determinations in PM2.5 and PM10 Nonattainment and Maintenance Areas

    EPA Pesticide Factsheets

    This final rule, published March 10, 2006, establishes requirements for project-level conformity determinations in particulate matter (PM) 2.5 nonattainment and maintenance areas, and revises existing requirements for projects in PM10 areas.

  9. Temporal profile of PM10 and associated health effects in one of the most polluted cities of the world (Ahvaz, Iran) between 2009 and 2014

    NASA Astrophysics Data System (ADS)

    Maleki, Heidar; Sorooshian, Armin; Goudarzi, Gholamreza; Nikfal, Amirhossein; Baneshi, Mohammad Mehdi

    2016-09-01

    Ahvaz, Iran ranks as the most polluted city of the world in terms of PM10 concentrations that lead to deleterious effects on its inhabitants. This study examines diurnal, weekly, monthly and annual fluctuations of PM10 between 2009 and 2014 in Ahvaz. Health effects of PM10 levels are also assessed using the World Health Organization AirQ software. Over the study period, the mean PM10 level in Ahvaz was 249.5 μg m-3, with maximum and minimum values in July (420.5 μg m-3) and January (154.6 μg m-3), respectively. The cumulative diurnal PM10 profile exhibits a dominant peak between 08:00-11:00 (local time) with the lowest levels in the afternoon hours. While weekend PM10 levels are not significantly reduced as compared to weekdays, an anthropogenic signature is instead observed diurnally on weekdays, which exhibit higher PM10 levels between 07:00-17:00 by an average amount of 14.2 μg m-3 as compared to weekend days. PM10 has shown a steady mean-annual decline between 2009 (315.2 μg m-3) and 2014 (143.5 μg m-3). The AirQ model predicts that mortality was a health outcome for a total of 3777 individuals between 2009 and 2014 (i.e., 630 per year). The results of this study motivate more aggressive strategies in Ahvaz and similarly polluted desert cities to reduce the health effects of the enormous ambient aerosol concentrations.

  10. Size fractionation in mercury-bearing airborne particles (HgPM 10) at Almadén, Spain: Implications for inhalation hazards around old mines

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Higueras, Pablo; Jones, Tim; McDonald, Iain; Gibbons, Wes

    Almadén has a >2000y mining history and an unprecedented legacy of mercury contamination. Resuspended airborne particles were extracted from mine waste (Las Cuevas), retort site soil (Almadenejos), and urban car park dust (Almadén), separated into fine (PM 10) and coarse (PM >10 μm ) fractions, analysed for mercury using ICP-MS, and individual HgPM characterised using SEM. Cold extractable mercury concentrations in PM 10 range from 100 to 150 μg g -1 (car parks), to nearly 6000 μg g -1 (mine waste), reaching a world record of 95,000 μg g -1 above the abandoned retort at Almadenejos where ultrafine HgPM have pervaded the brickwork and soil and entered the food chain: edible wild asparagus stem material from here contains 35-65 μg g -1 Hg, and pig hair from animals living, inhaling and ingesting HgPM 10 at the site yielded 8-10 μg g -1. The PM 10 fraction (dusts easily wind transported and deeply inhaled) contains much more mercury than the coarser fraction. The contribution of HgPM 10 to ecosystem contamination and potential human health effects around old mercury mines has been underestimated.

  11. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  12. Characterization of PM 10 source profiles for fugitive dust in Fushun-a city famous for coal

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Ji, Yaqin; Lu, Bing; Chen, Li; Han, Bin; Li, Zhiyong; Bai, Zhipeng

    2011-09-01

    A total of 120 fugitive dust samples were collected to acquire chemical source profiles of PM 10 in Fushun including 27 soil dust samples, 32 road dust samples, 19 construction dust samples, 13 coal storage pile samples, 2 cement production samples, 13 coal-fired power plant fly ash samples, 5 fly ash samples from iron smelt plant and 9 samples from industrial raw material and production piles. The samples were classified as 20 subtypes. The dust samples were dried, sieved, resuspended and sampled through a PM 10 inlet onto filters, and then chemically analyzed. Inductively coupled plasma-atomic emission spectrometry, ion chromatograph and thermal/optical reflectance methods were adopted for analyzing twenty elements including Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb and Hg and nine ions including Na +, NH 4+, K +, Mg 2+, Ca 2+, F -, Cl -, NO 3- and SO 42- as well as OC and EC, respectively. The chemical compositions were compared for 20 subtypes. Si and Ca were the most abundant elements in all the fugitive dust profiles. Enrichment factors of elements in fly ashes compared to raw coal were calculated with Fe as reference element. The highest enriched elements were Ni, Cu, Zn and Pb. Significant difference existed among PM 10 profiles with the coefficient of divergence values ranging from 0.28 to 0.78. Profiles were compared with others. Si exhibited lower content in this study for soil and road dust while EC and Cr showed much higher content compared to others indicating the influence of coal mining and industries activities in Fushun. This was validated by source signatures analysis which indicated almost all the fugitive dust were relative to coal and may also be influenced by metallurgy. The ratios of Mn/V, V/Ni, Zn/Pb and Zn/Cd were calculated for source identification. Elemental ratios may vary widely even for the same source types with different processing courses. Chemical profiles of fugitive dust should be established based

  13. The stable carbon isotope composition of PM 2.5 and PM 10 in Mexico City Metropolitan Area air

    NASA Astrophysics Data System (ADS)

    López-Veneroni, D.

    The sources and distribution of carbon in ambient suspended particles (PM 2.5 and PM 10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes ( 13C/ 12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (-27 to -29‰ vs. PDB), while street dust (PM 10) represented the isotopically heaviest endmember (-17‰). The δ13C values of rural soils from four geographically separated sites were similar (-20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between -23 and -26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around -25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM 10 fraction and 54% for PM 2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (-29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope

  14. Origin of trace elements and inorganic ions in PM 10 aerosols to the South of Mexico City

    NASA Astrophysics Data System (ADS)

    Báez, P. A.; García, M. R.; Torres, B. M. del C.; Padilla, H. G.; Belmont, R. D.; Amador, O. M.; Villalobos-Pietrini, R.

    2007-07-01

    Measurements of trace metals and inorganic ions were carried out on PM 10 aerosols. Sampling was made in the southern section of downtown Mexico City. Samples were collected with an Andersen PM 10 high volume sampler, on glass fiber filters. The ions SO 42-, NO 3-, Cl -, and NH 4+ were analyzed by ion chromatography, Na +, K +, Ca 2+ and Mg 2+ by flame atomic absorption spectroscopy and the trace metals using an atomic absorption spectrometer with a graphite furnace attachment. The results indicated that SO 42- was the most abundant ion, and with respect to trace metals, Pb had the highest concentration in spite of the fact that lead tetraethyl content in gasoline is prohibited by Mexican Federal Law. Pearson's correlation, applied to all data, showed a high correlation among SO 42-, NO 3- and NH 4+, indicating a common anthropogenic origin. In addition the correlation found between Na + and K + indicated a crustal origin. No correlation among the trace metals was found. The scatter plots showed a high neutralization of SO 42- and NO 3- by NH 4+, (NH 4) 2SO 4 and NH 4NO 3 were the major species formed. Enrichment factors were calculated using K as a reference and the results reflected the possible origins of the elements: crustal or anthropogenic. In order to gain a better insight into the origin of trace metals and major inorganic ions, a Principal Component Analysis was applied to the results for 10 elements and 4 ions, for the years 2003 and 2004. Sources of anthropogenic species, such as industries and vehicles are discussed.

  15. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model

    NASA Astrophysics Data System (ADS)

    Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad

    2016-09-01

    Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM

  16. PM 10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone

    NASA Astrophysics Data System (ADS)

    Alleman, Laurent Y.; Lamaison, Laure; Perdrix, Esperanza; Robache, Antoine; Galloo, Jean-Claude

    2010-06-01

    The elemental composition data of ambient aerosols collected upon selected wind sectors in the highly industrialised harbour of Dunkirk (France) were interpreted using pollution roses, elemental ratios, Enrichment Factors (EF), Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) receptor model. The objective was to identify the possible sources of PM10 aerosols, their respective chemical tracers and to determine their relative contribution at the sampling site. PM10 particles samples were collected from June 2003 to March 2005 in order to analyse up to 35 elements (Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Eu, Fe, K, La, Mg, Mn, Mo, Na, Ni, Pb, Rb, S, Sb, Sc, Si, Sm, Sr, Th, Ti, U, V, Zn and Zr) using Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES) and ICP-Mass Spectrometry (MS). A significant effort has been made on estimating the total uncertainty of each result by regularly analysing blanks, quality controls and SRM NIST standards. Based on this procedure, a selected set of 24 "robust" elements was compared to the 35-element matrix in order to evaluate the sturdiness of our PMF statistical treatment. Eight source factors were resolved by PCA for all the wind sectors explaining 90% of the total data variance. The PMF results confirmed that eight physically interpretable factors contributed to the ambient particulate pollution at the sampling site: crustal dust (11%), marine aerosols (12%), petrochemistry activities (9.2%), metallurgical sintering plant (8.6%), metallurgical coke plant (12.6%), ferromanganese plant (6.6%), road transport (15%) and a less clearly interpretable profile probably associated to dust resuspension (13%). These weighted contributions against wind direction frequencies demonstrate that industrial sources are the most important contributors to this site (37%) followed by the natural sources (detrital and marine sources) (23%) and the road transport (15%).

