Science.gov

Sample records for aerodynamic diameter pm10

  1. MEASUREMENT OF PM-10 EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Measurements of PM-10 particulate matter emissions from stationary sources were performed using two sampling approaches currently under development. PM-10 particulate matter is defined as all particles nominally 10 micrometers aerodynamic diameter and smaller. Aerodynamic inertia...

  2. 75 FR 26898 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ...EPA is proposing under the Clean Air Act (CAA) to determine that the Fort Hall PM-10 nonattainment area on the Fort Hall Indian Reservation in Idaho has attained the National Ambient Air Quality Standards (NAAQS) for particulate matter with an aerodynamic diameter of less than or equal to 10 microns (PM-10). EPA's proposed finding that the Fort Hall PM-10 nonattainment area has attained the......

  3. 40 CFR 50.6 - National primary and secondary ambient air quality standards for PM10.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for PM10. 50.6 Section 50.6 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM10. (a) The level of the national... PM10 (particles with an aerodynamic diameter less than or equal to a nominal 10 micrometers) by: (1)...

  4. 40 CFR 50.6 - National primary and secondary ambient air quality standards for PM10.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for PM10. 50.6 Section 50.6 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for PM10. (a) The level of the national... PM10 (particles with an aerodynamic diameter less than or equal to a nominal 10 micrometers) by: (1)...

  5. 75 FR 45571 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ...EPA proposes to determine that the Las Vegas Valley nonattainment area in Nevada attained the National Ambient Air Quality Standard (NAAQS) for particulate matter with an aerodynamic diameter of less than or equal to a nominal ten micrometers (PM10) by the applicable attainment date (December 31, 2006), and that the Las Vegas Valley nonattainment area is currently attaining the......

  6. Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City

    PubMed Central

    Chirino, Yolanda I.; Sánchez-Pérez, Yesennia; Osornio-Vargas, Álvaro Román; Rosas, Irma; García-Cuellar, Claudia María

    2015-01-01

    The PM10 airborne particulate matter with an aerodynamic diameter ≤10 µm is considered as a risk factor of various adverse health outcomes, including lung cancer. Here we described the sampling and composition of PM10 collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City. The PM10 was collected with a high-volume sampler in the above mentioned locations and both types of PM10 sampled were characterized by the content of polycyclic aromatic hydrocarbons (PAHs), metals, and endotoxin. The endotoxin PM10 content from IZ and CZ displayed 138.4 UE/mg and 170.4 UE/mg of PM10, respectively. PMID:26217815

  7. Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City.

    PubMed

    Chirino, Yolanda I; Sánchez-Pérez, Yesennia; Osornio-Vargas, Álvaro Román; Rosas, Irma; García-Cuellar, Claudia María

    2015-09-01

    The PM10 airborne particulate matter with an aerodynamic diameter ≤10 µm is considered as a risk factor of various adverse health outcomes, including lung cancer. Here we described the sampling and composition of PM10 collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City. The PM10 was collected with a high-volume sampler in the above mentioned locations and both types of PM10 sampled were characterized by the content of polycyclic aromatic hydrocarbons (PAHs), metals, and endotoxin. The endotoxin PM10 content from IZ and CZ displayed 138.4 UE/mg and 170.4 UE/mg of PM10, respectively. PMID:26217815

  8. Soil water content and soil disaggregation by disking affects PM10 emissions.

    PubMed

    Madden, Nicholaus M; Southard, Randal J; Mitchell, Jeff P

    2009-01-01

    Row crop agriculture in California's San Joaquin Valley is a major contributor of particulate matter <10 microm in aerodynamic diameter (PM10). The California Air Resources Board uses fixed PM10 emission values for various tillage operations to monitor and design attainment strategies. However, fixed emission values do not reflect emissions produced by a single implement operating under different soil conditions. This 2-yr study evaluated how PM10 mass concentrations (microg L(-1)) from disking change as a function of gravimetric soil water content (GWC), number of sequential diskings (D1, D2, D3), and the soil's weighted mean ped diameter (WMPD). Results showed PM10 increased logarithmically as the soil dried from a GWC of 14 to 4%. Average PM10 values at the lower GWCs were six to eight times greater than at the higher GWCs. Number of diskings also increased PM10, especially in drier soil. Below a GWC of 7%, PM10 for D3 was about twice that for D1. Despite strong correlations between more disking and lower WMPD, a lower WMPD did not always result in an increase in PM10. This underscored the role soil water plays in reducing PM10 at high GWCs despite low WMPDs from multiple diskings. Three-way interactions between GWC, disking, and PM10 showed, on average, that the magnitude of PM10 produced by D1 was 1.3 to 1.6 times lower than by D3, despite having insignificantly different GWC. Therefore, a disking operation can yield two different PM10 values under similar GWCs if the amount of soil disaggregation is different. Our results show that inclusion of soil parameters in PM10 emission estimates is essential to describing agriculture's role in air quality violations and to assess the value of proposed mitigation measures, such as conservation tillage. PMID:19141793

  9. PM10 modeling of Beijing in the winter

    NASA Astrophysics Data System (ADS)

    Song, Yu; Zhang, Minsi; Cai, Xuhui

    The megacity of Beijing, China, has had an air pollution problem since the 1990s. The concentrations of particulate matter with an aerodynamic diameter less than 10 μm (PM10) in Beijing in the winter of 2000 were high; the average value of 188 μg m -3 was nearly four times the first grade national standard of 50 μg m -3. The CALPUFF modeling system was used to simulate PM10 dispersion from 1 January 2000 to 29 February 2000. We used near real-time landcover data from the moderate resolution imaging spectroradiometer (MODIS). Statistical evaluation indicated that the model agreed well with the observations. The fluctuations of 24-h PM10 concentrations followed the winter synoptic winds. Cold air from the northwest or north intruded over Beijing for average periods of 4 days in winter, accompanied by high wind speeds. PM10 was swept out of Beijing after the cold fronts and accumulated again once the winds stopped, until the next cold air intrusion. Capital Steel Corporation Limited contributed 46% of the PM10 mass concentrations observed in the Shijingshan industrial area, and had little effect on the eastern part or the center of Beijing. The other industrial regions distributed in southeastern Beijing accounted for an average of 18% of the PM10 in Beijing. Boilers associated with coal consumption mostly for winter heating contributed 31%. Motor vehicles and road dust contributed 5% and 13%, respectively. The total of residential heating in old houses and restaurants contributed approximately 7%. The primary PM10 emissions from electrical generating units were relatively low. Some suggestions are proposed for reducing PM10 pollution in Beijing.

  10. Water-insoluble fraction of airborne particulate matter (PM10 ) induces oxidative stress in human lung epithelial A549 cells.

    PubMed

    Yi, Shuo; Zhang, Fang; Qu, Fang; Ding, Wenjun

    2014-02-01

    Exposure to ambient airborne particulate matter (PM) with an aerodynamic diameter less than 10 μm (PM10 ) links with public health hazards and increases risk for lung cancer and other diseases. Recent studies have suggested that oxidative stress is a key mechanism underlying the toxic effects of exposure to PM10 . Several components of water-soluble fraction of PM10 (sPM10 ) have been known to be capable of inducing oxidative stress in in vitro studies. In this study, we investigated if water-insoluble fraction of PM10 (iPM10 ) could be also capable of inducing oxidative stress and oxidative damage. Human lung epithelial A549 cells were exposed to 10 μg/mL of sPM10 , iPM10 or total PM10 (tPM10 ) preparation for 24 h. Here, we observed that all three PM10 preparations reduced cell viability and induced apoptotic cell death in A549 cells. We further found that, similar to the exposure to sPM10 and tPM10 , the intracellular level of hydrogen peroxide (H2 O2 ) in the iPM10 -exposed cells was increased significantly; meanwhile the activity of catalase was decreased significantly as compared with the unexposed control cells, resulting in significant DNA damage. Our data obtained from inductively coupled plasma-mass spectrometry (ICP-MS) assays showed that iron is the most abundant metal in all three PM10 preparations. Thus, we have demonstrated that, similar to sPM10 , iPM10 is also capable of inducing oxidative stress by probably inducing generation of H2 O2 and impairing enzymatic antioxidant defense, resulting in oxidative DNA damage and even apoptotic cell death through the iron-catalyzed Fenton reaction. PMID:22331617

  11. Monetary Valuation of PM10-Related Health Risks in Beijing China: The Necessity for PM10 Pollution Indemnity

    PubMed Central

    Yin, Hao; Xu, Linyu; Cai, Yanpeng

    2015-01-01

    Severe health risks caused by PM10 (particulate matter with an aerodynamic diameter ≤10 μm) pollution have induced inevitable economic losses and have rendered pressure on the sustainable development of society as a whole. In China, with the “Polluters Pay Principle”, polluters should pay for the pollution they have caused, but how much they should pay remains an intractable problem for policy makers. This paper integrated an epidemiological exposure-response model with economics methods, including the Amended Human Capital (AHC) approach and the Cost of Illness (COI) method, to value the economic loss of PM10-related health risks in 16 districts and also 4 functional zones in Beijing from 2008 to 2012. The results show that from 2008 to 2012 the estimated annual deaths caused by PM10 in Beijing are around 56,000, 58,000, 63,000, 61,000 and 59,000, respectively, while the economic losses related to health damage increased from around 23 to 31 billion dollars that PM10 polluters should pay for pollution victims between 2008 and 2012. It is illustrated that not only PM10 concentration but also many other social economic factors influence PM10-related health economic losses, which makes health economic losses show a time lag discrepancy compared with the decline of PM10 concentration. In conclusion, health economic loss evaluation is imperative in the pollution indemnity system establishment and should be considered for the urban planning and policy making to control the burgeoning PM10 health economic loss. PMID:26308020

  12. Monetary Valuation of PM10-Related Health Risks in Beijing China: The Necessity for PM10 Pollution Indemnity.

    PubMed

    Yin, Hao; Xu, Linyu; Cai, Yanpeng

    2015-08-01

    Severe health risks caused by PM10 (particulate matter with an aerodynamic diameter ≤10 μm) pollution have induced inevitable economic losses and have rendered pressure on the sustainable development of society as a whole. In China, with the "Polluters Pay Principle", polluters should pay for the pollution they have caused, but how much they should pay remains an intractable problem for policy makers. This paper integrated an epidemiological exposure-response model with economics methods, including the Amended Human Capital (AHC) approach and the Cost of Illness (COI) method, to value the economic loss of PM10-related health risks in 16 districts and also 4 functional zones in Beijing from 2008 to 2012. The results show that from 2008 to 2012 the estimated annual deaths caused by PM10 in Beijing are around 56,000, 58,000, 63,000, 61,000 and 59,000, respectively, while the economic losses related to health damage increased from around 23 to 31 billion dollars that PM10 polluters should pay for pollution victims between 2008 and 2012. It is illustrated that not only PM10 concentration but also many other social economic factors influence PM10-related health economic losses, which makes health economic losses show a time lag discrepancy compared with the decline of PM10 concentration. In conclusion, health economic loss evaluation is imperative in the pollution indemnity system establishment and should be considered for the urban planning and policy making to control the burgeoning PM10 health economic loss. PMID:26308020

  13. PM10 source apportionment in California's San Joaquin valley

    NASA Astrophysics Data System (ADS)

    Chow, Judith C.; Watson, John G.; Lowenthal, Douglas H.; Solomon, Paul A.; Magliano, Karen L.; Ziman, Steven D.; Willard Richards, L.

    A PM10 (particulate matter with aerodynamic diameter equal to or less than 10 μm) aerosol study was carried out at six sites in California's San Joaquin Valley (SJV) from 14 June 1988 to 9 June 1989, as part of the 1988-1989 Valley Air Quality Study (VAQS). Concentrations of PM10 and PM2.5 (particles with aerodynamic diameters equal to or less than 2.5 μm) mass, organic and elemental carbon, nitrate, sulfate, ammonium and elements were determined in 24-h aerosol samples collected at three urban (Stockton, Fresno, Bakersfield) and three non-urban (Crows Landing, Fellows, Kern Wildlife Refuge) locations during this period. The sources which contributed to ambient concentrations of PM10 were determined by applying the Chemical Mass Balance (CMB) receptor model using the source profiles determined specifically for that study area. The VAQS data indicates the federal 24-h PM10 standard of 150 μg m -3 was exceeded at four out of the six sites and for reasons which differ by season and by spatial region of influence. The annual average source contributions to the PM10 at Bakersfield, the site with the highest annual average, were 54% from primary geological material, 15% from secondary ammonium nitrate, 10% from primary motor vehicle exhaust, 8% from primary construction; the remaining 4% was unexplained. The results of the source apportionment at all sites show that geological contributions (fugitive dust from tilling, roadways and construction) are largest in summer and fall months, while secondary ammonium nitrate contributions (deriving from direct emissions of ammonia and oxides of nitrogen from agricultural activities and engine exhaust) are largest during winter months.

  14. 78 FR 27168 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Mendenhall Valley PM10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ...The EPA is proposing to approve the Limited Maintenance Plan (LMP) for particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers (PM10) submitted by the State of Alaska on May 8, 2009 for the Mendenhall Valley nonattainment area (Mendenhall Valley NAA), and the State's request to redesignate the area to attainment for the National Ambient Air......

  15. 78 FR 20001 - Approval and Promulgation of Implementation Plans; Idaho: Sandpoint PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... review by the Office of Management and Budget under Executive Order 12866 (58 FR 51735, October 4, 1993... through www.regulations.gov or in hard copy at EPA Region 10, Office of Air, Waste and Toxics (AWT-107... aerodynamic diameter less than or equal to 10 micrometers (PM 10 ) (52 FR 24634). The EPA established a...

  16. 77 FR 38399 - Approval and Promulgation of Implementation Plans; Arizona; Nogales PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ...EPA is proposing to approve a state implementation plan revision submitted by the Arizona Department of Environmental Quality to address the moderate area PM10, particulate matter with an aerodynamic diameter of less than or equal to a nominal ten micrometers, planning requirements for the Nogales nonattainment area. Consistent with this proposal, EPA is also proposing to approve......

  17. Improvement of PM10 prediction in East Asia using inverse modeling

    NASA Astrophysics Data System (ADS)

    Koo, Youn-Seo; Choi, Dae-Ryun; Kwon, Hi-Yong; Jang, Young-Kee; Han, Jin-Seok

    2015-04-01

    Aerosols from anthropogenic emissions in industrialized region in China as well as dust emissions from southern Mongolia and northern China that transport along prevailing northwestern wind have a large influence on the air quality in Korea. The emission inventory in the East Asia region is an important factor in chemical transport modeling (CTM) for PM10 (particulate matters less than 10 ㎛ in aerodynamic diameter) forecasts and air quality management in Korea. Most previous studies showed that predictions of PM10 mass concentration by the CTM were underestimated when comparing with observational data. In order to fill the gap in discrepancies between observations and CTM predictions, the inverse Bayesian approach with Comprehensive Air-quality Model with extension (CAMx) forward model was applied to obtain optimized a posteriori PM10 emissions in East Asia. The predicted PM10 concentrations with a priori emission were first compared with observations at monitoring sites in China and Korea for January and August 2008. The comparison showed that PM10 concentrations with a priori PM10 emissions for anthropogenic and dust sources were generally under-predicted. The result from the inverse modeling indicated that anthropogenic PM10 emissions in the industrialized and urbanized areas in China were underestimated while dust emissions from desert and barren soil in southern Mongolia and northern China were overestimated. A priori PM10 emissions from northeastern China regions including Shenyang, Changchun, and Harbin were underestimated by about 300% (i.e., the ratio of a posteriori to a priori PM10 emission was a factor of about 3). The predictions of PM10 concentrations with a posteriori emission showed better agreement with the observations, implying that the inverse modeling minimized the discrepancies in the model predictions by improving PM10 emissions in East Asia.

  18. Assessment of human exposure level to PM10 in China

    NASA Astrophysics Data System (ADS)

    An, Xingqin; Hou, Qing; Li, Nan; Zhai, Shixian

    2013-05-01

    Epidemiological studies have found that atmospheric particulate matter, especially PM10 (inhalable particulate matter with aerodynamic diameter less than or equal to 10 μm) is one of the pollutants that are harmful to human health. In recent years, particulate matter pollution in China is becoming increasingly serious and PM10 has become the primary pollutant in Beijing and other cities. Therefore, it is necessary to carry out studies and a health damage assessment of PM10. In human health damage assessment, measuring human exposure level to PM10 is required and crucial to provide accurate exposure data for the exposure-response relationship, and also for the accurate quantitative assessment of human exposure. The spatial distribution of particle concentration in China is variable because of spatial differences in the local economic level and the geographical environment. Along with the accelerating urbanisation in China, city population density is high, and the population distribution is variable between and within cities, thus resulting in different population numbers exposed to different concentration ranges. Therefore, an accurate assessment of China's level of exposure to particulate matter is a priority and the basis for assessing the damage to public health caused by particle pollution. Using high accuracy population and PM10 monitoring data, this study analysed the human exposure to PM10 in different regions and typical cities of China. The results show that for most areas of China, the population-weighted PM10 exposure concentration is slightly higher than the annual mean concentration, meaning that more of the population is exposed to high concentrations, and most of the population is exposed to levels that meet the second national standard (between 40 and 100 μg m-3), occupying about 83.7% of population and 76.3% of area in China. The population exposure to PM10 is higher in two types of typical regions and cities: areas with dense human populations

  19. The Effect of PM10 on Allergy Symptoms in Allergic Rhinitis Patients During Spring Season

    PubMed Central

    Kang, Il Gyu; Ju, Youn Hee; Jung, Joo Hyun; Ko, Kwang Pil; Oh, Dae Kyu; Kim, Jeong Hee; Lim, Dae Hyun; Kim, Young Hyo; Jang, Tae Young; Kim, Seon Tae

    2015-01-01

    Background: Asian sand dust (ASD) that originates in the Mongolian Desert in the spring induces serious respiratory health problems throughout East Asia (China, Korea, Japan). PM10 (particulate matter with an aerodynamic diameter <10 μm) is a major air pollutant component in ASD. We studied the effects of PM10 on allergy symptoms in patients with allergic rhinitis during the spring season, when ASD frequently develops. Methods: We investigated the changes in allergic symptoms in 108 allergic patients and 47 healthy subjects by comparing their 120-day symptom scores from February to May 2012. At the same time, the contributions of pollen count and PM10 concentration were also assessed. We also compared symptom scores before and 2 days after the daily PM10 concentration was >100 μg/m3. Results: The PM10 concentration during the 120 days was <150 μg/m3. No significant correlations were observed between changes in the PM10 concentration and allergic symptom scores (p > 0.05). However, allergic symptoms were significantly correlated with outdoor activity time (p < 0.001). Conclusions: These results demonstrate that a PM10 concentration <150 μg/m3 did not influence allergy symptoms in patients with allergic rhinitis during the 2012 ASD season. PMID:25590148

  20. Investigation of PM10 sources in Santa Catarina, Brazil through graphical interpretation analysis combined with receptor modelling.

    PubMed

    Hoinaski, L; Franco, D; Stuetz, R M; Sivret, E C; Lisboa, H de Melo

    2013-01-01

    Epidemiological studies have documented that elevated airborne particulate matter (PM) concentrations, especially those with an aerodynamic diameter less than 10 microm (PM10), are associated with adverse health effects. Two receptor models, UNMIX and positive matrix factorization (PMF), were used to identify and quantify the sources of PM10 concentrations in Tubarão and Capivari de Baixo, Santa Catarina, Brazil. This region is known for its high pollution levels due to intense industrial activity and exploitation of natural resources. PM10 samples were collected using high volume samplers at two sites in the region and statistical exploratory analysis techniques were applied to identify and assess PM10 sources. The two primary PM10 sources were identified as soil re-suspension/road dust emissions and coal burning emissions, contributing 65-75% and 15-25% of the PM10, respectively. The study confirmed the significance of the influence of local PM10 emissions (power plants, soil re-suspension and road dust emissions) on regional air quality, although no violations of the Brazilian PM10 standards (limit of 150 microg/m3) were observed, with a mean concentration of 27.6 microg/m3 measured in this study. This study demonstrated the usefulness of statistical exploratory analysis techniques in assessing the validity of modelling results and contributing to the interpretation of ambient air quality data. PMID:24527606

  1. The Impact of African Dust on PM10 Air Quality in the Caribbean Basin

    NASA Astrophysics Data System (ADS)

    Prospero, J. M.

    2015-12-01

    Decades of aerosol measurements on Barbados and Miami have yielded a broad picture of African mineral dust transport to the Caribbean Basin. These measurements show that in summer the aerosol mass is often dominated by dust. At such times over 90% of the dust mass is comprised of particles less than 10 μm aerodynamic diameter and thus fits the EPA criteria for PM10. A number of sites in the Caribbean monitor PM10 using the same instrumentation commonly deployed in European and United States networks. By comparing data from individual islands that have multiple monitoring sites (e.g., Puerto Rico, Martinique, Guadeloupe), it is shown that during dust events PM10 concentrations track very closely and that local sources have a minor impact on PM10 above about 15 to 20 μg m-3. Moreover the PM10 measurements are coherent with the movement of dust clouds over the islands as observed by satellites. In this way dust movement can be tracked at PM10 sites along the Gulf and southeast coasts of the United States. To assess the specific impact of African dust on PM10 in the region, I compare the daily records of dust measurements at Miami and Barbados with concurrent measurements made at proximate PM10 sites. I then use these relationships and the long term dust measurements at Barbados and Miami to assess the long-term variability of PM10 across the region. At Barbados the record goes back 50 years and provides a basis of assessing the effects of climate variability on PM10 transport. This study shows that there is great variability on scales ranging from daily to decadal. The impact of the droughts in the 1970s and 1980s was particularly significant. Across the Caribbean, the rates of exceedances of the WHO PM10 guideline is comparable to those observed in many major urban areas in Europe and the US. The dominance of dust in large PM10 events and the absence of major pollution sources on many islands offers the opportunity to study the health impacts of desert dust in

  2. Evaluation of the Impact of Low Emission Zone and Heavy Traffic Ban in Munich (Germany) on the Reduction of PM10 in Ambient Air

    PubMed Central

    Fensterer, Veronika; Küchenhoff, Helmut; Maier, Verena; Wichmann, Heinz-Erich; Breitner, Susanne; Peters, Annette; Gu, Jianwei; Cyrys, Josef

    2014-01-01

    Concentrations of ambient fine particles (PM10: particles with an aerodynamic diameter ≤ 10 µm) are still exceeding current air quality standards in many European cities. In Munich (Germany), low emission zone and transit bans for heavy-duty vehicles were introduced in 2008 aiming at reduction of traffic emissions contribution to PM10. The effects of those measures on PM10 mass concentrations in Munich were investigated with a semiparametric regression model for modeling PM10 levels adjusted for time, background pollution, public holidays and wind direction. The reduction of PM10 concentration after the introduction of the measures was larger at a traffic monitoring site (13.0 %, 19.6 % in summer, and 6.8 % in winter) and smaller in urban background (4.5 %, 5.7 % in summer, and 3.2 % in winter). The effect was most pronounced on Fridays and on the weekends in summer. PMID:24828081

  3. Analysis of roadside inhalable particulate matter (PM10) in major Korean cities.

    PubMed

    Jo, Wan-Kuen; Park, Jin-Ho

    2005-12-01

    A data analysis of three major Korean cities was conducted to assess roadside inhalable particulate matter 10 microm or smaller in aerodynamic diameter (PM10), including temporal and meteorological variations, over a recent period of 4 to 6 years. The yearly roadside PM10 concentrations presented a well-defined increasing trend or no trend depending on the roadside monitoring station. Most mean values exceeded or approximated the Korean standard of 70 microg/m3 per year for PM10. A representative roadside diurnal trend was characterized by a distinct morning maximum. In most cases, the Sunday roadside concentrations were similar to or somewhat lower than the weekday concentrations, and the PM10 concentrations presented a well-defined seasonal variation, with the maximum concentration in March. The monthly maximum concentrations observed in March were most likely attributable to Asian dust storms. In two metropolitan cities (Seoul and Busan), the frequency of days with roadside PM10 concentrations exceeding the standard of 150 microg/m3 per 24 h was much lower for the roadside monitoring stations than for the residential monitoring station, whereas in the third city (Daegu), this result was reversed. Interestingly, the average maximum concentrations observed for the roadside sites in Seoul and Busan during March were higher than those for the residential sites, suggesting that the roadside concentrations responded more to the dust storms than the residential areas. The relationship between the pollutant concentrations and five important meteorological parameters (solar radiation, wind speed, air temperature, relative humidity, and precipitation) showed that the number and type of meteorological variables included in the equations varied according to the monitoring station or season. Finally, the current results confirmed that attention should be given to the PM10 exposure of residents living near roadways. PMID:16328679

  4. A wood-strand material for wind erosion control: effects on total sediment loss, PM10 vertical flux, and PM10 loss.

    PubMed

    Copeland, N S; Sharratt, B S; Wu, J Q; Foltz, R B; Dooley, J H

    2009-01-01

    Fugitive dust from eroding land poses risks to environmental quality and human health, and thus, is regulated nationally based on ambient air quality standards for particulate matter with mean aerodynamic diameter < or = 10 microm (PM10) established in the Clean Air Act. Agricultural straw has been widely used for rainfall-induced erosion control; however, its performance for wind erosion mitigation has been less studied, in part because straw is mobile at moderate wind velocities. A wood-based long-strand material has been developed for rainfall-induced erosion control and has shown operational promise for control of wind-induced erosion and dust emissions from disturbed sites. The purpose of this study was to evaluate the efficacy of both agricultural straw and wood-strand materials in controlling wind erosion and fugitive dust emissions under laboratory conditions. Wind tunnel tests were conducted to compare wood strands of several geometries to agricultural wheat straw and bare soil in terms of total sediment loss, PM10 vertical flux, and PM10 loss. Results indicate that the types of wood strands tested are stable at wind speeds of up to 18 m s(-1), while wheat straw is only stable at speeds of up to 6.5 m s(-1). Wood strands reduced total sediment loss and PM10 emissions by 90% as compared to bare soil across the range of wind speeds tested. Wheat straw did not reduce total sediment loss for the range of speeds tested, but did reduce PM10 emissions by 75% compared to a bare soil at wind speeds of up to 11 m s(-1). PMID:19141803

  5. Sources of PM10 and sulfate aerosol at McMurdo Station, Antarctica.

    PubMed

    Mazzera, D M; Lowenthal, D H; Chow, J C; Watson, J G

    2001-10-01

    Source contributions to PM10 and sulfate aerosol at McMurdo Station, Antarctica during the austral summers of 1995-1996 and 1996-1997 were estimated using Chemical Mass Balance (CMB) receptor modeling. The average PM10 (particles with aerodynamic diameters less than 10 microm) concentration at Hut Point, located less than 1 km downwind of downtown McMurdo, was 3.4 microg/m3. Emissions profiles were determined for potentially important aerosol source types in McMurdo: exposed soil, power generation, space heating, and surface vehicles. Soil dust, sea salt, combustion emissions, sulfates, marine biogenic emissions as methanesulfonate, and nitrates contributed 57%, 15%, 14%, 10%, 3%, and 1%, respectively, of average estimated PM10 at Hut Point (3.2 microg/m3). Soil dust, sea salt, and combustion sources contributed 12%, 8%, and 20%, respectively, of the average PM10 sulfate concentration of 0.46 microg/m3. Marine biogenic sources contributed 0.17 microg/m3 (37%). The remaining sulfate is thought to have come from emissions from Mt. Erebus or hemispheric pollution sources. PMID:11592425

  6. [Assessing PM10 and SO2 networks using positive matrix factorization in Beijing city].

    PubMed

    Gao, Tao; Xie, Shao-dong; Bo, Yu; Zhao, Yue

    2010-03-01

    The aim of this study was to identify city areas with similar air pollution characteristics and determine which sites may be providing redundant information. Positive matrix factorization (PMF) was applied in this study to assess the mass concentrations of sulfur dioxide (SO2) and particulate matter with an aerodynamic diameter less than 10 microm (PM010), collected in the air quality monitoring network in the year of 2000. The analysis indicated that there were obviously seasonal variations for PM10 and SO2 in Beijing. The PM10 concentrations were higher in spring and lower in summer, but the SO2 concentrations were higher in winter and lower in summer. The results of the PMF showed that the sites of PM10 network in Beijing could be identified as three regions, which represented city areas characterized by the same specific air pollution. These three regions represented Gucheng site/Chegongzhuang site, Qianmen site/National Olympic Sports Center site/Tiantan site/Nongzhanguan site, and Ming Tombs site, respectively. Some sites in region 2 which included four sites may be redundant and can be removed. SO2 network can be divided into six regions including Chegongzhuang site/Qianmen site, Tiantan site/Nongzhanguan stie, Ming Tombs site, National Olympic Sports Center site, Dongsi site, and Gucheng site. It indicated that some sites in Beijing PM10 and SO2 monitoring networks might be redundant and could be removed or relocated to other areas. PMID:20358808

  7. Effect of chimneys on indoor air concentrations of PM 10 and benzo[a]pyrene in Xuan Wei, China

    NASA Astrophysics Data System (ADS)

    Tian, Linwei; Lan, Qing; Yang, Dong; He, Xingzhou; Yu, Ignatius T. S.; Hammond, S. Katharine

    This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM 10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM 10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.

  8. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    NASA Astrophysics Data System (ADS)

    Bonifacio, Henry F.; Maghirang, Ronaldo G.; Trabue, Steven L.; McConnell, Laura L.; Prueger, John H.; Bonifacio, Edna R.

    2015-01-01

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentration profiles at the feedlot were measured using gravimetric samplers, and micrometeorological parameters were monitored with eddy covariance instrumentation during the nine 4- to 5-day intensive sampling campaigns from May 2010 through September 2011. Emission fluxes were determined from the measured concentration gradients and meteorological parameters using the flux-gradient technique. PM ratios based on calculated emission fluxes were 0.28 for PM2.5/PM10, 0.12 for PM2.5/TSP, and 0.24 for PM10/TSP, indicating that a large fraction of the PM emitted at the studied feedlot was in the coarse range of aerodynamic diameter, >10 μm. Median daily emission factors were 57, 21, and 11 kg 1000-head (hd)-1 d-1 for TSP (n = 20 days), PM10 (n = 19 days), and PM2.5 (n = 11 days), respectively. Cattle pen surface moisture contents of at least 20-30% significantly reduced both TSP and PM10 emissions, but moisture's effect on PM2.5 emissions was not established due to difficulty in measuring PM2.5 concentrations under low-PM conditions.

  9. Framingham risk score modifies the effect of PM10 on heart rate variability.

    PubMed

    Feng, Yingying; Huang, Xiji; Sun, Huizhen; Liu, Chuanyao; Zhang, Bing; Zhang, Zhihong; Sharma Tengur, Vashish; Chen, Weihong; Wu, Tangchun; Yuan, Jing; Zhang, Xiaomin

    2015-08-01

    Health conditions may greatly modify the association between particulate matter (PM) and heart rate variability (HRV), but whether the modification of PM effect by coronary artery disease (CAD) risk status depends on the PM levels remains unknown. We investigated the associations between personal exposures to PM with aerodynamic diameter of ≤10μm (PM10) and ≤2.5μm (PM2.5) and concurrent HRV, and whether the effect of PM on HRV was modified by Framingham risk score (FRS) in healthy subjects with different PM exposure levels. Personal exposures to PM10 and PM2.5 were measured for 24h in 152 volunteers of community residents who were free of cardiovascular disease in two cities (Zhuhai and Wuhan) that differ in air quality. Simultaneously, 24h HRV indices were obtained from 3-channel Holter monitor. FRS was calculated based on age, sex, lipid profiles, blood pressure, diabetes, and smoking status. Linear regression models were constructed after adjusting for potential confounders. We found significant decrease in total power (TP) and low power (LF) with increased PM10 concentrations (P for trend<0.05) in the high PM levels city (Wuhan) and total population, but not in the low PM levels city (Zhuhai). We also observed significant modification of FRS on PM10 effect in Wuhan. Interestingly, elevated PM10 was associated in a greater decreased HRV in the low FRS subgroup, but not in the high FRS subgroup. However, we did not find any significant main effects of PM2.5 or PM2.5-FRS interactions on HRV in city-specified or city-combined analyses. Overall, the findings indicate that individual coronary risk profiles may modulate the association between particulate air pollution and HRV in high PM exposure levels. PMID:25863505

  10. Open burning and open detonation PM10 mass emission factor measurements with optical remote sensing.

    PubMed

    Yuen, Wangki; Johnsen, David L; Koloutsou-Vakakis, Sotiria; Rood, Mark J; Kim, Byung J; Kemme, Michael R

    2014-02-01

    Emission factors (EFs) of particulate matter with aerodynamic diameter <10 microm (PM10) from the open burning/open detonation (OB/OD) of energetic materials were measured using a hybrid-optical remote sensing (hybrid-ORS) method. This method is based on the measurement of range-resolved PM backscattering values with a micropulse light detection and ranging (LIDAR; MPL) device. Field measurements were completed during March 2010 at Tooele Army Depot, Utah, which is an arid continental site. PM10 EFs were quantified for OB of M1 propellant and OD of 2,4,6-trinitrotoluene (TNT). EFs from this study are compared with previous OB/OD measurements reported in the literature that have been determined with point measurements either in enclosed or ambient environments, and with concurrent airborne point measurements. PM10 mass EFs, determined with the hybrid-ORS method, were 7.8 x 10(-3) kg PM10/kg M1 from OB of M1 propellant, and 0.20 kg PM10/kg TNT from OD of TNT. Compared with previous results reported in the literature, the hybrid-ORS method EFs were 13% larger for OB and 174% larger for OD. Compared with the concurrent airborne measurements, EF values from the hybrid-ORS method were 37% larger for OB and 54% larger for OD. For TNT, no statistically significant differences were observed for the EFs measured during the detonation of 22.7 and 45.4 kg of TNT, supporting that the total amount of detonated mass in this mass range does not have an effect on the EFs for OD of TNT. PMID:24654390

  11. Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks.

    PubMed

    Abderrahim, Hamza; Chellali, Mohammed Reda; Hamou, Ahmed

    2016-01-01

    Air quality forecasting system has acquired high importance in atmospheric pollution due to its negative impacts on the environment and human health. The artificial neural network is one of the most common soft computing methods that can be pragmatic for carving such complex problem. In this paper, we used a multilayer perceptron neural network to forecast the daily averaged concentration of the respirable suspended particulates with aerodynamic diameter of not more than 10 μm (PM10) in Algiers, Algeria. The data for training and testing the network are based on the data sampled from 2002 to 2006 collected by SAMASAFIA network center at El Hamma station. The meteorological data, air temperature, relative humidity, and wind speed, are used as inputs network parameters in the formation of model. The training patterns used correspond to 41 days data. The performance of the developed models was evaluated on the basis index of agreement and other statistical parameters. It was seen that the overall performance of model with 15 neurons is better than the ones with 5 and 10 neurons. The results of multilayer network with as few as one hidden layer and 15 neurons were quite reasonable than the ones with 5 and 10 neurons. Finally, an error around 9% has been reached. PMID:26381787

  12. Atmospheric particulate matter (PM10) exposure-induced cell cycle arrest and apoptosis evasion through STAT3 activation via PKCζ and Src kinases in lung cells.

    PubMed

    Reyes-Zárate, Elizabeth; Sánchez-Pérez, Yesennia; Gutiérrez-Ruiz, María Concepción; Chirino, Yolanda I; Osornio-Vargas, Álvaro Román; Morales-Bárcenas, Rocío; Souza-Arroyo, Verónica; García-Cuellar, Claudia María

    2016-07-01

    Atmospheric particulate matter with aerodynamic diameter ≤10 μm (PM10) is a risk factor for the development of lung cancer, but cellular pathways are not completely understood. STAT3 is a p21(Waf1/Cip1) transcription factor and is associated with proliferation and cell survival and is upregulated in lung cancer. PM10 exposure induces p21(Waf1/Cip1) expression, which could be related to STAT3 activation. The aims of this work were to investigate whether STAT3 was activated on lung epithelial cells after PM10 exposure and to determine whether or not STAT3 could have an impact on cell cycle distribution and cell survival. Our results showed that PM10 induced STAT3 activation through Src and PKCζ kinases, and it is partially responsible for the p21(Waf1/Cip1) induction that was also observed. Moreover, PM10 induced G1-G0 cell cycle arrest. The inhibition of STAT3 phosphorylation prevented cell cycle arrest and triggered apoptosis. These results suggest that PM10 exposure might activate a survival pathway related to STAT3 activation, similar to what has been described as part of the immune system and apoptosis evasion during tumor promotion and development. PMID:27131825

  13. Polybrominated Diphenyl Ethers (PBDEs) in PM2.5, PM10, TSP and Gas Phase in Office Environment in Shanghai, China: Occurrence and Human Exposure

    PubMed Central

    Li, Yue; Chen, Ling; Ngoc, Duong Minh; Duan, Yan-Ping; Lu, Zhi-Bo; Wen, Zhi-Hao; Meng, Xiang-Zhou

    2015-01-01

    To evaluate risk via inhalation exposure of polybrominated diphenyl ethers (PBDEs) in office environment, thirty-six pairs air samples including PM2.5 (particles with aerodynamic diameter less than 2.5 μm), PM10 (particles with aerodynamic diameter less than 10 μm), total suspended particles (TSP) with matching gas phase were collected in office environment in Shanghai, China. The average concentrations of PM2.5, PM10 and TSP were 20.4, 27.2 and 50.3 μg/m3, respectively. Σ15PBDEs mean concentrations in PM2.5, PM10, TSP and gas phase were 51.8, 110.7, 148 and 59.6 pg/m3, respectively. Much more PBDEs distributed in fine fractions than coarse ones. PBDEs congener profiles found in PM2.5, PM10 and TSP (dominated by BDE-209) were different from that in gas phase (dominated by the tri- to penta-BDEs). Approximately 3.20 pg/kg/d PM2.5 bound PBDEs can be inhaled into the lung; 3.62 pg/kg/d PM10-PM2.5(particles with aerodynamic diameter of 2.5-10 μm) bound PBDEs tended to be deposited in the upper part of respiratory system, and the intake of PBDEs via gas-phase was 2.74 pg/kg/d. The exposure of PBDEs was far below the minimal risk levels (MRLs), indicating lower risk from PBDEs via inhalation in the studied office in Shanghai. PMID:25793925

  14. PM10 Emission, Sandblasting Efficiency and Vertical Entrainment During Successive Wind-Erosion Events: A Wind-Tunnel Approach

    NASA Astrophysics Data System (ADS)

    Panebianco, J. E.; Mendez, M. J.; Buschiazzo, D. E.

    2016-06-01

    A wind-tunnel experiment was carried out to measure saltation and PM10 (particulate matter with a mean aerodynamic diameter less than 10 μ m) emission during three successive wind-erosion events on three different surfaces: an unpaved road and two different textured agricultural soils: a sandy loam and a loamy sand. The total horizontal mass transport (Q) and the PM10 emissions (E), were measured at two friction velocities: 0.2 and 0.3 m {s}^{-1} . Results indicated that Q decreased rapidly in time over all surfaces, as the Q values were only 13-17 % of the amount registered during the first event. Similar trends were detected at both wind speeds. However, E values showed a lower relative decrease in the second wind-erosion event at the lower wind speed (25-51 % of the initial amounts) than at the higher wind speed (19-28 % of the initial amounts) over all surfaces. After the second wind-erosion event, both Q and E values remained constant except for the unpaved road, where both values decreased by 50 % in relation to the second event. Emission from the agricultural soils was sustained over successive wind-erosion events even when saltation was low. The sandblasting efficiency for PM10 emission was found to be higher for agricultural soils than for the unpaved road, and increased over wind-erosion events particularly in agricultural soils, and this was also reflected in the PM10 vertical entrainment. Results suggest that sandblasting efficiency and PM10 vertical distribution can change among wind-erosion events even for the same surface. The saltation fraction to PM10 content ratio can be a simple indicator of the general behaviour of an emitting surface during successive wind-erosion events.

  15. Objective Circulation type classifications for the estimation of local PM10 concentrations in Bavarian cities (Germany)

    NASA Astrophysics Data System (ADS)

    Weitnauer, Claudia; Beck, Christoph; Jacobeit, Jucundus

    2013-04-01

    Concentrations of particulate matter with a particle distribution of a median aerodynamic diameter < 10 μm (PM10), are known to be relevant for public health, notably concerning cardiovascular and respiratory diseases. High pollution events of PM10 are defined by a threshold of a daily mean concentration of 50μg/m³ by directive 1999/30/EC and following directive 2008/50/EC of the European Union, which are relevant for regional air-quality mitigation strategies. Local concentrations of these fine particles are influenced by meteorological parameters on different scales, e.g. local meteorological conditions and large scale circulation dynamics. In order to detect critical periods of high PM10 concentrations, one focus in recent studies is the improvement of accurate short-term deterministic and statistical prediction models as well as reliable approaches for long-term air-quality prediction. The general relationship between local PM10 and large-scale circulation dynamics - as for example reflected by weather- or circulation types - has been proven in several studies, but so far only a few systematic attempts have been made to optimize weather- and circulation type classifications concerning their relationship to local PM10 concentrations. Against this background the aim of this study is to evaluate various approaches for the optimization of circulation type classifications with respect to their relevance for local PM10 concentrations in Bavarian cities (Germany) in order to detect those approaches that are best suited for the use in planned subsequent studies (e.g. estimation of potential PM10 variations due to future climate change). The used data set of daily mean PM10 has been provided by the Bavarian Environment Agency. For the analysed period 1980-2011 measurements of 16 urban traffic related stations, spread over the whole of Bavaria, are available. We provide initial characteristics of this data set concerning data availability, basic quality aspects, long

  16. Daily concentrations trend and change point of particulate matter (PM10) in Pahang, Malaysia - A case study at Balok Baru

    NASA Astrophysics Data System (ADS)

    Wahid, Sharifah Norhuda Syed; Ujang, Suriyati

    2015-02-01

    Daily concentration of particulate matter with aerodynamic diameter less than 10 μm (PM10) could be very harmful to human health such as respiratory and cardiovascular diseases. The purpose of this paper is to describe on the experiences of air pollutants in the state of Pahang, Malaysia during the first quarter of year 2014. Data were gathered from available automatic air quality monitoring stations at Balok Baru, Pahang through the assistance from the Department of Environment. Cumulative sum technique shows that a change occurred at March, 8th with 88 μg/ m3, moderate air quality level. This change point indicated that the PM10 level started to have a potential in moderate or worse level. In addition, time series regression analysis shows that the trend of daily concentrations of Balok Baru station was an upward trend and for additional day, the PM10 level was increased by 0.1117 μg/ m3. It is hoped that this study will give a significant contribution for future researcher in the area of the study on the risk of PM10 or other types of air pollutant to air quality and also human health.

  17. Indoor/outdoor of PM10 relationships and its water-soluble ions composition in selected primary schools in Malaysia

    NASA Astrophysics Data System (ADS)

    Mohamad, Noorlin; Latif, Mohd Talib

    2013-11-01

    Measurements of PM10 and water-soluble ions were carried out on indoor and outdoor PM10 (particles > 10 μm in aerodynamic diameter) aerosols sampled at selected primary schools of Kuala Lumpur (S1) and Putrajaya (S2), respectively. Samples were collected using a low volume sampler on Teflon filters. The water-soluble ions chloride (Cl-), nitrate (NO3-), sulfate (SO42-), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+) and ammonium (NH4+) was analyzed using ion chromatography. The results showed that the indoor PM10 mass concentrations in S1 and S2 were 96.6 and 69.5 μg/m3, while the outdoor PM10 mass concentrations were 80.1 and 85.2 μg/m3, respectively. This indicated that NO3- were the most dominant ions, followed by SO42-, Ca2+, K+ and Na+, while Cl-, Mg2+ and Na+ were present at low concentrations. Pearson's correlation test applied to all the data showed high correlation between SO42- and NO3-, indicating a common anthropogenic origin. In addition, the correlations between Na+ and Ca2+ indicated crustal origins that significantly contributed to human exposure.

  18. Ambient air pollutant PM10 and risk of preterm birth in Lanzhou, China

    PubMed Central

    Zhao, Nan; Qiu, Jie; Zhang, Yaqun; He, Xiaochun; Zhou, Min; Li, Min; Xu, Xiaoying; Cui, Hongmei; Lv, Ling; Lin, Xiaojuan; Zhang, Chong; Zhang, Honghong; Xu, Ruifeng; Zhu, Daling; Lin, Ru; Yao, Tingting; Su, Jie; Dang, Yun; Han, Xudong; Zhang, Hanru; Bai, Haiya; Chen, Ya; Tang, Zhongfeng; Wang, Wendi; Wang, Yueyuan; Liu, Xiaohui; Ma, Bin; Liu, Sufen; Qiu, Weitao; Huang, Huang; Liang, Jiaxin; Chen, Qiong; Jiang, Min; Ma, Shuangge; Jin, Lan; Holford, Theodore; Leaderer, Brian; Bell, Michelle L.; Liu, Qing; Zhang, Yawei

    2015-01-01

    Importance Exposure to ambient particulate matter during pregnancy has been suggested as a risk factor for preterm birth. However results from limited epidemiologic studies have been inconclusive. Very few studies have been conducted in areas with high air pollution levels. Objective We investigated the hypothesis that high level exposure to particulate matter with aerodynamic diameter no larger than 10µm (PM10) during pregnancy increases the risk of preterm birth. Methods A birth cohort study was carried out between 2010–2012 in Lanzhou, China, including 8,969 singleton live births with available information on daily PM10 levels from four monitoring stations, individual exposures during pregnancy were calculated using inverse-distance weighting based on both home and work addresses. Unconditional logistic regression modeling was used to examine the associations between PM10 exposure and risk of preterm birth and its clinical subtypes. Results Increased risk of very preterm birth was associated with exposure to PM10 during the last two months of pregnancy (OR, 1.07; 95%CI, 1.02–1.13 per 10µg/m3 increase for last four weeks before delivery; 1.09; 1.02–1.15 for last six weeks before delivery; 1.10; 1.03–1.17 for last eight weeks before delivery). Compared to the U.S. National Ambient Air Quality Standard (150µg/m3), higher exposure level (≥150µg/m3) of PM10 during entire pregnancy was associated with an increased risk of preterm birth (1.48; 1.22–1.81) and the association was higher for medically indicated preterm birth (1.80, 1.24–2.62) during entire pregnancy and for very preterm during last 6 weeks before delivery (2.03, 1.11–3.72). Conclusions and relevance Our study supports the hypothesis that exposure to high levels of ambient PM10 increases the risk of preterm birth. Our study also suggests that the risk may vary by clinical subtypes of preterm birth and exposure time windows. Our findings are relevant for health policy makers from China

  19. Effects of Meteorological Parameters and PM10 on the Incidence of Hand, Foot, and Mouth Disease in Children in China

    PubMed Central

    Huang, Ruixue; Bian, Guolin; He, Tianfeng; Chen, Lv; Xu, Guozhang

    2016-01-01

    Hand, foot, and mouth disease (HFMD) is a globally-prevalent infectious disease. However, few data are available on prevention measures for HFMD. The purpose of this investigation was to evaluate the impacts of temperature, humidity, and air pollution, particularly levels of particulate matter with an aerodynamic diameter 10 micrometers (PM10), on the incidence of HFMD in a city in Eastern China. Daily morbidity, meteorological, and air pollution data for Ningbo City were collected for the period from January 2012 to December 2014. A total of 86,695 HFMD cases were enrolled in this study. We used a distributed lag nonlinear model (DLNM) with Poisson distribution to analyze the nonlinear lag effects of daily mean temperature, daily humidity, and found significant relationships with the incidence of HFMD; in contrast, PM10 level showed no relationship to the incidence of HFMD. Our findings will facilitate the development of effective preventive measures and early forecasting of HFMD outbreaks. PMID:27171104

  20. Effects of Meteorological Parameters and PM10 on the Incidence of Hand, Foot, and Mouth Disease in Children in China.

    PubMed

    Huang, Ruixue; Bian, Guolin; He, Tianfeng; Chen, Lv; Xu, Guozhang

    2016-01-01

    Hand, foot, and mouth disease (HFMD) is a globally-prevalent infectious disease. However, few data are available on prevention measures for HFMD. The purpose of this investigation was to evaluate the impacts of temperature, humidity, and air pollution, particularly levels of particulate matter with an aerodynamic diameter 10 micrometers (PM10), on the incidence of HFMD in a city in Eastern China. Daily morbidity, meteorological, and air pollution data for Ningbo City were collected for the period from January 2012 to December 2014. A total of 86,695 HFMD cases were enrolled in this study. We used a distributed lag nonlinear model (DLNM) with Poisson distribution to analyze the nonlinear lag effects of daily mean temperature, daily humidity, and found significant relationships with the incidence of HFMD; in contrast, PM10 level showed no relationship to the incidence of HFMD. Our findings will facilitate the development of effective preventive measures and early forecasting of HFMD outbreaks. PMID:27171104

  1. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores

    NASA Astrophysics Data System (ADS)

    Reponen, Tiina; Willeke, Klaus; Ulevicius, Vidmantas; Reponen, Auvo; Grinshpun, Sergey A.

    Exposure to airborne fungal spores may cause respiratory symptoms. The hygroscopicity of airborne spores may significantly affect their aerodynamic diameter, and thus change their deposition pattern in the human respiratory tract. We have investigated the change in aerodynamic diameter of five different fungal species as a function of relative humidity. Liquid and dry dispersion methods were explored for the aerosolization of the fungal spores. A new system that produces non-aggregated spore aerosol directly from a moldy surface was designed and found suitable for this study. The spores were aerosolized from a mold growth on agar by ducting dry air over the surface, and spore chains in the flow were broken up by passing the entire flow through a critical orifice. Size-spectrometric measurements with an Aerodynamic Particle Sizer showed that the aerodynamic diameter of the tested fungal spores does not change significantly when the relative humidity increases from 30% to 90%. A more distinct spore size increase was found at a relative humidity of ˜ 100%. The highest change of the aerodynamic diameter was found with Cladosporium cladosporioides: it increased from 1.8 μm to 2.3 μm when the relative humidity increased from 30% to ˜ 100%. The size increase corresponds to an approximate doubling of the particle volume. In order to estimate the effect of hygroscopic growth on the respiratory deposition of spores, the mean depositions in the human respiratory tract were calculated for fungal spores with various size changes due to hygroscopic growth. A recently developed model of the International Commission of Radiological Protection was used for the respiratory deposition calculations. We found that the 27% increase in Cladosporium size results in a 20-30% increase in the respiratory deposition of these spores. We conclude that most fungal spores are only slightly hygroscopic and the hygroscopic increase does not significantly affect their respiratory deposition. Our

  2. Optimized circulation and weather type classifications relating large-scale atmospheric conditions to local PM10 concentrations in Bavaria

    NASA Astrophysics Data System (ADS)

    Weitnauer, C.; Beck, C.; Jacobeit, J.

    2013-12-01

    In the last decades the critical increase of the emission of air pollutants like nitrogen dioxide, sulfur oxides and particulate matter especially in urban areas has become a problem for the environment as well as human health. Several studies confirm a risk of high concentration episodes of particulate matter with an aerodynamic diameter < 10 μm (PM10) for the respiratory tract or cardiovascular diseases. Furthermore it is known that local meteorological and large scale atmospheric conditions are important influencing factors on local PM10 concentrations. With climate changing rapidly, these connections need to be better understood in order to provide estimates of climate change related consequences for air quality management purposes. For quantifying the link between large-scale atmospheric conditions and local PM10 concentrations circulation- and weather type classifications are used in a number of studies by using different statistical approaches. Thus far only few systematic attempts have been made to modify consisting or to develop new weather- and circulation type classifications in order to improve their ability to resolve local PM10 concentrations. In this contribution existing weather- and circulation type classifications, performed on daily 2.5 x 2.5 gridded parameters of the NCEP/NCAR reanalysis data set, are optimized with regard to their discriminative power for local PM10 concentrations at 49 Bavarian measurement sites for the period 1980 to 2011. Most of the PM10 stations are situated in urban areas covering urban background, traffic and industry related pollution regimes. The range of regimes is extended by a few rural background stations. To characterize the correspondence between the PM10 measurements of the different stations by spatial patterns, a regionalization by an s-mode principal component analysis is realized on the high-pass filtered data. The optimization of the circulation- and weather types is implemented using two representative

  3. Apparatus for alternatives to PM-10 sampling

    SciTech Connect

    Wente, M.; Wente, W.E.; Moore, M.E.

    1995-12-31

    Because of questions of whether PM-10 adequately characterizes the size fraction that is a challenge to human health, we have developed devices and samplers that will provide PM-2.5 and PM-1 size fractions. Each of these systems utilizes a cyclone for the fractionation process. Models have been developed to predict both the cutpoint and the fractional efficiency curves for single inlet cyclones are geometrically similar to a form that was utilized by Lapple. Modeling has been done with two geometrical forms of multiple inlet cyclones. Each form has six inlets, and one form has the body shape of a Lapple cyclone, while the other has a shortened body. The models for cutpoints are based on log-linear correlations between D{sub 0.5}/d{sub o} and a flow Reynolds number; where D{sub 0.5} = cutpoint size, d{sub o} = cyclone body diameter, and the flow Reynolds number is based on the inlet velocity and the outlet tube diameter. PM-1 and PM-2.5 fractionators with flow rates of 16.7 L/min have been tested in both laboratory and field environments. One version of the fractionator is a stand-alone cylone that has been commercialized by URG, Inc., and a second version is made as an adaptor to the Graseby Andersen Inc. Model 246 inlet for the dichotomous sampler. A third version of the PM-2.5 inlet is one that includes its own wind speed decelerator, bug screen and cyclonic pre-fractionator, where the latter device is used for reducing the aerosol mass that will be deposited in the PM-2.5 cyclone. A prototype field sampler has been developed that incorporates flow control, and a easily changeable filter cartridge.

  4. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    NASA Astrophysics Data System (ADS)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Amann, M.

    2014-07-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter < 10 μm) limit values at individual air quality monitoring stations reporting to the AirBase database. The modelling approach relies on a combination of bottom up modelling of emissions, simplified atmospheric chemistry and dispersion calculations, and a traffic increment calculation wherever applicable. At each monitoring station fulfilling a few data coverage criteria, measured concentrations in the base year 2009 are explained to the extent possible and then modelled for the past and future. More than 1850 monitoring stations are covered, including more than 300 traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful

  5. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    NASA Astrophysics Data System (ADS)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M.

    2015-02-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter <10 μm) limit values at individual air quality monitoring stations reporting to the AirBase database. The modelling approach relies on a combination of bottom up modelling of emissions, simplified atmospheric chemistry and dispersion calculations, and a traffic increment calculation wherever applicable. At each monitoring station fulfilling a few data coverage criteria, measured concentrations in the base year 2009 are explained to the extent possible and then modelled for the past and future. More than 1850 monitoring stations are covered, including more than 300 traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful

  6. Vertical PM10 Characteristics and their Relation with Tropospheric Meteorology over Hong Kong

    NASA Astrophysics Data System (ADS)

    Hei Tong, Cheuk

    2016-04-01

    Small particulates or PM10, those with aerodynamic diameters less than 10 mm, can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Hong Kong receives significant concentration of cross-boundary particulates but at the same time produce domestic pollutants which altogether contribute to the total pollution problem. Recent research interest is paying more attention on the vertical characteristic of PM in the lower atmosphere as possible correlations exist along different altitude. Besides, there exists potential relationship between PM concentration aloft and the high-level weather condition. Yet, most studies focus only up to around 200 meters above sea level due to the proposed significance and the lack of technology. Undoubtedly, this is not enough in investigating the relation between vertical atmospheric profile and PM vertical characteristics. New technology development has allowed measuring PM concentration along the vertical atmospheric profile up to tropopause. This measurement relies on the Atmospheric Light Detection and Ranging (LiDAR) which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols. The research involves (1) study of the seasonal vertical PM10 characteristics in five studying site of Hong Kong covering urban, suburban and rural area; (2) the relationship of the PM10 characteristics with meteorological parameters; (3) the vertical PM10 characteristics under the approach of tropical cyclones. A portable Micro Pulse Lidar (MPL) is adopted to collect PM data aloft while surface PM data is collected from ground stations. High-level meteorology data is received from Hong Kong Observatory. Statistical analyses are operated to investigate the correlation between weather conditions and PM concentration along the vertical profile. The research study is divided in phrases. The ultimate goal of the study is to develop models

  7. CHARACTERIZATION OF PM-10 EMISSIONS FROM ANTISKID MATERIALS APPLIED TO ICE- AND SNOW-COVERED ROADWAYS

    EPA Science Inventory

    The report gives results of a field program to establish a predictive model for PM-10 (particulate matter with diameters or < 10 micrometers) emission. NOTE: Several areas of the U.S. in violation of the National Ambient Air Quality Standard for PM-10 have conducted studies that ...

  8. Risk of Cardiovascular Hospitalizations from Exposure to Coarse Particulate Matter (PM10) Below the European Union Safety Threshold.

    PubMed

    Vaduganathan, Muthiah; De Palma, Giuseppe; Manerba, Alessandra; Goldoni, Matteo; Triggiani, Marco; Apostoli, Pietro; Dei Cas, Livio; Nodari, Savina

    2016-04-15

    The association between exposure to air pollution and acute cardiovascular (CV) events is well documented; however, limited data are available evaluating the public health safety of various "doses" of particular matter (PM) below currently accepted safety thresholds. We explored the cross-sectional association between PM with aerodynamic diameter <10 μm (PM10) and daily CV hospitalizations in Brescia, Italy, using Poisson regression models adjusted for age, gender, and meteorologic indices. Average daily exposure to PM10 obtained from arithmetic means of air pollution data were captured by 4 selected monitoring stations. PM10 data were expressed as daily means (lag 0-day) or 3-day moving averages (lag 3-day) and categorized according to the European Union daily limit value of 50 μg/m(3). From September 2004 to September 2007, data from 6,000 acute CV admissions to a tertiary referral center were collected. An increase of 1 μg/m(3) PM10 at lag 0-day was independently associated with higher rates of acute hospitalizations for composite CV-related events (relative risk [RR] 1.004, 95% confidence interval [CI] 1.002 to 1.006), acute heart failure (RR 1.004, 95% CI 1.001 to 1.008), acute coronary syndromes (RR 1.002, 95% CI 0.999 to 1.005), malignant ventricular arrhythmias (RR 1.004, 95% CI 0.999 to 1.010), and atrial fibrillation (RR 1.008, 95% CI 1.003 to 1.012). Similar results were obtained using PM10 lag 3-day data. The excess PM10 CV hospitalization risk (by lag 0-day and lag 3-day) did not vary significantly above and below the 50 μg/m(3) safety threshold or by age and gender. In conclusion, increased levels of PM10, even below the current limits set by the European Union, were associated with excess risk for admissions for acute CV events. PMID:26976793

  9. 75 FR 35362 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...The EPA proposes to determine that the Sandpoint nonattainment area in Idaho attains the National Ambient Air Quality Standard for particulate matter with an aerodynamic diameter of less than or equal to a nominal ten micrometers...

  10. Speciated fine-particle (<2.5 {micro}m aerodynamic diameter) and vapor-phase acid concentrations in southern California

    SciTech Connect

    Taylor, C.A. Jr.; Stover, C.A.; Westerdahl, F.D.

