Science.gov

Sample records for aerodynamic drag coefficient

  1. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  2. DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of

  3. Reference values and improvement of aerodynamic drag in professional cyclists.

    PubMed

    García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo

    2008-02-01

    The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed. PMID:17943597

  4. Drag Coefficient of Hexadecane Particles

    NASA Astrophysics Data System (ADS)

    Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku

    This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.

  5. Aerodynamic drag in cycling: methods of assessment.

    PubMed

    Debraux, Pierre; Grappe, Frederic; Manolova, Aneliya V; Bertucci, William

    2011-09-01

    When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance. PMID:21936289

  6. Aerodynamic Drag and Drag Reduction: Energy and Energy Savings (Invited)

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    2003-01-01

    An assessment of the role of fluid dynamic resistance and/or aerodynamic drag and the relationship to energy use in the United States is presented. Existing data indicates that up to 25% of the total energy consumed in the United States is used to overcome aerodynamic drag, 27% of the total energy used in the United States is consumed by transportation systems, and 60% of the transportation energy or 16% of the total energy consumed in the United States is used to overcome aerodynamic drag in transportation systems. Drag reduction goals of 50% are proposed and discussed which if realized would produce a 7.85% total energy savings. This energy savings correlates to a yearly cost savings in the $30Billion dollar range.

  7. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro

    2015-11-01

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  8. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  9. Method of reducing drag in aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Hrach, Frank J. (Inventor)

    1993-01-01

    In the present method, boundary layer thickening is combined with laminar flow control to reduce drag. An aerodynamic body is accelerated enabling a ram turbine on the body to receive air at velocity V sub 0. The discharge air is directed over an aft portion of the aerodynamic body producing boundary layer thickening. The ram turbine also drives a compressor by applying torque to a shaft connected between the ram turbine and the compressor. The compressor sucks in lower boundary layer air through inlets in the shell of the aircraft producing laminar flow control and reducing drag. The discharge from the compressor is expanded in a nozzle to produce thrust.

  10. Exploring the aerodynamic drag of a moving cyclist

    NASA Astrophysics Data System (ADS)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power consumption of cycling. We use an energy-based approach to model the power input for driving a bike at a constant speed. This approach uses a numerical simulation of the slowing down of a bike moving without pedaling which is implementable with standard spreadsheet software. The simulation can be compared directly to simple measurements with real bikes as well as to an analytic solution of the underlying differential equation. It is possible to derive realistic values for the aerodynamic drag coefficient {{c}\\text{D}} and the total power consumption within a secondary physics course. We also report experiences from teaching such a course to class 8 students.

  11. Methods of reducing vehicle aerodynamic drag

    SciTech Connect

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  12. Aerodynamics of Drag Reduction Devices for Semi-Trucks

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2014-11-01

    An increasing number of semi-trucks throughout the United States are being retrofitted with aerodynamic drag reduction devices to improve the vehicle fuel economy. Such devices typically include both trailer skirts and boattails to mitigate trailer underbody drag and base drag, respectively. Since full-scale measurements of the device performance are especially prone to experimental noise due to the effects of the driver, route, payload, or atmospheric conditions, more precise data must be obtained within a wind tunnel. In this experimental study, the wind-averaged drag coefficient is measured for a detailed 1/8th scale semi-truck model. The Reynolds number based upon the vehicle width is 1.7e6. A number of trailer skirt and boattail device configurations are considered, as well as the effects of the boattail deflection angle. The results of this study demonstrate that a combination of a trailer skirt and boattail reduces the aerodynamic drag of a semi-truck by as much as 25%. If such a combination were applied to each of the semi-trucks throughout the United States, several billion dollars in fuel savings could be achieved each year. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-657810.

  13. Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.

  14. Aerodynamic drag control by pulsed jets on simplified car geometry

    NASA Astrophysics Data System (ADS)

    Gilliéron, Patrick; Kourta, Azeddine

    2013-02-01

    Aerodynamic drag control by pulsed jets is tested in a wind tunnel around a simplified car geometry named Ahmed body with a rear slant angle of 35°. Pulsed jet actuators are located 5 × 10-3 m from the top of the rear window. These actuators are produced by a pressure difference ranging from 1.5 to 6.5 × 105 Pa. Their excitation frequency can vary between 10 and 550 Hz. The analysis of the control effects is based on wall visualizations, aerodynamic drag coefficient measurements, and the velocity fields obtained by 2D PIV measurements. The maximum drag reduction is 20 % and is obtained for the excitation frequency F j = 500 Hz and for the pressure difference ∆ P = 1.5 × 105 Pa. This result is linked with a substantial reduction in the transverse development of the longitudinal vortex structures coming from the left and right lateral sides of the rear window, with a displacement of the vortex centers downstream and with a decrease in the transverse rotational absolute values of these structures.

  15. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    NASA Technical Reports Server (NTRS)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  16. Exploring the Aerodynamic Drag of a Moving Cyclist

    ERIC Educational Resources Information Center

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  17. Drag coefficients for winter Antarctic pack ice

    NASA Technical Reports Server (NTRS)

    Wamser, Christian; Martinson, Douglas G.

    1993-01-01

    Air-ice and ice-water drag coefficients referenced to 10-m-height winds for winter Antarctic pack ice based on measurements made from R/V Polarstern during the Winter Weddell Sea Project, 1986 (WWSP-86), and from R/V Akademik Fedorov during the Winter Weddell Gyre Study, 1989 (WWGS-89), are presented. The optimal values of the air-ice drag coefficients, made from turbulent flux measurements, are (1.79 +/- 0.06) x 10 exp -3 for WWSP-86 and (1.45 +/- 0.09) x 10 exp -3 for WWGS-89. A single ice-water drag coefficient for both WWSP-86 and WWGS-89, estimated from periods of ice drift throught to represent free-drift conditions, is (1.13 +/- 0.26) x 10 exp -3, and the ice-water turning angle is 18 +/- 18 deg. It is suggested that for a typical Antarctic winter pack ice cover, the ice cover reduces the momentum flux from the atmosphere to the ocean by about 33 percent.

  18. Drop tower with no aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr.

    1981-01-01

    Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.

  19. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2005-12-13

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  20. Aerodynamic drag reduction by vertical splitter plates

    NASA Astrophysics Data System (ADS)

    Gilliéron, Patrick; Kourta, Azeddine

    2010-01-01

    The capacity of vertical splitter plates placed at the front or the rear of a simplified car geometry to reduce drag, with and without skew angle, is investigated for Reynolds numbers between 1.0 × 106 and 1.6 × 106. The geometry used is a simplified geometry to represent estate-type vehicles, for the rear section, and MPV-type vehicle. Drag reductions of nearly 28% were obtained for a zero skew angle with splitter plates placed at the front of models of MPV or utility vehicles. The results demonstrate the advantage of adapting the position and orientation of the splitter plates in the presence of a lateral wind. All these results confirm the advantage of this type of solution, and suggest that this expertise should be used in the automotive field to reduce consumption and improve dynamic stability of road vehicles.

  1. Characterization of aerodynamic drag force on single particles: Final report

    SciTech Connect

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  2. Reducing Aerodynamic Drag on Empty Open Cargo Vehicles

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Storms, Bruce L.; Dzoan, Dan

    2009-01-01

    Some simple structural modifications have been demonstrated to be effective in reducing aerodynamic drag on vehicles that have empty open cargo bays. The basic idea is to break up the airflow in a large open cargo bay by inserting panels to divide the bay into a series of smaller bays. In the case of a coal car, this involves inserting a small number (typically between two and four) of vertical full-depth or partial-depth panels.

  3. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    SciTech Connect

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  4. Foam input into the drag coefficient in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Golbraikh, Ephim; Shtemler, Yuri M.

    2016-03-01

    A semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd, with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the basis of available optical and radiometric measurements of the fractional foam coverage and partitioning of the ocean surface into foam-covered and foam-free areas, the present model yields the resulting dependence of Cd vs. U10 within the range from low to hurricane wind speeds. This dependence is in fair agreement with those obtained from both open-ocean and laboratory measurements of the vertical variation of the mean wind speed. The velocity value, at which the fractional foam coverage is saturated, is found to be responsible for the difference of Cd behavior in the laboratory and open-ocean conditions.

  5. FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2003-10-24

    Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.

  6. Transonic Blunt Body Aerodynamic Coefficients Computation

    NASA Astrophysics Data System (ADS)

    Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel

    2011-05-01

    In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.

  7. Simplified Models for the Drag Coefficient of a Pitched Baseball

    ERIC Educational Resources Information Center

    Kagan, David; Nathan, Alan M.

    2014-01-01

    The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!

  8. Simplified Models for the Drag Coefficient of a Pitched Baseball

    NASA Astrophysics Data System (ADS)

    Kagan, David; Nathan, Alan M.

    2014-05-01

    The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!2

  9. Aerodynamic drag reduction tests on a box-shaped vehicle

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Sandlin, D. R.

    1981-01-01

    The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.

  10. Correlation equation for the marine drag coefficient and wave steepness

    NASA Astrophysics Data System (ADS)

    Foreman, Richard J.; Emeis, Stefan

    2012-09-01

    This work questions, starting from dimensional considerations, the generality of the belief that the marine drag coefficient levels off with increasing wind speed. Dimensional analysis shows that the drag coefficient scales with the wave steepness as opposed to a wave-age scaling. A correlation equation is employed here that uses wave steepness scaling at low aspect ratios (inverse wave steepnesses) and a constant drag coefficient at high aspect ratios. Invoked in support of the correlation are measurements sourced from the literature and at the FINO1 platform in the North Sea. The correlation equation is then applied to measurements recorded from buoys during the passage of hurricanes Rita, Katrina (2005) and Ike (2008). Results show that the correlation equation anticipates the expected levelling off in deeper water, but a drag coefficient more consistent with a Charnock type relation is also possible in more shallower water. Some suggestions are made for proceeding with a higher-order analysis than that conducted here.

  11. Constraining the Drag Coefficients of Meteors in Dark Flight

    NASA Technical Reports Server (NTRS)

    Carter, R. T.; Jandir, P. S.; Kress, M. E.

    2011-01-01

    Based on data in the aeronautics literature, we have derived functions for the drag coefficients of spheres and cubes as a function of Mach number. Experiments have shown that spheres and cubes exhibit an abrupt factor-of-two decrease in the drag coefficient as the object slows through the transonic regime. Irregularly shaped objects such as meteorites likely exhibit a similar trend. These functions are implemented in an otherwise simple projectile motion model, which is applicable to the non-ablative dark flight of meteors (speeds less than .+3 km/s). We demonstrate how these functions may be used as upper and lower limits on the drag coefficient of meteors whose shape is unknown. A Mach-dependent drag coefficient is potentially important in other planetary and astrophysical situations, for instance, in the core accretion scenario for giant planet formation.

  12. Atmospheric Density Corrections Estimated from Fitted Drag Coefficients

    NASA Astrophysics Data System (ADS)

    McLaughlin, C. A.; Lechtenberg, T. F.; Mance, S. R.; Mehta, P.

    2010-12-01

    Fitted drag coefficients estimated using GEODYN, the NASA Goddard Space Flight Center Precision Orbit Determination and Geodetic Parameter Estimation Program, are used to create density corrections. The drag coefficients were estimated for Stella, Starlette and GFZ using satellite laser ranging (SLR) measurements; and for GEOSAT Follow-On (GFO) using SLR, Doppler, and altimeter crossover measurements. The data analyzed covers years ranging from 2000 to 2004 for Stella and Starlette, 2000 to 2002 and 2005 for GFO, and 1995 to 1997 for GFZ. The drag coefficient was estimated every eight hours. The drag coefficients over the course of a year show a consistent variation about the theoretical and yearly average values that primarily represents a semi-annual/seasonal error in the atmospheric density models used. The atmospheric density models examined were NRLMSISE-00 and MSIS-86. The annual structure of the major variations was consistent among all the satellites for a given year and consistent among all the years examined. The fitted drag coefficients can be converted into density corrections every eight hours along the orbit of the satellites. In addition, drag coefficients estimated more frequently can provide a higher frequency of density correction.

  13. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    PubMed

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found. PMID:26931535

  14. Drag and lift coefficients evolution of a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Benghrib, D.

    1989-10-01

    The lift and drag coefficients of the rotating Savonius wind machine are determined from the pressure difference measured between the upper plane and the lower plane of a blade. Pressure measurements have been performed for two sets of experiments; the first one for U ∞ = 10 m/s and the second one for U ∞ = 12.5 m/s. In each case it is to be noted that a negative lift effect is present for low values of the tip speed ratio λ. The lift coefficient becomes positive when λ increases. The drag coefficient is of course always negative.

  15. Investigation of Drag Coefficient for Rigid Ballute-like Shapes

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel; Mastromarino, Anthony

    2014-11-01

    One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.

  16. Drag coefficient of 20-degree conical ribbon parachute

    NASA Technical Reports Server (NTRS)

    Utreja, L. R.

    1975-01-01

    An empirical formula for the steady-state drag coefficient of a 20-degree conical ribbon parachute is developed. The derived expression takes into account the effect of suspension line length and geometric porosity within the limits of practical design. Also included are factors which provide drag reduction due to skirt reefing and the wake behind a primary body. The calculated values are in agreement with the available experimental results.

  17. A method for the reduction of aerodynamic drag of road vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Taylor, Larry W.; Leary, Terrance O.

    1990-01-01

    A method is proposed for the reduction of the aerodynamic drag of bluff bodies, particularly for application to road transport vehicles. This technique consists of installation of panels on the forward surface of the vehicle facing the airstream. With the help of road tests, it was demonstrated that the attachment of proposed panels can reduce aerodynamic drag of road vehicles and result in significant fuel cost savings and conservation of energy resources.

  18. Re-examination of Mars Pathfinder parachute drag coefficient estimate

    NASA Technical Reports Server (NTRS)

    Desai, P.; Schofield, T.; Lisano, M.

    2003-01-01

    The Mars Exploration Rover (MER) mission utilizes the Mars Pathfinder (MPF) parachute design. The MPF parachute drag coefficient is a driver for the MER entry, descent, and landing (EDL) design. As a result, a good estimate of the performance of the MPF parachute at Mars is required.

  19. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.

    PubMed

    Tucker, V A

    2000-12-01

    Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously

  20. DOE's effort to reduce truck aerodynamic drag : joint experiments and computations lead to smart design.

    SciTech Connect

    Yaste, David M; Salari, Kambiz; Hammache, Mustapha; Browand, Fred; Pointer, W. David; Ortega, Jason M.; McCallen, Rose; Walker, Stephen M; Heineck, James T; Hassan, Basil; Roy, Christopher John; Storms, B.; Satran, D.; Ross, James; Englar, Robert; Chatalain, Philippe; Rubel, Mike; Leonard, Anthony; Hsu, Tsu-Ya; DeChant, Lawrence Justin.

    2004-06-01

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the smart design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  1. DOE's Effort to Reduce Truck Aerodynamic Drag-Joint Experiments and Computations Lead to Smart Design

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B

    2004-06-17

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  2. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  3. Incremental Aerodynamic Coefficient Database for the USA2

    NASA Technical Reports Server (NTRS)

    Richardson, Annie Catherine

    2016-01-01

    In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.

  4. DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J

    2005-11-14

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.

  5. Drag of the complete configuration aerodynamic considerations, 2

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1975-01-01

    A number of drag items are related to the performance of a complete aircraft configuration. First, the effect of fuselage camber, wing and nacelle incidence are discussed from a viewpoint of design decision making. Second, the effect of overall cruise drag on the design gross and empty weight of the airplane is discussed. Examples show that cruise drag can have a very important influence on total airplane weight. Third, the effects of usable cruise lift-to-drag ratio and wing loading are shown to be important. Finally several research needs relating to design of the complete configuration are reviewed.

  6. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  7. An Aerodynamic Assessment of Micro-Drag Generators (MDGs)

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S.

    1998-01-01

    Commercial transports as well as fighter aircraft of the future are being designed with very low drag (friction and pressure). Concurrently, commuter airports are being built or envisioned to be built in the centers of metropolitan areas where shorter runways and/or reduced noise footprints on takeoff and landing are required. These requirements and the fact that drag is lower on new vehicles than on older aircraft have resulted in vehicles that require a large amount of braking force (from landing-gear brakes, spoilers, high-lift flaps, thrust reversers, etc.). Micro-drag generators (MDGs) were envisioned to create a uniformly distributed drag force along a vehicle by forcing the flow to separate on the aft-facing surface of a series of deployable devices, thus, generating drag. The devices are intended to work at any speed and for any type of vehicle (aircraft, ground vehicles, sea-faring vehicles). MDGs were applied to a general aviation wing and a representative fuselage shape and tested in two subsonic wind tunnels. The results showed increases in drag of 2 to 6 times that of a "clean" configuration.

  8. Analysis of Satellite Drag Coefficient Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Ronglan; Liu, Siqing

    Abstract: Drag coefficient sequence was obtained by solving Tiangong1 continuous 55days GPS orbit data with different arc length. The same period solar flux f10.7 and geomagnetic index Ap ap series were high and low frequency multi-wavelet decomposition. Statistical analysis results of the layers sliding correlation between space environmental parameters and decomposition of Cd, showed that the satellite drag coefficient sequence after wavelet decomposition and the corresponding level of f10.7 Ap sequence with good lag correlation. It also verified that the Cd prediction is feasible. Prediction residuals of Cd with different regression models and different sample length were analysed. The results showed that the case was best when setting sample length 20 days and f10.7 regression model were used. It also showed that NRLMSIS-00 model's response in the region of 350km (Tiangong's altitude) and low-middle latitude (Tiangong's inclination) is excessive in ascent stage of geomagnetic activity Ap and is inadequate during fall off segment. Additionally, the low-frequency decomposition components NRLMSIS-00 model's response is appropriate in f10.7 rising segment. High frequency decomposition section, Showed NRLMSIS-00 model's response is small-scale inadequate during f10.7 ascent segment and is reverse in decline of f10.7. Finally, the potential use of a summary and outlook were listed; This method has an important reference value to improve the spacecraft orbit prediction accuracy. Key words: wavelet transform; drag coefficient; lag correlation; Tiangong1;space environment

  9. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  10. DOE's effort to reduce truck aerodynamic drag through joint experiments and computations.

    SciTech Connect

    Salari, Kambiz; Browand, Fred; Sreenivas, Kidambi; Pointer, W. David; Taylor, Lafayette; Pankajakshan, Ramesh; Whitfield, David; Plocher, Dennis; Ortega, Jason M.; Merzel, Tai; McCallen, Rose; Walker, Stephen M; Heineck, James T; Hassan, Basil; Roy, Christopher John; Storms, B.; Ross, James; Englar, Robert; Rubel, Mike; Leonard, Anthony; Radovich, Charles; Eastwood, Craig; Paschkewitz, John; Castellucci, Paul; DeChant, Lawrence Justin.

    2005-08-01

    Class 8 tractor-trailers are responsible for 11-12% of the total US consumption of petroleum. Overcoming aero drag represents 65% of energy expenditure at highway speeds. Most of the drag results from pressure differences and reducing highway speeds is very effective. The goal is to reduce aerodynamic drag by 25% which would translate to 12% improved fuel economy or 4,200 million gal/year. Objectives are: (1) In support of DOE's mission, provide guidance to industry in the reduction of aerodynamic drag; (2) To shorten and improve design process, establish a database of experimental, computational, and conceptual design information; (3) Demonstrate new drag-reduction techniques; and (4) Get devices on the road. Some accomplishments are: (1) Concepts developed/tested that exceeded 25% drag reduction goal; (2) Insight and guidelines for drag reduction provided to industry through computations and experiments; (3) Joined with industry in getting devices on the road and providing design concepts through virtual modeling and testing; and (4) International recognition achieved through open documentation and database.

  11. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit

    PubMed Central

    Stone, William C.; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the “LO2” and “LH2” tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  12. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit.

    PubMed

    Stone, William C; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the "LO2" and "LH2" tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  13. Feasibility study of a novel method for real-time aerodynamic coefficient estimation

    NASA Astrophysics Data System (ADS)

    Gurbacki, Phillip M.

    In this work, a feasibility study of a novel technique for the real-time identification of uncertain nonlinear aircraft aerodynamic coefficients has been conducted. The major objective of this paper is to investigate the feasibility of a system for parameter identification in a real-time flight environment. This system should be able to calculate aerodynamic coefficients and derivative information using typical pilot inputs while ensuring robust, stable, and rapid convergence. The parameter estimator investigated is based upon the nonlinear sliding mode control schema; one of the main advantages of the sliding mode estimator is the ability to guarantee a stable and robust convergence. Stable convergence is ensured by choosing a sliding surface and function that satisfies the Lyapunov stability criteria. After a proper sliding surface has been chosen, the nonlinear equations of motion for an F-16 aircraft are substituted into the sliding surface yielding an estimator capable of identifying a single aircraft parameter. Multiple sliding surfaces are then developed for each of the different flight parameters that will be identified. Sliding surfaces and parameter estimators have been developed and simulated for the pitching moment, lift force, and drag force coefficients of the F-16 aircraft. Comparing the estimated coefficients with the reference coefficients shows rapid and stable convergence for a variety of pilot inputs. Starting with simple doublet and sin wave commands, and followed by more complicated continuous pilot inputs, estimated aerodynamic coefficients have been shown to match the actual coefficients with a high degree of accuracy. This estimator is also shown to be superior to model reference or adaptive estimators, it is able to handle positive and negative estimated parameters and control inputs along with guaranteeing Lyapunov stability during convergence. Accurately estimating these aerodynamic parameters in real-time during a flight is essential

  14. FY 2004 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Whittaker, K; DeChant, L J; Roy, C J; Payne, J L; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J T; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2004-11-18

    The objective of this report is: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices. The approaches used were: (1) Develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational fluid dynamics (CFD) tools; (2) Through an extensive experimental effort, generate an experimental data base for code validation; (3) Using experimental data base, validate computations; (4) Provide industry with design guidance and insight into flow phenomena from experiments and computations; and (5) Investigate aero devices (e.g., base flaps, tractor-trailer gap stabilizer, underbody skirts and wedges, blowing and acoustic devices), provide industry with conceptual designs of drag reducing devices, and demonstrate the full-scale fuel economy potential of these devices.

  15. Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation

    NASA Astrophysics Data System (ADS)

    Tang, Hongwu; Tian, Zhijun; Yan, Jing; Yuan, Saiyu

    2014-07-01

    Vegetation is a key aspect of water resources and ecology in natural rivers, floodplains and irrigation channels. The hydraulic resistance of the water flow is greatly changed when submerged vegetation is present. Three kinds of drag coefficients, i.e., the drag coefficient for an isolated cylinder, the bulk drag coefficient of an array of cylinders and the vertically distributed or local drag coefficient, have been commonly used as parameters to represent the vegetation drag force. In this paper, a comprehensive experimental study of submerged stems in an open channel flow is presented. Empirical formulae for the three drag coefficients were obtained based on our experimental results and on data from previous studies. A two-layer model was developed to solve the mean momentum equation, which was used to evaluate the vertical mean velocity profile with each of the drag coefficients. By comparing the velocity distribution model predictions and the measurement results, we found that the model with the drag coefficient for an isolated cylinder and the local drag coefficient was good fit. In addition, the model with the bulk drag coefficient gave much larger velocity values than measurements, but it could be improved by adding the bed friction effect and making choice of the depth-averaged velocity within the canopy layer.

  16. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-gi

    2011-01-01

    A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.

  17. The Effect of Various Wing-Gun Installations on the Aerodynamic Characteristics of an Airplane Model Equipped with an NACA Low-Drag Wing, Special Report

    NASA Technical Reports Server (NTRS)

    Muse, Thomas C.

    1941-01-01

    An investigation was made in the NACA 19-foot pressure wind tunnel to determine the effect of various win-gun installation on the aerodynamic characteristics of a model with an NACA low-drag wing. Measurements were made of lift and drag over an angle-of-attack range and for several values of dynamic pressure on a four-tenths scale model of a high-speed airplane equipped with the low-drag wing and with various wing-gun installations. Two installations were tested: one in which the blast tube and part of the gun barrel protrude ahead of the wing and another in which the guns is mounted wholly within the wing. Two types of openings for the latter installation were tested. For each installation three simulated guns were mounted in each wing. The results are given in the form of nondimensional coefficients. The installations tested appear to have little effect on the maximum-lift coefficient of the model. However, the drag coefficient shows a definite change. The least adverse effect was obtained with the completely internal mounting and small nose entrance. The results indicate that a properly designed wing-gun installation will have very little adverse effect on the aerodynamic characteristics of the low-drag wing.

  18. Drag coefficient and settling velocity for particles of cylindrical shape

    SciTech Connect

    Gabitto, Jorge; Tsouris, Costas

    2008-01-01

    Solid particles of cylindrical shape play a significant role in many separations processes. Explicit equations for the drag coefficient and the terminal velocity of free-falling cylindrical particles have been developed in this work. The developed equations are based on available experimental data for falling cylindrical particles in all flow regimes. The aspect ratio (i.e., length-over-diameter ratio) has been used to account for the particle shape. Comparisons with correlations proposed by other researchers using different parameters to account for the geometry are presented. Good agreement is found for small aspect ratios, and increasing differences appear when the aspect ratio increases. The aspect ratio of cylindrical particles satisfactorily accounts for the geometrical influence on fluid flow of settling particles.

  19. Aerodynamic performance of a drag reduction device on a full-scale tractor/trailer

    NASA Astrophysics Data System (ADS)

    Lanser, Wendy R.; Ross, James C.; Kaufman, Andrew E.

    1991-09-01

    The effectiveness of an aerodynamic boattail on a tractor/trailer road vehicle was measured in the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Results are examined for the tractor/trailer with and without the drag reduction device. Pressure measurements and flow visualization show that the aerodynamic boattail traps a vortex or eddy in the corner formed between the device and the rear corner of the trailer. This recirculating flow turns the flow inward as it separates from the edges of the base of the trailer. This modified flow behavior increases the pressure acting over the base area of the truck, thereby reducing the net aerodynamic drag of the vehicle. Drag measurements and pressure distributions in the region of the boattail device are presented for selected configurations. The optimum configuration reduces the overall drag of the tractor/trailer combination by about 10 percent at a zero yaw angle. Unsteady pressure measurements do not indicate strong vortex shedding, although the addition of the boattail plates increases high frequency content of the fluctuating pressure.

  20. July 2004 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentation, Summary of Comments, and Conclusions

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; DeChant, L; Hassan, B; Browand, F; Arcas, D; Ross, J; Heineck, J; Storms, B; Walker, S; Leonard, A; Roy, C; Whitfield, D; Pointer, D; Sofu, T; Englar, R; Funk, R

    2004-08-17

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held in Portland, Oregon on July 1, 2004. The purpose of the meeting was to provide a summary of achievements, discuss pressing issues, present a general overview of future plans, and to provide a forum for dialogue with the Department of Energy (DOE) and industry representatives. The meeting was held in Portland, because the DOE Aero Team participated in an exclusive session on Heavy Truck Vehicle Aerodynamic Drag at the 34th AIAA Fluid Dynamics Conference and Exhibit in Portland on the morning of July 1st, just preceding our Working Group meeting. Even though the paper session was on the last day of the Conference, the Team presented to a full room of interested attendees.

  1. Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    2008-01-01

    Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

  2. Determining the Drag Coefficient of Rotational Symmetric Objects Falling through Liquids

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2012-01-01

    I will propose here a kinematic approach for measuring the drag coefficient of rotational symmetric objects falling through liquids. For this, I will show that one can obtain a measurement of the drag coefficient of a rotational symmetric object by numerically solving the equation of motion describing its fall through a known liquid contained in a…

  3. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley Waisang; Pak, Chan-Gi

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle

  4. Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses

    NASA Astrophysics Data System (ADS)

    Gratton, Patrice

    2011-12-01

    Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method

  5. Drag coefficient of the weakly ionized plasma in the high Knudsen number regime

    SciTech Connect

    Chu, H.-Y.; Si, M.-C.; Lin, S.-B.

    2009-06-15

    The drag force acting on a micron-sized polystyrene particle in the high Knudsen number regime is investigated. Analysis of the particle trajectories in stationary neutral argon gas environment suggests the damping time constant {tau}{proportional_to}p{sup -1.20{+-}}{sup 0.04} and Epstein drag force coefficient {delta}=1.40. The neutral drag coefficient is compared with the drag coefficient measurement in dust-free plasma. The phenomena of the reduced drag in weakly viscous and weakly ionized rf plasma are also observed in this report. It is shown that the slight changes in rf power and pressure would enhance the reduced drag effect, which suggests that there is an additional electrostatic force acting along the particle motion in the plasma.

  6. The Seebeck Coefficient and Phonon Drag in Silicon

    SciTech Connect

    Mahan, Gerald; Lindsay, Lucas R.; Broido, David

    2014-12-29

    We present a theory of the phonon-drag Seebeck coe cient in nondegenerate semiconductors, and apply it to silicon for temperatures 30 < T < 300K. Our calculation uses only parameters from the literature, and previous calculations of the phonon lifetime. We nd excellent agreement with the measurements of Geballe and Hull [Phys.Rev. 98, 940 (1955)]. The phonon-drag term dominates at low temperature, and shows an important dependence on the dimensions of the experimental sample.

  7. Spacecraft drag modelling

    NASA Astrophysics Data System (ADS)

    Mostaza Prieto, David; Graziano, Benjamin P.; Roberts, Peter C. E.

    2014-01-01

    This paper reviews currently available methods to calculate drag coefficients of spacecraft traveling in low Earth orbits (LEO). Aerodynamic analysis of satellites is necessary to predict the drag force perturbation to their orbital trajectory, which for LEO orbits is the second in magnitude after the gravitational disturbance due to the Earth's oblateness. Historically, accurate determination of the spacecraft drag coefficient (CD) was rarely required. This fact was justified by the low fidelity of upper atmospheric models together with the lack of experimental validation of the theory. Therefore, the calculation effort was a priori not justified. However, advances on the field, such as new atmospheric models of improved precision, have allowed for a better characterization of the drag force. They have also addressed the importance of using physically consistent drag coefficients when performing aerodynamic calculations to improve analysis and validate theories. We review the most common approaches to predict these coefficients.

  8. Quartz tuning-fork oscillations in He II and drag coefficient

    NASA Astrophysics Data System (ADS)

    Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.

    2011-07-01

    The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.

  9. The drag coefficient of cylindrical spacecraft in orbit at altitudes greater than 150 km

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.