  17. [Effect of sand dust weather on major water-soluble ions in PM10 in Lanzhou, China].

    PubMed

    Wang, Fang; Chen, Qiang; Zhang, Wen-Yu; Guo, Yong-Tao; Zhao, Lian-Biao

    2014-07-01

    The major water-soluble ions (Ca(2+), NH(4+), Mg(2+), K(+), Na(+), SO4(2-), NO3(-) and Cl-(-) in PM10 at 1-h interval were measured by an online analyzer for monitoring of Aerosols and Gases (MARGA) at the campus of Lanzhou University, from April 1 to June 30, 2011. There were 15 days of dust weather during the monitoring period. The main water-soluble ions in PM10 were Ca(2+), SO4(2-) and NO3(-). The concentration of NO3(-) and NH4(+) decreased during blowing sand weather comparing with non-dust, this phenomenon showed that the dust weather had the function of eliminating the local anthropogenic emissions. As the soil pollution marker, the concentration of Mg(2+), Na(+) and Ca(2+) increased during dust weather comparing with non-dust. The correlation coefficients between Na(+) and Mg(2+), Na(+) and Ca(2+), Mg(2+) and Ca(2+) during dust weather were 0.520, 0.659 and 0.671, respectively. The similar correlation coefficients indicated that some fraction of these species was derived from the same sources, such as soil dust. The correlation coefficients between Na(+) and Mg(2+), Na(+) and Ca(2+), Mg(2+) and Ca(2+) during non-dust weather were not strong, only 0.065, 0.131 and 0.163, respectively. The low correlation coefficients indicated that these species were derived from different sources. The mass concentration of Cl(-) in the dust weather was significantly higher than that of floating dust and non dust, indicating that soil dust was the main source of Cl(-).

  18. The effect of outdoor air and indoor human activity on mass concentrations of PM(10), PM(2.5), and PM(1) in a classroom.

    PubMed

    Branis, Martin; Rezácová, Pavla; Domasová, Markéta

    2005-10-01

    The 12-h mass concentration of PM(10), PM(2.5), and PM(1) was measured in a lecturing room by means of three co-located Harvard impactors. The filters were changed at 8 AM and at 8 PM to cover the periods of presence and absence of students. Concentrations were assessed by gravimetry. Ambient PM(10) data were available for corresponding 12-h intervals from the nearest state air-quality-monitoring network station. The data were pooled into four periods according to the presence and absence of students-Monday-Thursday day (workday daytime), Monday-Thursday night (workday night), Friday-Sunday day (weekend daytime), and Friday-Sunday night (weekend night). Average indoor workday daytime concentrations were 42.3, 21.9 and 13.7 microgm(-3), workday night were 20.9, 19.1 and 15.2 microgm(-3), weekend daytime were 21.9, 18.1 and 11.4 microgm(-3), and weekend night were 24.5, 21.3, and 15.6 microgm(-3) for PM(10), PM(2.5), and PM(1), respectively. The highest 12-h mean, median, and maximum (42.3, 43.0, and 76.2 microgm(-3), respectively) indoor concentrations were recorded on workdays during the daytime for PM(10). The statistically significant (r=0.68,P<0.0009) correlation between the number of students per hour per day and the indoor coarse fraction calculated as PM(10--2.5) during daytime on workdays indicates that the presence of people is an important source of coarse particles indoor. On workdays, the daytime PM(10) indoor/outdoor ratio was positively associated (r=0.93) with an increasing indoor coarse fraction (PM(10--2.5)), also indicating that an important portion of indoor PM(10) had its source inside the classroom. With the exception of the calculated coarse fraction (PM(10--2.5)), all of the measured indoor particulate matter fractions were significantly highly correlated with outdoor PM(10) and negatively correlated with wind velocity, showing that outdoor levels of particles influence their indoor concentrations.

  19. Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain.

    PubMed

    Rodríguez, Sergio; Querol, Xavier; Alastuey, Andrés; Viana, María-Mar; Alarcón, Marta; Mantilla, Enrique; Ruiz, C R

    2004-07-26

    In this study a set of 340 PM10 and PM2.5 samples collected throughout 16 months at rural, an urban kerbside and an industrial background site (affected by the emissions from the ceramic manufacture and other activities) were interpreted. On the regional scale, the main PM10 sources were mineral dust (mainly Al2O3, Fe, Ti, Sr, CaCO3, Mg, Mn and K), emissions derived from power generation (SO4=, V, Zn and Ni), vehicle exhausts (organic and elemental carbon, NO3- and trace elements) and marine aerosol (Na, Cl and Mg). The latter was not identified in PM2.5. At the industrial site, additional PM10 sources were identified (tile covering in the ceramic production, petrochemical emissions and bio-mass burning from a large orange tree cultivation area). The contribution of each PM source to PM10 and PM2.5 levels experiences significant variations depending on the type of PM episode (Local-urban mainly in autumn-winter, regional mainly in summer, African or Atlantic episode), which are discussed in this study. The results show that it would be very difficult to meet the EU limit values for PM10 established for 2010. The annual mean PM levels are 22.0 microg PM10/m3 at the rural and 49.5 microg PM10/m3 and 33.9 microg PM2.5/m3 at the urban site. The natural contribution in this region, estimated at 6 microg/m3 of natural mineral dust (resulting from the African events and natural resuspension) and 2 microg/m3 of marine aerosol, accounts for 40% of the 2010 EU annual limit value (20 microg PM10/m3). Mineral dust concentrations at the urban and industrial sites are higher than those at the rural site because of the urban road dust and the ceramic-production contributions, respectively. At the urban site, the vehicle exhaust contribution (17 microg/m3) alone is very close to the 2010 EU PM10 limit value. At the rural site, the African dust is the main contributor to PM10 levels during the highest daily mean PM10 events (100th-97th percentile range). At the urban site, the

  20. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources

    NASA Astrophysics Data System (ADS)

    Sagnotti, Leonardo; Macrı, Patrizia; Egli, Ramon; Mondino, Manlio

    2006-12-01

    Environmental problems linked to the concentration of atmospheric particulate matter with dimensions less than 10 μm (PM10) in urban settings have stimulated a variety of scientific researches. This study reports a systematic analysis of the magnetic properties of PM10 samples collected by six automatic stations installed for air quality monitoring through the Latium Region (Italy). We measured the low-field magnetic susceptibility of daily air filters collected during the period July 2004 to July 2005. For each station, we derived an empirical linear correlation linking magnetic susceptibility to the concentration of PM10 produced by local sources (i.e., in absence of significant inputs of exogenous dust). An experimental approach is suggested for estimating the percentage of nonmagnetic PM10 transported from natural far-sided sources (i.e., dust from North Africa and marine aerosols). Moreover, we carried out a variety of additional magnetic measurements to investigate the magnetic mineralogy of selected air filters spanning representative periods. The results indicate that the magnetic fraction of PM10 is composed by a mixture of low-coercivity, magnetite-like, ferrimagnetic particles with a wide spectrum of grain sizes, related to a variety of natural and anthropogenic sources. The natural component of PM10 has a characteristic magnetic signature that is indistinguishable from that of eolian dust. The anthropogenic PM10 fraction is mostly originated from circulating vehicles and is a mixture of prevailing fine superparamagnetic particles and subordinate large multidomain grains; the former are more directly related to exhaust, whereas the latter may be associated to abrasion of metallic parts.

  1. Efficiency of Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers to collect PM10, PM2.5 and PM1

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Funk, Roger; Buschiazzo, Daniel E.

    2016-06-01

    The internal efficiency of Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers for trapping PM10, PM2.5 and PM1 were tested in a wind tunnel, at two wind speeds (3.0 and 6.8 m s-1) in the saltation zone (SAZ) and the suspension zone (SAZ). PM concentrations measured in the inlet and the outlet of both samplers were correlated and the slopes of fitting equations were used for calculating sampling efficiencies. Results showed that BSNE efficiencies ranged from 12% to 32% for PM10, from 0% to 19% for PM2.5 and from 0% to 12% for PM1. The BSNE's efficiency decreased with decreasing particle sizes in SAZ and SUZ at both wind speeds as a consequence of the very low deposition velocity of the finest size particles. The BSNE's efficiency increased with increasing wind speed in SAZ for PM10 and PM2.5 and in SUZ for PM2.5. The MWAC's efficiency ranged from 1% to 20% for PM10, from 0% to 15% for PM2.5 and from 0% to 16% for PM1. The MWAC efficiency was 0% for PM10, PM2.5 and PM1 in the SUZ at 3 m s-1 and for PM2.5 and PM1 in the SUZ at 6.8 m s-1. These results provide evidence that the efficiency of BSNE and MWAC for trapping PM10 change with wind speed and position of the sampler. Results also show that BSNEs and MWACs can potentially be used for PM10 emission studies but more research is needed in order to understand and improve their efficiency.