    1998-12-31

    A fine-particle (<2.5 {micro}m aerodynamic diameter) and vapor-phase acid sampling network has been in operation among 12 communities in southern California since late 1993. The data from this network consists of concentrations of particulate matter <10 {micro}m in aerodynamic diameter (PM10), nitrogen dioxide, ozone, vapor-phase hydrochloric, nitric, acetic, and formic acids, particulate matter <2.5 {micro}m in aerodynamic diameter (PM2.5), and the chloride, nitrate, sulfate, and ammonium components of PM2.5. These measurements are the basis of the exposure assessment estimates of the Children`s Health Study, a multi-year study, mainly of lung function development and respiratory illness, taking place in southern California. One of the goals of the Children`s Health Study is to utilize a cost-effective means of obtaining continuous fine-particle and vapor-phase acid data for a multi-year study with enough time resolution to allow seasonal estimates of exposure. A two-week sampler was developed to meet these needs. Four continuous years of vapor-phase acid and PM2.5 mass, chloride, nitrate, sulfate, and ammonium data have been collected. During this time, the sampler has proven to be reliable. A decline in PM2.5 mass, nitrate, and ammonium ions in most of the communities from 1994 to 1997 was observed. In contrast, very little change in vapor-phase acids was observed. There has been increased interest at the national level in fine particles and their characteristics. The network provides a rich database that can be used to characterize southern California communities on the basis of their level of fine particles (and their components) and vapor-phase acids and should prove valuable with respect to both prospective and retrospective health studies. The database also provides a general characterization of the levels of PM2.5 affecting 25 million people in southern California.

  11. Space shuttle: Aerodynamic characteristics of a 162-inch diameter solid rocket booster with and without strakes

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Radford, W. D.; Rampy, J. M.

    1973-01-01

    Tests conducted at NASA-Langley have shown that a small flap or strake can generate a significant amount of lift on a circular cylinder with large cross flow. If strakes are placed on the opposite sides and ends on a circular body, a moment will be produced about the center of mass of the body. The purpose of this test was to determine the static-aerodynamic forces and moments of a 162-inch diameter SRB (PRR) with and without strakes. The total angle-of-attack range of the SRB test was from -10 to 190 degrees. Model roll angles were 0, 45, 90, and 135 degrees with some intermediate angles. The Mach range was from 0.6 to 3.48. The 0.00494 scale model was designated as MSFC No. 449.

  12. INTERPOLATING VANCOUVER'S DAILY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we develop a spatial predictive distribution for the ambient space- time response field of daily ambient PM10 in Vancouver, Canada. Observed responses have a consistent temporal pattern from one monitoring site to the next. We exploit this feature of the field b...

  13. Meteorological factors for PM10 concentration levels in Northern Spain

    NASA Astrophysics Data System (ADS)

    Santurtún, Ana; Mínguez, Roberto; Villar-Fernández, Alejandro; González Hidalgo, Juan Carlos; Zarrabeitia, María Teresa

    2013-04-01

    Atmospheric particulate matter (PM) is made up of a mixture of solid and aqueous species which enter the atmosphere by anthropogenic and natural pathways. The levels and composition of ambient air PM depend on the climatology and on the geography (topography, soil cover, proximity to arid zones or to the coast) of a given region. Spain has particular difficulties in achieving compliance with the limit values established by the European Union (based on recommendations from the World Health Organization) for particulate matter on the order of 10 micrometers of diameter or less (PM10), but not only antropogenical emissions are responsible for this: some studies show that PM10 concentrations originating from these kinds of sources are similar to what is found in other European countries, while some of the geographical features of the Iberian Peninsula (such as African mineral dust intrusion, soil aridity or rainfall) are proven to be a factor for higher PM concentrations. This work aims to describe PM10 concentration levels in Cantabria (Northern Spain) and their relationship with the following meteorological variables: rainfall, solar radiation, temperature, barometric pressure and wind speed. Data consists of daily series obtained from hourly data records for the 2000-2010 period, of PM10 concentrations from 4 different urban-background stations, and daily series of the meteorological variables provided by Spanish National Meteorology Agency. The method used for establishing the relationships between these variables consists of several steps: i) fitting a non-stationary probability density function for each variable accounting for long-term trends, seasonality during the year and possible seasonality during the week to distinguish between work and weekend days, ii) using the marginal distribution function obtained, transform the time series of historical values of each variable into a normalized Gaussian time series. This step allows using consistently time series

  14. A correlation equation for the mass median aerodynamic diameter of the aerosol emitted by solution metered dose inhalers.

    PubMed

    Ivey, James W; Lewis, David; Church, Tanya; Finlay, Warren H; Vehring, Reinhard

    2014-04-25

    A correlation equation for the mass median aerodynamic diameter (MMAD) of the aerosol emitted by solution metered dose inhalers (MDIs) is presented. A content equivalent diameter is defined and used to describe aerosols generated by evaporating metered dose inhaler sprays. A large set of cascade impaction data is analyzed, and the MMAD and geometric standard deviation is calculated for each datum. Using dimensional analysis, the mass median content equivalent diameter is correlated with formulation variables. Based on this correlation in combination with mass balance considerations and the definition of the aerodynamic diameter, an equation for prediction of the MMAD of an inhaler given the pressure of the propellant in the metering chamber of the MDI valve and the surface tension of the propellant is derived. The accuracy of the correlation equation is verified by comparison with literature results. The equation is applicable to both HFA (hydrofluoroalkane) propellants 134a and 227ea, with varying levels of co-solvent ethanol. PMID:24524827

  15. 75 FR 64162 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ...-based standards. On July 1, 1987 (52 FR 24634), EPA promulgated two primary standards for PM 10 : A 24... December 18, 2006, EPA revoked the annual PM 10 standard but retained the 24-hour PM 10 standard. 71 FR... 50, appendix K, section 1.0. ] B. The Eagle River PM10 Nonattainment Area On August 7, 1987 (52...

  16. 75 FR 45485 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... standards. On July 1, 1987 (52 FR 24634), EPA promulgated two primary standards for PM 10 : A 24-hour..., 2006, EPA revoked the annual PM 10 standard but retained the 24-hour PM 10 standard. 71 FR 61144...). These areas included all former Group I PM 10 planning areas identified in 52 FR 29383 (August 7,...

  17. Short-Term Health Impact Assessment of Urban PM10 in Bejaia City (Algeria)

    PubMed Central

    Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella

    2016-01-01

    We used Health Impact Assessment (HIA) to analyze the impact on a given population's health outcomes in terms of all-causes mortality and respiratory and cardiovascular hospitalizations attributable to short-term exposure to particulate matter less than 10 μm diameter (PM10) in Bejaia city, for which health effects of air pollution have never been investigated. Two scenarios of PM10 reduction were considered: first, a scenario where the PM10 annual mean is decreased by 5 µg/m3, and then a scenario where this PM10 mean is decreased to 20 µg/m3 (World Health Organization annual air quality guideline (WHO-AQG)). Annual mean level of PM10 (81.7 µg/m3) was calculated from objective measurements assessed in situ. Each year, about 4 and 55 deaths could be postponed with the first and the second scenarios successfully. Furthermore, decreasing PM10 annual mean by 5 µg/m3 would avoid 5 and 3 respiratory and cardiac hospitalizations, respectively, and not exceeding the PM10 WHO-AQG (20 µg/m3) would result in a potential gain of 36 and 23 per 100000 respiratory and cardiac hospitalizations, respectively. Lowering in current levels of PM10 has a nonnegligible impact in terms of public health that it is expected to be higher in the case of long-term effects. PMID:27594794

  18. Short-Term Health Impact Assessment of Urban PM10 in Bejaia City (Algeria).

    PubMed

    Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella

    2016-01-01

    We used Health Impact Assessment (HIA) to analyze the impact on a given population's health outcomes in terms of all-causes mortality and respiratory and cardiovascular hospitalizations attributable to short-term exposure to particulate matter less than 10 μm diameter (PM10) in Bejaia city, for which health effects of air pollution have never been investigated. Two scenarios of PM10 reduction were considered: first, a scenario where the PM10 annual mean is decreased by 5 µg/m(3), and then a scenario where this PM10 mean is decreased to 20 µg/m(3) (World Health Organization annual air quality guideline (WHO-AQG)). Annual mean level of PM10 (81.7 µg/m(3)) was calculated from objective measurements assessed in situ. Each year, about 4 and 55 deaths could be postponed with the first and the second scenarios successfully. Furthermore, decreasing PM10 annual mean by 5 µg/m(3) would avoid 5 and 3 respiratory and cardiac hospitalizations, respectively, and not exceeding the PM10 WHO-AQG (20 µg/m(3)) would result in a potential gain of 36 and 23 per 100000 respiratory and cardiac hospitalizations, respectively. Lowering in current levels of PM10 has a nonnegligible impact in terms of public health that it is expected to be higher in the case of long-term effects. PMID:27594794

  19. Identification of the sources of PM10 in a subway tunnel using positive matrix factorization.

    PubMed

    Park, Duckshin; Lee, Taejeong; Hwang, Doyeon; Jung, Wonseok; Lee, Yongil; Cho, KiChul; Kim, Dongsool; Lees, Kiyoung

    2014-12-01

    The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel. PMID:25562932

  20. Does the Effect of PM10 on Mortality Depend on PM Nickel and Vanadium Content? A Reanalysis of the NMMAPS Data

    PubMed Central

    Dominici, Francesca; Peng, Roger D.; Ebisu, Keita; Zeger, Scott L.; Samet, Jonathan M.; Bell, Michelle L.

    2007-01-01

    Background Lack of knowledge regarding particulate matter (PM) characteristics associated with toxicity is a crucial research gap. Short-term effects of PM can vary by location, possibly reflecting regional differences in mixtures. A report by Lippmann et al. [Lippmann et al., Environ Health Perspect 114:1662–1669 (2006)] analyzed mortality effect estimates from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) for 1987–1994. They found that average concentrations of nickel or vanadium in PM2.5 (PM with aerodynamic diameter < 2.5 μm) positively modified the lag-1 day association between PM10 and all-cause mortality. Objective We reestimated the relationship between county-specific lag-1 PM10 (PM with aerodynamic diameter < 10 μm) effects on mortality and county-specific nickel or vanadium PM2.5 average concentrations using 1987–2000 effect estimates. We explored whether such modification is sensitive to outliers. Methods We estimated long-term average county-level nickel and vanadium PM2.5 concentrations for 2000–2005 for 72 U.S. counties representing 69 communities. We fitted Bayesian hierarchical regression models to investigate whether county-specific short-term effects of PM10 on mortality are modified by long-term county-specific nickel or vanadium PM2.5 concentrations. We conducted sensitivity analyses by excluding individual communities and considering log-transformed data. Results Our results were consistent with those of Lippmann et al. However, we found that when counties included in the NMMAPS New York community were excluded from the sensitivity analysis, the evidence of effect modification of nickel or vanadium on the short-term effects of PM10 mortality was much weaker and no longer statistically significant. Conclusions Our analysis does not contradict the hypothesis that nickel or vanadium may increase the risk of PM to human health, but it highlights the sensitivity of findings to particularly influential observations

  1. 40 CFR 52.378 - Control strategy: PM10.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maintenance plan (2006-2015). The State of Connecticut has committed to: maintain a PM10 monitoring network in... in the event the PM10 design value in the maintenance area exceeds 98 µgm/m3 for the 24-hour PM10... on maintaining levels of ambient PM10 below a PM10 design value criteria of 98 µgm/m3 for the...

  2. 40 CFR 52.378 - Control strategy: PM10.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maintenance plan (2006-2015). The State of Connecticut has committed to: maintain a PM10 monitoring network in... in the event the PM10 design value in the maintenance area exceeds 98 µgm/m3 for the 24-hour PM10... on maintaining levels of ambient PM10 below a PM10 design value criteria of 98 µgm/m3 for the...

  3. 40 CFR 52.378 - Control strategy: PM10

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuous PM10 monitor are less than the site-specific critical design value (CDV). If the LMP criteria are... in the event the PM10 design value in the maintenance area exceeds 98 µgm/m3 for the 24-hour PM10... on maintaining levels of ambient PM10 below a PM10 design value criteria of 98 µgm/m3 for the...

  4. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters.

    PubMed

    Batonneau, Yann; Bremard, Claude; Gengembre, Leon; Laureyns, Jacky; Le Maguer, Agnes; Le Maguer, Didier; Perdrix, Esperanza; Sobanska, Sophie

    2004-10-15

    The purpose of this study was to estimate the speciation of PM10 sources of airborne Pb, Zn, and Cd metals (PM10 is an aerosol standard of aerodynamic diameter less than 10 microm.) in the atmosphere of a 3 km zone surrounding lead/zinc facilities in operation for a century. Many powdered samples were collected in stacks of working units (grilling, furnace, and refinery), outdoor storages (ores, recycled materials), surrounding waste slag (4 Mt), and polluted topsoils (3 km). PM10 samples were generated from the raw powders by using artificial resuspension and collection devices. The bulk PM10 multielemental analyses were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The proportions in mass of Pb (50%), Zn (40%), and Cd (1%) contents and associated metals (traces) reach the proportions of corresponding raw powdered samples of ores, recycled materials, and fumesize emissions of plants without specific enrichment. In contrast, Pb (8%) and Zn (15%) contents of PM10 of slag deposit were found to be markedly higher than those of raw dust, Pb (4%), and Zn (9%), respectively. In the same way, Pb (0.18%), Zn (0.20%), and Cd (0.004%) were enriched by 1.7, 2.1, and 2.3 times, respectively, in PM10 as compared with raw top-soil corresponding values. X-ray wavelength dispersive electron-microprobe (EM-WDS) microanalysis did not indicate well-defined phases or simple stoichiometries of all the PM10 samples atthe level of the spatial resolution (1 microm3). X-ray photoelectron spectroscopy (XPS) indicated that minor elements such as Cd, Hg, and C are more concentrated on the particle surface than in the bulk of PM10 generated by the smelting processes. (XPS) provided also the average speciation of the surface of PM10; Pb is mainly represented as PbSO4, Zn as ZnS, and Cd as CdS or CdSO4, and small amounts of coke were also detected. The speciation of bulk PM10 crystallized compounds was deduced from XRD diffractograms with a raw estimation of

  5. Characterisation of chemical species in PM 2.5 and PM 10 aerosols in Brisbane, Australia

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Simpson, R. W.; McTainsh, G. H.; Vowles, P. D.; Cohen, D. D.; Bailey, G. M.

    Aerosol samples for PM 10 (particulate matter with aerodynamic diameters less than 10 um) were collected from September 1993 to August 1994 at five sites representing the major land use patterns in Brisbane, a subtropical coastal city in Australia. The samples collected were analysed by techniques such as ion beam analysis and the integrating plate laser absorption method, and the chemical composition of the samples was reconstructed from the observed elemental composition. For these PM 10 samples, the major components, on average, were crustal matter (25% by mass), organics (17%), sea salt (12%), elemental carbon (10%) and ammonium sulphate (7%). Aerosol samples of PM 2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) were collected by a dichotomous sampler at one of the sites (GU), a site on university buildings located in a suburban area of Brisbane but surrounded by a buffer zone provided by a forest conservation area. A high average fine Br/Pb ratio of 0.36 in the GU samples, which is close to that in vehicle exhausts, indicates that this site probably has low background levels of lead even though there has been significant traffic in the area for 20 years, so the forest area is an effective buffer to road dust from the surrounding suburbia. Temporal trends at this site suggest that road side dust and industry-sourced crustal matter could contribute to more than half of the mass of crustal matter. Seasonal meteorological conditions which determine the dispersion of pollutants out of Brisbane and the continuous input of rural dust into Brisbane are potentially important factors influencing the level of crustal matter in Brisbane. However, major rural dust events do not considerably increase the seasonal average level of crustal matter. Also, apart from significant local influences at some sites (such as heavy road traffic network or a cement factory), the results from the GU site show a similar level of elemental and chemical components from

  6. PM10 forecasting using clusterwise regression

    NASA Astrophysics Data System (ADS)

    Poggi, Jean-Michel; Portier, Bruno

    2011-12-01

    In this paper, we are interested in the statistical forecasting of the daily mean PM10 concentration. Hourly concentrations of PM10 have been measured in the city of Rouen, in Haute-Normandie, France. Located at northwest of Paris, near the south side of Manche sea and heavily industrialised. We consider three monitoring stations reflecting the diversity of situations: an urban background station, a traffic station and an industrial station near the cereal harbour of Rouen. We have focused our attention on data for the months that register higher values, from December to March, on years 2004-2009. The models are obtained from the winter days of the four seasons 2004/2005 to 2007/2008 (training data) and then the forecasting performance is evaluated on the winter days of the season 2008/2009 (test data). We show that it is possible to accurately forecast the daily mean concentration by fitting a function of meteorological predictors and the average concentration measured on the previous day. The values of observed meteorological variables are used for fitting the models and are also considered for the test data. We have compared the forecasts produced by three different methods: persistence, generalized additive nonlinear models and clusterwise linear regression models. This last method gives very impressive results and the end of the paper tries to analyze the reasons of such a good behavior.

  7. Dynamical Behaviors between the PM10 and the meteorological factor using the detrended cross-correlation analysis method

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Lee, Dong-In

    2013-04-01

    There is considerable interest in cross-correlations in collective modes of real data from atmospheric geophysics, seismology, finance, physiology, genomics, and nanodevices. If two systems interact mutually, that interaction gives rise to collective modes. This phenomenon is able to be analyzed using the cross-correlation of traditional methods, random matrix theory, and the detrended cross-correlation analysis method. The detrended cross-correlation analysis method was used in the past to analyze several models such as autoregressive fractionally integrated moving average processes, stock prices and their trading volumes, and taxi accidents. Particulate matter is composed of the organic and inorganic mixtures such as the natural sea salt, soil particle, vehicles exhaust, construction dust, and soot. The PM10 is known as the particle with the aerodynamic diameter (less than 10 microns) that is able to enter the human respiratory system. The PM10 concentration has an effect on the climate change by causing an unbalance of the global radiative equilibrium through the direct effect that blocks the stoma of plants and cuts off the solar radiation, different from the indirect effect that changes the optical property of clouds, cloudiness, and lifetime of clouds. Various factors contribute to the degree of the PM10 concentration. Notable among these are the land-use types, surface vegetation coverage, as well as meteorological factors. In this study, we analyze and simulate cross-correlations in time scales between the PM10 concentration and the meteorological factor (among temperature, wind speed and humidity) using the detrended cross-correlation analysis method through the removal of specific trends at eight cities in the Korean peninsula. We divide time series data into Asian dust events and non-Asian dust events to analyze the change of meteorological factors on the fluctuation of PM10 the concentration during Asian dust events. In particular, our result is

  8. 75 FR 80117 - Methods for Measurement of Filterable PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... micrometers ASTM American Society for Testing and Materials AWMA Air and Waste Management Association CAA... requirements to control or measure total particulate matter (PM), total PM with mean aerodynamic diameters less... to sources through actions by State and local agencies that implement condensable PM (CPM)...

  9. Validation of Satellite AOD Data with the Ground PM10 Data over Islamabad Pakistan

    NASA Astrophysics Data System (ADS)

    Bulbul, Gufran; Shahid, Imran

    2016-07-01

    Introduction The issue of air pollution affects the entire globe, but the countries having huge urban growth and industries are specially confronted with high amounts of suspended particles in atmosphere. According to WHO, for the areas where air pollution is monitored in Pakistan, the air pollution is deteriorating the air quality as time is passing. Pakistan, during the last decade, has seen an extensive rise in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, rise has taken place in the emission of various air pollutants. However, due to the lack of air quality management, the country is suffering from deterioration of air quality. From the air quality point of view, spatial and temporal distribution of aerosols and its variations are very important. The variations in the atmospheric aerosol, land surface properties, greenhouse gases, solar radiations and climatic changes alter the energy balance of the earth's atmospheric system. The addition of aerosol particles to the atmosphere is not only dependent upon the anthropogenic sources but these are also formed by physical and chemical atmospheric processes. Aerosols are a mixture of particles and these are characterized by their shape, their size (from nanometers (nm) to micrometers (µm) in radius) and their chemical composition. PM10 is the designation for particulate matter in the atmosphere that has an aerodynamic diameter of 10µm or less. The sources of PM10 may be natural (volcanoes, dust, storms, forest and grassland fires, living vegetation, or anthropogenic (burning of fossil fuels in vehicles, power plants and industrialization). The current interest in atmospheric particulate matter (PM10) is mainly due to its effect on human health and its role in climate change. Therefore, the particulate matter must be monitored continuously to understand their likely impact on the atmosphere, environment and particularly human

  10. Source identification of different size fraction of PM10 using factor analysis at residential cum commercial area of Nagpur city.

    PubMed

    Pipalatkar, P P; Gajghate, D G; Khaparde, V V

    2012-02-01

    Particulate size distribution of PM(10) and associated trace metal concentrations has been carried out in residential cum commercial area of Mahal at Nagpur city. Sampling for size fraction of particulate matter was performed during winter season using eight-stage cascade impactor with a pre-separator and toxic metals were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The average concentration of PM(10) and fine particulate matter (effective cut of aerodynamic diameter ≤2.2 μm) was found to be 300 and 136.7 μg/m(3), respectively which was exceeding limit of Central Pollution Control Board. Maximum mass concentration of 41 μg/m(3) in size range of 9.0-10.0 μm and minimum mass concentration of 19 μg/m(3) in size range 2.2-3.3 μm was observed. Metals (Sr, Ni and Zn) were found to large proportions in below 0.7 μm particle size and could therefore pass directly into the alveoli region of human respiratory system. Factor analysis results indicated combustion and vehicular emission as the dominant source in fine mode and resuspended dust was dominant in medium mode while crustal along with vehicular source was major in coarse mode of particulate matter. PMID:22033656

  11. Development of a PM-10 inlet for continuous operation and with recovery of the gt 10-. mu. m fraction

    SciTech Connect

    Langer, G.; Pauley, B.J.

    1992-01-01

    The Rocky Flats Plant (RFP) manufactured nuclear weapons' components out of plutonium (Pu) metal until 1990. The plant is now in a decontamination and disposition phase. In both the manufacturing mode and the present mode, Department of Energy (DOE), Environmental Protection Agency (EPA) and the State of Colorado have required continuous monitoring of the air to detect releases of radionuclides. The air surveillance network established around the plant in the early 1950's was replaced in 1972 with a network of high-volume (40 cfm) samplers (hivols). This network extends into the community. The hivois were patterned after the EPA total suspended particle (TSP) samplers with an approximate cutoff at 30 micrometers ({mu}m); however, the RFP version of the TSP sampler was designed to operate continuously and had to be relatively inconspicuous. After nearly 20 years of operation, the RFP air surveillance samplers are in need of updating or replacement, in part because the EPA has now established a new criterion for sampling of suspended particles; i.e., the PM-10 criterion. Only particles of less than 10-{mu}m aerodynamic diameter are considered hazardous to health through inhalation pathways. This report discusses the development of a PM-10 inlet for continuous operation.

  12. Development of a PM-10 inlet for continuous operation and with recovery of the {gt}10-{mu}m fraction

    SciTech Connect

    Langer, G.; Pauley, B.J.

    1992-09-01

    The Rocky Flats Plant (RFP) manufactured nuclear weapons` components out of plutonium (Pu) metal until 1990. The plant is now in a decontamination and disposition phase. In both the manufacturing mode and the present mode, Department of Energy (DOE), Environmental Protection Agency (EPA) and the State of Colorado have required continuous monitoring of the air to detect releases of radionuclides. The air surveillance network established around the plant in the early 1950`s was replaced in 1972 with a network of high-volume (40 cfm) samplers (hivols). This network extends into the community. The hivois were patterned after the EPA total suspended particle (TSP) samplers with an approximate cutoff at 30 micrometers ({mu}m); however, the RFP version of the TSP sampler was designed to operate continuously and had to be relatively inconspicuous. After nearly 20 years of operation, the RFP air surveillance samplers are in need of updating or replacement, in part because the EPA has now established a new criterion for sampling of suspended particles; i.e., the PM-10 criterion. Only particles of less than 10-{mu}m aerodynamic diameter are considered hazardous to health through inhalation pathways. This report discusses the development of a PM-10 inlet for continuous operation.

  13. 75 FR 41379 - Finding of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... 1, 1987 (52 FR 24634), EPA promulgated two primary standards for PM 10 : a 24-hour standard of 150... revoked the annual PM 10 standard but retained the 24-hour PM 10 standard. 71 FR 61144 (October 17, 2006... areas identified on August 7, 1987 (52 FR 29383), as further clarified on October 31, 1990 (55 FR...

  14. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand.

    PubMed

    Pengchai, Petch; Chantara, Somporn; Sopajaree, Khajornsak; Wangkarn, Sunanta; Tengcharoenkul, Urai; Rayanakorn, Mongkon

    2009-07-01

    Daily PM10 concentrations were measured at four sampling stations located in Chiang Mai and Lamphun provinces, Thailand. The sampling scheme was conducted during June 2005 to June 2006; every 3 days for 24 h in each sampling period. The result revealed that all stations shared the same pattern, in which the PM10 (particulate matters with diameter of less than 10 microm) concentration increased at the beginning of dry season (December) and reached its peak in March before decreasing by the end of April. The maximum PM10 concentration for each sampling station was in the range of 140-182 microg/m(3) which was 1.1-1.5 times higher than the Thai ambient air quality standard of 120 microg/m(3). This distinctly high concentration of PM10 in the dry season (Dec. 05-Mar. 06) was recognized as a unique seasonal pattern for the northern part of Thailand. PM10 concentration had a medium level of negative correlation (r = -0.696 to -0.635) with the visibility data. Comparing the maximum PM10 concentration detected at each sampling station to the permitted PM10 level of the national air quality standard, the warning visibility values for the PM10 pollution-watch system were determined as 10 km for Chiang Mai Province and 5 km for Lamphun Province. From the analysis of PM10 constituents, no component exceeded the national air quality standard. The total concentrations of PM10-bond polycyclic aromatic hydrocarbons (PAHs) are calculated in terms of total toxicity equivalent concentrations (TTECs) using the toxicity equivalent factors (TEFs) method. TTECs in Chiang Mai and Lamphun ambient air was found at a level comparable to those observed in Nagasaki, Bangkok and Rome and at a lower level than those reported at Copenhagen. The annual number of lung cancer cases for Chiang Mai and Lamphun Provinces was estimated at two cases/year which was lower than the number of cases in Bangkok (27 cases/year). The principal component analysis/absolute principal component scores (PCA

  15. Aerodynamic design and initial performance measurements for the SANDIA 34-metre diameter vertical-axis wind turbine

    SciTech Connect

    Berg, D.E.; Klimas, P.C.; Stephenson, W.A. )

    1989-01-01

    The DOE/Sandia 34-m diameter Vertical-Axis Wind turbine (VAWT) utilizes a step-tapered, multiple-airfoil section blade. One of the airfoil sections is a natural laminar flow profile, the SAND 0018/50, designed specifically for use on VAWTs. The turbine has now been fully operational for more than a year, and extensive turbine aerodynamic performance data have been obtained. This paper reviews the design and fabrication of the rotor blade, with emphasis on the SAND 0018/50 airfoil, and compares the performance measurements to date with the performance predictions. Possible sources of the discrepancies between measured and predicted performance are identified, and plans for additional aerodynamic testing on the turbine are briefly discussed. 12 refs., 10 figs.

  16. Aerodynamic design and initial performance measurements for the SANDIA 34-metre diameter vertical-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berg, Dale E.; Klimas, Paul C.; Stephenson, William A.

    The DOE/Sandia 34-m diameter Vertical-Axis Wind turbine (VAWT) utilizes a step-tapered, multiple-airfoil section blade. One of the airfoil sections is a natural laminar flow profile, the SAND 0018/50, designed specifically for use on VAWTs. The turbine has now been fully operational for more than a year, and extensive turbine aerodynamic performance data have been obtained. This paper reviews the design and fabrication of the rotor blade, with emphasis on the SAND 0018/50 airfoil, and compares the performance measurements to date with the performance predictions. Possible sources of the discrepancies between measured and predicted performance are identified, and plans for additional aerodynamic testing on the turbine are briefly discussed.

  17. The aerodynamic design of a compressor-drive turbine for use in a 75 kw automotive engine. [with tip diameter of 11.15 cm

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Mclallin, K. L.

    1975-01-01

    The design of a single stage axial-flow turbine with a tip diameter of 11.15 cm is presented. The design specifications are given, and the aerodynamic design procedure is described. The aerodynamic information includes the results of flow path, velocity diagram, and blade profile studies. Predicted off-design performance characteristics are also presented.

  18. Validation of Satellite AOD Data with the Ground PM10 Data over Islamabad Pakistan

    NASA Astrophysics Data System (ADS)

    Bulbul, Gufran; Shahid, Imran

    2016-07-01

    Introduction The issue of air pollution affects the entire globe, but the countries having huge urban growth and industries are specially confronted with high amounts of suspended particles in atmosphere. According to WHO, for the areas where air pollution is monitored in Pakistan, the air pollution is deteriorating the air quality as time is passing. Pakistan, during the last decade, has seen an extensive rise in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, rise has taken place in the emission of various air pollutants. However, due to the lack of air quality management, the country is suffering from deterioration of air quality. From the air quality point of view, spatial and temporal distribution of aerosols and its variations are very important. The variations in the atmospheric aerosol, land surface properties, greenhouse gases, solar radiations and climatic changes alter the energy balance of the earth's atmospheric system. The addition of aerosol particles to the atmosphere is not only dependent upon the anthropogenic sources but these are also formed by physical and chemical atmospheric processes. Aerosols are a mixture of particles and these are characterized by their shape, their size (from nanometers (nm) to micrometers (µm) in radius) and their chemical composition. PM10 is the designation for particulate matter in the atmosphere that has an aerodynamic diameter of 10µm or less. The sources of PM10 may be natural (volcanoes, dust, storms, forest and grassland fires, living vegetation, or anthropogenic (burning of fossil fuels in vehicles, power plants and industrialization). The current interest in atmospheric particulate matter (PM10) is mainly due to its effect on human health and its role in climate change. Therefore, the particulate matter must be monitored continuously to understand their likely impact on the atmosphere, environment and particularly human

  19. Seasonal variations and chemical characterization of ambient PM 10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India

    NASA Astrophysics Data System (ADS)

    Karar, Kakoli; Gupta, A. K.

    2006-07-01

    Monitoring of ambient PM 10 (particulate matter which passes through a size selective impactor inlet with a 50% efficiency cut-off at 10 μm aerodynamic diameter) has been done at residential (Kasba) and industrial (Cossipore) sites of an urban region of Kolkata during November 2003 to November 2004. The measurements have been performed once a week during the study period. PM 10 mass concentrations ranged from 68.2 to 280.6 μg/m 3 at a residential site and 62.4 to 401.2 μg/m 3 at an industrial site. Metal constituents of ambient PM 10 deposited on quartz microfibre filter papers were identified using Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), manganese (Mn) and iron (Fe) are the seven toxic trace metals quantified from the measured PM 10 concentrations. Results identified zinc with maximum contribution of PM 10 among measured metals having concentrations of 0.49 μg/m 3 at the residential site, and 0.53 μg/m 3 at the industrial site. The PAH (polycyclic aromatic hydrocarbon) compounds namely, fluoranthene (Fl), pyrene (Py), benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF) and benzo(a)pyrene (BaP) have been analyzed using gas chromatography. The major PAH compound at the monitoring sites was BbF with 0.03 μg/m 3 at the residential site and 0.02 μg/m 3 at the industrial site. Total carbon (TC), inorganic carbon (IC) and organic carbon (OC) of PM 10 were analyzed using a carbon analyzer. Exposed quartz microfibre filter papers were also analyzed for water-soluble anions of fluoride (F -), chloride (Cl -), nitrate (NO 3-), phosphate (PO 43-) and sulfate (SO 42-) using ion chromatography. Sulfate was found in maximum concentration among anionic species with a value of 1.2 μg/m 3 at the residential site, and 1.7 μg/m 3 at the industrial site. Meteorological parameters such as wind speed, wind direction, rainfall, temperature and relative humidity were collected

  20. Chemical characterization of the PM10 fraction of airborne particulate matter in the urban atmosphere.

    PubMed

    Bagnoli, P; Carrozzino, S; Pisani, B; Righini, F

    1997-01-01

    This study examines the chemical composition of PM10, the thoracic fraction of atmospheric particulate matter. This fraction is characterized by a very complex composition and is able to penetrate the human organism corresponding to a "cut point" at the level of the larynx. We used a sampling device to separate the PM10 from other fractions with different aerodynamic behavior. The high volume sampler collected large amounts of material, making it easier to study the micropollutants. Furthermore, it met EPA performance specifications for the measurement of suspended PM10 fraction. We collected the samples during different metereological conditions in the urban area of the town of Leghorn in Tuscany, Italy. Two sites, characterized by different settings, were chosen in the city. Both sites were marked by intense motor vehicle traffic. A better chemical characterization of the collected material became possible using different analytical techniques. The use of large-size cellulose or glass fiber filters allowed us to subdivide the sample and to submit each portion to a different investigative technique. The PAH content of the PM10 fraction was examined, particularly for those compounds of toxicological interest. The concentrations of the compounds were evaluated by HPLC with diode array UV detection. We further determined the contents of various heavy metals from anthropic or telluric sources (Pb, Cu, Fe, Cr, Cd, Mn, V, and Ni) by means of an HGA Graphite Furnace AAS-Zeeman-Effect technique or AA-Flame spectrophotometry. The results of our experiment show that motor vehicle traffic is the prevailing pollution source. The metereological conditions also play a significant role. The samples taken closer to the industrial area of the town showed a slightly higher mean content of PM10 fraction. The concentrations of both heavy metals and PM10 were lower compared with equivalent data from other European cities. PMID:9276006

  1. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality

    PubMed Central

    Pinheiro, Samya de Lara Lins de Araujo; Saldiva, Paulo Hilário Nascimento; Schwartz, Joel; Zanobetti, Antonella

    2014-01-01

    OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter < 10 µm (PM10) on the mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure

  2. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality.

    PubMed

    Pinheiro, Samya de Lara Lins de Araujo; Saldiva, Paulo Hilário Nascimento; Schwartz, Joel; Zanobetti, Antonella

    2014-12-01

    OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter < 10 µm (PM10) on the mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure

  3. PM10 source apportionment in a Swiss Alpine valley impacted by highway traffic.

    PubMed

    Ducret-Stich, Regina E; Tsai, Ming-Yi; Thimmaiah, Devraj; Künzli, Nino; Hopke, Philip K; Phuleria, Harish C

    2013-09-01

    Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter < 10 μm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust. PMID:23608980

  4. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10-100 μg mL(-1) attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL(-1)). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608

  5. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    PubMed Central

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608

  6. 75 FR 64241 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 Determination of Attainment for PM10: Eagle River PM10 Nonattainment Area, Alaska AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA proposed to...

  7. 75 FR 41421 - Finding of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 Finding of Attainment for PM10 for the Mendenhall Valley PM10 Nonattainment Area, Alaska AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA finds that...

  8. 75 FR 35302 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... has established health-based standards. On July 1, 1987 (52 FR 24634), EPA promulgated two primary... standard. 71 FR 61144 (October 17, 2006). The 24-hour PM 10 standard is attained when the expected number... former Group I PM 10 planning areas identified in 52 FR 29383 (August 7, 1987), as further clarified...

  9. 76 FR 5280 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... established health-based standards. On July 1, 1987 (52 FR 24634), EPA promulgated two primary standards for... standard.\\1\\ 71 FR 61144 (October 17, 2006). The 24-hour PM 10 standard is attained when the expected..., appendix K. \\1\\ Because the annual PM 10 standard was revoked effective December 18, 2006, see 71 FR...

  10. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false PM10 Committal SIP. 52.2182 Section 52.2182 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP....

  11. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false PM10 Committal SIP. 52.2182 Section 52.2182 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP....

  12. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false PM10 Committal SIP. 52.2182 Section 52.2182 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP....

  13. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false PM10 Committal SIP. 52.2182 Section 52.2182 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP....

  14. 40 CFR 52.2182 - PM10 Committal SIP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false PM10 Committal SIP. 52.2182 Section 52.2182 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Dakota § 52.2182 PM10 Committal SIP. On July 12 1988, the State submitted...

  15. 40 CFR 52.378 - Control strategy: PM10.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: PM10. 52.378 Section 52.378 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Connecticut § 52.378 Control strategy: PM10. (a)...

  16. 40 CFR 52.378 - Control strategy: PM10

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: PM10 52.378 Section 52.378 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Connecticut § 52.378 Control strategy: PM10 (a)...

  17. SAMPLING AND ANALYSIS METHODS FOR AMBIENT PM-10 AEROSOL

    EPA Science Inventory

    Methods are described for obtaining ambient PM-10 aerosol data for use in receptor models. haracteristics of PM-10 sampling devices, filter media and laboratory analysis procedures are described. he latter include x-ray fluorescence, neutron activation, optical spectroscopy, pyro...

  18. PM10 Pollution: Its Prediction and Meteorological Influence in PasirGudang, Johor

    NASA Astrophysics Data System (ADS)

    Afzali, A.; Rashid, M.; Sabariah, B.; Ramli, M.

    2014-02-01

    Ambient PM10 (i.e particulate diameter less than 10 um in size) pollution has negative impacts on human health and it is influenced by meteorological conditions. Although the correlation between meteorological parameters and PM10 concentrations is significant in most cases, the linear relationship between them implies that the fraction of the variance, R2 rarely exceeds 25%. However, considering the previous day's concentration of pollutants to the multi-linear regression enhances the model performance and increases the value of R2. Alternatively, artificial neural networks (ANN) are used to capture the complex relationships among many factors considered which present a better prediction. Thus, this study presents the results of predicting ambient PM10 concentration and the influence of meteorological parameters based on the data sampled from 2008 - 2010 in an industrial area of PasirGudang, Johor.

  19. Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades

    NASA Astrophysics Data System (ADS)

    Sheldahl, R. E.; Klimas, P. C.; Feltz, L. V.

    1980-03-01

    A 5 metric-diameter vertical-axis wind turbine with extruded aluminum blades of NACA-0015 airfoil cross section was tested. Several turbine rotational speeds are presented and compared with earlier test results. Performance comparison is made with a vortex/lifting line computational code.

  20. PM(10) source characterization at urban and highway roadside locations.

    PubMed

    Furusjö, Erik; Sternbeck, John; Cousins, Anna Palm

    2007-11-15

    Levels of PM(10) were measured at two different roadside locations in the Stockholm region in Sweden, one highway south of Stockholm and one urban street canyon in the center of the city. PM(10) samples were taken during six separate campaigns over one full year, and analyzed for 29 metals, in order to help characterize sources of PM(10). Five contributing factors were identified by multivariate receptor modeling using positive matrix factorization. Factors were classified, based on their seasonal variation and published data on metal composition of different sources, as: 1) resuspension; 2) vehicle derived; 3) road salt; 4) regional combustion and 5) long-range transport. Resuspension and long-range transport were shown to be important contributors to the PM(10) levels at both sites. In fact, long-range transport was the main contributor to the PM(10) levels at the highway roadside. The vehicle source was only of major importance at the urban roadside, where it frequently contributed between 10 and 20 microg m(-3). Brake wear was an important component in the vehicle source. Vehicle exhaust was not detected as a separate source and was not identified as a major source for PM(10). To our knowledge, this is the first study identifying brake wear as a major source of PM(10) during urban driving. PMID:17822744

  1. Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades

    SciTech Connect

    Sheldahl, R.E.; Klimas, P.C.; Feltz, L.V.

    1980-03-01

    A 5-metre-diameter vertical-axis wind turbine has undergone continued testing since 1976 at the Sandia Laboratories Wind Turbine site. The latest tests of this machine have been with extruded aluminum blades of NACA-0015 airfoil cross section. The results of these tests at several turbine rotational speeds are presented and compared with earlier test results. A performance comparison is made with a vortex/lifting line computational code. The performance of the turbine with the extruded blades met all expectations.

  2. Particle size distribution and PM10 of volcanic ashes in Guadeloupe during the major eruption of Soufrière Hills in February 2010

    NASA Astrophysics Data System (ADS)

    Molinie, Jack; Bernard, Marie-Lise; Komorowski, Jean-Christophe; Euphrasie-Clotilde, Lovely; Brute, France-Nor; Roussas, Andre

    2014-05-01

    On the 11 February 2010, fifteen minutes after midday, an explosive eruption of Soufriere Hills volcano sent tephra over the neighbour Caribbean islands. The volcanic ashes benefit from the vertical wind distribution of the moment to reach Guadeloupe island and cover it ground near 5 hours after the ash venting. Since the first ashes arrival over the town of Pointe-a-Pitre (located at 80 km at the South East of Soufriere hills volcano) to the end of the event, we measured the mean particle concentrations and particle size distributions every twenty minutes. Measurements were performed at a building roof of the town using an optical particles counter Lighthouse IAQ 3016 mainly used in indoor air quality studies and which provides up to 6 particle size channels of simultaneous counting with aerodynamic diameters classes ranging from 0.3 to >10 µm. The airborne particulate matter mass concentration, with equivalent aerodynamic diameters less than 10 µm (PM10) were measured by the local air quality network Gwad'air, in the vicinity of the site used to study this ash fall.. The maximum concentration of small particles with diameter lesser than 1µm (D0.3-1) was observed one hour before the larger particles. This result may imply a difference in shape and density between particles D0.3-1 and particles D1-10 (1<diameter< 10), producing a difference in the dry deposition velocity. The mean hourly mass concentration of PM10 has reached a maximum value of 271µg/m3 eleven hours after the major eruption which followed a partial dome collapse in the crater. We found a poor correlation between the PM10 values and the mass concentration calculated from the mean particle concentrations of particles D0.3-1+ D1-10. This result is probably related to the large variability in the density distribution of the particles. Moreover, we observed a variation over time in the shape and the composition of the collected volcanic ashes which impacts on the exposed population, especially their

  3. Relationship between physico-chemical characteristics and potential toxicity of PM10.

    PubMed

    Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena

    2016-11-01

    PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value < 0.001). Individual airborne particles were characterised morphologically and chemically via a combination of Scanning Electron Microscopy and Energy-Dispersive X-ray spectroscopy (SEM-EDX). The subsequent image analysis revealed C-rich particles with shapes that pointed to combustion processes. Moreover, carbonaceous particles seemed to act as vehicles for sulphur compounds and metals (S, Na, Fe, Ca, Mg, K, Al, Mn, Zn and Cu). Coarse particles were found to be mainly constituted by crustal material and marine and carbonaceous particles. Although most of the studied individual particles in PM10 samples (86.0%) had a diameter within the 0.1-2.5 μm range, 1.8% of them had sizes lower than 0.1 μm 40.2% of the total studied particles were estimated to be inhaled and deposited in the human respiratory tract; 12.3% of these particles would reach the deepest zones, thereby posing a major risk to human health. PMID:27485798

  4. Enhanced PM10 bounded PAHs from shipping emissions

    NASA Astrophysics Data System (ADS)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  5. Modeling Exposures to the Oxidative Potential of PM10

    PubMed Central

    2012-01-01

    Differences in the toxicity of ambient particulate matter (PM) due to varying particle composition across locations may contribute to variability in results from air pollution epidemiologic studies. Though most studies have used PM mass concentration as the exposure metric, an alternative which accounts for particle toxicity due to varying particle composition may better elucidate whether PM from specific sources is responsible for observed health effects. The oxidative potential (OP) of PM < 10 μm (PM10) was measured as the rate of depletion of the antioxidant reduced glutathione (GSH) in a model of human respiratory tract lining fluid. Using a database of GSH OP measures collected in greater London, U.K. from 2002 to 2006, we developed and validated a predictive spatiotemporal model of the weekly GSH OP of PM10 that included geographic predictors. Predicted levels of OP were then used in combination with those of weekly PM10 mass to estimate exposure to PM10 weighted by its OP. Using cross-validation (CV), brake and tire wear emissions of PM10 from traffic within 50 m and tailpipe emissions of nitrogen oxides from heavy-goods vehicles within 100 m were important predictors of GSH OP levels. Predictive accuracy of the models was high for PM10 (CV R2=0.83) but only moderate for GSH OP (CV R2 = 0.44) when comparing weekly levels; however, the GSH OP model predicted spatial trends well (spatial CV R2 = 0.73). Results suggest that PM10 emitted from traffic sources, specifically brake and tire wear, has a higher OP than that from other sources, and that this effect is very local, occurring within 50–100 m of roadways. PMID:22731499

  6. PM10 and gaseous pollutants trends from air quality monitoring networks in Bari province: principal component analysis and absolute principal component scores on a two years and half data set

    PubMed Central

    2014-01-01

    Background The chemical composition of aerosols and particle size distributions are the most significant factors affecting air quality. In particular, the exposure to finer particles can cause short and long-term effects on human health. In the present paper PM10 (particulate matter with aerodynamic diameter lower than 10 μm), CO, NOx (NO and NO2), Benzene and Toluene trends monitored in six monitoring stations of Bari province are shown. The data set used was composed by bi-hourly means for all parameters (12 bi-hourly means per day for each parameter) and it’s referred to the period of time from January 2005 and May 2007. The main aim of the paper is to provide a clear illustration of how large data sets from monitoring stations can give information about the number and nature of the pollutant sources, and mainly to assess the contribution of the traffic source to PM10 concentration level by using multivariate statistical techniques such as Principal Component Analysis (PCA) and Absolute Principal Component Scores (APCS). Results Comparing the night and day mean concentrations (per day) for each parameter it has been pointed out that there is a different night and day behavior for some parameters such as CO, Benzene and Toluene than PM10. This suggests that CO, Benzene and Toluene concentrations are mainly connected with transport systems, whereas PM10 is mostly influenced by different factors. The statistical techniques identified three recurrent sources, associated with vehicular traffic and particulate transport, covering over 90% of variance. The contemporaneous analysis of gas and PM10 has allowed underlining the differences between the sources of these pollutants. Conclusions The analysis of the pollutant trends from large data set and the application of multivariate statistical techniques such as PCA and APCS can give useful information about air quality and pollutant’s sources. These knowledge can provide useful advices to environmental policies in

  7. Seasonal variation of PM10 chemical constituents in different French urban environments

    NASA Astrophysics Data System (ADS)

    Salameh, Dalia; Golly, Benjamin; Besombes, Jean Luc; Alleman, Laurent; Favez, Olivier; Jaffrezo, Jean Luc

    2016-04-01

    Particulate matter (PM10, with a diameter less than 10 μm) is a heterogeneous mixture of natural and anthropogenic components including organic and elemental carbon (OC, and EC), sulfates, nitrates, ammonium, mineral dust, trace elements, seasalt, which has been linked to adverse impact on human health, visibility, and climate change. Atmospheric PM concentration and composition can vary widely due to different climatic conditions and local features such as anthropogenic source types, emission rates and dispersion patterns. Moreover, the contribution of natural sources (e.g. seasalt and dust) varies from one region to another. However, a fundamental step towards a better understanding and identification of the sources of PM10 is constituted by the study of aerosol chemical composition. Moreover, in order to define cost effective emission abatement strategies, research studies to interpret the variability of PM10 levels and components and to identify the main emission sources influencing ambient air PM10 levels is still needed. In a national context of a better understanding of PM composition and sources, and therefore the implementation of efficient reduction plans of PM in France, various monitoring campaigns were carried out recently within different air quality programs, where PM10 filter samples were collected on a 24 hour basis at various type of French sites (e.g. urban, rural, etc.,), located in different urban environments. An extensive chemical characterization of PM10 composition at these sites was performed, and a large range of analytical techniques was used to determine the concentrations of various chemical species which included the analysis of OC, and EC, major ionic species (SO42-, NO3-, Cl-, NH4+, K+, Na+, Mg2+, and Ca2+), metals and trace elements (e.g. Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn, etc.,), and organic compounds (e.g. sugars, polyols, PAH, methyl PAH, sulfur PAH, alkanes, hopanes, and methoxyphenols). The seasonal and spatial

  8. Exceedance of PM10 and ozone concentration limits in Germany - Spatial variability and influence of climate

    NASA Astrophysics Data System (ADS)

    Heidenreich, Majana; Bernhofer, Christian

    2014-05-01

    High concentrations of particulate matter (PM) and ground-level ozone (O3) have negative impacts on human health, e.g., increased risk of respiratory disease, and the environment. European Union (EU) air policy and air quality standards led to continuously reduced air pollution problems in recent decades. Nevertheless, the limit values for PM10 (particles with diameter of 10 micrometers or less) and ozone - defined by the directive 2008/50/EC of the European Parliament - are still exceeded frequently. Poor air quality and the exceedance of limits result mainly from the combination of high emissions and unfavourable weather conditions. Datasets from German monitoring stations are used to describe the spatial and temporal variability of the exceedance of concentration limits for PM10 and ozone for the federal states of Germany. Time series are analysed for the period 2000-2012 for PM10 and for the period 1990-2012 for ozone. Furthermore, the influence of weather patterns on the exceedance of concentration limits on a regional scale was investigated. Here, the "objective weather types" of the German Weather Service were used. As expected, for most regions anticyclonic weather types (with a negative cyclonality index for the two levels 950 and 500 hPa) show a high frequency on exeedance days, both for PM10 and ozone. The results could contribute to estimate the future exceedance frequency of concentration limits and to develop possible countermeasures.

  9. Improving Neural Network Prediction Accuracy for PM10 Individual Air Quality Index Pollution Levels

    PubMed Central

    Feng, Qi; Wu, Shengjun; Du, Yun; Xue, Huaiping; Xiao, Fei; Ban, Xuan; Li, Xiaodong

    2013-01-01

    Abstract Fugitive dust deriving from construction sites is a serious local source of particulate matter (PM) that leads to air pollution in cities undergoing rapid urbanization in China. In spite of this fact, no study has yet been published relating to prediction of high levels of PM with diameters <10 μm (PM10) as adjudicated by the Individual Air Quality Index (IAQI) on fugitive dust from nearby construction sites. To combat this problem, the Construction Influence Index (Ci) is introduced in this article to improve forecasting models based on three neural network models (multilayer perceptron, Elman, and support vector machine) in predicting daily PM10 IAQI one day in advance. To obtain acceptable forecasting accuracy, measured time series data were decomposed into wavelet representations and wavelet coefficients were predicted. Effectiveness of these forecasters were tested using a time series recorded between January 1, 2005, and December 31, 2011, at six monitoring stations situated within the urban area of the city of Wuhan, China. Experimental trials showed that the improved models provided low root mean square error values and mean absolute error values in comparison to the original models. In addition, these improved models resulted in higher values of coefficients of determination and AHPC (the accuracy rate of high PM10 IAQI caused by nearby construction activity) compared to the original models when predicting high PM10 IAQI levels attributable to fugitive dust from nearby construction sites. PMID:24381481

  10. An aerodynamic investigation of two 1.83-meter-diameter fan systems designed to drive a subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Page, V. R.; Eckert, W. T.; Mort, K. W.

    1977-01-01

    An experimental, aerodynamic investigation was made of two 1.83 m diameter fan systems which are being considered for the repowered drive section of the 40- by 80-foot wind tunnel at NASA Ames Research Center. One system was low speed, the other was high speed. The low speed fan was tested at various stagger angles from 32.9 deg to 62.9 deg. At a fan blade stagger angle of 40.8 deg and operating at a tip speed of 1155 m/sec, the low speed fan developed 207.3 m of head. The high speed fan had a design blade stagger angle of 56.2 deg and was tested at this stagger angle only. The high speed fan operating at 191.5 m/sec developed 207.3 m of head. Radial distributions of static pressure coefficients, total pressure coefficients, and angles of swirl are presented. Radial surveys were conducted at four azimuth locations in front of the fan, and repeated downstream of the fan. Data were taken for various flow control devices and for two inlet contraction lengths.

  11. Monsoonal differences and probability distribution of PM(10) concentration.

    PubMed

    Md Yusof, Noor Faizah Fitri; Ramli, Nor Azam; Yahaya, Ahmad Shukri; Sansuddin, Nurulilyana; Ghazali, Nurul Adyani; Al Madhoun, Wesam

    2010-04-01

    There are many factors that influence PM(10) concentration in the atmosphere. This paper will look at the PM(10) concentration in relation with the wet season (north east monsoon) and dry season (south west monsoon) in Seberang Perai, Malaysia from the year 2000 to 2004. It is expected that PM(10) will reach the peak during south west monsoon as the weather during this season becomes dry and this study has proved that the highest PM(10) concentrations in 2000 to 2004 were recorded in this monsoon. Two probability distributions using Weibull and lognormal were used to model the PM(10) concentration. The best model used for prediction was selected based on performance indicators. Lognormal distribution represents the data better than Weibull distribution model for 2000, 2001, and 2002. However, for 2003 and 2004, Weibull distribution represents better than the lognormal distribution. The proposed distributions were successfully used for estimation of exceedences and predicting the return periods of the sequence year. PMID:19365611

  12. Spatio-temporal characteristics of PM10 concentration across Malaysia

    NASA Astrophysics Data System (ADS)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin T.; Mansor, Haslina

    The recurrence of forest fires in Southeast Asia and associated biomass burning, has contributed markedly to the problem of trans-boundary haze and the long-range movement of pollutants in the region. Air pollutants, specifically particulate matter in the atmosphere, have received extensive attention, mainly because of their adverse effect on people's health. In this study, the spatial and temporal variability of the PM10 concentration across Malaysia was analyzed by means of the rotated principal component analysis. The results suggest that the variability of the PM10 concentration can be decomposed into four dominant modes, each characterizing different spatial and temporal variations. The first mode characterizes the southwest coastal region of the Malaysian Peninsular with the PM10 showing a peak concentration during the summer monsoon i.e. when the winds are predominantly southerlies or southwesterlies, and a minimal concentration during the winter monsoon. The second mode features the region of western Borneo with the PM10 exhibiting a concentration surge in August-September, which is likely to be the result of the northward shift of the Inter Tropical Convergence Zone (ITCZ) and the subsequent rapid arrival of the rainy season. The third mode delineates the northern region of the Malaysian Peninsular with strong bimodality in the PM10 concentration. Seasonally, this component exhibits two concentration maxima during the late winter and summer monsoons, as well as two minima during the inter-monsoon periods. The fourth dominant mode characterizes the northern Borneo region which exhibits weaker seasonality of the PM10 concentration. Generally, the seasonal fluctuation of the PM10 concentration is largely associated with the seasonal variation of rainfall in the country. However, in addition to this, the PM10 concentration also fluctuates markedly in two timescale bands i.e. 10-20 days quasi-biweekly (QBW) and 30-60 days lower frequency (LF) band of the intra

  13. Source apportionment of indoor PM10 in Elderly Care Centre.

    PubMed

    Almeida-Silva, M; Faria, T; Saraga, D; Maggos, T; Wolterbeek, H T; Almeida, S M

    2016-04-01

    Source contribution to atmospheric particulate matter (PM) has been exhaustively modelled. However, people spend most of their time indoors where this approach is less explored. This evidence worsens considering elders living in Elderly Care Centres, since they are more susceptible. The present study aims to investigate the PM composition and sources influencing elderly exposure. Two 2-week sampling campaigns were conducted-one during early fall (warm phase) and another throughout the winter (cold phase). PM10 were collected with two TCR-Tecora(®) samplers that were located in an Elderly Care Centre living room and in the correspondent outdoor. Chemical analysis of the particles was performed by neutron activation analysis for element characterization, by ion chromatography for the determination of water soluble ions and by a thermal optical technique for the measurement of organic and elemental carbon. Statistical analysis showed that there were no statistical differences between seasons and environments. The sum of the indoor PM10 components measured in this work explained 57 and 53 % of the total PM10 mass measured by gravimetry in warm and cold campaigns, respectively. Outdoor PM10 concentrations were significantly higher during the day than night (p value < 0.05), as well as Ca(2+), Fe, Sb and Zn. The contribution of indoor and outdoor sources was assessed by principal component analysis and showed the importance of the highways and the airport located less than 500 m from the Elderly Care Centre for both indoor and outdoor air quality. PMID:26758302

  14. The construction of control chart for PM10 functional data

    NASA Astrophysics Data System (ADS)

    Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd

    2014-06-01

    In this paper, a statistical procedure to construct a control chart for monitoring air quality (PM10) using functional data is proposed. A set of daily indices that represent the daily PM10 curves were obtained using Functional Principal Component Analysis (FPCA). By means of an iterative charting procedure, a reference data set that represented a stable PM10 process was obtained. The data were then used as a reference for monitoring future data. The application of the procedure was conducted using seven-year (2004-2010) period of recorded data from the Klang air quality monitoring station located in the Klang Valley region of Peninsular Malaysia. The study showed that the control chart provided a useful visualization tool for monitoring air quality and was capable in detecting abnormality in the process system. As in the case of Klang station, the results showed that with reference to 2004-2008, the air quality (PM10) in 2010 was better than that in 2009.

  15. DEVELOPMENT OF SAMPLING METHODS FOR SOURCE PM10 EMISSIONS

    EPA Science Inventory

    The report describes an investigation of the needs and available techniques for in-stack PM-10 sampling. Discussion includes the conceptualization, development, documentation, and testing of two candidate methods. The first method, Constant Sampling Rate (CSR), is a procedural ap...

  16. From Agglomerates of Spheres to Irregularly Shaped Particles: Determination of Dynamic Shape Factors from Measurements of Mobility and Vacuum Aerodynamic Diameters

    SciTech Connect

    Zelenyuk, Alla; Cai, Yong; Imre, Dan G.

    2006-03-01

    With the advert of aerosol instrumentation it has become possible to simultaneously measure individual particle mobility and vacuum aerodynamic diameters. For spherical particles these two diameters yield individual particle density. In contrast, assigning a physical meaning to the mobility or aerodynamic diameter of aspherical particles is not straightforward. This paper presents an experimental exploration of the effect of particle shape on the relationship between mobility and vacuum aerodynamic diameters. We make measurements on systems of three types: 1) Agglomerates of spheres, for which the density and the volume are known; 2) Ammonium sulfate, sodium chloride, succinic acid and lauric acid irregularly shaped particles of known density; and 3) Internally mixed particles, containing organics and ammonium sulfate, of unknown density and shape. For agglomerates of spheres we observed alignment effects in the DMA and report the first measurements of the dynamic shape factors (DSFs) in free molecular regime. We present here the first experimental determination of the DSF of ammonium sulfate particles. We find for ammonium sulfate particles a DSF that increases from 1.03 to 1.07 as particle mobility diameter increases from 160 nm to 500 nm. Three types of NaC1 particles were generated and characterized: nearly spherical particles with DSF of ~1.02; cubic with DSF that increases from 1.065 to 1.17 as particle mobility diameter increases from 200 nm to 900 nm; and compact agglomerates with DSF 1.3-1.4. Organic particles were found very nearly spherical. The data suggest that particles composed of binary mixtures of ammonium sulfate and succinic acid have lower dynamic shape factors than pure ammonium sulfate particles. However, for internally mixed ammonium sulfate and lauric acid particles we cannot distinguish between nearly spherical particles with low density and particles with DSF of 1.17.

  17. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    NASA Astrophysics Data System (ADS)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  18. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Specifications for PM10, PM2.5 and... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods Specification PM10 PM2.5 Class I Class II Class III...