    1983-01-01

    The spacecraft of the Geopotential Research Mission (GRM) are cylindrical in form and designed to fly with their longitudinal axes parallel to their direction of flight. The ratio of length to diameter of these spacecraft is roughly equal to 5.0. Other spacecraft previously flown had corresponding ratios roughly equal to 1.0, and therefore the drag produced by impacts on the lateral surfaces of those spacecraft was not as large as it will be on the GRM spacecraft. Since the drag coefficient is essentially the drag force divided by the frontal area in flight, lateral impacts, when taken into account make the GRM drag coefficient significantly larger than the coefficients used before for shorter spacecraft. A simple formula is derived for the drag coefficient of a cylindrical body flying with its long axis along the direction of flight, and it is used to estimate the drag for the GRM. The formula shows that the drag due to lateral surface impacts depends on the ratio of length-to-diameter and on a coefficient C sub LS (lateral surface impact coefficient) which can be determined from previous cylindrical spacecraft flown with the same attitude, or can be obtained from laboratory measurements of momentum accommodation coefficients.

  10. Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures

    SciTech Connect

    Weng, D.; Wainright, J.S.; Landau, U.; Savinell, R.F.

    1996-04-01

    The electro-osmotic drag coefficient of water in two polymer electrolytes was experimentally determined as a function of water activity and current density for temperatures up to 200 C. The results show that the electro-osmotic drag coefficient varies from 0.2 to 0.6 in Nafion{reg_sign}/H{sub 3}PO{sub 4} membrane electrolyte, but is essentially zero in phosphoric acid-doped PBI (polybenzimidazole) membrane electrolyte over the range of water activity considered. The near-zero electro-osmotic drag coefficient found in PBI indicates that this electrolyte should lessen the problems associated with water redistribution in proton exchange membrane fuel cells.

  11. The use of velodrome tests to evaluate aerodynamic drag in professional cyclists.

    PubMed

    García-López, J; Ogueta-Alday, A; Larrazabal, J; Rodríguez-Marroyo, J A

    2014-05-01

    The purpose of this study was to analyse the validity, reliability and sensitivity of velodrome tests to detect small changes in aerodynamic drag in cycling. 12 professional cyclists were assessed to obtain the drag area (SCx) during wind tunnel and velodrome tests. Incremental and steady-state protocols were performed in the velodrome with a portable power meter, and 6 bicycle positions were analysed and compared that involved lowering the handlebars and advancing the pads between 2-5 cm. A significant relationship (r=0.88, p<0.001) between the SCx in the wind tunnel and velodrome tests was found (0.240 ± 0.007 and 0.237 ± 0.008 m2, respectively). The velodrome tests underestimated the SCx (0.0035 ± 0.0038 m2 and p<0.01), which decreased (p<0.001) when the bicycle speed increased (0.0013 m2 each 1 km · h(-1)). The SCx values showed high reliability during the steady-state (r=0.99, p<0.001) and incremental protocols (r=0.94, p<0.001). Small changes in the aerodynamic position affected the SCx (p<0.001), which decreased by 0.011 ± 0.007 m2 (4.6 ± 2.9%, 95% CI=2.7-6.4%). In conclusion, the validity, reliability and sensitivity of velodrome tests to detect small changes in aerodynamic drag in cycling were demonstrated. Although SCx values were not interchangeable between different studies, the velodrome tests presented advantages with respect to the wind tunnel tests. PMID:24081618

  12. Progress in reducing aerodynamic drag for higher efficiency of heavy duty trucks (class 7-8)

    SciTech Connect

    Brady, M; Browand, F; Hammache, M; Heineck, J T; Leonard, A; McCallen, R; Ross, J; Rutledge, W; Salari, K; Storms, B

    1999-04-01

    This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.

  13. Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

    SciTech Connect

    Rose McCallen; Richard Couch; Juliana Hsu; Fred Browand; Mustapha Hammache; Anthony Leonard; Mark Brady; Kambiz Salari; Walter Rutledge; James Ross; Bruce Storms; J.T. Heineck; David Driver; James Bell; Gregory Zilliac

    1999-12-31

    This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.

  14. Systematic approach to analyzing and reducing aerodynamic drag of heavy vehicles

    SciTech Connect

    McCallen, R.; Browand, F.; Leonard, A.; Rutledge, W.

    1997-09-16

    This paper presents an approach for reducing aerodynamic drag of heavy vehicles by systematically analyzing trailer components using existing computational tools and moving on to the analyses of integrated tractor-trailers using advanced computational tools. Experimental verification and validation are also an important part of this approach. The project is currently in the development phase while we are in the process of constructing a Multi-Year Program Plan. Projects I and 2 as described in this paper are the anticipated project direction. Also included are results from past and current related activities by the project participants which demonstrate the analysis approach.

  15. GASP- General Aviation Synthesis Program. Volume 3: Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hague, D.

    1978-01-01

    Aerodynamics calculations are treated in routines which concern moments as they vary with flight conditions and attitude. The subroutines discussed: (1) compute component equivalent flat plate and wetted areas and profile drag; (2) print and plot low and high speed drag polars; (3) determine life coefficient or angle of attack; (4) determine drag coefficient; (5) determine maximum lift coefficient and drag increment for various flap types and flap settings; and (6) determine required lift coefficient and drag coefficient in cruise flight.

  16. The Drag Coefficient of Parabolic Bodies of Revolution Operating at Zero Cavitation Number and Zero Angle of Yaw

    NASA Technical Reports Server (NTRS)

    Johnson, Virgil E., Jr.; Rasnick, Thomas A.

    1961-01-01

    The form-drag coefficient of parabolic bodies of revolution with fineness ratios greater than 1 operating at zero angle of yaw and zero cavitation number is determined both theoretically and experimentally. Agreement between theory and experiment is very good, The theoretical form-drag coefficient of paraboloids is about half the form-drag coefficient of cones of comparable fineness ratio.

  17. Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate

    NASA Astrophysics Data System (ADS)

    Egorov, A. G.; Kamalutdinov, A. M.; Paimushin, V. N.; Firsov, V. A.

    2016-03-01

    A method for determining the drag coefficient of a thin plate harmonically oscillating in a viscous incompressible fluid is proposed. The method is based on measuring the amplitude of deflections of cantilever-fixed thin plates exhibiting damping flexural oscillations with a frequency corresponding to the first mode and on solving an inverse problem of calculating the drag coefficient on the basis of the experimentally found logarithmic decrement of beam oscillations.

  18. Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing

    NASA Astrophysics Data System (ADS)

    Littlewood, R. P.; Passmore, M. A.

    2012-08-01

    A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified ¼ scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward.

  19. Inlet Aerodynamics and Ram Drag of Laser-Propelled Lightcraft Vehicles

    NASA Astrophysics Data System (ADS)

    Langener, Tobias; Myrabo, Leik; Rusak, Zvi

    2010-05-01

    Numerical simulations are used to study the aerodynamic inlet properties of three axisymmetric configurations of laser-propelled Lightcraft vehicles operating at subsonic, transonic and supersonic speeds up to Mach 5. The 60 cm vehicles were sized for launching 0.1-1.0 kg nanosatellites with combined-cycle airbreathing/rocket engines, transitioning between propulsion modes at roughly Mach 5-6. Results provide the pressure, temperature, density, and velocity flowfields around and through the three representative vehicle/engine configurations, as well as giving the resulting ram drag and total drag coefficients—all as a function of flight Mach number. Simulations with rotating boundaries were also carried out, since for stability reasons, Lightcraft are normally spun up before lift-off. Given the three alternatives, it is demonstrated that the optimal geometry for minimum drag is the configuration with a parabola nose; hence, these inlet flow conditions are being applied in subsequent "direct connect" 2D laser propulsion experiments in a small transonic flow facility.

  20. Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    Browand, F; Gutierrez, W; Leonard, A; McBride, D; McCallen, R; Ross, J; Roth, K; Rutledge, W; Salari, K

    1998-09-28

    The first Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Sandia National Laboratories (SNL) in Albuquerque, New Mexico on August 28, 1998. The purpose of the meeting was to review the proposed Multi-Year Program Plan (MYPP) and provide an update on the Group"s progress. In addition, the technical details of each organization"s activities were presented and discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), SNL, University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center. These presenters are part of a DOE appointed Technical Team assigned to developing the MYPP. The goal of the MYPP is to develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational tools (A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles, R. McCallen, D. McBride, W. Rutledge, F. Browand, A. Leonard, .I. Ross, UCRL-PROP- 127753 Dr. Rev 2, May 1998). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions from the Meeting participants, and outlines the future action items.

  1. Numerical investigation of mooring line damping and the drag coefficients of studless chain links

    NASA Astrophysics Data System (ADS)

    Xu, Zhengqiang; Huang, Shan

    2014-03-01

    The chain/wire rope/chain combination is a common choice for mooring offshore floating platforms. However, data of the drag coefficients of chain links are rather limited, resulting in uncertainties with the calculations of the drag force, and hence the damping of the mooring system. In this paper, the importance of the selection of the drag coefficient is first investigated. The computational fluid dynamics (CFD) method is then used to determine the drag coefficients of a studless chain under steady flows. Numerical model validation is first completed by simulating a smooth circular cylinder under steady flows. In particular, the performance of different turbulence models is assessed through the comparisons between the calculations and the experimental results. The large eddy simulation (LES) model is finally selected for the simulation of steady flows past a chain. The effects of the Reynolds number on the drag coefficient of a stud-less chain is also studied. The results show that the calculated drag coefficients of a stud-less chain are fairly consistent with the available experimental data.

  2. Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades

    USGS Publications Warehouse

    Lee, J.K.; Roig, L.C.; Jenter, H.L.; Visser, H.M.

    2004-01-01

    Hydraulic data collected in a flume fitted with pans of sawgrass were analyzed to determine the vertically averaged drag coefficient as a function of vegetation characteristics. The drag coefficient is required for modeling flow through emergent vegetation at low Reynolds numbers in the Florida Everglades. Parameters of the vegetation, such as the stem population per unit bed area and the average stem/leaf width, were measured for five fixed vegetation layers. The vertically averaged vegetation parameters for each experiment were then computed by weighted average over the submerged portion of the vegetation. Only laminar flow through emergent vegetation was considered, because this is the dominant flow regime of the inland Everglades. A functional form for the vegetation drag coefficient was determined by linear regression of the logarithmic transforms of measured resistance force and Reynolds number. The coefficients of the drag coefficient function were then determined for the Everglades, using extensive flow and vegetation measurements taken in the field. The Everglades data show that the stem spacing and the Reynolds number are important parameters for the determination of vegetation drag coefficient. ?? 2004 Elsevier B.V. All rights reserved.

  3. Experimental Evaluation of the Drag Coefficient of Water Rockets by a Simple Free-Fall Test

    ERIC Educational Resources Information Center

    Barrio-Perotti, R.; Blanco-Marigorta, E. Arguelles-Diaz, K.; Fernandez-Oro, J.

    2009-01-01

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag…

  4. The effect of solar forcing induced atmospheric perturbations on LEO satellites' nominal aerodynamic drag

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Weigel, Robert

    2016-07-01

    Atmospheric drag is the strongest force perturbing the motion of satellites in low Earth orbits LEO, and could cause re-entry of satellites, difficulty in identifying and tracking of the satellites and other space objects, manuvering and prediction of lifetime and re-entry. Solar activities influence the temperature, density and composition of the upper atmosphere. These effects thus strongly depend on the phase of a solar cycle. The frequency of intense flares and storms increase during solar maximum. Heating up of the atmosphere causes its expansion eventually leading to accelerated drag of orbiting satellites, especially those in LEO. In this paper, we present the model of the atmospheric drag effect on the trajectory of hypothetical LEO satellites of different ballistic coefficients. We investigate long-term trend of atmospheric drag on LEO satellites due to solar forcing induced atmospheric perturbations and heating at different phases of the solar cycle, and during interval of strong geomagnetic disturbances or storms. We show the dependence of orbital decay on severity of both the solar cycle and phase, and the extent of geomagnetic perturbations. The result of the model compares well with the observed decay profile of existing LEO satellites and provides a better understanding of the issue of the orbital decay. Our result may also be useful for selection of launch window of satellites for an extended lifetime in the orbit.

  5. Aerodynamic drag reduction apparatus for gap-divided bluff bodies such as tractor-trailers

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2006-07-11

    An apparatus for reducing the aerodynamic drag of a bluff-bodied vehicle such as a tractor-trailer in a flowstream, the bluff-bodied vehicle of a type having a leading portion, a trailing portion connected to the leading portion, and a gap between the leading and trailing portions defining a recirculation zone. The apparatus is preferably a baffle assembly, such as a vertical panel, adapted to span a width of the gap between the leading and trailing portions so as to impede cross-flow through the gap, with the span of the baffle assembly automatically adjusting for variations in the gap width when the leading and trailing portions pivot relative to each other.

  6. Prediction of the drag coefficient of a 20-degree conical ribbon parachute

    NASA Technical Reports Server (NTRS)

    Utreja, L. R.

    1975-01-01

    An empirical formula for the steady state drag coefficient of a 20 degree conical ribbon parachute is developed. The derived expression takes into account the effect of suspension line length and geometric porosity within the limits of practical design. Also included are factors which provide drag reduction due to skirt reefing and the wake behind a primary body. The calculated values are in agreement with the available experimental results.

  7. Study of the triple-mass Tethered Satellite System under aerodynamic drag and J2 perturbations

    NASA Astrophysics Data System (ADS)

    Razzaghi, Pourya; Assadian, Nima

    2015-11-01

    The dynamics of multi-tethered satellite formations consisting of three masses are studied in this paper. The triple-mass triple-tethered satellite system is modeled under the low Earth orbit perturbations of drag and Earth's oblateness and its equilibrium conditions are derived. It is modeled as three equal end-masses connected by a uniform-mass straight tether. The lengths of tethers are supposed to be constant and in this manner the angles of the plane consisting the masses are taken as the state variables of the system. The governing equations of motion are derived using Lagrangian approach. The aerodynamic drag perturbation is expressed as an external non-conservative force and the Earth oblateness (J2 perturbation) is considered as a term of potential energy. The equilibrium conditions of this system are found and their stability is investigated through the linear stability theory. Then, the results are verified by using a nonlinear simulation for three types of equilibrium conditions.

  8. May 2005 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentation, Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R C

    2005-08-17

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory, Livermore, California on May 12th and 13th of 2005. The purpose of the first day's meeting, May 12th, was to provide a summary of achievements, discuss issues, present a general overview of future plans, and to offer a forum for dialogue with the Department of Energy (DOE) and representatives from industry, universities, and research and development organizations performing work related to heavy vehicle aerodynamics. This first meeting day was open to participants from industry and research organizations from both the US and Canada. The second day, May 13th, was attended only by representatives from the 9 organizations that form the DOE Consortium effort and their government sponsors. The purpose of the second day's meeting was to further discuss fiscal year 2005's activities, any further specific pressing issues, identify individual action items, and provide an overview of plans for fiscal year 2006. Based on discussions at the Meeting, the existing project goals remain unchanged and enhancing interactions with fleet owners and operators was emphasized: (1) Perform heavy vehicle computations and experiments, (2) Validate computations using experimental data, (3) Provide design guidance and insight into flow phenomena from experiments and computations, and (4) Investigate aero devices with emphasis on collaborative efforts with fleet owners and operators.

  9. First order analysis of the effect of pitching on the drag coefficient

    SciTech Connect

    Wilson, R.E.; Neff, J.A.

    1985-11-01

    A first order analysis was made for the drag coefficient of a pitching NACA 0015 airfoil below stall. The inviscid velocity ditribution for a translating NACA 0015 airfoil was superimposed with the additional circulation velocity for a pitching ellipse. The resulting velocity distribution was used to numerically integrate a momentum/boundary layer formulation to obtain the drag coefficient. For both laminar and turbulent boundary layers it was found that the effect of pitching on the drag coefficient can be approximated by a shift in angle of attack. The shift angle was found to be a linear function of the pitching velocity and to be less than the induced angle of attack caused by the pitching.

  10. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE PAGESBeta

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  11. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  12. Aerodynamic drag is not the major determinant of performance during giant slalom skiing at the elite level.

    PubMed

    Supej, M; Saetran, L; Oggiano, L; Ettema, G; Šarabon, N; Nemec, B; Holmberg, H-C

    2013-02-01

    This investigation was designed to (a) develop an individualized mechanical model for measuring aerodynamic drag (F(d) ) while ski racing through multiple gates, (b) estimate energy dissipation (E(d) ) caused by F(d) and compare this to the total energy loss (E(t) ), and (c) investigate the relative contribution of E(d) /E(t) to performance during giant slalom skiing (GS). Nine elite skiers were monitored in different positions and with different wind velocities in a wind tunnel, as well as during GS and straight downhill skiing employing a Global Navigation Satellite System. On the basis of the wind tunnel measurements, a linear regression model of drag coefficient multiplied by cross-sectional area as a function of shoulder height was established for each skier (r > 0.94, all P < 0.001). Skiing velocity, F(d) , E(t) , and E(d) per GS turn were 15-21 m/s, 20-60 N, -11 to -5 kJ, and -2.3 to -0.5 kJ, respectively. E(d) /E(t) ranged from ∼5% to 28% and the relationship between E(t) /v(in) and E(d) was r = -0.12 (all NS). In conclusion, (a) F(d) during alpine skiing was calculated by mechanical modeling, (b) E(d) made a relatively small contribution to E(t) , and (c) higher relative E(d) was correlated to better performance in elite GS skiers, suggesting that reducing ski-snow friction can improve this performance. PMID:23121340

  13. Drag Coefficient of a Rigid Spherical Particle in a Near-Critical Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Fujitani, Youhei; Komura, Shigeyuki

    2013-08-01

    We calculate the drag coefficient of a rigid spherical particle in an incompressible binary fluid mixture. A weak preferential attraction is assumed between the particle surface and one of the fluid components, and the difference in the viscosity between the two components is neglected. Using the Gaussian free-energy functional and solving the hydrodynamic equation explicitly, we can show that the preferential attraction makes the drag coefficient larger as the bulk correlation length becomes longer. The dependence of the deviation from the Stokes law on the correlation length, when it is short, turns out to be much steeper than the previous estimates.

  14. Experimental evaluation of the drag coefficient of water rockets by a simple free-fall test

    NASA Astrophysics Data System (ADS)

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Argüelles-Díaz, K.; Fernández-Oro, J.

    2009-09-01

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag coefficient of water rockets made from plastic soft drink bottles. The experiment is performed using relatively small fall distances (only about 14 m) in addition with a simple digital-sound-recording device. The fall time is inferred from the recorded signal with quite good precision, and it is subsequently introduced as an input of a Matlab® program that estimates the magnitude of the drag coefficient. This procedure was tested first with a toy ball, obtaining a result with a deviation from the typical sphere value of only about 3%. For the particular water rocket used in the present investigation, a drag coefficient of 0.345 was estimated.

  15. Invariance of Hypersonic Normal Force Coefficients with Reynolds Number and Determination of Inviscid Wave Drag from Laminar Experimental Results

    NASA Technical Reports Server (NTRS)

    Hawkins, Richard; Penland, Jim A.

    1997-01-01

    Observations have been made and reported that the experimental normal force coefficients at a constant angle of attack were constant with a variation of more than 2 orders of magnitude of Reynolds number at a free-stream Mach number M(sub infinity) of 8.00 and more than 1 order of magnitude variation at M(sub infinity) = 6.00 on the same body-wing hypersonic cruise configuration. These data were recorded under laminar, transitional, and turbulent boundary layer conditions with both hot-wall and cold-wall models. This report presents experimental data on 25 configurations of 17 models of both simple and complex geometry taken at M(sub infinity) = 6.00, 6.86, and 8.00 in 4 different hypersonic facilities. Aerodynamic calculations were made by computational fluid dynamics (CID) and engineering methods to analyze these data. The conclusions were that the normal force coefficients at a given altitude are constant with Reynolds numbers at hypersonic speeds and that the axial force coefficients recorded under laminar boundary-layer conditions at several Reynolds numbers may be plotted against the laminar parameter (the reciprocal of the Reynolds number to the one-half power) and extrapolated to the ordinate axis to determine the inviscid-wave-drag coefficient at the intercept.

  16. Effects of turbulence and number density on the drag coefficient of droplets

    NASA Technical Reports Server (NTRS)

    Rudoff, R. C.; Kamemoto, D. Y.; Bachalo, W. D.

    1991-01-01

    Droplet drag coefficients for polydispersed drops are determined via the behavior of drops decelerating on the stagnation streamline of a cylinder with an afterbody mounted in a wind tunnel test section. A variety of velocity, turbulence levels, and droplet number densities were studied. A force balance equation technique was used to determine drag coefficient. For the levels of number density, up to 700/cc, and turbulence, up to about 7 percent, no definite effects were seen. However, the smallest drops in the high turbulence case showed some evidence of drop-turbulence and/or drop-drop interactions. The drag results that were developed for this set of measurements agreed well with other empirical relations previously determined.

  17. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Akbıyık, Hürrem; Erkan Akansu, Yahya; Yavuz, Hakan; Ertuğrul Bay, Ahmet

    2016-03-01

    In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  18. Aerodynamic drag reduction tests on a full-scale tractor-trailer combination with several add-on devices

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Steers, L. L.

    1974-01-01

    Aerodynamic drag tests were performed on a conventional cab-over-engine tractor with a 45-foot trailer and five commercially available or potentially available add-on devices using the coast-down method. The tests ranged in velocity from approximately 30 miles per hour to 65 miles per hour and included some flow visualization. A smooth, level runway at Edwards Air Force Base was used for the tests, and deceleration measurements were taken with both accelerometers and stopwatches. An evaluation of the drag reduction results obtained with each of the five add-on devices is presented.

  19. Variation of the drag coefficient and its dependence on sea state

    NASA Technical Reports Server (NTRS)

    Geernaert, G. L.; Katsaros, K. B.; Richter, K.

    1986-01-01

    Using a Gill propeller vane anemometer and resistance wave wires over a water column depth of 15 m, simultaneous measurements of the momentum flux and sea surface wave spectra were acquired from the Pisa mast, 28 km offshore in the German Bight during autumn and winter 1979. These data were analyzed to identify the relationship between wind stress and surface waves. It was found that wind stresses for wind speeds above 15 m/s were regularly higher than open ocean wind stresses as reported by Smith (1980) and by Large and Pond (1981) for the same mean wind speed. These results, when described in terms of the drag coefficient, compared closely with the results of Sheppard et al. (1972), who collected surface layer statistics over Lough Neagh, Northern Ireland. After modeling the surface waves of the North Sea as a function of wave saturation (or wave age), it became evident that variations in the magnitude of the drag coefficient could be explained by coincident variations in the surface wave energy spectrum. By applying the wave dependent roughness length model described by Kitaigorodskii (1973), the North Sea drag coefficient was predicted to be larger than drag coefficients reported from the open sea.

  20. Particle dispersion models and drag coefficients for particles in turbulent flows

    NASA Technical Reports Server (NTRS)

    Crowe, C. T.; Chung, J. N.; Troutt, T. R.

    1988-01-01

    Some of the concepts underlying particle dispersion due to turbulence are reviewed. The traditional approaches to particle dispersion in homogeneous, stationary turbulent fields are addressed, and recent work on particle dispersion in large scale turbulent structures is reviewed. The state of knowledge of particle drag coefficients in turbulent gas-particle flows is also reviewed.

  1. Using the HARV simulation aerodynamic model to determine forebody strake aerodynamic coefficients from flight data

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.

  2. Non-Fermi liquid behavior of the drag and diffusion coefficients in QED plasma

    SciTech Connect

    Sarkar, Sreemoyee; Dutt-Mazumder, Abhee K.

    2011-11-01

    We calculate the drag and diffusion coefficients in low temperature QED plasma and go beyond the leading order approximation. The non-Fermi-liquid behavior of these coefficients are clearly revealed. We observe that the subleading contributions due to the exchange of soft transverse photon in both cases are larger than the leading order terms coming from the longitudinal sector. The results are presented in closed form at zero and low temperature.

  3. Measurement of virtual mass and drag coefficients of a disk oscillating sinusoidally in a two-phase mixture

    SciTech Connect

    Kamath, P.S.; Harris, D.R.; Lahey, R.T.

    1984-06-01

    This paper presents an experimental determination of the virtual mass and drag coefficients of a disk oscillating sinusoidally in a two-phase mixture of air flowing through stagnant water. The purpose of this experiment was to determine the importance of virtual mass on the transient response of an INEL-type drag-disk flow meter. The results indicate that for a given void fraction, the virtual mass coefficient increases, and the drag coefficient decreases, with increasing amplitude parameter. Also, for a given amplitude parameter, the virtual mass coefficient decreases, and the drag coefficient increases, with increasing void fraction. Based on the measured virtual mass coefficients, it was concluded that when an INEL-type drag-disk is used for the measurement of transient two-phase flows, virtual mass effects may be neglected in the analysis of its response without appreciable error.

  4. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on

  5. The effect of plasma actuator on the depreciation of the aerodynamic drag on box model

    NASA Astrophysics Data System (ADS)

    Harinaldi, Budiarso, Julian, James; Rabbani M., N.

    2016-06-01

    Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.

  6. The lateral surface drag coefficient of cylindrical spacecraft in a rarefied finite temperature atmosphere

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.

    1985-01-01

    In the present determination of the free molecule flow drag coefficient for a cylindrical spacecraft flying parallel to its principal axis, the lateral surface effects of thermal motion are explicitly included in terms of the average impact angle of the incident gas momentum vector. Kinetic theory is used to characterize self-shadowing, as well as to obtain an expression for the lateral surface coefficient in terms of the average impact angle of the incident momentum vector and the fractional momentum transfer along the line of impact. It is found that, for a length/diameter ratio of about 5, the lateral surface contribution to the drag coefficient is comparable to that of the front face.

  7. An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1992-01-01

    Research conducted during the period from July 1991 through December 1992 is covered. A method based upon the quasi-analytical approach was developed for computing the aerodynamic sensitivity coefficients of three dimensional wings in transonic and subsonic flow. In addition, the method computes for comparison purposes the aerodynamic sensitivity coefficients using the finite difference approach. The accuracy and validity of the methods are currently under investigation.

  8. Sunspots and the physics of magnetic flux tubes. I - The general nature of the sunspot. II - Aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    Analysis of the dynamical stability of a large flux tube suggests that the field of a sunspot must divide into many separate tubes within the first 1000 km below the surface. Buoyancy of the Wilson depression at the visible surface and probably also a downdraft beneath the sunspot hold the separate tubes in a loose cluster. Convective generation of Alfven waves, which are emitted preferentially downward, cools the tubes. Aerodynamic drag on a slender flux tube stretched vertically across a convective cell is also studied. Since the drag is approximately proportional to the local kinetic energy density, the density stratification weights the drag in favor of the upper layers. Horizontal motions concentrated in the bottom of the convective cell may reverse this density effect. A downdraft of about two km/sec through the flux tubes beneath the sunspot is hypothesized.

  9. Roughness of Weddell Sea Ice and Estimates of the Air-Ice Drag Coefficient

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.; Lange, Manfred A.; Ackley, Stephen F.; Wadhams, Peter

    1993-07-01

    The roughness of a sheet of sea ice encodes its deformational history and determines its aerodynamic coupling with the overlying air and underlying water. Here we report snow surface, ice surface, and ice underside roughness computed from 47 surface elevation profiles collected during a transect of the Weddell Sea. The roughness for each surface, parameterized as the standard deviation of the surface elevation, segregates according to whether or not a floe has been deformed: deformed ice has greater roughness than undeformed ice. Regardless of deformational history, the underside roughness is almost always greater than the snow surface and ice surface roughnesses, which are nearly equal. Roughness spectra for all three surfaces and for both deformed and undeformed ice roll off roughly as k-1 when the wavenumber k is between 0.1 and 3 rad m-1. The snow surface and underside spectra roll off somewhat faster than k-1, and the ice surface spectra roll off somewhat slower than k-1. Both top and underside Arctic ice roughness spectra, on the other hand, have been reported to roll off faster than k-2. We speculate that the excess spectral intensity at high wavenumbers in the Antarctic ice surface spectra results from the small-scale roughness that the ice sheet had on consolidation. This excess high-wavenumber spectral intensity persists in the ice surface spectra of second-year ice. Evidently, once formed, the ice surface remains unchanged on the microscale until the entire ice sheet melts. With a remote measurement of roughness, we should be able to decide whether an ice floe is deformed or undeformed. Our spectral analysis hints that remote sensing may also be able to differentiate between first-year and second-year ice. From the snow surface spectra, we compute a roughness scale ξ that parameterizes the air-ice momentum coupling and lets us estimate the neutral stability drag coefficient referenced to a height of 10 m, CDN10. Typical CDN10 values are 1.1-1.4 × 10

  10. September 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R

    2002-09-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at NASA Ames Research Center on September 23, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Freightliner, and Portland State University participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items. The meeting began with an introduction by the Project Lead Rose McCallen of LLNL, where she emphasized that the world energy consumption is predicted to relatively soon exceed the available resources (i.e., fossil, hydro, non-breeder fission). This short fall is predicted to begin around the year 2050. Minimizing vehicle aerodynamic drag will significantly reduce our Nation's dependence on foreign oil resources and help with our world-wide fuel shortage. Rose also mentioned that educating the populace and researchers as to our world energy issues is important and that our upcoming United Engineering Foundation (UEF) Conference on ''The Aerodynamics of Heavy Vehicles: Trucks, Busses, and Trains'' was one way our DOE Consortium was doing this. Mentioned were the efforts of Fred Browand from USC in organizing and attracting internationally recognized speakers to the Conference. Rose followed with an overview of the DOE project goals, deliverables, and FY03 activities. The viewgraphs are attached at the end of this report. Sid Diamond of DOE

  11. A Mechanical Drag Coefficient Formulation and Urban Canopy Parameter Assimilation Technique for Complex Urban Environments

    NASA Astrophysics Data System (ADS)

    Gutiérrez, E.; Martilli, A.; Santiago, J. L.; González, J. E.

    2015-11-01

    A mechanical drag coefficient formulation was implemented into the Building Effect Parameterization + Building Energy Model system coupled with the mesoscale Weather Research Forecasting model to improve the representation of the wind speed in complex urban environments. Previously, this formulation had been assessed only against spatially-averaged results from computational fluid dynamical simulations in idealized urban configurations. The main objective is to evaluate its performance over a real city. The introduction of a drag coefficient that varies with the building plan-area fraction increases the accuracy of the mesoscale model in predicting surface wind speed in complex urban environments (i.e. New York City) particularly in areas with tall buildings. Additionally, a methodology to implement local building information and a new land-cover land-use distribution is proposed that improves the representation of the urban morphology.

  12. Drag coefficients for spheres in free molecular flow in O at satellite velocities

    NASA Technical Reports Server (NTRS)

    Boring, J. W.; Humphris, R. R.

    1973-01-01

    The drag coefficients for the Echo 1 and Explorer 24 spherical surfaces in an O environment were experimentally determined over an energy range of 4 to 200 eV. The experiment was performed by generating a beam of atomic oxygen ions of the proper energy, neutralizing a portion of the beam, and then allowing only the neutral O particles to strike a very sensitive torsion balance. The momentum transferred to the surface was determined from the deflection of the torsion balance. At the lower energies, the more intense ion beam had to be used instead of the neutral beam. The drag coefficients are found to be slightly greater than 2 at energies corresponding to satellite velocities.