  2. Temporal variability of mineral dust in southern Tunisia: analysis of 2 years of PM10 concentration, aerosol optical depth, and meteorology monitoring

    NASA Astrophysics Data System (ADS)

    Bouet, Christel; Taieb Labiadh, Mohamed; Bergametti, Gilles; Rajot, Jean Louis; Marticorena, Béatrice; Sekrafi, Saâd; Ltifi, Mohsen; Féron, Anaïs; des Tureaux, Thierry Henry

    2016-04-01

    The south of Tunisia is a region very prone to wind erosion. During the last decades, changes in soil management have led to an increase in wind erosion. In February 2013, a ground-based station dedicated to the monitoring of mineral dust (that can be seen in this region as a proxy of the erosion of soils by wind) was installed at the Institut des Régions Arides (IRA) of Médenine (Tunisia) to document the temporal variability of mineral dust concentrations. This station allows continuous measurements of surface PM10 concentration (TEOM™), aerosol optical depth (CIMEL sunphotometer), and total atmospheric deposition of insoluble dust (CARAGA automatic sampler). The simultaneous monitoring of meteorological parameters (wind speed and direction, relative humidity, air temperature, atmospheric pressure, and precipitations) allows to analyse the factors controlling the variations of mineral dust concentration from the sub-daily to the annual scale. The results from the two first years of measurements of PM10 concentration are presented and discussed. In average on year 2014, PM10 concentration is 56 μg m-3. However, mineral dust concentration highly varies throughout the year: very high PM10 concentrations (up to 1,000 μg m-3 in daily mean) are frequently observed during wintertime and springtime, hardly ever in summer. These episodes of high PM10 concentration (when daily average PM10 concentration is higher than 240 μg m-3) sometimes last several days. By combining local meteorological data, air-masses trajectories, sunphotometer measurements, and satellite imagery, the part of the high PM10concentration due to local emissions and those linked to an advection of dusty air masses by medium and long range transport from the Sahara desert is quantified.

  3. Source apportionment of PM10 and PM(2.5) at Tocopilla, Chile (22 degrees 05' S, 70 degrees 12' W).

    PubMed

    Jorquera, Héctor

    2009-06-01

    Tocopilla is located on the coast of Northern Chile, within an arid region that extends from 30 degrees S to the border with Perú. The major industrial activities are related to the copper mining industry. A measurement campaign was conducted during March and April 2006 to determine ambient PM10 and PM(2.5) concentrations in the city. The results showed significantly higher PM10 concentrations in the southern part of the city (117 microg/m3) compared with 79 and 80 (microg/m3) in the central and northern sites. By contrast, ambient PM2.5 concentrations had a more uniform spatial distribution across the city, around 20 (microg/m3). In order to conduct a source apportionment, daily PM10 and PM(2.5) samples were analyzed for elements by XRF. EPA's Positive Matrix Factorization software was used to interpret the results of the chemical compositions. The major source contributing to PM(2.5) at sites 1, 2 and 3, respectively are: (a) sulfates, with approximately 50% of PM2.5 concentrations at the three sites; (b) fugitive emissions from fertilizer storage and handling, with 16%, 21% and 10%; (c) Coal and residual oil combustion, with 15%, 15% and 4%; (d) Sea salt, 5%, 6% and 16%; (e) Copper ore processing, 4%, 5% and 15%; and (f) a mixed dust source with 11%, 7% and 4%. Results for PM10--at sites 1, 2 and 3, respectively--show that the major contributors are: (a) sea salt source with 36%, 32% and 36% of the PM10 concentration; (b) copper processing emissions mixed with airborne soil dust with 6.6%, 11.5% and 41%; (c) sulfates with 31%, 31% and 12%; (d) a mixed dust source with 16%, 12% and 10%, and (e) the fertilizer stockpile emissions, with 11%, 14% and 2% of the PM10 concentration. The high natural background of PM10 implies that major reductions in anthropogenic emissions of PM10 and SO2 would be required to attain ambient air quality standards for PM10; those reductions would curb down ambient PM(2.5) concentrations as well.

  4. Air quality forecast of PM10 in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Xu, W.; Shi, A.; Li, Y.; Zhao, X.; Wang, Z.; Li, J.; Wang, L.

    2014-10-01

    The MM5-SMOKE-CMAQ model system, which was developed by the United States Environmental Protection Agency (US EPA) as the MODELS-3 system, has been used for daily air quality forecasts in the Beijing Municipal Environmental Monitoring Center (Beijing MEMC), as a part of the Ensemble air quality Modeling forecast System for Beijing (EMS-Beijing) since the 2008 Olympic Games. According to the daily forecast results for the entire duration of 2010, the model shows good performance in the PM10 forecast on most days but clearly underestimates PM10 concentration during some air pollution episodes. A typical air pollution episode from 11-20 January 2010 was chosen, in which the observed air pollution index of particulate matter (PM10-API) reached 180 while the forecast PM10-API was about 100. In this study, three numerical methods are used for model improvement: first, by enhancing the inner domain with 3 km resolution grids, and expanding the coverage from only Beijing to an area including Beijing and its surrounding cities; second, by adding more regional point source emissions located at Baoding, Landfang and Tangshan, to the south and east of Beijing; third, by updating the area source emissions, including the regional area source emissions in Baoding and Tangshan and the local village/town-level area source emissions in Beijing. The last two methods are combined as the updated emissions method. According to the model sensitivity testing results by the CMAQ model, the updated emissions method and expanded model domain method can both improve the model performance separately. But the expanded model domain method has better ability to capture the peak values of PM10 than the updated emissions method due to better reproduction of the pollution transport process in this episode. As a result, the hindcast results ("New(CMAQ)"), which are driven by the updated emissions in the expanded model domain, show a much better model performance in the national standard station

  5. Ambiental dust speciation and metal content variation in TSP, PM 10 and PM 2.5 in urban atmospheric air of Harare (Zimbabwe).

    PubMed

    Kuvarega, A T; Taru, P

    2008-09-01

    Levels of TSP, PM(10) and PM(2.5) as well as levels of Pb, Co, Ni and Cd in TSP, PM(10) and PM(2.5) have been determined in atmospheric particulates collected at Loius Mountbatten School (Harare). The samples were collected for a period of 6 months from July to December 2002. The average levels of TSP, PM(10) and PM(2.5) measured at the site are 106.11, 59.70 and 40.55 mg m(-3) respectively. The average level of TSP at Loius Mountbatten School is 106.11 mg m(-3), which is higher than the annual WHO guideline limit of 90 mg m(-3). The average level of PM(10) measured at Loius Mountbatten School is 59.70 mg m(-3), and is higher than the US-EPA and UK-EU guideline limit of 50 mg m(-3). The average level of PM(2.5) measured at the site are also higher than the WHO and US-EPA annual guideline limit of 15 mg m(-3). The analysis of metal concentrations in TSP, PM(10) and PM(2.5) was done using Graphite Furnace Atomic Absorption Spectrometry (GFAAS). The analysis showed the following average elemental concentrations: 0.157 mg Pb m(-3) in TSP, 0.166 mg Pb m(-3) in PM(10), 0.185 mg Pb m(-3) in PM(2.5), 0.009 mg Co m(-3) in TSP, 0.007 mg Co m(-3) in PM(10), 0.011 mg Co m(-3) in PM(2.5), 0.223 mg Ni m(-3) in TSP, 0.166 mg Ni m(-3) in PM(10), 0.180 mg Ni m(-3) in PM(2.5) and 0.005 mg Cd m(-3) in TSP, 0.006 mg Cd m(-3) in PM(10), 0.005 mg Cd m(-3) in PM(2.5). The levels of Pb and Ni were generally higher than those of Co and Cd and this could have been due to high traffic volumes and various industrial activities in the Workington Industrial Area.

  6. Desert Dust Outbreaks in Southern Europe: Contribution to Daily PM10 Concentrations and Short-Term Associations with Mortality and Hospital Admissions

    PubMed Central

    Stafoggia, Massimo; Zauli-Sajani, Stefano; Pey, Jorge; Samoli, Evangelia; Alessandrini, Ester; Basagaña, Xavier; Cernigliaro, Achille; Chiusolo, Monica; Demaria, Moreno; Díaz, Julio; Faustini, Annunziata; Katsouyanni, Klea; Kelessis, Apostolos G.; Linares, Cristina; Marchesi, Stefano; Medina, Sylvia; Pandolfi, Paolo; Pérez, Noemí; Querol, Xavier; Randi, Giorgia; Ranzi, Andrea; Tobias, Aurelio; Forastiere, Francesco

    2015-01-01

    Background: Evidence on the association between short-term exposure to desert dust and health outcomes is controversial. Objectives: We aimed to estimate the short-term effects of particulate matter ≤ 10 μm (PM10) on mortality and hospital admissions in 13 Southern European cities, distinguishing between PM10 originating from the desert and from other sources. Methods: We identified desert dust advection days in multiple Mediterranean areas for 2001–2010 by combining modeling tools, back-trajectories, and satellite data. For each advection day, we estimated PM10 concentrations originating from desert, and computed PM10 from other sources by difference. We fitted city-specific Poisson regression models to estimate the association between PM from different sources (desert and non-desert) and daily mortality and emergency hospitalizations. Finally, we pooled city-specific results in a random-effects meta-analysis. Results: On average, 15% of days were affected by desert dust at ground level (desert PM10 > 0 μg/m3). Most episodes occurred in spring–summer, with increasing gradient of both frequency and intensity north–south and west–east of the Mediterranean basin. We found significant associations of both PM10 concentrations with mortality. Increases of 10 μg/m3 in non-desert and desert PM10 (lag 0–1 days) were associated with increases in natural mortality of 0.55% (95% CI: 0.24, 0.87%) and 0.65% (95% CI: 0.24, 1.06%), respectively. Similar associations were estimated for cardio-respiratory mortality and hospital admissions. Conclusions: PM10 originating from the desert was positively associated with mortality and hospitalizations in Southern Europe. Policy measures should aim at reducing population exposure to anthropogenic airborne particles even in areas with large contribution from desert dust advections. Citation: Stafoggia M, Zauli-Sajani S, Pey J, Samoli E, Alessandrini E, Basagaña X, Cernigliaro A, Chiusolo M, Demaria M, Díaz J, Faustini A

  7. Timeline trend profile and seasonal variations in nicotine present in ambient PM10 samples: A four year investigation from Delhi region, India

    NASA Astrophysics Data System (ADS)

    Yadav, Shweta; Tandon, Ankit; Attri, Arun K.