  19. Spatial Modeling of PM10 and NO2 in the Continental United States, 1985–2000

    PubMed Central

    Hart, Jaime E.; Yanosky, Jeff D.; Puett, Robin C.; Ryan, Louise; Dockery, Douglas W.; Smith, Thomas J.; Garshick, Eric; Laden, Francine

    2009-01-01

    Background Epidemiologic studies of air pollution have demonstrated a link between long-term air pollution exposures and mortality. However, many have been limited to city-specific average pollution measures or spatial or land-use regression exposure models in small geographic areas. Objectives Our objective was to develop nationwide models of annual exposure to particulate matter < 10 μm in diameter (PM10) and nitrogen dioxide during 1985–2000. Methods We used generalized additive models (GAMs) to predict annual levels of the pollutants using smooth spatial surfaces of available monitoring data and geographic information system–derived covariates. Model performance was determined using a cross-validation (CV) procedure with 10% of the data. We also compared the results of these models with a commonly used spatial interpolation, inverse distance weighting. Results For PM10, distance to road, elevation, proportion of low-intensity residential, high-intensity residential, and industrial, commercial, or transportation land use within 1 km were all statistically significant predictors of measured PM10 (model R2 = 0.49, CV R2 = 0.55). Distance to road, population density, elevation, land use, and distance to and emissions of the nearest nitrogen oxides–emitting power plant were all statistically significant predictors of measured NO2 (model R2 = 0.88, CV R2 = 0.90). The GAMs performed better overall than the inverse distance models, with higher CV R2 and higher precision. Conclusions These models provide reasonably accurate and unbiased estimates of annual exposures for PM10 and NO2. This approach provides the spatial and temporal variability necessary to describe exposure in studies assessing the health effects of chronic air pollution. PMID:20049118

  20. Agricultural PM 10 emissions from cotton field disking in Las Cruces, NM

    NASA Astrophysics Data System (ADS)

    Kasumba, John; Holmén, Britt A.; Hiscox, April; Wang, Junming; Miller, David

    2011-03-01

    Various studies have shown a relationship between elevated levels of inhalable particulate matter (PM) and agricultural practices, especially in the vicinity of agricultural fields. Airborne particle concentrations and meteorological variables were measured during nine agricultural field events on a cotton field in Las Cruces, NM in March 2008. A variety of real-time and integrated PM 10 and total suspended particles (TSP) samplers were used during sampling. The field events were designed to measure particle concentrations at different heights, near (4 m) and far (20-100 m) from a disking tractor. Particle concentrations decreased with increasing distance from the ground for near-source disking events, whereas particle concentrations were almost independent of height for background events. Near-source disking event particle concentrations were 4-7 times higher than those for far-source disking and background events. Near-source disking events had PM 10 emission factors ranging from 78 to 239 mg m -2, while those for far-source disking events ranged from 8 to 89 mg m -2. PM 10 plume heights for near-source disking events were between 4 and 5.7 m, whereas those for far-source disking events were between 12 and 15 m. Meteorological variables were found to influence emission factors, with wind speed showing a nonlinear relationship with emission factors. No clear relationship was found between soil moisture content and emission factors probably because the range of soil moisture was small. Impactor data indicated 10-40% of the total mass of agricultural PM collected was less than 1 μm in diameter for the clay loam soil type. Vertical PM 10 concentration profiles showed maxima at sampling heights between 1 and 2 m above the ground.

  1. Ambient protein concentration in PM10 in Hefei, central China

    NASA Astrophysics Data System (ADS)

    Kang, Hui; Xie, Zhouqing; Hu, Qihou

    2012-07-01

    The total protein associated with bioaerosol particulate matter (PM) is generally measured as an all-inclusive indicator of airborne biological material, which may enhance the effects of allergens, allergic and asthmatic responses. To investigate the level and seasonal variations of biological loading, PM10 were collected in a metropolitan area of Hefei, central China from June 2008 to February 2009 and analyzed for total protein mass, trace elements, and water-soluble ions. The protein concentration in PM10 ranged from 2.08 to 36.71 μg m-3 with an average of 11.42 μg m-3. This was the highest value reported so far in the literature. The total protein was found to have a significant correlation with the air pollution index (API) and mean visibility (VV), indicating the potential influence of anthropogenic sources and/or crustal sources. The protein content displayed an obvious seasonal variation with respect to weather conditions. In the rainy season the level of protein was low, while in the dry season and foggy weather the level of protein was relatively high. A correlation analysis revealed that the relationship between total protein concentration and water-soluble ions K+ and NO3- in PM10 during the dry season is 0.92 and 0.66 (P < 0.05), respectively, suggesting that anthropogenic pollution and biomass burning are main contributors during this period.

  2. Determination of PM10 emission rates from street sweepers.

    PubMed

    Fitz, D R; Bumiller, K

    2000-02-01

    The use of street sweepers to clean paved roads, particularly after high-wind events, has been proposed as a PM10 control method. Using an artificial tunnel, the emission rates for several street sweepers were quantified under actual operating conditions. The tunnel was a tent enclosure, 6.1 x 4.3 x 73 m, open on both ends. PM10 concentrations were measured at the inlet and outlet while a sweeper removed sand deposited along the length. Measurements were made using a specialized low-volume filter sampler and an integrating nephelometer. The volume of air passing through the tunnel was measured by releasing an inert tracer, sulfur hexafluoride, at the inlet and measuring its concentration at the outlet. A large difference in emission rates between vacuum-type sweepers was observed, with rates varying from 5 to 100 mg m-1 swept. For the cleanest sweepers, the background rates (collected by sweeping clean pavement) were about half of the total PM10 emission rate. These background emission rates likely were from diesel exhaust; background rates for the single gasoline-powered sweeper were below detection. Particle light scattering data confirmed the filter collection results. The artificial tunnel approach would be useful in measuring total emissions from other mobile and stationary sources. PMID:10680347

  3. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy.

    PubMed

    Marcon, Alessandro; Pesce, Giancarlo; Girardi, Paolo; Marchetti, Pierpaolo; Blengio, Gianstefano; de Zolt Sappadina, Simona; Falcone, Salvatore; Frapporti, Guglielmo; Predicatori, Francesca; de Marco, Roberto

    2014-03-01

    Dusts are one of the main air pollutants emitted during cement manufacturing. A substantial part of these are breathable particles that are less than 10 μm in diameter (PM10), which represent a potential threat for the health of the exposed population. This study aimed at evaluating the short-term effects of PM10 concentrations on the health of children, aged 6-14 years, who attended the schools in Fumane (Italy), in proximity (1.2 km) to a large cement plant. School absenteeism was used as a proxy indicator of child morbidity. Time series of daily school absences and PM10 concentrations were collected for 3 school-years from 2007 to 2010 (541 school-days, 462 children on average). The associations between PM10 concentrations and school absence rates in the same day (lag0) and in the following 4 days (lag1 to lag4) were evaluated using generalised additive models, smoothed for medium/long term trends and adjusted for day of the week, influenza outbreaks, daily temperature and rain precipitations. The average concentration of PM10 in the period was 34 (range: 4-183) μg/m(3). An average 10 μg/m(3) increase of PM10 concentration in the previous days (lag0-4) was associated with a statistically significant 2.5% (95%CI: 1.1-4.0%) increase in the rate of school absences. The highest increase in the absence rates (2.4%; 95%CI: 1.2-3.5%) was found 2 days after exposure (lag2). These findings provide epidemiological evidence of the acute health effects of PM10 in areas with annual concentrations that are lower than the legal European Union limit of 40 μg/m(3), and support the need to establish more restrictive legislative standards. PMID:23994300

  4. A Method of Estimating FRM PM10 Sampler Performance Characteristics Using Particle Size Analysis and Collocated TSP and PM10 Samplers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the US, regional air quality compliance with national ambient air quality standards (NAAQS) for PM10 is based on concentration measurements taken by federal reference method (FRM) PM10 samplers. The EPA specifies the performance characteristics of the FRM PM10 sampler by defining ranges for the p...

  5. 40 CFR 52.881 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false PM10 State implementation plan... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kansas § 52.881 PM10..., promulgation of the SIP requirements for PM10 at 52 FR 24681, except the state will report the PM10 data...

  6. 78 FR 7340 - Approval and Promulgation of Implementation Plans; Idaho: Sandpoint PM10 Nonattainment Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... for PM 10 (52 FR 24634). The EPA established a 24-hour standard of 150 g/m\\3\\ and an annual standard... retained the 24-hour PM 10 standard but revoked the annual PM 10 standard (71 FR 61144, effective December... nonattainment area due to measured violations of the 24-hour PM 10 standard (52 FR 29383). The notice...

  7. Climatology of atmospheric PM10 concentration in the Po Valley

    NASA Astrophysics Data System (ADS)

    Bigi, A.; Ghermandi, G.

    2014-01-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a dataset of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long term trend in de-seasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to few percent per year, by Generalised Least Square and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two gathering the metropolitan areas of Torino and Milano and their respective nearby sites and the other three clusters gathering north-east, north-west and central Po Valley sites respectively. Finally the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. Significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop resulted low and restricted to few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  8. Acoustic and aerodynamic performance of a 1.5-pressure-ratio, 1.83-meter (6 ft) diameter fan stage for turbofan engines (QF-2)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Balombin, J. R.

    1977-01-01

    The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans.

  9. Characterization of PM10 sources in the central Mediterranean

    NASA Astrophysics Data System (ADS)

    Calzolai, G.; Nava, S.; Lucarelli, F.; Chiari, M.; Giannoni, M.; Becagli, S.; Traversi, R.; Marconi, M.; Frosini, D.; Severi, M.; Udisti, R.; di Sarra, A.; Pace, G.; Meloni, D.; Bommarito, C.; Monteleone, F.; Anello, F.; Sferlazzo, D. M.

    2015-07-01

    The Mediterranean Basin atmosphere is influenced by both strong natural and anthropogenic aerosol emissions, and is also subject to important climatic forcings. Several programs have addressed the study of the Mediterranean basin; nevertheless important pieces of information are still missing. In this framework, PM10 samples were collected on a daily basis on the island of Lampedusa (35.5° N, 12.6° E, 45 m a.s.l.), which is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). After mass gravimetric measurements, different portions of the samples were analyzed to determine the ionic content by Ion Chromatography (IC), the soluble metals by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and the total (soluble + insoluble) elemental composition by Particle Induced X-ray Emission (PIXE). Data from years 2007 and 2008 are used in this study. The Positive Matrix Factorization (PMF) model was applied to the 2 year long data set of PM10 mass concentration and chemical composition to assess the aerosol sources affecting the Central Mediterranean basin. Seven sources were resolved: sea-salt, mineral dust, biogenic emissions, primary particulate ship emissions, secondary sulphate, secondary nitrate, and combustion emissions. Source contributions to the total PM10 mass were estimated to be about 40 % for sea-salt, around 25 % for mineral dust, 10 % each for secondary nitrate and secondary sulphate, and 5 % each for primary particulate ship emissions, biogenic emissions, and combustion emissions. Large variations in absolute and relative contributions are found and appear to depend on the season and on transport episodes. In addition, the secondary sulphate due to ship emissions was estimated, and found to contribute by about one third to the total sulphate mass. Results for the sea-salt and mineral dust sources were compared with estimates of the same contributions obtained from independent approaches, leading

  10. Characterization of PM10 sources in the central Mediterranean

    NASA Astrophysics Data System (ADS)

    Calzolai, G.; Nava, S.; Lucarelli, F.; Chiari, M.; Giannoni, M.; Becagli, S.; Traversi, R.; Marconi, M.; Frosini, D.; Severi, M.; Udisti, R.; di Sarra, A.; Pace, G.; Meloni, D.; Bommarito, C.; Monteleone, F.; Anello, F.; Sferlazzo, D. M.

    2015-12-01

    The Mediterranean Basin atmosphere is influenced by both strong natural and anthropogenic aerosol emissions and is also subject to important climatic forcings. Several programs have addressed the study of the Mediterranean basin; nevertheless important pieces of information are still missing. In this framework, PM10 samples were collected on a daily basis on the island of Lampedusa (35.5° N, 12.6° E; 45 m a.s.l.), which is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). After mass gravimetric measurements, different portions of the samples were analyzed to determine the ionic content by ion chromatography (IC), the soluble metals by inductively coupled plasma atomic emission spectrometry (ICP-AES), and the total (soluble + insoluble) elemental composition by particle-induced x-ray emission (PIXE). Data from 2007 and 2008 are used in this study. The Positive Matrix Factorization (PMF) model was applied to the 2-year long data set of PM10 mass concentration and chemical composition to assess the aerosol sources affecting the central Mediterranean basin. Seven sources were resolved: sea salt, mineral dust, biogenic emissions, primary particulate ship emissions, secondary sulfate, secondary nitrate, and combustion emissions. Source contributions to the total PM10 mass were estimated to be about 40 % for sea salt, around 25 % for mineral dust, 10 % each for secondary nitrate and secondary sulfate, and 5 % each for primary particulate ship emissions, biogenic emissions, and combustion emissions. Large variations in absolute and relative contributions are found and appear to depend on the season and on transport episodes. In addition, the secondary sulfate due to ship emissions was estimated and found to contribute by about one-third to the total sulfate mass. Results for the sea-salt and mineral dust sources were compared with estimates of the same contributions obtained from independent approaches, leading to an

  11. Contribution of wood burning to PM10 in London

    NASA Astrophysics Data System (ADS)

    Fuller, Gary W.; Tremper, Anja H.; Baker, Timothy D.; Yttri, Karl Espen; Butterfield, David

    2014-04-01

    Ahead of measures to incentivise wood heating, the current level of wood burning in London was assessed by two tracer methods; i) a six week campaign of daily measurements of levoglucosan along a 38 km transect across the city during winter 2010, ii) a three year (2009-2011) measurement programme of black carbon and particulate matter from wood burning using differential IR and UV absorption by Aethalometer. Mean winter levoglucosan concentrations were 160 ± 17 ng m-3 in central London and 30 ± 26 ng m-3 greater in the suburbs, with good temporal correlation (r2 = 0.68-0.98) between sampling sites. Sensitivity testing found that the aethalometer wood burning tracer method was more sensitive to the assumed value of the Ångström coefficient for fossil fuel black carbon than it was to the Ångström coefficient for wood burning PM, and that the model was optimised with Ångström coefficient for fossil fuel black carbon of 0.96. The aethalometer and levoglucosan estimates of mean PM from wood burning were in good agreement during the winter campaign; 1.8 μg m-3 (levoglucosan) and 2.0 μg m-3 (aethalometer); i.e. between 7% and 9% of mean PM10 across the London transect. Analysis of wood burning tracers with respect to wind speed suggested that wood burning PM was dominated by sources within the city. Concentrations of aethalometer and levoglucosan wood burning tracers were a greatest at weekends suggesting discretionary or secondary domestic wood burning rather than wood being used as a main heating source. Aethalometer wood burning tracers suggests that the annual mean concentration of PM10 from wood burning was 1.1 μg m-3. To put this in a policy context, this PM10 from wood burning is considerably greater than the city-wide mean PM10 reduction of 0.17 μg m-3 predicted from the first two phases of the London Low Emission Zone which was introduced to reduce PM from traffic sources.

  12. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5

    PubMed Central

    Hoek, Gerard; Simic-Lawson, Milena; Fischer, Paul; van Bree, Leendert; ten Brink, Harry; Keuken, Menno; Atkinson, Richard W.; Anderson, H. Ross; Brunekreef, Bert; Cassee, Flemming R.

    2011-01-01

    Background: Current air quality standards for particulate matter (PM) use the PM mass concentration [PM with aerodynamic diameters ≤ 10 μm (PM10) or ≤ 2.5 μm (PM2.5)] as a metric. It has been suggested that particles from combustion sources are more relevant to human health than are particles from other sources, but the impact of policies directed at reducing PM from combustion processes is usually relatively small when effects are estimated for a reduction in the total mass concentration. Objectives: We evaluated the value of black carbon particles (BCP) as an additional indicator in air quality management. Methods: We performed a systematic review and meta-analysis of health effects of BCP compared with PM mass based on data from time-series studies and cohort studies that measured both exposures. We compared the potential health benefits of a hypothetical traffic abatement measure, using near-roadway concentration increments of BCP and PM2.5 based on data from prior studies. Results: Estimated health effects of a 1-μg/m3 increase in exposure were greater for BCP than for PM10 or PM2.5, but estimated effects of an interquartile range increase were similar. Two-pollutant models in time-series studies suggested that the effect of BCP was more robust than the effect of PM mass. The estimated increase in life expectancy associated with a hypothetical traffic abatement measure was four to nine times higher when expressed in BCP compared with an equivalent change in PM2.5 mass. Conclusion: BCP is a valuable additional air quality indicator to evaluate the health risks of air quality dominated by primary combustion particles. PMID:21810552

  13. Multi-criteria analysis for PM10 planning

    NASA Astrophysics Data System (ADS)

    Pisoni, Enrico; Carnevale, Claudio; Volta, Marialuisa

    To implement sound air quality policies, Regulatory Agencies require tools to evaluate outcomes and costs associated to different emission reduction strategies. These tools are even more useful when considering atmospheric PM10 concentrations due to the complex nonlinear processes that affect production and accumulation of the secondary fraction of this pollutant. The approaches presented in the literature (Integrated Assessment Modeling) are mainly cost-benefit and cost-effective analysis. In this work, the formulation of a multi-objective problem to control particulate matter is proposed. The methodology defines: (a) the control objectives (the air quality indicator and the emission reduction cost functions); (b) the decision variables (precursor emission reductions); (c) the problem constraints (maximum feasible technology reductions). The cause-effect relations between air quality indicators and decision variables are identified tuning nonlinear source-receptor models. The multi-objective problem solution provides to the decision maker a set of not-dominated scenarios representing the efficient trade-off between the air quality benefit and the internal costs (emission reduction technology costs). The methodology has been implemented for Northern Italy, often affected by high long-term exposure to PM10. The source-receptor models used in the multi-objective analysis are identified processing long-term simulations of GAMES multiphase modeling system, performed in the framework of CAFE-Citydelta project.

  14. Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.

    1976-01-01

    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy.

  15. Decreased PM10 Exposure Attenuates Age-Related Lung Function Decline: Genetic Variants in p53, p21, and CCND1 Modify This Effect

    PubMed Central

    Imboden, Medea; Schwartz, Joel; Schindler, Christian; Curjuric, Ivan; Berger, Wolfgang; Liu, Sally L.J.; Russi, Erich W.; Ackermann-Liebrich, Ursula; Rochat, Thierry; Probst-Hensch, Nicole M.

    2009-01-01

    Background Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. Objective We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF25–75) associated with improved air quality. Methods Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter ≤ 10 μm (PM10) to each participant’s residential history 12 months before the baseline and follow-up assessments. Results The effect of diminishing PM10 exposure on FEF25–75 decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-μg/m3 decline in aver-age PM10 exposure over an 11-year period attenuated the average annual decline in FEF25–75 by 21.33 mL/year (95% confidence interval, 10.57–32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38–22.06) among GA genotypes, and by 6.00 mL/year (−4.54 to 16.54) among AA genotypes. Conclusions Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults. PMID:19750108

  16. Spatial/Temporal Variations of Elemental Carbon, Organic Carbon, and Trace Elements in PM10 and the Impact of Land-Use Patterns on Community Air Pollution in Paterson, NJ

    PubMed Central

    Yu, Chang Ho; Fan, Zhi-Hua; Meng, Qingyu; Zhu, Xianlei; Korn, Leo; Bonanno, Linda J.

    2014-01-01

    An urban community PM10 (particulate matter ≤ 10 μm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42% of

  17. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5...

  18. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5...

  19. 78 FR 924 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Eagle River PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...EPA is proposing to approve the Limited Maintenance Plan (LMP) submitted by the State of Alaska on September 29, 2010, for the Eagle River nonattainment area (Eagle River NAA) and the State's request to redesignate the area to attainment for the National Ambient Air Quality Standards (NAAQS) for particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers......

  20. Characterization of PM-10 emissions from antiskid materials applied to ice- and snow-covered roadways. Final report

    SciTech Connect

    Kinsey, J.S.

    1993-01-01

    The report gives results of a field program to establish a predictive model for PM-10 (particulate matter with diameters = or < 10 micrometers) emissions. (NOTE: Several areas of the U.S. in violation of the National Ambient Air Quality Standard for PM-10 have conducted studies that have identified the resuspension of antiskid material applied to paved roads as an important source of PM-10. The application of antiskid materials creates a temporary but substantial increase in the amount of fine particulate on the road surface over and above that which is normally present. Measured emission data are lacking for all types of antiskid materials.) A source-oriented emissions sampling procedure was conducted on a section of US 53 just west of Duluth, MN, during March/April 1992. The only general observation made was that PM-10 emissions appear to increase with the amount of antiskid material applied. A comparison of measured emission factors with those predicted by an EPA compilation of air pollutant emission factors indicated that most of the measured factors are higher than those predicted from silt-loading.

  1. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PM10 areas. 52.331 Section 52.331 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP for the Colorado Group II PM10 areas. The SIP commits the State to continue to monitor for...

  2. 40 CFR 52.63 - PM10 State Implementation Plan development in group II areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false PM10 State Implementation Plan... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.63 PM10... all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10...

  3. 40 CFR 52.935 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false PM10 State implementation plan... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.935 PM10... requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681....

  4. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On..., emission inventory, and other tasks that may be necessary to satisfy the requirements of the PM10 Group...

  5. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On..., emission inventory, and other tasks that may be necessary to satisfy the requirements of the PM10 Group...

  6. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On..., emission inventory, and other tasks that may be necessary to satisfy the requirements of the PM10 Group...

  7. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... necessary to satisfy the requirements of the PM10 Group II SIPs. The Texas Air Control Board adopted these... requirement that each state submit a committal SIP for PM10 Group II areas instead of full control strategies... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Particulate Matter (PM10) Group II...

  8. 78 FR 900 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Eagle River PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... pollution. On July 1, 1987, EPA promulgated a NAAQS for PM 10 (52 FR 24634). EPA established a 24-hour... 10 standard (71 FR 61144, effective December 18, 2006). B. Eagle River NAA and Planning Background On...) area as a PM 10 nonattainment area due to measured violations of the 24-hour PM 10 standard (52...

  9. 78 FR 34095 - Adequacy Status of the Idaho, Northern Ada County PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... less (PM 10 ), nitrogen oxides (NOx), and volatile organic compounds (VOC) for the years 2008, 2015 and... Northern Ada County PM10 Maintenance Area Budget year PM10 NOX VOC 2008 31.0 29.5 12.6 2015 42.9 29.5...

  10. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  11. Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium.

    PubMed

    Maenhaut, Willy; Vermeylen, Reinhilde; Claeys, Magda; Vercauteren, Jordy; Matheeussen, Christina; Roekens, Edward

    2012-10-15

    From February 2010 to February 2011 PM10 aerosol samples were simultaneously taken every 4th day at 7 monitoring sites in Flanders, Belgium. Two of the sites (i.e., Borgerhout and Gent) were urban background sites; one (i.e., Mechelen) a suburban background site, and the other four (i.e., Hamme, Lier, Retie, and Houtem) rural background sites, whereby Hamme and Lier were expected to be particularly impacted by biomass burning. The samplings were done for 24h and 47-mm diameter Pallflex® Tissuquartz™ 2500 QAT-UP filters were used. After sampling the PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical transmission analysis and the wood burning tracers levoglucosan, mannosan, and galactosan were determined by means of gas chromatography/mass spectrometry. The atmospheric concentrations of levoglucosan and the other two monosaccharide anhydrides showed a very clear seasonal variation at each site, with highest levels in winter, followed by autumn, spring, and summer. The levoglucosan levels for 5 of our 7 sites (i.e., Retie, Lier, Mechelen, Borgerhout, and Gent) were very highly correlated with each other (all between site correlation coefficients r>0.9, except for one value of 0.86) and the levels in the parallel samples of these 5 sites were similar, indicating that wood burning at these 5 sites was a regional phenomenon and that it was taking place in many individual houses on similar occasions (e.g., on cold days, weekends or holidays). The levoglucosan levels at Houtem and the correlation coefficients of the 5 sites with Houtem were lower, which is explained by the fact that the latter site is at less than 20 km from the North Sea so that the air there is often diluted by rather clean westerly maritime air. A peculiar behavior was seen for Hamme, with on many occasions very high levoglucosan levels, which was attributed to the fact that there is wood burning going on in several houses

  12. Identifying the most hazardous synoptic meteorological conditions for Winter UK PM10 exceedences

    NASA Astrophysics Data System (ADS)

    Webber, Chris; Dacre, Helen; Collins, Bill; Masato, Giacomo

    2016-04-01

    Summary We investigate the relationship between synoptic scale meteorological variability and local scale pollution concentrations within the UK. Synoptic conditions representative of atmospheric blocking highlighted significant increases in UK PM10 concentration ([PM10]), with the probability of exceeding harmful [PM10] limits also increased. Once relationships had been diagnosed, The Met Office Unified Model (UM) was used to replicate these relationships, using idealised source regions of PM10. This helped to determine the PM10 source regions most influential throughout UK PM10 exceedance events and to test whether the model was capable of capturing the relationships between UK PM10 and atmospheric blocking. Finally, a time slice simulation for 2050-2060 helped to answer the question whether PM10 exceedance events are more likely to occur within a changing climate. Introduction Atmospheric blocking events are well understood to lead to conditions, conducive to pollution events within the UK. Literature shows that synoptic conditions with the ability to deflect the Northwest Atlantic storm track from the UK, often lead to the highest UK pollution concentrations. Rossby wave breaking (RWB) has been identified as a mechanism, which results in atmospheric blocking and its relationship with UK [PM10] is explored using metrics designed in Masato, et al., 2013. Climate simulations facilitated by the Met Office UM, enable these relationships between RWB and PM10 to be found within the model. Subsequently the frequency of events that lead to hazardous PM10 concentrations ([PM10]) in a future climate, can be determined, within a climate simulation. An understanding of the impact, meteorology has on UK [PM10] within a changing climate, will help inform policy makers, regarding the importance of limiting PM10 emissions, ensuring safe air quality in the future. Methodology and Results Three Blocking metrics were used to subset RWB into four categories. These RWB categories

  13. US EPA team study of inhalable particles (PM10): Study design, response rate, and sampler performance

    SciTech Connect

    Wallace, L.; Pellizzari, E.; Spengler, J.; Jenkins, P.; Sheldon, L.

    1991-03-01

    The US EPA studied the exposures of 175 residents of Riverside, CA to inhalable particles (<10 micrometers diameter) in the early fall of 1990. Participants were probabilistically selected to represent most of the Riverside nonsmoking population over the age of 10. They wore a newly-designed personal monitor (4 Lpm pump and filter) for two consecutive 12-hour periods (day and night) to determine their exposure to PM-10. Exposure to nicotine was also determined by a citric acid treated filter. Indoor and outdoor samples were collected concurrently at each home. Air exchange rates were determined for each household for the day and night periods. The response rate of the population was about 50%, roughly comparable to previous TEAM Studies. The personal and fixed particle monitors showed excellent precision of about 4% RSD.

  14. Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India

    NASA Astrophysics Data System (ADS)

    Satsangi, P. Gursumeeran; Yadav, Suman; Pipal, Atar Singh; Kumbhar, Navanath

    2014-08-01

    Indoor concentrations of fine (PM2.5: aerodynamic diameter ≤ 2.5) and inhalable (PM10: aerodynamic diameter ≤ 10 μm) particles and its associated toxic metals are of concern now-a-days due to its effects on human health and environment. PM10 and PM2.5 samples were collected from indoor microenvironments on glass fiber and PTFE filter paper using low volume air sampler in Pune. The average concentration of PM2.5 and PM10 were 89.7 ± 43.2 μg m-3 and 138.2 ± 68.2 μg m-3 at urban site while it was 197.5 ± 84.3 and 287 ± 92 μg m-3 at rural site. Trace metals such as Cd, Co, Cr, Cu, Fe, Mn, Pb, Sb and Zn in particulate matter were estimated by ICP-AES. Concentrations of crustal metals were found to be higher than the carcinogenic metals in both the microenvironments. On the contrary the soluble and bio-availability fraction of carcinogenic metals were found higher thus it may cause the higher risk to human health. Therefore, cancer risk assessment of carcinogenic metals; Cr, Ni and Cd was calculated. Among the carcinogenic metals, Ni showed highest cancer risk in indoor PM. The higher cancer risk assessment of Ni has been supported by In-silico study which suggested that Ni actively formed co-ordination complex with histone proteins (i.e. H3-Ni/H4-Ni) by maintaining strong hydrogen bonding interactions with Asp and Glu residues of nucleosomal proteins. Present In-silico study of Ni-histone complexes will help to emphasize the possible role of Asp and Glu residues in DNA methylation, deacetylation and ubiquitinations of nucleosomal proteins. Hence, this study could pave the way to understand the structural consequence of Ni in nucleosomal proteins and its impact on epigenetic changes which ultimately cause lung and nasal cancer.

  15. Differences in composition of above and below legal limit PM10 at two contrasting sites in the city of Oporto, Portugal.

    NASA Astrophysics Data System (ADS)

    Caseiro, Alexandre; Oliveira, César; Pio, Casimiro; Nunes, Teresa; Santos, Patrícia; Mao, Hongjun; Sokhi, Ranjeet; Luhanna, Lakhu

    2010-05-01

    Particulate matter, either with aerodynamical diameter below 10 μm (PM10) or the fine (aerodynamical diameter below 2.5 μm, PM2.5) or coarse (aerodynamical diameter between 2.5 and 10 μm, PM2.5-10) modes only, are presently regarded as one of the main threats to public health instigated by air pollution. The levels of ambient air particulates are regulated but the limits are frequently surpassed. It is therefore necessary to identify and quantify PM sources and their variability, as well as the biogenic processes that to some extent control their ambient load, in order to effectively regulate on the anthropogenic activities which originate PM. PM2.5-10 and PM2.5 were monitored in Oporto, NW Portugal, at two contrasting sites (directly impacted by traffic, roadside, and at the urban background) during two one-month campaigns (winter and summer). Sampling was conducted independently during daytime and night-time. Out of the 207 sampling periods analysed, 38 (18%) were above the European legal PM10 limit of 50 ?g m-3. PM2.5 concentrations above the limit of 25 ?g m-3 proposed by the EC occurred in 70 out of 202 sampling (35%). More exceedances occurred in winter than in summer and at roadside than at the urban background. Within the scope of this work, the relationship between PM concentrations, namely the occurrence of exceeding PM limit values, and meteorological variables or the sampling period (day/night, work day/weekend) and will be presented. Besides PM mass, the soluble ionic composition (Cl-, SO42-, NO3-, Na+, NH4+, K+, Ca2+ and Mg2+) as well as the elemental composition (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Zr, Sn, Ba and Pb) were also determined. This allowed the application of multivariate analysis (principal component analysis with multi-linear regression analysis, PCA-MLRA, and positive matrix factorisation, PMF). Five main sources were identified in the fine and coarse modes (direct road traffic emissions

  16. Assessment of population exposure to PM10 for respiratory disease in Lanzhou (China) and its health-related economic costs based on GIS

    PubMed Central

    2013-01-01

    Background Evaluation of the adverse health effects of PM10 pollution (particulate matter less than 10 microns in diameter) is very important for protecting human health and establishing pollution control policy. Population exposure estimation is the first step in formulating exposure data for quantitative assessment of harmful PM10 pollution. Methods In this paper, we estimate PM10 concentration using a spatial interpolation method on a grid with a spatial resolution 0.01° × 0.01°. PM10 concentration data from monitoring stations are spatially interpolated, based on accurate population data in 2000 using a geographic information system. Then, an interpolated population layer is overlaid with an interpolated PM10 concentration layer, and population exposure levels are calculated. Combined with the exposure-response function between PM10 and health endpoints, economic costs of the adverse health effects of PM10 pollution are analyzed. Results The results indicate that the population in Lanzhou urban areas is distributed in a narrow and long belt, and there are relatively large population spatial gradients in the XiGu, ChengGuan and QiLiHe districts. We select threshold concentration C0 at: 0 μg m-3 (no harmful health effects), 20 μg m-3 (recommended by the World Health Organization), and 50 μg m-3 (national first class standard in China) to calculate excess morbidity cases. For these three scenarios, proportions of the economic cost of PM10 pollution-related adverse health effects relative to GDP are 0.206%, 0.194% and 0.175%, respectively. The impact of meteorological factors on PM10 concentrations in 2000 is also analyzed. Sandstorm weather in spring, inversion layers in winter, and precipitation in summer are important factors associated with change in PM10 concentration. Conclusions The population distribution by exposure level shows that the majority of people live in polluted areas. With the improvement of evaluation criteria, economic damage of

  17. Quiet Clean Short-Haul Experimental Engine (QCSEE) aerodynamic characteristics of 30.5 centimeter diameter inlets

    NASA Technical Reports Server (NTRS)

    Paul, D. L.

    1975-01-01

    A low speed test program was conducted in a 9- by 15-foot V/STOL wind tunnel to investigate internal performance characteristics and determine key design features required for an inlet to meet the demanding operational conditions of the QCSEE application. Four models each having a design average throat Mach number of 0.79 were tested over a range of incidence angle, throat Mach number, and freestream velocity. Principal design variable was internal lip diameter ratio. Stable, efficient inlet performance was found to be feasible at and beyond the 50 deg incidence angle required by the QCSEE application at its 41.2 m/sec (80 knot) nominal takeoff velocity, through suitably designed inlet lip and diffuser components. Forebody design was found to significantly impact flow stability via nose curvature. Measured inlet wall pressures were used to select a location for the inlet throat Mach number control's static pressure port that properly balanced the conflicting demands of relative insensitivity to flow incidence and sufficiently high response to changes in engine flow demand.

  18. Impact of wood combustion on urban PM10 concentration

    NASA Astrophysics Data System (ADS)

    Schnelle-Kreis, J.; Abbaszade, G.; Orasche, J.; Kunde, R.; Zimmermann, R.

    2009-04-01

    The use of wood as renewable energy source is discussed contradictorily. On one hand the favourable CO2 balance does not enhance the global warming problem whereas on the other hand biomass combustion significantly contributes to ambient PM mass loading. The study presented here was carried out in Augsburg, Germany. It consisted of four main parts: update of emission inventory for domestic heating, emission measurements, emission and aerosol dispersion modelling and ambient monitoring. The data presented focus on the results of the ambient monitoring. As a result from the updated emission inventory for domestic heating we registered about 20,000 fireplaces for solid fuel within Augsburg. The wood consumption within the city was calculated to add up to 73,000 stere (energy equivalent 395 TJ). The total PM emission from these sources account for 46 t/a (ca. 40 % of total emissions) in Augsburg. Ambient PM samples have been collected during the heating periods 2006/7 and 2007/8. In order to distinguish sources within the city from regional background, daily sampling was carried out simultaneously at five different characterised sites within the city and three sites outside the town. Samples are analysed for inorganic ions, elements, EC/OC and organic tracer compounds. During a 10 day period in February 2008 additional samples were taken with 3 h time resolution and analysed for organic compounds. At the traffic related site PM10 mass concentrations were in the range of 8.7 - 93.2 μg/m3 (average 31.8 μg/m3) in winter 2006/7 and 5.1 - 98.0 μg/m3 (average 36.7 μg/m3) in winter 2007/8. The limit value of 50 μg/m3 was exceeded 15 times in winter 2006/7 and 26 times in winter 2007/8 at this site. The concentrations of Levoglucosan, an organic tracer for biomass combustion, were in the range of 29 - 1922 ng/m3. Dehydroabietic acid, a specific tracer for coniferous wood combustion, showed concentrations in the range of 13 - 708 ng/m3. Concentrations of Potassium, which

  19. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM 10, PM 2.5 and PM 10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Specifications for PM 10, PM 2.5 and PM 10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for...

  20. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM 10, PM 2.5 and PM 10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Specifications for PM 10, PM 2.5 and PM 10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for...

  1. Temporal variations in PM 10 and particle size distribution during Asian dust storms in Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Hoffmann, Carsten; Funk, Roger; Sommer, Michael; Li, Yong

    Two types of increased atmospheric dust concentration could be distinguished in the Xilingele grassland in the Chinese Province of Inner Mongolia, based on the dust origin i.e. local versus supra-regional type. While the local type is characterized by dust emission, dust events of the supra-regional type cause high dust passages and deposition rates. During dust events the temporal variability of the PM 10- and PM 1-concentrations, the particle size distribution and the friction velocity u* were measured in 5 min intervals using a Laser Dust Monitor (by GRIMM Aerosol GmbH). The threshold friction velocity for local dust emission u*t, at which dust of local soils origin was measured, was above 0.6 m s -1. The total suspended particles (TSP) was collected by MWAC catchers and measured by a Laser Particle Sizer (Analysette 22 by Fritsch GmbH). The average D[4/3] particle diameter of the TSP was 23.0 μm and the greatest particles measured had sizes of up to 100 μm. While fine dust of the PM 10 category contained between 58% and 63% of the TSP-mass, coarser particles (>30 μm) contributed to about a fourth of the TSP-mass. At the end of some strong dust storms, the dust concentrations remained at a high level even though wind speeds had already slowed down and u* was below 0.3 m s -1. These phases were characterized by high deposition rates for dust particles greater than 60 μm.

  2. The impacts of different kinds of dust events on PM 10 pollution in northern China

    NASA Astrophysics Data System (ADS)

    Wang, Shigong; Yuan, Wei; Shang, Kezheng

    In this study the frequencies of PM 10 (as key urban pollutant) in 14 key environmental protection cities in northern China were analyzed. It follows that the PM 10 concentration in the high-frequency period is higher with an extent 0.009-0.066 mg m -3 than in the low-frequency period of 2001-2002. Further the impacts of three kinds of dust events on the PM 10 concentration in four cities (Beijing, Hohhot, Xi'an and Lanzhou) were explored. The results showed that different kinds of dust events have different influences on variation of PM 10 concentration in these four cities. In Lanzhou and Hohhot, which are near the source areas of dust events, the contribution degree of these three dust events to the PM 10 is: floating dust>dust storm>blowing dust. Whereas, in Beijing and Xi'an situated in dust event passing areas, the mean value of PM 10 concentration is higher in blowing dust than in floating dust (no dust storm). In addition, the influences of dust events on PM 10 concentration are different in the cities on different dust event paths. In Beijing and Hohhot (on the northern path), the high PM 10 concentration is usually caused by blowing dust. But in both Lanzhou and Xi'an (on the western/northwestern path) the high PM 10 pollution concentration is usually caused by floating dust.

  3. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant.

    PubMed

    Khaparde, V V; Bhanarkar, A D; Majumdar, Deepanjan; Rao, C V Chalapati

    2016-08-15

    Fugitive emissions of PM10 (particles <10μm in diameter) and associated polycyclic aromatic hydrocarbons (PAHs) were monitored in the vicinity of coking unit, sintering unit, blast furnace and steel manufacturing unit in an integrated iron and steel plant situated in India. Concentrations of PM10, PM10-bound total PAHs, benzo (a) pyrene, carcinogenic PAHs and combustion PAHs were found to be highest around the sintering unit. Concentrations of 3-ring and 4-ring PAHs were recorded to be highest in the coking unit whereas 5-and 6-ring PAHs were found to be highest in other units. The following indicatory PAHs were identified: indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, benzo (k) fluoranthene in blast furnace unit; indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, chrysene in sintering unit; Anthracene, fluoranthene, chrysene in coking unit and acenaphthene, fluoranthene, fluorene in steel making unit. Total-BaP-TEQ (Total BaP toxic equivalent quotient) and BaP-MEQ (Total BaP mutagenic equivalent quotient) concentration levels ranged from 2.4 to 231.7ng/m(3) and 1.9 to 175.8ng/m(3), respectively. BaP and DbA (dibenzo (a,h) anthracene) contribution to total-BaP-TEQ was found to be the highest. PMID:27099996

  4. [Individual particle morphology and bioreactivity of PM10 in Beijing during the 2008 Olympic Games].

    PubMed

    Shao, Long-yi; Song, Xiao-yan; Liu, Jun-xia; Zhou, Lin

    2009-12-01

    Inhalable particulates, including PM10 and PM2.5, were collected on the campus of China University of Mining and Technology during the Summer Olympic Games of Beijing in 2008. The mass concentrations of PM10 and PM2.5 were monitored. The morphology and size distribution of individual particles in PM10 and PM2.5 were investigated by a high-resolution Field Emission Scanning Electron Microscopy (FESEM) and image analysis (IA). The toxicity reflected by bioreactivity of PM10 during the Olympic Games was also studied by Plasmid DNA assay. The results showed that the mass levels of PM10 and PM2.5 were well below 81.6 microg x m(-3) and 54.6 microg x m(-3), meeting the second ambient air quality standard of China. The ratio of PM2.5 and PM10 was averaged 0.63, indicating that the PM10 is dominated by fine particles. In terms of microscopic morphology, four types of particles were identified, including spherical particles, soot aggregates, minerals and unresolved fine particles, with the spherical particles and unresolved particles being the predominant components. Most PM10 and PM2.5 particles were in the size range of 0.1-0.4 microm, displaying a unimodal pattern. Volume-size distribution of PM10 exhibited a bimodal pattern with the peaks in 0.4-0.5 pm and 1-2.5 microm, and PM2.5 particles were mainly concentrated in the range of 1-2.5 microm. The results from plasmid assay showed that the bioreactivity of PM10 during the Olympic games was obviously lower than those of past summers, with the TD20 (toxic dosage of PM10 causing 20% plasmid DNA damage) being higher than those of the past summers. PMID:20187370

  5. Direct gravimetric measurements of the mass of the antarctic aerosol collected by high volume sampler: PM10 summer seasonal variation at Terra Nova Bay.

    PubMed

    Truzzi, Cristina; Lambertucci, Luca; Illuminati, Silvia; Annibaldi, Anna; Scarponi, Giuseppe

    2005-01-01

    An on-site procedure was set up for direct gravimetric measurement of the mass of aerosol collected using high volume impactors (aerodynamic size cut point of 10 microm, PM10); this knowledge has hitherto been unavailable. Using a computerized microbalance in a clean chemistry laboratory, under controlled temperature (+/-0.5 degrees C) and relative humidity (+/-1%), continuous, long time filter mass measurements (hours) were carried out before and after exposure, after a 48 h minimun equilibration at the laboratory conditions. The effect of the electrostatic charge was exhausted in 30-60 min, after which stable measurements were obtained. Measurements of filters exposed for 7-11 days (1.13 m3 min(-1)) in a coastal site near Terra Nova Bay (December 2000 - February 2001), gave results for aerosol mass in the order of 10-20 mg (SD approximately 2 mg), corresponding to atmospheric concentrations of 0.52-1.27 microg m(-3). Data show a seasonal behaviour in the PM10 content with an increase during December - early January, followed by a net decrease. The above results compare well with estimates obtained from proxy data for the Antarctic Peninsula (0.30 microg m(-3)), the Ronne Ice Shelf (1.49 microg m(-3)), and the South Pole (0.18 microg m(-3), summer 1974-1975, and 0.37 microg m(-3), average summer seasons 1975-1976 and 1977-1978), and from direct gravimetric measurements recently obtained from medium volume samplers at McMurdo station (downwind 3.39 microg m(-3), upwind 4.15 microg m(-3)) and at King George Island (2.5 microg m(-3), summer, particle diameter <20 microm). This finding opens the way to the direct measurement of the chemical composition of the Antarctic aerosol and, in turn, to a better knowledge of the snow/air relationships as required for the reconstruction of the chemical composition of past atmospheres from deep ice core data. PMID:16398350

  6. Human health risks posed by exposure to PM10 for four life stages in a low socio-economic community in South Africa

    PubMed Central

    Thabethe, Nomsa Duduzile Lina; Engelbrecht, Jacobus Christoffel; Wright, Caradee Yael; Oosthuizen, Maria Aletta

    2014-01-01

    Introduction Mine ash dumps, industries and domestic fuel use have a great impact on air quality and PM10 (particles with a diameter equal to or less than 10 μm) is a pollutant of particular concern. Methods The objective of this study was to assess the human health risks posed by exposure to PM10 among a low socio-economic community. The Human Health Risk Assessment (HHRA) framework (i.e. hazard assessment, dose-response assessment, exposure assessment and risk characterization) was applied. PM10 concentrations were monitored for one month during winter and summer, respectively. A HHRA was conducted to assess whether the community was exposed to PM10 concentrations that may pose carcinogenic and non-carcinogenic health risks. Results Generally, the residents were exposed to higher concentrations of PM10 during winter than summer, resulting in a higher risk to health during winter. Results of the HHRA showed that infants were exposed to a higher dose of PM10 than the other life stages when exposed to the same concentration due to differences in inhalation rates and the ratio between inhalation and body weight. However, they were at the same risk of developing adverse effects from exposure to the same concentration of PM10 as the other life stages were exposed to, because the ‘safe’ dose was also higher for infants and since all life stages, in general, are similarly affected by PM unless the chemical composition of the PM is known. Conclusion This study recommends that infants and children, in particular, should not be exposed to air pollution from domestic fuel burning as one positive step to try and reduce their dose. PMID:25422691

  7. Study on ambient concentrations of PM 10, PM 10-2.5, PM 2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates

    NASA Astrophysics Data System (ADS)

    Dongarrà, G.; Manno, E.; Varrica, D.; Lombardo, M.; Vultaggio, M.

    2010-12-01

    This study provides the first comprehensive report on mass concentrations of particulate matter of various sizes, inorganic and organic gas concentrations monitored at three sampling sites in the city of Palermo (Sicily, Italy). It also provides information on the water-soluble species and trace elements. A total of 2054 PM 10 (1333) and PM 2.5 (721) daily measurements were collected from November 2006 to February 2008. The highest mass concentrations were observed at the urban stations, average values being about two times higher than those at the suburban (control) site. Time variations in PM 10 and also PM 10-2.5 were observed at the urban stations, the highest concentrations being measured in autumn and winter. CO, NOx, NO 2, benzene, toluene and o-xylene concentrations peaked in autumn and winter, a pattern similar to those recorded for PM 10 and PM 10-2.5 mass levels, indicating the importance of traffic emissions in urban air pollution. 91% and 51% of the benzene measurements exceeded the limit of 5 μg m -3 at the two urban monitoring sites. Trace elements (As, Ba, Cr, Cu, Mo, Pb, Sb) suspected of being introduced into the atmosphere mainly by anthropogenic activities, were highly enriched with respect to local soil. Results indicate that a large fraction of PM 10 (31-47% in weight) and PM 2.5 (29% in weight) is made up of water-soluble ions. Ammonium sulphate and nitrate particles accounted for 14-29 wt% of particulate matter mass concentrations. Crustal and marine components, combined, account for 41% and 49% in PM 2.5 and PM 10, respectively. The calculated deficits in Cl - and NH 4+ ions suggest that a proportion of these ions are lost, via the formation of gaseous NH 4Cl or HCl and NH 3.

  8. Update on the development of cotton gin PM10 emission factors for EPA's AP-42

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cotton ginning industry-supported project was initiated in 2008 to update the U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) to include PM10 emission factors. This study develops emission factors from the PM10 emission factor data collected from ...

  9. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the State of Nevada submitted a revision to the State Implementation Plan for Battle Mountain that...

  10. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the State of Nevada submitted a revision to the State Implementation Plan for Battle Mountain that...

  11. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the State of Nevada submitted a revision to the State Implementation Plan for Battle Mountain that...

  12. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the State of Nevada submitted a revision to the State Implementation Plan for Battle Mountain that...

  13. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false PM10 State Implementation Plan Development in Group II Areas. 52.823 Section 52.823 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Iowa § 52.823 PM10 State Implementation Plan Development...

  14. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Nebraska § 52.1423 PM10 State implementation plan development in group II areas. The state of Nebraska committed to conform to the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... development in group II areas. 52.1423 Section 52.1423 Protection of Environment ENVIRONMENTAL...

  15. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... committed to comply with the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... notification of the Regional Office pursuant to (c) above (or upon collection of thirty-six (36) months of PM... in the existing SIP will assure timely attainment and maintenance of the primary PM-10 NAAQS...

  16. Effect of PM10 pollution in Bangkok on children with and without asthma.

    PubMed

    Preutthipan, Aroonwan; Udomsubpayakul, Umaporn; Chaisupamongkollarp, Thitida; Pentamwa, Prapat

    2004-03-01

    This study aimed to investigate the effects of PM10 concentrations exceeding the Thai national standard (24-hr average, >120 microg/m3) on daily reported respiratory symptoms and peak expiratory flow rate (PEFR) of schoolchildren with and without asthma in Bangkok. The 93 asthmatic and 40 nonasthmatic schoolchildren were randomly recruited from a school located in a highly congested traffic area. Daily respiratory symptoms and PEFR of each child were evaluated and recorded in the diary for 31 successive school days. During the study period, 24-hr average PM10 levels ranged between 46-201 microg/m3. PM10 levels exceeded 120 microg/m3 for 14 days. We found that when PM10 levels were >120 microg/m3, the daily reported nasal irritation of asthmatic children was significantly higher than when PM10 levels were < or =120 microg/m3. In addition, when PM10 levels were >120 microg/m3, nonasthmatic children had a significantly higher daily reported combination of any respiratory symptoms. PEFR did not change with different ambient PM10 levels in both groups. This study suggests that elevated levels of PM10 concentrations in Bangkok affect respiratory symptoms of schoolchildren with and without asthma. PMID:14966811

  17. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... committed to conform to the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... classified as Group II areas for the purpose of PM10 State Implementation Plan (SIP) development. The... development in group II areas. 52.1423 Section 52.1423 Protection of Environment ENVIRONMENTAL...

  18. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... committed to conform to the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... classified as Group II areas for the purpose of PM10 State Implementation Plan (SIP) development. The... development in group II areas. 52.1423 Section 52.1423 Protection of Environment ENVIRONMENTAL...

  19. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... committed to conform to the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... classified as Group II areas for the purpose of PM10 State Implementation Plan (SIP) development. The... development in group II areas. 52.1423 Section 52.1423 Protection of Environment ENVIRONMENTAL...

  20. 40 CFR 52.1423 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... committed to conform to the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... classified as Group II areas for the purpose of PM10 State Implementation Plan (SIP) development. The... development in group II areas. 52.1423 Section 52.1423 Protection of Environment ENVIRONMENTAL...

  1. 75 FR 54806 - Approval and Promulgation of Implementation Plans-Maricopa County (Phoenix) PM-10 Nonattainment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... pollution advisory,'' ``integrated pest management,'' ``night tilling,'' ``organic farming practices... (52 FR 24672), replacing the standards for total suspended particulates with new standards applying... annual PM-10 standards but retained the 24-hour PM-10 standards. 71 FR 61144 (October 17, 2006). The...

  2. 40 CFR 52.881 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... State implementation plan development in group II areas. The state has submitted a committal SIP for Kansas City, Kansas. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681, except the state will report the PM10 data...

  3. 40 CFR 52.331 - Committal SIP for the Colorado Group II PM10 areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Committal SIP for the Colorado Group II... SIP for the Colorado Group II PM10 areas. On April 14, 1989, the Governor submitted a Committal SIP for the Colorado Group II PM10 areas. The SIP commits the State to continue to monitor for...

  4. 40 CFR 52.935 - PM10 State implementation plan development in group II areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... committal SIP for the cities of Ashland and Catlettsburg in Boyd County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for PM10, report data...

  5. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... (PM-10) Group II SIP commitments. (a) On December 28, 1988, the Governor's designee for Arizona submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  6. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2306 Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a... necessary to satisfy the requirements of the PM10 Group II SIPs. The Texas Air Control Board adopted...

  7. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2306 Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a... necessary to satisfy the requirements of the PM10 Group II SIPs. The Texas Air Control Board adopted...

  8. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2306 Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a... necessary to satisfy the requirements of the PM10 Group II SIPs. The Texas Air Control Board adopted...

  9. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2306 Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a... necessary to satisfy the requirements of the PM10 Group II SIPs. The Texas Air Control Board adopted...

  10. Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Park, Duckshin; Oh, Miseok; Yoon, Younghun; Park, Eunyoung; Lee, Kiyoung

    2012-03-01

    Monitoring the air quality in subway passenger cabins is important because of the large number of passengers and potentially high levels of air pollution. This report characterized PM10 levels in subway cabins in Seoul, Korea, and identified PM10 sources using elemental analysis and receptor modeling. PM10 levels in subway cabins were continuously measured using a light scattering monitor during rush and non-rush hours. A total of 41 measurements were taken during rush and non-rush hours, and the measurements were repeated in all four seasons. Filter samples were also collected for elemental composition analysis. Major PM10 sources were identified using positive matrix factorization (PMF). The in-cabin PM10 concentrations were the highest in the winter at 152.8 μg m-3 during rush hours and 90.2 μg m-3 during non-rush hours. While PM10 levels were higher during rush hours than during non-rush hours in three seasons (excluding summer), these levels were not associated with number of passenger. Elemental analysis showed that the PM10 was composed of 52.5% inorganic elements, 10.2% anions, and 37.3% other. Fe was the most abundant element and significantly correlated (p < 0.01) with Mn (r = 0.97), Ti (r = 0.91), Cr (r = 0.88), Ni (r = 0.89), and Cu (r = 0.88). Fe, Mn, Cr, and Cu are indicators of railroad-related PM10 sources. The PM10 sources characterized by PMF were soil and road dust sources (27.2%), railroad-related sources (47.6%), secondary nitrate sources (16.2%), and a chlorine factor mixed with a secondary sulfate source (9.1%). Overall, railroad-related sources contributed the most PM10 to subway cabin air.

  11. Studies on particulate matter (PM10) and its precursors over urban environment of Reading, UK

    NASA Astrophysics Data System (ADS)

    Madhavi Latha, K.; Highwood, E. J.

    2006-09-01

    The extent to which airborne particles penetrate into the human respiratory system is determined mainly by their size, with possible health effects. The research over the scientific evidence of the role of airborne particles in adverse health effects has been intensified in recent years. In the present study, seasonal variations of PM10 and its relation with anthropogenic activities have been studied by using the data from UK National Air Quality Archive over Reading, UK. The diurnal variation of PM10 shows a morning peak during 7:00 10:00 LT and an evening peak during 19:00 22:00 LT. The variation between 12:00 and 17:00 LT remains more or less steady for PM10 with the minimum value of ˜16 μg m-3. PM10 and black smoke (BS) concentrations during weekdays were found to be high compared to weekends. A reduction in the concentration of PM10 has been found during the Christmas holidays compared to normal days during December. Seasonal variations of PM10 showed high values during spring compared to other seasons. A linear relationship has been found between PM10 and NOx during March, July, November and December suggesting that most of the PM10 is due to local traffic exhaust emissions. PM10 and SO2 concentrations showed positive correlation with the correlation coefficient of R=0.65 over the study area. Seasonal variations of SO2 and NOx showed high concentrations during winter and low concentrations during spring. Fraction of BS in PM10 has been found to be 50% during 2004 over the study area.

  12. Determination of locally formed sulfates for Allegheny county`s PM10 state implementation plan

    SciTech Connect

    Weaver, C.J.; Patel, H.L.; Houston, R.M.

    1995-12-31

    In support of a State Implementation Plan for the Liberty Borough/Clairton PM10 nonattainment area, Allegheny County developed a procedure for determining the concentrations of locally formed secondary PM10 that contributes to PM10 concentrations monitored within the nonattainment area. The County defines secondary PM10 concentration as the sum of the concentrations of sulfate, nitrate, and ammonium formed outside the emitting sources. Analysis of monitored data showed that under certain meteorological conditions, substantial secondary PM10 was formed at some locations within the nonattainment area. The days within the modeling year were divided into categories according to the average local wind speed and average mixing height for each day. Secondary PM10 concentrations were predicted for each category. Sulfate typically accounts for at least sixty percent of the secondary PM10. Filter analysis shows that sulfate concentrations are three times those of ammonia. Concentrations of the other cations and metals do not follow the same trend as do sulfate concentrations and are consistently too small to account for the sulfate present. This indicates that the total mass of these species in the nonattainment area is present as a mixture of ammonium sulfates and ammonium nitrates.

  13. Acute health effects of PM10 pollution on symptomatic and asymptomatic children

    SciTech Connect

    Pope, C.A. 3d.; Dockery, D.W. )

    1992-05-01

    This study assessed the association between daily changes in respiratory health and respirable particulate pollution (PM10) in Utah Valley during the winter of 1990-1991. During the study period, 24-h PM10 concentrations ranged from 7 to 251 micrograms/m3. Participants included symptomatic and asymptomatic samples of fifth- and sixth-grade students. Relatively small but statistically significant (p less than 0.01) negative associations between peak expiratory flow (PEF) and PM10 were observed for both the symptomatic and asymptomatic samples. The association was strongest for the symptomatic children. Large associations between the incidence of respiratory symptoms, especially cough, and PM10 pollution were also observed for both samples. Again the association was strongest for the symptomatic sample. Immediate and delayed PM10 effects were observed. Respiratory symptoms and PEF changes were more closely associated with 5-day moving-average PM10 levels than with concurrent-day levels. These associations were also observed at PM10 levels below the 24-h standard of 150 micrograms/m3. This study indicates that both symptomatic and asymptomatic children may suffer acute health effects of respirable particulate pollution, with symptomatic children suffering the most.

  14. Pollution of PM10 in an underground enclosed loading dock in Malaysia

    NASA Astrophysics Data System (ADS)

    Abualqumboz, M. S.; Mohammed, N. I.; Malakahmad, A.; Nazif, A. N.; Albattniji, A. T.

    2016-06-01

    The enclosed nature of underground loading docks results in accumulation of motor vehicles emissions. Thus, concentration of numerous harmful air pollutants including PM10 particles can increase and reach dangerous levels. This paper aims to study short-term and long-term exposure of PM10 particles inside an underground loading dock located in Malaysia. In addition, the correlation with indoor temperature, relative humidity and vehicles flow will be measured. The concentrations of PM10 were measured for three consecutive weeks using the real-time air quality monitoring instrument AQM60. Series of statistical tests and multiple linear regression analysis were applied on the data using SPSS software and MATLAB R2013a. The results illustrated that PM10 daily average concentration was in compliance with the Malaysian guideline of 150 µg/m3. Actually, 95% of instantaneous PM10 concentration readings were below 75 μg/m3. In addition, significant correlation were found between PM10 concentration and indoor temperature, relative humidity and the previous concentration. The multiple R and R2 were 0.91 and 0.83, respectively. PM10 concentration was also correlated with motor vehicles flow. In conclusion, health effects of long-term exposure to small repetitive doses of air pollutant inside underground facilities should be studied and appropriate control measures need to be implemented.

  15. Estimating the contribution of industrial facilities to annual PM10 concentrations at industrially influenced sites

    NASA Astrophysics Data System (ADS)

    Gladtke, Dieter; Volkhausen, Wolfgang; Bach, Bastian

    If measures to reduce the industrial discharge of PM10 shall be planned with high accuracy, a first step must be to estimate the contribution of single industrial facilities to the overall PM10 burden as accurately as possible. In northern Duisburg as an example, an area where iron and steel producing industry is concentrated, PM10 was measured at 4 sampling sites very close to an industrial complex of blast furnaces, a sinter plant, oxygen steel works and a coke oven plant for 9 months in 2006. At two sites metals in PM10 were determined. The results, together with analytical data of urban background sites in the region and data of wind direction and wind speed were used for an estimation of the contribution of single plants to the PM10 burden. A careful analysis of the data showed, that the data of PM10, calcium, iron and zinc measured at two sites close to the industrial area and information about the urban background aerosol were sufficient to calculate the PM10 contribution of the main single plants. The data could be compared with those of modelling.