  13. Drag coefficient comparisons between observed and model simulated directional wave spectra under hurricane conditions

    NASA Astrophysics Data System (ADS)

    Fan, Yalin; Rogers, W. Erick

    2016-06-01

    In this study, Donelan, M.A., Babanin, A.V., Young, I.R., Banner, M.L., 2006. J. Phys. Oceanogr. 36, 1672-1688 source function is used to calculate drag coefficients from both the scanning radar altimeter (SRA) measured two dimensional wave spectra obtained during hurricane Ivan in 2004 and the WAVEWATCH III simulated wave spectra. The drag coefficients disagree between the SRA and model spectra mainly in the right/left rear quadrant of the hurricane where the observed spectra appear to be bimodal while the model spectra are single peaked with more energy in the swell frequencies and less energy in the wind sea frequencies. These results suggest that WAVEWATCH III is currently not capable of providing sensible stress calculations in the rear quadrants of the hurricane.

  14. Aerodynamic characteristics of wheelchairs. [Langley V/STOL wind tunnel tests for human factors engineering

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1979-01-01

    The overall aerodynamic drag characteristics of a conventional wheelchair were defined and the individual drag contributions of its components were determined. The results show that a fiftieth percentile man sitting in the complete wheelchair would experience an aerodynamic drag coefficient on the order of 1.4.

  15. The variation of aerofoil lift and drag coefficients with changes in size and speed

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1923-01-01

    This report contains the results of an investigation into the effect of changes in size and speed upon aerofoil lift and drag coefficients. Certain empirical limitations to the interchangeability of v and l in the general equation of fluid resistance are pointed out and the existing methods of correcting for scale are criticized. New methods of correcting for scale by means of simple formulae are derived and checked by comparison with test results.

  16. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2013-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  17. Drag and diffusion coefficient of a spherical particle attached to a fluid interface

    NASA Astrophysics Data System (ADS)

    Hardt, Steffen; Doerr, Aaron; Masoud, Hassan; Stone, Howard

    2015-11-01

    We consider a spherical particle attached to the interface between two immiscible fluids of large viscosity contrast. The degree of immersion in the two fluids is determined by the contact angle. For small enough particles and significant contact-angle hysteresis, it can be assumed that the three-phase contact line is pinned at the particle surface. We study the movement of such particles along the fluid interface for the case of small Reynolds and capillary numbers. We solve the Stokes equation based on two geometric perturbation expansions around contact angles of 90 degrees and 180 degrees, the latter corresponding to a particle completely immersed in the less viscous phase. Based on the Lorentz Reciprocity Theorem we obtain expressions for the drag coefficient of an interfacial particle which are analogs of the well-known Stokes drag coefficient for a particle moving in an unbounded medium. Interpolation of the two results gives a relationship which approximates the drag coefficient quite accurately over the entire range of contact angles. A comparison with previously published numerical results for contact angles below 90 degrees shows good agreement. Using the fluctuation-dissipation theorem, we also obtain expressions for the diffusion constant of a small particle attached to a fluid interface.

  18. Constraining the Masses and the Non-radial Drag Coefficient of a Solar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Kay, C.; dos Santos, L. F. G.; Opher, M.

    2015-03-01

    Decades of observations show that coronal mass ejections (CMEs) can deflect from a purely radial trajectory, however, no consensus exists as to the cause of these deflections. Many theories attribute CME deflection to magnetic forces. We developed Forecasting a CMEs Altered Trajectory (ForeCAT), a model for CME deflections based solely on magnetic forces, neglecting any reconnection effects. Here, we compare ForeCAT predictions to the observed deflection of the 2008 December 12 CME and find that ForeCAT can accurately reproduce the observations. Multiple observations show that this CME deflected nearly 30° in latitude and 4.°4 in longitude. From the observations, we are able to constrain all of the ForeCAT input parameters (initial position, radial propagation speed, and expansion) except the CME mass and the drag coefficient that affects the CME motion. By minimizing the reduced chi-squared, χ ν 2, between the ForeCAT results and the observations, we determine an acceptable mass range between 4.5 × 1014 and 1 × 1015 g and a drag coefficient less than 1.4 with a best fit at 7.5 × 1014 g and 0 for the mass and drag coefficient. ForeCAT is sensitive to the magnetic background and we are also able to constrain the rate at which the quiet Sun magnetic field falls to be similar or slightly slower than the Potential Field Source Surface model.

  19. The Sensitivity of Large-Eddy Simulation to Local and Nonlocal Drag Coefficients at the Lower Boundary

    NASA Technical Reports Server (NTRS)

    Schowalter, D. G.; DeCroix, D. S.; Lin, Y. L.; Arya, S. P.; Kaplan, M. L.

    1996-01-01

    It was found that the homogeneity of the surface drag coefficient plays an important role in the large scale structure of turbulence in large-eddy simulation of the convective atmospheric boundary layer. Particularly when a ground surface temperature was specified, large horizontal anisotropies occurred when the drag coefficient depended upon local velocities and heat fluxes. This was due to the formation of streamwise roll structures in the boundary layer. In reality, these structures have been found to form when shear is approximately balanced by buoyancy. The present cases, however, were highly convective. The formation was caused by particularly low values of the drag coefficient at the entrance to thermal plume structures.

  20. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  1. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  2. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    NASA Astrophysics Data System (ADS)

    Bolzon, Michael; Kelso, Richard; Arjomandi, Maziar

    2016-03-01

    The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  3. March 2001 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    Greenman, R; Dunn, T; Owens, J; Laskowski, G; Flowers, D; Browand, F; Knight, A; Hammache, M; Leoard, A; Rubel, M; Salari, K; Rutledge, W; Ross, J; Satran, D; Heineck, J T; Walker, S; Driver, D; Storms, B

    2001-05-14

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on March 28 and 29, 2001. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Due to the large participation from industry and other research organizations, a large portion of the meeting (all of the first day and part of the second day) was devoted to the presentation and discussion of industry's perspective and work being done by other organizations on the demonstration of commercial software and the demonstration of a drag reduction device. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  4. May 2003 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Browand, F; Hammache, M; Hsu, T Y; Arcas, D; Leoard, A; Chatelain, P; Rubel, M; Roy, C; DeChant, L; Hassan, B; Ross, J; Satran, D; Walker, S; Heineck, J T; Englar, R; Pointer, D; Sofu, T

    2003-05-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University, and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.

  5. Increased ephemeris accuracy using attitude-dependent aerodynamic force coefficients for inertially stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Baker, David F.

    1991-01-01

    The FREEMAC program used to generate the aerodynamic coefficients, as well as associated routines that allow the results to be used in other software is described. These capabilities are applied in two numerical examples to the short-term orbit prediction of the Gamma Ray Observatory (GRO) and Hubble Space Telescope (HST) spacecraft. Predictions using attitude-dependent aerodynamic coefficients were made on a modified version of the PC-based Ephemeris Generation Program (EPHGEN) and were compared to definitive orbit solutions obtained from actual tracking data. The numerical results show improvement in the predicted semi-major axis and along-track positions that would seem to be worth the added computational effort. Finally, other orbit and attitude analysis applications are noted that could profit from using FREEMAC-calculated aerodynamic coefficients, including orbital lifetime studies, orbit determination methods, attitude dynamics simulators, and spacecraft control system component sizing.

  6. The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1935-01-01

    Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.

  7. Bubble rise velocities and drag coefficients in non-Newtonian polysaccharide solutions.

    PubMed

    Margaritis, A; te Bokkel, D W; Karamanev, D G

    1999-08-01

    Microbially produced polysaccharides have properties which are extremely useful in different applications. Polysaccharide producing fermentations start with liquid broths having Newtonian rheology and end as highly viscous non-Newtonian solutions. Since aerobic microorganisms are used to produce these polysaccharides, it is of great importance to know the mass transfer rate of oxygen from a rising air bubble to the liquid phase, where the microorganisms need the oxygen to grow. One of the most important parameters determining the oxygen transfer rate is the terminal rise velocity of air bubble. The dynamics of the rise of air bubbles in the aqueous solutions of different, mostly microbially produced polysaccharides was studied in this work. Solutions with a wide variety of polysaccharide concentrations and rheological properties were studied. The bubble sizes varied between 0.01 mm3 and 10 cm3. The terminal rise velocities as a function of air bubble volume were studied for 21 different polysaccharide solutions with different rheological properties. It was found that the terminal velocities reached a plateau at higher bubble volumes, and the value of the plateau was nearly constant, between 23 and 27 cm/s, for all solutions studied. The data were analyzed to produce the functional relationship between the drag coefficient and Reynolds number (drag curves). It was found out that all the experimental data obtained from 21 polysaccharide solutions (431 experimental points), can be represented by a new single drag curve. At low values of Reynolds numbers, below 1.0, this curve could be described by the modofoed Hadamard-Rybczynski model, while at Re > 60 the drag coefficient was a constant, equal to 0.95. The latter finding is similar to that observed for bubble rise in Newtonian liquids which was explained on the basis of the "solid bubble" approach. PMID:10397862

  8. Aerodynamic drag and fuel spreading measurements in a simulated scramjet combustion module

    NASA Technical Reports Server (NTRS)

    Povinelli, L. A.

    1974-01-01

    The drag of a simulated scramjet combustion module was measured at Mach 2, 2.5, and 3. The combustor was rectangular in cross section and incorporated six swept fuel injector struts. The effect of strut leading edge radius, position of maximum thickness, thickness ratio, sweep angle, and strut length on the drag was determined. Reduction in thickness ratio had the largest effect on drag reduction. Sweeping the struts upstream yielded the same drag as sweeping the struts downstream and potentially offers the advantages of increased mixing time for the fuel. Helium injection was used to simulate hydrogen fuel. The interstrut spacing required to achieve good distribution of fuel was was found to be about 10 jet diameters. The contribution of helium injection to drag reduction was small.

  9. Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction

    NASA Technical Reports Server (NTRS)

    Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.

    1987-01-01

    Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.

  10. Drag Coefficient of a Spherical Droplet Immersed in a Near-Critical Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Fujitani, Youhei

    2014-02-01

    We consider a spherical liquid droplet immersed in a near-critical binary fluid mixture. A weak preferential attraction is assumed between the droplet and one of the two mixture components, and the difference in the viscosity is neglected between the mixture components. Using the Gaussian free-energy functional, we calculate the drag coefficient of a droplet. Whether it is increased or decreased by the preferential attraction turns out to depend on the bulk correlation length and the ratio of the viscosity of the surrounding mixture to that of the droplet.

  11. A new method for flight test determination of propulsive efficiency and drag coefficient

    NASA Technical Reports Server (NTRS)

    Bull, G.; Bridges, P. D.

    1983-01-01

    A flight test method is described from which propulsive efficiency as well as parasite and induced drag coefficients can be directly determined using relatively simple instrumentation and analysis techniques. The method uses information contained in the transient response in airspeed for a small power change in level flight in addition to the usual measurement of power required for level flight. Measurements of pitch angle and longitudinal and normal acceleration are eliminated. The theoretical basis for the method, the analytical techniques used, and the results of application of the method to flight test data are presented.

  12. The Aerodynamic Drag of Five Models of Side Floats N.A.C.A. Models 51-E, 51-F, 51-G, 51-H, 51-J

    NASA Technical Reports Server (NTRS)

    House, R O

    1938-01-01

    The drag of five models of side floats was measured in the N.A.C.A. 7- by 10-foot wind tunnel. The most promising method of reducing the drag of floats indicated by these tests is lowering the angle at which the floats are rigged. The addition of a step to a float does not always increase the drag in the flying range, floats with steps sometimes having lower drag than similar floats without steps. Making the bow chine no higher than necessary might result in a reduction in air drag because of the lower angle of pitch of the chines. Since side floats are used formally to obtain lateral stability when the seaplane is operating on the water at slow speeds or at rest, greater consideration can be given to factors affecting aerodynamic drag than is possible for other types of floats and hulls.

  13. Determination of the hypersonic-continuum/rarefied-flow drag coefficient of the Viking lander capsule 1 aeroshell from flight data

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Walberg, G. D.

    1980-01-01

    Results of an investigation to determine the full scale drag coefficient in the high speed, low density regime of the Viking lander capsule 1 entry vehicle are presented. The principal flight data used in the study were from onboard pressure, mass spectrometer, and accelerometer instrumentation. The hypersonic continuum flow drag coefficient was unambiguously obtained from pressure and accelerometer data; the free molecule flow drag coefficient was indirectly estimated from accelerometer and mass spectrometer data; the slip flow drag coefficient variation was obtained from an appropriate scaling of existing experimental sphere data. Comparison of the flight derived drag hypersonic continuum flow regime except for Reynolds numbers from 1000 to 100,000, for which an unaccountable difference between flight and ground test data of about 8% existed. The flight derived drag coefficients in the free molecule flow regime were considerably larger than those previously calculated with classical theory. The general character of the previously determined temperature profile was not changed appreciably by the results of this investigation; however, a slightly more symmetrical temperature variation at the highest altitudes was obtained.

  14. Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David (Technical Monitor); Rajkumar, T.; Bardina, Jorge

    2003-01-01

    Basic aerodynamic coefficients are modeled as functions of angle of attack, speed brake deflection angle, Mach number, and side slip angle. Most of the aerodynamic parameters can be well-fitted using polynomial functions. We previously demonstrated that a neural network is a fast, reliable way of predicting aerodynamic coefficients. We encountered few under fitted and/or over fitted results during prediction. The training data for the neural network are derived from wind tunnel test measurements and numerical simulations. The basic questions that arise are: how many training data points are required to produce an efficient neural network prediction, and which type of transfer functions should be used between the input-hidden layer and hidden-output layer. In this paper, a comparative study of the efficiency of neural network prediction based on different transfer functions and training dataset sizes is presented. The results of the neural network prediction reflect the sensitivity of the architecture, transfer functions, and training dataset size.

  15. Dimples and drag: Experimental demonstration of the aerodynamics of golf balls

    NASA Astrophysics Data System (ADS)

    Libii, Josué Njock

    2007-08-01

    While it is well known that the presence of dimples reduces the drag force exerted on a golf ball, demonstrations of this phenomenon are not common. A simple pendulum is designed and used in a wind tunnel to measure the drag force exerted by a moving stream of air on a spherical object. This pendulum is then used in experiments to measure drag forces exerted on smooth balls and on golf balls in order to compare the results. Data collected from 12 balls tested at speeds ranging from 54to180km/h demonstrate that the presence of dimples on the surface of golf balls causes them to experience drag forces that are smaller than those on smooth balls of the same diameters and weights.

  16. Drag and torque coefficients for plate and disk induced stokes flows with slip

    NASA Astrophysics Data System (ADS)

    Davis, Anthony M. J.

    2014-12-01

    A key purpose of this paper is to demonstrate that the introduction of slip changes the structure of viscous flow past plates and disks by precluding edge singularities in the stresses. It is well-known that the inviscid limit flow is not recovered by letting the viscosity tend to zero. Here it is demonstrated that, similarly, the no-slip limit flow is not recovered by letting the slip coefficient tend to zero. For each of the three cases involving a translating plate and a rotating or translating disk, the determination of the tangential stress is reduced to a linear system of equations with simple coefficients. Values of the drag or torque and edge stresses are displayed.

  17. Method determining the nature of oscillating motion of the aircraft based on the analysis of coefficients of aerodynamic damping derivatives

    NASA Astrophysics Data System (ADS)

    Dyadkin, A. A.; Khatuntseva, O. N.

    2014-12-01

    Analysis of experimental data shows that the nature of the oscillating motion of an aircraft does not depend uniquely on the value of the coefficients of aerodynamic damping derivatives. The present work makes an attempt to explain this phenomenon and develops a methodology to adequately characterize the oscillating motion of aircraft based on the analysis of the coefficients of aerodynamic damping derivatives.

  18. Determination of aerodynamic sensitivity coefficients based on the three-dimensional full potential equation

    NASA Technical Reports Server (NTRS)

    Elbanna, Hesham M.; Carlson, Leland A.

    1992-01-01

    The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.

  19. Aerodynamic Influence Coefficient Computations Using Euler/Navier-Stokes Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Farhangnia, Mehrdad; Bhatia, Kumar; Guruswamy, Guru; VanDalsem, William R. (Technical Monitor)

    1996-01-01

    Modem design requirements for an aircraft push current technologies used in the design process to their limit or sometimes require more advanced technologies to meet the requirement. New design requirements always demand to improve the operational performance. Accurate prediction of aerodynamic coefficients is essential to improve the performance. For example, in the design of an advanced subsonic civil transport, since the fluid flow at transonic regime shows strong nonlinearities, high fidelity equations, such as the Euler or Navier-Stokes equations predict flow characteristics more accurately than the linear aerodynamics, which are widely used in the current design process However, high fidelity flow equations are computationally expensive and require an order of magnitude longer time to obtain aerodynamic coefficients required in the design. Parallel computing is one possibility to cut down the computational turn-around time in using high fidelity equations so that high fidelity equations would be incorporated into the design process. By doing so, high fidelity equations would be used in the routine design process. This work will demonstrate the feasibility of using high fidelity flow equations in a design process by computing aerodynamic influence coefficients of a wing-body-empennage configuration on a multiple-instruction, multiple-data parallel computer.

  20. Investigation of oscillating cascade aerodynamics by an experimental influence coefficient technique

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1988-01-01

    Fundamental experiments are performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate the torsion mode unsteady aerodynamics of a biconvex airfoil cascade at realistic values of the reduced frequency for all interblade phase angles at a specified mean flow condition. In particular, an unsteady aerodynamic influence coefficient technique is developed and utilized in which only one airfoil in the cascade is oscillated at a time and the resulting airfoil surface unsteady pressure distribution measured on one dynamically instrumented airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils oscillating at a specified interblade phase angle are then determined through a vector summation of these data. These influence coefficient determined oscillation cascade data are correlated with data obtained in this cascade with all airfoils oscillating at several interblade phase angle values. The influence coefficients are then utilized to determine the unsteady aerodynamics of the cascade for all interblade phase angles, with these unique data subsequently correlated with predictions from a linearized unsteady cascade model.

  1. October 1998 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    SciTech Connect

    Browand, F; Heineck, J T; Leonard, A; McBride, D; McCallen, R; Ross, J; Rutledge, W; Salari, K; Storms, B

    1998-10-01

    A Working Group 1Meeting on Heavy Vehicle Aerodynamic Drag was held at NASA Ames Research Center, Moffett Field, California on October 22, 1998. The purpose of the meeting was to present an overview of the computational and experimental approach for modeling the integrated tractor-trailer benchmark geometry called the Sandia IModel and to review NASA' s test plan for their experiments in the 7 ft x 10 ft wind tunnel. The present and projected funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT). Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and NASA Ames Research Center. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions. and outlines the future action items.

  2. April 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    Salari, K; Dunn, T; Ortega, J; Yen-Nakafuji, D; Browand, F; Arcas, D; Jammache, M; Leoard, A; Chatelain, P; Rubel, M; Rutledge, W; McWherter-Payne, M; Roy, Ca; Ross, J; Satran, D; Heineck, J T; Storms, B; Pointer, D; Sofu, T; Weber, D; Chu, E; Hancock, P; Bundy, B; Englar, B

    2002-08-22

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on April 3 and 4, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center, University of Southern California (USC), and California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), and Argonne National Laboratory (ANL), Volvo Trucks, and Freightliner Trucks presented and participated in discussions. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  3. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  4. A parabolic model of drag coefficient for storm surge simulation in the South China Sea.

    PubMed

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  5. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    PubMed Central

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  6. Flight Reconstruction of the Mars Pathfinder Disk-Gap-Band Parachute Drag Coefficient

    NASA Technical Reports Server (NTRS)

    Desai, Prasun; Schofield, John T.; Lisano, Michael E.

    2003-01-01

    On July 4, 1997, the Mars Pathfinder (MPF) mission successfully landed on Mars. The entry, descent, and landing (EDL) scenario employed the use of a Disk-Gap-Band parachute design to decelerate the Lander. Flight reconstruction of the entry using MPF flight accelerometer data revealed that the MPF parachute decelerated faster than predicted. In the summer of 2003, the Mars Exploration Rover (MER) mission will send two Landers to the surface of Mars arriving in January 2004. The MER mission utilizes a similar EDL scenario and parachute design as that employed by MPF. As a result, characterizing the degree of underperformance of the MPF parachute system is critical for the MER EDL trajectory design. This paper provides an overview of the methodology utilized to estimate the MPF parachute drag coefficient as experienced on Mars.

  7. Experimental determination of drag coefficients in low-density polyurethane foam

    SciTech Connect

    Adams, M L

    2006-04-18

    We describe several experiments performed at the LLNL Site 300 firing range and on the LLNL 1/3 scale gun to investigate the deceleration of small projectiles (l {approx} 3-5 [mm]) in low-density foam ({rho} {approx} 0.08-0.32 [g/cm{sup 3}]). The experiments at the firing range researched a passive velocity diagnostic based on Faraday's law of induction, while experiments on the 1/3 scale gun investigated the effects of varying projectile surface area, projectile shape, and foam density on the drag coefficient c{sub d}. Analysis shows that the velocity diagnostic has an uncertainty on the order of 1 percent for projectiles with velocity v {approx} 0.8-1.2 [km/s]. The 1/3 scale gun experiments, dubbed the Krispy Kreme series, included nine shots considering the combinations of 3 projectile surface areas with 3 target densities. The experiments used Tantalum square surface area block projectiles (with an initial velocity v{sub 0} {approx} 1.2 [km/s], a common thickness T = 2.67 [mm], and square side lengths of 3, 4, and 5 [mm]) decelerating in polyurethane foams (with densities {rho}{sub f} of 0.08, 0.16 and 0.32 [g/cm{sup 3}]). Standard fluid models of the Krispy Kreme experiments predict Reynolds numbers Re {approx} 10{sup 5} - 10{sup 6}, Mach numbers Ma {approx} 0.5-2.0, and drag coefficients c{sub d} {approx} 2-3. However, the data indicate that c{sub d} = 1.1-1.2 (c{sub d} = 1.7) for all three block projectiles in the 0.08 and 0.16 [g/cm{sup 3}] targets (0.32 [g/cm{sup 3}] target). First, we conclude that the drag force on projectiles in solid polyurethane foam is less than in fluids with equivalent dimensionless parameters. This result is also supported by an additional Krispy Kreme experiment that used a disk projectile (with diameter d = 4.51 [mm] and thickness T = 2.67 [mm]) penetrating a target with density {rho} = 0.16 [g/cm{sup 3}], i.e., the fluid-like c{sub d} = 1.15 while the measured c{sub d} = 0.63. Second, we conclude that the measured drag

  8. MIST - MINIMUM-STATE METHOD FOR RATIONAL APPROXIMATION OF UNSTEADY AERODYNAMIC FORCE COEFFICIENT MATRICES

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1994-01-01

    Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the

  9. Determining aerodynamic coefficients from high speed video of a free-flying model in a shock tunnel

    NASA Astrophysics Data System (ADS)

    Neely, Andrew J.; West, Ivan; Hruschka, Robert; Park, Gisu; Mudford, Neil R.

    2008-11-01

    This paper describes the application of the free flight technique to determine the aerodynamic coefficients of a model for the flow conditions produced in a shock tunnel. Sting-based force measurement techniques either lack the required temporal response or are restricted to large complex models. Additionally the free flight technique removes the flow interference produced by the sting that is present for these other techniques. Shock tunnel test flows present two major challenges to the practical implementation of the free flight technique. These are the millisecond-order duration of the test flows and the spatial and temporal nonuniformity of these flows. These challenges are overcome by the combination of an ultra-high speed digital video camera to record the trajectory, with spatial and temporal mapping of the test flow conditions. Use of a lightweight model ensures sufficient motion during the test time. The technique is demonstrated using the simple case of drag measurement on a spherical model, free flown in a Mach 10 shock tunnel condition.

  10. Dividers for reduction of aerodynamic drag of vehicles with open cavities

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L. (Inventor)

    2007-01-01

    A drag-reduction concept for vehicles with open cavities includes dividing a cavity into smaller adjacent cavities through installation of one or more vertical dividers. The dividers may extend the full depth of the cavity or only partial depth. In either application, the top of the dividers are typically flush with the top of the bed or cargo bay of the vehicle. The dividers may be of any material, but are strong enough for both wind loads and forces encountered during cargo loading/unloading. For partial depth dividers, a structural angle may be desired to increase strength.

  11. Aerodynamics overview of the ground transportation systems (GTS) project for heavy vehicle drag reduction

    SciTech Connect

    Gutierrez, W.T.; Hassan, B.; Croll, R.H.; Rutledge, W.H.

    1995-12-31

    The focus of the research was to investigate the fundamental aerodynamics of the base flow of a tractor trailer that would prove useful in fluid flow management. Initially, industry design needs and constraints were defined. This was followed by an evaluation of state-of-the-art Navier-Stokes based computational fluid dynamics tools. Analytical methods were then used in combination with computational tools in a design process. Several geometries were tested at 1:8 scale in a low speed wind tunnel. In addition to the baseline geometry, base add-on devices of the class of ogival boattails and slants were analyzed.

  12. Reduction of aerodynamic drag and fuel consumption for tractor-trailer vehicles

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.; Saltzman, E. J.

    1979-01-01

    Wind-tunnel tests were performed on a scale model of a cab-over-engine tractor-trailer vehicle and several modifications of the model. Results from two of the model configurations were compared with full-scale drag data obtained from similar configurations during coast-down tests. Reductions in fuel consumption derived from these tests are presented in terms of fuel quantity and dollar savings per vehicle year, based on an annual driving distance of 160,900 km (100,000 mi.). The projected savings varied from 13,001 (3435) to 25,848 (6829) liters (gallons) per year which translated to economic savings from $3435 to about $6829 per vehicle year for an operating speed of 88.5 km/h (55 mph) and wind speeds near the national average of 15.3 km/h (9.5 mph). The estimated cumulative fuel savings for the entire U.S. fleet of cab-over-engine tractor, van-type trailer combinations ranged from 4.18 million kl (26.3 million bbl) per year for a low-drag configuration to approximately twice that amount for a more advanced configuration.

  13. The BMW analytic aerodynamic drag method for the Vinti satellite theory

    NASA Technical Reports Server (NTRS)

    Watson, J. S.; Mistretta, G. D.; Bonavito, N. L.

    1972-01-01

    In order to retain separability in the Vinti theory of earth satellite motion when a non conservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which reproduces tabular values of static model atmospheric densities at all altitudes to within ninety-eight percent and simultaneously reduces the variational equations to indefinite integrals with closed form evaluations, whose limits are in terms of the eccentric anomaly. The values of the limits for any arbitrary time interval are obtained from the Vinti program. Results of the BMW (Bonavito, Mistretta, Watson) theory for the case of the intense air drag satellites San Marco-2 and Air Force Cannonball are given. These results indicate that the satellite ephemerides produced by the BMW theory in conjunction with the Vinti program are of very high accuracy. In addition, since the program is entirely analytic, several months of ephemerides can be obtained within a few seconds of computer time.

  14. On the effect of sea spray on the aerodynamic surface drag under severe winds

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina; Zilitinkevich, Sergej

    2016-05-01

    We investigate the effect of the sea spray on the air-sea momentum exchange during the entire "life cycle" of a droplet, torn off the crest of a steep surface wave, and its fall down to the water, in the framework of a model covering the following aspects of the phenomenon: (1) motion of heavy particle in the driving air flow (equations of motion); (2) structure of the wind field (wind velocity, wave-induced disturbances, turbulent fluctuations); (3) generation of the sea spray; and (4) statistics of droplets (size distribution, wind speed dependence). It is demonstrated that the sea spray in strong winds leads to an increase in the surface drag up to 40 % on the assumption that the velocity profile is neutral.

  15. Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds

    NASA Astrophysics Data System (ADS)

    Wei, Zhongwang; Miyano, Aiko; Sugita, Michiaki

    2016-04-01

    The drag coefficient (CD) , experimentally determined from observed wind speed and surface stress, has been reported to increase in the low wind-speed range (< 3 m s^{-1} ) as wind speed becomes smaller. However, until now, the exact causes for its occurrence have not been determined. Here, possible causes for increased CD values in near-calm conditions are examined using high quality datasets selected from three-year continuous measurements obtained from the centre of Lake Kasumigaura, the second largest lake in Japan. Based on our analysis, suggested causes including (i) measurement errors, (ii) lake currents, (iii) capillary waves, (iv) the possibility of a measurement height within the interfacial/transition sublayer, and (v) a possible mismatch in the representative time scale used for mean and covariance averaging, are not considered major factors. The use of vector-averaged, instead of scalar-averaged, wind speeds and the presence of waves only partially explain the increase in CD under light winds. A small increase in turbulent kinetic energy due to buoyant production at low wind speeds is identified as the likely major cause for this increase in CD in the unstable atmosphere dominant over inland water surfaces.

  16. Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds

    NASA Astrophysics Data System (ADS)

    Wei, Zhongwang; Miyano, Aiko; Sugita, Michiaki

    2016-08-01

    The drag coefficient (CD), experimentally determined from observed wind speed and surface stress, has been reported to increase in the low wind-speed range (<3 m s^{-1}) as wind speed becomes smaller. However, until now, the exact causes for its occurrence have not been determined. Here, possible causes for increased CD values in near-calm conditions are examined using high quality datasets selected from three-year continuous measurements obtained from the centre of Lake Kasumigaura, the second largest lake in Japan. Based on our analysis, suggested causes including (i) measurement errors, (ii) lake currents, (iii) capillary waves, (iv) the possibility of a measurement height within the interfacial/transition sublayer, and (v) a possible mismatch in the representative time scale used for mean and covariance averaging, are not considered major factors. The use of vector-averaged, instead of scalar-averaged, wind speeds and the presence of waves only partially explain the increase in CD under light winds. A small increase in turbulent kinetic energy due to buoyant production at low wind speeds is identified as the likely major cause for this increase in CD in the unstable atmosphere dominant over inland water surfaces.