    2014-12-01

    The detection of nicotine, an organic tracer for Environmental Tobacco Smoke (ETS), in the collected PM10 samples from Delhi region's ambient environment, in a appropriately designed investigation was initiated over four years (2006-2009) to: (1) Comprehend seasonal and inter-annual variations in the nicotine present in PM10; (2) Extract regression based linear trend profile manifested by nicotine in PM10; (3) Determine the non-linear trend timeline from the nicotine data, and compare it with the obtained linear trend; (4) Suggest the possible use of the designed experiment and analysis to have a qualitative appraisal of Tobacco Smoking activity in the sampling region. The PM10 samples were collected in a monthly time-series sequence at a known receptor site. Quantitative estimates of nicotine (ng m-3) were made by using a Thermal Desorption Gas Chromatography Mass Spectrometry (TD-GC/MS). The annual average concentrations of nicotine (ng m-3) were 516 ± 302 (2008) > 494 ± 301 (2009) > 438 ± 250 (2007) > 325 ± 149 (2006). The estimated linear trend of 5.4 ng m-3 month-1 corresponded to 16.3% per annum increase in the PM10 associated nicotine. The industrial production of India's tobacco index normalized to Delhi region's consumption, pegged an increase at 10.5% per annum over this period.

  8. Does maternal exposure to benzene and PM10 during pregnancy increase the risk of congenital anomalies? A population-based case-control study.

    PubMed

    Vinceti, Marco; Malagoli, Carlotta; Malavolti, Marcella; Cherubini, Andrea; Maffeis, Giuseppe; Rodolfi, Rossella; Heck, Julia E; Astolfi, Gianni; Calzolari, Elisa; Nicolini, Fausto

    2016-01-15

    A few studies have suggested an association between maternal exposure to ambient air pollution from vehicular traffic and risk of congenital anomalies in the offspring, but epidemiologic evidence is neither strong nor entirely consistent. In a population-based case-control study in a Northern Italy community encompassing 228 cases of birth defects and 228 referent newborns, we investigated if maternal exposure to PM10 and benzene from vehicular traffic during early pregnancy, as estimated through a dispersion model, was associated with excess teratogenic risk. In conditional logistic regression analysis, and with adjustment for the other pollutant, we found that higher exposure to PM10 but not benzene was associated with increased risk of birth defects overall. Anomaly categories showing the strongest dose-response relation with PM10 exposure were musculoskeletal and chromosomal abnormalities but not cardiovascular defects, with Down syndrome being among the specific abnormalities showing the strongest association, though risk estimates particularly for the less frequent defects were statistically very unstable. Further adjustment in the regression model for potential confounders did not considerably alter the results. All the associations were stronger for average levels of PM10 than for their maximal level. Findings of this study give some support for an excess teratogenic risk following maternal exposure during pregnancy to PM10, but not benzene. Such association appears to be limited to some birth defect categories.

  9. Disaggregating the contribution of local dispersion and long-range transport to the high PM10 values measured in a Mediterranean urban environment.

    PubMed

    Paschalidou, A K; Kassomenos, P; Karanikola, P

    2015-09-15

    The EU daily PM10 limit-value of 50 μg m(-3) is frequently breached in the center of Athens, Greece. A total of 852 daily exceedances were recorded in the city-center during the 6-year period 2001-2006. These exceedances were more frequent in winter, followed by spring and autumn. For the needs of the study, the PM10 episodes (i.e., concentrations 30% above the median value) were grouped in two categories: (a) the City-Center episodes and (b) the Wider Metropolitan Area episodes. It was assumed that City-Center episodes occurred when elevated PM10 values were measured in the city-center exclusively, whereas Wider Metropolitan Area episodes occurred when high PM10 concentrations were also measured in the suburbs. Then back-trajectory cluster analysis was performed in an attempt to associate high PM10 levels with local dispersion or long-range transport. The City-Center episodes were associated according to the origin of air parcels with six types of air-masses (slow and fast moving from northern, northeasterly and southern directions, or stagnated around Athens) and were mainly due to traffic or other local sources, whereas the Wider Metropolitan Area episodes were mainly associated with air-masses coming from southern directions and were linked to long-range transport. On the whole, the analysis provided evidence of Sahara-dust events and sea-spray transportation.

  10. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    PubMed

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles.

  11. [Correlation of polycyclic aromatic hydrocarbons (PAHs) in PM10- phoenix tree leaves-soil system of a coking & chemical factory in Shanghai].

    PubMed

    Cheng, Jin-Ping; Zhao, Wen-Chang; Xie, Hai-Ying; Ma, Ying-Ge; Zhang, Jin; Ma, Jing; Li, Wei; Wang, Wen-Hua

    2007-08-01

    In order to study the distributions characteristics, sources and relationship of PAHs in PM10- phoenix tree leaves-soil system of a coking & chemical factory in Shanghai, the samples of PM10, phoenix tree leaves and soil around the factory were collected for a year. The concentration of PAHs were analyzed according to the USEPA method 8 000 series. The results showed that the average concentration of PAHs in PM10, phoenix tree leaves and soil were 101.11 ng/m3, 79.45 ng/g and 121.53 microg/g, respectively. Particulate phase (PM10) contained mainly carcinogenic and mutagenic PAHs, among which BaA, BghiP, Flu and BaP were found at significant concentrations. In phoenix tree leaves, Nap,Chy, BaP and BghiP presented a higher level of concentration. In soil, 3 and 4-ring PAHs presented a higher level. PAHs concentrations of phoenix tree leaves were very lower in May. Only Ace (0.16 ng/g) and Pyr (0.63 ng/g) were detected. In July and August the concentrations (39.19 ng/g and 150.94 ng/g, respectively) were uplifted significantly. It could be concluded PAHs was from petroleum and coal-fired compound source. There were very strong positive relationships of 16 PAHs level among phoenix tree leaves, soil and PM10 (p < 0.01).

  12. The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign.

    PubMed

    Quintana, Raul; Serrano, Jesús; Gómez, Virginia; de Foy, Benjamin; Miranda, Javier; Garcia-Cuellar, Claudia; Vega, Elizabeth; Vázquez-López, Inés; Molina, Luisa T; Manzano-León, Natalia; Rosas, Irma; Osornio-Vargas, Alvaro R

    2011-12-01

    As part of a field campaign that studied the impact of Mexico City pollution plume at the local, sub-regional and regional levels, we studied transport-related changes in PM(10) composition, oxidative potential and in vitro toxicological patterns (hemolysis, DNA degradation). We collected PM(10) in Mexico City (T(0)) and at a suburban-receptor site (T(1)), pooled according to two observed ventilation patterns (T(0) → T(1) influence and non-influence). T(0) samples contained more Cu, Zn, and carbon whereas; T(1) samples contained more of Al, Si, P, S, and K (p < 0.05). Only SO(4)(-2) increased in T(1) during the influence periods. Oxidative potential correlated with Cu/Zn content (r = 0.74; p < 0.05) but not with biological effects. T(1) PM(10) induced greater hemolysis and T(0) PM(10) induced greater DNA degradation. Influence/non-influence did not affect oxidative potential nor biological effects. Results indicate that ventilation patterns had little effect on intrinsic PM(10) composition and toxicological potential, which suggests a significant involvement of local sources.