  16. Diurnal changes of PM10-emission from arable soils in NE-Germany

    NASA Astrophysics Data System (ADS)

    Hoffmann, Carsten; Funk, Roger

    2015-06-01

    Repeated loss of fine soil particles by dust emission from arable fields caused by tillage operations, decline soil fertility and reduce air quality. The objective of this study was to quantify the diurnal dynamic of topsoil moisture and the connected PM10-emission of 15 different soils from arable fields around Berlin. As typical for the young moraine landscape in NE Germany, soils from glacial (sand and loam dominated), aeolian (silt loam), and fluvial (organic) sediments were selected. Soil samples were placed outside under hot summer and clear sky conditions for 24 h to reproduce the natural dynamic of soil surface moisture, including dew uptake during the night and evaporation during the day. Dynamic of PM10 emissions of all soils were then measured nine times per day in a stationary wind tunnel. Glacial and fluvial sands showed lowest fine dust emission potential (PM10pot) between 89 and 415 μg PM10 g-1 soil, while PM10pot of loess soils were higher (369-1215 μg PM10 g-1 soil). During the night, the moisture of all samples increased slightly by dew uptake, and fine dust emissions of soil samples were reduced up to 51% directly after sunrise. Highest average reductions in PM10 emissions were found for glacial and fluvial loams. Some hours after sunrise, all soil samples heated up and quickly dried again. Under minimal moisture conditions, highest fine dust emissions were measured between 10 a.m. and 3 p.m.

  17. Final Results from Mexnext-I: Analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German Dutch Wind Tunnel DNW

    NASA Astrophysics Data System (ADS)

    Schepers, J. G.; Boorsma, K.; Munduate, X.

    2014-12-01

    The paper presents the final results from the first phase of IEA Task 29 'Mexnext'. Mexnext was a joint project in which 20 parties from 11 different countries cooperated. The main aim of Mexnext was to analyse the wind tunnel measurements which have been taken in the EU project 'MEXICO'. In the MEXICO project 10 institutes from 6 countries cooperated in doing experiments on an instrumented, 3 bladed wind turbine of 4.5 m diameter placed in the 9.5 by 9.5 m2 open section of the Large Low-speed Facility (LLF) of DNW in the Netherlands. Pressure distributions on the blades were obtained from 148 Kulite pressure sensors, distributed over 5 sections at 25, 35, 60, 82 and 92 % radial position respectively. Blade loads were monitored through two strain-gauge bridges at each blade root. Most interesting however are the extensive PIV flow field measurements, which have been taken simultaneously with the pressure and load measurements. As a result of the international collaboration within this task a very thorough analysis of the data could be carried out and a large number of codes were validated not only in terms of loads but also in terms of underlying flow field. The paper will present several results from Mexnext-I, i.e. validation results and conclusion on modelling deficiencies and directions for model improvement. The future plans of the Mexnext consortium are also briefly discussed. Amongst these are Mexnext-II, a project in which also aerodynamic measurements other than MEXICO are included, and 'New MEXICO' in which additional measurement on the MEXICO model are performed.

  18. Subsonic Longitudinal Aerodynamic Characteristics of Disks with Elliptic Cross Sections and Thickness-Diameter Ratios from 0.225 to 0.425

    NASA Technical Reports Server (NTRS)

    Demele, Fred A.; Brownson, Jack J.

    1961-01-01

    General interest in manned space flight has provided a stimulus for the investigation of shapes which appear to be attractive for application to re-entry vehicles. Such vehicles can be classed as either nonlifting or lifting. Nonlifting types, such as used in Project Mercury, have certain advantages which include structural simplicity, no requirement for an elaborate flight-control system, ease of mating with the booster, and short exposure times to high heating rates during entry. Advantages of lifting types, by comparison, include lower peak heating rates and decelerations, the possibility for a conventional horizontal landing, and the ability to maneuver, thus providing control over longitudinal and lateral range and a wider entry corridor on return from planetary or lunar missions. A lifting shape which appears attractive in terms of the considerations is a thick disk. At high attitudes, the weight to drag ratio is low and the radius of curvature of the surface exposed to the airstream is large, a combination of parameters which results in reduced convective heating rates. The low-speed lift-drag ratios associated with this type of shape appear sufficiently high to permit a conventional horizontal landing. The investigation reported herein was undertaken to assess the effects of thickness on the aerodynamic characteristics of disk shapes suitable for lifting re-entry into the earth's atmosphere and potentially capable of conventional horizontal landing. The models had elliptic cross sections which varied in thickness from 0.225 to 0.425 diameter. The tests were conducted in the Ames 12-Foot Pressure Wind Tunnel over a Mach number range from 0.25 to 0.90 at a Reynolds number of 3.3x10 (exp 6) and at Reynolds numbers to 16x10 (exp 6) at a Mach number of 0.25. Tests on similar shapes have been conducted at subsonic, transonic, and supersonic speeds and the results have been presented.

  19. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  20. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  1. Using MAIAC Aerosol Products to Estimate PM10 Concentrations in the Southeastern U.S

    NASA Astrophysics Data System (ADS)

    Jinnagara Puttaswamy, S.; Hu, X.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2012-12-01

    Acute and chronic exposure to particulate matter has been linked to various adverse health effects. High PM levels including inhalable particles (PM10) and fine particles (PM2.5) are commonly found in large urban centers in the developing world. Unlike PM2.5 whose routine ground monitoring is very sparse, PM10 is regularly measured in many large cities in developing countries. In this analysis, we evaluate the potential for satellite aerosol remote sensing product to estimate PM10 levels. We chose AOD values in 2003 retrieved by the Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm based on MODIS measurements, which has a high spatial resolution of 1 km. Our study area is a 600 km x 600 km region centered in Atlanta, GA. Linear mixed effect (LME) models were developed with MAIAC AOD as the primary predictor variable, meteorology, PM10 emission locations and land use variables as secondary predictor variables. Daily PM10 concentrations measured at ~70 EPA air quality monitoring stations were used as the dependent variable. Model day of year was used as the grouping factor for the random effect of MAIAC AOD. We aggregated AOD and other covariates on 1 km, 3km, 5km and 10km resolution grids and similar LME models were developed for each spatial resolution to compare their abilities to capture the spatial patterns of PM10 mass concentrations at various scales. Our models show that MAIAC AOD, temperature, wind speed and PM 10 emissions source locations are statistically significant predictors of PM 10 at all the spatial scales. Model fitting R2 ranges from 0.35 in winter to 0.56 in the summer. Model performances show a slight decline as the grid resolution decreases. Although the performances of PM10 exposure models are not as good as those of PM2.5 models reported in the literature, these models can still provide spatially resolved PM10 levels at urban scale, which would enable preliminary PM10-related public health research in developing countries.

  2. Increase in dust storm related PM10 concentrations: A time series analysis of 2001-2015.

    PubMed

    Krasnov, Helena; Katra, Itzhak; Friger, Michael

    2016-06-01

    Over the last decades, changes in dust storms characteristics have been observed in different parts of the world. The changing frequency of dust storms in the southeastern Mediterranean has led to growing concern regarding atmospheric PM10 levels. A classic time series additive model was used in order to describe and evaluate the changes in PM10 concentrations during dust storm days in different cities in Israel, which is located at the margins of the global dust belt. The analysis revealed variations in the number of dust events and PM10 concentrations during 2001-2015. A significant increase in PM10 concentrations was identified since 2009 in the arid city of Beer Sheva, southern Israel. Average PM10 concentrations during dust days before 2009 were 406, 312, and 364 μg m(-3) (median 337, 269,302) for Beer Sheva, Rehovot (central Israel) and Modi'in (eastern Israel), respectively. After 2009 the average concentrations in these cities during dust storms were 536, 466, and 428 μg m(-3) (median 382, 335, 338), respectively. Regression analysis revealed associations between PM10 variations and seasonality, wind speed, as well as relative humidity. The trends and periodicity are stronger in the southern part of Israel, where higher PM10 concentrations are found. Since 2009 dust events became more extreme with much higher daily and hourly levels. The findings demonstrate that in the arid area variations of dust storms can be quantified easier through PM10 levels over a relatively short time scale of several years. PMID:26874873

  3. PM2.5 and PM10 concentrations in four dairies on the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air quality was determined in 4 dairies at the boundary, commodity barn, and compost field. Two laser DustTrak PM10 aerosol monitors and four RAAS -300 gravimetric monitors, 2 PM2.5 and 2 PM10 were employed. The DustTrak flow rate was set at 1.7 L/min and the RAAS were set at 16.6 L/min. Monitors we...

  4. Geochemistry and origin of PM10 in the Huelva region, Southwestern Spain.

    PubMed

    Sánchez de la Campa, Ana María; de la Rosa, Jesús; Querol, Xavier; Alastuey, Andrés; Mantilla, Enrique

    2007-03-01

    The results of chemical analysis of PM(10) atmospheric dust samples collected between July 2001 and June 2002 in rural and urban background monitoring stations in Huelva (South-western Spain) are reported. In order to identify the sources and quantify their contribution to PM(10), principal component analysis and receptor modelling techniques were performed using independent variables of the complete series of concentrations of PM(10) contents. The Ria of Huelva is considered to be one of the high industrial estates in Spain, where several metallurgical, petrochemical and fertilizer industrial estates are located, surrounded by areas of a high ecological interest such as Doñana National Park. Annual means of 29-33 and 37 micro g PM(10)m(-3) were obtained for the study period in rural and urban monitoring stations, respectively. These values are below the mean annual limit value for 2005 and onwards from the Directive 1999/30/EC [EU, 1999. 1999/30/CE Council Directive relating to limit values for sulphur dioxide, nitrogen dioxide and oxide of nitrogen, particulate matter and lead in ambient air. The Council of the European Union]. High PM(10) episodes in rural and urban areas occurred during African dust events. Episodically, the emissions of plumes from industrial estates reach rural areas causing peak episodes of PO(4)(3-) Cu, Ti Pb and As. Anthropogenic particles arising from metallurgical emissions (pyrite, chalcopyrite and sphalerite) were observed in the rural sites. The annual mean As concentrations measured in PM(10) in the city of Huelva and surrounding rural areas (144 and 84-51mg Askg(-1) in PM(10), respectively) are several times high the concentrations obtained in other Spanish monitoring stations (7-57mg Askg(-1)). The source apportionment analyses allowed the quantification of the contribution to PM(10) of an industrial mixed source in the rural background. PMID:16949570

  5. Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain).

    PubMed

    López, J M; Callén, M S; Murillo, R; García, T; Navarro, M V; de la Cruz, M T; Mastral, A M

    2005-09-01

    An assessment of the air quality of Zaragoza (Spain) was performed by determining the trace element content in airborne PM10 in a sampling campaign from July 2001 to July 2002. Samples were collected in a heavy traffic area with a high volume air sampler provided with a PM10 cutoff inlet. The levels of 16 elements (Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) were quantified after collecting the PM10 on Teflon-coated glass fiber filters (GFF). Regarding the PM10, 32% exceedance of the proposed PM10 daily limit was obtained, some of them corresponding to summer and autumn periods. The limit values of toxic trace elements from US-EPA, WHO, and EC were not exceeded, considering Zaragoza as a moderately polluted city under the current air quality guidelines. The contribution of anthropogenic sources to atmospheric elemental levels was reflected by the high values of enrichment factors for Zn, Pb, and Cu compared to the average crustal composition. Statistical analyses also determined the contribution of different sources to the PM10, finding that vehicle traffic and anthropogenic emissions related to combustion and industrial processes were the main pollutant sources as well as natural sources associated with transport of dust from Africa for specific dates. Regarding the influence of meteorological conditions on PM10 and trace elements concentrations, it was found that calm weather conditions with low wind speed favor the PM10 collection and the pollution for trace elements, suggesting the influence of local sources. PMID:16053928

  6. Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys

    SciTech Connect

    Pope CA, I.I.I. )

    1991-03-01

    This study assessed the association between respiratory hospital admissions and PM10 pollution in Utah, Salt Lake, and Cache valleys during April 1985 through March 1989. Utah and Salt Lake valleys had high levels of PM10 pollution that violated both the annual and 24-h standards issued by the Environmental Protection Agency (EPA). Much lower PM10 levels occurred in the Cache Valley. Utah Valley experienced the intermittent operation of its primary source of PM10 pollution: an integrated steel mill. Bronchitis and asthma admissions for preschool-age children were approximately twice as frequent in Utah Valley when the steel mill was operating versus when it was not. Similar differences were not observed in Salt Lake or Cache valleys. Even though Cache Valley had higher smoking rates and lower temperatures in winter than did Utah Valley, per capita bronchitis and asthma admissions for all ages were approximately twice as high in Utah Valley. During the period when the steel mill was closed, differences in per capita admissions between Utah and Cache valleys narrowed considerably. Regression analysis also demonstrated a statistical association between respiratory hospital admissions and PM10 pollution. The results suggest that PM10 pollution plays a role in the incidence and severity of respiratory disease.

  7. PM10 and Pb evolution in an industrial area of the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Vicente, A. B.; Jordán, M. M.; Pallarés, S.; Sanfeliu, T.

    2007-02-01

    The study area is highly industrialized, with businesses involved in the non-metal mineral products sector and ceramic industries (colors, frits and enamel manufacturing) standing out. Air quality evaluation was performed regarding atmospheric particles (PM10 fraction) and Pb in a Spanish coastal area during 2001 and 2002 in order to compare these values with other areas in the Mediterranean basin. Once the samples were collected, their PM10 fraction concentration levels were determined gravimetrically. A Pb analysis in air pollution filters was carried out by ICP-MS. The seasonal and weekly variabilities of these contaminants were also studied, with the objective of being able to explain their origin and thus minimize their possible damaging effects. A similar evolution of PM10 and Pb was observed in both years of the study. Higher PM10 concentrations have been detected during the months of June and July, lower values between March-May, August and October-December, and intermediate values in January and February. A similar tendency has been observed by other authors in European industrialized cities. Regarding Pb, the monthly mean remains constant during the entire year. In the study area, Pb represents 0.6% as a mean of the total PM10 mass, with a variation range between 0.1 and 5.1%. The major crystalline phases in PM10 were quartz, calcite, dolomite, illite, kaolinite and feldspars.

  8. Airborne PM10 and metals from multifarious sources in an industrial complex area

    NASA Astrophysics Data System (ADS)

    Lim, Jong-Myoung; Lee, Jin-Hong; Moon, Jong-Hwa; Chung, Yong-Sam; Kim, Ki-Hyun

    2010-04-01

    The emission characteristics of airborne PM10 in the Sihwa and Banwol Industrial Complex Area of Korea are highly complicated because of diverse man-made activities (about 4000 stacks). The measurements of 16 metals were undertaken using collision cell technology-inductively coupled plasma mass spectrometry (CCT-ICP-MS) from two industrial sites and one reference site in the vicinity of a residential area. Based on our measurements, we attempted to characterize the pollution status of PM10 and metals in the study area. The spatial differences in the PM10 and metal levels were significant except for the crustal and marine derived metals. Temporal variations in the PM10 and most metal data were fairly distinct so that their highest concentrations generally occur in the fall or spring, while the lowest in the summer. The daily concentrations of most metals and PM10 showed strong or moderate correlations among the three sites; however, results of conditional probability function (CPF) obviously accounted for the influences of industrial activities. Thus, concentrations of airborne PM10 and anthropogenic metals in residential area adjacent to Sihwa and Banwol (S/B) industrial areas were tightly affected by industrial activities.

  9. The effect of different transport modes on urban PM(10) levels in two European cities.

    PubMed

    Makra, László; Ionel, Ioana; Csépe, Zoltán; Matyasovszky, István; Lontis, Nicolae; Popescu, Francisc; Sümeghy, Zoltán

    2013-08-01

    The aim of the study is to identify transport patterns that may have an important influence on PM10 levels in two European cities, namely Szeged in East-Central Europe and Bucharest in Eastern Europe. 4-Day, 6-hourly three-dimensional (3D) backward trajectories arriving at these locations at 1200 GMT are computed using the HYSPLIT model over a 5-year period from 2004 to 2008. A k-means clustering algorithm using the Mahalanobis metric is applied in order to develop trajectory types. Two statistical indices are used to evaluate and compare exceedances of critical daily PM10 levels corresponding to the trajectory clusters. For Bucharest, the major PM10 transport can be clearly associated with air masses arriving from Central and Southern Europe, as well as the Western Mediterranean. Occasional North African dust intrusions over Romania are also found. For Szeged, Southern Europe with North Africa, Central Europe and Eastern Europe with regions over the West Siberian Plain are the most important sources of PM10. The occasional appearance of North-African-origin dust over Hungary is also detected. A statistical procedure is developed in order to separate medium- and long-range PM10 transport for both cities. Considering the 500 m arrival height, long-range transport plays a higher role in the measured PM10 concentration both for non-rainy and rainy days for Bucharest and Szeged, respectively. PMID:23639910

  10. Estimation of PM10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign

    NASA Astrophysics Data System (ADS)

    Seo, S.; Kim, J.; Lee, H.; Jeong, U.; Kim, W.; Holben, B. N.; Kim, S.-W.; Song, C. H.; Lim, J. H.

    2015-01-01

    The performance of various empirical linear models to estimate the concentrations of surface-level particulate matter with a diameter less than 10 μm (PM10) was evaluated using Aerosol Robotic Network (AERONET) sun photometer and Moderate-Resolution Imaging Spectroradiometer (MODIS) data collected in Seoul during the Distributed Regional Aerosol Gridded Observation Network (DRAGON)-Asia campaign from March to May 2012. An observed relationship between the PM10 concentration and the aerosol optical depth (AOD) was accounted for by several parameters in the empirical models, including boundary layer height (BLH), relative humidity (RH), and effective radius of the aerosol size distribution (Reff), which was used here for the first time in empirical modeling. Among various empirical models, the model which incorporates both BLH and Reff showed the highest correlation, which indicates the strong influence of BLH and Reff on the PM10 estimations. Meanwhile, the effect of RH on the relationship between AOD and PM10 appeared to be negligible during the campaign period (spring), when RH is generally low in northeast Asia. A large spatial dependency of the empirical model performance was found by categorizing the locations of the collected data into three different site types, which varied in terms of the distances between instruments and source locations. When both AERONET and MODIS data sets were used in the PM10 estimation, the highest correlations between measured and estimated values (R = 0.76 and 0.76 using AERONET and MODIS data, respectively) were found for the residential area (RA) site type, while the poorest correlations (R = 0.61 and 0.68 using AERONET and MODIS data, respectively) were found for the near-source (NS) site type. Significant seasonal variations of empirical model performances for PM10 estimation were found using the data collected at Yonsei University (one of the DRAGON campaign sites) over a period of 17 months including the DRAGON campaign

  11. Characterisation and quantification of the sources of PM10 during air pollution episodes in the UK.

    PubMed

    Muir, David; Longhurst, J W S; Tubb, A

    2006-04-01

    Data for concentrations of PM(10) and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM(10). The ratios of concentrations of PM(10) to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM(10) were divided by those of the other pollutants, the ratio should decrease when PM(10) and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM(10) to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM(10) during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM(10) and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM(10) when an appropriate factor, F, related to the contribution of road traffic emissions to PM(10) at different site types was applied. The values used were 0

  12. Simulation And Forecasting of Daily Pm10 Concentrations Using Autoregressive Models In Kagithane Creek Valley, Istanbul

    NASA Astrophysics Data System (ADS)

    Ağaç, Kübra; Koçak, Kasım; Deniz, Ali

    2015-04-01

    A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built

  13. Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Mandal, T. K.; Saxena, Mohit; Rashmi; Sharma, A.; Datta, A.; Saud, T.

    2014-06-01

    Variation of organic carbon (OC), elemental carbon (EC), water soluble inorganic ionic components (WSIC) and major and trace elements of particulate matter (PM10) were studied over Delhi, an urban site of the Indo Gangatic Plain (IGP), India in 2010. Strong seasonal variation was noticed in the mass concentration of PM10 and its chemical composition with maxima during winter (PM10: 213.1±14.9 μg m-3; OC: 36.05±11.60 μg m-3; EC: 9.64±2.56 μg m-3) and minima during monsoon (PM10: 134.7±39.9 μg m-3; OC: 14.72±6.95 μg m-3; EC: 3.35±1.45 μg m-3). The average concentration of major and trace elements (Na, Mg, Al, P, S, Cl, K, CA, Cr, Ti, Fe, Zn and Mn) was accounted for ~17% of the PM10 mass. Average values of K+/EC (0.28) and Cl-/EC (0.59) suggest the influences of biomass burning in PM10, whereas, higher concentration of Ca2+ suggests the soil erosion as possible source from the nearby agricultural field. Fe/Al ratio (0.34) indicates mineral dust as a source at the sampling site, similarly, Ca/Al ratio (2.45) indicates that aerosol over this region is rich in Ca mineral compared to average upper continental crust. Positive matrix factorization (PMF) analysis quantifies the contribution of soil dust (20.7%), vehicle emissions (17.0%), secondary aerosols (21.7%), fossil fuel combustion (17.4%) and biomass burning (14.3%) to PM10 mass concentration at the observational site of Delhi.

  14. Levels and major sources of PM2.5 and PM10 in Bangkok Metropolitan Region.

    PubMed

    Chuersuwan, Nares; Nimrat, Subuntith; Lekphet, Sukanda; Kerdkumrai, Tida

    2008-07-01

    This research was the first long-term attempt to concurrently measure and identify major sources of both PM(10) and PM(2.5) in Bangkok Metropolitan Region (BMR). Ambient PM(10) and PM(2.5) were evaluated at four monitoring stations and analyzed for elemental compositions, water-soluble ions, and total carbon during February 2002-January 2003. Fifteen chemical elements, four water-soluble ions, and total carbon were analyzed to assist major source identification by a receptor model approach, known as chemical mass balance. PM(10) and PM(2.5) were significantly different (p<0.05) at all sites and 24 h averages were high at traffic location while two separated residential sites were similar. Seasonal difference of PM(10) and PM(2.5) concentrations was distinct between dry and wet seasons. Major source of PM(10) at the traffic site indicated that automobile emissions and biomass burning-related sources contributed approximately 33% each. Automobiles contributed approximately 39 and 22% of PM(10) mass at two residential sites while biomass burning contributed about 36 and 28%. PM(10) from re-suspended soil and cooking sources accounted for 10 to 15% at a residential site. Major sources of PM(2.5) at traffic site were automobile and biomass burning, contributing approximately 32 and 26%, respectively. Biomass burning was the major source of PM(2.5) mass concentrations at residential sites. Meat cooking also accounted for 31% of PM(2.5) mass at a low impact site. Automobile, biomass burning, and road dust were less significant, contributed 10, 6, and 5%, respectively. Major sources identification at some location had difficulty to achieve performance criteria due to limited source profiles. Improved in characterize other sources profiles will help local authority to better air quality. PMID:18258301

  15. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  16. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  17. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  18. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  19. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  20. Composition and origin of PM10 in Cape Verde: Characterization of long-range transport episodes

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Almeida, S. M.; Cardoso, J.; Almeida-Silva, M.; Nunes, T.; Cerqueira, M.; Alves, C.; Reis, M. A.; Chaves, P. C.; Artíñano, B.; Pio, C.

    2016-02-01

    A receptor modelling study was performed to identify source categories and their contributions to the PM10 total mass at the Cape Verde archipelago. Trajectory statistical methods were also used to characterize the main atmospheric circulation patterns causing the transport of air masses and to geographically identify the main potential source areas of each PM10 source category. Our findings point out that the variability of the PM10 levels at Cape Verde was prompted by the advections of African mineral dust. The mineral dust load was mainly composed by clay-silicates mineral derived elements (22% of the PM10 total mass on average) with lower amounts of carbonates (9%). A clear northward gradient was observed in carbonates concentration that illustrates the differences in the composition according to the source regions of mineral dust. Mineral dust was frequently linked to industrial emissions from crude oil refineries, fertilizer industries as well as oil and coal power plants, located in the northern and north-western coast of the African continent (29%). Sea salt was also registered in the PM10 mass during most part of the sampling period, with a lower impact in the PM10 levels than the mineral dust one (26%). Combustion aerosols (6%) reached the highest mean values in summer as a consequence of the emissions from local-regional sources. Biomass burning aerosols produced from October to November in sub-sahelian latitudes, had a clear influence in the content of elemental carbon (EC) recorded at Cape Verde but a small impact in the PM10 total mass levels. A minor contribution to the PM10 mass has been associated to secondary inorganic compounds-SIC. Namely, ammonium sulfate and nitrate (SIC 1-5%) and calcium sulfate and nitrate (SIC 2-3%). The main origin of SIC 1 was attributed to emissions of SO2 and NOx from industrial sources located in the northern and north-western African coast and from wildfires produced in the continent. SIC 2 had a clear regional origin

  1. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer

    NASA Astrophysics Data System (ADS)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin

    2011-08-01

    The associations between the variations of PM10 concentration during summer monsoon dry seasons over the Klang Valley, Malaysia and the local meteorological factors, synoptic weather conditions as well as the regional hotspots number were examined based on simple multiple linear regression analysis. The regressive relationships established, suggest that the variation of PM10 in Klang Valley was governed significantly by all of the examined factors. Local meteorological conditions are among those factors which governed the largest day-to-day variations of PM10 concentration in the Klang Valley areas during the dry season. When augmented by synoptic meteorological variables and foreign emission sources, a remarkable increase in the explained variance was apparent. On the other hand, domestic burning sources only had a minimal impact on PM10 fluctuations. Important synoptic weather patterns which influence the air pollution variations were also identified. These synoptic conditions include the strengthening of the summer monsoon southwesterly winds over the equatorial area. In addition, the formation of cyclonic circulation, associated with typhoon formation over the north-west Pacific and the South China Sea as well as over the Bay of Bengal, are found to have had a profound impact on PM10 variations over the Malaysian region through the modulation of regional moisture distributions.

  2. Comparison of particle lung doses from the fine and coarse fractions of urban PM-10 aerosols.

    PubMed

    Venkataraman, C; Kao, A S

    1999-02-01

    The U.S. Environmental Protection Agency (EPA) recently revised the national ambient air quality standards to include a new PM-2.5 particulate standard. We examine the contributions of fine (PM-2.5) and coarse (PM-2.5 to -10) fraction of typical urban aerosols to particle doses in different lung airways resulting from 24-h exposure to the standard concentration of 150 microg m-3. The aerosol is assumed to have a bimodal lognormal mass distribution with mass median diameters of 0.2 and 5 microm, and geometric standard deviation of 1.7 and 57% of the mass in the fine (PM-2.5) mode. The daily mass dose from exposure to 150 microg m-3 of PM-10 in the nasopharyngeal (NPL) region is 20-51 microg day-1 (1.5% of inhaled fines) and 377-687 microg day-1 (30% of inhaled coarse), respectively, of fine and coarse mass filtered in the nose. Similar daily mass doses from fine and coarse fractions, respectively, to the tracheobronchial (TBL) region are 28-38 (1.5%) and 40-52 (4%) microg day-1 and to the pulmonary (PUL) region are 18-194 (6%) and 32-55 microg day-1 (2%). The daily number dose in the NPL region is 5-15 x 10(8) (0.06% of inhaled fines) and 5-10 x 10(6) day-1 (13% of inhaled coarse) respectively, of fine and coarse particles. Similar number doses to the TBL region are 2.2-3.1 x 10(10) (2%) and 7.1-11. 1 x 10(5) (2%) day-1 and to the PUL region are 1.6-16.7 x 10(10) (9%) and 2.9-17.0 x 10(5) (3%) day-1. The daily surface mass dose (microg cm-2 day-1) from coarse fraction particles is large in generations 3-5. The daily number dose (particles day-1) and surface number dose (particles cm-2 day-1) are higher from the fine than the coarse fraction, by about 10(3) to 10(5) times in all lung airways. Fine fraction particles result in 10,000 times greater particle number dose per macrophage than coarse fraction particles. Particle number doses do not follow trends in mass doses, are much larger from fine than coarse fraction, and must be considered in assessing PM health

  3. Sources of PM(10) and PM (2.5) in Cairo's ambient air.

    PubMed

    Abu-Allaban, M; Lowenthal, D H; Gertler, A W; Labib, M

    2007-10-01

    A source attribution study was performed to assess the contributions of specific pollutant source types to the observed particulate matter (PM) levels in the greater Cairo Area using the chemical mass balance (CMB) receptor model. Three intensive ambient monitoring studies were carried out during the period of February 21-March 3, 1999, October 27-November 27, 1999, and June 8-June 26, 2002. PM(10), PM(2.5), and polycyclic aromatic hydrocarbons (PAHs) were measured on a 24-h basis at six sampling stations during each of the intensive periods. The six intensive measurement sites represented background levels, mobile source impacts, industrial impacts, and residential exposure. Major contributors to PM(10) included geological material, mobile source emissions, and open burning. PM(2.5) tended to be dominated by mobile source emissions, open burning, and secondary species. This paper presents the results of the PM(10) and PM(2.5), source contribution estimates. PMID:17268919

  4. Biologic effects induced in vitro by PM10 from three different zones of Mexico City.

    PubMed Central

    Alfaro-Moreno, Ernesto; Martínez, Leticia; García-Cuellar, Claudia; Bonner, James C; Murray, J Clifford; Rosas, Irma; Rosales, Sergio Ponce de León; Osornio-Vargas, Alvaro R

    2002-01-01

    Exposure to urban airborne particles is associated with an increase in morbidity and mortality. There is little experimental evidence of the mechanisms involved and the role of particle composition. We assessed cytotoxicity (crystal violet assay), apoptosis [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) or annexin V assay], DNA breakage (comet assay), and production of proinflammatory mediators [tumor necrosis factor Alpha (TNF-Alpha), interleukin 6 (IL-6), prostaglandin E2 (PGE2)] (enzyme-linked immunosorbent assay), and E-selectin (flow cytometry) in cell lines exposed to particulate matter < 10 microm in size (PM10) obtained from the northern, central, and southern zones of Mexico City. Particle concentrations ranged from 2.5 to 160 microg/cm(2). We used epithelial, endothelial, fibroblastic, and monocytic cells and assessed DNA damage in Balb-c cells, TNF-Alpha and IL-6 production in mouse monocytes, and PGE2 in rat lung fibroblasts. We determined the expression of E-selectin in human endothelial cells and evaluated the cytotoxic potential of the PM10 samples in all cell types. PM10 from all three zones of Mexico City caused cell death, DNA breakage, and apoptosis, with particles from the north and central zones being the most toxic. All of these PM10 samples induced secretion of proinflammatory molecules, and particles from the central zone were the most potent. Endothelial cells exposed to PM10 from the three zones expressed similar E-selectin levels. Mexico City PM10 induced biologic effects dependent on the zone of origin, which could be caused by differences in the mixture or size distribution within particle samples. Our data suggest that particle composition as well as particle size should be considered in assessing the adverse effects of airborne particulate pollution. PMID:12117649

  5. Sources of atmospheric aerosols controlling PM10 levels in Heraklion, Crete during winter time

    NASA Astrophysics Data System (ADS)

    Kalivitis, Nikolaos; Kouvarakis, Giorgos; Stavroulas, Iasonas; Kandilogiannaki, Maria; Vavadaki, Katerina; Mihalopoulos, Nikolaos

    2016-04-01

    High concentrations of Particulate Matter (PM) in the atmosphere have negative impact to human health. Thresholds for ambient concentrations that are defined by the directive 2008/50/EC are frequently exceeded even at background conditions in the Mediterranean region as shown in earlier studies. The sources of atmospheric particles in the urban environment of a medium size city of eastern Mediterranean are studied in the present work in order to better understand the causes and characteristics of exceedances of the daily mean PM10limit value of 50 μg m‑3. Measurements were performed at the atmospheric quality measurement station of the Region of Crete, at the Heraklion city center on Crete island, during the winter/spring period of 2014-2015 and 2015-2016. Special emphasis was given to the study of the contribution of Black Carbon (BC) to the levels of PM10. Continuous measurements were performed using a beta-attenuation PM10monitor and a 7-wavelength Aethalometer with a time resolution of 30 and 5 minutes respectively. For direct comparison to background regional conditions, concurrent routine measurements at the atmospheric research station of University of Crete at Finokalia were used as background reference. Analysis of exceedances in the daily PM10 mass concentration showed that the total of the exceedances was related to long range transport of Saharan dust rather than local sources. However, compared to the Finokalia station it was found that there were 20% more exceedances in Heraklion, the addition of transported dust on the local pollution was the reason for the additional exceedance days. Excluding dust events, it was found that the PM10variability was dependent on the BC abundance, traffic during rush hours in the morning and biomass burning for domestic heating in the evening contributed significantly to PM10levels in Heraklion.

  6. Levels and indoor-outdoor relationships of PM 10 and soluble inorganic ions in Beirut, Lebanon

    NASA Astrophysics Data System (ADS)

    Saliba, N. A.; Atallah, M.; Al-Kadamany, G.

    2009-03-01

    PM 10, which is considered among the major indoor and outdoor pollutants, was measured in several residential homes and corresponding outdoor environments in the Great Beirut area over the summer and winter seasons of 2005. Few studies on PM 10 levels indoors in Beirut are restricted to short-term periods in public places. In this study, 78 PM 10 samples were collected on Teflon filters using an active sampler at a flow rate of 5 L/min. PM 10 mass concentrations were determined by gravimetric analysis, and inorganic chemical speciation was carried out using ion chromatography. Outdoors, PM 10 elevated mass concentrations correlated well with high traffic density. The observed high intra-site temporal variation (minimum of 34 and a maximum of 120 μg/m 3) was attributed to the dynamic air masses passing over the Eastern Mediterranean region. Indoors, PM 10 levels were highly affected by outdoor levels, but were enhanced over those of outdoors when smoking activities were recorded. In winter, the overall average outdoor concentration dropped by 19%, whereas the average indoor concentration increased by 50% over the ones calculated for the summer. Ventilation and air exchange rates were found to be approximately equal to unity during summer since most doors and windows remain open. This rate drops to almost half during winter. As for particulate ions namely nitrates and sulfates, the former showed concentrations that are higher than the values reported in the region in both winter and summer seasons, suggesting high emissions from local vehicles. However, SO 42- average concentrations were comparable to values reported in other studies conducted in Eastern Mediterranean sites. Soluble particulate nitrates and sulfates exhibited similar indoor and outdoor levels in non-smoking homes (IO ~ 1), but in smoking homes the drop in nitrate concentrations reached around 70%, indicating a high anionic reactivity with tobacco smokes.

  7. A wind-tunnel study on saltation and PM10 emission from agricultural soils

    NASA Astrophysics Data System (ADS)

    Avecilla, Fernando; Panebianco, Juan E.; Buschiazzo, Daniel E.

    2016-09-01

    PM10 emission depends on the texture and the aggregation state of a soil. A decisive but less studied factor is the saltation fraction of the soil (fraction between 100 and 500 μm). Six soils of contrasting textures were selected, and a wind tunnel study was carried out under three different saltation conditions: increased saltation, in which a sample of the saltation fraction was added to the air stream prior to the soil bed; no saltation added, in which the soil bed eroded without the addition of extra saltation fraction; and only saltation, in which the saltation fraction was injected into the air stream in the absence of the soil bed. Results indicated that the saltation efficiency for PM10 emission increased with the fine fraction content of the soil and decreased with the sand content, but this process showed a complex behavior depending on the cohesion and stability of the aggregates. An index for describing the saltation efficiency of the studied soils was proposed based on the combination of three parameters: the PM10 content, the amount of saltation fraction available in the soil surface, and an aggregation parameter (clay × organic matter content). Increasing the saltation rate increased the PM10 emission from the eroding soil bed, except for the sandy soil. Results suggest that the main mechanisms of PM10 emission under saltation conditions differ according to the soil texture: detachment of the PM10 adhered to the grains of sand predominates on sandy soils and fragmentation on finer soils, but both processes occur together on high-emitting soils of intermediate textures.

  8. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    NASA Astrophysics Data System (ADS)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high

  9. Pulmonary toxicity study in rats with PM 10 and PM 2.5: Differential responses related to scale and composition

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lei, Tian; Lin, Zhi-Qing; Zhang, Hua-Shan; Yang, Dan-Feng; Xi, Zhu-Ge; Chen, Jian-Hua; Wang, Wei

    2011-02-01

    ObjectionTo study the pollution of atmospheric particles at winter in Beijing and compare the lung toxicity which induced by particle samples from different sampling sites. MethodWe collected samples from two sampling points during the winter for toxicity testing and chemical analysis. Wistar rats were administered with particles by intratracheal instillation. After exposure, biochemically index, esimmunity indexes, histopathology and DNA damage were detected in rat pulmonary cells. ResultThe elements with enrichment factors (EF) larger than 10 were As, Cd, Cu, Zn, S and Pb in the four experiment groups. The priority control of the total concentration of polycyclic aromatic hydrocarbons (PAHs) in PM 10 and PM 2.5 of Near-traffic source was much higher than that of Far-traffic source, it demonstrated that near the traffic source of PAHs pollution was heavier than that of Far-traffic source, as it was close to main roads Beiyuan Road, motor vehicle emissions were much higher. The pathology of lung showed that the degree of inflammation was increased with the particle diameter minished, it was the same as the detection of biochemical parameters such as lactate dehydrogenase (LDH), Total antioxidant status(T-AOC) and total protein (TP) in BALF and inflammation cytokine(interleukin-1, interleukin-6 and tumor necrosis factor-alpha) in lung homogenate. The indexes of DNA damage including the content of DNA and Olive empennage of PM 2.5 were significant higher than that of PM 10 at the same surveillance point ( P < 0.05), near-traffic particles were higher than the far-traffic particles at the same diameter, ( P < 0.05). ConclusionNear-traffic area particles had certain pollution at winter in Beijing. Meanwhile, atmospheric particulate matters on lung toxicity were related to the particles size and distance related sites which were exposed: smaller size, more toxicity; nearer from traffic, more toxicity.

  10. Inlet noise on 0.5-meter-diameter NASA QF-1 fan as measured in an unmodified compressor aerodynamic test facility and in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Soltis, R. F.

    1975-01-01

    Narrowband analysis revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. From one-third octave bandwidth sound power analyses the BPF noise (harmonics combined), and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 db or less over the range of speeds and flows tested. Detailed noise and aerodynamic performance is also presented.

  11. Quantifying the effect of urban tree planting on concentrations and depositions of PM 10 in two UK conurbations

    NASA Astrophysics Data System (ADS)

    McDonald, A. G.; Bealey, W. J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R. I.; Donovan, R. G.; Brett, H. E.; Hewitt, C. N.; Nemitz, E.

    Trees are efficient scavengers of particulate matter and are characterised by higher rates of dry deposition than other land types. To estimate the potential of urban tree planting for the mitigation of urban PM 10 concentrations, an atmospheric transport model was used to simulate the transport and deposition of PM 10 across two UK conurbations (the West Midlands and Glasgow). Tree planting was simulated by modifying the land cover database, using GIS techniques and field surveys to estimate reasonable planting potentials. The model predicts that increasing total tree cover in West Midlands from 3.7% to 16.5% reduces average primary PM 10 concentrations by 10% from 2.3 to 2.1 μg m -3 removing 110 ton per year of primary PM 10 from the atmosphere. Increasing tree cover of the West Midlands to a theoretical maximum of 54% by planting all available green space would reduce the average PM 10 concentration by 26%, removing 200 ton of primary PM 10 per year. Similarly, for Glasgow, increasing tree cover from 3.6% to 8% reduces primary PM 10 concentrations by 2%, removing 4 ton of primary PM 10 per year. Increasing tree cover to 21% would reduce primary PM 10 air concentrations by 7%, removing 13 ton of primary PM 10 per year.

  12. Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings

    NASA Astrophysics Data System (ADS)

    Elbayoumi, Maher; Ramli, Nor Azam; Md Yusof, Noor Faizah Fitri; Yahaya, Ahmad Shukri Bin; Al Madhoun, Wesam; Ul-Saufie, Ahmed Zia

    2014-09-01

    In this study the concentrations of PM10, PM2.5, CO and CO2 concentrations and meteorological variables (wind speed, air temperature, and relative humidity) were employed to predict the annual and seasonal indoor concentration of PM10 and PM2.5 using multivariate statistical methods. The data have been collected in twelve naturally ventilated schools in Gaza Strip (Palestine) from October 2011 to May 2012 (academic year). The bivariate correlation analysis showed that the indoor PM10 and PM2.5 were highly positive correlated with outdoor concentration of PM10 and PM2.5. Further, Multiple linear regression (MLR) was used for modelling and R2 values for indoor PM10 were determined as 0.62 and 0.84 for PM10 and PM2.5 respectively. The Performance indicators of MLR models indicated that the prediction for PM10 and PM2.5 annual models were better than seasonal models. In order to reduce the number of input variables, principal component analysis (PCA) and principal component regression (PCR) were applied by using annual data. The predicted R2 were 0.40 and 0.73 for PM10 and PM2.5, respectively. PM10 models (MLR and PCR) show the tendency to underestimate indoor PM10 concentrations as it does not take into account the occupant's activities which highly affect the indoor concentrations during the class hours.

  13. The duration of PM10 concentration in a large metropolitan area

    NASA Astrophysics Data System (ADS)

    Lonati, Giovanni; Cernuschi, Stefano; Giugliano, Michele

    2011-01-01

    Annual ambient PM10 concentration time series recorded between 1991 and 2006 at 13 monitoring stations located within the "critical area" of Milan (Italy), encompassing the city and its metropolitan area, are analysed for the temporal duration of concentration levels. Duration episodes occur when the measured concentration is continuously higher than fixed concentration thresholds. For 20 concentration thresholds, ranging from 10 μg m -3 up to 200 μg m -3 by a 10 μg m -3 step, the total time of exceedance, the number of events of exceedance and the duration of the events of exceedance are evaluated on annual basis. Simple, empirically-derived expressions, formulated in order to describe these features of the observed durations, are presented. Since these formulations are parameterized in terms of the annual average PM10 concentration, they can be used to assess expected exposure to high-concentration levels for future scenarios characterized by lower annual average concentrations. A case-study for Milan urban area is presented, assessing the occurrence of duration episodes at annual PM10 concentration at the compliance level of the PM10 air quality limits, currently not-attained.

  14. Real-time PM10 concentration monitoring on Penang Bridge by using traffic monitoring CCTV

    NASA Astrophysics Data System (ADS)

    Low, K. L.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Wong, C. J.

    2007-04-01

    For this study, an algorithm was developed to determine concentration of particles less than 10μm (PM10) from still images captured by a CCTV camera on the Penang Bridge. The objective of this study is to remotely monitor the PM10 concentrations on the Penang Bridge through the internet. So, an algorithm was developed based on the relationship between the atmospheric reflectance and the corresponding air quality. By doing this, the still images were separated into three bands namely red, green and blue and their digital number values were determined. A special transformation was then performed to the data. Ground PM10 measurements were taken by using DustTrak TM meter. The algorithm was calibrated using a regression analysis. The proposed algorithm produced a high correlation coefficient (R) and low root-mean-square error (RMS) between the measured and produced PM10. Later, a program was written by using Microsoft Visual Basic 6.0 to download still images from the camera over the internet and implement the newly developed algorithm. Meanwhile, the program is running in real time and the public will know the air pollution index from time to time. This indicates that the technique using the CCTV camera images can provide a useful tool for air quality studies.

  15. Development of cotton gin PM10 emission factors for EPA’s AP-42

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  16. [Emission characteristics of PM10 from coal-fired industrial boiler].

    PubMed

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China. PMID:19432307

  17. 78 FR 21583 - Approval and Promulgation of Air Quality Implementation Plans; Eugene-Springfield PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 52 and 81 Approval and Promulgation of Air Quality Implementation Plans; Eugene-Springfield PM10 Nonattainment Area Limited Maintenance Plan and Redesignation Request AGENCY:...

  18. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Particulate matter (PM-10) Group III... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter... State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  19. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Particulate matter (PM-10) Group II SIP... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter... submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  20. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group III... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter... State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  1. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Particulate matter (PM-10) Group II SIP... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter... submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  2. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Particulate matter (PM-10) Group III... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter... State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  3. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter... submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  4. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Particulate matter (PM-10) Group II SIP... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter... submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  5. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Particulate matter (PM-10) Group III... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter... State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  6. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... State Implementation Plan Development in Group II Areas. The Iowa Department of Natural Resources committed to comply with the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... Development in Group II Areas. 52.823 Section 52.823 Protection of Environment ENVIRONMENTAL PROTECTION...

  7. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... State Implementation Plan Development in Group II Areas. The Iowa Department of Natural Resources committed to comply with the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... Development in Group II Areas. 52.823 Section 52.823 Protection of Environment ENVIRONMENTAL PROTECTION...

  8. PORTNEUF VALLEY, IDAHO PM-10 DISPERSION MODEL INCLUDING SECONDARY CHEMICAL FORMATION

    EPA Science Inventory

    A dispersion modeling effort for the Portneuf Valley, Pocatello, Idaho PM-10 attainment demonstration is underway. The model will treat the secondary chemical formation process, primarily sulfate and nitrate formation under both the aqueous and gas phases. The model will simul...

  9. 40 CFR 52.823 - PM10 State Implementation Plan Development in Group II Areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... committed to comply with the PM10 regulations as set forth in 40 CFR part 51. In a letter to Morris Kay, EPA... October 13, 1987, from Peter R. Hamlin to Carl Walter. The remainder of the State was classified as Group... contained in a letter of January 26, 1988, from Peter R. Hamlin to John Helvig). (b) Analyze and verify...

  10. INVESTIGATION OF SOURCE EMISSION PM-10 PARTICULATE MATTER FIELD STUDIES OF CANDIDATE METHODS

    EPA Science Inventory

    The report outlines the results of four field tests of two candidate methods for source PM10 measurement. The first method involves a new sampling train design which incorporates emission gas recycle (EGR) to avoid the anisokinetic sampling bias inherent in size specific emission...

  11. SOURCE APPORTIONMENT OF SECONDARY SULFATE IN PORTNEUF VALLEY, IDAHO PM-10 NONATTAINMENT AREA

    EPA Science Inventory

    Region 10 will use Chemical Mass Balance (CMB) modeling in a effort to apportion secondary sulfate that significantly contributes to the total PM-10 mass observed on ambient filters in the Pocatello, Idaho area. This study will investigate whether it is reasonable to apportion ...

  12. 75 FR 63139 - Approval and Promulgation of Implementation Plans-Maricopa County (Phoenix) PM-10 Nonattainment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    .... SUMMARY: On September 9, 2010 (75 FR 54806), EPA published a proposed rule proposing to approve in part.../actions . SUPPLEMENTARY INFORMATION: On September 9, 2010 (75 FR 54806), EPA published a proposed rule... Nonattainment Area; Serious Area Plan for Attainment of the 24-Hour PM-10 Standard; Clean Air Act Section...

  13. Investigating the capability of a control chart based on functional data for daily PM10 monitoring

    NASA Astrophysics Data System (ADS)

    Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd

    2015-02-01

    A control chart based on functional data (FD) has been proposed to be used as a tool for detecting anomalies and for assessing the trend of daily PM10. In this study, the capability of the FD control chart is investigated. The performance of the FD control chart is compared to the control charts based on the average (AV) and multivariate (MV) data. Daily PM10 indices for AV control chart are the average values while the indices for the MV and FD control charts are computed based on the Principal Component Analysis (PCA) model. The experimentation is conducted using real PM10 data from the Shah Alam air quality monitoring station located at the west of Peninsular Malaysia to investigate the performance of the control charts. The results of the first stage analysis have shown that the FD control chart outperforms the AV and MV control charts in detecting PM10 anomalies of extreme levels. Using a similar number of principal components, it is also found that the PCA model based on FD is able to capture more information compared to the PCA model based on MV. By means of the operating characteristics (OC) curve, the results from the subsequent analysis also reveal that the FD control chart is more sensitive to the changes in the control limits. Overall, the study results have indicated that the FD control chart is worth pursuing.

  14. Monitoring of (7)Be in surface air of varying PM(10) concentrations.

    PubMed

    Chao, J H; Liu, C C; Cho, I C; Niu, H

    2014-07-01

    In this study, beryllium-7 ((7)Be) concentrations of surface air were monitored throughout a span of 23 years (1992-2012) in the Taiwanese cities Yilan, Taipei, Taichung, and Kaohsiung. During this period, particulate matter (PM) concentrations, in terms of PM10, were collected monthly from the nearest air-quality pollutant monitoring stations and compared against (7)Be concentrations. Seasonal monsoons influenced (7)Be concentrations in all cities, resulting in high winter and low summer concentrations. In addition, the meteorological conditions caused seasonal PM10 variations, yielding distinct patterns among the cities. There was no correlation between (7)Be and PM10 in the case cities. The average annual (7)Be concentrations varied little among the cities, ranging from 2.9 to 3.5 mBq/m(3), while the PM10 concentrations varied significantly from 38 μg/m(3) in Yilan to 92 μg/m(3) in Kaohsiung depending on the degree of air pollution and meteorological conditions. The correlation between the (7)Be concentration and gross-beta activities (Aβ) in air implied that the (7)Be was mainly attached to crustal PM and its concentration varied little among the cities, regardless of the increase in anthropogenic PM in air-polluted areas. PMID:24607534

  15. 40 CFR 52.63 - PM10 State Implementation Plan development in group II areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... committal SIP for the cities of Leeds and North Birmingham in Jefferson County. The committal SIP contains all the requirements identified in the July 1, 1987, promulgation of the SIP requirements for PM10 at 52 FR 24681. The SIP commits the State to submit an emissions inventory, continue to monitor for...

  16. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the State Implementation Plan (SIP) for implementing the required monitoring activities and other...

  17. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Mexico § 52.1637 Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico... New Mexico Environmental Improvement Division, for implementing all of the required...

  18. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Mexico § 52.1637 Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico... New Mexico Environmental Improvement Division, for implementing all of the required...

  19. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Mexico § 52.1637 Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico... New Mexico Environmental Improvement Division, for implementing all of the required...

  20. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Mexico § 52.1637 Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico... New Mexico Environmental Improvement Division, for implementing all of the required...

  1. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Mexico § 52.1637 Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico... New Mexico Environmental Improvement Division, for implementing all of the required...

  2. 77 FR 31268 - Determination of Attainment for the Paul Spur/Douglas PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... the metropolitan areas in Arizona. Annually, ADEQ submits monitoring network plan reports to EPA... NA monitoring network? B. Do the Paul Spur/Douglas NA Monitors meet minimum Federal ambient air... standards. 52 FR 24634; (July 1, 1987). Effective December 18, 2006, EPA revoked the annual PM 10...

  3. PM2.5 and PM10 Emission from Agricultural Soils by Wind Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil tillage and wind erosion are a major source of particulate matter less than 2.5 and 10 µm (PM2.5 and PM10) emission from cultivated soil. Fifteen cultivated soils collected from 5 states were tested as crushed (<2.0 mm) and uncrushed (natural aggregation) at 8, 10, and 13 m s-1 wind velocity in...

  4. Trace elements and lead isotopic composition of PM 10 in Lhasa, Tibet

    NASA Astrophysics Data System (ADS)

    Cong, Zhiyuan; Kang, Shichang; Luo, Chunling; Li, Qing; Huang, Jie; Gao, Shaopeng; Li, Xiangdong

    2011-11-01

    This paper presents the first detailed investigation on airborne trace metals and their potential major sources at Lhasa, the largest city in Tibetan Plateau (TP). The whole year PM 10 samples were collected during September 2007 and August 2008. The annual average concentration of PM 10 in Lhasa was 51.8 ± 42.5 μg m -3, lower than those of major Asian cities. Distinct seasonal patterns were observed in PM 10 concentration, with higher concentrations in winter, and lower in summer. The mean elemental concentrations were generally comparable with other urban areas, but significantly higher than those from a remote site in TP (i.e., Nam Co). Crustal elements, including Na, Mg, Al, K, Ca, Sc, Ti, V, Mn, Fe, As and Ba, had similar seasonal patterns in PM 10, while other elements, such as Cr, Co, Ni, Cu, Zn, and Cd, had less distinct seasonal variations, suggesting more anthropogenic inputs of the latter group. The result of principle component analysis (PCA) on trace elements demonstrated that fugitive dusts, traffic emissions and waste incineration activities were probably the major sources of anthropogenic metals in the atmosphere at Lhasa. The Pb isotopic compositions revealed that the metal was mainly originated from nature background with a minor contribution from the cement factory. The data obtained in this study can be useful for making pollution control strategies in the city, and also valuable for trace element studies in other environmental medium, such as snow, ice core, and lake sediments in the TP region.

  5. A PROBABILISTIC POPULATION EXPOSURE MODEL FOR PM10 AND PM 2.5

    EPA Science Inventory

    A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM10, and PM2.5, exposures of an urban, population has been developed. This model is intended to be used to predict exposure (magnitude, frequency, and duration) ...

  6. PM10 emissions from aggregate fractions of an Entic Haplustoll under two contrasting tillage systems

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Aimar, Silvia B.; Buschiazzo, Daniel E.

    2015-12-01

    Tillage systems affect physical and chemical properties of soils modifying its aggregation. How changes of the aggregate size distribution affect the capacity of the soil to emit fine particulate matter (PM10) to the atmosphere during wind erosion processes, is a less investigated issue. In order to answer this question, PM10 emissions from an Entic Haplustoll submitted to 25 years of continuous conventional tillage (LC) and no-till (NT) were analyzed. Soil samples were sieved with a rotary sieve in order to determine the aggregate size distribution (fractions : <0.42 mm, 0.42-0.84 mm, 0.84-2 mm, 2-6.4 mm, 6.4-19.2 mm, and >19.2 mm), the dry aggregate stability (DAS) and the erodible fraction (EF). The organic matter contents (OM), the particle size composition and the PM10 emission of each aggregate fraction were also measured. Results showed that NT promoted OM accumulations in all aggregate fractions which favored DAS and soil aggregation. The <0.42 mm sized aggregates (27%) predominated in CT and the >19.2 mm (41.7%) in NT, while the proportion of the other aggregate fractions was similar in both tillage systems. As a consequence of the smaller proportion of the <0.42 mm aggregates, the erodible fraction was lower in NT (EF: 17.3%) than in CT (30.8%). PM10 emissions of each aggregate fraction (AE) decreased exponentially with increasing size of the fractions in both tillage systems, mainly as a consequence of the smaller size and higher specific surface. AE was higher in CT than in NT for all aggregate fractions, but the higher differences were found in the <0.42 mm aggregates (18 μg g-1 in CT vs 8 μg g-1 in NT). The PM10 emission of the whole soil was three times higher in CT than in NT, while the emission of the erodible fraction (EFE) was in CT four times higher than in NT. PM10 emissions of the <0.42 mm aggregates represented over 50% of SE and 90% of EFE. We concluded that NT reduced the capacity of soils of the semiarid Pampas to emit PM10 because it

  7. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; He, Jiang; Zhao, Boyi; Zhang, Lijun; Fan, Qingyun; Lü, Changwei; Dudagula; Liu, Tao; Yuan, Yinghui

    2016-09-01

    Particulate matter (PM), including PM10 and PM2.5, is one of the major impacts on air quality, visibility, climate change, earth radiation balance, and public health. Organic carbon (OC) and elemental carbon (EC) are the major components of PM. 804 samples (PM10 and PM2.5) were simultaneously collected from six urban sites covering 3 districts in Baotou, in January, April, September, and November 2014. As to a long-term study on the effects of carbonaceous aerosol, data were collected annually at Environmental Protection Agency of Baotou (EPB). The concentrations of PM10 and PM2.5, the spatial distribution and content of OC and EC, the relationship between OC and EC, and the formation of secondary organic carbon (SOC) have been investigated. The findings indicated that the concentrations of these particle matter are higher than that in US or European standards. The average concentrations of OC in PM10 and PM2.5 follow the order: January > November > April > September; and for EC in PM10 and PM2.5 follow the order: January > November > September > April. Affected by metrological factors, it was indicated that high wind speed and low relative humidity were beneficial for removal of OC and EC in January and November. Pearson correlations and cluster analysis on OC and EC concentrations in PM10 and PM2.5 with gaseous pollutants (SO2, NO2, and CO) suggested that OC shared the same emission sources with SO2 and CO from combustion, while EC's sources mainly came from vehicles exhaust and combustion which contributed to NO2 as well. The OC concentration is mainly primary in warm months, while it appears secondary in cold months in Baotou. There is a common characteristic among the cities with higher SOC in winter, wherever the coal combustion can lead to the severe pollution. This work is important for the construction of the database of OC and EC concentrations in PM10 and PM2.5 at spatial and time intervals, and it can provide scientific suggestion for similar PM

  8. Empirical Model for Evaluating PM10 Concentration Caused by River Dust Episodes

    PubMed Central

    Lin, Chao-Yuan; Chiang, Mon-Ling; Lin, Cheng-Yu

    2016-01-01

    Around the estuary of the Zhuo-Shui River in Taiwan, the waters recede during the winter, causing an increase in bare land area and exposing a large amount of fine earth and sand particles that were deposited on the riverbed. Observations at the site revealed that when northeastern monsoons blow over bare land without vegetation or water cover, the fine particles are readily lifted by the wind, forming river dust, which greatly endangers the health of nearby residents. Therefore, determining which factors affect river dust and constructing a model to predict river dust concentration are extremely important in the research and development of a prototype warning system for areas at risk of river dust emissions. In this study, the region around the estuary of the Zhuo-Shui River (from the Zi-Qiang Bridge to the Xi-Bin Bridge) was selected as the research area. Data from a nearby air quality monitoring station were used to screen for days with river dust episodes. The relationships between PM10 concentration and meteorological factors or bare land area were analyzed at different temporal scales to explore the factors that affect river dust emissions. Study results showed that no single factor alone had adequate power to explain daily average or daily maximum PM10 concentration. Stepwise regression analysis of multiple factors showed that the model could not effectively predict daily average PM10 concentration, but daily maximum PM10 concentration could be predicted by a combination of wind velocity, temperature, and bare land area; the coefficient of determination for this model was 0.67. It was inferred that river dust episodes are caused by the combined effect of multiple factors. In addition, research data also showed a time lag effect between meteorological factors and hourly PM10 concentration. This characteristic was applied to the construction of a prediction model, and can be used in an early warning system for local residents. PMID:27271642

  9. A spatially varying coefficient model for mapping PM10 air quality at the European scale

    NASA Astrophysics Data System (ADS)

    Hamm, N. A. S.; Finley, A. O.; Schaap, M.; Stein, A.