  17. March 2000 Working Group Meeting on Heavy Vehicle Aerodynamic DragL Presentations and Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R.; Flowers, D.; Dunn, T.; Owens, J.; Browand, F.; Hammache, M.; Loenard, A.; Brady, M.; Salari, K.; Rutledge, W.; Scheckler, R.; Ross, J.; Storms, B.; Heineck, J.T.; Arledge, T

    2000-05-15

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on March 16, 2000. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in the analysis of experimental results, model developments, simulations, and an investigation of an aerodynamic device. The focus of the meeting was a review of University of Southern California's (USC) experimental plans and results, NASA Ames experimental plans, the computational results from Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) for the integrated tractor-trailer benchmark geometry called the Ground Transportation System (GTS) Model, and turbulence model development and benchmark simulation for a rounded cube from California Institute of Technology (Caltech). Much of the meeting discussion involved deficiencies in commercial software, needed modeling improvements, and the importance of detailed data for code validation. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), LLNL, SNL, NASA Ames, USC, and Caltech. Representatives from Argonne National Laboratory also participated via telephone. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items. There were 3 major issues raised at the meeting. (1) Our funding is inadequate to satisfy industries request for high Reynolds number experimentation and computation. Plans are to respond to the DOD and DOE requests for proposals, which require a 50-50 cost share with industry, to acquire funding for high Reynolds number experiments at NASA Ames. (2) The deficiencies in commercial software, the need for

  18. An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1994-01-01

    The primary accomplishments of the project are as follows: (1) Using the transonic small perturbation equation as a flowfield model, the project demonstrated that the quasi-analytical method could be used to obtain aerodynamic sensitivity coefficients for airfoils at subsonic, transonic, and supersonic conditions for design variables such as Mach number, airfoil thickness, maximum camber, angle of attack, and location of maximum camber. It was established that the quasi-analytical approach was an accurate method for obtaining aerodynamic sensitivity derivatives for airfoils at transonic conditions and usually more efficient than the finite difference approach. (2) The usage of symbolic manipulation software to determine the appropriate expressions and computer coding associated with the quasi-analytical method for sensitivity derivatives was investigated. Using the three dimensional fully conservative full potential flowfield model, it was determined that symbolic manipulation along with a chain rule approach was extremely useful in developing a combined flowfield and quasi-analytical sensitivity derivative code capable of considering a large number of realistic design variables. (3) Using the three dimensional fully conservative full potential flowfield model, the quasi-analytical method was applied to swept wings (i.e. three dimensional) at transonic flow conditions. (4) The incremental iterative technique has been applied to the three dimensional transonic nonlinear small perturbation flowfield formulation, an equivalent plate deflection model, and the associated aerodynamic and structural discipline sensitivity equations; and coupled aeroelastic results for an aspect ratio three wing in transonic flow have been obtained.

  19. March 1999 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    SciTech Connect

    Brady, M; Browand, F; McCallen, R; Ross, J; Salari, K

    1999-03-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory, Livermore, California on March 11, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of the experimental results for the integrated tractor-trailer benchmark geometry called the Sandia Model in the NASA Ames 7 ft x 10 ft wind tunnel. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center.This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  20. Boattail Plates With Non-Rectangular Geometries For Reducing Aerodynamic Base Drag Of A Bluff Body In Ground Effect

    DOEpatents

    Ortega, Jason M.; Sabari, Kambiz

    2006-03-07

    An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.

  1. July 1999 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    SciTech Connect

    Brady, M; Browand, F; Flowers, D; Hammache, M; Landreth, G; Leonard, A; McCallen, R; Ross, J; Rutledge, W; Salari, K

    1999-08-16

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at University of Southern California, Los Angeles, California on July 30, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of University of Southern California's (USC) experimental plans and results and the computational results from Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) for the integrated tractor-trailer benchmark geometry called the Sandia Model. Much of the meeting discussion involved the NASA Ames 7 ft x 10 ft wind tunnel tests and the need for documentation of the results. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), LLNL, SNL, USC, and California Institute of Technology (Caltech). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  2. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  3. The effect of sting interference at low speeds on the drag coefficient of an ellipsoidal body using a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Newcomb, A. W.

    1988-01-01

    A Boltz body of revolution (fineness ratio 7.5:1) was tested in the Southampton University Magnetic Suspension and Balance System. The effects of sting interference on the drag coefficient of the model at zero angle of attack were noted as well as the effects on drag coefficient values at boundary layer trips. The drag coefficient values were compared with other sources and seemed to show agreement. The pressure distribution over the rear of the model with no sting interference was investigated including the use of boundary layer trips.

  4. Application of Reduced Order Transonic Aerodynamic Influence Coefficient Matrix for Design Optimization

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2009-01-01

    Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed

  5. Aerodynamic tests of Darrieus wind turbine blades

    SciTech Connect

    Migliore, P.G.; Walters, R.E.; Wolfe, W.P.

    1983-03-01

    An indoor facility for the aerodynamic testing of Darrieus turbine blades was developed. Lift, drag, and moment coefficients were measured for two blades whose angle of attack and chord-to-radius ratio were varied. The first blade used an NACA 0015 airfoil section; the second used a 15% elliptical cross section with a modified circular arc trailing edge. Blade aerodynamic coefficients were corrected to section coefficients for comparison to published rectilinear flow data. Although the airfoil sections were symmetrical, moment coefficients were not zero and the lift and drag curves were asymmetrical about zero lift coefficient and angle of attack. These features verified the predicted virtual camber and incidence phenomena. Boundary-layer centrifugal effects were manifested by discontinuous lift curves and large differences in the angle of zero lift between th NACA 0015 and elliptical airfoils. It was concluded that rectilinear flow aerodynamic data are not applicable to Darrieus turbine blades, even for small chord-to-radius ratios.

  6. Calibration of the aerodynamic coefficient identification package measurements from the shuttle entry flights using inertial measurement unit data

    NASA Technical Reports Server (NTRS)

    Heck, M. L.; Findlay, J. T.; Compton, H. R.

    1983-01-01

    The Aerodynamic Coefficient Identification Package (ACIP) is an instrument consisting of body mounted linear accelerometers, rate gyros, and angular accelerometers for measuring the Space Shuttle vehicular dynamics. The high rate recorded data are utilized for postflight aerodynamic coefficient extraction studies. Although consistent with pre-mission accuracies specified by the manufacturer, the ACIP data were found to contain detectable levels of systematic error, primarily bias, as well as scale factor, static misalignment, and temperature dependent errors. This paper summarizes the technique whereby the systematic ACIP error sources were detected, identified, and calibrated with the use of recorded dynamic data from the low rate, highly accurate Inertial Measurement Units.

  7. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  8. Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime.

    PubMed

    Li, Zhigang; Wang, Hai

    2003-12-01

    The transport of small particles in the free-molecule regime is investigated on the basis of gas kinetic theory. Drag force formulations were derived in two limiting collision models-namely, specular and diffuse scattering-by considering the potential force of interactions between the particle and fluid molecules. A parametrized drag coefficient equation is proposed and accounts for the transition from specular to diffuse scattering as particle size exceeds a critical value. The resulting formulations are shown to be consistent with the Chapman-Enskog theory of molecular diffusion. In the limit of rigid-body interactions, these formulations can be simplified also to Epstein's solutions [P. S. Epstein, Phys. Rev. 23, 710 (1924)]. PMID:14754191

  9. Comparisons of AEROX computer program predictions of lift and induced drag with flight test data

    NASA Technical Reports Server (NTRS)

    Axelson, J.; Hill, G. C.

    1981-01-01

    The AEROX aerodynamic computer program which provides accurate predictions of induced drag and trim drag for the full angle of attack range and for Mach numbers from 0.4 to 3.0 is described. This capability is demonstrated comparing flight test data and AEROX predictions for 17 different tactical aircraft. Values of minimum (skin friction, pressure, and zero lift wave) drag coefficients and lift coefficient offset due to camber (when required) were input from the flight test data to produce total lift and drag curves. The comparisons of trimmed lift drag polars show excellent agreement between the AEROX predictions and the in flight measurements.

  10. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    NASA Astrophysics Data System (ADS)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  11. Method for estimating the aerodynamic coefficients of wind turbine blades at high angles of attack

    NASA Astrophysics Data System (ADS)

    Beans, E. W.; Jakubowski, G. S.

    1983-12-01

    The method is based on the hypothesis that at high angles of attack the force on an airfoil is produced by the deflection of the fluid across the lower surface. It is also hypothesized that all airfoils behave the same regardless of shape and that the effects of circulation and skin friction are small. It is pointed out that the expression for the force N normal to the airfoil due to momentum exchange can be written in terms of the component parallel to the flow (drag) and the component perpendicular to the flow (lift). A comparison of estimated values with measured values and generally accepted data indicates that the method given here estimates coefficients which are low. It is thought that the difference may derive from the persistence of circulation at high angles of attack. Low estimates are not seen as a serious limitation to the designer of wind turbines. Owing to the fifth power diameter relation, the effect of a low estimate of performance on the inner portion of the blade is minimized.

  12. Missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.

  13. Drag force, diffusion coefficient, and electric mobility of small particles. II. Application.

    PubMed

    Li, Zhigang; Wang, Hai

    2003-12-01

    We propose a generalized treatment of the drag force of a spherical particle due to its motion in a laminar fluid media. The theory is equally applicable to analysis of particle diffusion and electric mobility. The focus of the current analysis is on the motion of spherical particles in low-density gases with Knudsen number Kn>1. The treatment is based on the gas-kinetic theory analysis of drag force in the specular and diffuse scattering limits obtained in a preceding paper [Z. Li and H. Wang, Phys. Rev. E., 68, 061206 (2003)]. Our analysis considers the influence of van der Waals interactions on the momentum transfer upon collision of a gas molecule with the particle and expresses this influence in terms of an effective, reduced collision integral. This influence is shown to be significant for nanosized particles. In the present paper, the reduced collision integral values are obtained for specular and diffuse scattering, using a Lennard-Jones-type potential energy function suitable for the interactions of a gas molecule with a particle. An empirical formula for the momentum accommodation function, used to determine the effective, reduced collision integral, is obtained from available experimental data. The resulting treatment is shown to be accurate for interpreting the mobility experiments for particles as small as approximately 1 nm in radius. The treatment is subsequently extended to the entire range of the Knudsen number, following a semiempirical, gas-kinetic theory analysis. We demonstrate that the proposed formula predicts very well Millikan's oil-droplet experiments [R. A. Millikan, Philos. Mag. 34, 1 (1917); Phys. Rev. 22, 1 (1923)]. The rigorous theoretical foundation of the proposed formula in the Kn>1 limit makes the current theory far more general than the semiempirical Stokes-Cunningham formula in terms of the particle size and condition of the fluid and, therefore, more attractive than the Stokes-Cunningham formula. PMID:14754192

  14. Drag force, diffusion coefficient, and electric mobility of small particles. II. Application

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Wang, Hai

    2003-12-01

    We propose a generalized treatment of the drag force of a spherical particle due to its motion in a laminar fluid media. The theory is equally applicable to analysis of particle diffusion and electric mobility. The focus of the current analysis is on the motion of spherical particles in low-density gases with Knudsen number Kn≫1. The treatment is based on the gas-kinetic theory analysis of drag force in the specular and diffuse scattering limits obtained in a preceding paper [Z. Li and H. Wang, Phys. Rev. E., 68, 061206 (2003)]. Our analysis considers the influence of van der Waals interactions on the momentum transfer upon collision of a gas molecule with the particle and expresses this influence in terms of an effective, reduced collision integral. This influence is shown to be significant for nanosized particles. In the present paper, the reduced collision integral values are obtained for specular and diffuse scattering, using a Lennard-Jones-type potential energy function suitable for the interactions of a gas molecule with a particle. An empirical formula for the momentum accommodation function, used to determine the effective, reduced collision integral, is obtained from available experimental data. The resulting treatment is shown to be accurate for interpreting the mobility experiments for particles as small as ˜1 nm in radius. The treatment is subsequently extended to the entire range of the Knudsen number, following a semiempirical, gas-kinetic theory analysis. We demonstrate that the proposed formula predicts very well Millikan’s oil-droplet experiments [R. A. Millikan, Philos. Mag. 34, 1 (1917); Phys. Rev. 22, 1 (1923)]. The rigorous theoretical foundation of the proposed formula in the Kn≫1 limit makes the current theory far more general than the semiempirical Stokes-Cunningham formula in terms of the particle size and condition of the fluid and, therefore, more attractive than the Stokes-Cunningham formula.

  15. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix C: Method for computing the aerodynamic influence coefficient matrix of nonplanar wing-body-tail configurations

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1972-01-01

    Expressions are derived for computing the aerodynamic influence coefficient matrix for nonplanar wing-body-tail configurations. An aerodynamic influence coefficient is defined as the load in lbs. induced on a panel as a result of a unit angle of attack on another panel. Fuselage, wing and tail thickness are assumed to be small with the result that the thickness effect on the flow-field is negligible. The method for determining the aerodynamic influence coefficient matrix is based on the lifting solution to the small perturbation, steady potential flow equation.

  16. NaCl reflection coefficients in proximal tubule apical and basolateral membrane vesicles. Measurement by induced osmosis and solvent drag.

    PubMed

    Pearce, D; Verkman, A S

    1989-06-01

    Two independent methods, induced osmosis and solvent drag, were used to determine the reflection coefficients for NaCl (sigma NaCl) in brush border and basolateral membrane vesicles isolated from rabbit proximal tubule. In the induced osmosis method, vesicles loaded with sucrose were subjected to varying inward NaCl gradients in a stopped-flow apparatus. sigma NaCl was determined from the osmolality of the NaCl solution required to cause no initial osmotic water flux as measured by light scattering (null point). By this method sigma NaCl was greater than 0.92 for both apical and basolateral membranes with best estimates of 1.0. sigma NaCl was determined by the solvent drag method using the Cl-sensitive fluorescent indicator, 6-methoxy-N-[3-sulfopropyl]quinolinium (SPQ), to detect the drag of Cl into vesicles by inward osmotic water movement caused by an outward osmotic gradient. sigma NaCl was determined by comparing experimental data with theoretical curves generated using the coupled flux equations of Kedem and Katchalsky. By this method we found that sigma NaCl was greater than 0.96 for apical and greater than 0.98 for basolateral membrane vesicles, with best estimates of 1.0 for both membranes. These results demonstrate that sigma NaCl for proximal tubule apical and basolateral membranes are near unity. Taken together with previous results, these data suggest that proximal tubule water channels are long narrow pores that exclude NaCl. PMID:2765660

  17. Closed-form equations for the lift, drag, and pitching-moment coefficients of airfoil sections in subsonic flow

    NASA Technical Reports Server (NTRS)

    Smith, R. L.

    1978-01-01

    Closed-form equations for the lift, drag, and pitching moment coefficients of two dimensional airfoil sections in steady subsonic flow were obtained from published theoretical and experimental results. A turbulent boundary layer was assumed to exist on the airfoil surfaces. The effects of section angle of attack, Mach number, Reynolds number, and the specific airfoil type were considered. The equations were applicable through an angle of attack range of -180 deg to +180 deg; however, above about + or - 20 deg, the section characteristics were assumed to be functions only of angle of attack. A computer program is presented which evaluates the equations for a range of Mach numbers and angles of attack. Calculated results for the NACA 23012 airfoil section were compared with experimental data.

  18. Influence of particle drag coefficient on particle motion in high-speed flow with typical laser velocimeter applications

    NASA Technical Reports Server (NTRS)

    Walsh, M. J.

    1976-01-01

    The effect of using different particle drag coefficient C sub D equations for computing the velocity of seeded particles in high-speed gas flows was investigated. The C sub D equations investigated included the Stokes equation, a second incompressible equation valid for higher relative Reynolds numbers, and six equations that account for the effects of compressibility together with the effects of relative Reynolds numbers greater than one. The flows investigated were center-line nozzle flows, normal shocks, and oblique shocks for free-stream Mach numbers of 1.6 to 6 and stagnation pressures of 1 and 3.4 atmospheres. The net result was empirical C sub D equation based on the latest sphere C sub D data for the low relative Mach number and Reynolds number conditions that are encountered in supersonic flows.

  19. A Real-Time Method for Estimating Viscous Forebody Drag Coefficients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.

    2000-01-01

    This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.

  20. In Situ Measurement of the Drag Coefficient Over Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Salisbury, D. J.; Brooks, I. M.; Prytherch, J.; Moat, B. I.; Persson, O. P. G.; Sedlar, J.; Sotiropoulou, G.; Tjernstrom, M. K. H.; Achtert, P.; Brooks, B. J.; Shupe, M.

    2015-12-01

    Bulk flux algorithms are routinely used in climate and numerical weather prediction models to estimate the surface exchange of momentum, heat, and moisture. However, these algorithms often perform poorly over sea ice where the effect of variable ice conditions on the exchange coefficient is poorly understood. This is largely due to the paucity of direct surface flux measurements in polar regions with which are needed to develop better algorithms. Some recent state of the art parameterizations attempt to address this issue by accounting for both the spatial and temporal heterogeneity of sea ice due to, for example, the appearance of leads and melt ponds in summer, and the dependence of ice surface roughness on morphology and age. These parameterizations are derived largely from theoretical considerations and have yet to be thoroughly tested against observations. Here, we present direct measurements of surface stress, heat and moisture fluxes obtained during a 3 month cruise in the Arctic Ocean during summer 2014. Measurements were made via the eddy covariance technique from a mast over the bow of the icebreaker Oden. Flux estimates were obtained over a wide range of surface conditions, ranging from open water to multi-year pack ice. Digital imagery is used to classify the surface through estimation of local ice properties, including the fractional area of multiple ice categories, melt ponds, and leads. Variability in transfer coefficient estimates with surface conditions is investigated, and several parameterizations of differing complexity are tested using the direct estimates.

  1. Drag coefficients and rotational behavior of spheres descending through liquids along an inclined wall at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Wardhaugh, Leigh T.; Williams, Michael C.

    2014-03-01

    Spherical particles immersed in liquids were observed in their descent along a glass wall inclined at various angles α, over a range of particle-based Reynolds numbers (Rep) extending to high values (15 < Rep < 50 000), rarely reported in such flows. Plastic, ceramic, and metal spheres were used, characterized as to surface roughness and their friction coefficients against the glass. Liquids were selected to achieve a viscosity variation by a factor of 300, as well as having widely differing chemical natures. A drag coefficient (Cp) used to correlate sphere velocity data was found to define a near-universal curve Cp (Rep) over the entire Rep-range, provided that spheres rolled down the wall without slipping, and here there was no need to accommodate roughness effects of solid-to-solid friction explicitly. This correlation was especially good for Rep > 103. For lower Rep, deviations appeared in systematic fashion, falling below the universal curve when slip was present. Several unexpected features were observed: (a) a threshold angle, α0, needed before sphere motion could begin; (b) spheres lifting off from the wall at high Rep, but always at the same maximum angle αm = 74°; and (c) prior to lift-off, a buzzing sound (not reported previously) for which explanations are offered.

  2. The interference of the model support mast with measurements of the longitudinal and lateral aerodynamic coefficients

    NASA Technical Reports Server (NTRS)

    Vandekreeke, C.; Verriere, J.; Quemard, G.

    1987-01-01

    The effects the single-bottom support masts used in the ONERA S1 and S4 wind tunnels have on aerodynamic data collected with scale model aircraft were examined experimentally and analytically. Systematic studies were performed on the flow characteristics around different diameters for the mounts. Scaling methods used to make data from one wind tunnel correspond to data from the other are described. Airbus 320 models were introduced into the tests and mast-body flow interactions were observed. A summary is presented of restrictions on the mast diameters, relative to cylindrical model diameters, which will minimize the effects the masts have on longitudinal and lateral aerodynamic stability data.

  3. Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Artur V.

    2016-07-01

    The stochastic equations of continuum are used for determining the hydraulic drag coefficients. As a result, the formulas for the hydraulic drag coefficients dependent on the turbulence intensity and scale instead of only on the Reynolds number are proposed for the classic flows of an incompressible fluid along a smooth flat plate and a round smooth tube. It is shown that the new expressions for the classical drag coefficients, which depend only on the Reynolds number, should be obtained from these new general formulas if to use the well-known experimental data for the initial turbulence. It is found that the limitations of classical empirical and semiempirical formulas for the hydraulic drag coefficients and their deviation from the experimental data depend on different parameters of initial fluctuations in the flow for different experiments in a wide range of Reynolds numbers. On the basis of these new dependencies, it is possible to explain that the differences between the experimental results for the fixed Reynolds number are caused by the difference in the values of flow fluctuations for each experiment instead of only due to the systematic error in the processing of experiments. Accordingly, the obtained general dependencies for the smooth flat plate and the smooth round tube can serve as the basis for clarifying the results of experiments and the experimental formulas, which used for continuum flows in different devices.

  4. Determination of balloon drag

    NASA Technical Reports Server (NTRS)

    Conrad, George R.; Robbins, Edward J.

    1991-01-01

    The evolution of an empirical drag relationship that has stimulated rethinking regarding the physics of balloon drag phenomena is discussed. Combined parasitic drag from all sources in the balloon system are estimated to constitute less than 10 percent of the total system drag. It is shown that the difference between flight-determined drag coefficients and those based on the spherical assumption should be related to the square of the Froude number.

  5. Correlations Among Ice Measurements, Impingement Rates Icing Conditions, and Drag Coefficients for Unswept NACA 65A004 Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.

    1958-01-01

    An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.

  6. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  7. An experimental study of the lift, drag and static longitudinal stability for a three lifting surface configuration

    NASA Technical Reports Server (NTRS)

    Ostowari, C.; Naik, D.

    1986-01-01

    The experimental procedure and aerodynamic force and moment measurements for wind tunnel testing of the three lifting surface configuration (TLC) are described. The influence of nonelliptical lift distributions on lift, drag, and static longitudinal stability are examined; graphs of the lift coefficient versus angle of attack, the pitching moment coefficient, drag coefficient, and lift to drag ratio versus lift coefficient are provided. The TLC data are compared with the conventional tail-aft configuration and the canard-wing configuration; it is concluded that the TLC has better lift and high-lift drag characteristics, lift to drag ratio, and zero-lift moments than the other two configurations. The effects of variations in forward and tail wind incidence angles, gap, stagger, and forward wind span on the drag, lift, longitudinal stability, and zero-lift moments of the configuration are studied.

  8. Measured and predicted aerodynamic coefficients and shock shapes for Aeroassist Flight Experiment (AFE) configuration

    NASA Technical Reports Server (NTRS)

    Wells, William L.

    1989-01-01

    Two scaled models of the Aeroassist Flight Experiment (AFE) vehicle were tested in two air wind tunnels and one CF4 tunnel. The tests were to determine the static longitudinal aerodynamic characteristics, and shock shapes for the configuration in hypersonic continuum flow. The tests were conducted with a range of angle of attack to evaluate the effects of Mach number, Reynolds numbers, and normal shock density ratio.

  9. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  10. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  11. Reduction of aerodynamic friction drag of moving bodies using a Microwave-Dielectric-Barrier-Discharge actuator controlling the boundary layer

    NASA Astrophysics Data System (ADS)

    Pierre, Thiery

    2015-11-01

    A new plasma device named M-DBD (Microwave Dielectric Barrier Discharge) is used for controlling the boundary layer in order to reduce the drag force. A compact resonant UHF structure comprising a resonant element in the form of a quarter-wave antenna creates a mini-plasma insulated from the UHF electrodes by mica sheets. Additional electrodes induce an electric field in the plasma and transiently move the ions of the plasma. The high collision rate with the neutral molecules induce the global transient flow of the neutral gas. The temporal variation of the applied electric field is chosen in order to obtain a modification of the local boundary layer. First tests using an array of M-DBD plasma actuators are underway (see Patent ref. WO 2014111469 A1).

  12. AEROX: Computer program for transonic aircraft aerodynamics to high angles of attack. Volume 1: Aerodynamic methods and program users' guide

    NASA Technical Reports Server (NTRS)

    Axelson, J. A.

    1977-01-01

    The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.

  13. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  14. Effective removal of co-purified inhibitors from extracted DNA samples using synchronous coefficient of drag alteration (SCODA) technology.

    PubMed

    Schmedes, Sarah; Marshall, Pamela; King, Jonathan L; Budowle, Bruce

    2013-07-01

    Various types of biological samples present challenges for extraction of DNA suitable for subsequent molecular analyses. Commonly used extraction methods, such as silica membrane columns and phenol-chloroform, while highly successful may still fail to provide a sufficiently pure DNA extract with some samples. Synchronous coefficient of drag alteration (SCODA), implemented in Boreal Genomics' Aurora Nucleic Acid Extraction System (Boreal Genomics, Vancouver, BC), is a new technology that offers the potential to remove inhibitors effectively while simultaneously concentrating DNA. In this initial study, SCODA was tested for its ability to remove various concentrations of forensically and medically relevant polymerase chain reaction (PCR) inhibitors naturally found in tissue, hair, blood, plant, and soil samples. SCODA was used to purify and concentrate DNA from intentionally contaminated DNA samples containing known concentrations of hematin, humic acid, melanin, and tannic acid. The internal positive control (IPC) provided in the Quantifiler™ Human DNA Quantification Kit (Life Technologies, Foster City, CA) and short tandem repeat (STR) profiling (AmpFℓSTR® Identifiler® Plus PCR Amplification Kit; Life Technologies, Foster City, CA) were used to measure inhibition effects and hence purification. SCODA methodology yielded overall higher efficiency of purification of highly contaminated samples compared with the QIAquick® PCR Purification Kit (Qiagen, Valencia, CA). SCODA-purified DNA yielded no cycle shift of the IPC for each sample and yielded greater allele percentage recovery and relative fluorescence unit values compared with the QIAquick® purification method. The Aurora provided an automated, minimal-step approach to successfully remove inhibitors and concentrate DNA from challenged samples. PMID:23254459

  15. Extraction from flight data of lateral aerodynamic coefficients for F-8 aircraft with supercritical wing

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Suit, W. T.

    1974-01-01

    A parameter-extraction algorithm was used to determine the lateral aerodynamic derivatives from flight data for the F-8 aircraft with supercritical wing. The flight data used were the recorded responses to aileron or rudder pulses for Mach numbers of 0.80, 0.90, and 0.98. Results of this study showed that a set of derivatives were determined which yielded a calculated aircraft response almost identical with the response measured in flight. Derivatives extracted from motion resulting from rudder inputs were somewhat different from those resulting from aileron inputs. It was found that the derivatives obtained from the rudder-input data were highly correlated in some instances. Those from the aileron input had very low correlations and appeared to be the more reliable.

  16. Generalize aerodynamic coefficient table storage, checkout and interpolation for aircraft simulation

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Warner, N.

    1973-01-01

    The set of programs described has been used for rapidly introducing, checking out and very efficiently using aerodynamic tables in complex aircraft simulations on the IBM 360. The preprocessor program reads in tables with different names and dimensions and stores then on disc storage according to the specified dimensions. The tables are read in from IBM cards in a format which is convenient to reduce the data from the original graphs. During table processing, new auxiliary tables are generated which are required for table cataloging and for efficient interpolation. In addition, DIMENSION statements for the tables as well as READ statements are punched so that they may be used in other programs for readout of the data from disc without chance of programming errors. A quick data checking graphical output for all tables is provided in a separate program.

  17. Low-speed aerodynamic characteristics of an airfoil optimized for maximum lift coefficient

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Chen, A. W.

    1972-01-01

    An investigation has been conducted in the Langley low-turbulence pressure tunnel to determine the two-dimensional characteristics of an airfoil optimized for maximum lift coefficient. The design maximum lift coefficient was 2.1 at a Reynolds number of 9.7 million. The airfoil with a smooth surface and with surface roughness was tested at angles of attack from 6 deg to 26 deg, Reynolds numbers (based on airfoil chord) from 2.0 million to 12.9 million, and Mach numbers from 0.10 to 0.35. The experimental results are compared with values predicted by theory. The experimental pressure distributions observed at angles of attack up to at least 12 deg were similar to the theoretical values except for a slight increase in the experimental upper-surface pressure coefficients forward of 26 percent chord and a more severe gradient just behind the minimum-pressure-coefficient location. The maximum lift coefficients were measured with the model surface smooth and, depending on test conditions, varied from 1.5 to 1.6 whereas the design value was 2.1.

  18. An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    The three dimensional quasi-analytical sensitivity analysis and the ancillary driver programs are developed needed to carry out the studies and perform comparisons. The code is essentially contained in one unified package which includes the following: (1) a three dimensional transonic wing analysis program (ZEBRA); (2) a quasi-analytical portion which determines the matrix elements in the quasi-analytical equations; (3) a method for computing the sensitivity coefficients from the resulting quasi-analytical equations; (4) a package to determine for comparison purposes sensitivity coefficients via the finite difference approach; and (5) a graphics package.

  19. Aerodynamic design lowers truck fuel consumption

    NASA Technical Reports Server (NTRS)

    Steers, L.

    1978-01-01

    Energy-saving concepts in truck design are emerging from developing new shapes with improved aerodynamic flow properties that can reduce air-drag coefficient of conventional tractor-trailers without requiring severe design changes or compromising load-carrying capability. Improvements are expected to decrease somewhat with increased wind velocities and would be affected by factors such as terrain, driving techniques, and mechanical condition.

  20. The aerodynamic analysis of the gyroplane rotating-wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1934-01-01

    An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified.

  1. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).

    PubMed

    KleinHeerenbrink, Marco; Warfvinge, Kajsa; Hedenström, Anders

    2016-05-15

    Gliding flight is a relatively inexpensive mode of flight used by many larger bird species, where potential energy is used to cover the cost of aerodynamic drag. Birds have great flexibility in their flight configuration, allowing them to control their flight speed and glide angle. However, relatively little is known about how this flexibility affects aerodynamic drag. We measured the wake of a jackdaw (Corvus monedula) gliding in a wind tunnel, and computed the components of aerodynamic drag from the wake. We found that induced drag was mainly affected by wingspan, but also that the use of the tail has a negative influence on span efficiency. Contrary to previous work, we found no support for the separated primaries being used in controlling the induced drag. Profile drag was of similar magnitude to that reported in other studies, and our results suggest that profile drag is affected by variation in wing shape. For a folded tail, the body drag coefficient had a value of 0.2, rising to above 0.4 with the tail fully spread, which we conclude is due to tail profile drag. PMID:26994178

  2. Comparison of aerodynamic coefficients obtained from theoretical calculations wind tunnel tests and flight tests data reduction for the alpha jet aircraft

    NASA Technical Reports Server (NTRS)

    Guiot, R.; Wunnenberg, H.

    1980-01-01

    The methods by which aerodynamic coefficients are determined and discussed. These include: calculations, wind tunnel experiments and experiments in flight for various prototypes of the Alpha Jet. A comparison of obtained results shows good correlation between expectations and in-flight test results.

  3. Aerodynamic simulation

    SciTech Connect

    Not Available

    1993-01-01

    In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.

  4. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  5. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Michael Jacob; Ray, Ronald J.

    2004-01-01

    The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust. A standard Navy air refueling store with a retractable refueling hose and paradrogue was mounted to the centerline pylon of the F/A-18A airplane. As the paradrogue assembly was deployed and stowed, changes in the calculated thrust of the airplane occurred and were equated to changes in vehicle drag. These drag changes were attributable to the drag of the paradrogue assembly. The drag of the paradrogue assembly was determined to range from 200 to 450 lbf at airspeeds from 170 to 250 KIAS. Analysis of the drag data resulted in a single drag coefficient of 0.0056 for the paradrogue assembly that adequately matched the calculated drag for all flight conditions. The drag relief provided to the tanker airplane when a receiver airplane engaged the paradrogue is also documented from 35 to 270 lbf at the various flight conditions tested. The results support the development of accurate aerodynamic models to be used in refueling simulations and control laws for fully autonomous refueling.