  13. Does maternal exposure to benzene and PM10 during pregnancy increase the risk of congenital anomalies? A population-based case-control study

    PubMed Central

    Vinceti, Marco; Malagoli, Carlotta; Malavolti, Marcella; Cherubini, Andrea; Maffeis, Giuseppe; Rodolfi, Rossella; Heck, Julia E.; Astolfi, Gianni; Calzolari, Elisa; Nicolini, Fausto

    2015-01-01

    A few studies have suggested an association between maternal exposure to ambient air pollution from vehicular traffic and risk of congenital anomalies in the offspring, but epidemiologic evidence is neither strong nor entirely consistent. In a population-based case-control study in a Northern Italy community encompassing 228 cases of birth defects and 228 referent newborns, we investigated if maternal exposure to PM10 and benzene from vehicular traffic during early pregnancy, as estimated through a dispersion model, was associated with excess teratogenic risk. In conditional logistic regression analysis, and with adjustment for the other pollutant, we found that higher exposure to PM10 but not benzene was associated with increased risk of birth defects overall. Anomaly categories showing the strongest dose-response relation with PM10 exposure were musculoskeletal and chromosomal abnormalities but not cardiovascular defects, with Down syndrome being among the specific abnormalities showing the strongest association, though risk estimates particularly for the less frequent defects were statistically very unstable. Further adjustment in the regression model for potential confounders did not considerably alter the results. All the associations were stronger for average levels of PM10 than for their maximal level. Findings of this study give some support for an excess teratogenic risk following maternal exposure during pregnancy to PM10, but not benzene. Such association appears to be limited to some birth defect categories. PMID:26410719

  14. Source apportionment of elevated BaP concentrations in PM10 aerosols in an alpine valley in Austria

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Puxbaum, Hans; Jankowski, Nicole; Sampaio Cordeiro Wagner, Lylian

    2010-05-01

    INTRODUCTION: In a village situated at 1215 m a.s.l. in a natural preserve in an Austrian alpine valley elevated BaP concentrations have been measured in the last years. A highly frequented highway leading from Italy to Germany passes near the village. Monthly means of particulate BaP concentrations show a clear seasonal trend with values below 1 ng/m³ during the warmer months and with concentrations up to 9 ng/m³ in the cold season. Annual averages in the years 2000 - 2005 ranged between 1.4 and 2.8 ng/m³ - much higher than the EU target value of 1 ng/m³. We used a macrotracer model developed at the Vienna University of Technology to determine the contributions of the sources for BaP emissions, which were mainly space heating with wood and traffic from the highway. EXPERIMENTAL: The macrotracer concept is a nine component model to derive source contribution and explains 80-100% of PM10 aerosols in Austria. The amount of traffic exhaust is derived by using EC as tracer, whereas EC produced by wood burning is subtracted, the amount of wood smoke is derived by the anhydro-sugar levoglucosan and the ratio between the anhydro-sugars levoglucosan and mannosan. For the source apportionment of BaP the applied factors reflect on the one hand the composition of the automotive fleet in Austria and on the other hand the composition of the fire wood in the region. Filter samples collected with a high volume sampler in winter were analyzed for PM10 aerosol mass, total, organic, elemental and carbonate carbon, HULIS, anhydro-sugars, polyols and ions (major ions and organic acids) and PAHs. In the same way emission samples taken at a motor test stand and at a test stand for wood combustion were analyzed (Schmidl et al. 2008). The saccharides were determined using high pH anion exchange and pulsed amperometry (HPAE-PAD). Details of the analytical method are given in Iinuma et al., 2009. Elemental and organic carbon were determined with a thermal-optical instrument (Sunset lab

  15. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    NASA Astrophysics Data System (ADS)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    than 100 PM10 samples, addressing mainly their mass concentrations and the chemical composition of water soluble ions and carbon species (carbonates and organic and elemental carbon). Different PM10 samplers worked simultaneously in order to collect enough mass to make the aerosol characterization through the different methodologies and to collect aerosols in different filter matrixes, which have to be appropriated to the chemical and mineralogical analysis. The sampling site was located at Santiago Island, in the surroundings of Praia City (14° 55' N e 23° 29' W, 98 m at sea level). High concentrations, up to more than 400 μg m-3, are connected to north-east and north-northeast winds, and it was identified several dust events characteristic of "bruma seca", whose duration is on average of two to four days. Backward trajectories analysis confirms that the high concentrations in Cape Verde are associated with air masses passing over the Sahara. During dust events the percentage of inorganic water soluble ions for the total PM10 mass concentration decreased significantly to values lower than 10% in comparison with remainder data that range around 45±10%. Acknowledgement: This work was funded by the Portuguese Science Foundation (FCT) through the project PTDD/AAC-CLI/100331/2008 and FCOMP-01-0124-FEDER-008646 (CV-Dust). J. Cardoso acknowledges the PhD grant SFRH-BD-6105-2009 from FCT.

  16. Similarities and differences in PM 10 chemical source profiles for geological dust from the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Chow, Judith C.; Watson, John G.; Ashbaugh, Lowell L.; Magliano, Karen L.

    A systematic sampling and analysis approach was followed to acquire chemical source profiles for six types of geological dust in California's San Joaquin Valley. Forty-seven samples from 37 locations included: (1) urban and rural paved roads, (2) residential and agricultural unpaved roads and parking areas, (3) almond, cotton, grape, safflower, and tomato fields, (4) dairy and feedlot surfaces, (5) salt-laden lake and irrigation canal drainage deposits, and (6) building and roadway construction/earthmoving soil. These samples were dried, sieved, resuspended, sampled through a PM 10 inlet onto filters, and chemically analyzed to construct PM 10 source profiles (fractional mass abundances and uncertainties) for 40 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Mo, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Au, Hg, Tl, Pb, and U), 7 ions (Cl -, NO 3-, PO 42-, SO 42-, Na +, K +, and NH 4+), organic and elemental carbon (OC and EC), 8 carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, and EC3), and carbonate carbon. Individual source profiles with analytical precisions were averaged and compared to quantify differences in chemical abundances for: (1) duplicate laboratory resuspension sampling, (2) multiple sampling within the same agricultural field, (3) sampling at different locations for the same land-use activity, (4) sampling of different activities regardless of location, and (5) grouping of different activities into generalized emission inventory source categories. Distinguishing features were found among composite source profiles of six source types. Elemental carbon and Pb marked paved road dust; Na +, Na, S, and SO 42- marked salt deposits; OC, PO 42-, P, K +, K, and Ca characterized animal husbandry; and several metals (Ti, V, Mn) marked construction soil, with abundances 2-10 times higher than those of other profiles. High-sensitivity X-ray fluorescence analysis resulted in detectable alkali and rare earth

  17. Quantification of Global Primary Emissions of PM2.5, PM10, and TSP from Combustion and Industrial Process Sources

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Tao, Shu

    2015-04-01

    Emission quantification of primary particulate matter (PM) is essential for assessment of its related climate and health impacts. To reduce uncertainty associated with global emissions of TSP, PM10 and PM2.5, we compiled data with high spatial (0.1° ×0.1° ) and sectorial (77 primary sources) resolutions for 2007 based on a newly released global fuel data product (PKU-FUEL-2007), and an emission factor database including emission factors measured recently in developing countries. Total emissions for TSP, PM10 and PM2.5 were estimated to be 162 (123-224), 99 (80-130), and 78 (64-101) Tg, respectively. Our estimates for developing countries are higher than those previously reported. Spatial bias associated with large countries could be reduced by using sub-national fuel consumption data. Despite the fact that most industrial and transport sources locate in urban areas, residential fuel consumptions are quite different between rural and urban areas, especially in developing countries. As a result, per person annual primary PM emission in rural areas are much higher than those in urban areas. Further, this difference in developed countries (12 and 2.8 kg PM2.5 for rural and urban areas) is larger than that in developing countries (8.4 and 4.6 kg PM2.5 for rural and urban areas). Additionally, we looked at temporal trends from 1960 to 2009 at country-scale resolution. Although total emissions are still increasing in developing countries, their intensities in terms of gross domestic production or energy consumption have decreased. PM emitted in developed countries is finer owing to a larger contribution from non-industrial sources, and use of abatement technologies. In contrast, countries like China, with strong industry emissions and limited abatement facilities, emit coarser PM. The health impacts of PM are intensified in hotspots and cities owing to covariance of sources and receptors. Although urbanization reduces the per person emission, overall health impacts

  18. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil.

    PubMed

    Boisa, Ndokiari; Elom, Nwabueze; Dean, John R; Deary, Michael E; Bird, Graham; Entwistle, Jane A

    2014-09-01

    An approach for assessing the inhalation bioaccessibility of Pb in the PM10 size fraction is presented, using an in vitro simulated epithelial lung fluid to represent the extracellular environment of the lung. The developed inhalation bioaccessibility method (IBM) is applied to a range of urban surface soils and mining wastes obtained from Mitrovica, Kosovo, a site where impacts upon human health following exposure to Pb have been internationally publicised. All Pb determinations were undertaken by inductively coupled plasma mass spectrometry (ICP-MS). The pseudo-total concentration of Pb (microwave acid digestion using aqua-regia) varied between matrices: smelter (20,900-72,800mgkg(-1)), topsoil (274-13,700mgkg(-1)), and tailings (2990mgkg(-1)-25,300mgkg(-1)). The in vitro inhalation bioaccessibility was typically several orders of magnitude lower: smelter (7.0-965mgkg(-1)), topsoil (9.8-1060mgkg(-1)), and tailings (0.7mgkg(-1)-49.2mgkg(-1)). The % inhalation bioaccessibility ranged from 0.02 to 11.0%, with the higher inhalation bioaccessible Pb concentrations being observed for samples from the Bosniak Mahalla area of Mitrovica (an area proposed for the relocation of internally displaced peoples). The estimated inhalation dose (for adults) calculated from the PM10 pseudo-total Pb concentration ranged from 0.369 to 1.284μgkg(-1)BWday(-1) (smelter), 0.005-0.242μgkg(-1)BWday(-1) (topsoil), and 0.053-0.446μgkg(-1)BWday(-1) (tailings). When daily inhalation doses were calculated using the bioaccessible Pb concentration the modelled exposure doses were much lower: smelter (0.0001-0.0170μgkg(-1)BWday(-1)), topsoil (0.0002-0.0187μgkg(-1)BWday(-1)) and tailings (0.0001-0.0009μgkg(-1)BWday(-1)). Modelled for the neutral pH conditions of the interstitial lung environment, the results indicate a low potential inhalation bioaccessibility for Pb in these samples. Given the already elevated environmental Pb burden experienced by the local population, where significant