    2015-02-01

    Particulate matter (PM) air quality in Europe has improved substantially over the past decades, but it still poses a significant threat to human health. Accurate regional scale maps of PM10 concentrations are needed for monitoring progress in mitigation strategies and monitoring compliance with statutory limit values. Chemistry transport models (CTM) use emission databases and simulate the transport and deposition of pollutants. They deliver such maps but are known to be inaccurate. A promising approach is to use geostatistics to model the relationship between the in situ observations and the CTM. This has been shown to be more accurate than using either observations or CTM's alone. This paper presents a spatially varying coefficients (SVC) geostatistical model as an extension of the standard spatially varying intercept (SVI) geostatistical model. SVC allowed the regression coefficient to vary spatially according to a covariance function, the parameters of which were estimated from the data. It was built as a Bayesian hierarchical model and implemented using Markov chain Monte Carlo. The procedure was applied to Airbase PM10 observations and LOTOS-EUROS simulated PM10 for central, southern and eastern Europe. Model-fit diagnostics showed that SVC delivered a better fit to the data than SVI. Mapping the spatially varying coefficients allowed identification of the locations where the CTM performed well or poorly. This could be used for objective CTM evaluation purposes. The posterior predictive simulations were also used to map median PM10 concentrations as well as the probability of exceeding the 50 μg m-3 EU daily PM10 concentration threshold. Although posterior median prediction accuracy was similar for SVI and SVC, SVC better modelled the process and yielded narrower credible intervals. As such, SVC was more appropriate for quantifying uncertainty and for mapping threshold exceedances. The resulting maps may be used to guide air quality assessment and mitigation

  10. Empirical Model for Evaluating PM10 Concentration Caused by River Dust Episodes.

    PubMed

    Lin, Chao-Yuan; Chiang, Mon-Ling; Lin, Cheng-Yu

    2016-01-01

    Around the estuary of the Zhuo-Shui River in Taiwan, the waters recede during the winter, causing an increase in bare land area and exposing a large amount of fine earth and sand particles that were deposited on the riverbed. Observations at the site revealed that when northeastern monsoons blow over bare land without vegetation or water cover, the fine particles are readily lifted by the wind, forming river dust, which greatly endangers the health of nearby residents. Therefore, determining which factors affect river dust and constructing a model to predict river dust concentration are extremely important in the research and development of a prototype warning system for areas at risk of river dust emissions. In this study, the region around the estuary of the Zhuo-Shui River (from the Zi-Qiang Bridge to the Xi-Bin Bridge) was selected as the research area. Data from a nearby air quality monitoring station were used to screen for days with river dust episodes. The relationships between PM10 concentration and meteorological factors or bare land area were analyzed at different temporal scales to explore the factors that affect river dust emissions. Study results showed that no single factor alone had adequate power to explain daily average or daily maximum PM10 concentration. Stepwise regression analysis of multiple factors showed that the model could not effectively predict daily average PM10 concentration, but daily maximum PM10 concentration could be predicted by a combination of wind velocity, temperature, and bare land area; the coefficient of determination for this model was 0.67. It was inferred that river dust episodes are caused by the combined effect of multiple factors. In addition, research data also showed a time lag effect between meteorological factors and hourly PM10 concentration. This characteristic was applied to the construction of a prediction model, and can be used in an early warning system for local residents. PMID:27271642

  11. Bedrock controls on the mineralogy and chemistry of PM10 extracted from Australian desert sediments

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Amato, Fulvio; Querol, Xavier; Alastuey, Andrés; Elvira, Josep; Gibbons, Wes

    2009-03-01

    Given the relevance of desert aerosols to environmental issues such as dust storms, climate change and human health effects, we provide a demonstration of how the bedrock geology of an arid area influences the mineralogy and geochemistry of even the finest particulate matter (i.e., the inhalable fraction <10 μm in size: PM10). PM10 samples extracted from desert sediments at geologically contrasting off-road sites in central and southeastern Australia (granitic, high grade metamorphic, quartzitic sandstone) were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The “granitic” PM10 are highly alkali feldspathic and illitic, with a wide range of accessory minerals including rutile (TiO2), monazite [(Ce, La, Nd, Th, Y) PO4], xenotime (YPO4), apatite [Ca5(PO4)3 (F, OH, Cl)], hematite (Fe3O4), zircon (ZrSiO4) and thorite (ThSiO4). This mineralogy is reflected in the geochemistry which shows notable enrichments in rare earth elements (REE) and most high field strength elements (both held in the accessory minerals), and higher than normal levels of low (<2.0) ionic potential elements (Na, K, Li, Cs, Rb: held in alkali feldspar and illite). The “metamorphic” resuspended PM10 define a mineralogy clearly influenced by local exposures of pelitic and calc-silicate schists (sillimanite, muscovite, calcite, Ca-amphibole), a dominance of monazite over other REE-bearing phases, and a geochemistry distinguished by enrichments in alkaline earth metals (Ca, Mg, Ba, Sr) and depletion in heavy REE. The “quartzite” PM10, derived from rocks already recycled by Precambrian erosion and sedimentary transport, show a sedimentologically mature mineralogy of mostly quartz and kaolinite, detrital accessory ilmenite, rutile, monazite and hematite, and the strongest geochemical depletion (especially K, Rb, Cs, Na, Ca, Mg, Ba).

  12. The relationship between estimated water content and water soluble organic carbon of PM10 at Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S.; Kim, Y.; Lee, J.; Lee, S.; Yi, S.

    2011-12-01

    The organic carbon (OC) in atmospheric aerosols can be divided in water soluble organic carbon (WSOC) and water insoluble organic carbon (WISOC). WSOC constitutes a significant fraction of the carbon mass of aerosols, ranging from 27% to 83% (Yu et al., 2004). WSOC and absorbed water in atmospheric aerosol can impact climate directly by scattering solar radiation. Also, these can act as cloud condensation nuclei (CCN) (Saxena et al., 1995; Yu et al., 2004). The role of WSOC in water absorption is especially unclear. So, it is essential to understand the relevance of water content and WSOC. In this study, we have analyzed relationship between the measured WSOC concentrations and estimated aerosol water content of PM10 (particles in the atmosphere with a diameter of less than or equal to a nominal 10 μm) for the period between September 2006 and August 2007 at Seoul, Korea. Water content of PM10 was estimated by using a gas/particle equilibrium model, SCAPE2 (Kim et al., 1993). WSOC and estimated water content showed a positive correlation when the ambient relative humidity (RH) was less than 70%. But when RH was higher than 70%, WSOC and estimated water content did not show a correlation. However, WISOC over OC showed negative correlation with estimated water content of PM10 when RH was less than 70%. It was found that WSOC was correlated well with NO3- that is a secondary component formed by photochemical oxidation. References Kim, Y. P., Seinfeld, J. H., Saxena, P., 1993, Atmospheric gas-aerosol equilibrium I. Thermodynamic model, Aerosol Science and Technology, 19, 157-181. Saxena, P., Hildemann, L. M., McMurry, P. H., Seinfeld, J. H., 1995, Organics alter hygroscopic behavior of atmospheric particles, Journal of Geophysical Research, 100(D9), 18755-18770. Yu, J. Z., Yang, H., Zhang, H. and Lau, A. K. H., 2004, Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics, Atmospheric Environment, 38, 1061-1071.

  13. Temporal and spatial PM10 concentration distribution using an inverse distance weighted method in Klang Valley, Malaysia

    NASA Astrophysics Data System (ADS)

    Tarmizi, S. N. M.; Asmat, A.; Sumari, S. M.

    2014-02-01

    PM10 is one of the air contaminants that can be harmful to human health. Meteorological factors and changes of monsoon season may affect the distribution of these particles. The objective of this study is to determine the temporal and spatial particulate matter (PM10) concentration distribution in Klang Valley, Malaysia by using the Inverse Distance Weighted (IDW) method at different monsoon season and meteorological conditions. PM10 and meteorological data were obtained from the Malaysian Department of Environment (DOE). Particles distribution data were added to the geographic database on a seasonal basis. Temporal and spatial patterns of PM10 concentration distribution were determined by using ArcGIS 9.3. The higher PM10 concentrations are observed during Southwest monsoon season. The values are lower during the Northeast monsoon season. Different monsoon seasons show different meteorological conditions that effect PM10 distribution.

  14. Estimation of PM10 in the traffic-related atmosphere for three road types in Beijing and Guangzhou, China.

    PubMed

    Wang, Yu; Li, Jiong; Cheng, Xiang; Lun, Xiaoxiu; Sun, Dezhi; Wang, Xingzu

    2014-01-01

    The levels of roadside PM10 in Beijing, China, were investigated in 2011 and 2012 on a seasonal basis to estimate the population exposure to particulates for three road types. The measurements of PM10 were also conducted in the southern Chinese megacity of Guangzhou for comparison purposes. The results showed that roadside PM10 in Beijing correlated strongly with the PM10 background in the urban atmosphere. The levels of PM10 in street canyons were markedly higher than those along the open roads and in crossroad areas because of limited ventilation. An elevation of PM10 was observed in April, which was possibly due to the sand storms that frequently occur in the spring. Based on these observations, roadside PM10 in Beijing could have multiple origins and was to some extent dispersion-governed. In Guangzhou, the roadside PM10 did not closely relate to the background values. The PM10 pollution was greatly affected by local traffic conditions. The simulation of PM10 for different road types was completed during the study period using the Motor Vehicle Emissions Factor Model (MOBILE6.2) as an emission model and the California Line Source Dispersion Model (CALINE4) and Operational Street Pollution Model (OSPM) as dispersion models. The MOBILE6.2/CALINE4 software package was demonstrated to be sufficient for the simulation of PM10 in the open roads and crossroad areas in both Beijing and Guangzhou, and the simulation results of roadside PM10 in the street canyons by the MOBILE6.2/OSPM package were in close agreement with those of the measurements. PMID:24649707

  15. Seasonal variation and source apportionment of organic tracers in PM10 in Chengdu, China.

    PubMed

    Yin, H L; Qiu, C Y; Ye, Z X; Li, S P; Liang, J F

    2015-02-01

    Organic compound tracers including n-alkanes, triterpane, sterane, polycyclic aromatic hydrocarbons (PAHs) and dicarboxylic acids of airborne particulate matter (PM10) were characterized for samples collected at five sites from July 2010 to March 2011 using GC/MS. Spatial and temporal variations of these organic tracers in PM10 were studied, and their sources were then identified respectively. Average daily concentrations of PM10 varied in different seasons with the trend of PM10 in winter (0.133 mg/m(3)) > autumn (0.120 mg/m(3)) > spring (0.103 mg/m(3)) > summer (0.098 mg/m(3)). Daily concentrations of n-alkanes (C11-C36) ranged from 12.11 to 163.58 ng/m(3) with a mean of 61.99 ng/m(3). The C max and CPI index of n-alkanes indicated that vehicle emissions were the major source in winter, while the contributions of high plant wax emissions became significant in other seasons. It was discovered that the main sources of triterpenoid and steranes were gasoline and diesel engine emissions. Concentrations of ∑15PAHs in PM10 also varied (12.25-58.56 ng/m(3)) in different seasons, and chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi) perylene and fluoranthene were the dominant components. In the four seasons, the concentration of ∑15PAHs was relatively higher at the northern site because of traffic congestion. The main source of airborne PAHs was traffic emissions and coal combustion. Average daily concentrations of dicarboxylic acids (C4-C10) in PM10 ranged from 12.11 to 163.58 ng/m(3), of which azeleic acid was the major compound (0.49-52.04 ng/m(3), average 14.93 ng/m(3)), followed by succinic acid (0.56-19.08 ng/m(3), average 6.84 ng/m(3)). The ratio of C6/C9 showed that the major source in winter was biological, while the contributions of emissions from anthropogenic activities were much higher in summer. PMID:25119534

  16. Geochemical and isotopic analyses of PM10 in Lower Silesia - preeliminary data

    NASA Astrophysics Data System (ADS)

    Zwolińska, Elżbieta; Ciężka, Monika

    2013-09-01

    The main aim of the study was to determine the origin of particulate air pollution in Lower Silesia. Samples of PM10 dust were collected on quartz filters Whatman QM-A by employees of Voivodship Inspectorate for Environmental Protection (VIEP) in Wroclaw in 2011. As a pilot researches in Lower Silesia were selected two monitoring points of VIEP: (i) Osieczow and (ii) Zgorzelec. Air sampling point in Osieczow is a point of regional background and it is an excellent reference base for the analyses of PM10 in Lower Silesia. The aim of monitoring in this point is to assess the exposure of ecosystems to air pollution. Sampling point in Zgorzelec reflects the urban background and the measurements will be compared, in the future, to the results of the sampling points investigated the impact of industry and local transport on air quality in the whole Lower Silesia. For further geochemical and isotopic analyses were selected 25 samples from each sampling point, average every two weeks measurement. The concentration of PM10 dust for Osieczow ranged from 7 μg•m-3 (11.10.2011r.) to 89 μg•m-3 (4.03.2011r.) with an average of 24 μg•m-3 and for Zgorzelec between 10 μg•m-3 (11.10.2011r.) and 85 μg•m-3 (9.11.2011r.) with an average of 26 μg•m-3. The mean percentage contribution of carbon in PM10 samples from Osieczow was 47%, while in Zgorzelec 42%. The obtained values of δ03C (PM10) in Osieczow varied from -31.1‰ (5.02.2011r.) to -25.5‰ (26.10.2011r.) with an average of -27.6‰, whereas in Zgorzelec between -28.6‰ (15.07.2011r.) and -25.2‰ (6.01.2011r.) with an average of -26.8‰. At the current stage of research is clearly discernible the different carbon isotope record in the material dust (qualitative information), despite the identical range of concentrations of PM10 in both analysed points (quantitative information). This confirms the appropriateness of the choice both research method and monitoring points.

  17. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China.

    PubMed

    Wang, Xinhua; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2006-07-31

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic

  18. Basic statistics of PM2.5 and PM10 in the atmosphere of Mexico City.

    PubMed

    Vega, E; Reyes, E; Sánchez, G; Ortiz, E; Ruiz, M; Chow, J; Watson, J; Edgerton, S

    2002-03-27

    The high levels of fine particulate matter in Mexico City are of concern since they may induce severe public health effects as well as the attenuation of visible light. Sequential filter samplers were used at six different sites from 23 February to 22 March 1997. The sampling campaign was carried out as part of the project 'Investigación sobre Materia Particulada y Deterioro Atmosferico-Aerosol and Visibility Evaluation Research'. This research was a cooperative project sponsored by PEMEX and by the US Department of Energy. Sampling sites represent the different land uses along the city, the northwest station, Tlalnepantla, is located in a mixed medium income residential and industrial area. The northeast station, Xalostoc, is located in a highly industrialized area, Netzahualcoyotl is located in a mixed land use area, mainly commercial and residential. Station La Merced is located in the commercial and administrative district downtown. The southwest station is located in the Pedregal de San Angel, in a high-income neighborhood, and the southeast station located in Cerro de la Estrella is a mixed medium income residential and commercial area. Samples were collected four times a day in Cerro de la Estrella (CES), La Merced (MER) and Xalostoc (XAL) with sampling periods of 6 h. In Pedregal (PED), Tlalnepantla (TLA) and Netzahualcoyot1 (NEZ) sampling periods were every 24 h. In this paper the basic statistics of PM2.5 and PM10 mass concentrations are presented. The average results showed that 49, 61, 46, 57, 51 and 44% of the PM10 consisted of PM2.5 for CES, MER, XAL, PED, TLA and NEZ, respectively. The 24-h average highest concentrations of PM25 and PM10 were registered at NEZ (184 and 267 microg/m3) and the lowest at PED (22 and 39 microg/m3). The highest PM10 correlations were between XAL-CES (0.79), PED-TLA (0.80). In contrast, the highest PM2.5 correlations were between CES-PED (0.74), MER-CES (0.73) and TLA-PED (0.72), showing a lower correlation than the PM10

  19. Predicting particulate (PM10) personal exposure distributions using a random component superposition statistical model.

    PubMed

    Ott, W; Wallace, L; Mage, D

    2000-08-01

    This paper presents a new statistical model designed to extend our understanding from prior personal exposure field measurements of urban populations to other cities where ambient monitoring data, but no personal exposure measurements, exist. The model partitions personal exposure into two distinct components: ambient concentration and nonambient concentration. It is assumed the ambient and nonambient concentration components are uncorrelated and add together; therefore, the model is called a random component superposition (RCS) model. The 24-hr ambient outdoor concentration is multiplied by a dimensionless "attenuation factor" between 0 and 1 to account for deposition of particles as the ambient air infiltrates indoors. The RCS model is applied to field PM10 measurement data from three large-scale personal exposure field studies: THEES (Total Human Environmental Exposure Study) in Phillipsburg, NJ; PTEAM (Particle Total Exposure Assessment Methodology) in Riverside, CA; and the Ethyl Corporation study in Toronto, Canada. Because indoor sources and activities (smoking, cooking, cleaning, the personal cloud, etc.) may be similar in similar populations, it was hypothesized that the statistical distribution of nonambient personal exposure is invariant across cities. Using a fixed 24-hr attenuation factor as a first approximation derived from regression analysis for the respondents, the distributions of nonambient PM10 personal exposures were obtained for each city. Although the mean ambient PM10 concentrations in the three cities varied from 27.9 micrograms/m3 in Toronto to 60.9 micrograms/m3 in Phillipsburg to 94.1 micrograms/m3 in Riverside, the mean nonambient components of personal exposures were found to be closer: 52.6 micrograms/m3 in Toronto; 52.4 micrograms/m3 in Phillipsburg; and 59.2 micrograms/m3 in Riverside. The three frequency distributions of the nonambient components of exposure also were similar in shape, giving support to the hypothesis that

  20. MULTI-SITE EVALUATIONS OF CANDIDATE METHODOLOGIES FOR DETERMINING COARSE PARTICULATE (PM 10-2.5) CONCENTRATIONS: AUGUST 2005 UPDATED REPORT REGARDING SECOND-GENERATION AND NEW PM 10-2.5 SAMPLERS

    EPA Science Inventory

    Multi-site field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 (PM10 2.5) in ambient air. The field studies involved the use of both time-integrated filter-based and direct continuous methods. Despite operationa...

  1. Evaluating urban PM 10 pollution benefit induced by street cleaning activities

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Querol, Xavier; Alastuey, Andrés; Pandolfi, Marco; Moreno, Teresa; Gracia, José; Rodriguez, Pau

    Despite their burden in urban particulate air pollution, road traffic non-exhaust emissions are often uncontrolled and information about the effectiveness of mitigation measures on paved roads is still scarce. The present study is aimed to evaluate the effectiveness of mechanical sweeping/water flushing treatments in mitigating urban road dust resuspension and to quantify the real benefit in terms of ambient PM 10 concentrations. To this aim a specific campaign was carried out in a heavily trafficked central road of Barcelona (Spain), a Mediterranean city suffering from a traffic-related pollution, both for a high car density and a frequent lack of precipitation. Several street washings were performed by means of mechanical sweepers and pressure water during night in all traffic lanes and sidewalks. PM 10 levels were simultaneously compared with four reference urban background air quality stations to interpret any meteorological variability. At the downwind measurement site, PM 10 concentrations registered a mean daily decrease of 8.8 μg m -3 during the 24 h after street washing treatments. However 3.7-4.9 μg m -3 of such decrease were due to the meteorological variability detected at the upwind site, as well as at two of the reference sites. This reveals that an effective decrease of 4-5 μg m -3 (7-10%) can be related to street washing efficiency. Mitigation of road dust resuspension was confirmed by investigating the chemical composition of airborne-PM 10 filters. Concentrations of Cu, Sb, Fe and mineral matter decrease significantly with respect to concentrations of elemental carbon, used as tracer for exhaust diesel emissions. High efficiency of street washing in reducing road dust loads was found by performing periodic samplings both on the treated and the untreated areas.

  2. Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city

    NASA Astrophysics Data System (ADS)

    Massoud, Rawad; Shihadeh, Alan. L.; Roumié, Mohamed; Youness, Myriam; Gerard, Jocelyne; Saliba, Nada; Zaarour, Rita; Abboud, Maher; Farah, Wehbeh; Saliba, Najat Aoun

    2011-09-01

    The results of the first large scale chemical characterization of PM10 and PM2.5 at three different sites in the urban city of Beirut, Lebanon, are presented. Between May 2009 and April 2010 a total of 304 PM10 and PM2.5 samples were collected by sampling every sixth day at three different sites in Beirut. Observed mass concentrations varied between 19.7 and 521.2 μg m - 3 for PM10 and between 8.4 and 72.2 μg m - 3 for PM2.5, respectively. Inorganic concentrations accounted for 29.7-35.6 μg m - 3 and 46.0-53.5 μg m - 3 of the total mass of PM10 and PM2.5, respectively. Intra-city temporal and spatial variations were assessed based on the study of three factors: correlation coefficients (R) for PM and chemical components, coefficient of divergence (CODs), and source apportionment using positive matrix factorization (PMF). Based on R and COD of PM concentrations, the three sites appear homogeneous. However, when individual elements were compared, heterogeneity among sites was found. This latter was attributed to the variability in the percent contribution of biogenic and local anthropogenic source factors such as traffic related sources and dust resuspension. Other factors included the proximity to the Mediterranean sea, the population density and the topographical structure of the city. Hence, despite its small size (20.8 km 2), one PM monitoring site does not reflect an accurate PM level in Beirut.

  3. Spatio-temporal modeling of chronic PM 10 exposure for the Nurses' Health Study

    NASA Astrophysics Data System (ADS)

    Yanosky, Jeff D.; Paciorek, Christopher J.; Schwartz, Joel; Laden, Francine; Puett, Robin; Suh, Helen H.

    2008-06-01

    Chronic epidemiological studies of airborne particulate matter (PM) have typically characterized the chronic PM exposures of their study populations using city- or county-wide ambient concentrations, which limit the studies to areas where nearby monitoring data are available and which ignore within-city spatial gradients in ambient PM concentrations. To provide more spatially refined and precise chronic exposure measures, we used a Geographic Information System (GIS)-based spatial smoothing model to predict monthly outdoor PM10 concentrations in the northeastern and midwestern United States. This model included monthly smooth spatial terms and smooth regression terms of GIS-derived and meteorological predictors. Using cross-validation and other pre-specified selection criteria, terms for distance to road by road class, urban land use, block group and county population density, point- and area-source PM10 emissions, elevation, wind speed, and precipitation were found to be important determinants of PM10 concentrations and were included in the final model. Final model performance was strong (cross-validation R2=0.62), with little bias (-0.4 μg m-3) and high precision (6.4 μg m-3). The final model (with monthly spatial terms) performed better than a model with seasonal spatial terms (cross-validation R2=0.54). The addition of GIS-derived and meteorological predictors improved predictive performance over spatial smoothing (cross-validation R2=0.51) or inverse distance weighted interpolation (cross-validation R2=0.29) methods alone and increased the spatial resolution of predictions. The model performed well in both rural and urban areas, across seasons, and across the entire time period. The strong model performance demonstrates its suitability as a means to estimate individual-specific chronic PM10 exposures for large populations.

  4. Influence of tobacco smoke on indoor PM 10 particulate matter characteristics

    NASA Astrophysics Data System (ADS)

    Paoletti, L.; De Berardis, B.; Arrizza, L.; Granato, V.

    In this study we evaluate the influence of tobacco smoke on the physico-chemical characteristics of PM 10 in different environments: outdoors, a smoking room, the same room after a 7-day absence of smokers and in a smoke-free office. The latter office was close to the smoking room, separated by a corridor. The coarse (PM 10-2.1) and fine (PM 2.1) fractions of PM 10 collected in the monitored areas were analysed by scanning electron microscopy, equipped with a thin-window system for X-ray microanalysis (SEM/EDX). Photo-electron spectroscopy (XPS) was used to study the elemental composition of the particulate and to identify the chemical state of atomic species detected. Four clusters of particles for both "fine" and "coarse" fractions were identified: carbonaceous particles, soil erosion particles, Ca-sulphates and metal compound particles. EDX spectra showed that a percentage of carbonaceous particles carried S, Si and metal traces. High-resolution XPS spectra of the C1s region showed a significant greater occurrence of the C-O/C-N functional group in the particulate fine fraction collected in the smoking room compared to that collected outdoors. The carbonaceous component of coarse fraction collected in the smoking room appeared dissimilar from the same component detected in the other areas. After the 7-day absence of smokers this component of the PM 10-2.1 fraction was similar to the corresponding coarse fraction collected at the outdoor location. The carbonaceous component of fine fraction collected in the smoking room, containing tobacco smoke products, such as organic carbon and nicotine, was traceable in the neighbouring areas, even several days after suspension of smoking activity.

  5. Chemical composition and mass closure of ambient PM10 at urban sites

    NASA Astrophysics Data System (ADS)

    Terzi, Eleni; Argyropoulos, George; Bougatioti, Aikaterini; Mihalopoulos, Nikolaos; Nikolaou, Kostas; Samara, Constantini

    2010-06-01

    The chemical composition of PM10 was studied during summer and winter sampling campaigns conducted at two different urban sites in the city of Thessaloniki, Greece (urban-traffic, UT and urban-industrial, UI). PM10 samples were chemically analysed for minerals (Si, Al, Ca, Mg, Fe, Ti, K), trace elements (Cd, Cr, Cu, Mn, Pb, V, Zn, Te, Co, Ni, Se, Sr, As, and Sb), water-soluble ions (Cl -, NO 3-, SO 42-, Na +, K +, NH 4+, Ca 2+, Mg 2+) and carbonaceous compounds (OC, EC). Spatial variations of atmospheric concentrations showed significantly higher levels of minerals, some trace metals and TC at the UI site, while at the UT site significantly higher levels of elements like Cd, Ba, Sn, Sb and Te were observed. Crustal elements, excepting Ca at the UI site, did not exhibit significant seasonal variations at any site pointing to constant emissions throughout the year. In order to reconstruct the particle mass, the determined components were classified into six classes as follows: mineral matter (MIN), trace elements (TE), organic matter (OM), elemental carbon (EC), sea salt (SS) and secondary inorganic aerosol (SIA). Good correlations with slopes close to 1 were found between chemically determined and gravimetrically measured PM10 masses for both sites. According to the chemical mass closure obtained, the major components of PM10 at both sites were MIN (soil-derived compounds), followed by OM and SIA. The fraction unaccounted for by chemical analysis comprised on average 8% during winter and 15% during summer at the urban-industrial site, while at the urban-traffic site the percentages were 21.5% in winter and 4.8% in summer.

  6. Spatio-temporal modeling of chronic PM10 exposure for the Nurses’ Health Study

    PubMed Central

    Yanosky, Jeff D.; Paciorek, Christopher J.; Schwartz, Joel; Laden, Francine; Puett, Robin; Suh, Helen H.

    2009-01-01

    Chronic epidemiological studies of airborne particulate matter (PM) have typically characterized the chronic PM exposures of their study populations using city- or countywide ambient concentrations, which limit the studies to areas where nearby monitoring data are available and which ignore within-city spatial gradients in ambient PM concentrations. To provide more spatially refined and precise chronic exposure measures, we used a Geographic Information System (GIS)-based spatial smoothing model to predict monthly outdoor PM10 concentrations in the northeastern and midwestern United States. This model included monthly smooth spatial terms and smooth regression terms of GIS-derived and meteorological predictors. Using cross-validation and other pre-specified selection criteria, terms for distance to road by road class, urban land use, block group and county population density, point- and area-source PM10 emissions, elevation, wind speed, and precipitation were found to be important determinants of PM10 concentrations and were included in the final model. Final model performance was strong (cross-validation R2=0.62), with little bias (−0.4 μg m−3) and high precision (6.4 μg m−3). The final model (with monthly spatial terms) performed better than a model with seasonal spatial terms (cross-validation R2=0.54). The addition of GIS-derived and meteorological predictors improved predictive performance over spatial smoothing (cross-validation R2=0.51) or inverse distance weighted interpolation (cross-validation R2=0.29) methods alone and increased the spatial resolution of predictions. The model performed well in both rural and urban areas, across seasons, and across the entire time period. The strong model performance demonstrates its suitability as a means to estimate individual-specific chronic PM10 exposures for large populations. PMID:19584946

  7. Satellite-derived determination of PM10 concentration and of the associated risk on public health

    NASA Astrophysics Data System (ADS)

    Sarigiannis, Dimosthenis; Sifakis, Nicolaos I.; Soulakellis, Nikos; Tombrou, Maria; Schaefer, Klaus P.

    2004-02-01

    Recent studies worldwide have revealed the relation between urban air pollution, particularly fine aerosols, and human health. The current state of the art in air quality assessment, monitoring and management comprises analytical measurements and atmospheric transport modeling. Earth observation from satellites provides an additional information layer through the calculation of synoptic air pollution indicators, such as atmospheric turbidity. Fusion of these data sources with ancillary data, including classification of population vulnerability to the adverse health effects of fine particulate and, especially, PM10 pollution, in the ambient air, integrates them into an optimally managed environmental information processing tool. Several algorithms pertaining to urban air pollution assessment using HSR satellite imagery have been developed and applied to urban sites in Europe such as Athens, Greece, the Po valley in Northern Italy, and Munich, Germany. Implementing these computational procedures on moderate spatial resolution (MSR) satellite data and coupling the result with the output of HSR data processing provides comprehensive and dynamic information on the spatial distribution of PM10 concentration. The result of EO data processing is corrected to account for the relative importance of the signal due to anthropogenic fine particles, concentrated in the lower troposphere. Fusing the corrected maps of PM10 concentration with data on vulnerable population distribution and implementation of epidemiology-derived exposure-response relationships results in the calculation of indices of the public health risk from PM10 concentration in the ambient air. Results from the pilot application of this technique for integrated environmental and health assessment in the urban environment are given.

  8. Inverse Modeling to Improve Emission Inventory for PM10 Forecasting in East Asia Region Focusing on Korea.

    NASA Astrophysics Data System (ADS)

    Koo, Y. S.; Choi, D.; Kwon, H. Y.; Han, J.

    2014-12-01

    The aerosol transports from China and Mongolia along the Northwestern wind have large influence on the air quality in Korea and the assessment of the emission in the East Asia region is an important factor in air quality forecasting in Korea. In order to obtain working PM10 emission inventory for the PM10 forecast modeling over East Asia, the Bayesian approach with CAMx (Comprehensive Air-quality Model with extension) forward model was applied. The surface observations of PM10 from EANET (Acid Deposition Monitoring Network in East Asia), API (Air Pollution Index) sites over China and AAQMS (Ambient Air Quality Monitoring Stations) in Korea were used for the inverse modelling. The predicted PM10 concentrations with a priori emission were compared with observations at monitoring sites in China and Korea. The comparison showed that PM10 concentrations with a priori emissions were generally under-predicted. The result also indicated that anthropogenic PM10 emissions in the industrialized and urbanized areas in China were under-estimated in particular. Optimized a posteriori PM10 emissions over East Asia from inverse modelling analysis ware proposed. A posteriori PM10 emissions were much lower than the a priori emission where the soil dust emissions were prevailing. This implied that the dust emission module still had large uncertainty and it was necessary to further research on the improvement of in-line emission modelling for the soil dust. In contrast, a posteriori anthropogenic emissions from industrialized areas such as Beijing and Shenyang sites were slightly higher than a priori emission at regions. Especially, a posteriori PM10 emissions increased in Korea and in Northeast region of China. The predictions of PM10 with proposed a posteriori emission showed better agreement with the observations, implying that the inverse modelling minimized the discrepancies in the model estimation by improving PM10 emissions in East Asia. Further details of inverse modeling

  9. Developing a methodology to predict PM10 concentrations in urban areas using generalized linear models.

    PubMed

    Garcia, J M; Teodoro, F; Cerdeira, R; Coelho, L M R; Kumar, Prashant; Carvalho, M G

    2016-09-01

    A methodology to predict PM10 concentrations in urban outdoor environments is developed based on the generalized linear models (GLMs). The methodology is based on the relationship developed between atmospheric concentrations of air pollutants (i.e. CO, NO2, NOx, VOCs, SO2) and meteorological variables (i.e. ambient temperature, relative humidity (RH) and wind speed) for a city (Barreiro) of Portugal. The model uses air pollution and meteorological data from the Portuguese monitoring air quality station networks. The developed GLM considers PM10 concentrations as a dependent variable, and both the gaseous pollutants and meteorological variables as explanatory independent variables. A logarithmic link function was considered with a Poisson probability distribution. Particular attention was given to cases with air temperatures both below and above 25°C. The best performance for modelled results against the measured data was achieved for the model with values of air temperature above 25°C compared with the model considering all ranges of air temperatures and with the model considering only temperature below 25°C. The model was also tested with similar data from another Portuguese city, Oporto, and results found to behave similarly. It is concluded that this model and the methodology could be adopted for other cities to predict PM10 concentrations when these data are not available by measurements from air quality monitoring stations or other acquisition means. PMID:26839052

  10. Geochemical characterization of PM10 emitted by glass factories in Murano, Venice (Italy).

    PubMed

    Rampazzo, Giancarlo; Masiol, Mauro; Visin, Flavia; Rampado, Egisto; Pavoni, Bruno

    2008-05-01

    The atmosphere in Venice, like in other European cities, is influenced by complex PM(10) multi-emission sources with a net tendency to exceed the limits fixed by the directive 99/30/EC. This study investigated the composition of an ensemble of similar industrial sources, the Murano Glassmaking Factories (MGFs), and their influence on the Venice air quality, using a modelling approach, statistical analysis and geochemical considerations. Preliminary modelling simulations were conducted to select three sampling sites along the way of preferential transport of pollutants from source between February and April 2003. Subsequently, a sampling campaign was carried out in the same period of simulations. Concentrations of PM(10), eight major elements (Al, Ti, Ca, Mg, Na, K, Fe, Mn), 20 minor and trace elements (Li, V, Cr, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ru, Rh, Cd, Sb, Ba, Ce, Pt, Pb) and four PAHs (BaA, BbF, BkF, BaP) were quantified. The analytical results were statistically processed for exploring the relationships between inorganic elements and organic compounds, and results were interpreted using geochemical considerations. Results show a MGF component of PM(10) characterised by two different fingerprints: the first linked to glass raw material composition and the second mainly related to glass additives. Particularly, Cd, Se, As and Li preserve their ratios in all study area, and are interpreted as principal components of the MGF emissions. Other fingerprints can be traced to urban sources from the Venetian mainland. PMID:18328529

  11. A preliminary assessment of PM10 and TSP concentrations in Tuticorin, India

    PubMed Central

    Muthusubramanian, P.

    2009-01-01

    The respirable particulate matter (RPM; PM10) and total suspended particulate matter (TSP) concentrations in ambient air in Tuticorin, India, were preliminarily estimated. Statistical analyses on so-generated database were performed to infer frequency distributions and to identify dominant meteorological factor affecting the pollution levels. Both the RPM and TSP levels were well below the permissible limits set by the US Environmental Protection Agency. As expected, lognormal distribution always fit the data during the study period. However, fit with the normal was also acceptable except for very few seasons. The RPM concentrations ranged between 20.9 and 198.2 μg/m3, while the TSP concentrations varied from 51.5 to 333.3 μg/m3 during the study period. There was a better correlation between PM10–100 and TSP concentrations than that of PM10 (RPM) and TSP concentrations, but the correlation of RPM fraction was also acceptable. It was found that wind speed was the most important meteorological factor affecting the concentrations of the pollutants of present interest. Significant seasonal variations in the pollutant concentrations of present interest were found at 5% significance level except for TSP concentrations in the year 2006. PMID:20495598

  12. Dispersion and receptor model analysis of a western community's PM-10 problem

    SciTech Connect

    Dresser, A.L.

    1988-11-01

    Telluride is a resort community located in southwest Colorado at an altitude of 8800 feet above sea-level. The town is situated in the San Miguel Valley near the end of a box canyon surrounded on three sides by mountains. Telluride's permanent population of 1200 can increase to an overnight population of over 4000 during peak ski periods. With the promulgation of a new PM-10 standard in July 1987, Telluride was categorized as a nonattainment Group I PM-10 area. The technical analysis performed to meet the PM-10 Group I State Implementation Plan (SIP) requirements has been described in detail. A brief summary of that analysis which looked at the wintertime problem is presented. The vertical particulate profiles taken in west Telluride consistently showed a well-mixed layer up to 14 m, which corresponds approximately to the maximum plume height of woodsmoke emissions. Above this height, concentrations decreased and reached background levels of about 35 m. Temperature profiles taken concurrently with the particulate data showed temperature inversions had little impact on the mixing depth during stable, drainage conditions. The findings of the DRI study were incorporated into the dispersion modeling in the form of mixing heights and by modifying the vertical profile of particulates in a box. The uniform distribution initially assumed by the model was modified to that which was observed.

  13. A Model Chain Application to Estimate Mixing Layer Height Related to PM10 Dispersion Processes

    PubMed Central

    Guarnieri, F.; Calastrini, F.; Busillo, C.; Messeri, G.; Gozzini, B.

    2015-01-01

    The mixing layer height (MLH) is a crucial parameter in order to investigate the near surface concentrations of air pollutants. The MLH can be estimated by measurements of some atmospheric variables, by indirect estimates based on trace gases concentration or aerosol, or by numerical models. Here, a modelling approach is proposed. The developed modelling system is based on the models WRF-ARW and CALMET. This system is applied on Firenze-Prato-Pistoia area (Central Italy), during 2010, and it is compared with in situ measurements. The aim of this work is to evaluate the use of MLH model estimates to characterize the critical episodes for PM10 in a limited area. In order to find out the meteorological conditions predisposing accumulation of PM10 in the atmosphere's lower level, some indicators are used: daily mean wind speed, cumulated rainfall, and mean MLH estimates from CALMET model. This indicator is linked to orography, which has important consequences on local weather dynamics. However, during critical events the local emission sources are crucial to the determination of threshold exceeding of PM10. Results show that the modelled MLH, together with cumulative rainfall and wind speed, can identify the meteorological conditions predisposing accumulation of air pollutant at ground level. PMID:26618190

  14. Urban enhancement of PM10 bioaerosol tracers relative to background locations in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Rathnayake, Chathurika M.; Metwali, Nervana; Baker, Zach; Jayarathne, Thilina; Kostle, Pamela A.; Thorne, Peter S.; O'Shaughnessy, Patrick T.; Stone, Elizabeth A.

    2016-05-01

    Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and copollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from Gram-negative bacteria (and a few Gram-positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol, and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins, and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point toward windblown soil as an important source of bioaerosols in urban areas.

  15. Source Apportionment of PM10 by Positive Matrix Factorization in Urban Area of Mumbai, India

    PubMed Central

    Gupta, Indrani; Salunkhe, Abhaysinh; Kumar, Rakesh

    2012-01-01

    Particulate Matter (PM10) has been one of the main air pollutants exceeding the ambient standards in most of the major cities in India. During last few years, receptor models such as Chemical Mass Balance, Positive Matrix Factorization (PMF), PCA–APCS and UNMIX have been used to provide solutions to the source identification and contributions which are accepted for developing effective and efficient air quality management plans. Each site poses different complexities while resolving PM10 contributions. This paper reports the variability of four sites within Mumbai city using PMF. Industrial area of Mahul showed sources such as residual oil combustion and paved road dust (27%), traffic (20%), coal fired boiler (17%), nitrate (15%). Residential area of Khar showed sources such as residual oil combustion and construction (25%), motor vehicles (23%), marine aerosol and nitrate (19%), paved road dust (18%) compared to construction and natural dust (27%), motor vehicles and smelting work (25%), nitrate (16%) and biomass burning and paved road dust (15%) in Dharavi, a low income slum residential area. The major contributors of PM10 at Colaba were marine aerosol, wood burning and ammonium sulphate (24%), motor vehicles and smelting work (22%), Natural soil (19%), nitrate and oil burning (18%). PMID:22645437

  16. A Model Chain Application to Estimate Mixing Layer Height Related to PM10 Dispersion Processes.

    PubMed

    Guarnieri, F; Calastrini, F; Busillo, C; Messeri, G; Gozzini, B

    2015-01-01

    The mixing layer height (MLH) is a crucial parameter in order to investigate the near surface concentrations of air pollutants. The MLH can be estimated by measurements of some atmospheric variables, by indirect estimates based on trace gases concentration or aerosol, or by numerical models. Here, a modelling approach is proposed. The developed modelling system is based on the models WRF-ARW and CALMET. This system is applied on Firenze-Prato-Pistoia area (Central Italy), during 2010, and it is compared with in situ measurements. The aim of this work is to evaluate the use of MLH model estimates to characterize the critical episodes for PM10 in a limited area. In order to find out the meteorological conditions predisposing accumulation of PM10 in the atmosphere's lower level, some indicators are used: daily mean wind speed, cumulated rainfall, and mean MLH estimates from CALMET model. This indicator is linked to orography, which has important consequences on local weather dynamics. However, during critical events the local emission sources are crucial to the determination of threshold exceeding of PM10. Results show that the modelled MLH, together with cumulative rainfall and wind speed, can identify the meteorological conditions predisposing accumulation of air pollutant at ground level. PMID:26618190

  17. Using support vector regression to predict PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Weizhen, Hou; Zhengqiang, Li; Yuhuan, Zhang; Hua, Xu; Ying, Zhang; Kaitao, Li; Donghui, Li; Peng, Wei; Yan, Ma

    2014-03-01

    Support vector machine (SVM), as a novel and powerful machine learning tool, can be used for the prediction of PM10 and PM2.5 (particulate matter less or equal than 10 and 2.5 micrometer) in the atmosphere. This paper describes the development of a successive over relaxation support vector regress (SOR-SVR) model for the PM10 and PM2.5 prediction, based on the daily average aerosol optical depth (AOD) and meteorological parameters (atmospheric pressure, relative humidity, air temperature, wind speed), which were all measured in Beijing during the year of 2010-2012. The Gaussian kernel function, as well as the k-fold crosses validation and grid search method, are used in SVR model to obtain the optimal parameters to get a better generalization capability. The result shows that predicted values by the SOR-SVR model agree well with the actual data and have a good generalization ability to predict PM10 and PM2.5. In addition, AOD plays an important role in predicting particulate matter with SVR model, which should be included in the prediction model. If only considering the meteorological parameters and eliminating AOD from the SVR model, the prediction results of predict particulate matter will be not satisfying.

  18. Long-term trend and variability of atmospheric PM10 concentration in the Po Valley

    NASA Astrophysics Data System (ADS)

    Bigi, A.; Ghermandi, G.

    2014-05-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a data set of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long-term trend in deseasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to a few percent per year, by a generalized least squares and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two encompassing the metropolitan areas of Turin and Milan and their respective nearby sites and the other three clusters gathering northeast, northwest and central Po Valley sites respectively. Finally, the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. A significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop was low and restricted to a few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  19. Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland

    NASA Astrophysics Data System (ADS)

    Werner, Małgorzata; Kryza, Maciej; Skjøth, Carsten Ambelas; Wałaszek, Kinga; Dore, Anthony J.; Ojrzyńska, Hanna; Kapłon, Jan

    2016-03-01

    We have implemented the WRF-Chem model version 3.5 over Poland to quantify the direct and indirect feedback effects of aerosols on simulated meteorology and aerosol concentrations. Observations were compared with results from three simulations at high spatial resolutions of 5 × 5 km: (1) BASE—without any aerosol feedback effects; (2) DIR—with direct aerosol-radiative effects (3) INDIR—with direct and indirect aerosol-radiative effects. We study the overall effect during January 2011 as well as selected episodes of the highest differences in PM10 concentrations between the three simulations. For the DIR simulation, the decrease in monthly mean incoming solar radiation (SWDOWN) appears for the entire study area. It changes geographically, from about -8.0 to -2.0 W m-2, respectively for the southern and northern parts of the country. The highest changes do not correspond to the highest PM10 concentration. Due to the solar radiation changes, the surface mean monthly temperature (T2) decreases for 96 % of the area of Poland, but not more than 1.0 °C. Monthly mean PBLH changes by more than ±5 m for 53 % of the domain. Locally the differences in PBLH between the DIR and BASE are higher than ± 20 m. Due to the direct effect, for 84 % of the domain, the mean monthly PM10 concentrations increase by up to 1.9 µg m-3. For the INDIR simulation the spatial distribution of changes in incoming solar radiation as well as air temperature is similar to the DIR simulation. The decrease of SWDOWN is noticed for the entire domain and for 23 % of the domain is higher than -5.0 W m-2. The absolute differences of PBLH are slightly higher for INDIR than DIR but similarly distributed spatially. For daily episodes, the differences between the simulations are higher, both for meteorology and PM10 concentrations, and the pattern of changes is usually more complex. The results indicate the potential importance of the aerosol feedback effects on modelled meteorology and PM10

  20. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Largeron, Yann; Staquet, Chantal

    2016-06-01

    The present study investigates persistent inversions dynamics during a whole winter in Alpine valleys of the area of Grenoble (French Alps), and their relationship to PM10 air pollution episodes and synoptic scale meteorology. For this purpose, hourly time series from November to March of PM10 concentration measurements at the bottom of the valleys and of ground-based temperature data at different altitudes are used. A methodology is developed to quantify a simple estimate of the inversion strength from temperature profiles deduced from the ground-based observations. This estimate is shown to be equivalent to the boundary layer heat deficit. A criterion based on this estimate is proposed to identify persistent (more than 3 days) inversions. Persistent inversions are found to occur from November to February and span 35% of the time. It is shown that they are closely related to PM10 pollution episodes, the PM10 concentration increasing with the boundary layer stability as the inversion develops. Polluted episodes are primarily driven by persistent inversions and consequently, pollution is of fully local origin from November to February. In March local dynamics become less important and long-range transport can dominate. Persistent inversions occur systematically during a high-pressure regime, which first triggers a synoptic scale elevated inversion due to the advection of warm air masses in the mid-troposphere. In valleys, the sheltered boundary layer becomes decoupled from the free troposphere, which allows a ground-based inversion to intensify in the following days. An inversion layer of quasi-constant temperature gradient, greater than 5 K km-1, then forms up to an altitude of about 1600 m, close to the average elevation of the summits. If the episode is sufficiently long, a stagnation stage is reached during which daytime insolation produces a shallow convective surface layer which does not destroy the persistent inversion. The inversion break-up occurs rapidly

  1. Dust monitoring on the Hanford Site: An investigation into the relationship between TSP, PM-10 and PM-2.5

    SciTech Connect

    Schwartz, Tara L.; Fritz, Brad G.

    2004-12-01

    Samples were collected to determine TSP concentration in air on the central plateau of the Hanford Site. These were compared to PM-10 and PM-2.5 data collected over the same time period. Results provide a means to estimate TSP concentration based on PM-10 concentration.

  2. 78 FR 21547 - Approval and Promulgation of Air Quality Implementation Plans; Oregon: Eugene-Springfield PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... pollution. On July 1, 1987, EPA promulgated a NAAQS for PM 10 (52 FR 24634). EPA established a 24-hour... 10 standard (71 FR 61144, effective December 18, 2006). B. Eugene-Springfield NAA and Planning... measured violations of the 24-hour PM 10 standard (52 FR 29383). The notice announcing the...

  3. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Amato, F.; Minguillón, M. C.; Karanasiou, A.; Alastuey, A.; Querol, X.

    2015-11-01

    During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at twelve hours resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (Positive Matrix Factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 μg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 μg m-3, 8-12 %), (3) mineral dust (5 μg m-3, 13-26 %), (4) aged marine (3-5 μg m-3, 13-20 %), (5) heavy oil (0.4-0.6 μg m-3, 2 %), (6) industrial (1 μg m-3, 3-5 %), (7) sulphate (3-4 μg m-3, 11-17 %) and (8) nitrate (4-6 μg m-3, 17-21 %). Three aerosol sources were found enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factors concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and

  4. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, Mariola; Dall'Osto, Manuel; Amato, Fulvio; Cruz Minguillón, María; Karanasiou, Angeliki; Alastuey, Andrés; Querol, Xavier

    2016-06-01

    During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 µg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 µg m-3, 8-12 %), (3) mineral dust (5 µg m-3, 13-26 %), (4) aged marine (3-5 µg m-3, 13-20 %), (5) heavy oil (0.4-0.6 µg m-3, 2 %), (6) industrial (1 µg m-3, 3-5 %), (7) sulfate (3-4 µg m-3, 11-17 %) and (8) nitrate (4-6 µg m-3, 17-21 %). Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and

  5. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    NASA Astrophysics Data System (ADS)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P < 0.001) in the urban-traffic site (NA02) than in the urban-background site (NA01). The filters were then extracted with dichloromethane using an ultrasonicator (SONICA) to perform a detailed characterization of 12 priority PAHs proposed by the USEPA, by gas chromatography-mass spectrometer (GC-MS) analysis. The concentration of Benzo[a]Pyrene, BaP (EU and National limit value: 1 ng m-3 in PM10), varied from 0.065 ng m-3 during autumn time to 0.872 ng m-3 in spring time (NA01) and from 0.120 ng m-3 during autumn time to 1.48 ng m-3 of winter time (NA02) with four overshoots. In NA02 the trend of Σ12 PAHs was comparable to NA01 but were observed higher values than NA01. In fact, the mean concentration of Σ12 PAHs, in urban-traffic site was generally 2 times greater than in urban-background site in all the campaigns. PAHs with 5 and 6 ring, many of which are suspected carcinogens or genotoxic agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a

  6. Indoor, outdoor, and regional summer and winter concentrations of PM10, PM2.5, SO4(2)-, H+, NH4+, NO3-, NH3, and nitrous acid in homes with and without kerosene space heaters.

    PubMed Central

    Leaderer, B P; Naeher, L; Jankun, T; Balenger, K; Holford, T R; Toth, C; Sullivan, J; Wolfson, J M; Koutrakis, P

    1999-01-01

    Twenty-four-hour samples of PM10 (mass of particles with aerodynamic diameter < or = 10 microm), PM2.5, (mass of particles with aerodynamic diameter < or = 2.5 microm), particle strong acidity (H+), sulfate (SO42-), nitrate (NO3-), ammonia (NH3), nitrous acid (HONO), and sulfur dioxide were collected inside and outside of 281 homes during winter and summer periods. Measurements were also conducted during summer periods at a regional site. A total of 58 homes of nonsmokers were sampled during the summer periods and 223 homes were sampled during the winter periods. Seventy-four of the homes sampled during the winter reported the use of a kerosene heater. All homes sampled in the summer were located in southwest Virginia. All but 20 homes sampled in the winter were also located in southwest Virginia; the remainder of the homes were located in Connecticut. For homes without tobacco combustion, the regional air monitoring site (Vinton, VA) appeared to provide a reasonable estimate of concentrations of PM2.5 and SO42- during summer months outside and inside homes within the region, even when a substantial number of the homes used air conditioning. Average indoor/outdoor ratios for PM2.5 and SO42- during the summer period were 1.03 +/- 0.71 and 0.74 +/- 0.53, respectively. The indoor/outdoor mean ratio for sulfate suggests that on average approximately 75% of the fine aerosol indoors during the summer is associated with outdoor sources. Kerosene heater use during the winter months, in the absence of tobacco combustion, results in substantial increases in indoor concentrations of PM2.5, SO42-, and possibly H+, as compared to homes without kerosene heaters. During their use, we estimated that kerosene heaters added, on average, approximately 40 microg/m3 of PM2.5 and 15 microg/m3 of SO42- to background residential levels of 18 and 2 microg/m3, respectively. Results from using sulfuric acid-doped Teflon (E.I. Du Pont de Nemours & Co., Wilmington, DE) filters in homes with

  7. Acoustic and aerodynamic performance of a variable-pitch 1.83-meter-(6-ft) diameter 1.20-pressure-ratio fan stage (QF-9)

    NASA Technical Reports Server (NTRS)

    Glaser, F. W.; Woodward, R. P.; Lucas, J. G.

    1977-01-01

    Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds.

  8. Assesment of PM10 pollution episodes in a ceramic cluster (NE Spain): proposal of a new quality index for PM10, As, Cd, Ni and Pb.

    PubMed

    Vicente, A B; Sanfeliu, T; Jordan, M M

    2012-10-15

    Environmental pollution control is one of the most important goals in pollution risk assessment today. In this sense, modern and precise tools that allow scientists to evaluate, quantify and predict air pollution are of particular interest. Monitoring atmospheric particulate matter is a challenge faced by the European Union. Specific rules on this subject are being developed (Directive 2004/107/EC, Directive 2008/50/EC) in order to reduce the potential adverse effects on human health caused by air pollution. Air pollution has two sources: natural and anthropogenic. Contributions from natural sources can be assessed but cannot be controlled, while emissions from anthropogenic sources can be controlled; monitoring to reduce this latter type of pollution should therefore be carried out. In this paper, we describe an air quality evaluation in terms of levels of atmospheric particles (PM10), as outlined by European Union legislation, carried out in an industrialised Spanish coastal area over a five-year period with the purpose of comparing these values with those of other areas in the Mediterranean Basin with different weather conditions from North of Europe. The study area is in the province of Castellón. This province is a strategic area in the frame work of European Union (EU) pollution control. Approximately 80% of European ceramic tiles and ceramic frit manufacturers are concentrated in two areas, forming the so-called "ceramics clusters"; ones in Modena (Italy) and the other in Castellón. In this kind of areas, there are a lot of air pollutants from this industry then it is difficult to fulfill de European limits of PM10 so it is necessary to control the air quality in them. The seasonal differences in the number of days in which pollutant level limits were exceeded were evaluated and the sources of contamination were identified. Air quality indexes for each pollutant have been established to determine easily and clearly the quality of air breathed. Furthermore

  9. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan

    NASA Astrophysics Data System (ADS)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ghauri, Badar M.; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2016-03-01

    A mass balance method is applied to assess main source contributions to PM2.5 and PM10 levels in Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl‑, NO3‑, SO4‑), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were determined in atmospheric fine (PM2.5) and coarse (PM10) aerosol samples collected under pre-monsoon conditions (March-April 2009) at an urban site in Karachi (Pakistan). The concentrations of PM2.5 and PM10 were found to be 75 μg/m3 and 437 μg/m3 respectively. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and "siliceous dust" were the over all dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. Combustion particles and secondary organics (EC + OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of "EC + OM" in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. In case of secondary inorganic aerosols, ammonium sulphate (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity were found in fraction PM10-2.5. The sea salt contribution is about 2% both to PM2.5 and PM10-2.5.

  10. Assessment of PM10 pollution level and required source emission reduction in Belgrade area.

    PubMed

    Todorović, Marija N; Perišić, Mirjana D; Kuzmanoski, Maja M; Stojić, Andreja M; Sostarić, Andrej I; Mijić, Zoran R; Rajšić, Slavica F

    2015-01-01

    The aim of this study was to assess PM10 pollution level and estimate required source emission reduction in Belgrade area, the second largest urban center in the Balkans. Daily mass concentrations and trace metal content (As, Cd, Cr, Mn, Ni, Pb) of PM10 were evaluated for three air quality monitoring sites of different types: urban-traffic (Slavija), suburban (Lazarevac) and rural (Grabovac) under the industrial influence, during the period of 2012-13. Noncompliance with current Air Quality Standards (AQS) was noticeable: annual means were higher than AQS at Slavija and Lazarevac, and daily frequency threshold was exceeded at all three locations. Annual means of As at Lazarevac were about four times higher than the target concentration, which could be attributed to the proximity of coal-fired power plants, and dust resuspension from coal basin and nearby ash landfills. Additionally, levels of Ni and Cr were significantly higher than in other European cities. Carcinogenic health risk of inhabitants' exposure to trace metals was assessed as well. Cumulative cancer risk exceeded the upper limit of acceptable US EPA range at two sites, with Cr and As as the major contributors. To estimate source emission reduction, required to meet AQS, lognormal, Weibull and Pearson 5 probability distribution, functions (PDF) were used to fit daily PM10 concentrations. Based on the rollback equation and best fitting PDF, estimated reduction was within the range of 28-98%. Finally, the required reduction obtained using two-parameter exponential distribution suggested that risks associated to accidental releases of pollutants should be of greater concern. PMID:26252876

  11. PM10 monitoring and receptor modeling in some urban areas of South Africa

    SciTech Connect

    Reddy, V.S.; Engelbrecht, J.P.; Swanepoel, L.; Mostert, J.; Chow, J.

    1997-12-31

    Several source apportionment studies have been conducted in some of the urban areas of South Africa following US EPA guidelines. These studies involved the measuring of close to 40 new source profiles, ambient air sampling, chemical analyses and the CMB7 source apportionment modeling of PM10 size fractions. Source and ambient data were collected by Mintek over a five year period at sites in Vereeniging, Vanderbijlpark and Sasolburg (all in the Vaal Triangle), Olifantsfontein, Nelspruit and Randburg. Comparison of the gravimetric data show definite seasonal trends, with the highest levels being recorded during the winter months at sampling sites close to townships which use domestic coal as their prime source of energy. In the industrial areas of the Vaal Triangle and Olifantsfontein the pollution levels are at their highest, with the US EPA 24-hour national ambient air quality standard of 150g per cubic meter being exceeded on several occasions. The US EPA annual mean standard of 50g per cubic meter was also exceeded at these sites. The lowest PM10 levels were recorded in the residential areas Randburg and Nelspruit (Valencia Park). The source apportionment results show domestic coal combustion, fugitive soil dust, secondary salts of ammonium sulfate and nitrate, and power plant fly-ash to be major contributors to airborne particulate pollution. For the Nelspruit sites biomass burning is a major contributor. Minor sources include iron arc furnace, sinter plant and coking furnace dusts. Petrol vehicle emissions are also a minor source of PM10 pollution. Results from these studies emphasize the need for a continuous national air monitoring network for South Africa, from which the authorities, industry, the public and the environment can benefit.

  12. GC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain

    NASA Astrophysics Data System (ADS)

    Hart, Elizabeth; Coscollà, Clara; Pastor, Agustín; Yusà, Vicent

    2012-12-01

    Better knowledge of the occurrence of pesticides in the inhalable fraction of particulate matter (PM10) could be very useful for future exposure assessment in individuals of the general public. The present work studies the spatial and temporal distribution of the occurrence of currently used pesticides (CUPs) in PM10. Ambient air samples were collected from January through December 2010 at one remote, one urban and three rural sites in Valencia Region (Spain) and analyzed for 42 CUPs using a gas chromatography coupled to mass spectrometry in tandem (GC-MS/MS) approach. Overall, 24 pesticides were detected in the PM10 fraction, four of them currently banned pesticides. Among those detected, concentrations of two particle-bound pesticides (permethrin and pyrimethanil) were, to our knowledge, reported for the first time in air in the literature. The detected pesticides appeared at frequencies ranging from <1 to 47%, with chlorpyrifos, bifenthrin and diazinon presenting the highest frequencies. The concentrations detected ranged from a few to several hundred pg m-3, with ethoprophos showing the highest average concentration (149.2 pg m-3). Each station shows its own specific pesticide profile, which is linked to the different types of crops around each site. Seasonal patterns were observed in the rural stations of Alzira and Sant Jordi, correlating pesticide detection with their application in agricultural practices, mostly in spring and early summer. These findings suggest that more efforts are required to implement an extensive air monitoring network in Europe for pesticide control and to develop regulations or recommendations regarding pesticide levels in ambient air.

  13. Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust.