  6. Aerodynamic resistance reduction of electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The generation of an EHV aerodynamic data base was initiated by conducting full-scale wind tunnel tests on 16 vehicles. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current 4-passenger prototype automobile which was designed with aerodynamics as an integrated parameter. Characteristic effects of aspect ratio or fineness ratio which might appear if electric vehicle shape proportions were to vary significantly from current automobiles were identified. Some preliminary results indicate a 5 to 10% variation in drag over the range of interest. Effective drag coefficient wind-weighting factors over J227a driving cycles in the presence of annual mean wind fields were identified. Such coefficients, when properly weighted, were found to be from 5 to 65% greater than the zero-yaw drag coefficient in the cases presented. A vehicle aerodynamics bibliography of over 160 entries, in six general categories is included.

  7. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  8. Experimental aerodynamic study of a car-type bluff body

    NASA Astrophysics Data System (ADS)

    Conan, Boris; Anthoine, Jérôme; Planquart, Philippe

    2011-05-01

    The Ahmed body is used as a reference model for fundamental studies of car-type bluff body aerodynamics, in particular focused on the influence of the rear slant angle on the drag coefficient. The objectives of the present work are to obtain reliable drag coefficient comparable to the literature and to explain, based on the nature of the flow, its variation when changing the rear slant angle from 10° to 40°. The drag coefficients measured in both an open and a closed test sections differ by less than 0.5% which proves the reliability and reproducibility of the results. The sensitivity of the drag coefficient to some parameters such as the model roughness or the oncoming boundary layer and the lack of precise information on these parameters in the literature could explain the difference observed with the Ahmed drag coefficient data. The various types of measurement techniques used in the study underline their complementarity. The combination of particle image velocimetry and oil visualization provides a deeper understanding of the flow behaviour around the Ahmed body and a physical interpretation of the drag coefficient evolution.

  9. Measured pressure distributions, aerodynamic coefficients and shock shapes on blunt bodies at incidence in hypersonic air and CF4

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1982-01-01

    Pressure distributions, aerodynamic coefficients, and shock shapes were measured on blunt bodies of revolution in Mach 6 CF4 and in Mach 6 and Mach 10 air. The angle of attack was varied from 0 deg to 20 deg in 4 deg increments. Configurations tested were a hyperboloid with an asymptotic angle of 45 deg, a sonic-corner paraboloid, a paraboloid with an angle of 27.6 deg at the base, a Viking aeroshell generated in a generalized orthogonal coordinate system, and a family of cones having a 45 deg half-angle with spherical, flattened, concave, and cusp nose shapes. Real-gas effects were simulated for the hperboloid and paraboloid models at Mach 6 by testing at a normal-shock density ratio of 5.3 in air and 12 CF4. Predictions from simple theories and numerical flow field programs are compared with measurement. It is anticipated that the data presented in this report will be useful for verification of analytical methods for predicting hypersonic flow fields about blunt bodies at incidence.

  10. Static Aerodynamic Performance Investigation of a Fluid Shield Nozzle

    NASA Technical Reports Server (NTRS)

    Balan, C.; Askew, J. W.

    2005-01-01

    In pursuit of an acoustically acceptable, high performance exhaust system capable of meeting Federal Aviation Regulation 36 Stage 3 noise goals for the High Speed Civil Transport application, General Electric Aircraft Engines conducted a design study to incorporate a fluid shield into a 36-chute suppressor exhaust-nozzle system. After a full scale preliminary mechanical design of the resulting fluid shield exhaust system, scale model aerodynamic performance tests and acoustic tests were conducted to establish both aerodynamic performance and acoustic characteristics. Data are presented as thrust coefficients, discharge coefficients, chute-base pressure drags, and plug static pressure distributions.

  11. Influence of hinge point on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Wu, P.; Li, C.

    2013-12-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon.

  12. Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus.

    PubMed

    Norberg, U M

    1976-08-01

    The kinematics, aerodynamics, and energetics of Plecotus auritus in slow horizontal flight, 2-35 m s-1, are analysed. At this speed the inclination of the stroke path is ca. 58 degrees to the horizontal, the stroke angle ca. 91 degrees, and the stroke frequency ca. 11-9 Hz. A method, based on steady-state aerodynamic and momenthum theories, is derived to calculate the lift and drag coefficients as averaged over the whole wing the whole wing-stroke for horizontal flapping flight. This is a further development of Pennycuick's (1968) and Weis-Fogh's (1972) expressions for calculating the lift coefficient. The lift coefficient obtained varies between 1-4 and 1-6, the drag coefficient between 0-4 and 1-2, and the lift:drag ratio between 1-2 and 4-0. The corresponding, calculated, total specific mechanical power output of the wing muscles varies between 27-0 and 40-4 W kg-1 body mass. A maximum estimate of mechanical efficiency is 0-26. The aerodynamic efficiency varies between 0-07 and 0-10. The force coefficient, total mechanical power output, and mechanical and aerodynamic efficiencies are all plausible, demonstrating that the slow flapping flight of Plecotus is thus explicable by steady-state aerodynamics. The downstroke is the power stroke for the vertical upward forces and the upstroke for the horizontal forward forces. PMID:993701

  13. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Miller, L.S.; Migliore, P.G.; Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  14. Device measures fluid drag on test vehicles

    NASA Technical Reports Server (NTRS)

    Freeman, R.; Judd, J. H.; Leiss, A.

    1965-01-01

    Electromechanical drag balance device measures the aerodynamic drag force acting on a vehicle as it moves through the atmosphere and telemeters the data to a remote receiving station. This device is also used for testing the hydrodynamic drag characteristics of underwater vehicles.

  15. Attitude Dependent De-Orbit Lifetime Analysis of an Aerodynamic Drag Sail Demonstration Spacecraft and Detailed Thermal Subsystem Design for a Polar Orbiting Communications Nanosatellite

    NASA Astrophysics Data System (ADS)

    Tarantini, Vincent Claudio Franco

    Contributions to two missions are presented. The first is a demonstration mission called CanX-7 that uses a 4 square metre drag sail to de-orbit a 3.5 kg satellite. In order to estimate the effectiveness of the drag sail, a novel method is developed that takes into account the time-varying nature of the projected drag area. The Space Flight Laboratory designed drag sail is shown lo be sufficient to de-orbit the CanX-7 spacecraft within the 25 year requirement. The Antarctic Broadband demonstrator spacecraft is a 20 cm cubical nanosatellite that will demonstrate the feasibility of a Ka-band link between the research community in Antarctica and stakeholders in Australia. In support of this mission, a passive thermal control subsystem is designed that will keep all the components within their operational temperature limits at all times throughout the mission.

  16. Preliminary flight-determined subsonic lift and drag characteristics of the X-29A forward-swept-wing airplane

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Huckabine, Thomas

    1989-01-01

    The X-29A subsonic lift and drag characteristics determined, met, or exceeded predictions, particularly with respect to the drag polar shapes. Induced drag levels were as great as 20 percent less than wind tunnel estimates, particularly at coefficients of lift above 0.8. Drag polar shape comparisons with other modern fighter aircraft showed the X-29A to have a better overall aircraft aerodynamic Oswald efficiency factor for the same aspect ratio. Two significant problems arose in the data reduction and analysis process. These included uncertainties in angle of attack upwash calibration and effects of maneuver dynamics on drag levels. The latter problem resulted from significantly improper control surface automatic camber control scheduling. Supersonic drag polar results were not obtained during this phase because of a lack of engine instrumentation to measure afterburner fuel flow.

  17. Experimental wing and canard jet-flap aerodynamics

    NASA Technical Reports Server (NTRS)

    Smeltzer, D. B.; Durston, D. A.; Stewart, V. R.

    1983-01-01

    The effects of upper surface blowing on the aerodynamics of a 1/2-span wing/body/canard configuration are shown. The results expand a data base that is limited at high subsonic Mach numbers (M = 0.6-0.9), data that are needed if computational techniques are to be developed for the complex flowfields generated by jet blowing. At lift coefficients greater than about 1.0, the thrust removed drag coefficient was lower with jet blowing than without jet blowing. This favorable effect increased with increasing jet blowing coefficient, and, for a fixed coefficient, simultaneous wing/canard jet blowing was slightly more effective than blowing either surface alone.

  18. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  19. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  20. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  1. Aerodynamics of Satellites on a Super Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa; Noda, Atsushi

    2008-12-01

    The Super Low Altitude Test Satellite is an engineering test satellite currently under development in Japan Aerospace Exploration Agency in an attempt to open a new frontier of space utilization on extremely low earth orbits. In the presence of aerodynamic forces acting on the satellite, the altitude and attitude of the satellite are maintained by ion engines so that the aerodynamic drag can be canceled. Thus, it is of primary importance to accurately assess the aerodynamics characteristics of the satellite prior to flight. In this article, the aerodynamic coefficients of the satellite are calculated for orbital altitudes from 160 to 300 km, taking into account the Maxwell accommodation of particles on the satellite surface and the free stream chemical composition. The activated atomic oxygen fluence rate on the surface, which is expected to cause considerable damages on the surface material, is estimated as well.

  2. Aerodynamic characteristics of popcorn ash particles

    SciTech Connect

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S.

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  3. Determination of the Profile Drag of an Airplane Wing in Flight at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Bicknell, Joseph

    1939-01-01

    Flight tests were made to determine the profile-drag coefficients of a portion of the original wing surface of an all-metal airplane and of a portion of the wing made aerodynamically smooth and more nearly fair than the original section. The wing section was approximately the NACA 2414.5. The tests were carried out over a range of airplane speeds giving a maximum Reynolds number of 15,000,000. Tests were also carried out to locate the point of transition from laminar to turbulent boundary layer and to determine the velocity distribution along the upper surface of the wing. The profile-drag coefficients of the original and of the smooth wing portions at a Reynolds number of 15,000,000 were 0.0102 and 0.0068, respectively; i.e., the surface irregularities on the original wing increased the profile-drag coefficient 50 percent above that of the smooth wing.

  4. Sphere Drag and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  5. Sphere Drag and Heat Transfer

    PubMed Central

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-01-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698

  6. Aerodynamics of a golf ball with grooves

    NASA Astrophysics Data System (ADS)

    Kim, Jooha; Son, Kwangmin; Choi, Haecheon

    2009-11-01

    It is well known that the drag on a dimpled ball is much lower than that on smooth ball. Choi et al. (Phys. Fluids, 2006) showed that turbulence is generated through the instability of shear layer separating from the edge of dimples and delays flow separation. Based on this mechanism, we devise a new golf ball with grooves on the surface but without any dimples. To investigate the aerodynamic performance of this new golf ball, an experiment is conducted in a wind tunnel at the Reynolds numbers of 0.5 x10^5 - 2.7 x10^5 and the spin ratios (ratio of surface velocity to the free-stream velocity) of α=0 - 0.5, which are within the ranges of real golf-ball velocity and spin rate. We measure the drag and lift forces on the grooved ball and compare them with those of smooth ball. At zero spin, the drag coefficient on the grooved ball shows a rapid fall-off at a critical Reynolds number and maintains a minimum value which is lower by 50% than that on smooth ball. At non-zero α, the drag coefficient on the grooved ball increases with increasing α, but is still lower by 40% than that on smooth ball. The lift coefficient on the grooved ball increases with increasing α, and is 100% larger than that on smooth ball. The aerodynamic characteristics of grooved ball is in general quite similar to that of dimpled ball. Some more details will be discussed in the presentation.

  7. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  8. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  9. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  10. Effects of Cross-Sectional Shape, Solidity, and Distribution of Heat-Transfer Coefficient on the Torsional Stiffness of Thin Wings Subjected to Aerodynamic Heating

    NASA Technical Reports Server (NTRS)

    Thomson, Robert G.

    1959-01-01

    A study has been made of the effects of varying the shape, solidity, and heat-transfer coefficient of thin wings with regard to their influence on the torsional-stiffness reduction induced by aerodynamic heating. The variations in airfoil shape include blunting, flattening, and combined blunting and flattening of a solid wing of symmetrical double-wedge cross section. Hollow double-wedge wings of constant skin thickness with and without internal webs also are considered. The effects of heat-transfer coefficients appropriate for laminar and turbulent flow are investigated in addition to a step transition along the chord from a lower to a higher constant value of heat-transfer coefficient. From the results given it is concluded that the flattening of a solid double wedge decreases the reduction in torsional stiffness while slight degrees of blunting increase the loss. The influence of chordwise variations in heat-transfer coefficient due to turbulent and laminar boundary-layer flow on the torsional stiffness of solid wings is negligible. The effect of a step transition in heat-transfer coefficient along the chord of a solid wing can, however, become appreciable. The torsional-stiffness reduction of multiweb and hollow double-wedge wings is substantially less than that calculated for a solid wing subjected to the same heating conditions.

  11. Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry

    NASA Astrophysics Data System (ADS)

    Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.

    2013-12-01

    This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.

  12. Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations With Truncated Bases

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    1999-01-01

    This paper examines flight-measured subsonic lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle prototype. Lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats unify the data and allow a greater understanding than studying the vehicles individually allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio planforms. The proper definition of reference area was critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to-drag ratio, and, where available, base pressure coefficients. The effects of fineness ratio on forebody drag were also considered. The influence of forebody drag on afterbody (base) drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  13. Supersonic aerodynamic characteristics of hypersonic low-wave-drag elliptical body-tail combinations as affected by changes in stabilizer configuration

    NASA Technical Reports Server (NTRS)

    Spencer, B., Jr.; Fournier, R. H.

    1973-01-01

    An investigation has been made at Mach numbers from 1.50 to 4.63 to determine systematically the effects of the addition and position of outboard stabilizers and vertical- and vee-tail configurations on the performance and stability characteristics of a low-wave-drag elliptical body. The basic body shape was a zero-lift hypersonic minimum-wave-drag body as determined for the geometric constraints of length and volume. The elliptical cross section had an axis ratio of 2 (major axis horizontal) and an equivalent fineness ratio of 6.14. Base-mounted outboard stabilizers were at various dihedral angles from 90 deg to minus 90 deg with and without a single center-line vertical tail or a vee-tail. The angle of attack was varied from about minus 6 to 27 deg at sideslip angles of 0 and 5 deg and a constant Reynolds number of 4.58 x one million (based on body length).

  14. Space shuttle: Aerodynamic stability, control effectiveness and drag characteristics of a shuttle orbiter configuration at Mach numbers from 0.6 to 4.96

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel from Sept. 27 to Oct. 7, 1972 on a 0.004 scale model of the NR ATP baseline shuttle orbiter configuration. Six component aerodynamic force and moment data were recorded at 0 deg sideslip angle over an angle of attack range from 0 to 20 deg for Mach numbers of 0.6 to 4.96, 20 to 40 deg for Mach numbers of 0.6, 0.9, 2.99, and 4.96, and 40 to 60 deg for Mach numbers of 2.99 and 4.96. Data were obtained over a sideslip range of -10 to 10 deg at 0, 10, and 20 deg angles of attack over the Mach range and 30 and 50 deg at Mach numbers of 2.99 and 4.96. The purpose of the test was to define the buildup, performance, stability, and control characteristics of the orbiter configuration. The model parameters, were: body alone; body-wing; body-wing-tail; elevon deflections of 0, 10, -20, and -40 deg both full and split); aileron deflections of plus or minus 10 deg (full and split); rudder flares of 10 and 40 deg, and a rudder deflection of 15 deg about the 10 and 40 deg flare positions.

  15. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  16. Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2004-01-01

    This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.

  17. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  18. Correlation Between Geometric Similarity of Ice Shapes and the Resulting Aerodynamic Performance Degradation: A Preliminary Investigation Using WIND

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Chung, James

    1999-01-01

    Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.

  19. On the accuracy of the relativistic parameters beta, gamma, and the solar oblateness coefficient J2, as deduced from ranging data of a drag-free space probe

    NASA Technical Reports Server (NTRS)

    Roth, E. A.

    1971-01-01

    Motion in the general gravity field is described mathematically. A covariance analysis, based on two simple models, is presented. Two drag-free space probes were considered, for which the orbital elements are given.

  20. Theoretical aerodynamics of upper-surface-blowing jet-wing interaction

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1975-01-01

    A linear, inviscid subsonic compressible flow theory is formulated to treat the aerodynamic interaction between the wing and an inviscid upper-surface-blowing (USB) thick jet with Mach number nonuniformity. The predicted results show reasonably good agreement with some available lift and induced-drag data. It was also shown that the thin-jet-flap theory is inadequate for the USB configurations with thick jet. Additional theoretical results show that the lift and induced drag were reduced by increasing jet temperature and increased by increasing jet Mach number. Reducing jet aspect ratio, while holding jet area constant, caused reductions in lift, induced drag, and pitching moment at a given angle of attack but with a minimal change in the curve of lift coefficient against induced-drag coefficient. The jet-deflection effect was shown to be beneficial to cruise performance. The aerodynamic center was shifted forward by adding power or jet-deflection angle. Moving the jet away from the wing surface resulted in rapid changes in lift and induced drag. Reducing the wing span of a rectangular wing by half decreased the jet-circulation lift by only 24 percent at a thrust coefficient of 2.

  1. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  2. Aerodynamic analysis of a helicopter fuselage with rotating rotor head

    NASA Astrophysics Data System (ADS)

    Reß, R.; Grawunder, M.; Breitsamter, Ch.

    2015-06-01

    The present paper describes results of wind tunnel experiments obtained during a research programme aimed at drag reduction of the fuselage of a twin engine light helicopter configuration. A 1 : 5 scale model of a helicopter fuselage including a rotating rotor head and landing gear was investigated in the low-speed wind tunnel A of Technische Universität a München (TUM). The modelled parts of the helicopter induce approxiu mately 80% of the total parasite drag thus forming a major potential for shape optimizations. The present paper compares results of force and moment measurements of a baseline configuration and modified variants with an emphasis on the aerodynamic drag, lift, and yawing moment coefficients.

  3. Status report on the Aeronautical Research Institute of Sweden version of the missile aerodynamics program LARV, for calculation of static aerodynamic properties and longitudinal aerodynamic damping derivatives. Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Weibust, E.

    Improvements to a missile aerodynamics program which enable it to (a) calculate aerodynamic coefficients as input for a flight mechanics model, (b) check manufacturers' data or estimate performance from photographs, (c) reduce wind tunnel testing, and (d) aid optimization studies, are discussed. Slender body theory is used for longitudinal damping derivatives prediction. Program predictions were compared to known values. Greater accuracy is required in the estimation of drag due to excrescences on actual missile configurations, the influence of a burning motor, and nonlinear effects in the stall region. Prediction of pressure centers on wings and on bodies in presence of wings must be improved.

  4. Aerodynamic Improvements to Cargo Carrying Rail Cars due to Roof Modifications

    NASA Astrophysics Data System (ADS)

    Condie, Robert; Maynes, Daniel

    2012-11-01

    The aerodynamic drag associated with the transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. We provide an assessment of the influence of the roof structure on aerodynamic performance of two dissimilar rail cars, namely automobile carrying cars and coal carrying cars. Currently, the roof material for automobile carrying rail cars is corrugated steel, with the corrugation aligned perpendicular to the direction of travel. Coal cars are currently left uncovered for loading convenience and on the return leg from the power plant are empty. Aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the tops of both these car types. For the automobile-carrying cars, testing is performed for the corrugated and smooth roof configurations. This modification alone has the potential of reducing the car drag coefficient by nominally 25%. A broader study is performed for the coal cars, with data being acquired for coal filled models, empty models, and several cover prototype configurations. The results reveal that implementation of a cover may yield reductions in the aerodynamic drag for both coal filled (nominally 7%) and empty coal cars (nominally 30%).

  5. Aerodynamic Characteristics of Telescopic Aerospikes with Multiple-Row-Disk

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Maru, Yusuke; Sato, Tetsuya

    This paper reports experimental studies on telescopic aerospikes with multiple disks. The telescopic aerospike is useful as an aerodynamic control device; however, changing its length causes a buzz phenomenon, which many researchers have reported. The occurrence of buzzing might be critical to the vehicle because it brings about severe pressure oscillations on the surface. Disks on the shaft produce stable recirculation regions by dividing the single separation flow into several conical cavity flows. The telescopic aerospikes with stabilizer disks are useful without any length constraints. Aerodynamic characteristics of the telescopic aerospikes were investigated through a series of wind tunnel tests. Transition of recirculation/reattachment flow modes of a plain spike causes a large change in the drag coefficient. Because of this hysteresis phenomenon and the buzzing, the plain spike is unsuitable for fine aerodynamic control devices. Adding stabilizer disks is effective for the improved control of aerospikes.

  6. Assessment of dual-point drag reduction for an executive-jet modified airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1996-01-01

    This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.

  7. Aerodynamic Limitations of the UH-60A Rotor

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.; Bousman, William G.

    1996-01-01

    High quality airloads data have been obtained on an instrumented UH-60A in flight and these data provide insight into the aerodynamic limiting behavior of the rotor. At moderate weight coefficients and high advance ratio limiting performance is largely caused by high drag near the blade tip on the advancing side of the rotor as supercritical flow develops on the rotor with moderate to strong, shocks on both surfaces of the blade. Drag divergence data from two-dimensional airfoil tests show good agreement with the development of the supercritical flow regions. Large aerodynamic pitching moments are observed at high advance ratio, as well, and these pitching moments are the source of high torsional moments on the blade and control system loads. These loads occur on the advancing side of the disk and are not related to blade stall which does not occur for these weight coefficients. At high weight coefficients aerodynamic and structural limits are related to dynamic stall cycles that begin on the retreating side of the blade and, for the most severe conditions, carry around to the advancing side of the blade at the presumed first frequency of the blade/control system.

  8. Vertical variations of coral reef drag forces

    NASA Astrophysics Data System (ADS)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri

    2016-05-01

    Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.

  9. Drag reduction of a heavy vehicle by means of a trailer underbody fairing

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2008-11-01

    On a modern heavy vehicle, one of the sources of aerodynamic drag is trailer underbody drag, which arises due to flow impingement upon the trailer wheels and flow separation downstream of the pseudo-backward facing step formed by the tractor drive wheels, chassis, and trailer underbody. In an effort to mitigate this source of drag, trailer side skirts, which are flat panels suspended on either side of the trailer underbody, have been previously evaluated in a number of wind tunnel, track, and on-the-road studies. Although the skirts have been shown to reduce the vehicle drag coefficient by as much as 0.04, they have not been widely accepted by the heavy vehicle industry due to a number of operational deficiencies in the skirt design. To overcome these deficiencies, we are investigating the performance characteristics of an alternate drag reduction device, which is comprised of a tapered fairing located on the trailer underside. RANS simulations have demonstrated that the fairing surface promotes re-attachment of the separated flow downstream of the tractor drive wheels and chassis, thereby reducing the drag coefficient by an amount as much as that of side skirts. These computational results will be validated by conducting a wind tunnel study of a full-scale heavy vehicle that employs fairings of varying length and design. This work performed under the auspices of the US DOE by LLNL under contract DE-AC52-07NA27344.

  10. Parachute drag and radial force

    SciTech Connect

    Purvis, J.W.

    1986-01-01

    This paper presents a combination of old and new wind tunnel data in a format which illustrates the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. A new definition of radial force coefficient is presented, as well as a universal drag curve for flat circular and conical parachutes.

  11. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Han, Menghu; Li, Jun; Liang, Hua; Niu, Zhongguo; Zhao, Guangyin

    2015-06-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. supported by National Natural Science Foundation of China (Nos. 51276197, 51207169 and 51336011)

  12. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  13. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    1999-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25% of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust-drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  14. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  15. Baseball Aerodynamics: What do we know and how do we know it?

    NASA Astrophysics Data System (ADS)

    Nathan, Alan

    2009-11-01

    Baseball aerodynamics is governed by three phenomenological quantities: the coefficients of drag, lift, and moment, the latter determining the spin decay time constant. In past years, these quantities were studied mainly in wind tunnel experiments, whereby the forces on the baseball are measured directly. More recently, new tools are being used that focus on measuring accurate baseball trajectories, from which the forces can be inferred. These tools include high-speed motion analysis, video tracking of pitched baseballs (the PITCHf/x system), and Doppler radar tracking. In this contribution, I will discuss what these new tools are teaching us about baseball aerodynamics.

  16. Inclusion of nonlinear aerodynamics in the FLAP code

    SciTech Connect

    Weber, T. )

    1989-11-01

    Horizontal axis wind turbines usually operate with significant portions of the blade in deep stall. This contradicts the assumption in the FLAP code that a linear relation exists between the angle of attack and the lift coefficient. The objective of this paper is to determine the importance of nonlinear aerodynamics in the prediction of loads. The FLAP code has been modified to include the nonlinear relationships between the lift and drag coefficients with the angle of attack. The modification affects the calculation of the induced velocities and the aerodynamic loads. This requires an iterative procedure to determine the induced velocities instead of a closed form solution. A more advanced tower interference model has also been added that accounts for both upwind and downwind tower effects. 7 refs., 14 figs.

  17. Aerodynamic analysis of Audi A4 Sedan using CFD

    NASA Astrophysics Data System (ADS)

    Birwa, S. K.; Rathi, N.; Gupta, R.

    2013-04-01

    This paper presents the aerodynamic influence of velocity and ground clearance for Audi A4 Sedan. The topology of the test vehicle was modeled using CATIA P3 V5 R17. ANSYS FLUENT 12 was the CFD solver employed in this study. The distribution of pressure and velocity was obtained. The velocities were 30, 40, 50 and 60 m/s and ground clearances were 76.2 mm,101.6 mm,127 mm and 152.4 mm. The simulation results were compared with the available resources. It was found that the drag coefficient decreases with the velocity increasing from 30 to 60 m/s and increases with the ground clearance from 101.6 mm to 152.4 mm. Further decrease in ground clearance showed no effect on the value of coefficient of drag. The lift coefficient was found to decrease firstly with ground clearance from 152.4 mm to 101.6 mm, and then increase from 101.6 mm to 76.2 mm. Both the lift coefficient and drag coefficient was found to be minimum for the ground clearance of 101.6 mm as designed by the company.

  18. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  19. Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane

    NASA Technical Reports Server (NTRS)

    Defrance, S J

    1934-01-01

    In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

  20. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  1. An Aerodynamic Force Estimation Method for Winged Models at the JAXA 60cm Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    澤田, 秀夫

    The aerodynamic performance of an AGARD-B model, as an example of a winged model, was measured in a low-speed wind tunnel equipped with the JAXA 60cm Magnetic Suspension and Balance System (MSBS). The flow speed was in the range between 25m/s and 35m/s, and the angle of attack and the yaw angle were in the range of [- 8, 4] and [- 3, 3] degrees, respectively. Six components of the aerodynamic force were evaluated by using the control coil currents of the MSBS. In evaluating the drag, the effect of the lift on the drag must be evaluated at MSBS when the lift is much larger than drag. A new evaluation method for drag and lift was proposed and was examined successfully by subjecting the model to the same loads as in the wind tunnel test. The drag coefficient at zero lift and the derivatives of the lift and pitching moment coefficient with respect to the angle of attack were evaluated and compared with other source data sets. The obtained data agreed well with the corresponding values of the other sources. The side force, yawing moment and rolling moment coefficients were also evaluated on the basis of corresponding calibration test results, and reasonable results were obtained, although they could not be compared due to the lack of reliable data sets.

  2. Influence of inflow angle on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Li, Z. M.; Li, C.

    2013-12-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance.

  3. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  4. Nonplanar Method for Predicting Incompressible Aerodynamic Coefficients of Rectangular Wings with Circular-Arc Camber. Ph.D. Thesis - Virginia Polytechnic Institute

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1971-01-01

    The development of a nonplanar lifting surface method having a continuous distribution of singularities and satisfying the tangent flow boundary condition on the mean camber surface is given. The method predicts some incompressible longitudinal aerodynamic coefficients of rectangular wings which have circular-arc camber. The solution method is of the integral-equation type and the resulting surface integrals are evaluated by either using numerical or analytical techniques, as are appropriate. Applications are made and the results compared with those from an exact two-dimensional circular-arc camber solution, a three-dimensional flat-wing solution which represents the camber by a projected slope onto the flat surface, and a flat-wing experiment. From these comparisons, the present method is found to predict well the flat-wing experiment and limiting values, in addition to the center of pressure variation at an angle of attack of zero for any camber. For wings having camber ratios larger than about 1.25% and moderate to high aspect ratios, the results deterioriate due to the inadequacy of lifting pressure modes employed.

  5. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  6. Aerodynamic shape optimization of space vehicle in very-low-earth-orbit

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyun; Myong, Rho Shin; Kim, Dong Hyun; Baek, Seung Wook

    2014-12-01

    Space vehicles orbiting in Very-Low-Earth-Orbit (VLEO, h = 200˜300 km) experience considerably large aerodynamic drag due to high air-density in comparison with Low-Earth-Orbit (LEO, h = 600 ˜ 700 km). Therefore, the optimization of vehicle shape via minimization of aerodynamic drag is essential for accurate estimation of satellite lifetime and fuel budget at the design stage. In this study, the aerodynamic drag is computed with direct simulation Monte Carlo (DSMC) because even in VLEO, whose free stream Knudsen number is sufficiently large, some errors are still found in the prediction using free molecular approach. In order to find the optimized configuration, we vary the shape of frontal surface normal to the flight direction. Interestingly, the effects of such geometrical change appear distinctively depending on the gas-surface interaction (GSI, diffuse or specular) which can be represented by the thermal accommodation coefficient. The satellite aerodynamic characteristics including force, torque, and thermal loading are also identified by changing the pitch and the side angle.

  7. Dynamic soaring: aerodynamics for albatrosses

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.

  8. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  9. Aerodynamics: The Wright Way

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer Hansen

    2010-01-01

    This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.

  10. Aerodynamic characteristics of flying fish in gliding flight.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  11. Coulomb drag

    NASA Astrophysics Data System (ADS)

    Narozhny, B. N.; Levchenko, A.

    2016-04-01

    Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.

  12. Giant Frictional Drag in Double Bilayer Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel

    2016-07-01

    We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.