  19. Organic and elemental carbon associated to PM10 and PM 2.5 at urban sites of northern Greece.

    PubMed

    Samara, Constantini; Voutsa, Dimitra; Kouras, Athanasios; Eleftheriadis, Kostas; Maggos, Thomas; Saraga, D; Petrakakis, M

    2014-02-01

    Organic carbon (OC) and elemental carbon (EC) concentrations, associated to PM10 and PM2.5 particle fractions, were concurrently determined during the warm and the cold months of the year (July-September 2011 and February-April 2012, respectively) at two urban sites in the city of Thessaloniki, northern Greece, an urban-traffic site (UT) and an urban-background site (UB). Concentrations at the UT site (11.3 ± 5.0 and 8.44 ± 4.08 14 μg m(-3) for OC10 and OC2.5 vs. 6.56 ± 2.14 and 5.29 ± 1.54 μg m(-3) for EC10 and EC2.5) were among the highest values reported for urban sites in European cities. Significantly lower concentrations were found at the UB site for both carbonaceous species, particularly for EC (6.62 ± 4.59 and 5.72 ± 4.36 μg m(-3) for OC10 and OC2.5 vs. 0.93 ± 0.61 and 0.69 ± 0.39 μg m(-3) for EC10 and EC2.5). Despite that, a negative UT-UB increment was frequently evidenced for OC2.5 and PM2.5 in the cold months possibly indicative of emissions from residential wood burning at the urban-background site. At both sites, cconcentrations of OC fractions were significantly higher in the cold months; on the contrary, EC fractions at the UT site were prominent in the warm season suggesting some influence from maritime emissions in the nearby harbor area. Secondary organic carbon, being estimated using the EC tracer method and seasonally minimum OC/EC ratios, was found to be an appreciable component of particle mass particularly in the cold season. The calculated secondary contributions to OC ranged between 35 and 59 % in the PM10 fraction, with relatively higher values in the PM2.5 fraction (39-61 %). The source origin of carbonaceous species was investigated by means of air parcel back trajectories, satellite fire maps, and concentration roses. A local origin was mainly concluded for OC and EC with limited possibility for long range transport of biomass (agricultural waste) burning aerosol.

  20. The Concentration of Iron in Real-World Geogenic PM10 Is Associated with Increased Inflammation and Deficits in Lung Function in Mice

    PubMed Central

    Zosky, Graeme R.; Iosifidis, Thomas; Perks, Kara; Ditcham, Will G. F.; Devadason, Sunalene G.; Siah, W. Shan; Devine, Brian; Maley, Fiona; Cook, Angus

    2014-01-01

    Background There are many communities around the world that are exposed to high levels of particulate matter <10 µm (PM10) of geogenic (earth derived) origin. Mineral dusts in the occupational setting are associated with poor lung health, however very little is known about the impact of heterogeneous community derived particles. We have preliminary evidence to suggest that the concentration of iron (Fe) may be associated with the lung inflammatory response to geogenic PM10. We aimed to determine which physico-chemical characteristics of community sampled geogenic PM10 are associated with adverse lung responses. Methods We collected geogenic PM10 from four towns in the arid regions of Western Australia. Adult female BALB/c mice were exposed to 100 µg of particles and assessed for inflammatory and lung function responses 6 hours, 24 hours and 7 days post-exposure. We assessed the physico-chemical characteristics of the particles and correlated these with lung outcomes in the mice using principal components analysis and multivariate linear regression. Results Geogenic particles induced an acute inflammatory response that peaked 6 hours post-exposure and a deficit in lung mechanics 7 days post-exposure. This deficit in lung mechanics was positively associated with the concentration of Fe and particle size variability and inversely associated with the concentration of Si. Conclusions The lung response to geogenic PM10 is complex and highly dependent on the physico-chemical characteristics of the particles. In particular, the concentration of Fe in the particles may be a key indicator of the potential population health consequences for inhaling geogenic PM10. PMID:24587402

  1. Improved source assessment of Si, Al and related mineral components to PM10 based on a daily sampling procedure.

    PubMed

    Peng, Ge; Puxbaum, Hans; Bauer, Heidi; Jankowski, Nicole; Shi, Yao

    2010-01-01

    Samples obtained from an industrialized valley in the East Alpine region were collected daily for a half year and analyzed using X-ray fluorescence to examine the elements Si, Al, Fe, Ca, Mg, Na, K, Zn, P, S and Cl. Some factors affecting the changes of these elements were considered, including time, elemental correlations, weekday, weekend and seasonal changes. Diagnostic analysis provided an insight into a decoupling behavior that occursin siliceous and carbonates minerals. A decrease in Si and Al and an increase in carbonates, Na, K, Zn and P were observed during the cold season. However, a consistently high correlation of Si and Al was observed in all seasons. It was established that such high levels originated from street surface abrasion. The increase in variability and absolute levels of carbonates during the cold season was demonstrated by adding carbonates to the street surface as gritting material to increase the grip on snowy surfaces. A marked increase in Na and Cl was observed in winter which may have been caused by thaw salt that is widely used in winter in Austria. This was associated with a significant increase in K, Zn, and P in the cold season that was the result of domestic space heating with wood. PM10 levels in December were 12 microg/m3 and were higher than levels detected in July. It was established that such high levels originated from mineral oxides, wood smoke, and inorganic ionic material(s).

  2. Characterization of As and trace metals embedded in PM10 particles in Puebla City, México.

    PubMed

    Morales-García, S S; Rodríguez-Espinosa, P F; Jonathan, M P; Navarrete-López, M; Herrera-García, M A; Muñoz-Sevilla, N P

    2014-01-01

    Forty-eight air-filter samples (PM10) were analysed to identify the concentration level of partially leached metals (PLMs; As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and V) from Puebla City, México. Samples were collected during 2008 from four monitoring sites: (1) Tecnológico (TEC), (2) Ninfas (NIN), (3) Hermanos Serdán (HS) and (4) Agua Santa (AS). The results indicate that in TEC, As (avg. 424 ng m(-3)), V (avg. 19.2 ng m(-3)), Fe (avg. 1,202 ng m(-3)), Cu (avg. 86.6 ng m(-3)), Cr (41.9 ng m(-3)) and Ni (18.6 ng m(-3)) are on the higher side than other populated regions around the world. The enrichment of PLMs is due to the industrial complexes generating huge dust particles involving various operations. The results are supported by the correlation of metals (Mn, Cd and Co) with Fe indicating its anthropogenic origin and likewise, As with Cd, Co, Fe, Mn, Pb and V. The separate cluster of As, Fe and Mn clearly signifies that it is due to continuous eruption of fumaroles from the active volcano Popocatépetl in the region.

  3. Radiocarbon-based source apportionment of black carbon (BC) in PM 10 aerosols from residential area of suburban Tokyo

    NASA Astrophysics Data System (ADS)

    Uchida, Masao; Kumata, Hidetoshi; Koike, Yasuyo; Tsuzuki, Mikio; Uchida, Tatsuya; Fujiwara, Kitao; Shibata, Yasuyuki

    2010-04-01

    The AMS technique was applied to analyse black carbon (BC), total organic carbon (TOC), and previously reported polycyclic aromatic hydrocarbons (PAHs) in PM 10 aerosols from a residential area, suburban Tokyo, to determine natural abundance of radiocarbon ( 14C), an ideal tracer to distinguish fossil fuel ( 14C-free) from modern biomass combustion sources of pyrolytic products. The 14C concentrations in BC, isolated using the CTO-375 method, were 42% and 30% pMC (in terms of percent Modern Carbon: pMC) in summer and winter, respectively. The 14C concentrations in BC were also compared with those of compound-class specific 14C content of PAHs previously reported for the same samples: they were 45% and 33% pMC in summer and winter, respectively. The 14C signals of BC were identical to those of high molecular weight (MW ⩾ 226, 5-6 rings) PAHs. The resemblance between 14C signals of BC and PAHs can be referred as a 'certificate' for the validity of the BC isolation method employed in this study. Also, it suggests that 14C-BC approach can be a surrogate for PAHs specific 14C analyses to monitor seasonal source variation of combustion-derived pyrolytic products. On the other hand, 14C contents of total organic carbon in 2004 were 61% and 42% pMC in summer and winter, respectively. This is likely attributed to higher contribution of plant activity in summer.