    PubMed

    Li, Xu; Félix, Omar I; Gonzales, Patricia; Sáez, Avelino Eduardo; Ela, Wendell P

    2016-03-01

    The overall project objective at the Iron King Mine Superfund site is to determine the level and potential risk associated with heavy metal exposure of the proximate population emanating from the site's tailings pile. To provide sufficient size-fractioned dust for multi-discipline research studies, a dust generator was built and is now being used to generate size-fractioned dust samples for toxicity investigations using in vitro cell culture and animal exposure experiments as well as studies on geochemical characterization and bioassay solubilization with simulated lung and gastric fluid extractants. The objective of this study is to provide a robust method for source identification by comparing the tailing sample produced by dust generator and that collected by MOUDI sampler. As and Pb concentrations of the PM10 fraction in the MOUDI sample were much lower than in tailing samples produced by the dust generator, indicating a dilution of Iron King tailing dust by dust from other sources. For source apportionment purposes, single element concentration method was used based on the assumption that the PM10 fraction comes from a background source plus the Iron King tailing source. The method's conclusion that nearly all arsenic and lead in the PM10 dust fraction originated from the tailings substantiates our previous Pb and Sr isotope study conclusion. As and Pb showed a similar mass fraction from Iron King for all sites suggesting that As and Pb have the same major emission source. Further validation of this simple source apportionment method is needed based on other elements and sites. PMID:26820180

  14. A pragmatic approach to estimate the number of days in exceedance of PM10 limit value

    NASA Astrophysics Data System (ADS)

    Beauchamp, Maxime; Malherbe, Laure; de Fouquet, Chantal

    2015-06-01

    European legislation on ambient air quality requests that Member States report the annual number of exceedances of short-term concentration regulatory thresholds for PM10 and delimit the concerned areas. Measurements at the monitoring stations do not allow to fully describe those areas. We present a methodology to estimate the number of exceedances of the daily limit value over a year, that can be extended to any similar issue. This methodology is applied to PM10 concentrations in France for which the daily limit value is 50 μg m-3, not to be exceeded more that 35 days. A probabilistic model is built using preliminary mapping of daily mean concentrations. First, daily atmospheric concentration fields are estimated at 1 km resolution by external drift kriging, combining surface monitoring observations and outputs from the CHIMERE chemistry transport model. Setting a conventional Gaussian hypothesis for the estimation error, the kriging variance is used to compute the probability of exceeding the daily limit value and to identify three areas: those where we can suppose as certain that the concentrations exceed or not the daily limit value and those where the situation is indeterminate because of the estimation uncertainty. Then, from the set of 365 daily mappings of the probability to exceed the daily limit value, the parameters of a translated Poisson distribution is fitted on the annual number of exceedances of the daily limit value at each grid cell, which enables to compute the probability for this number to exceed 35. The methodology is tested for three years (2007, 2009 and 2011) which present numerous exceedances of the daily limit concentration at some monitoring stations. A cross-validation analysis is carried out to check the efficiency of the methodology. The way to interpret probability maps is discussed. A comparison is made with simpler kriging approaches using indicator kriging of exceedances. Lastly, estimation of the population exposed to PM10

  15. The stable isotope compositions of mercury in atmospheric particles (PM10) from Paris (France) and vicinity

    NASA Astrophysics Data System (ADS)

    Widory, D.; Petelet-Giraud, E.; Johnson, T.; Quétel, C.; Snell, J.; van Bocxstaele, M.; Bullen, T. D.

    2010-12-01

    Solid mercury (Hg) in atmospheric particles in the environment can be derived from a variety of primary sources and cycled through numerous secondary processes, complicating identification of its origin. Using the PM10 fraction of aerosols from Paris and vicinity, we investigated the possibility that Hg stable isotope compositions could help identify the origins of atmospheric Hg and processes affecting the atmospheric Hg budget. Characterization of Hg isotope compositions of emissions from the different potential sources (e.g. waste incinerators, coal-fired power plants, metal refining plants, road traffic, heating sources and volcanic gases) shows that those containing Hg are clearly discriminated by specific Hg isotope signatures. PM10 were sampled in three different locations: A) downtown Paris, characterized by diffuse pollution, B) nearby suburb of the city, close to suspected Hg emitters, and C) in distant suburb of the city, having only a few industrial activities in the area. Results indicate that Hg in most of the PM10 samples is explained by binary mixings. The mixing end-members include at least two distinct sources at low Hg concentrations in the aerosols, compatible with industrial activity. At high Hg concentration in the aerosols, the isotopes may likewise indicate two distinct sources with δ202Hg compositions of -4.1 and -11.4 ‰. This range is significantly less than that measured on the potential sources of Hg pollution, and may indicate secondary processes, such as gas to solid phase transfers. The occurrence of post-emission processes is reinforced by the strong correlations existing between these low δ202Hg and MIF Δ201Hg values.

  16. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand).

    PubMed

    Pongpiachan, Siwatt; Iijima, Akihiro

    2016-02-01

    Estimating the atmospheric concentrations of PM10-bounded selected metals in urban air is crucial for evaluating adverse health impacts. In the current study, a combination of measurements and multivariate statistical tools was used to investigate the influence of anthropogenic activities on variations in the contents of 18 metals (i.e., Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, La, Ce and Pb) in ambient air. The concentrations of PM10-bounded metals were measured simultaneously at eight air quality observatory sites during a half-year period at heavily trafficked roads and in urban residential zones in Bangkok, Thailand. Although the daily average concentrations of Al, V, Cr, Mn and Fe were almost equivalent to those of other urban cities around the world, the contents of the majority of the selected metals were much lower than the existing ambient air quality guidelines and standard limit values. The sequence of average values of selected metals followed the order of Al > Fe > Zn > Cu > Pb > Mn > Ba > V > Sb > Ni > As > Cr > Cd > Se > Ce > La > Co > Sc. The probability distribution function (PDF) plots showed sharp symmetrical bell-shaped curves in V and Cr, indicating that crustal emissions are the predominant sources of these two elements in PM10. The comparatively low coefficients of divergence (COD) that were found in the majority of samples highlight that site-specific effects are of minor importance. A principal component analysis (PCA) revealed that 37.74, 13.51 and 11.32 % of the total variances represent crustal emissions, vehicular exhausts and the wear and tear of brakes and tires, respectively. PMID:26631022

  17. Forest fires and PM10 pollution: the March 2012 case in Northern Spain

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, Domingo; García Codron, Juan Carlos; Carracedo Martín, Virginia

    2016-04-01

    Forest fires are one of the largest sources of particulate matter, carbon monoxide, volatile organic compounds and other pollutants at regional scale. They significantly impact on local air quality and human health, even far from their original sources. March 2012 was one of the largest fire activity late winter and early spring seasons across northern Spain and Portugal. Official statistics from the Spanish and Portuguese authorities show that, during that month, approximately 35.000 ha were burned, representing the top March season in Cantabria (N. Spain) and the northern distritos of Portugal since 1981, most of them occurring in the mountainous areas, as depicted from the FIRMS database (https://firms.modaps.eosdis.nasa.gov/). At the same time, an analysis of the pollution data (Airbase dataset; http://www.eea.europa.eu/) show an increase in PM10 average values and exceedences of the limit values across the same area simultaneously or immediately after the main fire activity episodes. A comprehensive analysis of this fire and pollution event was undertaken to analyze the possible contribution of forest fires and other sources of PM10 to the high levels of this pollutant at ground level. Besides statistics of fire activity, satellite "hot spots" and ground level pollution data, we have included in our analysis meteorological records (synoptic stations, upper air soundings), backtrajectories (http://ready.arl.noaa.gov/HYSPLIT.php) and dust forecast models (https://www.bsc.es/earth-sciences/mineral-dust/catalogo-datos-dust). The results show a good agreement between the spatial and temporal variability of the levels of PM10 and the direction of the pollution plumes downwind the forest fires. The activity was mostly concentrated during 3 events, the first one between February 25th to March 3rd; the second spanning from 10th to 17th, and the last one, the most severe of the three, at the end of March. The climatological background was favourable, because most of the

  18. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of

  19. Measurement and chemical speciation of PM10 in Mumbai City, India.

    PubMed

    Salunkhe, Abhaysinh; Gupta, Indrani; Shetye, Sugandha; Kumar, Rakesh

    2013-10-01

    Mass concentrations of PM10 were high at all locations of Mumbai city in all seasons. From the enrichment analysis, it was observed that high enrichment of metals existed at all sites, the reason for which could be the effects of meteorology and trans-boundary movement of pollutants. Multivariate statistical analysis tools were used to identify common sources, viz. road dust, biomass burning, secondary aerosol, brake wear, residual oil combustion, smelting, natural soil, vehicles tyre wear, and marine aerosol. Findings indicate that most of the sites were dominated by local sources based on activities in the vicinity of the sampling locations. PMID:25906590

  20. Multiple-try Metropolis Hastings for modeling extreme PM10 data

    NASA Astrophysics Data System (ADS)

    Amin, Nor Azrita Mohd; Adam, Mohd Bakri; Ibrahim, Noor Akma

    2014-07-01

    Awareness of catastrophic events brings the attention to work out the relationship of these events by using statistical analysis of Extreme Value Theory (EVT). This study focused on extreme PM10 data using a Gumbel distribution which is one of the Extreme Value distributions. The parameters were estimated using the new Bayesian approach in extreme called Multiple Try Metropolis-Hastings algorithms. We compared this approach with another Markov Chain Monte Carlo approach which is the classical Metropolis-Hastings algorithm and the frequentist approach, Maximum Likelihood Estimation. It appears that these three approaches provide comparable results. Data are taken for Pasir Gudang station for year 1996 to 2010.

  1. Feasibility of including fugitive PM-10 emissions estimates in the EPA emissions trends report

    SciTech Connect

    Barnard, W.; Carlson, P.

    1990-09-01

    The report describes the results of Part 2 of a two part study. Part 2 was to evaluate the feasibility of developing regional emission trends for PM-10. Part 1 was to evaluate the feasibility of developing VOC emission trends, on a regional and temporal basis. These studies are part of the effort underway to improve the national emission trends. Part 1 is presented in a separate report. The categories evaluated for the feasibility of developing regional emissions estimates were: unpaved roads, paved roads, wind erosion, agricultural tilling, construction activities, feedlots, burning, landfills, mining and quarrying unpaved parking lots, unpaved airstrips and storage piles.

  2. Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia

    PubMed Central

    Khodeir, Mamdouh; Shamy, Magdy; Alghamdi, Mansour; Zhong, Mianhua; Sun, Hong; Costa, Max; Chen, Lung-Chi; Maciejczyk, Polina

    2014-01-01

    This paper presents the first comprehensive investigation of PM2.5 and PM10 composition and sources in Saudi Arabia. We conducted a multi-week multiple sites sampling campaign in Jeddah between June and September, 2011, and analyzed samples by XRF. The overall mean mass concentration was 28.4 ± 25.4 μg/m3 for PM2.5 and 87.3 ± 47.3 μg/m3 for PM10, with significant temporal and spatial variability. The average ratio of PM2.5/PM10 was 0.33. Chemical composition data were modeled using factor analysis with varimax orthogonal rotation to determine five and four particle source categories contributing significant amount of for PM2.5 and PM10 mass, respectively. In both PM2.5 and PM10 sources were (1) heavy oil combustion characterized by high Ni and V; (2) resuspended soil characterized by high concentrations of Ca, Fe, Al, and Si; and (3) marine aerosol. The two other sources in PM2.5 were (4) Cu/Zn source; (5) traffic source identified by presence of Pb, Br, and Se; while in PM10 it was a mixed industrial source. To estimate the mass contributions of each individual source category, the CAPs mass concentration was regressed against the factor scores. Cumulatively, resuspended soil and oil combustion contributed 77 and 82% mass of PM2.5 and PM10, respectively. PMID:24634602

  3. Seasonal variation in air particulate matter (PM10) exposure-induced ischemia-like injuries in the rat brain.

    PubMed

    Guo, Lin; Li, Ben; Miao, Juan-Juan; Yun, Yang; Li, Guang-Ke; Sang, Nan

    2015-03-16

    Epidemiological studies imply a significantly positive association between particulate matter (PM) level and ischemic stroke hospitalization. However, considering that PM10 is highly heterogeneous and varies with season within the same location, existing experimental evidence remained low. In the present study, we first treated Wistar rats with PM10 samples collected from different seasons in Taiyuan, a typically coal-burning city of China, and determined ischemia-related markers in the cortex. The results indicated that PM10 exposure caused endothelial dysfunction, inflammatory response, and neuro-functional impairment similar to that of cerebral ischemia with season-dependent properties, and the winter sample presented the most obvious injuries. Then, we detected the chemical composition of PM10 samples followed by analysis of their correlation with the above biomarkers and found that winter PM10, characterized by higher polycyclic aromatic hydrocarbons (PAHs) and carbon load, played the major role in causing brain ischemia-like injuries among different season samples. Furthermore, by setting up an ischemic neuron model in vitro, we confirmed that winter PM10 presented the most serious aggravation on ischemia-produced injury outcome. This study provides experimental evidence for clarifying the association between season-dependent PM10 pollution in the atmospheric environment and an increased risk of ischemia-like injuries. PMID:25517455

  4. Long-range potential source contributions of episodic aerosol events to PM 10 profile of a megacity

    NASA Astrophysics Data System (ADS)

    Karaca, Ferhat; Anil, Ismail; Alagha, Omar

    2009-12-01

    This paper evaluates possible long-range source contributions to the PM 10 profile of Istanbul, Turkey. A novel method for classifying PM 10 episodic events resulting from long-range transport, as opposed to local ones, was implemented. Hourly PM 10 mass concentrations from ten stations distributed throughout Istanbul during the year 2008 were used for this purpose. Hourly backward trajectories for the arrival of air masses to the center of Istanbul for the year 2008 were calculated using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Significant episodes from these backward trajectories were selected and employed in Potential Source Contribution Function (PSCF) analysis to estimate the possible contribution of long-range PM 10 transport (LRPMT) to observed PM 10 concentrations. The PSCF results showed significant seasonal variations. Based on the results obtained, PM 10 concentrations observed in Istanbul during summer and autumn are not heavily affected by LRPMT. Mediterranean countries, especially those of the central part of northern Africa (northern Algeria and Libya) are the most significant potential PM 10 contributors to Istanbul's atmosphere during springtime. During winter, Balkan countries, including the Aegean part of Turkey, Greece, Bulgaria, Serbia, and Croatia, as well as northern Italy, eastern France, southern Germany, Austria and the eastern part of Russia, were the most important LRPMT source regions for high PSCF values.

  5. Monitoring the long-range transport effects on urban PM10 levels using 3D clusters of backward trajectories

    NASA Astrophysics Data System (ADS)

    Makra, László; Matyasovszky, István; Guba, Zoltán; Karatzas, Kostas; Anttila, Pia

    2011-05-01

    The purpose of the study is to identify long-range transport patterns that may have an important influence on PM10 levels in three European cities at different latitudes, namely Thessaloniki, Szeged and Helsinki. A further aim is to separate medium- and long-range PM10 transport for these cities. 4-day, 6-hourly three-dimensional (3D) backward trajectories arriving at these locations at 1200 GMT were computed using the HYSPLIT model over a 5-year period from 2001 to 2005. A k-means clustering algorithm using the Mahalanobis metric was applied in order to develop trajectory types. The 3D delimination of the clusters by the function "convhull" is a novel approach. Two statistical indices were used to evaluate and compare critical daily PM10 exceedances corresponding to the trajectory clusters. For Thessaloniki, the major PM10 transport can be clearly associated with air masses arriving from Central and Southern Europe. Occasional North African dust intrusions over Greece are also found. The transport of particulate matter from North-western Europe to Thessaloniki is of limited importance. For Szeged, Central Europe, Southern Europe and Mid-eastern Europe are the most important sources of PM10. The occasional appearance of North African-origin dust over Hungary is also detected. Local PM10 levels tend to be diluted when air masses arrive at the Carpathian Basin from North-western Europe, the Mid-Atlantic - Western Europe and Northern Europe. For Helsinki, high PM10 concentrations are due to air masses coming from Northern and Eastern Europe including North-western Russia. An occasional Caspian Sea desert influence on particulate levels can also be identified. However, air currents coming from the Northern Atlantics, Northern and North-western Europe tend to dilute PM10 levels. A simple approach is developed in order to separate medium- and long-range PM10 transport for each city.

  6. Evaluation of sampling inhalable PM10 particulate matter (<= 10 μm) using co-located high volume samplers

    NASA Astrophysics Data System (ADS)

    Rajoy, R. R. S.; Dias, J. W. C.; Rego, E. C. P.; Pereira Netto, A. D.

    2015-01-01

    This paper presents the results of the determination of the concentrations of atmospheric particulate matter <= 10 μm (PM10), collected simultaneously by six PM10 high volume samplers from two different manufacturers installed in the same location. Fifteen samples of 24 h were obtained with each equipment at a selected urban area of Rio de Janeiro city. The concentration of PM10 ranged between 10.73 and 54.04 μg m-3. The samplers were considered comparable to each other, as the adopted methodology presented good repeatability.

  7. A comparative study for results obtained using biomonitors and PM10 collectors in Sado Estuary.

    PubMed

    Costa, C J; Marques, A P; Freitas, M C; Reis, M A; Oliveira, O R

    2002-01-01

    In 1996 a program was started, financed by the Environmental Ministry of Portugal and IAEA, aiming to study the inorganic atmospheric pollutant dispersion in Sado Estuary. Gent PM10 air samplers were used for air particulate matter sampling. Three sampling sites were chosen, forming a triangle around the fuel power station of Setúbal. Transplants of Parmelia sulcata Taylor were suspended in nylon bags within a rectangle 15 km wide and 25 km long on a 2.5 x 2.5 km grid. Two sets of four transplants were hung in each of the 47 locations, one set facing the wind and the other set opposing the wind. The transplants were suspended in December 1997 for a 1-year period; every 3 months, one transplant of each set was collected. Both lichen transplants and PM10 filters were analysed by INAA and PIXE. A comparative study of results obtained for the two sampling procedures is presented in this work. PMID:12199472

  8. LC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Hart, Elizabeth; Pastor, Agustín; Yusà, Vicent

    2013-10-01

    Pesticides in the inhalable fraction of particulate matter (PM10) should be well tracked in order to contribute information to future exposure assessment in individuals of the general public. A total of 40 current-used pesticides and metabolites were searched for in ambient air samples collected from January through December 2010. The samples were taken from one remote, one urban and three rural sites in Valencia Region (Spain) and analyzed using liquid chromatography coupled to mass spectrometry in tandem (LC-MS/MS). In the PM10 fraction 17 pesticides and metabolites were detected overall, two of them currently banned (carbofuran and omethoate, although the latter is a metabolite of the permitted pesticide dimethoate). The detected pesticides appeared at frequencies ranging from 1 to 75%, with omethoate, terbuthylazine and its metabolites, and carbendazim presenting the highest frequencies. The concentrations detected ranged from few pg m-3 to thousands of pg m-3, with omethoate having the highest average concentration (141.15 pg m-3) in the 5 sites overall. Each station showed its own specific pesticide profile, which is linked to the different types of crops around each site. In the rural stations pesticide levels were greater in spring and early summer, which correlates with their application in agricultural practices. These findings suggest that more efforts are required to implement an extensive air monitoring network in Europe for pesticide control and to develop regulations or recommendations regarding safer pesticide levels in ambient air.

  9. Atmospheric Visibility and PM10 as Indicators of New Particle Formation in an Urban Environment.

    PubMed

    Jayaratne, E R; Clifford, S; Morawska, L

    2015-11-01

    It is well-known that new particle formation (NPF) in the atmosphere is inhibited by pre-existing particles in the air that act as condensation sinks to decrease the concentration and, thus, the supersaturation of precursor gases. In this study, we investigate the effects of two parameters-atmospheric visibility, expressed as the particle backscatter coefficient (BSP), and PM10 particulate mass concentration-on the occurrences of NPF events in an urban environment where the majority of precursor gases originate from motor vehicle and industrial sources. This is the first attempt to derive direct relationships between these two parameters and the occurrence of NPF. NPF events were identified from data obtained with a neutral cluster and air ion spectrometer over 245 days within a calendar year. Bayesian logistic regression was used to determine the probability of observing NPF as functions of BSP and PM10. We show that the BSP at 08 h on a given day is a reliable indicator of an NPF event later that day. The posterior median probability of observing an NPF event was greater than 0.5 (95%) when the BSP at 08 h was less than 6.8 Mm(-1). PMID:26485451

  10. PM 10 and ozone control strategy to improve visibility in the los angeles basin

    NASA Astrophysics Data System (ADS)

    Farber, Robert J.; Welsing, Peter R.; Rozzi, Carlo

    The greater Los Angeles metropolitan area is in violation of the United States Environmental Protection Agency (USEPA) ambient standards for both ozone and PM 10. Accompanying these violations are hazy summer conditions, with current annual median visibility in the inland portions of Los Angeles running about 13 km, and visibilities decreasing to about 3 km on the 90th percentile days (worst days). The USEPA has given the local air pollution control agency until 2010 to bring the area into compliance with these standards. Because of continued population growth, accompanying light industry, dependence on private motor vehicles, and adverse natural meteorological conditions, emission reductions costing billions of dollars will be needed between now and 2010. The combination of emission reductions which will result in the fastest ozone and PM 10 cleanup at the lowest cost are presented. Substantial emission reductions in NO x, reactive hydrocarbons, SO x, ammonia, soot and fugitive dust will result in visibility improvements in the Los Angeles area. However, enactment of this comprehensive control strategy will only improve the annual median visibility to about 20 km and the 90th percentile days to 6.5 km. Significant changes in fine mass will result in relatively small changes in perceived visibility since the human eye is unable to differentiate visual range changes even as large as 40% in an urban landscape typical of Los Angeles.

  11. Composition of Organic Compounds Adsorbed on PM10 in the Air Above Maribor.

    PubMed

    Miuc, Alen; Vončina, Ernest; Lečnik, Uroš

    2015-01-01

    Organic compounds in atmospheric particulate matterabove Maribor were analysed in 120 samples of PM10 sampled according to the EN 12341:2014 reference method. Organic compounds compositions were investigated together with the primary and secondary sources of air pollution. Silylation as derivatisation method was used for the GC/MS determination of volatile and semi-volatile polar organic compounds. Distribution of fatty acids, n-alkanes and iso-alkanes, phthalate esters, siloxanes, different sterols, various sugars and sugar alcohols, compounds of lignin and resin acids, dicarboxylic acids from photochemical reactions, PAHs, organic nitrogen compounds and products from secondary oxidation of monoterpenes were determined. The use of silicone grease for the purpose of lubricating the impact surface of the air sampler caused higher values of gravimetric determination. Solid particles may have been bounced from the surface of a greasy impact plate and re-entrained within the air stream and then collected on a sample filter. The carryover of siloxanes was at least from 5% up to 15% of the accumulated particles weight, depending on ambient temperature. This was the reason that the gravimetric results for determination of PM10 according to the standard EN 12341:2014 were overestimated. PMID:26680711

  12. The measurement of roadway PM 10 emission rates using atmospheric tracer ratio techniques

    NASA Astrophysics Data System (ADS)

    Kantamaneni, Ravi; Adams, Glen; Bamesberger, Lee; Allwine, Eugene; Westberg, Hal; Lamb, Brian; Claiborn, Candis

    In this work, stationary and mobile point source tracer release techniques have been used to determine PM 10 emission rates from four-lane commercial/residential paved roads under sanded and unsanded conditions, and from unpaved roads relative to site-specific vehicular and ambient parameters. Measured street (4 + lanes; ⩾ 10,000 vehicles per day) emission factors for unsanded and sanded roads were 40 and 20% lower, respectively, than the EPA approved reference value. The sanded road emission factor was approximately 40% higher than that for the unsanded road. These results indicate a consistent relationship between PM 10 and relative humidity under unsanded conditions. There is some evidence to suggest that street sweeping has a measurable effect on PM,, emission reduction during periods of low relative humidity (i.e. ⩽ 30%). Within the constraints imposed by the variable experimental conditions, the emission factors determined for unpaved roads agreed reasonably well with the unpaved road empirical formula. Limited correlations were observed with ambient meteorological parameters. The capability of the "upwind-dowiawind" concentration modeling method to predict accurate emission was tested using a Gaussian dispersion model (SIMFLUX). Predictions agreed well with the experimentally determined emission factors.

  13. A new dust transport approach to quantify anthropogenic sources of atmospheric PM10 deposition on lakes

    NASA Astrophysics Data System (ADS)

    Weiss, Lee; Thé, Jesse; Gharabaghi, Bahram; Stainsby, Eleanor A.; Winter, Jennifer G.

    2014-10-01

    Windblown dust simulations are one of the most uncertain types of atmospheric transport models. This study presents an integrated PM10 emission, transport and deposition model which has been validated using monitored data. This model characterizes the atmospheric phosphorus load focusing on the major local sources within the Lake Simcoe airshed including paved and unpaved roads, agricultural sources, construction sites and aggregate mining sources. This new approach substantially reduces uncertainty by providing improved estimates of the friction velocities than those developed previously. Modeling improvements were also made by generating and validating an hourly windfield using detailed meteorology, topography and land use data for the study area. The model was used to estimate dust emissions generated in the airshed and to simulate the long-range transport and deposition of PM10 to Lake Simcoe. The deposition results from the model were verified against observed bulk collector phosphorus concentration data for both wet and dry deposition. Bulk collector data from stations situated outside the airshed in a remote, undeveloped area were also compared to determine the background contribution from distant sources.

  14. A comparison of two classification based approaches for downscaling of monthly PM10 concentrations

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Weitnauer, Claudia; Jacobeit, Jucundus

    2013-04-01

    Circulation type classifications may be utilised for the downscaling of local climatic and environmental target variables in different methodological settings. In this contribution we apply and compare two different classification based approaches for downscaling of monthly indices of PM10 concentrations (monthly mean and number of days exceeding a certain threshold) at different stations in Bavaria (Germany) during the period 1979 to 2010. The first approach uses monthly frequencies of circulation types as predictors in multiple linear regression models (stepwise regression) to estimate monthly predictand values (monthly PM10 indices). The second approach utilizes type specific mean values of the target variable - determined for a calibration period - to estimate predictand values in the validation period. Both approaches are run using varying circulation classifications. This comprises different methodological concepts for circulation classification (e.g. threshold based methods, leader algorithms, cluster analysis) and as well different temporal (1-day or multiple day sequences) and spatial domains (synoptic to continental scale). All models are applied to multiple calibration and validation samples and different skill scores (e.g. reduction of variance, Pearson R) are estimated for each of the validation samples in order to quantify model performance. As main preliminary findings we may state that: - the regression based downscaling approach in most cases clearly outperforms the approach that uses type specific mean values (reference forecasting), - best skill is reached in winter (DJF) and spring (MAM), - comparable model skill is reached for the downscaling of monthly means and extremes indicators (number of days exceeding a certain threshold).

  15. Seasonal Variations of Quantified Organic Compounds in PM10 over Seoul

    NASA Astrophysics Data System (ADS)

    Choi, N.; Lee, J.; Kim, Y. P.

    2014-12-01

    The concentrations of 87 individual organic matters in the PM10 samples, systematically collected on the roof of the School of Public Health building at Seoul National University (mixed commercial and residential area), Seoul, South Korea on a daily basis from April 2010 to April 2011, were quantified by mean of Gas Chromatography/Mass Spectrometry (GC/MS). The daily average concentrations of five organic groups, alkanes, PAHs, fatty acid, DCAs, and sugars were ranged from 498.40 ng m3 to 10.20 μg m3. The seasonal concentrations of the total quantified organic species were 1.73 μg m3 (Spring), 2.04 μg m3 (Summer), 3.11 μg m3 (Fall), and 3.60 μg m3 (Winter), respectively. All the organic groups showed higher average concentration in winter than in summer. However, some organic compounds among fatty acids, DCAs, and sugars showed reverse pattern. The seasonal concentration patterns and episode variation of individual organic compounds were studied to clarify the emission characteristics of organic matters in PM10.

  16. An interlaboratory comparison study on the measurement of elements in PM10

    NASA Astrophysics Data System (ADS)

    Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna

    2016-01-01

    An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.

  17. GIS-based Association Between PM10 and Allergic Diseases in Seoul: Implications for Health and Environmental Policy

    PubMed Central

    Seo, SungChul; Min, Soojin; Paul, Christopher; Yoo, Young; Choung, Ji Tae

    2016-01-01

    Purpose The role of PM10 in the development of allergic diseases remains controversial among epidemiological studies, partly due to the inability to control for spatial variations in large-scale risk factors. This study aims to investigate spatial correspondence between the level of PM10 and allergic diseases at the sub-district level in Seoul, Korea, in order to evaluate whether the impact of PM10 is observable and spatially varies across the subdistricts. Methods PM10 measurements at 25 monitoring stations in the city were interpolated to 424 sub-districts where annual inpatient and outpatient count data for 3 types of allergic diseases (atopic dermatitis, asthma, and allergic rhinitis) were collected. We estimated multiple ordinary least square regression models to examine the association of the PM10 level with each of the allergic diseases, controlling for various sub-district level covariates. Geographically weighted regression (GWR) models were conducted to evaluate how the impact of PM10 varies across the sub-districts. Results PM10 was found to be a significant predictor of atopic dermatitis patient count (P<0.01), with greater association when spatially interpolated at the sub-district level. No significant effect of PM10 was observed on allergic rhinitis and asthma when socioeconomic factors were controlled for. GWR models revealed spatial variation of PM10 effects on atopic dermatitis across the sub-districts in Seoul. The relationship of PM10 levels to atopic dermatitis patient counts is found to be significant only in the Gangbuk region (P<0.01), along with other covariates including average land value, poverty rate, level of education and apartment rate (P<0.01). Conclusions Our findings imply that PM10 effects on allergic diseases might not be consistent throughout Seoul. GIS-based spatial modeling techniques could play a role in evaluating spatial variation of air pollution impacts on allergic diseases at the sub-district level, which could provide

  18. Comparative source apportionment of PM10 in Switzerland for 2008/2009 and 1998/1999 by Positive Matrix Factorisation

    NASA Astrophysics Data System (ADS)

    Gianini, M. F. D.; Fischer, A.; Gehrig, R.; Ulrich, A.; Wichser, A.; Piot, C.; Besombes, J.-L.; Hueglin, C.

    2012-07-01

    PM10 speciation data from various sites in Switzerland for two time periods (January 1998-March 1999 and August 2008-July 2009) have been analysed for major sources by receptor modelling using Positive Matrix Factorisation (PMF). For the 2008/2009 period, it was found that secondary aerosols (sulphate- and nitrate-rich secondary aerosols, SSA and NSA) are the most abundant components of PM10 at sites north of the Alps. Road traffic and wood combustion were found to be the largest sources of PM10 at these sites. Except at the urban roadside site where road traffic is dominating (40% of PM10 -- including road salt), the annual average contribution of these two sources is of similar importance (17% and 14% of PM10, respectively). At a rural site south of the Alps wood combustion and road traffic contributions to PM10 were higher (31% and 24%, respectively), and the fraction of secondary aerosols lower (29%) than at similar site types north of the Alps. Comparison of PMF analyses for the two time periods (1998/1999 and 2008/2009) revealed decreasing average contributions of road traffic and SSA to PM10 at all sites. This indicates that the measures that were implemented in Switzerland and in neighbouring countries to reduce emissions of sulphur dioxide and PM10 from road traffic were successful. On the other hand, contributions of wood combustion did not change during this ten year period, and the contribution of nitrate-rich secondary aerosols has even increased. It is shown that PMF can be a helpful tool for the assessment of long-term changes of source contributions to ambient particulate matter.

  19. Wind erosion from a sagebrush steppe burned by wildfire: measurements of PM10 and total horizontal sediment flux

    USGS Publications Warehouse

    Wagenbrenner, Natalie S.; Germino, Matthew J.; Lamb, Brian K.; Robichaud, Peter R.; Foltz, Randy B.

    2013-01-01

    above the soil surface, had a maximum PM10 vertical flux of 100 mg m-2 s-1, and generated a large dust plume that was visible in satellite imagery. The peak PM10 concentration measured on-site at a height of 2 m in the downwind portion of the burned area was 690 mg m-3. Our results indicate that wildfire can convert a relatively stable landscape into one that is a major dust source.

  20. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10).

    PubMed

    Gábelová, Alena; Valovicová, Zuzana; Lábaj, Juraj; Bacová, Gabriela; Binková, Blanka; Farmer, Peter B

    2007-07-01

    The free radical generating activity of airborne particulate matter (PM(10)) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2'-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5-150microg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM(10) collected daily (24h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libus and Smíchov), Kosice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Kosice, summer sampling. In this case, 2h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 10(6) nucleotides with a value 3.5 per 10(6) nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value). Based on these data we believe that EOM samples extracted from airborne particle PM(10) play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions

  1. Modeling of the mineral contribution of dust to PM10 directly from the measurements of VIIRS Aerosol Optical Thickness

    NASA Astrophysics Data System (ADS)

    Albina, D. T.

    2015-12-01

    Northern Africa is well known as the largest producing region of dust, which is transported across the Atlantic to the Caribbean, under specific weather conditions. Saharan dust was observed, over the Caribbean Basin, to try to determine the roles they may play in human health, and in the fertilization of Amazon Forest. Scientists have not only used the satellite sensors MODIS and VIIRS to measure the volume of dust that makes this trans-Atlantic journey, but also the AERONET network of photometers, and PM10 Suspended Particulate Matter. We have successfully compared and shown a high correlation between the measurements from VIIRS aerosol optical thickness (AOT) and PM10 so that to be able to determine an accurate modeling of the mineral contribution of dust to PM10 directly from the measurements of VIIRS. The aim of this work is to show that it is possible to accurately forecast the daily mean concentration of PM10 using linear regression models. In this way, countries of the Caribbean region which cannot afford Particle Sensor for Pm10 will be able to have a precise idea of the PM10 daily forecast upon there region.

  2. Effects of soil dust episodes and mixed fuel sources on source apportionment of PM10 particles in Kuopio, Finland

    NASA Astrophysics Data System (ADS)

    Hosiokangas, Jari; Ruuskanen, Juhani; Pekkanen, Juha

    A receptor modeling study was carried out in Kuopio, Finland, between January and April 1994. Near the center of town, the daily mean concentrations were measured for PM10, sulphur dioxide, carbon monoxide and Black Smoke. Elemental concentrations of PM10 samples for 38 days were analyzed by ICP-MS. The main sources and their contributions to the measured concentrations of PM10 particles were solved by receptor modeling using a factor analysis-multiple linear regression (FA-MLR) model. Because a dust episode was very strong during two sampling days, the FA analysis was strongly influenced by this episode and did not give main factors. The factor analysis, when the two episode days were omitted, gave credible factors related to the sources in the study area. The four major sources and their estimated contributions to the average PM10 concentration of 27.2 μg m -3 were: soil and street dust 46-48%, heavy fuel oil burning 12-18%, traffic exhaust 10-14%, wood burning ca. 11% and unidentified sources 15-25%. However, during spring dust episode days, with maximum PM10 concentration of 150 μg m -3, the main source of PM10 was soil.

  3. Influence of road traffic, residential heating and meteorological conditions on PM10 concentrations during air pollution critical episodes.

    PubMed

    Gualtieri, Giovanni; Toscano, Piero; Crisci, Alfonso; Di Lonardo, Sara; Tartaglia, Mario; Vagnoli, Carolina; Zaldei, Alessandro; Gioli, Beniamino

    2015-12-01

    The importance of road traffic, residential heating and meteorological conditions as major drivers of urban PM10 concentrations during air pollution critical episodes has been assessed in the city of Florence (Italy) during the winter season. The most significant meteorological variables (wind speed and atmospheric stability) explained 80.5-85.5% of PM10 concentrations variance, while a marginal role was played by major emission sources such as residential heating (12.1%) and road traffic (5.7%). The persistence of low wind speeds and unstable atmospheric conditions was the leading factor controlling PM10 during critical episodes. A specific PM10 critical episode was analysed, following a snowstorm that caused a "natural" scenario of 2-day dramatic road traffic abatement (-43%), and a massive (up to +48%) and persistent (8 consecutive days) increase in residential heating use. Even with such a strong variability in local PM10 emissions, the role of meteorological conditions was prominent, revealing that short-term traffic restrictions are insufficient countermeasures to reduce the health impacts and risks of PM10 critical episodes, while efforts should be made to anticipate those measures by linking them with air quality and weather forecasts. PMID:26233744

  4. [Characteristics of PM10 and PM2.5 concentrations in mountain background region of East China].

    PubMed

    Su, Bin-Bin; Liu, Xin-Dong; Tao, Jun

    2013-02-01

    The online PM10 and PM2.5 concentrations were measured from March 2011 'to February 2012 at the national atmospheric background monitoring station in Wuyishan of Fujian Province to discuss the characteristic of PM10 and PM2.5 concentrations and the impact factors in forest and mountain background region of East China. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) Model was used to investigate the potential sources of particulates during the pollution episodes. The results showed that the background concentrations of PM10 and PM2.5 were (23 +/- 16) microg.m-3 and (18 +/- 12) microg.m-3, respectively. Seasonal variations of PMl0 and PM2.5 loadings were observed, and loadings decreased in the same order: spring > autumn > winter > summer. PM10 and PM2.5 concentrations were obviously higher in spring than in other seasons because of the transportation of dust storm. The fine particles were the dominant pollutant which accounted for 76% of PM10. The good correlation between PM10/PM2.5 and gas pollutants suggested that regional transportation and secondary aerosol were the major sources in the background station. One episode occurring in April 2011 was related with the transportation of dust storm. However, another episode occurring in September 2011 had close relationship with the transportation of higher pollutant loadings in East China. PMID:23668109

  5. Linking Endotoxins, African Dust PM10 and Asthma in an Urban and Rural Environment of Puerto Rico

    PubMed Central

    Ortiz-Martínez, Mario G.; Rodríguez-Cotto, Rosa I.; Ortiz-Rivera, Mónica A.; Pluguez-Turull, Cedric W.; Jiménez-Vélez, Braulio D.

    2015-01-01

    African Dust Events (ADE) are a seasonal phenomenon that has been suggested to exacerbate respiratory and proinflammatory diseases in Puerto Rico (PR). Increases in PM10 concentration and the effects of biological endotoxins (ENX) are critical factors to consider during these storms. ENX promote proinflammatory responses in lungs of susceptible individuals through activation of the Toll-like receptors (TLR2/4) signaling pathways. The objective of the study was to evaluate the toxicological and proinflammatory responses stimulated by ADE PM10 ENX reaching PR using human bronchial epithelial cells. PM10 organic extracts from a rural and urban site in PR (March 2004) were obtained from ADE and non-ADE and compared. A retrospective data analysis (PM10 concentration, aerosol images, and pediatric asthma claims) was performed from 2000 to 2012 with particular emphasis in 2004 to classify PM samples. Urban extracts were highly toxic, proinflammatory (IL-6/IL-8 secretion), and induced higher TLR4 expression and NF-κB activation compared to rural extracts. ENX were found to contribute to cytotoxicity and inflammatory responses provoked by urban ADE PM10 exposure suggesting a synergistic potency of local and natural ENX incoming from ADE. The contribution of ADE PM10 ENX is valuable in order to understand interactions and action mechanisms of airborne pollutants as asthma triggers in PR. PMID:26681839

  6. Source apportionment and health risk assessment of PM10 in a naturally ventilated school in a tropical environment.

    PubMed

    Mohamad, Noorlin; Latif, Mohd Talib; Khan, Md Firoz

    2016-02-01

    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible. PMID:26590697

  7. Speciation of PM10 and PM2.5 in the urban atmosphere of Milan

    NASA Astrophysics Data System (ADS)

    Bolzacchini, E.; Gianelle, V.; Perrone, G.; Pozzoli, L.; Rindone, B.; Mognaschi, G.; Avella, F.; Faedo, D.

    2003-04-01

    A new project (Urban Particulate in Milan, PUMI) is started since last February 2002 to study the air pollution in the Milan urban area which during last winter reached a critical dimension, not only for the city of Milan (Italy) but also for all the Region Lombardia. A project involve the collection and elaboration of all the data about fine particles (PM10, PM2.5) in the Milan urban area to study their spatial and temporal distribution and their correlation with meteorological parameters and other pollutants. Monitoring campaigns for the emissions from primary representative sources (mobile sources, household heating, power plants and incinerators). Speciation of the samples collected from the principal sources and speciation of the fine particulate samples. Compounds of particular interest for the health (e.g. elements, PAH, nitro-PHA) will be analysed to identify the impact of the different sources.

  8. Monitoring trace elements by nuclear techniques in PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Freitas, M. Carmo; Almeida, S. Marta; Reis, Miguel A.; Oliveira, Orlando R.

    2003-06-01

    As part of a contract for air quality monitoring at an urban waste incinerator neighborhood, measurements of PM10 and PM2.5 are being routinely evaluated. Two samples are collected for 24 h at the weekend and a working day, using a Gent collector, which separates the particulate in two fractions: PM2.5 and PM2.5-10. Filters are polycarbonate Nuclepore, sized 47 mm, which, for analysis, are cut as: one half to be analyzed by instrumental neutron activation analysis (INAA) and one quarter for proton induced X-rays emission (PIXE). Both techniques are multielemental determining together around 25 chemical elements. Comparison of results is just possible for potassium, iron and zinc, which are compared in this work. A better agreement is obtained in PM2.5 suggesting a homogeneity trend. Fe and K compare quite well and Zn may show quite different results.

  9. Short-time particulate matter PM10 forecasts using predictive modeling techniques

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Gocheva-Ilieva, S.

    2013-10-01

    Two types of predictive modeling techniques - seasonal autoregressive integrated moving average (SARIMA) and a new Generalized PathSeeker (GPS) Regularized Regression method have been used for modeling data related to ambient air quality. The models are built for the measured data for the primary air pollutant - particulate matter PM10 in the town of Shumen, Bulgaria. The time series analysis was carried out based on hourly data with respect to six meteorological variables during a period of one month. The constructed models have been used for short-term four-days-ahead forecasts. The obtained results demonstrate some advantages of the GPS method over seasonal ARIMA stochastic modeling and its applicability. This gives a new perspective for analyzing and preventing the possible pollution problems in urban areas.

  10. Uncertainties in future ozone and PM10 projections over Europe from a regional climate multiphysics ensemble

    NASA Astrophysics Data System (ADS)

    Jiménez-Guerrero, P.; Jerez, S.; Montávez, J. P.; Trigo, R. M.

    2013-11-01

    Due to the computational time required for modeling air quality climatologies, the characterization of processes introducing the largest uncertainty in air quality-climate projections is a sound field of research. Here an air quality ensemble is assessed over Europe for present (1971-2000) and future (2071-2100, SRES A2) periods to characterize the sensitivity of regional air quality projections to the physics of the regional climate model driving the simulations. The ensemble comprises eight members resulting from combining two options of parameterization schemes for the planetary boundary layer, cumulus, and microphysics. The differences in the ensemble members (spread) for the concentration of tropospheric ozone and particulate matter (PM10) are strongly affected by the physics selected and could be considered as a matter of uncertainty in the change signals. Also, the leading processes causing the largest uncertainties in air quality projections have been identified and are mainly related to the election of the cumulus schemes.

  11. Source apportionment of PM10 at a small industrial area using Positive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Lim, Jong-Myoung; Lee, Jin-Hong; Moon, Jong-Hwa; Chung, Yong-Sam; Kim, Ki-Hyun

    2010-01-01

    In this study, PM10-bound concentrations of 28 trace metals and 3 ionic components were measured from samples collected at Daejeon Industrial Complexes I and II, Korea from April 2000 to December 2002. Positive matrix factorization (PMF) and conditional probability function (CPF) were applied to these PM data sets to identify the diverse sources in the industrial area. A total of nine source types were identified to be important which include: secondary aerosol, cement/construction, soil dust, road dust, vehicle exhaust, incineration/Pb-related industry, metal smelting, fossil fuel combustion, and field burning. Results of our study suggest that there are competing relationships between anthropogenic and natural source processes in this industrial area.

  12. The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems

    SciTech Connect

    Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.

    2015-10-22

    Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of time series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.

  13. The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems

    NASA Astrophysics Data System (ADS)

    Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.

    2015-10-01

    Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of time series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.

  14. Evaluation of standardless EDXRF analysis for the determination of elements on PM10 loaded filters

    NASA Astrophysics Data System (ADS)

    Yatkin, S.; Gerboles, M.; Borowiak, A.

    2012-07-01

    Energy Dispersive X-ray Fluorescence (EDXRF) was compared to Inductively Coupled Plasma Mass Spectrometer (ICP-MS) for the measurements of elements (Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Fe, Co, Ni, Mn, Cu, Zn, As, Br, Sr, Pb, Mo, Cd, Sn and Sb) in particulate matter (PM10) collected on Teflon and two types of quartz filters at different sites. Two different methods of EDXRF analysis, linear calibration and standardless analysis, were studied. For the linear calibration, Pb, Mn, Fe, Cu, Ti and Zn were found to be site and filter type independent whereas Ca was only site independent. The site effect was evidenced for K, As, Ni, and V for quartz filter. The standardless EDXRF analysis showed better results than linear calibrations except for As, Co and V for Teflon filters and Cr and V for quartz filters. The measurement uncertainty of standardless EDXRF analysis was estimated by establishing a model equation. The measurement uncertainty estimated with this model equation was confirmed by field experiments provided that elemental masses exceeded observed thresholds. It was found that standardless EDXRF analysis is able to quantify most of the elements studied, particularly on Teflon filters rather than quartz filters. The standardless EDXRF analysis complies with the data quality objectives (DQO) of European Directives to measure Pb in PM10 for three types of filters, even at concentrations lower than limit values (LV). The detection limits (MDL) of standardless EDXRF analysis for measuring As and Cd were found to be insufficient to meet the legislative requirements. The MDL of Ni was sufficiently low for measurements; however, measurement uncertainties remained higher than the DQO at the lower concentrations than LV.

  15. Assessing the contribution of water to the mass closure of PM10

    NASA Astrophysics Data System (ADS)

    Perrino, C.; Catrambone, M.; Farao, C.; Canepari, S.

    2016-09-01

    The data obtained during a number of field studies aimed at determining the chemical composition of atmospheric particulate matter (PM) have shown that the measurement of the main PM components (main elements, ions, elemental carbon, organic carbon) was generally sufficient to obtain a reasonable mass closure. Notwithstanding, a wide gap between PM mass concentration and reconstructed mass was observed in two peculiar environmental conditions: desert dust intrusion and severe atmospheric stability episodes characterized by very high ammonium nitrate concentration. In these two cases, the mass closure improved significantly by adding the concentration of PM-bound water. Water was determined by using a coulometric Karl-Fisher system equipped with a controlled heating device; the method was able to separate different water contributions released in different temperature ranges from 50 to 250 °C. In our field studies the amount of water associated to ammonium salts in winter stability conditions was mostly dependent on ammonium nitrate concentration and constituted up to 22% of the total PM10 mass; the specific water contribution linked to ammonium salts (released in the temperature range 180-250 °C) constituted up to 30% of the ammonium nitrate mass. It was confirmed that in these extreme conditions quartz and Teflon filters behave differently: when measured on quartz filters, PM concentration was lower than on Teflon, the mass closure was satisfactory and the concentration of water was presumably very low. In the case of desert dust episodes, water was up to 10% of total PM10 mass; the specific water contribution linked to desert dust (released in the temperature range 100-180 °C) constituted about 5% of the mass of soil components. In other environmental situations, such as urban environments, marine atmosphere and rural areas, the concentration of PM-bound water was below 2-3 μg/m3.

  16. Large chemical characterisation of PM10 emitted from graphite material production: Application in source apportionment.

    PubMed

    Golly, B; Brulfert, G; Berlioux, G; Jaffrezo, J-L; Besombes, J-L

    2015-12-15

    This work focuses on emissions from industrial sources that are still poorly understood in Europe, especially the "carbon industry". The study is based on two intensive sampling campaigns performed in a graphite material production plant for 2weeks in July 2013 and November 2013 in alpine valleys. The chemical characterization of PM10 was conducted at three sampling sites (outdoor and indoor sites) located inside one industrial area, which is considered as the highest emissions source of polycyclic aromatic hydrocarbons (PAHs) in the Arve valley. The identification of specific tracers among metals and trace elements is commonly used to characterize industrial emissions. In our study, original enrichment factors relative to the "rural exposed background" have been calculated, and the metallic fraction was not affected by this industrial source. In contrast, the organic fraction of PM10 has a number of features, providing a complete organic source profile and referred to as the "carbon industry". In particular, polycyclic aromatic sulfur heterocycles (PASH) have been largely detected from fugitive emissions with rather large concentrations. The average concentrations of benzo(b)naphtho(2,1-d)thiophene (BNT(2,1)) reached 2.35-6.56ng·m(-3) and 60.5-376ng·m(-3) for outdoor and indoor sites, respectively. The use of this reference profile in the chemical mass balance model (CMB) applied to samples collected in two sites near industrial areas shows that this source had an average contribution of 6% of the organic matter (OM) mass during the sampling period during the winter of 2013. PMID:26322728

  17. Global emissions of PM10 and PM2.5 from agricultural tillage and harvesting operations

    NASA Astrophysics Data System (ADS)

    Chen, W.; Tong, D.; Lee, P.

    2014-12-01

    Soil particles emitted during agricultural activities is a major recurring source contributing to atmospheric aerosol loading. Emission inventories of agricultural dust emissions have been compiled in several regions. These inventories, compiled based on historic survey and activity data, may reflect the current emission strengths that introduce large uncertainties when they are used to drive chemical transport models. In addition, there is no global emission inventory of agricultural dust emissions required to support global air quality and climate modeling. In this study, we present our recent efforts to develop a global emission inventory of PM10 and PM2.5 released from field tillage and harvesting operations using an emission factors-based approach. Both major crops (e.g., wheat and corn) and forage production were considered. For each crop or forage, information of crop area, crop calendar, farming activities and emission factors of specified operations were assembled. The key issue of inventory compilation is the choice of suitable emission factors for specified operations over different parts of the world. Through careful review of published emission factors, we modified the traditional emission factor-based model by multiplying correction coefficient factors to reflect the relationship between emission factors, soil texture, and climate conditions. Then, the temporal (i.e., monthly) and spatial (i.e., 0.5º resolution) distribution of agricultural PM10 and PM2.5 emissions from each and all operations were estimated for each crop or forage. Finally, the emissions from individual crops were aggregated to assemble a global inventory from agricultural operations. The inventory was verified by comparing the new data with the existing agricultural fugitive dust inventory in North America and Europe, as well as satellite observations of anthropogenic agricultural dust emissions.

  18. An hourly PM10 diagnosis model for the Bilbao metropolitan area using a linear regression methodology.

    PubMed

    González-Aparicio, I; Hidalgo, J; Baklanov, A; Padró, A; Santa-Coloma, O

    2013-07-01

    There is extensive evidence of the negative impacts on health linked to the rise of the regional background of particulate matter (PM) 10 levels. These levels are often increased over urban areas becoming one of the main air pollution concerns. This is the case on the Bilbao metropolitan area, Spain. This study describes a data-driven model to diagnose PM10 levels in Bilbao at hourly intervals. The model is built with a training period of 7-year historical data covering different urban environments (inland, city centre and coastal sites). The explanatory variables are quantitative-log [NO2], temperature, short-wave incoming radiation, wind speed and direction, specific humidity, hour and vehicle intensity-and qualitative-working days/weekends, season (winter/summer), the hour (from 00 to 23 UTC) and precipitation/no precipitation. Three different linear regression models are compared: simple linear regression; linear regression with interaction terms (INT); and linear regression with interaction terms following the Sawa's Bayesian Information Criteria (INT-BIC). Each type of model is calculated selecting two different periods: the training (it consists of 6 years) and the testing dataset (it consists of 1 year). The results of each type of model show that the INT-BIC-based model (R(2) = 0.42) is the best. Results were R of 0.65, 0.63 and 0.60 for the city centre, inland and coastal sites, respectively, a level of confidence similar to the state-of-the art methodology. The related error calculated for longer time intervals (monthly or seasonal means) diminished significantly (R of 0.75-0.80 for monthly means and R of 0.80 to 0.98 at seasonally means) with respect to shorter periods. PMID:23247520

  19. Spatial Correlation Analysis between Particulate Matter 10 (PM10) Hazard and Respiratory Diseases in Chiang Mai Province, Thailand

    NASA Astrophysics Data System (ADS)

    Trang, N. Ha; Tripathi, N. K.

    2014-11-01

    Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in

  20. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.

    PubMed

    Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2014-12-01

    Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This

  1. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B).

    PubMed

    Van Den Heuvel, Rosette; Den Hond, Elly; Govarts, Eva; Colles, Ann; Koppen, Gudrun; Staelens, Jeroen; Mampaey, Maja; Janssen, Nicole; Schoeters, Greet

    2016-08-01

    Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM10 in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013-2014 PM10 was sampled (24h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM10 particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM10 particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM10 characteristics and biological effects of PM10 were assessed by single and multiple regression analyses. The

  2. Assessment of resident's exposure level and health economic costs of PM10 in Beijing from 2008 to 2012.

    PubMed

    Hou, Qing; An, Xingqin; Tao, Yan; Sun, Zhaobin

    2016-09-01

    Epidemiological studies have asserted a negative association between atmospheric particulates and human health, especially particulate matter (PM10), which can cause a noticeable damage to human health. In recent years, PM10 has become the primary pollutant in major cities in China. It is crucial to evaluate the health impacts of PM10 to make pollution control policies and protect public health. For health-based assessments, human exposure evaluation is a key step, which is related to offering an exact exposure date for assessment. Using high-density PM10 and population data based on the Geographic Information System (GIS), this study estimated the impact of PM10 on human exposure levels and combined the exposure-response function with the health-economic loss relationship to assess the effect of PM10 on human health in Beijing from 2008 to 2012 quantitatively. The results showed that the population distribution was highly centralized in urban areas, especially inside the fifth ring road. A high proportion, 63.4% of the population, was exposed to the range of 120 to 130μg/m(3). Approximately 44.1% of that population was located inside the fifth ring road, and approximately 55.9% of it was located outside of the fifth ring road. The spatial distribution of the economic cost associated with PM10 from 2008 to 2012 was uneven, being highly centralized in urban areas, especially inside the fifth ring road, similar to the population densities. The economic cost increased from 2008 to 2012, similar to GDP. The proportion of economic cost to Beijing's GDP decreased from 2008 to 2012. The average economic cost of 5years inside the fifth ring road was 4.55billion US$; that of the outside was 4.95billion US$. The proportions of average economic losses compared with GDP inside and outside of the fifth ring road changed slightly in the period from 2008 to 2012. PMID:27155078

  3. Quantitative analysis on windblown dust concentrations of PM10 (PM2.5) during dust events in Mongolia

    NASA Astrophysics Data System (ADS)

    Jugder, Dulam; Shinoda, Masato; Kimura, Reiji; Batbold, Altangerel; Amarjargal, Danzansambuu

    2014-09-01

    Dust concentration, wind speed and visibility, measured at four sites in the Gobi Desert and at a site in the steppe zone of Mongolia over a period of 4.5 years (January 2009 to May 2013), have been analyzed for their relationships, their effects on visibility, and for an estimate of the threshold wind necessary for dust emission in the region. Based on quantitative analysis on measurements, we evaluated that dust emission concentrations of 41-61 (20-24) μg m-3 of PM10 (PM2.5) are as the criterion between normal and hazy atmospheric conditions. With the arrival of dust events, wind-borne soil particulate matter (PM10, PM2.5) that originates in the Gobi Desert is changed dramatically. PM10 (PM2.5) concentrations increase by at least double or by several tens of times during severe dust events in comparison with the normal atmospheric condition. Ratio (PM2.5/PM10) between monthly means of PM10 and PM2.5 concentrations showed that anthropogenic particles were dominant in the ambient air of province centers in cool months (November to February). Threshold values of the onset of dust events were determined for PM10 (PM2.5) concentrations. According to the definition of dust storms, dust concentrations of PM10 corresponding to visibility of 1 km or less were determined at sites in the Gobi Desert and the steppe region. The threshold wind speeds during days with dust events were estimated at four sites in the Gobi Desert and compared each other. The threshold wind was higher at Sainshand and its cause might be due to smaller silt and clay fractions of soil.

  4. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  5. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  6. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  7. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  8. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  9. PROTOCOL FOR SIZE-SPECIFIC EMISSION MEASUREMENTS (SIM-5) APPLIED TO PM(10)

    EPA Science Inventory

    Aerosol particles can be withdrawn from industrial process streams and separated into two or more aerodynamic size fractions with a commercially-available inertial impactor or cyclone. However, with this currently-available equipment, the process gas must be sampled at a constant...

  10. Aerodynamic characteristics of a 0.00563 scale 142-inch diameter solid rocket booster (MSFC model 449 and 480) with side mounted stings in the NASA/MSFC 14-inch trisonic wind tunnel (SA14FA)

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1976-01-01

    An experimental investigation (SA14FA, TWT 620) was conducted in the MSFC 14-inch Trisonic Wind Tunnel (TWT) to determine the entry static stability of a 0.00563 scale shuttle solid rocket booster (SRB). The primary objective was to determine the effects of four side mounted sting configurations and to improve the definition of the aerodynamic characteristics in the vicinity of the SRB entry trim point. Data were obtained for two 60 and two 90 degree side mounted stings and a straight nose mounted sting. The angle of attack range for the side-mounted stings was 100 to 170 degrees while that for the nose mounted sting was 150 to 170 degrees. The Mach number range consisted of 0.6 to 3.48. Except for the aft attach ring, no protuberances were considered and the side slip and roll angles were zero. The test model was scaled from the 142-inch diameter SRB known as configuration 139 which was used during test TWT 572 (SA5F).

  11. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  12. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China.

    PubMed

    Song, Xiaoyan; Yang, Shushen; Shao, Longyi; Fan, Jingsen; Liu, Yanfei

    2016-11-15

    The atmospheric pollution created by coal-dominated industrial cities in China cannot be neglected. This study focuses on the atmospheric PM10 in the typical industrial city of Pingdingshan City in North China. A total of 44 PM10 samples were collected from three different sites (power plant, mining area, and roadside) in Pingdingshan City during the winter of 2013, and were analyzed gravimetrically and chemically. The Pingdingshan PM10 samples were composed of mineral matter (average of 118.0±58.6μg/m(3), 20.6% of the total PM10 concentration), secondary crystalline particles (338.7±122.0μg/m(3), 59.2%), organic matter (77.3±48.5μg/m(3), 13.5%), and elemental carbon (38.0±28.3μg/m(3), 6.6%). Different sources had different proportions of these components in PM10. The power plant pollutant source was characterized by secondary crystalline particles (377.1μg/m(3)), elemental carbon (51.5μg/m(3)), and organic matter (90.6μg/m(3)) due to coal combustion. The mining area pollutant source was characterized by mineral matter (124.0μg/m(3)) due to weathering of waste dumps. The roadside pollutant source was characterized by mineral matter (130.0μg/m(3)) and organic matter (81.0μg/m(3)) due to road dust and vehicle exhaust, respectively. A positive matrix factorization (PMF) analysis was performed for PM10 source apportionment to identify major anthropogenic sources of PM10 in Pingdingshan. Six factors-crustal matter, coal combustion, vehicle exhaust and abrasion, local burning, weathering of waste dumps, and industrial metal smelting-were identified and their contributions to Pingdingshan PM10 were 19.0%, 31.6%, 7.4%, 6.3%, 9.8%, and 25.9%, respectively. Compared to other major cities in China, the source of PM10 in Pingdingshan was characterized by coal combustion, weathering of waste dumps, and industrial metal smelting. PMID:27450962

  13. Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden

    NASA Astrophysics Data System (ADS)

    Ferm, Martin; Sjöberg, Karin

    2015-10-01

    PM10 concentrations exceed the guidelines in some Swedish cities and the limit values will likely be further reduced in the future. In order to gain more knowledge of emission factors for road traffic and concentrations of PM10 and PM2.5, existing monitoring stations in two cities, Gothenburg and Umeå, with international E-road thoroughfares, were complemented with some PM2.5 measurements. Emission factors for PM10 and PM2.5 were estimated using NOX as a tracer. Monitoring data from kerbside and urban background sites in Gothenburg during 2006-2010 and in Umeå during 2006-2012 were used. NOX emissions were estimated from the traffic flow and emission factors calculated from the HBEFA3.1 model. PM2.5 constitutes the finer part of PM10. Emissions of the coarser part of PM10 (PM10-PM2.5) are suppressed when roads are wet and show a maximum during spring when the roads dry up and studded tyres are still used. Less than 1% of the road wear caused by studded tyres give rise to airborne PM2.5-10 particles. The NOX emission factors decrease with time in the used model, due to the renewal of the vehicle fleet. However, the NOX concentrations resulting from the roads show no clear trend. The air dispersion is an important factor controlling the PM concentration near the road. The dispersion has a minimum in winter and during midnight. The average street level concentrations of PM10 and PM2.5 in Gothenburg were 21 ± 20 and 8 ± 6 μg m-3 respectively, which is 36% and 22% higher than the urban background concentrations. Despite the four times lower traffic flow in Umeå compared to Gothenburg, the average particle concentrations were very similar; 21 ± 31 and 7 ± 5 μg m-3 for PM10 and PM2.5 respectively. These concentrations were, however, 108% and 55% higher than the urban background concentrations in Umeå. The emission factors for PM10 decreased with time, and the average factor was 0.06 g km-1 vehichle-1. The emission factors for PM2.5 are very uncertain due to the

  14. Performance of Passive Samplers Analyzed by Computer-Controlled Scanning Electron Microscopy to Measure PM10-2.5.

    PubMed

    Peters, Thomas M; Sawvel, Eric J; Willis, Robert; West, Roger R; Casuccio, Gary S

    2016-07-19

    We report on the precision and accuracy of measuring PM10-2.5 and its components with particles collected by passive aerosol samplers and analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy. Passive samplers were deployed for week-long intervals in triplicate and colocated with a federal reference method sampler at three sites and for 5 weeks in summer 2009 and 5 weeks in winter 2010 in Cleveland, OH. The limit of detection of the passive method for PM10-2.5 determined from blank analysis was 2.8 μg m(-3). Overall precision expressed as root-mean-square coefficient of variation (CVRMS) improved with increasing concentrations (37% for all samples, n = 30; 19% for PM10-2.5 > 10 μg m(-3), n = 9; and 10% for PM10-2.5 > 15 μg m(-3), n = 4). The linear regression of PM10-2.5 measured passively on that measured with the reference sampler exhibited an intercept not statistically different than zero (p = 0.46) and a slope not statistically different from unity (p = 0.92). Triplicates with high CVs (CV > 40%, n = 5) were attributed to low particle counts (and mass concentrations), spurious counts attributed to salt particles, and Al-rich particles. This work provides important quantitative observations that can help guide future development and use of passive samplers for measuring atmospheric particulate matter. PMID:27300163

  15. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.