  13. Giant Frictional Drag in Double Bilayer Graphene Heterostructures.

    PubMed

    Lee, Kayoung; Xue, Jiamin; Dillen, David C; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel

    2016-07-22

    We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T) lower than ∼10  K, we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T, and becomes comparable to the layer resistivity at the lowest T=1.5  K. At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag. PMID:27494492

  14. Computational analysis of methods for reduction of induced drag

    NASA Technical Reports Server (NTRS)

    Janus, J. M.; Chatterjee, Animesh; Cave, Chris

    1993-01-01

    The purpose of this effort was to perform a computational flow analysis of a design concept centered around induced drag reduction and tip-vortex energy recovery. The flow model solves the unsteady three-dimensional Euler equations, discretized as a finite-volume method, utilizing a high-resolution approximate Riemann solver for cell interface flux definitions. The numerical scheme is an approximately-factored block LU implicit Newton iterative-refinement method. Multiblock domain decomposition is used to partition the field into an ordered arrangement of blocks. Three configurations are analyzed: a baseline fuselage-wing, a fuselage-wing-nacelle, and a fuselage-wing-nacelle-propfan. Aerodynamic force coefficients, propfan performance coefficients, and flowfield maps are used to qualitatively access design efficacy. Where appropriate, comparisons are made with available experimental data.

  15. New drag laws for flapping flight

    NASA Astrophysics Data System (ADS)

    Agre, Natalie; Zhang, Jun; Ristroph, Leif

    2014-11-01

    Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.

  16. The Minimum Induced Drag of Aerofoils

    NASA Technical Reports Server (NTRS)

    Munk, M. M.

    1979-01-01

    Equations are derived to demonstrate which distribution of lifting elements result in a minimum amount of aerodynamic drag. The lifting elements were arranged (1) in one line, (2) parallel lying in a transverse plane, and (3) in any direction in a transverse plane. It was shown that the distribution of lift which causes the least drag is reduced to the solution of the problem for systems of airfoils which are situated in a plane perpendicular to the direction of flight.

  17. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  18. AERODYNAMIC CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  19. Atmospheric tests of trailing-edge aerodynamic devices

    SciTech Connect

    Miller, L S; Huang, S; Quandt, G A

    1998-01-01

    An experiment was conducted at the National Renewable Energy Laboratory`s (NREL`s) National Wind Technology Center (NWTC) using an instrumented horizontal-axis wind turbine that incorporated variable-span, trailing-edge aerodynamic brakes. The goal of the investigation was to directly compare results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were used to define effective changes in the aerodynamic and hinge-moment coefficients, as a function of angle of attack and control deflection, for three device spans (7.5%, 15%, and 22.5%) and configurations (Spoiler-Flap, vented sileron, and unvented aileron). Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (about a 30% reduction from infinite-span) for 15% or larger span devices. Interestingly, aerodynamic controls with vents or openings appear most affected by span reductions and three-dimensional flow.

  20. Interdisciplinary optimization combining electromagnetic and aerodynamic methods

    NASA Astrophysics Data System (ADS)

    Sullivan, Anders James

    The design of missile body shapes often requires a compromise between aero-dynamic and electromagnetic performance goals. In general, the missile shape producing the lowest radar signature will be different from the preferred aero-dynamic shape. Interdisciplinary shape optimization is utilized to combine multiple disciplines to determine the best possible shape for a hybrid aerodynamic-electromagnetic problem. A composite missile body consisting of an axisymmetric body of revolution (BOR) and two thin flat plate attachments is considered. The goal is to minimize the drag and backscatter associated with this composite shape. The body is assumed to be perfectly conducting, and flying at zero degrees angle of attack. The variable nose shape serves as the optimization design parameter. To characterize the system performance, a cost function is defined which is comprised of weighted values of the drag and backscatter. To solve the electromagnetic problem, methods to treat electrically large complex bodies are investigated. Hybrid methods which combine the method of moments (MoM) with physical optics (PO) are developed to calculate the scattering from simple two-dimensional bodies. A surface-wave hybrid approach is shown to effectively approximate the traveling wave currents on the smooth interior portions of a BOR. Asymptotic methods are used to solve the resulting integral equations more efficiently. The hybrid methods are shown to produce MoM-quality results, while requiring less computational resources. To solve the composite body problem, an iterative technique is developed that preserves the simplicity of the original BOR scheme. In this formulation, the current over each part of the composite body is solved independently. The results from one part of the body are used to update the fields incident on the other part of the body. This procedure is repeated until the solution converges. To solve the aerodynamic problem, slender body theory is used to calculate the

  1. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  2. Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.

    1995-01-01

    An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B- Splines) for defining the airfoil geometry. An interactive algebraic grid generation technique is employed to generate C-type grids around airfoils. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the airfoil surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the airfoil.

  3. Chiral drag force

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna; Sadofyev, Andrey V.

    2015-10-01

    We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and

  4. Drag evaluation of the Bellanca Skyrocket II

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Hoffmann, M. J.; Payne, H. E.; Harris, J. P.

    1977-01-01

    The Bellanca Skyrocket II, possessor of five world speed records, is a single engine aircraft with high performance that has been attributed to a laminar flow airfoil and an all composite structure. Utilization of composite materials in the Skyrocket II is unique since this selection was made to increase the aerodynamic efficiency of the aircraft. Flight tests are in progress to measure the overall aircraft drag and the wing section drag for comparison with the predicted performance of the Skyrocket. Initial results show the zero lift drag is indeed low, equalling 0.016.

  5. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  6. Rocket-Model Investigation of the Longitudinal Stability, Drag, and Duct Performance Characteristics of the North American MX-770 (X-10) Missile at Mach Numbers from 0.80 to 1.70

    NASA Technical Reports Server (NTRS)

    Bond, Aleck C.; Swanson, Andrew G.

    1953-01-01

    A free-flight 0.12-scale rocket-boosted model of the North American MX-770 (X-10) missile has been tested in flight by the Pilotless Aircraft Research Division of the Langley Aeronautical Laboratory. Drag, longitudinal stability, and duct performance data were obtained at Mach numbers from 0.8 to 1.7 covering a Reynolds number range of about 9 x 10(exp 6) to 24 x 10(exp 6) based on wing mean aerodynamic chord. The lift-curve slope, static stability, and damping-in-pitch derivatives showed similar variations with Mach number, the parameters increasing from subsonic values in the transonic region and decreasing in the supersonic region. The variations were for the most part fairly smooth. The aerodynamic center of the configuration shifted rearward in the transonic region and moved forward gradually in the supersonic region. The pitching effectiveness of the canard control surfaces was maintained throughout the flight speed range, the supersonic values being somewhat greater than the subsonic. Trim values of angle of attack and lift coefficient changed abruptly in the transonic region, the change being associated with variations in the out-of-trim pitching moment, control effectiveness, and aerodynamic-center travel in this speed range. Duct total-pressure recovery decreased with increase in free-stream Mach number and the values were somewhat less than normal-shock recovery. Minimum drag data indicated a supersonic drag coefficient about twice the subsonic drag coefficient and a drag-rise Mach number of approximately 0.90. Base drag was small subsonically but was about 25 percent of the minimum drag of the configuration supersonically.

  7. CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades

    NASA Astrophysics Data System (ADS)

    Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.

    2014-12-01

    The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.

  8. Drag of buoyant vortex rings

    NASA Astrophysics Data System (ADS)

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.

  9. Drag of buoyant vortex rings.

    PubMed

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers. PMID:26565349

  10. The economic impact of drag in general aviation

    NASA Technical Reports Server (NTRS)

    Neal, R. D.

    1975-01-01

    General aviation aircraft fuel consumption and operating costs are closely linked to drag reduction methods. Improvements in airplane drag are envisioned for new models; their effects will be in the 5 to 10% range. Major improvements in fuel consumption over existing turbofan airplanes will be the combined results of improved aerodynamics plus additional effects from advanced turbofan engine designs.

  11. Investigation of the transient aerodynamic phenomena associated with passing manoeuvres

    NASA Astrophysics Data System (ADS)

    Noger, C.; Regardin, C.; Széchényi, E.

    2005-11-01

    Passing manoeuvres and crosswind can have significant effects on the stability of road vehicles. The transient aerodynamics, which interacts with suspension, steering geometry and driver reaction is not well understood. When two vehicles overtake or cross, they mutually influence the flow field around each other, and under certain conditions, can generate severe gust loads that act as additional forces on both vehicles. The transient forces acting on them are a function of the longitudinal and transverse spacings and of the relative velocity between the two vehicles. Wind tunnel experiments have been conducted in one of the automotive wind tunnels of the Institut Aérotechnique of Saint-Cyr l’École to simulate the transient overtaking process between two models of a simple generic automobile shape. The tests were designed to study the effects of various parameters such as the longitudinal and transverse spacing, the relative velocity and the crosswind on the aerodynamic forces and moments generated on the overtaken and overtaking vehicles. Test results characterize the transient aerodynamic side force as well as the yawing moment coefficients in terms of these parameters. Measurements of the drag force coefficient as well as the static pressure distribution around the overtaken vehicle complete the understanding. The main results indicate the aerodynamic coefficients of the overtaken vehicle to be velocity independent within the limit of the test parameters, while unsteady aerodynamic effects appear in the case of an overtaking vehicle. The mutual interference effects between the vehicles vary as a linear function of the transverse spacing and the crosswind does not really generate any new unsteady behaviour.

  12. Impact of fuselage incidence on the supersonic aerodynamics of two fighter configurations

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    The results of experimental and theoretical investigations into the effect of fuselage upwash on fighter aircraft wing performance are reported. Wind tunnel trials were performed on 4 percent scale models of two supersonic fighters. The trials were run at Mach 1.6-2.0, an Re of 2,000,000 and at angles of attack (AOA) of -4 to 20 deg. Measurements were made of lift, drag and pitching moments. Two linearized theory supersonic aerodynamic prediction codes, PAN AIR and the SDAS lift analysis, were used to predict the same aerodynamic coefficients. The fuselage AOA augmented the lift and pitching moment at 0, 2 and 5 deg. The contribution mainly arose from the fuselage-induced upwash. The PAN AIR code gave superior data for the fuselage aerodynamics and effects, although both codes accurately predicted the overall lift and moment increments due to the fuselage AOA.

  13. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  14. Numerical and Experimental Study on Aerodynamic Characteristics of Basic Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuya; Kawakita, Masatoshi; Iijima, Takayoshi; Koga, Mitsuhiro; Kihira, Mitsuhiko; Funaki, Jiro

    The aerodynamic characteristics of airfoils have been researched in higher Reynolds-number ranges more than 106, in a historic context closely related with the developments of airplanes and fluid machineries in the last century. However, our knowledge is not enough at low and middle Reynolds-number ranges. So, in the present study, we investigate such basic airfoils as a NACA0015, a flat plate and the flat plates with modified fore-face and after-face geometries at Reynolds number Re < 1.0×105, using two- and three-dimensional computations together with wind-tunnel and water-tank experiments. As a result, we have revealed the effect of the Reynolds number Re upon the minimum drag coefficient CDmin. Besides, we have shown the effects of attack angle α upon various aerodynamic characteristics such as the lift coefficient CL, the drag coefficient CD and the lift-to-drag ratio CL/CD at Re = 1.0×102, discussing those effects on the basis of both near-flow-field information and surface-pressure profiles. Such results suggest the importance of sharp leading edges, which implies the possibility of an inversed NACA0015. Furthermore, concerning the flat-plate airfoil, we investigate the influences of fore-face and after-face geometries upon such effects.

  15. High speed transport cruise drag. [scaling laws using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1992-01-01

    This report provides scaling laws for the cruise aerodynamics of high speed transport wings based on the results of Navier-Stokes computations. Expressions for the various drag components are found, together with the corresponding values (L/D)(sub m) for various values of the geometric parameter s/l which allow for simple optimization of the wing configurations with respect to the span. It is found that linear theory expressions can be used for this purpose provided the coefficients of these experiments for C(sub D) and (L/D)(sub m) are available using Navier-Stokes results.

  16. Measuring the Drag Force on a Falling Ball

    ERIC Educational Resources Information Center

    Cross, Rod; Lindsey, Crawford

    2014-01-01

    The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is…

  17. Neural Network Prediction of New Aircraft Design Coefficients

    NASA Technical Reports Server (NTRS)

    Norgaard, Magnus; Jorgensen, Charles C.; Ross, James C.

    1997-01-01

    This paper discusses a neural network tool for more effective aircraft design evaluations during wind tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha Research Concept aircraft (SHARC). Four different networks were trained to predict coefficients of lift, drag, moment of inertia, and lift drag ratio (C(sub L), C(sub D), C(sub M), and L/D) from angle of attack and flap settings. The latter network was then used to determine an overall optimal flap setting and for finding optimal flap schedules.

  18. The evaluation of the power coefficient of a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Botrini, M.; Brun, R.; Beguier, C.

    1983-03-01

    Measurements of the pressure variations and the blade drag on a Savonius rotor with partially overlapping blades set at different angles of attack are employed to develop a model for the power coefficient. The data were taken in a wind tunnel with probes placed on the interior and exterior surfaces of a blade from the leading edge to the trailing edge in a series of seven trials with each angle of attack. Two rotationary regimes were noted, the first, motoring, which lasted up to an angle of attack of 145 deg, and a resistant mode, which lasted up to 180 deg. A two-dimensional model is developed for a horizontal slice of the Savonius, taking into account the aerodynamic forces on the retreating and advancing blades. It is found that the drag increase with the rotation speed, eventually providing an upper limit to the power available. A maximum power coefficient of 0.17 is projected.

  19. Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.

    2006-01-01

    Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required.

  20. Fresnel drag effect in fiber optic gyroscope

    NASA Technical Reports Server (NTRS)

    Vali, V.; Berg, M. F.; Shorthill, R. W.

    1978-01-01

    Consideration is given to the development of a low-noise fiber-optic ring interferometer gyroscope. A technique for measuring the Fresnel drag coefficient of optical fibers is described, and the accuracy of the technique is considered. An experiment is performed which allows verification of the Einstein velocity addition theorem to the first nonlinear term. An experimental setup for measuring Fresnel drag is described: it consists of a Sagnac interferometer and a Fresnel drag measurement configuration.

  1. An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi

    1997-01-01

    The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.

  2. A comprehensive plan for helicopter drag reduction

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Montana, P. S.

    1975-01-01

    Current helicopters have parasite drag levels 6 to 10 times as great as fixed wing aircraft. The commensurate poor cruise efficiency results in a substantial degradation of potential mission capability. The paper traces the origins of helicopter drag and shows that the problem (primarily due to bluff body flow separation) can be solved by the adoption of a comprehensive research and development plan. This plan, known as the Fuselage Design Methodology, comprises both nonaerodynamic and aerodynamic aspects. The aerodynamics are discussed in detail and experimental and analytical programs are described which will lead to a solution of the bluff body problem. Some recent results of work conducted at the Naval Ship Research and Development Center (NSRDC) are presented to illustrate these programs. It is concluded that a 75-per cent reduction of helicopter drag is possible by the full implementation of the Fuselage Design Methodology.

  3. Drag calculations of wings using Euler methods

    NASA Technical Reports Server (NTRS)

    Van Dam, C. P.; Chang, I. C.; Vijgen, P. M. H. W.; Nikfetrat, Koorosh

    1991-01-01

    Several techniques for the calculation of drag using Euler-equation formulations are discussed and compared. Surface-pressure integration (a nearfield technique) as well as two different farfield calculation techniques are described and applied to three-dimensional flow-field solutions for an aspect-ratio-7 wing with attached flow. The present calculations are limited to steady, low-Mach-number flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. Although the main focus of the paper is the calculation of aerodynamic drag, the calculation of aerodynamic lift is also briefly discussed. Three Euler methods are used to obtain the flowfield solutions. The farfield technique based on the evaluation of a wake-integral appears to provide the most consistent and accurate drag predictions.

  4. Drag reduction obtained by modifying a standard truck

    NASA Technical Reports Server (NTRS)

    Sheridan, A. E.; Grier, S. J.

    1978-01-01

    A standard two-axle truck with a box-shaped cargo compartment was tested to determine whether significant reductions in aerodynamic drag could be obtained by modifying the front of the cargo compartment. The coastdown method was used to determine the total drag of the baseline vehicle, which had a square-cornered cargo box, and of several modified configurations. Test velocities ranged from 56.3 to 94.6 kilometers per hour (35 to 60 miles per hour). At 88.5 kilometers per hour (55 miles per hour), the aerodynamic drag reductions obtained with the modified configurations ranged from 8 to 30 percent.

  5. High-speed aerodynamics of several blunt-cone configurations

    NASA Technical Reports Server (NTRS)

    Intrieri, P. F.; Kirk, D. B.

    1986-01-01

    The experimental techniques and results from NASA Ames research into the aerodynamics of blunt shapes are described. Two facilities are used: the Hypersonic Free Flight Aerodynamic Facility (HFFAF) and the Pressurized Ballistic Range (PBR). The HFFAF features a 23 m test section through which projectiles can be fired by light-gas guns to achieve velocities up to 9 km/sec in pressures from 1 atm down to 20 microns Mg. Aerodynamic flight data are recorded with shadowgraphs. The 62 m long PBR, with 24 orthogonal spark shadowgraph stations, allows testing in up to 6 atm pressures but with only half the velocity of the HFFAF. Tests have been performed on the Galileo probe to be dropped into the Jovian atmosphere. The Galileo data for a 45 deg cone probe have been similar to Pioneer Venus probe data. Ballistic data are presently being obtained for the probe at Re below 1000, when the drag coefficients are expected to increase dramatically as the probe enters the Jovian atmosphere and begins braking from 4700 m/s speed. Sample test data from an OTV which can change orbits through aerodynamic maneuvers and for several asymmetric configurations ae also provided.

  6. Evaluation and modeling of aerodynamic properties of mung bean seeds

    NASA Astrophysics Data System (ADS)

    Shahbazi, Feizollah

    2015-01-01

    Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post harvest operations. The objective of this study was the evaluation of the aerodynamic properties of mung bean seeds as a function of moisture content and two grades referred to above and below a cut point of 4.8 mm in length. The results showed that as the moisture content increased from 7.8 to 25% (w.b.), the terminal velocity of seeds increased following a polynomial relationship, from 7.28 to 8.79 and 6.02 to 7.12 m s-1, for grades A and B, respectively. Seeds at grade A had terminal velocities with a mean value of 8.05 m s-1, while at grade B had a mean value of 6.46 m s-1. The Reynolds number of both grades increased linearly with the increase of seeds moisture content, while the drag coefficient decreased with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the obtained values of aerodynamic properties. The analysis of variance showed that moisture content had a significant effect, at 1% probability level, on all the aerodynamics properties of mung beans.

  7. Study of potential aerodynamic benefits from spanwise blowing at wingtip. Ph.D. Thesis - George Washington Univ., 1992

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1995-01-01

    Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.

  8. Drag and Propulsive Characteristics of Air-Cooled Engine-Nacelle Installations for Large Airplane

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Wilson, Herbert A , Jr

    1942-01-01

    An investigation was conducted in the NACA full-scale wind tunnel to determine the drag and the propulsive efficiency of nacelle-propeller arrangements for a large range of nacelle sizes. In contrast with usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a four-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplanes weighing from about 20 to 100 tons. The results show the drag, the propulsive efficiency, and the over-all efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model is shown for both propeller-removed and propeller-operating conditions.

  9. A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.

    1994-01-01

    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.

  10. Aerodynamics of a hybrid airship

    NASA Astrophysics Data System (ADS)

    Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.

    2012-06-01

    The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.

  11. Low-Lift Drag and Duct Pressure Recovery of a 1/8.25-Scale Model of the Consolidated Vultee XF-92 Airplane at Mach Numbers from 0.7 to 1.4

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.; Stevens, Joseph E.; Crabill, Norman L.; Hinners, Arthur H., Jr.

    1951-01-01

    A flight investigation has been made to determine the external drag and pressure recovery of a 1/8.25 - scale flight model of the Consolidated Vultee XF-92 from Mach numbers 0.7 to 1.4 and Reynolds numbers from 8.5 x 10(exp 6) to 19.2 x 10(exp 6) at or near zero lift. Relative mass flow, average pressure recovery, total drag, internal drag, and external drag are presented as functions of Mach number. Between Mach numbers of 0.90 and 0.975, the external drag of the configuration (including base drag of the inner body and additive drag) was about equal to that of a similar model with a faired nose and no mass flow; however, at supersonic speeds the drag coefficient for the faired-nose model remained relatively constant whereas the drag coefficient for the ducted model continued to increase sharply. The internal drag coefficient of the duct was roughly constant at 0.013 up to a Mach number of 1.20; after which it decreased to 0.0075 at a Mach number of 1.4. The over-all pressure recovery of the inlet and duct varied from 94 percent at a Mach number of 0.7 to about 91 percent at a Mach number of 1.4 at a relative-mass-flow ratio of about 0.30. The losses in pressure recovery were believed to be caused by the possible occurrence of separation of flow from the inner body and by an aerodynamically unclean internal configuration which did not duplicate the form proposed for the original XF-92 airplane.

  12. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal

    PubMed Central

    2015-01-01

    Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an “optimal” state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates. PMID:25938765

  13. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal.

    PubMed

    Casseau, Vincent; De Croon, Guido; Izzo, Dario; Pandolfi, Camilla

    2015-01-01

    Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an "optimal" state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates. PMID:25938765

  14. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  15. An evaluation of several wind turbine trailing-edge aerodynamic brakes

    SciTech Connect

    Miller, L.S.; Migliore, P.G.; Quandt, G.A.

    1995-09-01

    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices and to evaluate their potential for wind turbine overspeed control applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag and suction coefficient data were acquired and analyzed for various control configurations and angles-of-attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. On the basis of the results of the investigation, the Spoiler-Flap control configuration was deemed best suited for turbine braking applications. This particular control exhibited a good negative suction coefficient behavior over a broad angle-of-attack range and good turbine braking capabilities, especially at low tip-speed ratio conditions.

  16. Experimental investigation of aerodynamic devices for wind turbine rotational speed control. Phase 1

    SciTech Connect

    Miller, L.S.

    1995-02-01

    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices, and to evaluate their potential for wind turbine overspeed and power modulation applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag, suction, and pressure coefficient data were acquired and analyzed for various control configurations and angles of attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. Results indicated that the Spoiler-Flap control configuration was best softed for turbine braking applications. It exhibited a large negative suction coefficient over a broad angle-of-attack range, and good turbine braking capabilities, especially at low tip-speed ratio.

  17. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  18. Low-speed longitudinal aerodynamic characteristics of a flat-plate planform model of an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat

    1994-01-01

    A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.

  19. Low-speed aerodynamic characteristics of a 14-percent-thick NASA phase 2 supercritical airfoil designed for a lift coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.; Mcghee, R. J.; Allison, D. O.

    1980-01-01

    The low speed aerodynamic characteristics of a 14 percent thick supercritical airfoil are documented. The wind tunnel test was conducted in the Low Turbulence Pressure Tunnel. The effects of varying chord Reynolds number from 2,000,000 to 18,000,000 at a Mach number of 0.15 and the effects of varying Mach number from 0.10 to 0.32 at a Reynolds number of 6,000,000 are included.

  20. Aerodynamic Characterization of New Parachute Configurations for Low-Density Deceleration

    NASA Technical Reports Server (NTRS)

    Tanner, Christopher L.; Clark, Ian G.; Gallon, John C.; Rivellini, Tommaso P.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator project performed a wind tunnel experiment on the structural design and geometric porosity of various sub-scale parachutes in order to inform the design of the 110ft nominal diameter flight test canopy. Thirteen different parachute configurations, including disk-gap-band, ring sail, disk sail, and star sail canopies, were tested at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at NASA Ames Research Center. Canopy drag load, dynamic pressure, and canopy position data were recorded in order to quantify there lative drag performance and stability of the various canopies. Desirable designs would yield increased drag above the disk-gap-band with similar, or improved, stability characteristics. Ring sail parachutes were tested at geometric porosities ranging from 10% to 22% with most of the porosity taken from the shoulder region near the canopy skirt. The disk sail canopy replaced the rings lot portion of the ring sail canopy with a flat circular disk and wastested at geometric porosities ranging from 9% to 19%. The star sail canopy replaced several ringsail gores with solid gores and was tested at 13% geometric porosity. Two disk sail configurations exhibited desirable properties such as an increase of 6-14% in the tangential force coefficient above the DGB with essentially equivalent stability. However, these data are presented with caveats including the inherent differences between wind tunnel and flight behavior and qualitative uncertainty in the aerodynamic coefficients.

  1. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  2. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics

  3. Experimental Investigation of the Aerodynamic Forces on a Curveball

    NASA Astrophysics Data System (ADS)

    Jemmott, Colin; Utvich, Alexis; Logan, Sheldon; Rossmann, Jenn

    2003-11-01

    The physics of baseball has fascinated researchers nearly as long as the game has existed, yet research into aerodynamic forces on curveballs has often been conflicting and incomplete. A team of undergraduates used the newly completed Harvey Mudd College wind tunnel with a specially designed apparatus to quantify these forces. The coefficient of lift was found to be a non-linear function of both the dimensionless spin number and the Reynolds number, suggesting a stronger Reynolds number dependence than previously reported. The coefficient of drag was found to be primarily a function of spin number over the range of Reynolds numbers investigated and is significantly higher than that for a static baseball over the same Reynolds number range. While these findings help to quantify and interpret what pitchers know intuitively, they also motivate further investigations of both forces and the resulting flow field over a wider parameter range.

  4. Fairing Well: Aerodynamic Truck Research at NASA Dryden Flight Research Center. From Shoebox to Bat Truck and Beyond

    NASA Technical Reports Server (NTRS)

    Gelzer, Christian

    2011-01-01

    In 1973 engineers at Dryden began investigating ways to reduce aerodynamic drag on land vehicles. They began with a delivery van whose shape they changed dramatically, finally reducing its aerodynamic drag by more than 5 percent. They then turned their attention to tracator-trailers, modifying a cab-over and reducing its aerodynamic drag by nearly 25 percent. Further research identified additional areas worth attention, but in the intervening decades few of those changes have appeared.

  5. Transient platoon aerodynamics and bluff body flows

    NASA Astrophysics Data System (ADS)

    Tsuei, Lun

    There are two components of this experimental work: transient vehicle platoon aerodynamics and bluff-body flows. The transient aerodynamic effects in a four-vehicle platoon during passing maneuvers and in-line oscillations are investigated. A vehicle model is moved longitudinally parallel to a four-car platoon to simulate passing maneuvers. The drag and side forces experienced by each platoon member are measured using strain gauge balances. The resulting data are presented as dimensionless coefficients. It is shown that each car in the platoon experiences a repulsive side force when the passing vehicle is in the neighborhood of its rear half. The side force reverses its direction and becomes an attractive force when the passing vehicle moves to the neighborhood of its front half. The drag force experienced by each platoon member is increased when the passing vehicle is in its proximity. The effects of the lateral spacing and relative velocity between the platoon and the passing vehicle, as well as the shape of the passing vehicle, are also investigated. Similar trends are observed in simulations of both a vehicle passing a platoon and a platoon overtaking a vehicle. During the in-line oscillation experiments, one of the four platoon members is forced to undergo longitudinal periodic motions. The drag force experienced by each platoon member is determined simultaneously during the oscillations. The effects of the location of the oscillating vehicle, the shape of the vehicles and the displacement and velocity amplitudes of the oscillation are examined. The results from the transient conditions are compared to those from the steady tests in the same setup. In the case of a four-car platoon, the drag variations experienced by the vehicles adjacent to the oscillating vehicle are discussed using a cavity model. It is found that when the oscillating car moves forward and approaches its upstream neighbor, itself and its downstream neighbor experiences an increased drag

  6. An aerodynamic tradeoff study of the scissor wing configuration

    NASA Technical Reports Server (NTRS)

    Selberg, Bruce P.; Rokhsaz, Kamran; Housh, Clinton S.

    1990-01-01

    A scissor wing configuration, consisting of two independently sweeping wings was numerically studied. This configuration was also compared with an equivalent fixed wing baseline. Aerodynamic and stability and control characteristics of these geometries were investigated over a wide range of flight Mach numbers. It is demonstrated that in the purely subsonic flight regime, the scissor wing can achieve higher aerodynamic efficiency as the result of slightly higher aspect ratio. In the transonic regime, the lift to drag ratio of the scissor wing is shown to be higher than that of the baseline, for higer values of the lift coefficient. This tends to make the scissor wing more efficient during transonic cruise at high altitudes as well as during air combat at all altitudes. In supersonic flight, where the wings are maintained at maximum sweep angle, the scissor wing is shown to have a decided advantage in terms of reduced wave drag. From the view point of stability and control, the scissor wing is shown to have distinct advantages. It is shown that this geometry can maintain a constant static margin in supersonic as well as subsonic flight, by proper sweep scheduling. Furthermore, it is demonstrated that addition of wing mounted elevons can greatly enhance control authority in pitch and roll.

  7. Helicopter hub fairing and pylon interference drag

    NASA Technical Reports Server (NTRS)

    Graham, D. R.; Sung, D. Y.; Young, L. A.; Louie, A. W.; Stroub, R. H.

    1989-01-01

    A wind tunnel test was conducted to study the aerodynamics of helicopter hub and pylon fairings. The test was conducted in the 7-by 10 Foot Subsonic Wind Tunnel (Number 2) at Ames Research Center using a 1/5-scale XH-59A fuselage model. The primary focus of the test was on the rotor hub fairing and pylon mutual interference drag. Parametric studies of pylon and hub fairing geometry were also conducted. This report presents the major findings of the test as well as tabulated force and moment data, flow visualization photographs, and graphical presentations of the drag data. The test results indicate that substantial drag reduction can be attained through the use of a cambered hub fairing with circular arc upper surface and flat lower surface. Furthermore, a considerable portion of the overall drag reduction is attributed to the reduction in the hub-on-pylon interference drag. It is also observed that the lower surface curvature of the fairing has a strong influence on the hub fairing and on pylon interference drag. However, the drag reduction benefit that was obtained by using the cambered hub fairing with a flat lower surface was adversely affected by the clearance between the hub fairing and the pylon.

  8. Free-molecule-flow force and moment coefficients of the aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Hinson, Edwin W.

    1989-01-01

    Calculated results for the aerodynamic coefficients over the range of + or - 90 deg in both pitch and yaw attitude angles for the Aeroassist Flight Experiment (AFE) vehicle in free molecule flow are presented. The AFE body is described by a large number of small flat plate surface elements whose orientations are established in a wind axes coordinate system through the pitch and yaw attitude angles. Lift force, drag force, and three components of aerodynamic moment about a specified point are computed for each element. The elemental forces and moments are integrated over the entire body, and total force and moment coefficients are computed. The coefficients are calculated for the two limiting gas-surface molecular collision conditions, namely, specular and diffuse, which assume zero and full thermal accommodation of the incoming gas molecules with the surface, respectively. The individual contribution of the shear stress and pressure terms are calculated and also presented.

  9. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  10. Penetration drag in loosely packed granular materials

    NASA Astrophysics Data System (ADS)

    Bless, Stephan; Omidvar, Mehdi; Iskander, Magued; New York University Collaboration

    2015-03-01

    The drag coefficient for penetration of granular materials by conical-nosed penetrators was computed by assuming the particles are non-interacting and rebound elastically off of the advancing penetrator. The solution was C =4 [sin(theta)]**2, where theta is the half angle of the cone. Experiments were conducted in which the drag coefficient was measured over the range 30 to 80 m/s for four types of sand: Ottawa silica sand, crushed quartz glass, coral sand, and aragonite sand. The sands were tested at relative densities of 40 and 80%. The drag coefficients for the low density materials were in excellent agreement with this simple model. The high density material had a drag considerably larger than predicted, presumably because of particle-to-particle interactions.