  4. Seasonal variations and source profile of n-alkanes in particulate matter (PM10) at a heavy traffic site, Delhi.

    PubMed

    Gupta, Sarika; Gadi, Ranu; Mandal, T K; Sharma, S K

    2017-01-01

    Delhi is one of the most polluted cities in the world. The generation of aerosols in the lower atmosphere of the city is mainly due to a large amount of natural dust advection and sizable anthropogenic activities. The compositions of organic compounds in aerosols are highly variable in this region and need to be investigated thoroughly. Twenty-four-hour sampling to assess concentrations of n-alkanes (ng/m(3)) in PM10 was carried out during January 2015 to June 2015 at Indira Gandhi Delhi Technical University for Women (IGDTUW) Campus, Delhi, India. The total average concentration of n-alkanes, 243.7 ± 5.5 ng/m(3), along with the diagnostic tools has been calculated. The values of CPI1, CPI2, and CPI3 for the whole range of n-alkanes series, petrogenic n-alkanes, and biogenic n-alkanes were 1.00, 1.02, and 1.04, respectively, and C max were at C25 and C27. Diagnostic indices and curves indicated that the dominant inputs of n-alkanes are from petrogenic emissions, with lower contribution from biogenic emissions. Significant seasonal variations were observed in average concentrations of n-alkanes, which is comparatively higher in winter (187.4 ± 4.3 ng/m(3)) than during the summer season (56.3 ± 1.1 ng/m(3)).

  5. Vertical differences in the composition of PM 10 and PM 2.5 in the urban atmosphere of Osaka, Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, Kansuke; Sakamoto, Kazuhiko

    Vertical differences in PM 10 and PM 2.5 suspended particles were investigated using a building in Osaka, Japan. Samples were collected on the roof of the building (200 m above ground level) and on the ground during 5-9 August and 2-6 December 2002. In addition to determination of sample mass, concentrations have been analyzed for major chemical components including elemental carbon (EC) and organic carbon (OC). Particle mass concentrations of the samples collected at 200 m were lower than those collected on the ground. "Others" species, defined as the difference between the total particle mass and the sum of the masses of the measured species, dominantly accounted for the vertical difference in mass concentrations in summer, whereas EC and OC were the major contributors in winter. Vertical profiles of relative humidity observed simultaneously indicated that relative humidity on the ground was higher than that at 200 m during the summer sampling period. Hence, it is likely that the higher concentrations of "others" species in the samples collected on the ground were probably caused by water having been absorbed by deliquescent components of the particles. Vertical temperature profiles during the winter sampling period suggested that stable meteorological conditions in winter resulted in the accumulation of primary particles, mainly emitted from vehicle exhaust, leading to the high concentrations of EC and OC on the ground.

  6. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    PubMed Central

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276

  7. A Study of metabolic transformation of organic and inorganic components in PM2.5 and PM10, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yoon, H.; Lee, M.

    2012-12-01

    The important factors of atmospheric particle matter (PM) are size, concentration, composition and toxicity which can considerably affect the possible human health problem, especially respiratory diseases, visibility reduction and climate change. PM2.5 and PM10 are complex mixture of ammonium sulfate, ammonium nitrate, organic carbon, inorganic carbon and inorganic constituents. Recently, most researches of source attribution and assessments of the relationship between health effects and particle concentrations have not taken advantage of the development in analytical tools measuring the detailed molecular structure and microstructure of particles and of the knowledge of particle formation mechanisms in combustion system. This study will combine variety analytical techniques that can provide structural and compositional information to determine the correlation between sources of hazardous material and physicochemical properties in aerosol particle. Inorganic metal can be rapidly quantifying to filter base using ED-XRF (Energy-dispersive X-ray fluorescence). Speciation and quantification of water soluble components applied HPLC-ICP-MS and LC-MS NMR (nuclear magnetic resonance). Afterward, we investigate metabolic transformations of atmospheric particle matter also using FE-TEM (Field Emission Transmission Electron Microscopy).

  8. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event.

    PubMed

    Cao, Chen; Jiang, Wenjun; Wang, Buying; Fang, Jianhuo; Lang, Jidong; Tian, Geng; Jiang, Jingkun; Zhu, Ting F

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing's PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners.

  9. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model.

    PubMed

    Callén, M S; Iturmendi, A; López, J M; Mastral, A M

    2014-02-01

    In order to perform a study of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH), benzo(a)pyrene equivalent (BaP-eq) concentration was calculated and modelled by a receptor model based on positive matrix factorization (PMF). Nineteen PAH associated to airborne PM10 of Zaragoza, Spain, were quantified during the sampling period 2001-2009 and used as potential variables by the PMF model. Afterwards, multiple linear regression analysis was used to quantify the potential sources of BaP-eq. Five sources were obtained as the optimal solution and vehicular emission was identified as the main carcinogenic source (35 %) followed by heavy-duty vehicles (28 %), light-oil combustion (18 %), natural gas (10 %) and coal combustion (9 %). Two of the most prevailing directions contributing to this carcinogenic character were the NE and N directions associated with a highway, industrial parks and a paper factory. The lifetime lung cancer risk exceeded the unit risk of 8.7 x 10(-5) per ng/m(3) BaP in both winter and autumn seasons and the most contributing source was the vehicular emission factor becoming an important issue in control strategies.

  10. Automated method for simultaneous lead and strontium isotopic analysis applied to rainwater samples and airborne particulate filters (PM10).

    PubMed

    Beltrán, Blanca; Avivar, Jessica; Mola, Montserrat; Ferrer, Laura; Cerdà, Víctor; Leal, Luz O

    2013-09-03

    A new automated, sensitive, and fast system for the simultaneous online isolation and preconcentration of lead and strontium by sorption on a microcolumn packed with Sr-resin using an inductively coupled plasma mass spectrometry (ICP-MS) detector was developed, hyphenating lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA). Pb and Sr are directly retained on the sorbent column and eluted with a solution of 0.05 mol L(-1) ammonium oxalate. The detection limits achieved were 0.04 ng for lead and 0.03 ng for strontium. Mass calibration curves were used since the proposed system allows the use of different sample volumes for preconcentration. Mass linear working ranges were between 0.13 and 50 ng and 0.1 and 50 ng for lead and strontium, respectively. The repeatability of the method, expressed as RSD, was 2.1% and 2.7% for Pb and Sr, respectively. Environmental samples such as rainwater and airborne particulate (PM10) filters as well as a certified reference material SLRS-4 (river water) were satisfactorily analyzed obtaining recoveries between 90 and 110% for both elements. The main features of the LOV-MSFIA-ICP-MS system proposed are the capability to renew solid phase extraction at will in a fully automated way, the remarkable stability of the column which can be reused up to 160 times, and the potential to perform isotopic analysis.

  11. Forecasting hourly PM(10) concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management.

    PubMed

    Paschalidou, Anastasia K; Karakitsios, Spyridon; Kleanthous, Savvas; Kassomenos, Pavlos A

    2011-02-01

    In the present work, two types of artificial neural network (NN) models using the multilayer perceptron (MLP) and the radial basis function (RBF) techniques, as well as a model based on principal component regression analysis (PCRA), are employed to forecast hourly PM(10) concentrations in four urban areas (Larnaca, Limassol, Nicosia and Paphos) in Cyprus. The model development is based on a variety of meteorological and pollutant parameters corresponding to the 2-year period between July 2006 and June 2008, and the model evaluation is achieved through the use of a series of well-established evaluation instruments and methodologies. The evaluation reveals that the MLP NN models display the best forecasting performance with R (2) values ranging between 0.65 and 0.76, whereas the RBF NNs and the PCRA models reveal a rather weak performance with R (2) values between 0.37-0.43 and 0.33-0.38, respectively. The derived MLP models are also used to forecast Saharan dust episodes with remarkable success (probability of detection ranging between 0.68 and 0.71). On the whole, the analysis shows that the models introduced here could provide local authorities with reliable and precise predictions and alarms about air quality if used on an operational basis.

  12. Exposure to ambient PM10 and nitrogen dioxide and ADHD risk: A reply to Min & Min (2017).

    PubMed

    Fluegge, Keith; Fluegge, Kyle

    2017-03-02

    Min and Min (2017) conducted an epidemiological investigation that revealed further support of a link between exposure to air pollution and risk for attention-deficit hyperactivity disorder (ADHD) in childhood. We have previously reported that exposure to the agricultural and combustion pollutant, nitrous oxide (N2O), may be a primary environmental trigger in the onset of neurodevelopmental disorders, like ADHD and autism spectrum disorders. In order to validate our prior work pointing to an association between farm use of nitrogen fertilizers and a severe ADHD phenotype, we have utilized a different statistical approach (i.e., Poisson regression methodology) including two-way fixed effects. The results reported in this correspondence indicate that for a one-log unit increase in the farm use of nitrogen fertilizers, hospitalization risk for ADHD and conduct disorders increases by a factor of 1.16 (p<0.017), which was a statistically significant increase in risk after multiple pollutant comparison correction. Exposure to PM10 and NOx in this analysis was not associated with an increased risk of hospitalization for ADHD and conduct disorder. We are able to validate our prior conclusions and, therefore, suggest that future analyses dedicated to improving the literature on the association between air pollution and risk of ADHD take into account environmental emissions of N2O.

  13. The air quality forecast of PM10 in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Xu, W.; Shi, A.; Li, Y.; Zhao, X.; Wang, Z.; Li, J.; Wang, L.