    PubMed

    Kim, Ki Youn; Kim, Yoon Shin; Roh, Young Man; Lee, Cheol Min; Kim, Chi Nyon

    2008-06-15

    The aims of this study are to examine the concentrations of PM10 and PM2.5 in areas within the Seoul Metropolitan Subway network and to provide fundamental data in order to protect respiratory health of subway workers and passengers from air pollutants. A total of 22 subway stations located on lines 1-4 were selected based on subway official's guidance. At these stations both subway worker areas (station offices, rest areas, ticket offices and driver compartments) and passengers areas (station precincts, subway carriages and platforms) were the sites used for measuring the levels of PM. The mean concentrations of PM10 and PM2.5 were relatively higher on platforms, inside subway carriages and in driver compartments than in the other areas monitored. The levels of PM10 and PM2.5 for station precincts and platforms exceeded the 24-h acceptable threshold limits of 150 microg/m3 for PM10 and 35 microg/m3 for PM2.5, which are regulated by the U.S. Environmental Protection Agency (EPA). However, levels measured in station and ticket offices fell below the respective threshold. The mean PM10 and PM2.5 concentrations on platforms located underground were significantly higher than those at ground level (p<0.05). PMID:18036738

  16. Assessment of PM10 and heavy metals concentration in a Ceramic Cluster (NE Spain)

    NASA Astrophysics Data System (ADS)

    Belen Vicente, Ana; Pardo, Francisco; Sanfeliu, Teofilo; Bech, Joan

    2013-04-01

    Environmental pollution control is one of the most important goals in pollution risk assessment today. The aim of this study is conducting a retrospective view of the evolution of particulate matter (PM10) and heavy metals (As, Cd, Ni and Pb) at different localities in the Spanish cluster ceramic in the period between January 2007 and December 2011. The study area is in the province of Castellón. This province is a strategical area in the framework of European Union Pollution control. Approximately 80% of European ceramic tiles and ceramic frits manufacturers are concentrated in two areas, forming the so-called "Ceramics Clusters"; one is in Modena (Italy) and the other in Castellón (Spain). In this kind of areas, there are a lot of pollutants from this industry that represent an important contribution to soil contamination so it is necessary to control the air quality in them. These atmospheric particles are deposited in the ground through both dry and wet deposition. Soil is a major sink for heavy metals released into the environment. The level of pollution of soils by heavy metals depends on the retention capacity of the soil, especially on physical-chemical properties (mineralogy, grain size, organic matter) affecting soil particle surfaces and also on the chemical properties of the metal. The most direct consequences on the ground of air pollutants are acidification, salinization and the pollutions that can cause heavy metals as components of suspended particulate matter. For this purpose the levels of PM10 in ambient air and the corresponding annual and weekly trend were calculated. The results of the study show that the PM10 and heavy metals concentrations are below the limit values recommended by European Union Legislation for the protection of human health and ecosystems in the study period. There is an important reduction of them from 2009 in all control stations due to the economic crisis. References Moral, R., Gilkes, R.J., Jordán, M.M., 2005

  17. MLP based models to predict PM10, O3 concentrations, in Sines industrial area

    NASA Astrophysics Data System (ADS)

    Durao, R.; Pereira, M. J.

    2012-04-01

    Sines is an important Portuguese industrial area located southwest cost of Portugal with important nearby protected natural areas. The main economical activities are related with this industrial area, the deep-water port, petrochemical and thermo-electric industry. Nevertheless, tourism is also an important economic activity especially in summer time with potential to grow. The aim of this study is to develop prediction models of pollutant concentration categories (e.g. low concentration and high concentration) in order to provide early warnings to the competent authorities who are responsible for the air quality management. The knowledge in advanced of pollutant high concentrations occurrence will allow the implementation of mitigation actions and the release of precautionary alerts to population. The regional air quality monitoring network consists in three monitoring stations where a set of pollutants' concentrations are registered on a continuous basis. From this set stands out the tropospheric ozone (O3) and particulate matter (PM10) due to the high concentrations occurring in the region and their adverse effects on human health. Moreover, the major industrial plants of the region monitor SO2, NO2 and particles emitted flows at the principal chimneys (point sources), also on a continuous basis,. Therefore Artificial neuronal networks (ANN) were the applied methodology to predict next day pollutant concentrations; due to the ANNs structure they have the ability to capture the non-linear relationships between predictor variables. Hence the first step of this study was to apply multivariate exploratory techniques to select the best predictor variables. The classification trees methodology (CART) was revealed to be the most appropriate in this case.. Results shown that pollutants atmospheric concentrations are mainly dependent on industrial emissions and a complex combination of meteorological factors and the time of the year. In the second step, the Multi

  18. Contribution of vehicular traffic and industrial facilities to PM10 concentrations in a suburban area of Caserta (Italy).

    PubMed

    Iovino, Pasquale; Canzano, Silvana; Leone, Vincenzo; Berto, Chiara; Salvestrini, Stefano; Capasso, Sante

    2014-12-01

    PM10 levels have been recorded in the suburban area of Caserta (Italy) from February to October 2012. The daily limit was exceeded in 13 % of the determinations, with no significant difference between weekdays and weekends. Benzo[a]pyrene concentrations were in the range 0.01-0.46 ng/m(3), thus, never exceeding the National Standard. The B(a)P-eq was 0.20 ng/m(3). PM10 peaks were associated with wind from east-northeast. The same was observed for Ca concentrations, whereas no relation with wind direction was observed for organic pollutants. The results point to a local limestone quarry and cement factory as the likely major source of PM10 pollution in the area investigated. PMID:24136577

  19. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter.

    PubMed

    Gou, Huange; Lu, Jianjiang; Li, Shanman; Tong, Yanbin; Xie, Chunbin; Zheng, Xiaowu

    2016-07-01

    Recently, inhalable particulate matter has been reported to carry microorganisms responsible for human allergy and respiratory disease. The unique geographical environment and adverse weather conditions of Urumqi cause double pollution of dust and smog, but research on the microbial content of the atmosphere has not been commenced. In this study, 16S and 18S rRNA gene sequencing were conducted to investigate the microbial composition of Urumqi's PM1 and PM10 pollutants in winter. Results showed that the bacterial community is mainly composed of Proteobacteria, Firmicutes and Actinobacteria, Proteobacteria accounted for the most proportion which was significant difference in some aforementioned studies. Ascomycota and Basidiomycota constitute the main part of the fungal microbial community. The difference of bacterial relative abundance in sample point is greater than in particle sizes. The sequences of several pathogenic bacteria and opportunistic pathogens were also detected, such as Acinetobacter, Delftia, Serratia, Chryseobacterium, which may impact on immunocompromised populations (elderly, children and postoperative convalescence patients), and some fungal genera may cause several plant diseases. Our findings may serve an important reference value in the global air microbial propagation and air microbial research in desert. PMID:27086076

  20. Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10.

    PubMed

    Escrig, Alberto; Monfort, Eliseo; Celades, Irina; Querol, Xavier; Amato, Fulvio; Minguillón, María Cruz; Hopke, Philip K

    2009-11-01

    Speciated coarse particulate matter (PM10) data obtained at three air quality monitoring sites in a highly industrialized area in Spain between 2002 and 2007 were analyzed for assessing source contribution of ambient particulate matter (PM). The source apportionment of PM in this area is an especially difficult task. There are industrial mineral dust emissions that need to be separately quantified from the natural sources of mineral PM. On the other hand, the diversity of industrial processes in the area results in a puzzling industrial emissions scenario. To solve this complex problem, a two-step methodology based on the possibilities of the Multilinear Engine was used. Application of positive matrix factorization to the dataset allowed the identification of nine factors relevant to the study area. This preliminary analysis permitted resolving two mineral factors. As a second step, a target rotation was implemented for transforming the mineral factors into experimentally characterized soil resuspension and industrial clay sources. In addition to improving the physical interpretation of these factors, the target rotation reduced the errors arising from the rotational freedom of the solution and the multicollinearity among sources. In this way, the main primary industrial emissions of PM in the zone were identified by this target factor analysis. A marked decrease was observed between 2002 and 2007 for the contributions of industrial sources coinciding with the implementation of mitigation measures in their processes. This study supports the utility of source apportionment methodologies for quantitatively evaluating the effectiveness of the abatement programs for air quality improvement. PMID:19947111

  1. Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10

    SciTech Connect

    Lian Zhang; Yoshihiko Ninomiya

    2007-07-01

    Emission of airborne P-bearing particulates from combustion of both coal and sewage sludge samples has been studied in a lab-scale drop tube furnace. The results indicate that both the organically bound fraction of phosphorus and its inorganic species in a complex form containing Si, Al, Ca, Fe, P and O at non-stoichiometric ratios appear to vaporize readily. The resultant phosphorus vapors undergo oxidation, chemical reactions with other metallic vapors including Na/K/Zn, nucleation, and homogeneous/heterogeneous coagulation to form a mixture of their oxides and phosphates with particle sizes smaller than 1.0 {mu}m. On the other hand, phosphorus in the larger fractions, {gt}1.0 {mu}m, mainly consist of apatite and condensed melting phases, which may have been formed through the direct liberation of inherent apatite in raw fuels and the shedding of melting P-bearing particles from the char surface. The amounts of phosphorus in each fraction of PM10 vary considerably with fuel type and combustion conditions. 15 refs., 10 figs., 2 tabs.

  2. Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM 10) using multivariate methods

    NASA Astrophysics Data System (ADS)

    Dallarosa, Juliana Braga; Teixeira, Elba Calesso; Pires, Marçal; Fachel, Jandyra

    The scope of the present study is to identify and quantify the main sources of polycyclic aromatic hydrocarbons (PAHs) in the Candiota region, Rio Grande do Sul, Brazil. Four sampling sites at a distance of 50 km from the emission source were selected: Aceguá, Aeroporto, 8 de Agosto and Pedras Altas. Samples were collected from February 2001 to October 2001, using an HV PM 10 sampler for high volumes during a continuous period of 24 h every 15 days. The filters containing the particulate matter were extracted with dichloromethane in soxhlet and later analyzed by gas chromatography/mass spectrometry (GC/MS). The average concentrations of PAHs varied from 0.051 to 1.791 ng m -3. The analysis of their distribution amongst the main emission sources was done through the diagnosis of concentration ratios of PAHs, as well as using statistical methods like factor analysis. The statistical analysis separated the 13 compounds studied in 3 Factors, grouping under Factor 1 emissions from the combustion of coal and wood, under Factor 2 vehicular emissions from the combustion of diesel oil and gasoline and under Factor 3 emissions from unburned diesel oil and gasoline.

  3. Environmental justice in the context of commuters' exposure to CO and PM10 in Bangalore, India.

    PubMed

    Sabapathy, Ashwin; Saksena, Sumeet; Flachsbart, Peter

    2015-01-01

    The Information Technology (IT) industry in the globalizing city of Bangalore has transformed the socio-economic characteristics of the city. The intent of this study, developed from an environmental justice framework, was to determine whether air pollutant exposure while commuting to and from work is related to a commuter's income characteristics and whether differences are larger for the IT economy when compared with a traditional manufacturing-oriented economy of the city. The study measured exposures to CO and PM10 using personal samplers for a sample of employees of a traditional public sector manufacturing industry (n=20) and an IT industry (n=26). This approach overcomes the methodological limitations of previous environmental justice studies. Socio-economic characteristics were obtained from a questionnaire-based survey of 436 employees in two firms. The results do not support the environmental justice hypothesis for commuting in Bangalore mainly because longer commuting times of higher-income groups offsets the benefits of lower pollutant concentrations. The study nevertheless demonstrates the use of personal exposure for environmental justice assessments. PMID:24849797

  4. Dispersion of TSP and PM(10) emissions from quarries in complex terrain.

    PubMed

    Tartakovsky, Dmitry; Stern, Eli; Broday, David M

    2016-01-15

    This study evaluates AERMOD and CALPUFF dispersion calculations of particulate matter emissions from stone quarries in two mountainous regions against TSP and PM10 measurements, using both observational and WRF-modeled meteorological data. Due to different model parameterization, AERMOD dispersion predictions were in better agreement with the measured concentrations than those obtained by CALPUFF. As expected, the smaller the distance between the meteorological station, the source (quarry) and the receptors, the better the predictions of both AERMOD and CALPUFF. In contrast, using in-situ wind field obtained by runs of the WRF meteorological model for the complex terrain study area provided, in general, less accurate dispersion estimates than when using (even remote) meteorological observations. In particular, using the three-dimensional WRF-modeled wind field within CALPUFF did not provide any advantage over using the two-dimensional wind field, which is the common procedure of AERMOD and CALPUFF. Dry deposition was more significant for ambient concentration estimation in AERMOD than in CALPUFF. PMID:26562341

  5. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 <18% of Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( p<0.05) than in traffic streets, and the differences in exposure levels between new urban streets and old urban streets were highly significant ( p<0.01). Pedestrian exposure to toxic VOCs and PM 10 was higher than those reported in other public transportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  6. PM10 and PM2.5 composition over the Central Black Sea: origin and seasonal variability.

    PubMed

    Koçak, M; Mihalopoulos, N; Tutsak, E; Theodosi, C; Zarmpas, P; Kalegeri, P

    2015-11-01

    Daily PM10 and PM2.5 samples were collected between April 2009 and July 2010 at a rural site (Sinop) situated on the coast of the Central Black Sea. The concentrations of PM10 and PM2.5 were 23.2 ± 16.7 and 9.8 ± 6.9 μg m(-3), respectively. Coarse and fine filters were analyzed for Cl(-), NO3(-), SO4(2-), C2O4(2-), PO4(3-), Na(+), NH4(+), K(+), Mg(2+), and Ca(2+) by using ion chromatography. Elemental and organic carbon content in bulk quartz filters were also analyzed. The highest PM2.5 contribution to PM10 was found in summer with a value of 0.54 due to enhanced secondary aerosols in relation to photochemistry. Cl(-), Na(+), and Mg(2+) illustrated their higher concentrations and variability during winter. Chlorine depletion was chiefly attributed to nitrate. Higher nssCa(2+) concentrations were ascribed to episodic mineral dust intrusions from North Africa into the region. Crustal material (31%) and sea salt (13%) were found to be accounted for the majority of the PM10. The ionic mass (IM), particulate organic matter (POM), and elemental carbon (EC) explained 13, 20, and 3% of the PM10 mass, correspondingly. The IM, POM, and EC dominated the PM2.5 (~74%) mass. Regarding EU legislation, the exceeded PM2.5 values were found to be associated with secondary aerosols, with a particular dominance of POM. For the exceeded PM10 values, six of the events were dominated by dust while two and four of these exceedances were caused by sea salt and mix events, respectively. PMID:26174981

  7. Characteristics of carbonaceous aerosols in ambient PM10 and PM2.5 particles in Dar es Salaam, Tanzania.

    PubMed

    Mkoma, Stelyus L; Chi, Xuguang; Maenhaut, Willy

    2010-02-15

    Ambient daytime and nighttime PM(10) and PM(2.5) samples were collected in parallel at a kerbside in Dar es Salaam in August and September 2005 (dry season) and in April and May 2006 (wet season). All samples were analyzed for the particulate matter mass, for organic, elemental, and total carbon (OC, EC, and TC), and for water-soluble OC (WSOC). The average PM(10) and PM(2.5) mass concentrations and associated standard deviations were 76+/-32microg/m(3) and 26+/-7microg/m(3) for the 2005 dry season and 52+/-27microg/m(3) and 19+/-10microg/m(3) for the 2006 wet season campaign. On average, TC accounted for 29% of the PM(10) mass and 49% of the PM(2.5) mass for the 2005 dry season campaign and the corresponding values for the 2006 wet season campaign were 35% and 59%. There was little difference between the two campaigns for the WSOC/OC ratios with the PM(2.5) fraction having higher ratios than the PM(10) fraction during each campaign. Also for EC/TC higher ratios were noted in PM(2.5) than in PM(10), but the ratios were substantially larger in the 2006 wet season than in the 2005 dry season. The large EC/TC ratios (means 0.22-0.38) reflect the substantial impact from traffic at Dar es Salaam, as was also apparent from the clear diurnal variation in OC levels, with higher values during the day. A simple source apportionment approach was used to apportion the OC to traffic and charcoal burning. On average, 70% of the PM(10) OC was attributed to traffic and 30% to charcoal burning in both campaigns. A definite explanation for the substantially larger EC/TC ratios in the 2006 campaign as compared to the 2005 campaign is not available. PMID:19906404

  8. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    PubMed

    Rizzo, Angela Maria; Corsetto, Paola Antonia; Farina, Francesca; Montorfano, Gigliola; Pani, Giuseppe; Battaglia, Cristina; Sancini, Giulio; Palestini, Paola

    2014-01-01

    Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health. PMID:25259850

  9. Characterization of PM 2.5, PM 2.5-10 and PM > 10 in ambient air, Yokohama, Japan

    NASA Astrophysics Data System (ADS)

    Khan, Md. Firoz; Shirasuna, Yuichiro; Hirano, Koichiro; Masunaga, Shigeki

    2010-04-01

    This study elucidated the characteristics of ambient PM 2.5, PM 2.5-10 and PM > 10 with water soluble ions, i.e., Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+ and carbonaceous aerosol, i.e., EC and OC in above size fractions from the samples collected for the period of 2007-2008. The total numbers of PM 2.5, PM 2.5-10 and PM > 10 samples collected with MCI sampler were 91, 87 and 79, respectively. The ambient particulate samples were collected twice in a week for a period of 24 h at the roof of a three-storied building in Yokohama National University. The annual arithmetic mean concentrations of PM 2.5, PM 2.5-10 and PM > 10 were 20.6, 9.6 and 5.1 µg m - 3 , respectively. The results of the daily PM 2.5 concentrations indicated that 67% of the daily PM 2.5 exceeded USEPA National Ambient Air Quality Standards (NAAQS) (15 µg m - 3 ) while 95% in respect of WHO ambient air quality guidelines (10 µg m - 3 ). The concentrations of water soluble ions in PM 2.5, PM 2.5-10 and PM > 10 accounted for 40%, 31% and 19%, respectively. The estimation of non-sea-salt particles implies that the major sources of water soluble ions in PM 2.5 are anthropogenic. On the other hand, a large proportion of sea salt particles contributes to PM 2.5-10 and PM > 10 . Spearman correlation indicated that the concentrations of OC and EC in PM 2.5 can originate from similar type of sources. However, the concentration of OC and EC in PM 2.5-10 and PM > 10 can have multiple sources. In addition, some atmospheric reactions were also characterized in this study.

  10. Spatial and temporal variations in airborne particulate matter (PM 10 and PM 2.5) across Spain 1999-2005

    NASA Astrophysics Data System (ADS)

    Querol, X.; Alastuey, A.; Moreno, T.; Viana, M. M.; Castillo, S.; Pey, J.; Rodríguez, S.; Artiñano, B.; Salvador, P.; Sánchez, M.; Garcia Dos Santos, S.; Herce Garraleta, M. D.; Fernandez-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Sanz, M. J.; Palomo-Marín, R.; Pinilla-Gil, E.; Cuevas, E.; de la Rosa, J.; Sánchez de la Campa, A.

    Average ranges of particulate matter (PM 10 and PM 2.5) concentrations and chemical composition in Spain show significant variations across the country, with current PM 10 levels at several industrial and traffic hotspots exceeding recommended pollution limits. Such variations and exceedances are linked to patterns of anthropogenic and natural PM emissions, climate, and reactivity/stability of particulate species. PM 10 and PM 2.5 concentrations reach 14-22 μg PM 10 m -3 and 8-12 μg PM 2.5 m -3 at most rural/regional background sites, 25-30 μg PM 10 m -3 and 15-20μg PM 2.5 m -3 at suburban sites, 30-46 μg PM 10 m -3 and 20-30 μg PM 2.5 m -3 at urban background and industrial sites, and 46-50 μg PM 10 m -3 and 30-35 μg PM 2.5 m -3 at heavy traffic hotpots. Spatial distributions show sulphate and carbon particle levels reach maxima in industrialised areas and large cities (where traffic emissions are higher), and nitrate levels increase from the Atlantic to the Mediterranean (independent of the regional NO x emissions). African dust outbreaks have an influence on the number of exceedances of the daily limit value, but its additional load on the mean annual PM 10 levels is only highly significant in Southern Iberia and Canary and Balearic islands. The marine aerosol contribution is near one order of magnitude higher in the Canaries compared to the other regions. Important temporal influences include PM intrusion events from Africa (more abundant in February-March and spring-summer), regional-scale pollution episodes, and weekday versus weekend activity. Higher summer insolation enhances (NH 4) 2SO 4 but depletes particulate NO 3- (as a consequence of the thermal instability of ammonium nitrate in summer) and Cl - (due to HCl volatilisation resulting from the interaction of gaseous HNO 3 with the marine NaCl), as well as generally increasing dry dust resuspension under a semi-arid climate. Average trace metal concentrations rise with the highest levels at

  11. The oxidative potential of PM10 from coal, briquettes and wood charcoal burnt in an experimental domestic stove

    NASA Astrophysics Data System (ADS)

    Shao, Longyi; Hou, Cong; Geng, Chunmei; Liu, Junxia; Hu, Ying; Wang, Jing; Jones, Tim; Zhao, Chengmei; BéruBé, Kelly

    2016-02-01

    Coal contains many potentially harmful trace elements. Coal combustion in unvented stoves, which is common in most parts of rural China, can release harmful emissions into the air that when inhaled cause health issues. However, few studies have dealt specifically with the toxicological mechanisms of the particulate matter (PM) released by coal and other solid fuel combustion. In this paper, PM10 particles that were generated during laboratory stove combustion of raw powdered coal, clay-mixed honeycomb briquettes, and wood charcoal were analysed for morphology, trace element compositions, and toxicity as represented by oxidative DNA damage. The analyses included Field Emission Scanning Electron Microscopy (FESEM), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Plasmid Scission Assay (PSA). Gravimetric analysis indicated that the equivalent mass concentration of PM10 emitted by burning raw powdered coal was higher than that derived by burning honeycomb briquette. FESEM observation revealed that the coal burning-derived PM10 particles were mainly soot aggregates. The PSA results showed that the PM10 emitted by burning honeycomb briquettes had a higher oxidative capacity than that from burning raw powdered coal and wood charcoal. It is also demonstrated that the oxidative capacity of the whole particle suspensions were similar to those of the water soluble fractions; indicating that the DNA damage induced by coal burning-derived PM10 were mainly a result of the water-soluble fraction. An ICP-MS analysis revealed that the amount of total analysed water-soluble elements in the PM10 emitted by burning honeycomb briquettes was higher than that in PM produced by burning raw powdered coal, and both were higher than PM from burning wood charcoal. The total analysed water-soluble elements in these coal burning-derived PM10 samples had a significantly positive correlation with the level of DNA damage; indicating that the oxidative capacity of the coal burning

  12. The use of total susceptibility in the analysis of long term PM10 (PM2.5) collected at Hungarian air quality monitoring stations

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Domján, Ádám; Lautner, Péter; Szentmarjay, Tibor; Uram, János

    2013-04-01

    Air monitoring stations in Hungary are operated by Environmental, Nature Conservancy and Water Pollution Inspectorates, according to the CEN/TC 264 European Union standards. PM10 samples are collected on a 24-hour basis, for two weeks in February, in May, in August and in November. About 720m3 air is pumped through quartz filters daily. Mass measurements and toxic metal analysis (As, Pb, Cd, Ni) are made on each filter (Whatmann DHA-80 PAH, 150 mm diameter) by the inspectorates. We have carried out low field magnetic susceptibility measurements using a KLY-2 instrument on all PM10 samples collected at 9 stations from 2009 on (a total of more than 2000 filters). One station, located far from direct sources, monitors background pollution. Here PM2.5 was also collected in two-week runs, seven times during the period of 2009-2012 and made available for the non-destructive magnetic susceptibility measurements. Due to the rather weak magnetic signal, the susceptibility of each PM-10 sample was computed from 10, that of each PM2.5 sample from 20 measurements. Corrections were made for the susceptibility of the sample holder, for the unpolluted filter (provided with each of the two-week runs), and for the plastic bag containing the samples. The susceptibilities of the PM10 samples were analyzed from different aspects, like the degree of magnetic pollution at different stations, daily and seasonal variations of the total and mass susceptibilities compared to the mass of the pollutants and in relation to the concentrations of the toxic elements. As expected, the lowest total and mass susceptibilities characterize the background station (pollution arrives mostly from distant sources, Vienna, Bratislava or even the Sudeten), while the highest values were measured for an industrial town with heavy traffic. At the background station the mass of the PM10 and PM2.5, respectively for the same period are quite similar, while the magnetic susceptibilities are usually higher in the

  13. Assessment of ozone and PM-10 precursor emissions from the dairy industry

    SciTech Connect

    Schmidt, C.E.; Ungvarsky, J.; Winegar, E.

    1997-12-31

    Many new regulations have resulted in the need to assess and better understand a variety of industries with air emission sources that have not been studied in the past. The dairy industry is one such industry with area air emission sources that are now being studied for evaluation and ranking with the intent to control air emissions that exceed regulatory acceptance standards, especially for ozone precursors. The area sources at a dairy include facility processes such as dry feed lot, flushed lanes, settling ponds, liquid waste storage, waste windrows, cow washing area, milk parlor, dry cow area birthing area, feed storage, and livestock waste fertilizer usage areas. Given that these processes are area sources and dynamic and highly variable, assessment requires proper selection of measurement technology and innovative applications. Direct assessment flux chamber technology was used to assess the air emissions from dairies located in northern California. All process were screened and evaluated for testing, and all significant air emission sources were studied. A variety of compounds were studied in order to satisfy program objectives, including: volatile organic compounds, semi-volatile organic compounds, amine, ammonia, reduced sulfur compounds, aldehydes, ketones, and fixed gases. Analytical development work extending applicability of methods, such as EPA TO-14 for semi-volatile compounds, assessing total content was also conducted. This paper presents a summary of the assessment approach used to gain a better understanding of air emissions from livestock waste at California dairies. Data are presented as emission factors (per surface area and per head) and as emissions from various size dairies. These data were used to evaluate ozone and PM-10 precursor emissions from the dairy industry.

  14. Contribution of Fugitive Emissions for PM10 Concentrations in an Industrial Area of Portugal

    NASA Astrophysics Data System (ADS)

    Marta Almeida, Susana; Viana Silva, Alexandra; Garcia, Silvia; Miranda, Ana Isabel

    2013-04-01

    Significant atmospheric dust arises from the mechanical disturbance of granular material exposed to the air. Dust generated from these open sources is termed "fugitive" because it is not discharged to the atmosphere in a confined flow stream. Common sources of fugitive dust include unpaved roads, agricultural tilling operations, aggregate storage piles, heavy construction and harbor operations. The objective of this work was to identify the likeliness and extend of the PM10 limit value exceedences due to fugitive emissions in a particularly zone where PM fugitive emissions are a core of environmental concerns - Mitrena, Portugal. Mitrena, is an industrial area that coexists with a high-density urban region (Setúbal) and areas with an important environmental concern (Sado Estuary and Arrábida which belongs to the protected area Natura 2000 Network). Due to the typology of industry sited in Mitrena (e.g. power plant, paper mill, cement, pesticides and fertilized productions), there are a large uncontrolled PM fugitive emissions, providing from heavy traffic and handling and storage of raw material on uncover stockyards in the harbor and industries. Dispersion modeling was performed with the software TAPM (The Air Pollution Model) and results were mapped over the study area, using GIS (Geographic Information Systems). Results showed that managing local particles concentrations can be a frustrating affair because the weight of fugitive sources is very high comparing with the local anthropogenic stationary sources. In order to ensure that the industry can continue to meet its commitments in protecting air quality, it is essential to warrant that the characteristics of releases from all fugitive sources are fully understood in order to target future investments in those areas where maximum benefit will be achieved.

  15. CHANGES IN OPERATING PROCEDURES FOR AEROSOL CONCENTRATION UNIFORMITY FOR PM2.5 AND PM10 SAMPLER TESTING

    EPA Science Inventory

    This technical note documents changes in the standard operating procedures used at the Environmental Protection Agency's (U.S. EPA) aerosol testing wind tunnel facility for testing of particulate matter monitoring methods of PM2.5 and PM10. These changes are relative to the op...

  16. Development of cotton gin PM10 emission factors for EPA’s AP-42-DUPLICATE DO NOT USE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  17. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentr...

  18. The PM10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential.

    PubMed

    Pant, Pallavi; Baker, Stephen J; Shukla, Anuradha; Maikawa, Caitlin; Godri Pollitt, Krystal J; Harrison, Roy M

    2015-10-15

    Most studies of road dust composition have sampled a very wide range of particle sizes, but from the perspective of respiratory exposure to resuspended dusts, it is the PM10 fraction which is of most importance. The PM10 fraction of road dust samples was collected at two sites in Birmingham, UK (major highway and road tunnel) and one site in New Delhi, India. Dust loadings were found to be much higher for New Delhi compared to Birmingham, while concentrations of several species were much higher in the case of Birmingham. Detailed chemical source profiles were prepared for both cities and previously generated empirical factors for source attribution to brake wear, tyre wear, and crustal dust were successfully applied to the UK sites. However, 100% of the mass for the Indian site could not be accounted for using these factors. This study highlights the need for generation of local empirical estimation factors for non-exhaust vehicle emissions. A limited number of bulk road dust and brake pad samples were also characterized. Oxidative potential (OP) was also determined for a limited number of PM10 and bulk road dust samples, and Cu was found to be a factor significantly associated with OP in PM10 and bulk road dust. PMID:26033216

  19. CONTENDING WITH SPACE-TIME INTERACTION IN THE SPATIAL PREDICTION OF POLLUTION: VANCOUVER'S HOURLY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we describe an approach for predicting average hourly concentrations of ambient PM10 in Vancouver. We know our solution also applies to hourly ozone fields and believe it may be quite generally applicable. We use a hierarchal Bayesian approach. At the primary ...

  20. 76 FR 8300 - Finding of Failure To Submit State Implementation Plan Revisions for Particulate Matter, PM-10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    .... ] On July 1, 1987 EPA revised the health-based NAAQS (52 FR 24672), replacing the standards for total.... 71 FR 61144 (October 17, 2006). The 24-hour PM-10 standards of 150 micrograms per cubic meter ( g/m\\3... of section 107(d)(4)(B) of the amended Act were designated nonattainment by operation of law. 56...

  1. Ambient PM 10 concentrations from wood combustion - Emission modeling and dispersion calculation for the city area of Augsburg, Germany

    NASA Astrophysics Data System (ADS)

    Brandt, Christian; Kunde, Robert; Dobmeier, Bernhard; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Schmoeckel, Gerhard; Diemer, Jürgen; Zimmermann, Ralf; Gaderer, Matthias

    2011-07-01

    Ambient PM 10 concentration monitoring as well as dispersion calculations were conducted to determine the influence of emissions from domestic heating on ambient PM 10 concentrations in Augsburg, Germany. Based on the Augsburg emission inventory for domestic heating an average emission factor for particulate emissions from the combustion of different solid fuels (wood logs, pellets, briquettes) in different types of stoves under various combustion conditions was found to be 120 mg MJ -1 related to energy input. Hence an emission model as well as a wind field model were created for dispersion calculation of the emitted PM from wood combustion within Augsburg. The results of the dispersion calculation concurred with the ambient PM 10 monitoring data measured during the heating period 2007/2008. One result found that in residential areas with a high density of stoves the observed maximum concentration value of 9 μg m -3 from wood combustion was up to 50% higher than in the city center. Ambient monitoring as well as dispersion calculation have shown a significant influence of wood combustion on ambient PM 10 concentrations in Augsburg. Based on these results the impact of wood combustion in a city can be estimated.

  2. PM10 source apportionment applying PMF and chemical tracer analysis to ship-borne measurements in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Bove, M. C.; Brotto, P.; Calzolai, G.; Cassola, F.; Cavalli, F.; Fermo, P.; Hjorth, J.; Massabò, D.; Nava, S.; Piazzalunga, A.; Schembari, C.; Prati, P.

    2016-01-01

    A PM10 sampling campaign was carried out on board the cruise ship Costa Concordia during three weeks in summer 2011. The ship route was Civitavecchia-Savona-Barcelona-Palma de Mallorca-Malta (Valletta)-Palermo-Civitavecchia. The PM10 composition was measured and utilized to identify and characterize the main PM10 sources along the ship route through receptor modelling, making use of the Positive Matrix Factorization (PMF) algorithm. A particular attention was given to the emissions related to heavy fuel oil combustion by ships, which is known to be also an important source of secondary sulphate aerosol. Five aerosol sources were resolved by the PMF analysis. The primary contribution of ship emissions to PM10 turned out to be (12 ± 4)%, while secondary ammonium sulphate contributed by (35 ± 5)%. Approximately, 60% of the total sulphate was identified as secondary aerosol while about 20% was attributed to heavy oil combustion in ship engines. The measured concentrations of methanesulphonic acid (MSA) indicated a relevant contribution to the observed sulphate loading by biogenic sulphate, formed by the atmospheric oxidation of dimethyl sulphide (DMS) emitted by marine phytoplankton.

  3. Source contributions to PM2.5 and PM10 at an urban background and a street location

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Röckmann, T.; Dusek, U.

    2013-06-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC and OC concentrations was also determined, to distinguish the contribution from "modern" carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM2.5 and PM10 is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The 14C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM2.5 and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM10. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  4. CHARACTERIZATION OF PM-10 EMISSIONS FROM ANTISKID MATERIALS APPLIED TO ICE- AND SNOW-COVERED ROADWAYS - PHASE II

    EPA Science Inventory

    The report gives results of field sampling on 47th Street in Kansas City, MO, during February and March 1993 to quantify the PM-10 emissions associated with the use of rock salt (NaCl) for ice and snow control. A baseline test was conducted in September 1993. The emissions were d...

  5. Ultrastructural alterations in the mouse lung caused by real-life ambient PM10 at urban traffic sites.

    PubMed

    Samara, Constantini; Kouras, Athanasios; Kaidoglou, Katerina; Emmanouil-Nikoloussi, Elpida-Niki; Simou, Chrysanthi; Bousnaki, Maria; Kelessis, Apostolos

    2015-11-01

    Current levels of ambient air particulate matter (PM) are associated with mortality and morbidity in urban populations worldwide. Nevertheless, current knowledge does not allow precise quantification or definitive ranking of the health effects of individual PM components and indeed, associations may be the result of multiple components acting on different physiological mechanisms. In this paper, healthy Balb/c mice were exposed to ambient PM10 at a traffic site of a large city (Thessaloniki, northern Greece), in parallel to control mice that were exposed to filtered air. Structural damages were examined in ultrafine sections of lung tissues by Transmission Electronic Microscopy (TEM). Ambient PM10 samples were also collected during the exposure experiment and characterized with respect to chemical composition and oxidative potential. Severe ultrastructural alterations in the lung tissue after a 10-week exposure of mice at PM10 levels often exceeding the daily limit of Directive 2008/50/EC were revealed mainly implying PM-induced oxidative stress. The DTT-based redox activity of PM10 was found within the range of values reported for traffic sites being correlated with traffic-related constituents. Although linkage of the observed lung damage with specific chemical components or sources need further elucidation, the magnitude of biological responses highlight the necessity for national and local strategies for mitigation of particle emissions from combustion sources. PMID:26081735

  6. Dust Monitoring on the Hanford Site: An Investigation into the Relationship Between TSP, PM-10, and PM-2.5

    SciTech Connect

    Schwartz, T.; Fitz, B.G.

    2004-01-01

    High levels of particulate matter (PM) are linked to some health problems and environmental issues. Air quality standards have been developed in hopes to reduce particulate matter problems. The most common fractions of particulate matter measured include PM2.5, PM10, and total suspended particles (TSP). The focus of this study was to evaluate relationships between PM2.5, PM10, and TSP concentrations specific to the Hanford Site, near Richland, Washington. Measurements of PM2.5 and PM10 concentrations continued while additional measurements of TSP were made over several summer months. Four sampling locations on the Hanford Site were used to compare spatial differences in the data. Comparison of the data revealed a strong linear correlation between PM10 and TSP for the time period evaluated. The correlation between PM2.5 and TSP was not as strong, and indicated that local sources rarely were above background measurements. This was supported by the correlation of ground level PM2.5 with PM2.5 concentrations measured on a near by mountain.

  7. PM10 Concentration levels at an urban and background site in Cyprus: The impact of urban sources and dust storms

    PubMed Central

    Achilleos, Souzana; Evans, John S.; Yiallouros, Panayiotis K.; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2016-01-01

    Air quality in Cyprus is influenced by both local and transported pollution including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993 through December 11, 2008, and Ayia Marina (rural background representative) from January 1, 1999 through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records and satellite data were used to identify dust storm days. We investigated long term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. PMID:25562931

  8. Characterisation of PM 10 atmospheric aerosols for the wet season 2005 at two sites in East Africa

    NASA Astrophysics Data System (ADS)

    Mkoma, Stelyus L.; Maenhaut, Willy; Chi, Xuguang; Wang, Wan; Raes, Nico

    Ambient daily PM 10 aerosol samples were collected at two sites in Tanzania in May and June 2005 (during the wet season), and their chemical characteristics were studied. The sites were a rural site in Morogoro and an urban kerbside site in Dar es Salaam. A Gent PM 10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing fine and coarse size fractions, and a PM 10 sampler with quartz fibre filters were deployed. Parallel collections of 24 h were made with the two samplers and the number of these collections was 13 in Morogoro and 16 in Dar es Salaam. The average mass concentration of PM 10 was 27 ± 11 μg/m 3 in Morogoro and 51 ± 21 μg/m 3 in Dar es Salaam. In Morogoro, the mean concentrations of organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were 6.8, 0.51, and 2.8 μg/m 3, respectively. In contrast, higher mean concentrations (11.9, 4.6, and 3.3 μg/m 3, respectively) were obtained for Dar es Salaam. At both sites, species and elements, such as black carbon, NH 4+, non-sea-salt SO 42-, K, and Ni (and at Dar es Salaam also V, As, Br, and Pb) were mainly present in the fine size fraction. The common crustal and sea-salt elements, including Na, Mg, Al, Si, Cl, Ca, Ti, Mn, Fe, and Sr, and also NO 3- and P (and to a lesser extent Cu and Zn) were concentrated in the coarse particles. Aerosol chemical mass closure indicated that the PM 10 mass in Morogoro consisted, on average, of 48% organic matter (OM), 44% crustal matter, 4% sea salt, and 2% EC, while in Dar es Salaam OM, crustal matter, sea salt, and EC represented 37%, 32%, 9%, and 9% of the PM 10 mass. The contributions of the secondary inorganic aerosol (non-sea-salt sulphate, nitrate, and ammonium) were small, i.e., only 5% in total at each site. Carbonaceous materials and crustal matter were thus the most important components of the PM 10 mass. It is suggested that biomass burning is a major contributor to the OM; at Dar es Salaam there is

  9. Influence of tobacco smoke on carcinogenic PAH composition in indoor PM 10 and PM 2.5

    NASA Astrophysics Data System (ADS)

    Slezakova, K.; Castro, D.; Pereira, M. C.; Morais, S.; Delerue-Matos, C.; Alvim-Ferraz, M. C.

    2009-12-01

    Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM 10 and PM 2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE-LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM 10, and 720% for PM 2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600-21 000% and 5100-20 800% higher than at the reference site for PM 10 and PM 2.5, respectively, accounting for 49% of total PAH (Σ PAH). Higher molecular weight PAH (5-6 rings) reached concentrations 300-1300% and 140-1700% higher for PM 10 and PM 2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM 10 and PM 2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of Σ PAH in PM 10 and PM 2.5, respectively, and at the smoking site 56% and 55% of Σ PAH in PM 10 and PM 2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk

  10. Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000-2011

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.

    2015-12-01

    Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.

  11. Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece.

    PubMed

    Argyropoulos, Georgios; Manoli, Evangelia; Kouras, Athanasios; Samara, Constantini

    2012-08-15

    Ambient concentrations of PM(10) and associated major and trace elements were measured over the cold and the warm season of 2007 at two sites located in the Rhodes Island (Greece), in Eastern Mediterranean, aimed at source apportionment by Chemical Mass Balance (CMB) receptor modeling. Source chemical profiles, necessary in CMB modeling, were obtained for a variety of emission sources that could possibly affect the study area, including sea spray, geological material, soot emissions from the nearby oil-fuelled thermal power plant, and other anthropogenic activities, such as vehicular traffic, residential oil combustion, wood burning, and uncontrolled open-air burning of agricultural biomass and municipal waste. Source apportionment of PM(10) and elemental components was carried out by employing an advanced CMB version, the Robotic Chemical Mass Balance model (RCMB). Vehicular emissions were found to be major PM(10) contributor accounting, on average, for 36.8% and 31.7% during the cold period, and for 40.9% and 39.2% in the warm period at the two sites, respectively. The second largest source of ambient PM(10), with minor seasonal variation, was secondary sulfates (mainly ammonium and calcium sulfates), with total average contribution around 16.5% and 18% at the two sites. Soil dust was also a remarkable source contributing around 22% in the warm period, whereas only around 10% in the cold season. Soot emitted from the thermal power plant was found to be negligible contributor to ambient PM(10) (<1%), however it appeared to appreciably contribute to the ambient V and Ni (11.3% and 5.1%, respectively) at one of the sites during the warm period, when electricity production is intensified. Trajectory analysis did not indicate any transport of Sahara dust; on the contrary, long range transport of soil dust from arid continental regions of Minor Asia and of biomass burning aerosol from the countries surrounding the Black Sea was considered possible. PMID:22705902

  12. Understanding intra-neighborhood patterns in PM2.5 and PM10 using mobile monitoring in Braddock, PA

    PubMed Central

    2012-01-01

    Background Braddock, Pennsylvania is home to the Edgar Thomson Steel Works (ETSW), one of the few remaining active steel mills in the Pittsburgh region. An economically distressed area, Braddock exceeds average annual (>15 μg/m3) and daily (>35 μg/m3) National Ambient Air Quality Standards (NAAQS) for particulate matter (PM2.5). Methods A mobile air monitoring study was designed and implemented in morning and afternoon hours in the summer and winter (2010–2011) to explore the within-neighborhood spatial and temporal (within-day and between-day) variability in PM2.5 and PM10. Results Both pollutants displayed spatial variation between stops, and substantial temporal variation within and across study days. For summer morning sampling runs, site-specific mean PM2.5 ranged from 30.0 (SD = 3.3) to 55.1 (SD = 13.0) μg/m3. Mean PM10 ranged from 30.4 (SD = 2.5) to 69.7 (SD = 51.2) μg/m3, respectively. During summer months, afternoon concentrations were significantly lower than morning for both PM2.5 and PM10, potentially owing to morning subsidence inversions. Winter concentrations were lower than summer, on average, and showed lesser diurnal variation. Temperature, wind speed, and wind direction predicted significant variability in PM2.5 and PM10 in multiple linear regression models. Conclusions Data reveals significant morning versus afternoon variability and spatial variability in both PM2.5 and PM10 concentrations within Braddock. Information obtained on peak concentration periods, and the combined effects of industry, traffic, and elevation in this region informed the design of a larger stationary monitoring network. PMID:23051204

  13. Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city

    NASA Astrophysics Data System (ADS)

    Saliba, N. A.; El Jam, F.; El Tayar, G.; Obeid, W.; Roumie, M.

    2010-07-01

    Being a semi-enclosed area, the Eastern Mediterranean region experiences high Particulate Matter (PM) levels that could be attributed to sources originating from the region and from long-range transported pollutants. In this study, a long-term evaluation of PM10 and PM2.5 mass concentrations reveals that averages of PM10 and PM2.5 concentrations collected between 2003 and 2007 in several different sites in Beirut exceeded the World Health Organization (WHO) PM10 and PM2.5 annual averages (20 and 10 µg m - 3 , respectively). When compared to other sites in the region, levels fell in general outside the usual range for most other urban sites that are not directly affected by industrial activity. The average PM2.5/PM10 ratios were about 0.42, a value that is typical of urban sites. The overall averages for different seasons were higher in fall and summer as a result of low precipitations, the increase of dust storm activities in fall and the enhancement of sea and land breezes in summer, along with the increase in traffic activities (summer is a high touristic season). Using the HYSPLIT model for about 500 sampled days in Beirut, Lebanon, it was found that 60% of the wind comes from the N, NW and NE, while the remaining 40% comes from the S, SW and SE. Comparing the sources assigned to the pre- (BH) and post- (HH) 2006-war sites, it was found that aged dust increased by 64% in total PM10 and secondary aerosols by 150% in fine PM in HH over BH. Furthermore, much higher average percentages of sulfates and nitrates were determined in fine PMs in HH, indicating increased levels of their precursors NO x, SO x and Ca generated from a higher density of gasoline, diesel vehicles and construction debris.

  14. [Health Risk Assessment of Tunnel Workers Based on the Investigation and Analysis of Occupational Exposure to PM10].

    PubMed

    Xiang, Hua-li; Yang, Jun; Qiu, Zhen-zhen; Lei, Wan-xiong; Zeng, Ting-ting; Lan, Zhi-cai

    2015-08-01

    The health risk of tunnel workers' occupational exposure to PM10, was evaluated applying public health exposure evaluation nodel. A questionnaire survey of 250 tunnel workers was conducted in a construction site of Ma-zhu Highway in Hubei Province, and the concentrations of PM10 were monitored. The results showed that the PM10 exposure concentrations of different types of tunnel workers were extremely high. Compared with the limited value, the PM10 exposure concentrations were 83 times, 18 times, 8 times, 9 times Emd 9 times for excavation workers, blasting workers, supporting workers, slag-out workers and secondary-lining workers, respectively. For secondary-lining workers, the average daily exposure time was the longest, which was 11.48 h x d(-1), and the energy metabolism rate was also the highest, which was 1067.43 kj x (m2 x h)(-1). Regarding the inhalation rates, secondary-lining workers could be classified to high-level working intensity, and the other four types of tunnel workers could he classified to middle-level working intensity. The health risk assessment results showed that all tunnel workers had health risk. High exposure concentration of PM10 was the main reason for excavation workers' highest hazard quotient, and it was the same for the blasting workers. The reason for secondary-lining workers' high hazard quotient was that they had higher inhalation rates and longer average daily exposure time. In order to reduce the health risk of tunnel workers, firstly the workers should be equipped with appropriate respiratory protective equipment; secondly an appropriate tunnel working standard should be developed to set a reasonable working-years for reducing the exposure time. PMID:26592002

  15. Likelihood of meeting the EU limit values for NO 2 and PM 10 concentrations in the Netherlands

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Diederen, Hub S. M. A.

    In 2007, the European limit values for annual average nitrogen dioxide (NO 2) concentration and for daily average particulate matter (PM 10) concentration were exceeded along motorways and city streets in the Netherlands. While the road length along which the exceedance occurred is uncertain, model calculations show that the NO 2 concentration was likely to have been exceeded (chance >66%) along about 300 km and PM 10 concentration along about 75 km. In addition, the limit values were exceeded 'about as likely as not' (chance 33-66%) along a total of 1000 km for NO 2 and 1600 km for PM 10. PM 10 and NO 2 concentrations must be below the limit values everywhere in Europe, ultimately by 2011 and 2015, respectively. Since estimates of future local concentrations have an uncertainty of about 15-20%, no absolute statements can be made whether concentrations will be below the limit values within the specified time. Model calculations accounting for the effects of current and proposed national and European legislation, and using average meteorology for large-scale and local traffic contributions show strong decreases in likely limit value exceedances in the Netherlands. However, limit value exceedances are still possible (chance >33%) along about 350 km for PM 10 by 2011, and about 150 km for NO 2, by 2015. These possible exceedances depend not only on the uncertainties and on national and European policies and their effectiveness, but also on contributions by specific additional local measures. The Netherlands Government has proposed a plan, which includes local measures to meet the limit values everywhere, in time. Although not assessed here due to their specific character, such local measures could reduce exceedances. As the effects of local measures and estimates of concentrations are uncertain, continuous monitoring - possibly together with additional measures - will be needed to adhere to the limit values.

  16. Missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.

  17. 40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM10 Methods

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pb in PM10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10 Methods Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10...

  18. 40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM10 Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pb in PM10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10 Methods Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10...

  19. Particle-induced oxidative damage of indoor PM10 from coal burning homes in the lung cancer area of Xuan Wei, China

    NASA Astrophysics Data System (ADS)

    Shao, Longyi; Hu, Ying; Wang, Jing; Hou, Cong; Yang, Yuanyuan; Wu, Mingyuan

    2013-10-01

    The lung cancer mortality rate in the rural area of the Xuan Wei, Yunnan, is among the highest in China, especially in women. In this paper, the coal-burning indoor and corresponding outdoor PM10 samples were collected at the Hutou village, representing the case of high lung cancer rate, and the Xize village, representing the case of low lung cancer rate. Plasmid scission assay was used to investigate the bioreactivity of the PM10. The inductively coupled plasma-mass spectrometry (ICP-MS) was employed to investigate the trace element compositions of the PM10. The results showed that the oxidative damage caused by both indoor and outdoor PM10 at the Hutou village was obviously higher than that at the Xize village, with the indoor PM10 having higher oxidative damage than corresponding outdoors. Among all analyzed samples, the indoor night PM10 samples from the Hutou village have the highest oxidative capacity. The levels of total water-soluble elements had a higher level in the PM10 of the Hutou village than that of the Xize village. It is interesting that the levels of water-soluble As, Cd, Cs, Pb, Sb, Tl and Zn in PM10 had better positive correlation with DNA damage rates, implying that these elements in their water-soluble state should be one of the main factors responsible for the high oxidative capacity of PM10, thus possibly the higher lung cancer rates, at the Hutou village.

  20. The effect of SRTM and Corine Land Cover data on calculated gas and PM10 concentrations in WRF-Chem

    NASA Astrophysics Data System (ADS)

    De Meij, A.; Bossioli, E.; Penard, C.; Vinuesa, J. F.; Price, I.

    2015-01-01

    The goal of this study is to investigate the impact of the high resolution Shuttle Radar Topography Mission (SRTM) 90 m × 90 m topography data, together with the 100 m × 100 m resolution Corine Land Cover 2006 on the simulated gas and particulate matter (PM10) concentrations by WRF-Chem. We focused our analysis on the well-known highly urbanized region of the Po Valley. Large differences are found in the geographical distribution of the land cover classes between Corine Land Cover and 30 arc seconds USGS. The simulation with the SRTM and Corine Land Cover increases modelled temperature at 2 m and reduces wind speeds due to more friction at the surface induced by the Corine Land Cover. Latent and sensible heat fluxes show large differences between the two simulations and the related boundary layer development and depth. The simulation with the SRTM and Corine Land Cover favours the precipitation amount over a large of part the Alps and follows the pattern of the difference in topography between the two topography data sets. In term of air quality indicators, impacts are also large and geographical dependent. Monthly average of CO, NO and SO2 concentrations over a large part of the Po Valley are higher when using Corine Land Cover, up to ∼20, ∼50 and ∼55%, respectively. With respect to PM10, the impacts are also geographical dependent. Over the Po valley area, calculated PM10 concentrations are in general higher using Corine Land Cover (up to 6.7 ug/m3 [∼26%] westerly of Milan) while differences are smaller over the Alps (∼0.25ug/m3 [∼20%]). Although the scope of this work is not to evaluate the model performance in calculated meteorological parameters and gas and PM10 concentrations, calculated values by the simulation with SRTM and Corine Land Cover show a better agreement with the observations than the simulation with the USGS topography and land cover data sets. A quantitative comparison between modelled and observed monthly average PM10

  1. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning.

    PubMed

    Maenhaut, Willy; Vermeylen, Reinhilde; Claeys, Magda; Vercauteren, Jordy; Roekens, Edward

    2016-08-15

    From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions were measured by ion chromatography, and 15 elements were determined by a combination of inductively coupled plasma atomic emission spectrometry and mass spectrometry. The multi-species dataset was subjected to receptor modeling by PMF. The 10 retained factors (with their overall average percentage contributions to the experimental PM10 mass) were wood burning (9.5%), secondary nitrate (24%), secondary sulfate (12.6%), sea salt (10.0%), aged sea salt (19.2%), crustal matter (9.7%), non-ferrous metals (1.81%), traffic (10.3%), non-exhaust traffic (0.52%), and heavy oil burning (3.0%). The average contributions of wood smoke for the four sites were quite substantial in winter and ranged from 12.5 to 20% for the PM10 mass and from 47 to 64% for PM10 OC. Wood burning appeared to be also a notable source of As, Cd, and Pb. The contribution from wood burning to the PM10 mass and OC was also assessed by making use of levoglucosan as single marker compound and the conversion factors of Schmidl et al. (2008), as done in our previous study on wood burning in Flanders (Maenhaut et al., 2012). However, the apportionments were much lower than those deduced from PMF. It seems that the conversion factors of Schmidl et al. (2008) may not be applicable to wood burning in Flanders. From scatter plots of the PMF-derived wood smoke OC and PM versus levoglucosan, we arrived at conversion factors of 9.7 and 22.6, respectively. PMID:27110969

  2. Characteristics of vertical profiles and sources of PM 2.5, PM 10 and carbonaceous species in Beijing

    NASA Astrophysics Data System (ADS)

    Chan, C. Y.; Xu, X. D.; Li, Y. S.; Wong, K. H.; Ding, G. A.; Chan, L. Y.; Cheng, X. H.

    In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM 10 and PM 2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM 2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m -3) and the overall daily average PM 10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m -3). The maximum daily PM 2.5 and PM 10 concentrations reached 178.7 and 368.1 μg m -3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m -3 in PM 2.5 and 30.0 and 13.0 μg m -3 in PM 10, respectively. PM, especially PM 2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8-5.1 for PM 2.5 and 2.0-4.3 for PM 10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28

  3. Source apportionment of PM 10 at residential and industrial sites of an urban region of Kolkata, India

    NASA Astrophysics Data System (ADS)

    Karar, Kakoli; Gupta, A. K.

    2007-03-01

    PM 10 and its chemical species mass concentrations were measured once in a week at residential (Kasba) and industrial (Cossipore) sites of an urban region of Kolkata for a period of 24 h during November 2003 to November 2004. At each monitoring site, 53 sets of daily average PM 10 samples were collected during the study period. Approximately 55% of the monitoring days are weekdays, while 45% are weekends. The PM 10 mass concentrations ranged from 68.2 to 280.6 μg m - 3 at the residential site, and 62.4 to 401.2 μg m - 3 at the industrial site. Polycyclic aromatic hydrocarbon compounds (PAH), fluoranthene (Fl), pyrene (Py), benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF) and benzo(a)pyrene (BaP) have been analyzed using Gas Chromatoghaphy. Metals in PM 10 deposited on quartz microfibre filter papers were measured using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), manganese (Mn) and iron (Fe) are the seven toxic trace metals quantified from the measured PM 10 concentrations. Total carbon (TC), inorganic carbon (IC) and organic carbon (OC) were analyzed using a Carbon analyzer. Exposed quartz microfibre filter papers were also analyzed for water-soluble anions of fluoride (F -), chloride (Cl -), nitrate (NO 3-), phosphate (PO 43-) and sulfate (SO 42-) using ion chromatography. In this study, principal component analysis (PCA)/absolute principal component scores (APCS) model was applied to the mass concentrations of PM 10 and its chemical species. Principal component analysis with varimax rotation identified five possible sources; solid waste dumping, vehicular emission, coal combustion, cooking and soil dust at residential site. The extracted possible sources at the industrial site were vehicular emissions, coal combustion, electroplating industry, tyre wear and secondary aerosol. A quantitative estimation by principal component analysis-multiple linear regression (PCA-MLR) model

  4. Comparison between light scattering and gravimetric samplers for PM10 mass concentration in poultry and pig houses

    NASA Astrophysics Data System (ADS)

    Cambra-López, María; Winkel, Albert; Mosquera, Julio; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    The objective of this study was to compare co-located real-time light scattering devices and equivalent gravimetric samplers in poultry and pig houses for PM10 mass concentration, and to develop animal-specific calibration factors for light scattering samplers. These results will contribute to evaluate the comparability of different sampling instruments for PM10 concentrations. Paired DustTrak light scattering device (DustTrak aerosol monitor, TSI, U.S.) and PM10 gravimetric cyclone sampler were used for measuring PM10 mass concentrations during 24 h periods (from noon to noon) inside animal houses. Sampling was conducted in 32 animal houses in the Netherlands, including broilers, broiler breeders, layers in floor and in aviary system, turkeys, piglets, growing-finishing pigs in traditional and low emission housing with dry and liquid feed, and sows in individual and group housing. A total of 119 pairs of 24 h measurements (55 for poultry and 64 for pigs) were recorded and analyzed using linear regression analysis. Deviations between samplers were calculated and discussed. In poultry, cyclone sampler and DustTrak data fitted well to a linear regression, with a regression coefficient equal to 0.41, an intercept of 0.16 mg m-3 and a correlation coefficient of 0.91 (excluding turkeys). Results in turkeys showed a regression coefficient equal to 1.1 (P = 0.49), an intercept of 0.06 mg m-3 (P < 0.0001) and a correlation coefficient of 0.98. In pigs, we found a regression coefficient equal to 0.61, an intercept of 0.05 mg m-3 and a correlation coefficient of 0.84. Measured PM10 concentrations using DustTraks were clearly underestimated (approx. by a factor 2) in both poultry and pig housing systems compared with cyclone pre-separators. Absolute, relative, and random deviations increased with concentration. DustTrak light scattering devices should be self-calibrated to investigate PM10 mass concentrations accurately in animal houses. We recommend linear regression

  5. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    PubMed

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta. PMID:27485615

  6. Size-fractionated PM10 monitoring in relation to the contribution of endotoxins in different polluted areas

    NASA Astrophysics Data System (ADS)

    Traversi, D.; Alessandria, L.; Schilirò, T.; Gilli, G.