  11. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.

    PubMed

    Eder, Heinrich; Fiedler, Wolfgang; Pascoe, Xaver

    2011-01-01

    Primary feathers of soaring land birds have evolved into highly specialized flight feathers characterized by morphological improvements affecting aerodynamic performance. The foremost feathers in the cascade have to bear high lift-loading with a strong bending during soaring flight. A challenge to the study of feather aerodynamics is to understand how the observed low drag and high lift values in the Reynolds (Re) regime from 1.0 to 2.0E4 can be achieved. Computed micro-tomography images show that the feather responds to high lift-loading with an increasing nose-droop and profile-camber. Wind-tunnel tests conducted with the foremost primary feather of a White Stork (Ciconia ciconia) at Re = 1.8E4 indicated a surprisingly high maximum lift coefficient of 1.5 and a glide ratio of nearly 10. We present evidence that this is due to morphologic characteristics formed by the cristae dorsales as well as air-permeable arrays along the rhachis. Measurements of lift and drag forces with open and closed pores confirmed the efficiency of this mechanism. Porous structures facilitate a blow out, comparable to technical blow-hole turbulators for sailplanes and low speed turbine-blades. From our findings, we conclude that the mechanism has evolved in order to affect the boundary layer and to reduce aerodynamic drag of the feather. PMID:20938776

  12. Applicability of commercial CFD tools for assessment of heavy vehicle aerodynamic characteristics.

    SciTech Connect

    Pointer, W. D.; Sofu, T.; Chang, J.; Weber, D.; Nuclear Engineering Division

    2008-12-01

    In preliminary validation studies, computational predictions from the commercial CFD codes Star-CD were compared with detailed velocity, pressure and force balance data from experiments completed in the 7 ft. by 10 ft. wind tunnel at NASA Ames using a Generic Conventional Model (GCM) that is representative of typical current-generation tractor-trailer geometries. Lessons learned from this validation study were then applied to the prediction of aerodynamic drag impacts associated with various changes to the GCM geometry, including the addition of trailer based drag reduction devices and modifications to the radiator and hood configuration. Add-on device studies have focused on ogive boat tails, with initial results indicating that a seven percent reduction in drag coefficient is easily achievable. Radiator and hood reconfiguration studies have focused on changing only the size of the radiator and angle of the hood components without changes to radii of curvature between the radiator grill and hood components. Initial results indicate that such changes lead to only modest changes in drag coefficient.

  13. Aerodynamic Performance and Static Stability at Mach Number 3.3 of an Aircraft Configuration Employing Three Triangular Wing Panels and a Body Equal Length

    NASA Technical Reports Server (NTRS)

    James, Carlton S.

    1960-01-01

    An aircraft configuration, previously conceived as a means to achieve favorable aerodynamic stability characteristics., high lift-drag ratio, and low heating rates at high supersonic speeds., was modified in an attempt to increase further the lift-drag ratio without adversely affecting the other desirable characteristics. The original configuration consisted of three identical triangular wing panels symmetrically disposed about an ogive-cylinder body equal in length to the root chord of the panels. This configuration was modified by altering the angular disposition of the wing panels, by reducing the area of the panel forming the vertical fin, and by reshaping the body to produce interference lift. Six-component force and moment tests of the modified configuration at combined angles of attack and sideslip were made at a Mach number of 3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of 6.65 (excluding base drag) was measured at a lift coefficient of 0.100 and an angle of attack of 3.60. The lift-drag ratio remained greater than 3 up to lift coefficient of 0.35. Performance estimates, which predicted a maximum lift-drag ratio for the modified configuration 27 percent greater than that of the original configuration, agreed well with experiment. The modified configuration exhibited favorable static stability characteristics within the test range. Longitudinal and directional centers of pressure were slightly aft of the respective centroids of projected plan-form and side area.

  14. Aerodynamics of the curve-ball: An investigation of the effects of angular velocity on baseball trajectories

    NASA Astrophysics Data System (ADS)

    Alaways, Leroy Ward

    In this dissertation the aerodynamic force and initial conditions of pitched baseballs are estimated from high-speed video data. Fifteen parameters are estimated including the lift coefficient, drag coefficient and the angular velocity vector using a parameter estimation technique that minimizes the residual error between measured and estimated trajectories of markers on the ball's surface and the center of mass of pitched baseballs. Studies are carried out using trajectory data acquired from human pitchers and, in a more controlled environment, with a pitching machine. In all 58 pitch trajectories from human pitchers and 20 pitching machine pitches with spin information are analyzed. In the pitching machine trials four markers on the ball are tracked over the first 4 ft (1.22 m) and the center of mass of the ball is tracked over the last 13 ft (3.96 m) of flight. The estimated lift coefficients are compared to previous measured lift coefficients of Sikorsky (Alaways & Lightfoot, 1998) and Watts & Ferrer (1987) and show that significant differences exists in the lift coefficients of two- and four-seam curve balls at lower values of spin parameter, S. As S increased the two- and four-seam lift coefficients merge becoming statistically insignificant. The estimated drag coefficients are compared to drag coefficients of smooth spheres and golf-balls and show that these data sets bound the drag-coefficient of the baseball. Finally, it is shown that asymmetries of the ball associated with the knuckleball can influence the trajectory of the more common curve and fastball.

  15. Biomimetic spiroid winglets for lift and drag control

    NASA Astrophysics Data System (ADS)

    Guerrero, Joel E.; Maestro, Dario; Bottaro, Alessandro

    2012-01-01

    In aeronautical engineering, drag reduction constitutes a challenge and there is room for improvement and innovative developments. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80-90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a bird's wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon. The numerical investigation of such a wingtip device is described and preliminary indications of its aerodynamic performance are provided.

  16. Effect of milling machine roughness and wing dihedral on the supersonic aerodynamic characteristics of a highly swept wing

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    1989-01-01

    An experimental investigation was conducted to assess the effect of surface finish on the longitudinal and lateral aerodynamic characteristics of a highly-swept wing at supersonic speeds. A study of the effects of wing dihedral was also made. Included in the tests were four wing models: three models having 22.5 degrees of outboard dihedral, identical except for surface finish, and a zero-dihedral, smooth model of the same planform for reference. Of the three dihedral models, two were taken directly from the milling machine without smoothing: one having a maximum scallop height of 0.002 inches and the other a maximum scallop height of 0.005 inches. The third dihedral model was handfinished to a smooth surface. Tests were conducted in Test Section 1 of the Unitary Plan Wind Tunnel at NASA-Langley over a range of Mach numbers from 1.8 to 2.8, a range of angle of attack from -5 to 8 degrees, and at a Reynolds numbers per foot of 2 x 10(6). Selected data were also taken at a Reynolds number per foot of 6 x 10(6). Drag coefficient increases, with corresponding lift-drag ratio decreases were the primary aerodynamic effects attributed to increased surface roughness due to milling machine grooves. These drag and lift-drag ratio increments due to roughness increased as Reynolds number increased.

  17. Drag of bodies of revolution in cavitating flow

    SciTech Connect

    Oberkampf, W.L.; Wolfe, W.P.

    1986-01-01

    The present paper describes work in progress concerning fluid dynamics of cavitating flow. The flow field and drag of bodies of revolution at zero angle of attack is predicted for cavity coefficients from fully-wetted flow to sigma = 0. Excellent agreement for drag coefficient is demonstrated between theory and a water tunnel experiment. It is shown that skin friction drag is the dominant drag component for zero cavity coefficient. Excellent agreement is also demonstrated between theory and a high-speed water entry experiment. This agreement corroborates the experimental measurement that the cavity pressure is equal to the water vapor pressure, contrary to low-speed water entry. 14 refs.

  18. Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    This paper lays out a comprehensive methodology for computing a low-speed, high-lift polar, without requiring additional details about the aircraft design beyond what is typically available at the conceptual design stage. Introducing low-order, physics-based aerodynamic analyses allows the methodology to be more applicable to unconventional aircraft concepts than traditional, fully-empirical methods. The methodology uses empirical relationships for flap lift effectiveness, chord extension, drag-coefficient increment and maximum lift coefficient of various types of flap systems as a function of flap deflection, and combines these increments with the characteristics of the unflapped airfoils. Once the aerodynamic characteristics of the flapped sections are known, a vortex-lattice analysis calculates the three-dimensional lift, drag and moment coefficients of the whole aircraft configuration. This paper details the results of two validation cases: a supercritical airfoil model with several types of flaps; and a 12-foot, full-span aircraft model with slats and double-slotted flaps.

  19. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small-and large-scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties related to minimum drag, wave drag, high angle of attack characteristics, and power-induced effects. Engine design configurations from several aircraft manufacturers are reviewed.

  20. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.

  1. Investigation at Mach Numbers of 0.20 to 3.50 of a Blended Diamond Wing and Body Combination of Sonic Design but with Low Wave-Drag Increase with Increasing Mach Number

    NASA Technical Reports Server (NTRS)

    Holdaway, George H.; Mellenthin, Jack A.; Hatfield, Elaine W.

    1959-01-01

    A diamond wing and body combination was designed to have an area distribution which would result in near optimum zero-lift wave-drag coefficients at a Mach number of 1.00, and decreasing wave-drag coefficient with increasing Mach number up to near sonic leading-edge conditions for the wing. The airfoil section were computed by varying their shape along with the body radii (blending process) to match the selected area distribution and the given plan form. The exposed wing section had an average maximum thickness of about 3 percent of the local chords, and the maximum thickness of the center-line chord was 5.49 percent. The wing had an aspect ratio of 2 and a leading-edge sweep of 45 deg. Test data were obtained throughout the Mach number range from 0.20 to 3.50 at Reynolds numbers based on the mean aerodynamic chord of roughly 6,000,000 to 9,000,000. The zero-lift wave-drag coefficients of the diamond model satisfied the design objectives and were equal to the low values for the Mach number 1.00 equivalent body up to the limit of the transonic tests. From the peak drag coefficient near M = 1.00 there was a gradual decrease in wave-drag coefficient up to M = 1.20. Above sonic leading-edge conditions of the wing there was a rise in the wave-drag coefficient which was attributed in part to the body contouring as well as to the wing geometry. The diamond model had good lift characteristics, in spite of the prediction from low-aspect-ratio theory that the rear half of the diamond wing would carry little lift. The experimental lift-curve slope obtained at supersonic speeds were equal to or greater than the values predicted by linear theory. Similarly the other basic aerodynamic parameters, aerodynamic center position, and maximum lift-drag ratios were satisfactorily predicted at supersonic speeds.

  2. Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail

    NASA Astrophysics Data System (ADS)

    Alansatan, Sait

    An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24

  3. Miniature drag force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilevered beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like that of a second order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  4. Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2001-05-14

    Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

  5. Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Gingrich, P. B.; Child, R. D.; Panageas, G. N.

    1977-01-01

    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data.

  6. Drag and Propulsive Characteristics of Air-Cooled Engine-Nacelle Installations for Large Airplanes, Special Report

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Wilson, Herbert A., Jr.

    1939-01-01

    An investigation is in progress in the NACA full-scale wind tunnel to determine the drag and propulsive efficiency of nacelle sizes. In contrast with the usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a 4-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplane weighing from about 20 to 100 tons. The results show that the drag, the propulsive efficiency, and the overall efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model are shown for both propeller-removed and propeller-operating conditions.

  7. Influence of heat transfer on the aerodynamic performance of a plunging and pitching NACA0012 airfoil at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Alighanbari, Hekmat; Breitsamter, Christian

    2013-02-01

    The unsteady low Reynolds number aerodynamics phenomena around flapping wings are addressed in several investigations. Elsewhere, airfoils at higher Mach numbers and Reynolds numbers have been treated quite comprehensively in the literature. It is duly noted that the influence of heat transfer phenomena on the aerodynamic performance of flapping wings configurations is not well studied. The objective of the present study is to investigate the effect of heat transfer upon the aerodynamic performance of a pitching and plunging NACA0012 airfoil in the low Reynolds number flow regime with particular emphasis upon the airfoil's lift and drag coefficients. The compressible Navier-Stokes equations are solved using a finite volume method. To consider the variation of fluid properties with temperature, the values of dynamic viscosity and thermal diffusivity are evaluated with Sutherland's formula and the Eucken model, respectively. Instantaneous and mean lift and drag coefficients are calculated for several temperature differences between the airfoil surface and freestream within the range 0-100 K. Simulations are performed for a prescribed airfoil motion schedule and flow parameters. It is learnt that the aerodynamic performance in terms of the lift CL and drag CD behavior is strongly dependent upon the heat transfer rate from the airfoil to the flow field. In the plunging case, the mean value of CD tends to increase, whereas the amplitude of CL tends to decrease with increasing temperature difference. In the pitching case, on the other hand, the mean value and the amplitude of both CD and CL decrease. A spectral analysis of CD and CL in the pitching case shows that the amplitudes of both CD and CL decrease with increasing surface temperature, whereas the harmonic frequencies are not affected.

  8. Characterization of speed fluctuation and drag force in young swimmers: a gender comparison.

    PubMed

    Barbosa, Tiago M; Costa, Mário J; Morais, Jorge E; Morouço, Pedro; Moreira, Marc; Garrido, Nuno D; Marinho, Daniel A; Silva, António J

    2013-12-01

    The aim of this study was to compare the speed fluctuation and the drag force in young swimmers between genders. Twenty-three young pubertal swimmers (12 boys and 11 girls) volunteered as subjects. Speed fluctuation was measured using a kinematical mechanical method (i.e., speedo-meter) during a maximal 25-m front crawl bout. Active drag, active drag coefficient and power needed to overcome drag were measured with the velocity perturbation method for another two maximal 25m front crawl bouts with and without the perturbation device. Passive drag and the passive drag coefficient were estimated using the gliding decay velocity method after a maximal push-off from the wall while being fully immersed. The technique drag index was also assessed as a ratio between active and passive drag. Boys presented meaningfully higher speed fluctuation, active drag, power needed to overcome drag and technique drag index than the girls. There were no significant gender differences for active drag coefficient, passive drag and passive drag coefficient. There were positive and moderate-strong associations between active drag and speed fluctuation when controlling the effects of swim velocity. So, increasing speed fluctuation leads to higher drag force values and those are even higher for boys than for girls. PMID:24071552

  9. Drag reduction in nature

    NASA Astrophysics Data System (ADS)

    Bushnell, D. M.; Moore, K. J.

    Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.

  10. Drag bit construction

    DOEpatents

    Hood, Michael

    1986-01-01

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face.

  11. Drag bit construction

    DOEpatents

    Hood, M.

    1986-02-11

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.

  12. Drag reduction in nature

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Moore, K. J.

    1991-01-01

    Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.

  13. Drag reduction of a heavy vehicle

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2007-11-01

    During the 1970's and 1980's, a number of first-generation drag reduction devices were designed to reduce the aerodynamic losses of heavy vehicles (Cooper, 2003). The result of this effort led to the development of a number of devices that improved the aerodynamics of a heavy vehicle tractor. Additionally, a number of second-generation devices were developed for heavy vehicle trailers. Unfortunately, these trailer devices did not enter into the market on a wide-scale basis and, as a result, the modern heavy vehicle trailer largely remains a ``box on wheels'' with minimal aerodynamic consideration taken into its design. The primary obstacle to implementing trailer devices was not their effectiveness in reducing drag, but rather operational, maintenance, and ultimately, economic concerns. However, with rising fuel costs and potentially unstable fuel supplies, there is a renewed objective to further reduce heavy vehicle fuel usage. To accomplish this purpose, the present study investigates the drag reduction capability of a trailer device, which neither reduces the trailer cargo capacity, nor limits access to the trailer doors. RANS simulations are performed on a full-scale tractor-trailer that is traveling at highway conditions with and without the trailer device. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  14. Optimization of gas path aerodynamics for PK-39 boiler of power generating unit No. 4 of Troitskaya SDPP using numerical simulation of gas flows

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Grigorev, I. V.; Fomenko, M. V.; Kaverin, A. A.

    2015-12-01

    Power generating unit no. 4 of Troitskaya State District Power Plant (SDPP) is incapable of operating with a nominal load of 278 MW because of high aerodynamic drag of the gas path. At present, the maximum load of the two-boiler single-turbine unit is 210 MW practically without a possibility of adjustment. The results of numerical simulation of the gas flow for the existing gas path from the electrostatic precipitator (EP) to the smoke exhausts (SEs) and two flue designs proposed for renovation of this section are presented. The results of simulation show that the existing flue section has high aerodynamic drag, which is explained by poor, as regards aerodynamics, design. The local loss coefficient, in terms of the dynamic pressure in the sucker pocket of the smoke exhaust is equal to 4.57. The local aerodynamic loss coefficient after renovation at the considered section according to the first version would make 1.48, and according to the second version 1.325, which would reduce losses at this section by more than a factor of three, and ensure the power unit operation with the rated load.

  15. Distribution of wave drag and lift in the vicinity of wing tips at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Evvard, John C

    1947-01-01

    The point-source-distribution method of calculating the aerodynamic coefficients of thin wings at supersonic speeds was extended to include the effect of the region between the wing boundary and the foremost Mach wave from the wing leading edge. The effect of this region on the surface velocity potential has been determined by an equivalent function, which is evaluated over a portion of the wing surface. In this manner, the effect of angles of attack and yaw as well as the asymmetry of top and bottom wing surfaces may be calculated. As examples of the method, the pressure distribution on a thin plate wing of rectangular plan form as well as the lift and the drag coefficients as a function of Mach number, angle of attack, and aspect ratio are calculated. The equations for the surface velocity potential of several other plan forms are also included. (author)

  16. Comparison of aerodynamic theory and experiment for jet-flap wings

    NASA Technical Reports Server (NTRS)

    Gainer, T. G.; Yip, L. P.; Vogler, R. P.

    1976-01-01

    Aerodynamic theory predictions made for a jet flapped wing were compared with experimental data obtained in a fairly extensive series of tests in the Langley V/STOL tunnel. The tests were made on a straight, rectangular wing and investigated two types of jet flap concepts: a pure jet flap with high jet deflection and a wing with blowing at the knee of a plain trailing edge flap. The tests investigated full and partial span blowing for wing aspect ratios of 8.0 and 5.5 and momentum coefficients from 0 to about 4. The total lift, drag, and pitching moment coefficients predicted by the theory were in excellent agreement with experimental values for the pure jet flap, even with the high jet deflection. The pressure coefficients on the wing, and hence the circulation lift coefficients, were underpredicted, however, because of the linearizing assumptions of the planar theory. The lift, drag, and pitching moment coefficients, as well as pressure coefficients, were underpredicted for the wing with blowing over the flap because of the failure of the theory to account for the interaction effect of the high velocity jet passing over the flap.

  17. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  18. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  19. Experiments examining drag in linear droplet packets

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. V.; Dunn-Rankin, D.

    1992-01-01

    This paper presents an experimental study of vertically traveling droplet packets, where the droplets in each packet are aligned linearly, one behind another. The paper describes in detail, an experimental apparatus that produces repeatable, linearly aligned, and isolated droplet packets containing 1 6 droplets per packet. The apparatus is suitable for examining aerodynamic interactions between droplets within each packet. This paper demonstrates the performance of the apparatus by examining the drag reduction and collision of droplets traveling in the wake of a lead droplet. Comparison of a calculated single droplet trajectory with the detailed droplet position versus time data for a droplet packet provides the average drag reduction experienced by the trailing droplets due to the aerodynamic wake of the lead droplet. For the conditions of our experiment (4 droplet packet, 145 μm methanol droplets, 10 m/s initial velocity, initial droplet spacing of 5.2 droplet diameters, Reynolds number approx. 80) the average drag on the first trailing droplet was found to be 75% of the drag on the lead droplet.

  20. Aerodynamics of a Cryogenic Semi-Tanker

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2009-11-01

    The design of a modern cryogenic semi-tanker is based primarily upon functionality with little consideration given to aerodynamic drag. As a result, these tankers have maintained the appearance of a wheeled cylinder for several decades. To reduce the fuel usage of these vehicles, this study investigates their aerodynamics. A detailed understanding of the flow field about the vehicle and its influence on aerodynamic drag is obtained by performing Reynolds-Averaged Navier-Stokes simulations of a full-scale tractor and cryogenic tanker-trailer operating at highway speed within a crosswind. The tanker-trailer has a length to diameter ratio of 6.3. The Reynolds number, based upon the tanker diameter, is 4.0x10^6, while the effective vehicle yaw angle is 6.1 . The flow field about the vehicle is characterized by large flow separation regions at the tanker underbody and base. In addition, the relatively large gap between the tractor and the tanker-trailer allows the free-stream flow to be entrained into the tractor-tanker gap. By mitigating these drag-producing phenomena through the use of simple geometry modifications, it may be possible to reduce the aerodynamic drag of cryogenic semi-tankers and, thereby, improve their fuel economy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    SciTech Connect

    Paraschivoiu, I.

    1981-01-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  2. Thermal Casimir drag in fluctuating classical fields

    NASA Astrophysics Data System (ADS)

    Démery, Vincent; Dean, David S.

    2011-07-01

    A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field is shown to experience a drag force that depends on the dynamics of the field. It is shown that in a number of cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form. Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible ones such as polymers and membranes.

  3. Longitudinal Stability and Drag Characteristics at Mach Numbers from 0.70 to 1.37 of Rocket-propelled Models Having a Modified Triangular Wing

    NASA Technical Reports Server (NTRS)

    Chapman, Rowe, Jr; Morrow, John D

    1952-01-01

    A modified triangular wing of aspect ratio 2.53 having an airfoil section 3.7 percent thick at the root and 5.98 percent thick at the tip was designed in an attempt to improve the lift and drag characteristics of triangular wings. Free-flight drag and stability tests were made using rocket-propelled models equipped with the modified wing. The Mach number range of the test was from 0.70 to 1.37. Test results indicated the following: The lift-curve slope of wing plus fuselage approaches the theoretical value of wing alone at supersonic Mach numbers. The drag coefficient, based on total wing area, for wing plus interference was approximately 0.0035 at subsonic Mach numbers and 0.0080 at supersonic Mach numbers. The maximum shift in aerodynamic center for the complete configuration was 14 percent in the rearward direction from the forward position of 51.5 percent of mean aerodynamic chord at subsonic Mach numbers. The variation of lift and moment with angle of attack was linear at supersonic Mach numbers for the range of coefficients covered in the test. The high value of lift-curve slope was considered to be a significant result attributable to the wing modifications.

  4. Design Exploration of Aerodynamic Wing Shape for RLV Flyback Booster

    NASA Astrophysics Data System (ADS)

    Chiba, Kazuhisa; Obayashi, Shigeru; Nakahashi, Kazuhiro

    The wing shape of flyback booster for a Two-Stage-To-Orbit reusable launch vehicle has been optimized considering four objectives. The objectives are to minimize the shift of aerodynamic center between supersonic and transonic conditions, transonic pitching moment and transonic drag coefficient, as well as to maximize subsonic lift coefficient. The three-dimensional Reynolds-averaged Navier-Stokes computation using the modified Spalart-Allmaras one-equation model is used in aerodynamic evaluation accounting for possible flow separations. Adaptive range multi-objective genetic algorithm is used for the present study because tradeoff can be obtained using a smaller number of individuals than conventional multi-objective genetic algorithms. Consequently, four-objective optimization has produced 102 non-dominated solutions, which represent tradeoff information among four objective functions. Moreover, Self-Organizing Maps have been used to analyze the present non-dominated solutions and to visualize tradeoffs and influence of design variables to the four objectives. Self-Organizing Maps contoured by the four objective functions and design variables are found to visualize tradeoffs and effects of each design variable.

  5. Supersonic Wave Drag of Sweptback Tapered Wings at Zero Lift

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth

    1947-01-01

    On the basis of a recently developed theory for sweptback wings at supersonic velocities, equations are derived for the wave drag of sweptback tapered wings with thin symmetrical double-wedge sections at zero lift. Calculations of section wave-drag distributions and wing wave drag are presented for families of tapered plan forms. Distributions of section wave drag along the span of tapered wings are, in general, very similar in shape to those of untapered plan forms. For a given taper ratio and aspect ratio, an appreciable reduction in wing wave-drag coefficient with increased sweepback is noted for the entire range of Mach number considered. For a given sweep and taper ratio, higher aspect ratios reduce the wing wave-drag coefficient at substantially subcritical supersonic Mach numbers. At Mach numbers approaching the critical value, that is, a value equal to the secant of the sweepback angle, the plan forms of low aspect ratio have lower drag coefficients. Calculations for wings of equal root bending stress (and hence different aspect ratio) indicate that tapering the wing reduces the wing wave-drag coefficient at Mach numbers considerably less than the critical value and a decrease of the drag coefficient with taper at Mach numbers near the critical value.

  6. Drag of Exposed Fittings and Surface Irregularities on Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1928-01-01

    Measurements of drag were made on fittings taken from a typical fuselage to determine whether the difference between the observed full size fuselage drag and model fuselage drag could be attributed to the effects of fittings and surface irregularities found on the full size fuselage and not on the model. There are wide variations in the drag coefficients for the different fittings. In general those which protrude little from the surface or are well streamlined show very low and almost negligible drag. The measurements show, however, that a large part of the difference between model and full scale test results may be attributed to these fittings.

  7. Aerodynamic performance of osculating-cones waveriders at high altitudes

    NASA Astrophysics Data System (ADS)

    Graves, Rick Evan

    -Reynolds number waverider is also considered. At Minfinity = 4 in level flight, from 95 km to 105 km, the lift-to-drag ratio of the volume-matched caret wing is superior to that of the osculating-cones waverider optimized for Minfinity = 4 and Re infinity = 250 million. From 105 km to 150 km, the performance of the osculating-cones waverider is slightly superior to that of caret and delta wings due to the degree of concavity of its lower surface. At off-design conditions, the performance of the three configurations approaches a common free-molecular limit. At Minfinity = 20 in level flight, the lift-to-drag ratio of the osculating-cones waverider optimized for Minfinity = 20 and Reinfinity = 2.5 million is similar to a volume-matched caret wing, due to the caret wing's enhanced lift coefficient. At higher angles of attack, the superior drag characteristics of the osculating-cones waverider produces an increased lift-to-drag ratio over that of the reference configurations from 95 km to 120 km. At higher altitudes, the performance of the three configurations approaches a common free-molecular limit. Maximum lift-to-drag ratio does not exceed unity for the configurations studied over the chosen high-altitude parametric space, which is consistent with previous investigations. Results support the hypothesis that potential for aerodynamic optimization exists at high altitudes for realistic, volume-oriented waverider configurations.

  8. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  9. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  10. Techniques for estimating Space Station aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Thomas, Richard E.

    1993-01-01

    A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.

  11. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  12. External aerodynamics of heavy ground vehicles: Computations and wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Bayraktar, Ilhan

    Aerodynamic characteristics of a ground vehicle affect vehicle operation in many ways. Aerodynamic drag, lift and side forces have influence on fuel efficiency, vehicle top speed and acceleration performance. In addition, engine cooling, air conditioning, wind noise, visibility, stability and crosswind sensitivity are some other tasks for vehicle aerodynamics. All of these areas benefit from drag reduction and changing the lift force in favor of the operating conditions. This can be achieved by optimization of external body geometry and flow modification devices. Considering the latter, a thorough understanding of the airflow is a prerequisite. The present study aims to simulate the external flow field around a ground vehicle using a computational method. The model and the method are selected to be three dimensional and time-dependent. The Reynolds-averaged Navier Stokes equations are solved using a finite volume method. The Renormalization Group (RNG) k-epsilon model was elected for closure of the turbulent quantities. Initially, the aerodynamics of a generic bluff body is studied computationally and experimentally to demonstrate a number of relevant issues including the validation of the computational method. Experimental study was conducted at the Langley Full Scale Wind Tunnel using pressure probes and force measurement equipment. Experiments and computations are conducted on several geometric configurations. Results are compared in an attempt to validate the computational model for ground vehicle aerodynamics. Then, the external aerodynamics of a heavy truck is simulated using the validated computational fluid dynamics method, and the external flow is presented using computer visualization. Finally, to help the estimation of the error due to two commonly practiced engineering simplifications, a parametric study on the tires and the moving ground effect are conducted on full-scale tractor-trailer configuration. Force and pressure coefficients and velocity

  13. Aerodynamic forces and flow fields of a two-dimensional hovering wing

    NASA Astrophysics Data System (ADS)

    Lua, K. B.; Lim, T. T.; Yeo, K. S.

    2008-12-01

    This paper reports the results of an experimental investigation on a two-dimensional (2-D) wing undergoing symmetric simple harmonic flapping motion. The purpose of this investigation is to study how flapping frequency (or Reynolds number) and angular amplitude affect aerodynamic force generation and the associated flow field during flapping for Reynolds number ( Re) ranging from 663 to 2652, and angular amplitudes ( α A) of 30°, 45° and 60°. Our results support the findings of earlier studies that fluid inertia and leading edge vortices play dominant roles in the generation of aerodynamic forces. More importantly, time-resolved force coefficients during flapping are found to be more sensitive to changes in α A than in Re. In fact, a subtle change in α A may lead to considerable changes in the lift and drag coefficients, and there appears to be an optimal mean lift coefficient left( {overline {C_{{text{l}}} } } right) around α A = 45°, at least for the range of flow parameters considered here. This optimal condition coincides with the development a reverse Karman Vortex street in the wake, which has a higher jet stream than a vortex dipole at α A = 30° and a neutral wake structure at α A = 60°. Although Re has less effect on temporal force coefficients and the associated wake structures, increasing Re tends to equalize mean lift coefficients (and also mean drag coefficients) during downstroke and upstroke, thus suggesting an increasing symmetry in the mean force generation between these strokes. Although the current study deals with a 2-D hovering motion only, the unique force characteristics observed here, particularly their strong dependence on α A, may also occur in a three-dimensional hovering motion, and flying insects may well have taken advantage of these characteristics to help them to stay aloft and maneuver.

  14. Unsteady aerodynamics modeling for flight dynamics application

    NASA Astrophysics Data System (ADS)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  15. Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R.

    2014-12-01

    Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made.