    2014-05-01

    The MM5-SMOKE-CMAQ model system, which was developed by the United States Environmental Protection Agency (US EPA) as the Models-3 system, has been used for daily air quality forecasts in the Beijing Municipal Environmental Monitoring Center (Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing (EMS-Beijing) since the Olympic Games 2008. According to the daily forecast results for the entire duration of 2010, the model shows good model performances in the PM10 forecast on most days but clearly underestimates some air pollution episodes. A typical air pollution episode from 11-20 January 2010 was chosen, where the observed air pollution index of particulate matter (PM10-API) reached to 180 while the forecast's PM10-API was about 100. In this study, three numerical methods are used for model improvement: first, enhance the inner domain with 3 km resolution grids: the coverage is expanded from only Beijing to the area including Beijing and its surrounding cities; second, add more regional point source emissions located at Baoding, Landfang and Tangshan, which is to the south and east of Beijing; third, update the area source emissions, which includes the regional area source emissions in Baoding and Tangshan and the local village-town level area source emissions in Beijing. As a result, the hindcast shows a much better model performance in the national standard station-averaged PM10-API, whereas the daily hindcast PM10-API reaches 180 and is much closer to the observation and has a correlation coefficient of 0.93. The correlation coefficient of the PM10-API in all Beijing MEMC stations between the hindcast and observation is 0.82, obviously higher than the forecast's 0.54, and the FAC2 increases from 56% in the forecast to 84% in the hindcast, while the NMSE decreases from 0.886 to 0.196. The hindcast also has better model performance in PM10 hourly concentrations during the typical air pollution episode, the correlation coefficient

  14. Emission and profile characteristic of polycyclic aromatic hydrocarbons in PM2.5 and PM10 from stationary sources based on dilution sampling

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Ji, Yaqin; Li, Zhiyong; Lu, Bing; Bai, Zhipeng

    2013-10-01

    The mass concentrations and profile characteristic for 18 kinds of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and PM10 from stack gases for six types of stationary sources in Shandong Province, China were studied by a dilution sampling system and GC-MS analysis method from February to March in 2010. The mass concentrations of PM2.5 and PM10 from the six types of stationary sources varied in 8.2-79.4 mg m-3 and 23.3-156.7 mg m-3, respectively. The total mass concentrations of analyzed PAHs in PM2.5 and PM10 were in the ranges of 0.40-94.35 μg m-3 and 9.16-122.91 μg m-3. The most toxic ashes were from sinter and coke oven for both PM2.5 and PM10 with high carcinogenic PAHs concentrations. BbF, Phe, NaP, BghiP, Pyr, BaP and BeP were abundant which was different from formers and one of the key reasons may be the differences of sampling methods. Diversities in PAHs compositions existed between fly ashes within PM2.5 and PM10 fractions for coke oven according to coefficient of divergence (CD) values. PAHs profiles for PM10 emitted from coke oven were different from those of other stationary sources (with CD values higher than 0.35) and for PM2.5, it was the same for sinter (with most CD values close to 0.30). There existed similar PAHs markers for fine particles emitted from stationary sources excepted for the sinter. For PM10, PAHs markers were primary 3-ring PAHs except for the coke oven with BbF, IND and BghiP as its signatures. Diagnostic ratios of BaA/(BaA + Chr), Flu/(Flu + Pyr), BaP/(BaP + BeP), BeP/BghiP and IND/(IND + BghiP) could be not well distinguished for the six types of stationary sources with the maximum/minimum ratios lower than 2 for both PM2.5 and PM10 of fly ashes which should be not used for source identification studies. The mass concentrations and source profiles of PAHs should be updated timely for size-differentiated fly ashes from various stationary sources by dilution sampling method.

  15. Temporal variation of nitro-polycyclic aromatic hydrocarbons in PM10 and PM2.5 collected in Northern Mexico City.

    PubMed

    Valle-Hernández, B L; Mugica-Alvarez, V; Salinas-Talavera, E; Amador-Muñoz, O; Murillo-Tovar, M A; Villalobos-Pietrini, R; De Vizcaya-Ruíz, A

    2010-10-15

    With the aim to determine the presence of individual nitro-PAH contained in particles in the atmosphere of Mexico City, a monitoring campaign for particulate matter (PM(10) and PM(2.5)) was carried out in Northern Mexico City, from April 2006 to February 2007. The PM(10) annual median concentration was 65.2μgm(-3) associated to 7.6μgm(-3) of solvent-extractable organic matter (SEOM) corresponding to 11.4% of the PM(10) concentration and 38.6μgm(-3) with 5.9μgm(-3) SEOM corresponding to 15.2% for PM(2.5). PM concentration and SEOM varied with the season and the particle size. The quantification of nitro-polycyclic aromatic hydrocarbons (nitro-PAH) was developed through the standards addition method under two schemes: reference standard with and without matrix, the former giving the best results. The recovery percentages varied with the extraction method within the 52 to 97% range depending on each nitro-PAH. The determination of the latter was effected with and without sample purification, also termed fractioning, giving similar results. 8 nitro-PAH were quantified, and their sum ranged from 111 to 819pgm(-3) for PM(10) and from 58 to 383pgm(-3) for PM(2.5), depending on the season. The greatest concentration was for 9-Nitroanthracene in PM(10) and PM(2.5), detected during the cold-dry season, with a median (10th-90th percentiles) concentration in 235pgm(-3) (66-449pgm(-3)) for PM(10) and 73pgm(-3) (18-117pgm(-3)) for PM(2.5). The correlation among mass concentrations of the nitro-PAH and criteria pollutants was statistically significant for some nitro-PAH with PM(10), SEOM in PM(10), SEOM in PM(2.5), NO(X), NO(2) and CO, suggesting either sources, primary or secondary origin. The measured concentrations of nitro-PAH were higher than those reported in other countries, but lower than those from Chinese cities. Knowledge of nitro-PAH atmospheric concentrations can aid during the surveillance of diseases (cardiovascular and cancer risk) associated with these

  16. Chaff Aerodynamics

    DTIC Science & Technology

    1975-11-01

    further improve the contrast all of the interior surfaces of the test chamber are painted flat black and the bac!-,ground walls in view of the cameras...to be adequate to eliminate wall effects on the chaff aerodynamics. Secondly, the chamber air mass had to be sufficiently small that it would damp out...independently- supported special rotating-shutter system to "strobe" the dipole images. The integral shutter in each lens assembly is also retained for

  17. Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Mcfalls, R. A.; Beacher, B. F.

    1977-01-01

    The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction.

  18. Particulate matter (PM10) patterns in Europe: An exploratory data analysis using non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Žibert, Janez; Cedilnik, Jure; Pražnikar, Jure

    2016-05-01

    In last decade space-density of monitoring stations increased, in to addition also air pollution modeling made big progress. Using diversity of big data can lead to better knowledge about air pollution at continental scale. The focus of presented study is the data-driven approach using non-negative matrix factorization to provide new insights and to study the characteristic space-time particulate-matter patterns across Europe. We analyzed the PM10 concentrations obtained from 1097 monitoring stations (AirBase data) and the Monitoring Atmospheric Composition and Climate (MACC) modeled fields for a period of 3 years. We distinguished five characteristic patterns obtained from the AirBase data and five patterns from the MACC data. A comparison between the AirBase and MACC data shows a good spatial overlap for the east Europe, central Europe and the Mediterranean patterns. However, it should be noted that an analysis of the MACC data revealed two additional marine patterns: the Celtic and the North Seas. The Po Valley and Balkan patterns were very clearly identified when analyzing the AirBase data. In order to better understand the influence of the synoptic situation on the particulate-matter concentrations the synoptic meteorological situations were additionally analyzed. The cold season, low wind and very stable conditions, which can last for several days, is the most common situation linked to high concentrations of anthropogenic air pollution with particulate matter. In contrast, for the Mediterranean pattern the most common situation (high factor loadings) is observed during the summer period. This pattern also exhibits a clearer annual cycle. A closer look at the sea-salt patterns (Celtic and North Seas) shows low time-series correlations between these two factors. Nevertheless, the physical mechanism is the same: a steep gradient between the cyclone and the anti-cyclone that causes high winds and, consequently, higher sea-salt production.

  19. Prediction of PM 10 concentrations at urban traffic intersections using semi-empirical box modelling with instantaneous velocity and acceleration

    NASA Astrophysics Data System (ADS)

    He, Hong-di; Lu, Wei-Zhen; Xue, Yu

    2009-12-01

    At urban traffic intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly during the green-light period. The changes of driving patterns (i.e., idle, acceleration, deceleration and cruising patterns) generally produce uncertain emission. Additionally, the movement of pedestrians and the influence of wind further result in the random dispersion of pollutants. It is, therefore, too complex to simulate the effects of such dynamics on the resulting emission using conventional deterministic causal models. For this reason, a modified semi-empirical box model for predicting the PM 10 concentrations on roadsides is proposed in this paper. The model constitutes three parts, i.e., traffic, emission and dispersion components. The traffic component is developed using a generalized force traffic model to obtain the instantaneous velocity and acceleration when vehicles move through intersections. Hence the distribution of vehicle emission in street canyon during the green-light period is calculated. Then the dispersion component is investigated using a semi-empirical box model combining average wind speed, box height and background concentrations. With these considerations, the proposed model is applied and evaluated using measured data at a busy traffic intersection in Mong Kok, Hong Kong. In order to test the performance of the model, two situations, i.e., the data sets within a sunny day and between two sunny days, were selected to examine the model performance. The predicted values are generally well coincident with the observed data during different time slots except several values are ov