    2011-07-01

    Particulate pollution is an environmental concern that is widespread and difficult to resolve. Recently various regulatory improvements around the world have been agreed upon to tackle this problem, especially as related to the fine fraction of particulates, which more closely correlates to human health effects than other fractions. The size-fractionation of inhalable particles and their organic composition represent a new area of research that has been poorly explored thus far. Endotoxins are a type of natural organic compound that can be found in particulate matter. They are correlated with Gram-negative bacterial contamination. Health outcomes associated with exposure to these toxins are not specific and often overlap with the health effects of PM (Particulate Matter) exposure, including asthma, bronchitis, acute respiratory distress syndrome and organic dust toxic syndrome. Very little information is available on the endotoxin distribution in different PM10 size fractions. This study examined PM10 size fractions and their endotoxin content. Sampling was conducted at five different locations: one urban, two rural and two rural sites that were highly influenced by large-scale farm animal production facilities. For each location, six different PM10 fractions were evaluated. PM10 sub-fractions were categorised as follows: PM 10-7.2 (1.15-31.30 μg m -3); PM 7.2-3.0 (1.86-30.73 μg m -3); PM 3.0-1.5 (1.74-13.90 μg m -3); PM 1.5-0.95 (0.24-10.57 μg m -3); PM 0.95-0.49 (1.22-14.33 μg m -3) and PM <0.49 (13.15-85.49 μg m -3). The ranges of endotoxin levels determined were: PM 10-7.2 (0.051-5.401 endotoxin units (EU) m -3); PM 7.2-3.0 (0.123-7.801 EU m -3); PM 3.0-1.5 (0.057-1.635 EU m -3); PM 1.5-0.95 (0.040-2.477 EU m -3); PM 0.95-0.49 (0.007-3.159 EU m -3) and PM <0.49 (0.039-3.975 EU m -3). Our results indicated consistency of the PM1 fraction at all of the sites and the predominant presence of endotoxins in the coarse fraction. The observed abatement of the PM

  7. Satellite remote sensing, GIS and sun-photometers for monitoring PM10 in Cyprus: issues on public health

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Nisantzi, Argyro; Themistocleous, Kyriacos; Matsas, Alexandros; Trigkas, Vassilis

    2010-10-01

    PM10 and PM 2.5 particles are very significant issues for the public health of the community. Such parameters are measured from air-pollution stations that are scarcely distributed in the Cyprus region. Satellite remote sensing can provide synoptic coverage of the Cyprus area either daily from MODIS sensor or every 16 days from Landsat. Sunphotometers are used to measure the aerosol optical thickness (AOT) on ground during the satellite overpass. Several different campaigns have been made both for two urban areas in Paphos and Limassol area. For the period 28/10/09 - 30/12/09, the regression analysis between PM10 and ΡΜ2.5 for the Paphos town (central) gave coefficient of determination of R2=0,78 and R2=0,61 respectively. Coefficient of determination R2 =0.61 was found for the period May-June 2009 for the centre of Limassol when PM10 was regressed against AOT measured from MICROTOPS handheld sun-photometer. The AOT data retrieved from MODIS AOT (at 550 nm) and CIMEL sun-photometer (AERONET) also provided a high correlation (r=0.9, R2 = 0.81) for the centre of Limassol for April to July 2010 measurements. Results obtained by correlating MODIS AOT (at 550 nm) against hand-held MICROTOPS sun-photometer in the centre of Limassol for the period January 2009 to March 2010 gave R2=0,81. Using the PM10 limit of 50μg/m3 as prescribed by the European Union and the regression model found for the Limassol area, a threshold value of AOT for this area of 0.6 was found. Such value can be used as threshold AOT values for alerts either using the MODIS or Landsat satellite imagery. An example of how a GIS can provide temporal variations of AOT over the Cyprus area is shown.

  8. Wintertime PM 2.5 and PM 10 carbonaceous and inorganic constituents from urban site in western India

    NASA Astrophysics Data System (ADS)

    Rengarajan, R.; Sudheer, A. K.; Sarin, M. M.

    2011-12-01

    Daily variability in the chemical composition of atmospheric PM 2.5 and PM 10 has been studied from an urban site (Ahmedabad) in western India over a span of 30 days during winter. The PM 2.5 and PM 10 mass concentrations ranged from 32 to 106 μg m - 3 and 121 to 327 μg m - 3 , respectively. On average, PM 2.5 constitutes ~ 33% of PM 10, indicating dominance of coarse mode aerosols in the urban atmosphere. The particulate EC and OC show higher abundances in PM 2.5 (average: 3.0 ± 0.9 and 18.3 ± 5.9 μg m - 3 respectively) whereas those in PM 10 are 4.4 ± 2.4 and 29.8 ± 11.2 μg m - 3 respectively. A linear increasing trend and representative OC/EC ratio of 6.2 indicate their primary source from biomass burning emissions. The water-soluble organic carbon (WSOC: 4.0-14.7 μg m - 3 ) and its linear relationship with K + (0.6-1.7 μg m - 3 ) in PM 2.5 further support biomass burning emissions as a dominant source for carbonaceous aerosol. Among water-soluble inorganic species, SO 42- is the most abundant (range: 3.2-22.5 μg m - 3 ); almost all of it occurs in fine mode (PM 2.5) and exhibits near-quantitative neutralization with NH 4+ (r = 0.98, slope: 1.3). The water-soluble Ca 2+ and Mg 2+ mainly abundant in the coarse mode, suggest significant contribution from mineral dust. Documenting large temporal variability in the chemical composition of coarse and fine mode aerosol is essential in order to assess the changing regional emission scenario over mega-cities and their down-wind transport.

  9. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe

    NASA Astrophysics Data System (ADS)

    Kistler, Magdalena; Schmidl, Christoph; Padouvas, Emmanuel; Giebl, Heinrich; Lohninger, Johann; Ellinger, Reinhard; Bauer, Heidi; Puxbaum, Hans

    2012-05-01

    In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as “common oak”), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, “garden biomass” such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ-1 for CO; 89 mg MJ-1 for NOx, 311 mg MJ-1 for CxHy, 67 mg MJ-1 for particulate matter PM10 and average odor concentration was at 2430 OU m-3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx - comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m-3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m-3 for hornbeam to 5217 OU m-3 for fir, indicating a considerable influence of the wood type on odor concentration.

  10. Evaluation of a road dust suspension model for predicting the concentrations of PM 10 in a street canyon

    NASA Astrophysics Data System (ADS)

    Kauhaniemi, M.; Kukkonen, J.; Härkönen, J.; Nikmo, J.; Kangas, L.; Omstedt, G.; Ketzel, M.; Kousa, A.; Haakana, M.; Karppinen, A.

    2011-07-01

    We have slightly refined, evaluated and tested a mathematical model for predicting the vehicular suspension emissions of PM 10. The model describes particulate matter generated by the wear of road pavement, traction sand, and the processes that control the suspension of road dust particles into the air. However, the model does not address the emissions from the wear of vehicle components. The performance of this suspension emission model has been evaluated in combination with the street canyon dispersion model OSPM. We used data from a measurement campaign that was conducted in the street canyon Runeberg Street in Helsinki from 8 January to 2 May, 2004. The model reproduced fairly well the seasonal variation of the PM 10 concentrations, also during the time periods, when studded tyres and anti-skid treatments were commonly in use. For instance, the index of agreement (IA) was 0.83 for the time series of the hourly predicted and observed concentrations of PM 10. The predictions of the model were found to be sensitive to precipitation and street traction sanding. The main uncertainties in the predictions are probably caused by (i) the cleaning processes of the streets, which are currently not included in the model, (ii) the uncertainties in the estimation of the sanding days, and (iii) the uncertainties in the evaluation of precipitation. This study provides more confidence that this model could potentially be a valuable tool of assessment to evaluate and forecast the suspension PM 10 emissions worldwide. However, a further evaluation of the model is needed against other datasets in various vehicle fleet, speed and climatic conditions.

  11. [Characteristics and sources of PM10-bound PAHs during haze period in winter-spring of Xiamen].

    PubMed

    Qian, Ran-Ran; Yan, Jing-Ming; Wu, Shui-Ping; Wang, Xin-Hong

    2012-09-01

    PM10 samples were collected at Huli (industrial zone) and Dadeng Island in Xiamen from December 2008 to March 2009. Nineteen polycyclic aromatic hydrocarbons (PAHs) during haze and non-haze periods were determined by GC/MS. Combined with the meteorological data, the differences of chemical composition and source of PAHs were compared. During sampling periods, the concentrations of PM10-bound PAHs ranged from 12.93 to 79.27 ng x m(-3) with the average of 42.28 ng x m(-3), which were almost three times higher than those in the winter of 2004. PAHs concentrations were much higher during the haze periods than those in the non-haze periods. Meanwhile, during the haze periods the percentages of lower molecular weight PAHs such as Phe, Fluo and Pyr decreased significantly, on the contrary, individual components of BbF, BkF, BaP, Per, Icdp, BghiP and COR were more abundant. The main sources of PAHs were estimated by the Principal Component Analysis method and the contributions of various pollution sources to PAHs were calculated by the Multiple Linear Regression method. Results showed that the main pollutant sources of PM10-bound PAHs in winter-spring of Xiamen during the haze period were vehicle emission plus natural gas, coal combustion and coke oven, their contribution rates were 62.7%, 28.1% and 9.2%, respectively. During non-haze periods, the main pollutant sources identified were the same and the contribution rates were 48.6%, 36.9% and 14.5%, respectively. In winter-spring of Xiamen, PM10-bound PAHs were more influenced by local emission sources during the haze periods; coal combustion emissions in north China had a big contribution to PAHs during the non-haze periods. PMID:23243842

  12. Geochemical properties of airborne particulate matter (PM 10) collected by automatic device and biomonitors in a Mediterranean urban environment

    NASA Astrophysics Data System (ADS)

    Adamo, P.; Giordano, S.; Naimo, D.; Bargagli, R.

    The mineralogy and geochemistry (major and trace elements) of particulate matter collected from 14 April to 29 May 2003 by automatic device (PM 10) and entrapped by moss and lichen exposed in bags in a monitoring site of Naples urban area were studied with the aim to obtain useful information for risk assessment and control measures feasibility. PM 10 concentrations were generally above the threshold values fixed by the 1999/30/EC directive. Constant and low intensity winds enhanced re-suspension of fine particles and dispersion of gaseous pollutants. PM 10 samples contained trace elements in relatively lower amounts compared to literature reports from other Mediterranean monitoring sites. Significant correlations between Al, Ca, Cu, Fe, K, Mg and Mn indicated that soil dust largely contributed to the accumulation of fine particles on filters and exposed mosses and lichens. Highly significant correlations were also found between Ni and V, indicative of oil combustion processes, Fe, Cu and Cr, indicative of vehicle emissions and mechanical components abrasion, and Na and Mg, indicative of marine aerosols. Lead and Hg did not correlate significantly with any other element. Comparison of element EFs, calculated with respect to the composition of Naples surface soils, indicated higher contribution of soil dust to PM and moss chemical composition compared with lichens, which in turn, according with their better preserved vitality, intercepted/absorbed more efficiently anthropogenic particles and elements of metabolic interest. Crystalline and amorphous detrital components (quartz, calcite, feldspars, volcanic glass, mica, kaolinite and smectite) and sea-bearing salts phases (halite, gypsum, Mg-K sulphates, Mg-Ca carbonates) were the main minerals in PM 10, along with silica fibers and tuff particles.

  13. Relative risk of lung obstruction in relation to PM10 concentration as assessed by pulmonary function tests.

    PubMed

    Adamkiewicz, Łukasz; Gayer, Anna; Mucha, Dominika; Badyda, Artur J; Dąbrowiecki, Piotr; Grabski, Piotr

    2015-01-01

    Epidemiological studies show that long-term exposure to air pollution may increase the relative risk of obstructive lung diseases such as COPD or asthma. The risk of increased obstruction is higher among residents living in close proximity to high traffic routes where there are high concentrations of PM(10). The present study consists of two parts: the measurement of the concentration of air pollutants and of pulmonary function in selected groups of people. The study was conducted in Warsaw, Poland, in seven localizations with typical urban canyon characteristics and roads with high traffic. The control group consisted of people living in other regions of Poland with a significantly lower (p < 0.05) concentration of air pollutants. The study was performed in the years 2008-2012. The incidence of obstructive lung disease was determined according to the GOLD guidelines. The study subjects were all non-smokers. The relative risk of disease took into account different exposure times to air pollutants. The findings indicate that an increase in PM(10) concentration by each 10 μg/m(3) caused an increase in the relative risk of lung obstruction by a factor of 1.27, 1.24, and 1.19 for the residence period in the vicinity to heavy traffic city roads for 20, 30, and 40 years, respectively as compared with the residence of rural unpolluted areas. A decrease in the number of people with lung obstruction with the length of residence actually indicates that people exposed to high concentrations of PM(10) become affected by lung obstruction at a lower age. The study shows a positive relative risk of lung obstruction due to an exposure to high PM(10) emission. PMID:25523626

  14. Size-dependent PM 10 indoor/outdoor/personal relationships for a wind-induced naturally ventilated airspace

    NASA Astrophysics Data System (ADS)

    Liao, Chung-Min; Chen, Jein-Wen; Huang, Su-Jui

    We applied a simple size-dependent indoor air quality model associated with a compartmental lung model to characterize PM 10 indoor-outdoor-personal exposure relationships for wind-induced naturally ventilated residences in Taiwan region. The natural ventilation rate was quantified by the opening effectiveness for sidewall opening (SP) and covered ridge with sidewall opening (CRSP) type homes. The predicted PM 10 mass indoor/outdoor (I/O) ratios were 0.15-0.24 and 0.20-0.32, respectively, for SP and CRSP type homes. Results demonstrate that PM 10 I/O ratios for a wind-induced naturally ventilated airspace depend strongly on the ambient PM size distributions, building openings design (e.g. height to length ratio of openings and roof slope), wind speed and wind angle of incidence. The predictions from our lung model agreed favorable with the experimental deposition profiles in extrathoracic (ET), bronchial-bronchiolar (BB), and alveolar-interstitial (AI) regions. Our results demonstrate that ET region has higher PM 10 mass lung/indoor ratios (for north Taiwan region: 0.67-0.78; for central: 0.66-0.74) than that of BB (for north: 0.36-0.57; for central: 0.33-0.47) and AI regions (for north: 0.05-0.35; for central: 0.02-0.22). The present approach can be used in the future to appraise the significance of inter-subject lung morphology and breathing physiology variability for PM deposition and dose calculations.

  15. The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS.

    PubMed

    Kong, Lingbin; Xin, Jinyuan; Zhang, Wenyu; Wang, Yuesi

    2016-09-01

    We observed PM2.5, PM10 concentration, aerosol optical depth (AOD), and Ångström exponents (α) in three typical stations, the Beijing city, the Xianghe suburban and the Xinglong background station in the Beijing metropolitan region, from 2009 to 2010, synchronously. The annual means of PM2.5 (PM10) were 62 ± 45 (130 ± 88) μg m(-3) and 79 ± 61 (142 ± 96) μg m(-3) in the city and suburban region, which were much higher than the regional background (PM2.5: 36 ± 29 μg m(-3)). The annual means of AOD were 0.53 ± 0.47 and 0.54 ± 0.46 and 0.24 ± 0.22 in the city, suburban and the background region, respectively. The annual means of Ångström exponents were 1.11 ± 0.31, 1.09 ± 0.31 and 1.02 ± 0.31 in three typical stations. Meanwhile, the rates of PM2.5 accounting for PM10 were 44%-54% and 46%-70% in the city and suburban region during four seasons. The pollution of fine particulate was more serious in winter than other seasons. The linear regression functions of PM2.5 (y) and ground-observed AOD (x) were similarly with high correlation coefficient in the three typical areas, which were y = 74x + 18 (R(2) = 0.58, N = 337, in the City), y = 80x + 25 (R(2) = 0.55, N = 306, in the suburban) and y = 87x + 9 (R(2) = 0.64, N = 350, in the background). The functions of PM10 (y) and ground-observed AOD (x) were y = 112x + 57 (R(2) = 0.54, N = 337, in the city) and y = 114x + 68 (R(2) = 0.47, N = 304, in the suburban). But the functions had large differences in four seasons. The correlations between PM2.5, PM10 and MODIS AOD were similar with the correlations between PM2.5, PM10 and the ground-observed AOD. With MODIS C6 AOD, the distributions of PM2.5 and PM10 concentration were retrieved by the seasonal functions. The absolute retrieval errors of seasonal PM2.5 distribution were less than 5 μg m(-3) in the pollutant city and suburb, and less than 7 μg m(-3) in the clean background. PMID

  16. Seasonal and regional variations of source contributions for PM10 and PM2.5 in urban environment.

    PubMed

    Tian, Ying-Ze; Shi, Guo-Liang; Huang-Fu, Yan-Qi; Song, Dan-Lin; Liu, Jia-Yuan; Zhou, Lai-Dong; Feng, Yin-Chang

    2016-07-01

    To characterize the sources of to PM10 and PM2.5, a long-term, speciate and simultaneous dataset was sampled in a megacity in China during the period of 2006-2014. The PM concentrations and PM2.5/PM10 were higher in the winter. Higher percentages of Al, Si, Ca and Fe were observed in the summer, and higher concentrations of OC, NO3(-) and SO4(2-) occurred in the winter. Then, the sources were quantified by an advanced three-way model (defined as an ABB three-way model), which estimates different profiles for different sizes. A higher percentage of cement and crustal dust was present in the summer; higher fractions of coal combustion and nitrate+SOC were observed in the winter. Crustal and cement contributed larger portion to coarse part of PM10, whereas vehicular and secondary source categories were enriched in PM2.5. Finally, potential source contribution function (PSCF) and source regional apportionment (SRA) methods were combined with the three-way model to estimate geographical origins. During the sampling period, the southeast region (R4) was an important region for most source categories (0.6%-11.5%); the R1 (centre region) also played a vital role (0.3-6.9%). PMID:27037891

  17. Exposure of bakery and pastry apprentices to airborne flour dust using PM2.5 and PM10 personal samplers

    PubMed Central

    Mounier-Geyssant, Estelle; Barthélemy, Jean-François; Mouchot, Lory; Paris, Christophe; Zmirou-Navier, Denis

    2007-01-01

    Background This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma. Methods Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM2.5 and PM10 personal sampler during a complete work shift, one during a cold ("winter") period, and the other during a hot ("summer") period. Results Bakery apprentices experience greater average PM2.5 and PM10 exposures than pastry apprentices (p < 0.006). Exposure values for both particulate fractions are greater in winter (average PM10 values among bakers = 1.10 mg.m-3 [standard deviation: 0.83]) than in summer (0.63 mg.m-3 [0.36]). While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m-3). Over half the facilities had no ventilation system. Conclusion Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation. PMID:17976230

  18. Characterization of trace elements and ions in PM 10 and PM 2.5 emitted from animal confinement buildings

    NASA Astrophysics Data System (ADS)

    Yang, Xufei; Wang, Xinlei; Zhang, Yuanhui; Lee, Jongmin; Su, Jingwei; Gates, Richard S.

    2011-12-01

    Chemical characterization of PM emanating from animal confinement buildings can provide essential information for receptor modeling-based PM source apportionment as well as health effects assessment. In this study, PM 10 and PM 2.5 samples were collected from twelve swine (farrowing, gestation, weaning, and finishing) and six poultry (layer hen and tom turkey) confinement buildings in the U.S. Midwest and their inorganic composition, in terms of trace elements and ions, was investigated. A total of 23 species were identified and quantified, including Al, B, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Sr, Ti, Zn, Cl -, NO 3-, SO 42- and NH 4+. The total mass fraction of identified species was typically less than 16%. NH 4+ was detected in low contents (<1% wt.) in collected PM samples, suggesting that the majority of NH 3-N emissions were in gas form and the formation of NH 4+-containing secondary aerosols is insignificant in animal confinement buildings. Several multivariate analysis tools prevalent in ecology research were implemented for examining variability in PM inorganic compositions. Results showed that PM inorganic composition varied significantly with animal building type. Seasons had no significant effect on PM 10 and a significant but weak effect on PM 2.5 inorganic compositions. Compared to PM 10 samples, PM 2.5 samples from different types of animal confinement buildings were more similar in inorganic composition.

  19. Estimating the reduction of urban PM10 concentrations by trees within an environmental information system for planners.

    PubMed

    Bealey, W J; McDonald, A G; Nemitz, E; Donovan, R; Dragosits, U; Duffy, T R; Fowler, D

    2007-10-01

    Trees have been widely quoted as effective scavengers of both gaseous and particulate pollutants from the atmosphere. Recent work on the deposition of urban aerosols onto woodland allows the effect of tree planting strategies on airborne aerosol concentrations to be quantified and considered within the planning process. By identifying the potential planting locations in the local authority area, and applying them within a dispersion and deposition model, the potential magnitude of reduction in the ambient concentration of PM(10), achievable through urban tree planting, has been quantified for two UK cities. As part of the Environmental Information Systems for Planners (EISP), flow diagrams, based on planning decisions, have incorporated output from the model to make decisions on land use planning ranging from development plans and strategic planning, to development control. In this way, for any new developments that contribute to the local PM(10) level, the mitigation by planting trees can be assessed, and in some cases, reductions can be sufficient to meet air quality objectives for PM(10). PMID:16996198

  20. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring

    NASA Astrophysics Data System (ADS)

    Vuković, Gordana; Aničić Urošević, Mira; Razumenić, Ivana; Kuzmanoski, Maja; Pergal, Miodrag; Škrivanj, Sandra; Popović, Aleksandar

    2014-03-01

    This study was performed in four parking garages in downtown of Belgrade with the aim to provide multi-pollutant assessment. Concentrations of 16 US EPA priority PAHs and Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in PM10 samples. The carcinogenic health risk of employees' occupational exposure to heavy metals (Cd, Cr, Ni and Pb) and PAHs (B[a]A, Cry, B[b]F, B[k]F, B[a]P and DB[ah]A) was estimated. A possibility of using Sphagnum girgensohnii moss bags for monitoring of trace element air pollution in semi-enclosed spaces was evaluated as well. The results showed that concentrations of PM10, Cd, Ni and B[a]P exceeded the EU Directive target values. Concentration of Zn, Ba and Cu were two orders of magnitude higher than those measured at different urban sites in European cities. Cumulative cancer risk obtained for heavy metals and PAHs was 4.51 × 10-5 and 3.75 × 10-5 in M and PP, respectively; upper limit of the acceptable US EPA range is 10-4. In the moss, higher post-exposure than pre-exposure (background) element concentrations was observed. In comparison with instrumental monitoring data, similar order of abundances of the most elements in PM10 and moss samples was found. However, using of the S. girgensohnii moss bag technique in indoor environments needs further justification.

  1. Evaluation of static pressure drops and PM10 and TSP emissions for modified 1D-3D cyclones

    SciTech Connect

    Holt, G.A.; Baker, R.V.; Hughs, S.E.

    1999-12-01

    Five modifications of a standard 1D3D cyclone were tested and compared against the standard 1D3D design in the areas of particulate emissions and static pressure drop across the cyclone. The modifications to the 1D3D design included a 2D2D inlet, a 2D2D air outlet, a D/3 trash exit, an expansion chamber with a D/3 trash exit, and a tapered air outlet duct. The 1D3D modifications that exhibited a significant improvement in reducing both PM10 and total suspended particulate (TSP) emissions were the designs with the 2D2D inlet and air exhaust combined with either the conical D/3 tail cone or the expansion chamber. In reference to the standard 1D3D cyclone, the average reduction in PM10 emissions was 24 to 29% with a 29 to 35% reduction observed in TSP emissions. The modifications with the tapered air outlets did not show any significant improvements in controlling PM10 emissions. However, the modification with the tapered air outlet/expansion chamber combination exhibited statistical significance in reducing TSP emissions by 18% compared to the 1D3D cyclone. All modifications tested exhibited lower static pressure drops than the standard 1D3D.

  2. Origins of PM10 determined by the micro-proton induced X-ray emission spectra of single aerosol particles

    SciTech Connect

    Yue, W.S.; Li, X.L.; Wan, T.M.; Liu, J.F.; Zhang, G.L.; Li, Y.

    2006-06-15

    The micro-proton induced X-ray emission (micro-PIXE) spectrum of a single aerosol particle (SAP) was considered as its fingerprint for tracing its origin. A proton microprobe was used to extract fingerprints of SAPs. Environmental monitoring samples of PM10 were collected from a heavy industrial area of Shanghai and were analyzed by proton microprobe for finding their pollution sources. In order to find the sources of SAPs collected from environmental monitoring sites, a fingerprint database of SAPS collected from various pollution Sources was established. The origins of samples collected through environmental monitoring were identified by comparison of the micro-PIXE spectra of SAPs with those of SAPs in the fingerprint database using a pattern recognition technique. The results of this study show that most of the measured PM10 is derived from metallurgic industry, soil dust, coal combustion, automobile exhaust, and motorcycle exhaust. The study also shows that the proton microprobe is an ideal tool for the analysis of SAPs. The unidentified particles of PM10 are classified into seven classes by hierarchical cluster analysis based on the element peak intensity in the spectra.

  3. Comprehensive analysis of PM10 in Belgrade urban area on the basis of long-term measurements.

    PubMed

    Stojić, A; Stojić, S Stanišić; Reljin, I; Čabarkapa, M; Šoštarić, A; Perišić, M; Mijić, Z

    2016-06-01

    In this study, we investigated the impact of potential emission sources and transport pathways on annual and seasonal PM10 loadings in an urban area of Belgrade (Serbia). The analyzed dataset comprised PM10 mass concentrations for the period 2003-2015, as well as their chemical composition (organic/elemental carbon, benzo[a]pyrene, As, Cd, Cr, Mn, Ni, Pb, Cl(-), Na(+), Mg(2+), Ca(2+), K(+), NO3 (-), SO4 (2-), and NH4 (+)), meteorological parameters, and concentrations of inorganic gaseous pollutants and soot for the period 2011-2015. The combination of different methods, such as source apportionment (Unmix), ensemble learning method (random forest), and multifractal and inverse multifractal analysis, was utilized in order to obtain a detailed description of the PM10 origin and spatio-temporal distribution and to determine their relationship with other pollutants and meteorological parameters. The contribution of long-range and regional transport was estimated by means of trajectory sector analysis, whereas the hybrid receptor models were applied to identify potential areas of concern. PMID:26888527

  4. Emissions inventory of anthropogenic PM 2.5 and PM 10 in Delhi during Commonwealth Games 2010

    NASA Astrophysics Data System (ADS)

    Sahu, Saroj Kumar; Beig, Gufran; Parkhi, Neha S.

    2011-11-01

    As part of the System of Air quality Forecasting and Research (SAFAR) project developed for air quality forecasting during the Commonwealth Games (CWG) - 2010, a high resolution Emission Inventory (EI) of PM 10 and PM 2.5 has been developed for the metropolitan city Delhi for the year 2010. The comprehensive inventory involves detailed activity data and developed for a domain of 70 km × 65 km with a 1.67 km × 1.67 km resolution covering Delhi and surrounding region using Geographical Information System (GIS) technique. The major sectors considered are, transport, thermal power plants, industries, residential and commercial cooking along with windblown road dust which is found to play a major role for Delhi environment. It has been found that total emissions of PM 10 and PM 2.5 including wind blown dust over the study area are found to be 236 Gg yr -1 and 94 Gg yr -1 respectively. The contribution of windblown road dust is found to be as high as 131 Gg yr -1 for PM 10.

  5. Aerodynamic simulation

    SciTech Connect

    Not Available

    1993-01-01

    In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.

  6. Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10: Health risk and sources in southwest Mexico City

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, Omar; Bazán-Torija, S.; Villa-Ferreira, S. A.; Villalobos-Pietrini, Rafael; Bravo-Cabrera, José Luis; Munive-Colín, Zenaida; Hernández-Mena, Leonel; Saldarriaga-Noreña, H.; Murillo-Tovar, M. A.

    2013-03-01

    This study reports the measurement of polycyclic aromatic hydrocarbons (PAHs) in airborne particles ≤ 10 μm (PM10) during four years. Seasonal variation was observed for PM10 and PAH in southwest Mexico City, with major mass concentrations during the dry season (November-April). A non linear decreasing trend of PM10 was observed during this period, while a linear increase (in the four years) was obtained for benzo[a]pyrene (88 pg m- 3), phenanthrene (29 pg m- 3), fluoranthene (88 pg m- 3), and benzo[ghi]perylene (438 pg m- 3). Coronene also showed an increasing trend but it was nonlinear. This suggests that air control strategies implemented by the government contributed to maintaining PM10 under the 24 h maximum limit and resulted in a decreasing trend during this period. However, these strategies did not result in controlling some organic constituents with mutagenic and/or carcinogenic properties as it is the case of benzo[a]pyrene. The annual average of this PAH exceeded the UK recommendation. It was estimated a median (10th-90th) lifetime health risk of 7.6 (3.4-17.2) additional cases of cancer per 10 million people in this zone exists and the health risk of PAH is almost three times greater in dry seasons than it is in rainy seasons. Specific humidity, temperature and wind speed acted as cleaners for PM10 and PAH from the atmosphere. PAH diagnostic ratios and correlation and principal component analyses suggest incomplete combustion from gasoline and diesel engines as the main contributor to PAH found in southwest Mexico City, where factor 1 grouped all PAH emitted from gasoline engines during first three years. During last year, factor 1 only grouped PAH markers of diesel engines. This suggests a change of emission amounts between gasoline and diesel combustion sources or a contribution of other source(s) which changed the PAH profiles. During four years retene was always separated from factors which grouped the rest of PAH, due to its wood combustion

  7. European characterization factors for human health damage of PM 10 and ozone in life cycle impact assessment

    NASA Astrophysics Data System (ADS)

    van Zelm, Rosalie; Huijbregts, Mark A. J.; den Hollander, Henri A.; van Jaarsveld, Hans A.; Sauter, Ferd J.; Struijs, Jaap; van Wijnen, Harm J.; van de Meent, Dik

    This paper presents characterization factors (CFs) for human health effects of fine particulate (PM 10) and ozone in Europe for the purpose of life cycle impact assessment. The CFs express the change in disability adjusted life years (DALYs) of European inhabitants due to a change in emissions of PM 10, ammonia (NH 3), nitrogen oxides (NO x), sulfur dioxide (SO 2), and non-methane volatile organic compounds (NMVOCs). The CF consists of an intake factor, an effect factor, and a damage factor. The intake factor was modeled as the change in population exposure to primary and secondary aerosols, and ozone due to a change in emission of a substance. This was done with the models EUTREND (aerosols) and LOTOS-EUROS (ozone). A combined human effect and damage factor, represented by the change in DALY due to a change in population intake was derived from epidemiological-based relative risks of short-term mortality, long-term mortality, and morbidity. Primary PM 10 causes 260 DALYs per kton emission, while secondary aerosol formation results in CFs between 51 and 83 DALYs per kton of precursor emitted. Applying CFs for high and low stack sources separately for PM 10 and SO 2 life cycle emissions can lead to a better estimation of human health damage due to these pollutants. CF related to ozone formation emissions appear to be much lower (0.04 DALY per kton, calculated based on maximum daily 8-h average ozone concentration) compared to the CF for primary and secondary PM 10. When calculating CF based on 24-h average ozone concentration, NMVOC causes 0.04 DALYs per kton, while the CF for NO x causing ozone formation is negative due to reactivity of ozone with NO in areas with high NO x levels (-0.12 DALYs per kton). Total European emissions of the five priority air pollutants in year 2000 are attributed to 4.2 million DALYs for the European population, which corresponds on average to 0.25 DALYs per person over a lifetime (80 years).

  8. Source apportionment of PM10 and PM2.5 near a large mining zone in Northern Chile

    NASA Astrophysics Data System (ADS)

    Jorquera, H.

    2008-12-01

    Chile's economic growth is mainly driven by intensive mining activities; currently Chile produces ~ 40% of copper worldwide. Most of those activities are located in northern Chile, in a desert region where strong regional winds contribute with soil erosion as well. The city of Calama (22.4°S, 68.9°W) is about 17 km south of Chuquicamata, one of the largest open pit copper mines in the world, both located on the west edge of the Andes; Calama is at 2,400 m asl and it is 215 km east of the Pacific Ocean. The mining complex releases ~ 21 kton/y of PM10 and ~ 78 kton/y of SO2 from a copper smelter. The levels of ambient PM10 have steadily increased at Calama in the last 5 years, so there is concern about the impacts from copper industry in the city´s inhabitants, most of who work in mining or related economic activities. A campaign was conducted at Calama between October and December 2007, sampling ambient PM10 and PM2.5 at several sites across the city. Filters were analyzed at the Desert Research Institute, Reno, NV for elemental composition by XRF and for elemental and organic carbon using thermal analysis. The application of positive matrix factorization (PMF) model identified four sources contributing to ambient PM2.5: secondary sulfates (49%), traffic emissions (37%), dust street (9%) and copper smelter emissions (5%). In the coarse fraction, four sources were identified: dust street (45%), wind erosion (34%), mineral processing (14%) and copper smelter emissions (7%). No natural background was found for PM2.5. For ambient PM10 the source apportionment obtained is: mining activities (33%), street dust (34%), wind erosion (22%) and traffic emissions (12%). With a current PM10 annual average of 58 μg/m3 and further mining activities projected in the area, there is a big challenge to improve air quality in the populated area close to the mining operations.

  9. 40 CFR Appendix J to Part 50 - Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Particulate Matter as PM10 in the Atmosphere J Appendix J to Part 50 Protection of Environment... as PM10 in the Atmosphere 1.0 Applicability. 1.1 This method provides for the measurement of the mass... particle distribution in the atmosphere during the sampling period. The use of a flow control...

  10. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  11. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  12. 40 CFR Appendix J to Part 50 - Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Particulate Matter as PM10 in the Atmosphere J Appendix J to Part 50 Protection of Environment... as PM10 in the Atmosphere 1.0 Applicability. 1.1 This method provides for the measurement of the mass... particle distribution in the atmosphere during the sampling period. The use of a flow control...

  13. 40 CFR Appendix J to Part 50 - Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Particulate Matter as PM10 in the Atmosphere J Appendix J to Part 50 Protection of Environment... as PM10 in the Atmosphere 1.0 Applicability. 1.1 This method provides for the measurement of the mass... particle distribution in the atmosphere during the sampling period. The use of a flow control...

  14. 40 CFR Appendix J to Part 50 - Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Particulate Matter as PM10 in the Atmosphere J Appendix J to Part 50 Protection of Environment... as PM10 in the Atmosphere 1.0 Applicability. 1.1 This method provides for the measurement of the mass... particle distribution in the atmosphere during the sampling period. The use of a flow control...

  15. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  16. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  17. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  18. 40 CFR 53.34 - Test procedure for methods for PM10 and Class I methods for PM2.5.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Class I methods for PM2.5. 53.34 Section 53.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... for PM10 and Class I methods for PM2.5. (a) Comparability. Comparability is shown for PM10 methods and for Class I methods for PM2.5 when the relationship between: (1) Measurements made by a...

  19. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., data bases, and other requirements specified in 40 CFR part 51, Appendix W (Guideline on Air Quality..., PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of Environment... Transit Laws § 93.123 Procedures for determining localized CO, PM10, and PM2.5 concentrations...

  20. Applying the OSPM model to the calculation of PM 10 concentration levels in the historical centre of the city of Thessaloniki

    NASA Astrophysics Data System (ADS)

    Assael, M. J.; Delaki, M.; Kakosimos, K. E.

    In this paper, the OSPM model is employed for the calculation of the PM 10 concentration levels in the historical centre of the city of Thessaloniki (Greece). Although measurements of the background concentration are available at a suburban station, and a few measurements of PM 10 concentrations do exist at particular areas inside the historical city centre, further assumptions had to be made (e.g., for the traffic load) in order to implement OSPM. To validate this approach, NO x and NO 2 measurements were employed in addition to data for PM 10. The good agreement observed allowed the prediction of PM 10 concentrations in all streets in the historical city centre. The very high PM 10 concentration levels obtained in almost all streets are indicative of the city's situation today. Finally, developments in vehicle's technology are invoked to model possible future scenarios.

  1. Influence of atmospheric ozone, PM 10 and meteorological factors on the concentration of airborne pollen and fungal spores

    NASA Astrophysics Data System (ADS)

    Sousa, S. I. V.; Martins, F. G.; Pereira, M. C.; Alvim-Ferraz, M. C. M.; Ribeiro, H.; Oliveira, M.; Abreu, I.

    The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, pollen and fungal spores. Considering the potential relevance of crossed effects of non-biological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants and meteorological parameters on the concentrations of pollen and fungal spores using linear correlations and multiple linear regressions. For that, the seasonal variation of ozone, particulate matter with an equivalent aerodynamic diameter smaller than 10 μm, pollen and fungal spores were assessed and statistical correlations were analysed between those parameters. The data were collected through 2003-2005 in Porto, Portugal. The linear correlations showed that ozone and particulate matter had no significant influence on the concentration of pollen and fungal spores. On the contrary, when using multiple linear regressions those parameters showed to have some influence on the biological pollutants, although results were different depending on the year analysed. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations, both when using linear and multiple linear correlations. Relative humidity also showed to have some influence on the fungal spore dispersion when multiple linear regressions were used. Nevertheless, the conclusions for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant may not be, even so, consistent enough. Furthermore, the comparison of the results here presented with those obtained by other authors for only one period should be made carefully.

  2. Comparisons of urban and rural PM10-2.5 and PM2.5 mass concentrations and semi-volatile fractions in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas; Hannigan, Michael P.; Miller, Shelly L.; Peel, Jennifer L.; Milford, Jana B.

    2016-06-01

    Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), from 2009 to early 2012 in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg m-3 and mean PM10-2.5 / PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m s-1. Little wind speed dependence was observed for the residential sites in Denver and Greeley. The mass

  3. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal

    NASA Astrophysics Data System (ADS)

    Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.

    2009-04-01

    A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.

  4. Contribution of the Middle Eastern dust source areas to PM10 levels in urban receptors: Case study of Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Givehchi, Raheleh; Arhami, Mohammad; Tajrishy, Massoud

    2013-08-01

    The origins and evolution of the Middle Eastern dust storms which frequently impact the residents of this arid region were studied. A methodology was adapted and developed to identify the desert regions of potential dust sources and determine their contributions to PM10 concentrations in the highly-populated receptor city of Tehran, Iran. Initially, the episodes of regional dust intrusion and the resulting amounts of increase in the particulate concentrations during these episodes were determined using a statistical analyzing methodology. The dust episodes were also inspected with the aerosol index information from the Ozone Monitoring Instrument (OMI). The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used as the main tool to determine the proportions of dust originating from different deserts during the dusty episodes of 2009-2010. Daily 5-day back trajectories were obtained from the receptor stations during the dust outbreaks in order to find and confirm the location of potential sources. After the boundaries of the potential sources were determined by 5-day backward trajectories, this region was divided into different areas to quantify their contributions to the measured PM10 levels. The proximity between the measured and simulated data confirmed the ability of HYSPLIT in modeling the Middle Eastern dust intrusion and estimating the particulate concentration in the downwind receptor sites. Results showed that the deserts in Iraq and Syria are the main contributing dust sources which comprise more than 90% of the dust related PM10 concentrations in Tehran, during the studied dust episodes. The sources in northern Iraq and eastern Syria respectively represented 44% and 32% contributions on average.

  5. Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013

    NASA Astrophysics Data System (ADS)

    Alastuey, Andrés; Querol, Xavier; Aas, Wenche; Lucarelli, Franco; Pérez, Noemí; Moreno, Teresa; Cavalli, Fabrizia; Areskoug, Hans; Balan, Violeta; Catrambone, Maria; Ceburnis, Darius; Cerro, José C.; Conil, Sébastien; Gevorgyan, Lusine; Hueglin, Christoph; Imre, Kornelia; Jaffrezo, Jean-Luc; Leeson, Sarah R.; Mihalopoulos, Nikolaos; Mitosinkova, Marta; O'Dowd, Colin D.; Pey, Jorge; Putaud, Jean-Philippe; Riffault, Véronique; Ripoll, Anna; Sciare, Jean; Sellegri, Karine; Spindler, Gerald; Espen Yttri, Karl

    2016-05-01

    The third intensive measurement period (IMP) organised by the European Monitoring and Evaluation Programme (EMEP) under the UNECE CLTRAP took place in summer 2012 and winter 2013, with PM10 filter samples concurrently collected at 20 (16 EMEP) regional background sites across Europe for subsequent analysis of their mineral dust content. All samples were analysed by the same or a comparable methodology. Higher PM10 mineral dust loadings were observed at most sites in summer (0.5-10 µg m-3) compared to winter (0.2-2 µg m-3), with the most elevated concentrations in the southern- and easternmost countries, accounting for 20-40 % of PM10. Saharan dust outbreaks were responsible for the high summer dust loadings at western and central European sites, whereas regional or local sources explained the elevated concentrations observed at eastern sites. The eastern Mediterranean sites experienced elevated levels due to African dust outbreaks during both summer and winter. The mineral dust composition varied more in winter than in summer, with a higher relative contribution of anthropogenic dust during the former period. A relatively high contribution of K from non-mineral and non-sea-salt sources, such as biomass burning, was evident in winter at some of the central and eastern European sites. The spatial distribution of some components and metals reveals the influence of specific anthropogenic sources on a regional scale: shipping emissions (V, Ni, and SO42-) in the Mediterranean region, metallurgy (Cr, Ni, and Mn) in central and eastern Europe, high temperature processes (As, Pb, and SO42-) in eastern countries, and traffic (Cu) at sites affected by emissions from nearby cities.

  6. Characterization of PM10 chemical composition and its variability in relation to different sources in the central Mediterranean

    NASA Astrophysics Data System (ADS)

    Calzolai, Giulia; Nava, Silvia; Chiari, Massimo; Lucarelli, Franco; Becagli, Silvia; Traversi, Rita; Marconi, Miriam; Rugi, Francesco; Udisti, Roberto; di Sarra, Alcide; Pace, Giovanni; Meloni, Daniela; Bommarito, Carlo; Sferlazzo, Damiano

    2013-04-01

    Atmospheric aerosols are estimated to play a relevant role in climate change, also in relation to global warming and to the hydrological cycle; information on aerosol sources and impact are among the data needed to constrain uncertainties in climate change models. This is particularly important in the Mediterranean basin, whose atmosphere is heavily polluted and characterized by strong influences from both natural and anthropogenic emissions. An investigation aimed at assessing the aerosol sources affecting the Central Mediterranean basin has been carried out by applying the Positive Matrix Factorization (PMF) model to a 2-year long data set of PM10 mass concentration and chemical composition of samples collected on the island of Lampedusa (35.5° N, 12.6° E, 45 m a.s.l.). Lampedusa is an ideal site for this kind of studies, as it is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). Samples were collected on a daily basis; after mass gravimetric measurements, different portions of the samples were analyzed for the ionic content by Ion Cromatography (IC), for soluble metals by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES), and for the total (soluble + insoluble) elemental composition by Particle Induced X-ray Emission (PIXE). Data from years 2007 and 2008 are used in this study. Seven sources were resolved: sea-salt, mineral dust, biogenic emissions, primary ship emissions, secondary sulphate, secondary nitrate, and biomass burning emissions. The chemical profiles of each source were identified and compared with literature data; the temporal evolution of each source was studied, in relation to seasonal changes and influence of different source regions. Air mass backward trajectories were also used in the analysis. Daily absolute and relative contributions of the aerosol produced by each of the seven resolved sources to the PM10 in Lampedusa were also obtained. On average, each of the sources

  7. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe.

    PubMed

    Kistler, Magdalena; Schmidl, Christoph; Padouvas, Emmanuel; Giebl, Heinrich; Lohninger, Johann; Ellinger, Reinhard; Bauer, Heidi; Puxbaum, Hans

    2012-05-01

    In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as "common oak"), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, "garden biomass" such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ(-1) for CO; 89 mg MJ(-1) for NOx, 311 mg MJ(-1) for CxHy, 67 mg MJ(-1) for particulate matter PM10 and average odor concentration was at 2430 OU m(-3). CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx - comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m(-3) (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m(-3) for hornbeam to 5217 OU m(-3) for fir, indicating a considerable influence of the wood type on odor concentration. PMID:23471123

  8. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe

    PubMed Central

    Kistler, Magdalena; Schmidl, Christoph; Padouvas, Emmanuel; Giebl, Heinrich; Lohninger, Johann; Ellinger, Reinhard; Bauer, Heidi; Puxbaum, Hans

    2012-01-01

    In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as “common oak”), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, “garden biomass” such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ−1 for CO; 89 mg MJ−1 for NOx, 311 mg MJ−1 for CxHy, 67 mg MJ−1 for particulate matter PM10 and average odor concentration was at 2430 OU m−3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx – comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m−3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m−3 for hornbeam to 5217 OU m−3 for fir, indicating a considerable influence of the wood type on odor concentration. PMID:23471123

  9. Plans for Testing the NREL Unsteady Aerodynamics Experiment 10m Diameter HAWT in the NASA Ames Wind Tunnel: Minutes, Conclusions, and Revised Text Matrix from the 1st Science Panel Meeting

    SciTech Connect

    Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.; Cotrell, J.; Pierce, K.; Robinson, M.

    2000-08-28

    Currently, the NREL Unsteady Aerodynamics Experiment (UAE) research turbine is scheduled to enter the NASA Ames 80-ft x 120-ft wind tunnel in early 2000. To prepare for this 3-week test, a Science Panel meeting was convened at the National Wind Technology Center (NWTC) in October 1998. During this meeting, the Science Panel and representatives from the wind energy community provided numerous detailed recommendations regarding test activities and priorities. The Unsteady Aerodynamics team of the NWTC condensed this guidance and drafted a detailed test plan. This test plan represents an attempt to balance diverse recommendations received from the Science Panel meeting, while taking into account multiple constraints imposed by the UAE research turbine, the NASA Ames 80-ft x 120-ft wind tunnel, and other sources. The NREL-NASA Ames wind tunnel tests will primarily be focused on obtaining rotating blade pressure data. NREL has been making these types of measurements since 1987 and has considerable experience in doing so. The purpose of this wind tunnel test is to acquire accurate quantitative aerodynamic and structural measurements, on a wind turbine that is geometrically and dynamically representative of full-scale machines, in an environment free from pronounced inflow anomalies. These data will be exploited to develop and validate enhanced engineering models for designing and analyzing advanced wind energy machines.

  10. The study on vertical variability of PM 10 and the possible sources on a 220 m tower, in Tianjin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Fen; Xu, Hong; Tian, Ying-Ze; Shi, Guo-Liang; Zeng, Fang; Wu, Jian-Hui; Zhang, Xiao-Yong; Li, Xiang; Zhu, Tan; Feng, Yin-Chang

    2011-11-01

    In this study, PM 10 samples were collected at a meteorological tower in Tianjin, China. Four height levels (10 m, 40 m, 120 m and 220 m) were selected as the sampling sites. During the measurement campaign, the highest PM 10 and species concentrations were obtained at 10 m, while lower concentrations were obtained at higher sampling sites. According to the vertical variability analysis of species concentrations and fractions (%), significant differences between different heights were found for certain species, such as Al, Si, Ca, OC and EC, while such differences for NO3- and SO42- were insignificant. In addition, the source contributions at each sampling site were calculated by a chemical mass balance (CMB) model. In all sampling sites, secondary sulfate accounted for the largest contributions (24.11-30.96%). The other estimated contributions were secondary nitrate (16.19-20.95%), crustal dust (10.74-11.37%), coal combustion (12.47-14.39%), vehicle exhaust (13.92-14.78%) and cement dust (4.60-9.89%). Finally, the conditional probability function (CPF) plots and potential source contribution function (PSCF) maps show that the ambient samples might be from local potential sources at lower sampling heights as well as regional potential sources at higher sampling heights during this measurement campaign.

  11. The sulphur stable isotope compositions of urban sources and atmospheric particles (PM2.5 & PM10) from Paris (France)

    NASA Astrophysics Data System (ADS)

    Widory, D.; Landry, J.; Helie, J.; Ravelomanantsoa, H.

    2013-12-01

    Sulphur (S) in atmospheric particles in the environment can be derived from a variety of primary sources and cycled through numerous secondary processes, complicating identification of its origin. Using the PM10 fraction of aerosols from Paris and its vicinity, we are investigating the suitability of sulphur stable isotope compositions (δ34S) as tracers of origins and processes affecting the atmospheric S budget. Characterization of S isotope compositions of emissions from the different potential sources (e.g. waste incinerators, coal-fired power plants, metal refining plants, road traffic and heating sources) shows these are clearly discriminated by specific coupled S-δ34S isotope signatures. While S concentrations vary from 0.7 to 11.5%, δ34S display a large range of values from -2.2 and 13.4‰. PM10 samples from Paris and its vicinity show that S is usually present at low levels, around 1 μg.m-3 in average, but that concentrations as high as 100 μg.m-3 can punctually be observed. By the time of the conference, we will have analysed and interpreted the corresponding δ34S in order to help elucidate the origin(s) of sulphur in the atmosphere of the city.

  12. Assessment of Reliability when Using Diagnostic Binary Ratios of Polycyclic Aromatic Hydrocarbons in Ambient Air PM10.

    PubMed

    Pongpiachan, Siwatt

    2015-01-01

    The reliability of using diagnostic binary ratios of particulate carcinogenic polycyclic aromatic hydrocarbons (PAHs) as chemical tracers for source characterisation was assessed by collecting PM10 samples from various air quality observatory sites in Thailand. The major objectives of this research were to evaluate the effects of day and night on the alterations of six different PAH diagnostic binary ratios: An/(An + Phe), Fluo/(Fluo + Pyr), B[a]A/(B[a]A + Chry), B[a]P/(B[a]P + B[e]P), Ind/(Ind + B[g,h,i]P), and B[k]F/Ind, and to investigate the impacts of site-specific conditions on the alterations of PAH diagnostic binary ratios by applying the concept of the coefficient of divergence (COD). No significant differences between day and night were found for any of the diagnostic binary ratios of PAHs, which indicates that the photodecomposition process is of minor importance in terms of PAH reduction. Interestingly, comparatively high values of COD for An/(An + Phe) in PM10 collected from sites with heavy traffic and in residential zones underline the influence of heterogeneous reactions triggered by oxidising gaseous species from vehicular exhausts. Therefore, special attention must be paid when interpreting the data of these diagnostic binary ratios, particularly for cases of low-molecular-weight PAHs. PMID:26745124

  13. Seasonal variation of PM10 main constituents in two valleys of the French Alps. I: EC/OC fractions

    NASA Astrophysics Data System (ADS)

    Aymoz, G.; Jaffrezo, J. L.; Chapuis, D.; Cozic, J.; Maenhaut, W.

    2007-02-01

    Daily PM10 samples were collected at two urban sites within two valleys in the French Alps (Chamonix and St Jean de Maurienne) during a period of two and a half years. The carbonaceous species EC (elemental carbon) and OC (organic carbon) were analysed to investigate the possible sources of EC and OC, and their seasonal variations. Mean OC concentrations are in the very high range of concentrations measured for other European sites, and represent at least one third of the PM10 mass on each site. On the basis of the comparison between EC and OC concentrations with several tracers, we were able to show that their main sources are local primary combustion sources. Biomass burning emissions (residential heating) have a significant impact on OC concentrations while heavy duty traffic emissions have an impact only on EC concentrations. Finally, we estimated the contribution of SOA (secondary organic carbon) to OC, using the EC-to-OC primary ratio method (Castro et al., 1999) and demonstrated that the calculation of SOA mass with this method is highly uncertain, if the hypothesis of a constant primary EC-to-OC ratio is not very closely examined.

  14. Seasonal variation of PM10 main constituents in two valleys of the French Alps. I: EC/OC fractions

    NASA Astrophysics Data System (ADS)

    Aymoz, G.; Jaffrezo, J.-L.; Chapuis, D.; Cozic, J.; Maenhaut, W.

    2006-07-01

    Daily PM10 samples were collected at two urban sites within two valleys in the French Alps (Chamonix and St Jean de Maurienne) during a period of two and a half years. The carbonaceous species EC (elemental carbon) and OC (organic carbon) were analysed to investigate the possible sources of EC and OC, and their seasonal variations. Mean OC concentrations are in the very high range of concentrations measured for other European sites, and represent at least one third of the PM10 mass on each site. On the basis of the comparison between EC and OC concentrations with several tracers, we were able to show that their main sources are local primary combustion sources. Biomass burning emissions (residential heating) have a significant impact on OC concentrations while heavy duty traffic emissions have an impact only on EC concentrations. Finally, we estimated the contribution of SOA (secondary organic carbon) to OC, using the EC-to-OC primary ratio method (Castro et al., 1999) and demonstrated that the calculation of SOA mass with this method is highly uncertain, if the hypothesis of a constant primary EC-to-OC ratio is not very closely examined.

  15. Aerodynamic performance of 0.5 meter-diameter, 337 meter-per-second tip speed, 1.5 pressure-ratio, single-stage fan designed for low noise aircraft engines

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Lewis, G. W., Jr.

    1974-01-01

    Overall and blade-element aerodynamic performance of a 0.271-scale model of QF-1 are presented, examined, and then compared and evaluated with that from similar low noise fan stage designs. The tests cover a wide range of speeds and weight flows along with variations in stator setting angle and stator axial spacing from the rotor. At design speed with stator at design setting angle and a fixed distance between stage measuring stations, there were no significant effects of increasing the axial spacing between rotor stator from 1.0 to 3.5 rotor chords on stage overall pressure ratio, efficiency or stall margin.

  16. Application technology progress report: Evaluation of PM-10 commercial inlets and development of an inlet for new Rocky Flats Plant surveillance air sampler, January 1986-December 1986

    SciTech Connect

    Langer, G.; Deitesfeld, C.A. (ed.0

    1987-09-10

    Work during 1986 was concerned with developing a new PM-10 inlet for use at Rocky Flats Plant (RFP), Golden, Colorado. The commercial units that we evaluated did not allow for recovery of the >10-..mu..m dust fraction as may be required by EPA and DOE for nuclear installations. One of them, the Wedding PM-10 Inlet, did not meet the PM-10 cut-point requirement, because of the build-up of vegetative fibers in the cyclone type separator. Therefore, we developed a new PM-10 inlet (patent applied for) to meet our needs, and especially one that is adaptable to our existing 60 surveillance air samplers at minimum cost. The inlet utilizes a modified slotted impactor design. This device is directly adaptable to existing EPA high-volume samplers. 9 refs., 5 figs., 1 tab.

  17. Mobile air quality studies (MAQS) in inner cities: particulate matter PM10 levels related to different vehicle driving modes and integration of data into a geographical information program

    PubMed Central

    2012-01-01

    Background Particulate matter (PM) is assumed to exert a major burden on public health. Most studies that address levels of PM use stationary measure systems. By contrast, only few studies measure PM concentrations under mobile conditions to analyze individual exposure situations. Methods By combining spatial-temporal analysis with a novel vehicle-mounted sensor system, the present Mobile Air Quality Study (MAQS) aimed to analyse effects of different driving conditions in a convertible vehicle. PM10 was continuously monitored in a convertible car, driven with roof open, roof closed, but windows open, or windows closed. Results PM10 values inside the car were nearly always higher with open roof than with roof and windows closed, whereas no difference was seen with open or closed windows. During the day PM10 values varied with high values before noon, and occasional high median values or standard deviation values due to individual factors. Vehicle speed in itself did not influence the mean value of PM10; however, at traffic speed (10 – 50 km/h) the standard deviation was large. No systematic difference was seen between PM10 values in stationary and mobile cars, nor was any PM10 difference observed between driving within or outside an environmental (low emission) zone. Conclusions The present study has shown the feasibility of mobile PM analysis in vehicles. Individual exposure of the occupants varies depending on factors like time of day as well as ventilation of the car; other specific factors are clearly identifiably and may relate to specific PM10 sources. This system may be used to monitor individual exposure ranges and provide recommendations for preventive measurements. Although differences in PM10 levels were found under certain ventilation conditions, these differences are likely not of concern for the safety and health of passengers. PMID:23031208

  18. Characterization of PM 10 source profiles for fugitive dust in Fushun-a city famous for coal

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Ji, Yaqin; Lu, Bing; Chen, Li; Han, Bin; Li, Zhiyong; Bai, Zhipeng

    2011-09-01

    A total of 120 fugitive dust samples were collected to acquire chemical source profiles of PM 10 in Fushun including 27 soil dust samples, 32 road dust samples, 19 construction dust samples, 13 coal storage pile samples, 2 cement production samples, 13 coal-fired power plant fly ash samples, 5 fly ash samples from iron smelt plant and 9 samples from industrial raw material and production piles. The samples were classified as 20 subtypes. The dust samples were dried, sieved, resuspended and sampled through a PM 10 inlet onto filters, and then chemically analyzed. Inductively coupled plasma-atomic emission spectrometry, ion chromatograph and thermal/optical reflectance methods were adopted for analyzing twenty elements including Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb and Hg and nine ions including Na +, NH 4+, K +, Mg 2+, Ca 2+, F -, Cl -, NO 3- and SO 42- as well as OC and EC, respectively. The chemical compositions were compared for 20 subtypes. Si and Ca were the most abundant elements in all the fugitive dust profiles. Enrichment factors of elements in fly ashes compared to raw coal were calculated with Fe as reference element. The highest enriched elements were Ni, Cu, Zn and Pb. Significant difference existed among PM 10 profiles with the coefficient of divergence values ranging from 0.28 to 0.78. Profiles were compared with others. Si exhibited lower content in this study for soil and road dust while EC and Cr showed much higher content compared to others indicating the influence of coal mining and industries activities in Fushun. This was validated by source signatures analysis which indicated almost all the fugitive dust were relative to coal and may also be influenced by metallurgy. The ratios of Mn/V, V/Ni, Zn/Pb and Zn/Cd were calculated for source identification. Elemental ratios may vary widely even for the same source types with different processing courses. Chemical profiles of fugitive dust should be established based

  19. Size fractionation in mercury-bearing airborne particles (HgPM 10) at Almadén, Spain: Implications for inhalation hazards around old mines

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Higueras, Pablo; Jones, Tim; McDonald, Iain; Gibbons, Wes

    Almadén has a >2000y mining history and an unprecedented legacy of mercury contamination. Resuspended airborne particles were extracted from mine waste (Las Cuevas), retort site soil (Almadenejos), and urban car park dust (Almadén), separated into fine (PM 10) and coarse (PM >10 μm ) fractions, analysed for mercury using ICP-MS, and individual HgPM characterised using SEM. Cold extractable mercury concentrations in PM 10 range from 100 to 150 μg g -1 (car parks), to nearly 6000 μg g -1