  16. Aerodynamic Behavior at One Revolution Angle of Attack of Two-Dimensional Wings

    NASA Astrophysics Data System (ADS)

    Han, Yong; Lee, Eun; Kim, Jeong; Shin, Yong

    2011-11-01

    In order to investigate aerodynamic behaviors at extreme angles of attack beyond the normal static stall angle and in the reversed flow, lift and drag have been measured at one revolution angles of attack by rotating the wing around the 1/4 chord with use of a dynamic balance in the low speed wind tunnel. Three different geometries of wing section; a flat plate, a symmetric airfoil, NACA0018, and a cambered airfoil, Goe222, were selected for these experiments. It was turned out that the lift coefficient maintains substantially even beyond the traditional stall AoA of the wing. Drag coefficients of these wings showed sinusoidal profiles, and polar plots of Cl versus Cd provided distinctive behaviors unseen in the calculation by the classical wing theory. Application of the cyclic aerodynamic characteristics to a vertical axis wind turbine and wake characteristics around the critical angle will be displayed. This work was supported by Cooperative R&D program between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2011.

  17. The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano

    2014-11-01

    Effects of free stream turbulence with large integral scale on the aerodynamic performance of an S809 airfoil-based wind turbine blade at low Reynolds number are studied using wind tunnel experiments. A constant chord (2-D) S809 airfoil wind turbine blade model with an operating Reynolds number of 208,000 based on chord length was tested for a range of angles of attack representative of fully attached and stalled flow as encountered in typical wind turbine operation. The smooth-surface blade was subjected to a quasi-laminar free stream with very low free-stream turbulence as well as to elevated free-stream turbulence generated by an active grid. This turbulence contained large-scale eddies with levels of free-stream turbulence intensity of up to 6.14% and an integral length scale of about 60% of chord-length. The pressure distribution was acquired using static pressure taps and the lift was subsequently computed by numerical integration. The wake velocity deficit was measured utilizing hot-wire anemometry to compute the drag coefficient also via integration. In addition, the mean flow was quantified using 2-D particle image velocimetry (PIV) over the suction surface of the blade. Results indicate that turbulence, even with very large-scale eddies comparable in size to the chord-length, significantly improves the aerodynamic performance of the blade by increasing the lift coefficient and overall lift-to-drag ratio, L/D for all angles tested except zero degrees.

  18. The drag force on an American football

    NASA Astrophysics Data System (ADS)

    Watts, Robert G.; Moore, Gary

    2003-08-01

    We have measured the drag coefficient on an American football oriented so that its major axis is pointed directly into the wind. The football was suspended from the top of a wind tunnel by bicycle spokes attached to small bearings. The results are similar to the drag coefficients reported by Rouse (1946) for the case of an ellipsoid with major diameter/minor diameter similar to the length/diameter for the football. The drag coefficient for a spinning football is slightly lower than that for a nonspinning football. Both are in the range of 0.05-0.06, about half the value assumed by Brancazio (1985), about one-third that reported by Rae and Streit (2002) and far smaller than that reported by Cunningham and Dowell (1976).

  19. Operational considerations for aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Melson, W. Edward, Jr.

    1990-01-01

    One of the necessary areas of consideration for outdoor heavy rain testing is the effect of wind on both the simulated rain field and the quality and repeatability of the aerodynamic data. This paper discusses the data acquisition and subsequent reduction to nondimensional coefficients of lift and drag, with the appropriate correction for wind and rain field. Sample force data showing these effects are presented, along with estimates for accuracy and repeatability. The capability to produce high-quality data for rain drop size distribution using photographic and computerized image processing techniques was developed. Sample photographs depicting rain drop size are shown.

  20. Aerodynamic Stability and Performance of Next-Generation Parachutes for Mars Descent

    NASA Technical Reports Server (NTRS)

    Gonyea, Keir C.; Tanner, Christopher L.; Clark, Ian G.; Kushner, Laura K.; Schairer, Edward T.; Braun, Robert D.

    2013-01-01

    The Low Density Supersonic Decelerator Project is developing a next-generation supersonic parachute for use on future Mars missions. In order to determine the new parachute configuration, a wind tunnel test was conducted at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center. The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability and performance of various canopy configurations in order to help select the design to be flown on the Supersonic Flight Dynamics tests. Parachute configurations included the diskgap- band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During the wind tunnel test, digital cameras captured synchronized image streams of the parachute from three directions. Stereo hotogrammetric processing was performed on the image data to track the position of the vent of the canopy throughout each run. The position data were processed to determine the geometric angular history of the parachute, which were then used to calculate the total angle of attack and its derivatives at each instant in time. Static and dynamic moment coefficients were extracted from these data using a parameter estimation method involving the one-dimensional equation of motion for a rotation of parachute. The coefficients were calculated over all of the available canopy states to reconstruct moment coefficient curves as a function of total angle of attack. From the stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the trim angle could be determined. These stability metrics were assessed in the context of the parachute's drag load and geometric porosity. While there was generally an inverse relationship between the drag load and the stability of the canopy, the data showed that it was possible to obtain similar stability properties as the disk-gap-band with slightly higher drag loads by appropriately tailoring the

  1. Aerodynamics of Wiffle Balls

    NASA Astrophysics Data System (ADS)

    Utvich, Alexis; Jemmott, Colin; Logan, Sheldon; Rossmann, Jenn

    2003-11-01

    A team of undergraduate students has performed experiments on Wiffle balls in the Harvey Mudd College wind tunnel facility. Wiffle balls are of particular interest because they can attain a curved trajectory with little or no pitcher-imparted spin. The reasons behind this have not previously been quantified formally. A strain gauge device was designed and constructed to measure the lift and drag forces on the Wiffle ball; a second device to measure lift and drag on a spinning ball was also developed. Experiments were conducted over a range of Reynolds numbers corresponding to speeds of roughly 0-40 mph. Lift forces of up to 0.2 N were measured for a Wiffle ball at 40 mph. This is believed to be due to air flowing into the holes on the Wiffle ball in addition to the effect of the holes on external boundary layer separation. A fog-based flow visualization system was developed in order to provide a deeper qualitative understanding of what occurred in the flowfield surrounding the ball. The data and observations obtained in this study support existing assumptions about Wiffle ball aerodynamics and begin to elucidate the mechanisms involved in Wiffle ball flight.

  2. Brief communication: Two well-marked cases of aerodynamic adjustment of sastrugi

    NASA Astrophysics Data System (ADS)

    Amory, C.; Naaim-Bouvet, F.; Gallée, H.; Vignon, E.

    2016-04-01

    In polar regions, sastrugi are a direct manifestation of drifting snow and form the main surface roughness elements. In turn, sastrugi alter the generation of atmospheric turbulence and thus modify the wind field and the aeolian snow mass fluxes. Little attention has been paid to these feedback processes, mainly because of experimental difficulties. As a result, most polar atmospheric models currently ignore sastrugi over snow-covered regions. This paper aims at quantifying the potential influence of sastrugi on the local wind field and on snow erosion over a sastrugi-covered snowfield in coastal Adélie Land, East Antarctica. We focus on two erosion events during which sastrugi responses to shifts in wind direction have been interpreted from temporal variations in drag and aeolian snow mass flux measurements during austral winter 2013. Using this data set, it is shown that (i) neutral stability, 10 m drag coefficient (CDN10) values are in the range of 1.3-1.5 × 10-3 when the wind is well aligned with the sastrugi, (ii) as the wind shifts by only 20-30° away from the streamlined direction, CDN10 increases (by 30-120 %) and the aeolian snow mass flux decreases (by 30-80 %), thereby reflecting the growing contribution of the sastrugi form drag to the total surface drag and its inhibiting effect on snow erosion, (iii) the timescale of sastrugi aerodynamic adjustment can be as short as 3 h for friction velocities greater than 1 m s-1 and during strong drifting snow conditions and (iv) knowing CDN10 is not sufficient to estimate the snow erosion flux that results from drag partitioning at the surface because CDN10 includes the contribution of the sastrugi form drag.

  3. Evaluation of aerodynamic and rolling resistances in mountain-bike field conditions.

    PubMed

    Bertucci, William M; Rogier, Simon; Reiser, Raoul F

    2013-01-01

    Aerodynamic and rolling resistances are the two major resistances that affect road cyclists on level ground. Because of reduced speeds and markedly different tyre-ground interactions, rolling resistance could be more influential in mountain biking than road cycling. The aims of this study were to quantify 1) aerodynamic resistance of mountain-bike cyclists in the seated position and 2) rolling resistances of two types of mountain-bike tyre (smooth and knobby) in three field surfaces (road, sand and grass) with two pressure inflations (200 and 400 kPa). Mountain-bike cyclists have an effective frontal area (product of projected frontal area and drag coefficient) of 0.357 ± 0.023 m², with the mean aerodynamic resistance representing 8-35% of the total resistance to cyclists' motion depending on the magnitude of the rolling resistance. The smooth tyre had 21 ± 15% less rolling resistance than the knobby tyre. Field surface and inflation pressure also affected rolling resistance. These results indicate that aerodynamic resistance influences mountain-biking performance, even with lower speeds than road cycling. Rolling resistance is increased in mountain biking by factors such as tyre type, surface condition and inflation pressure that may also alter performance. PMID:23713547

  4. The interdependence of profile drag and lift with Joukowski type and related airfoils

    NASA Technical Reports Server (NTRS)

    Muttray, H

    1935-01-01

    On the basis of a systematic investigation of Gottingen wind-tunnel data on Joukowski type and related airfoils, it is shown in what manner the profile drag coefficient is dependent on the lift coefficient. The individual factors for the construction of the profile drag polars are given. They afford a more accurate calculation of the performance coefficients of airplane designs than otherwise attainable with the conventional assumption of constant drag coefficient.

  5. An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure.

    PubMed

    Han, Jong-Seob; Kim, Joong-Kwan; Chang, Jo Won; Han, Jae-Hung

    2015-08-01

    A quasi-steady aerodynamic model in consideration of the center of pressure (C.P.) was developed for insect flight. A dynamically scaled-up robotic hawkmoth wing was used to obtain the translational lift, drag, moment and rotational force coefficients. The translational force coefficients were curve-fitted with respect to the angles of attack such that two coefficients in the Polhamus leading-edge suction analogy model were obtained. The rotational force coefficient was also compared to that derived by the standard Kutta-Joukowski theory. In order to build the accurate pitching moment model, the locations of the C.Ps. and its movements depending on the pitching velocity were investigated in detail. We found that the aerodynamic moment model became suitable when the rotational force component was assumed to act on the half-chord. This implies that the approximation borrowed from the conventional airfoil concept, i.e., the 'C.P. at the quarter-chord' may lead to an incorrect moment prediction. In the validation process, the model showed excellent time-course force and moment estimations in comparison with the robotic wing measurement results. A fully nonlinear multibody flight dynamic simulation was conducted to check the effect of the traveling C.P. on the overall flight dynamics. This clearly showed the importance of an accurate aerodynamic moment model. PMID:26226478

  6. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  7. Spin Drag in Noncondensed Bose Gases

    SciTech Connect

    Duine, R. A.; Stoof, H. T. C.

    2009-10-23

    We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.

  8. A fundamental study of drag and an assessment of conventional drag-due-to-lift reduction devices

    NASA Technical Reports Server (NTRS)

    Yates, J. E.; Donald, C. D.

    1986-01-01

    The integral conservation laws of fluid mechanics are used to assess the drag efficiency of lifting wings, both CTOL and various out-of-plane configurations. The drag-due-to-lift is separated into two major components: (1) the induced drag-due-to-lift that depends on aspect ratio but is relatively independent of Reynolds number; (2) the form drag-due-to-lift that is independent of aspect ratio but dependent on the details of the wing section design, planform and Reynolds number. For each lifting configuration there is an optimal load distribution that yields the minimum value of drag-due-to-lift. For well designed high aspect ratio CTOL wings the two drag components are independent. With modern design technology CTOL wings can be (and usually are) designed with a drag-due-to-lift efficiency close to unity. Wing tip-devices (winglets, feathers, sails, etc.) can improve drag-due-to-lift efficiency by 10 to 15% if they are designed as an integral part of the wing. As add-on devices they can be detrimental. It is estimated that 25% improvements of wing drag-due-to-lift efficiency can be obtained with joined tip configurations and vertically separated lifting elements without considering additional benefits that might be realized by improved structural efficiency. It is strongly recommended that an integrated aerodynamic/structural approach be taken in the design of (or research on) future out-of-plane configurations.

  9. Experimental drag histories of shocked spherical particles

    NASA Astrophysics Data System (ADS)

    Prestridge, Katherine; Orlicz, Greg; Martinez, Adam

    2015-11-01

    The horizontal shock tube (HST) facility at Los Alamos is used to investigate the drag forces on micrometer-sized particles dispersed in air when they are accelerated by a shock. Eight-frame, high-speed particle tracking velocimetry/accelerometry (PTVA) diagnostics are implemented to measure the trajectory of individual particles with high spatial and temporal resolution, and a shadowgraphy system is used to measure the shock position on each image. We present experiments over a range of Reynolds numbers, Mach numbers, particle sizes, and particle densities that explore the drag forces on solid, spherical, non-deforming particles. Experimental drag coefficients are calculated from eight dynamic measurements of particle position versus time, for Mach 1.3 and Mach 1.2 experiments. Experimental results show drag coefficients significantly larger than those predicted by the standard drag model for solid, spherical particles. These results are consistent with measurements made by Rudinger (1970) and Sommerfeld (1985). We will present experimental results and analysis of unsteady drag as a function of particle Reynolds number, Mach number and Stokes number.

  10. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  11. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  12. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  13. Statistical Analysis of CFD Solutions from the Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    2002-01-01

    A simple, graphical framework is presented for robust statistical evaluation of results obtained from N-Version testing of a series of RANS CFD codes. The solutions were obtained by a variety of code developers and users for the June 2001 Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration used for the computational tests is the DLR-F4 wing-body combination previously tested in several European wind tunnels and for which a previous N-Version test had been conducted. The statistical framework is used to evaluate code results for (1) a single cruise design point, (2) drag polars and (3) drag rise. The paper concludes with a discussion of the meaning of the results, especially with respect to predictability, Validation, and reporting of solutions.

  14. Rarefaction Effects in Hypersonic Aerodynamics

    NASA Astrophysics Data System (ADS)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  15. Drag reductions obtained by modifying a box-shaped ground vehicle

    NASA Technical Reports Server (NTRS)

    Saltzman, E. J.; Meyer, R. R., Jr.; Lux, D. P.

    1974-01-01

    A box-shaped ground vehicle was used to simulate the aerodynamic drag of high volume transports, that is, delivery vans, trucks, or motor homes. The coast-down technique was used to define the drag of the original vehicle, having all square corners, and several modifications of the vehicle. Test velocities ranged up to 65 miles per hour, which provided maximum Reynolds numbers of 1 times 10 to the 7th power based on vehicle length. One combination of modifications produced a reduction in aerodynamic drag of 61 percent as compared with the original square-cornered vehicle.

  16. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  17. An experimental and theoretical analysis of the aerodynamic characteristics of a biplane-winglet configuration. M.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gall, P. D.

    1984-01-01

    Improving the aerodynamic characteristics of an airplane with respect to maximizing lift and minimizing induced and parasite drag are of primary importance in designing lighter, faster, and more efficient aircraft. Previous research has shown that a properly designed biplane wing system can perform superiorly to an equivalent monoplane system with regard to maximizing the lift-to-drag ratio and efficiency factor. Biplanes offer several potential advantages over equivalent monoplanes, such as a 60-percent reduction in weight, greater structural integrity, and increased roll response. The purpose of this research is to examine, both theoretically and experimentally, the possibility of further improving the aerodynamic characteristics of the biplanes configuration by adding winglets. Theoretical predictions were carried out utilizing vortex-lattice theory, which is a numerical method based on potential flow theory. Experimental data were obtained by testing a model in the Pennsylvania State University's subsonic wind tunnel at a Reynolds number of 510,000. The results showed that the addition of winglets improved the performance of the biplane with respect to increasing the lift-curve slope, increasing the maximum lift coefficient, increasing the efficiency factor, and decreasing the induced drag. A listing of the program is included in the Appendix.

  18. Computer program documentation for a subcritical wing design code using higher order far-field drag minimization

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Shu, J. Y.

    1981-01-01

    A subsonic, linearized aerodynamic theory, wing design program for one or two planforms was developed which uses a vortex lattice near field model and a higher order panel method in the far field. The theoretical development of the wake model and its implementation in the vortex lattice design code are summarized and sample results are given. Detailed program usage instructions, sample input and output data, and a program listing are presented in the Appendixes. The far field wake model assumes a wake vortex sheet whose strength varies piecewise linearly in the spanwise direction. From this model analytical expressions for lift coefficient, induced drag coefficient, pitching moment coefficient, and bending moment coefficient were developed. From these relationships a direct optimization scheme is used to determine the optimum wake vorticity distribution for minimum induced drag, subject to constraints on lift, and pitching or bending moment. Integration spanwise yields the bound circulation, which is interpolated in the near field vortex lattice to obtain the design camber surface(s).

  19. Hydrodynamic and Aerodynamic Characteristics of a Model of a Supersonic Multijet Water-Based Aircraft Equipped with Supercavitating Hydrofoils

    NASA Technical Reports Server (NTRS)

    McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.

    1960-01-01

    The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.

  20. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattic method, L216 (DUBFLX). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Richard, M.; Harrison, B. A.

    1979-01-01

    The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  1. Drag of C-Class Airship Hulls of Various Fineness Ratios

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Smith, R H; Louden, F A

    1929-01-01

    This report presents the results of wind-tunnel tests on eight C-class airship hulls with various fineness ratios, conducted in the Navy Aerodynamic Laboratory, Washington. The purpose of the tests was to determine the variation of resistance with fineness ratio, and also to find the pressure and friction elements of the total drag for the model having the least shape coefficient. Seven C-class airship hulls with fineness ratios of 1.0, 1.5, 2.0, 3.0, 6.0, 8.0, and 10.0 were made and verified. These models and also the previously constructed original C-class hull, whose fineness ratio is 4.62, were then tested in the 8 by 8 foot tunnel for drag of 0 degree pitch and yaw, at various wind speeds. The original hull, which was found to have the least shape coefficient, was then tested for pressure distribution over the surface at various wind speeds. (author)

  2. Some comments on trim drag

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1975-01-01

    A discussion of data of and methods for predicting trim drag is presented. Specifically the following subjects are discussed: (1) economic impact of trim drag; (2) the trim drag problem in propeller driven airplanes and the effect of propeller and nacelle location; (3) theoretical procedures for predicting trim drag; and (4) research needs in the area of trim drag.

  3. Covariance analysis of differential drag-based satellite cluster flight

    NASA Astrophysics Data System (ADS)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  4. Low speed aerodynamic characteristics of a 17 percent thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1973-01-01

    Wind-tunnel tests have been conducted to determine the low-speed two-dimensional aerodynamic characteristics of a 17-percent-thick airfoil designed for general aviation applications (GA(W)-1). The results were compared with predictions based on a theoretical method for calculating the viscous flow about the airfoil. The tests were conducted over a Mach number range from 0.10 to 0.28. Reynolds numbers based on airfoil chord varied from 2.0 million to 20.0 million. Maximum section lift coefficients greater than 2.0 were obtained and section lift-drag ratio at a lift coefficient of 1.0 (climb condition) varied from about 65 to 85 as the Reynolds number increased from about 2.0 million to 6.0 million.

  5. Grid and aerodynamic sensitivity analyses of airplane components

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.

    1993-01-01

    An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B-Splines) for defining the wing-section geometry. An interactive algebraic grid generation technique, known as Two-Boundary Grid Generation (TBGG) is employed to generate C-type grids around wing-sections. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the wing-section surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the wing-section.

  6. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  7. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2001-01-01

    An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number

  8. Flight in slow motion: aerodynamics of the pterosaur wing

    PubMed Central

    Palmer, Colin

    2011-01-01

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders. PMID:21106584

  9. Aerodynamic Characteristics of a 0.04956-Scale Model of the Convair TF-102A Airplane at Transonic Speeds, Coord. No. AF-120

    NASA Technical Reports Server (NTRS)

    Osborne, Robert S.

    1957-01-01

    The basic aerodynamic characteristics of a 0.04956-scale model of the Convair TF-102A airplane with controls undeflected have been determined at Mach numbers from 0.60 to 1.135 for angles of attack up to approximately 22 deg in the Langley 8-foot transonic tunnel. In addition, comparisons have been made with data obtained from a previous investigation of a 0.04956-scale model of the Convair F-102A airplane. The results indicated the TF-102A airplane was longitudinally stable for all conditions tested. An increase in lift-curve slope from 0.045 to 0.059 and an 11-percent rearward shift in aerodynamic-center location occurred with increases in Mach number from 0.60 to approximately 1.05. The zero-lift drag coefficient for the TF-102A airplane increased 145 percent between the Mach numbers of 0.85 and 1.075; the maximum lift-drag ratio decreased from 9.5 at a Mach number of 0.60 to 5.0 at Mach numbers above 1.025. There was little difference in the lift and pitching-moment characteristics and drag due to life between the TF-102A and F-102A configurations. However, as compared with the F-102A airplane, the zero-lift drag-rise Mach number for the TF-102A was reduced by at least 0.06, the zero-lift peak wave drag was increased 50 percent, and the maximum lift-drag ratio was reduced as much as 20 percent.

  10. Aerodynamic laboratory at Cuatro Vientos

    NASA Technical Reports Server (NTRS)

    JUBERA

    1922-01-01

    This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.

  11. Missile Aerodynamics for Ascent and Re-entry

    NASA Technical Reports Server (NTRS)

    Watts, Gaines L.; McCarter, James W.

    2012-01-01

    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

  12. Air flow testing on aerodynamic truck

    NASA Technical Reports Server (NTRS)

    1975-01-01

    After leasing a cab-over tractor-trailer from a Southern California firm, Dryden researchers added sheet metal modifications like those shown here. They rounded the front corners and edges, and placed a smooth fairing on the cab's roofs and sides extending back to the trailer. During the investigation of truck aerodynamics, the techniques honed in flight research proved highly applicable. By closing the gap between the cab and the trailer, for example, researchers discovered a significant reduction in aerodynamic drag, one resulting in 20 to 25 percent less fuel consumption than the standard design. Many truck manufacturers subsequently incorporated similar modifications on their products.

  13. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  14. Some comments on fuselage drag

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1975-01-01

    The following areas relating to fuselage drag are considered: (1) fuselage fineness - ratio and why and how this can be selected during preliminary design; (2) windshield drag; (3) skin roughness; and (4) research needs in the area of fuselage drag.

  15. Space Shuttle Orbital Drag Parachute Design

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert E.

    2001-01-01

    The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.

  16. Parasite-Drag Measurements of Five Helicopter Rotor Hubs

    NASA Technical Reports Server (NTRS)

    Churchill, Gary B.; Harrington, Robert D.

    1959-01-01

    An investigation has been conducted in the Langley full-scale tunnel to determine the parasite drag of five production-type helicopter rotor hubs. Some simple fairing arrangements were attempted in an effort to reduce the hub drag. The results indicate that, within the range of the tests, changes in angle of attack, hub rotational speed, and forward speed generally had only a small effect on the equivalent flat-plate area representing parasite drag. The drag coefficients of the basic hubs, based on projected hub frontal area, increased with hub area and varied from 0.5 to 0.76 for the hubs tested.

  17. Vortex shedding and aerodynamic performance of an airfoil with multi-scale trailing edge modifications

    NASA Astrophysics Data System (ADS)

    Nedic, Jovan; Vassilicos, J. Christos

    2014-11-01

    An experimental investigation was conducted into the aerodynamic performance and nature of the vortex shedding generated by truncated and non-flat serrated trailing edges of a NACA 0012 wing section. The truncated trailing edge generates a significant amount of vortex shedding, whilst increasing both the maximum lift and drag coefficients, resulting in an overall reduction in the maximum lift-to-drag ratio (L/D) compared to a plain NACA0012 wing section. By decreasing the chevron angle (ϕ) of the non-flat trailing edge serrations (i.e. by making them sharper), the energy of the vortex shedding significantly decreases and L/D increase compared to a plain NACA0012 wing section. Fractal/multi-scale patterns were also investigated with a view to further improve performance. It was found that the energy of the vortex shedding increases with increasing fractal iteration if the chevron is broad (ϕ ~65°), but decreases for sharper chevrons (ϕ =45°). It is believed that if ϕ is too big, the multi-scale trailing edges are too far away from each other to interact and break down the vortex shedding mechanism. Fractal/multi-scale trailing edges are also able to improve aerodynamic performance compared to the NACA 0012 wing section.

  18. Advancements in adaptive aerodynamic technologies for airfoils and wings

    NASA Astrophysics Data System (ADS)

    Jepson, Jeffrey Keith

    Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as

  19. Drag and Longitudinal Trim at Low Lift of the North American YF-100A Airplane at Mach Numbers from 0.76 to 1.77 as Determined from the Flight Test of a 0.11-Scale Rocket Model

    NASA Technical Reports Server (NTRS)

    Blanchard, Willard S.

    1953-01-01

    Drag and longitudinal trim at low lift of the North American YF-100A airplane at Mach numbers from 0.76 to 1.77 as determined from the flight test of a 0.11-scale rocket model are presented herein. Also included are some longitudinal stability and some qualitative pitch-damping data. The subsonic external-drag-coefficient level was about 0.012, and the supersonic level was about 0.043. The drag rise occurred at a Mach number of 0.95. The longitudinal trim change at low lift consisted basically of a mild nose-up tendency at a Mach number of 0.90. An indication of wing flutter was present at Mach numbers from 0.95 to 1.11. However, the full-scale airplane wing has approximately twice the scaled first-bending frequency as the model tested and, hence, will probably be free of this type of flutter. The aerodynamic-center location was 71 percent behind the leading edge of the mean aerodynamic chord at a Mach number of 1.03 and 62 percent at a Mach number of 1.74. Qualitative measurement of damping in pitch indicates that at low lift coefficients damping will be low at a Mach number of 1.03.

  20. Moderate lift-to-drag aeroassist

    NASA Technical Reports Server (NTRS)

    Florence, D. E.; Fischer, G.

    1984-01-01

    Significant performance benefits are realized via aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low Earth orbit. This approach substantially reduces the mission propellant requirements by using the aerodynamic drag, D, to brake the vehicle to near circular velocity and the aerodynamic lift, L, to null out accumulated errors as well as change the orbital inclination to that required for rendezvous with the Space Shuttle Orbiter. Broad concept evaluations were performed and the technology requirements and sensitivities for aeroassisted OTV's over a range of vehicle hypersonic L/D from 0.75 to 1.5 were systematically identified and assessed. The aeroassisted OTV is capable of evolving from an initial delivery only system to one eventually capable of supporting manned roundtrip missions to geosynchronous orbit. Concept screening was conducted on numerous configurations spanning the L/D = 0.75 to 1.5 range, and several with attractive features were identified. Initial payload capability was evaluated for a baseline of delivery to GEO, six hour polar, and Molniya (12 hours x 63.4 deg) orbits with return and recovery of the aeroassist orbit transfer vehicle (AOTV) at LEO. Evolutionary payload requirements that were assessed include a GEO servicing mission (6K up and 2K return) and a manned GEO mission (14K roundtrip).

  1. Optimal propellantless rendez-vous using differential drag

    NASA Astrophysics Data System (ADS)

    Dell`Elce, L.; Kerschen, G.

    2015-04-01

    Optimization of fuel consumption is a key driver in the design of spacecraft maneuvers. For this reason, growing interest in propellant-free maneuvers is observed in the literature. Because it allows us to turn the often-undesired drag perturbation into a control force for relative motion, differential drag is among the most promising propellantless techniques for low-Earth orbiting satellites. An optimal control approach to the problem of orbital rendez-vous using differential drag is proposed in this paper. Thanks to the scheduling of a reference maneuver by means of a direct transcription, the method is flexible in terms of cost function and can easily account for constraints of various nature. Considerations on the practical realization of differential-drag-based maneuvers are also provided. The developments are illustrated by means of high-fidelity simulations including coupled 6-degree-of-freedom simulations and an advanced aerodynamic model.

  2. Dynamics of Drag Free Formations in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ploen, Scott R.; Scharf, Daniel P.; Hadaegh, Fred. Y.; Acikmese, A. Behcet

    2004-01-01

    In this paper the translational equations of motion of a formation of n spacecraft in Earth orbit, n(sub f) of which are drag-free spacecraft, are derived in a coordinate-free manner using the balance of linear momentum and direct tensor notation. A drag-free spacecraft consists of a spacecraft bus and a proof mass shielded from external disturbances in an internal cavity. By controlling the spacecraft so that the proof mass remains centered in the cavity, the spacecraft follows a purely gravitational orbit. The results described in this paper provide a first step toward coupling drag-free control technology with formation flying in order to mitigate the effect of differential aerodynamic drag on formation flying missions (e.g., Earth imaging applications) in low Earth orbit.

  3. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  4. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  5. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  6. Cruise aerodynamics of USB nacelle/wing geometric variations

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.

    1976-01-01

    Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.

  7. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  8. Wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Migliore, P G; Miller, L S; Quandt, G A

    1995-04-01

    Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).

  9. Advanced airfoil design empirically based transonic aircraft drag buildup technique

    NASA Technical Reports Server (NTRS)

    Morrison, W. D., Jr.

    1976-01-01

    To systematically investigate the potential of advanced airfoils in advance preliminary design studies, empirical relationships were derived, based on available wind tunnel test data, through which total drag is determined recognizing all major aircraft geometric variables. This technique recognizes a single design lift coefficient and Mach number for each aircraft. Using this technique drag polars are derived for all Mach numbers up to MDesign + 0.05 and lift coefficients -0.40 to +0.20 from CLDesign.

  10. Aerodynamic influence coefficient method using singularity splines.

    NASA Technical Reports Server (NTRS)

    Mercer, J. E.; Weber, J. A.; Lesferd, E. P.

    1973-01-01

    A new numerical formulation with computed results, is presented. This formulation combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of the loading function methods. The formulation employs a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfies all of the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise (termed 'spline'). Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral.

  11. Aerodynamic influence coefficient method using singularity splines

    NASA Technical Reports Server (NTRS)

    Mercer, J. E.; Weber, J. A.; Lesferd, E. P.

    1974-01-01

    A numerical lifting surface formulation, including computed results for planar wing cases is presented. This formulation, referred to as the vortex spline scheme, combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of loading function methods. The formulation employes a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfied all the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise. Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral. The current formulation uses the elementary horseshoe vortex as the basic singularity and is therefore restricted to linearized potential flow. As part of the study, a non planar development was considered, but the numerical evaluation of the lifting surface concept was restricted to planar configurations. Also, a second order sideslip analysis based on an asymptotic expansion was investigated using the singularity spline formulation.

  12. On a global aerodynamic optimization of a civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Savu, G.; Trifu, O.

    1991-01-01

    An aerodynamic optimization procedure developed to minimize the drag to lift ratio of an aircraft configuration: wing - body - tail, in accordance with engineering restrictions, is described. An algorithm developed to search a hypersurface with 18 dimensions, which define an aircraft configuration, is discussed. The results, when considered from the aerodynamic point of view, indicate the optimal configuration is one that combines a lifting fuselage with a canard.

  13. Reconfiguration parameters for drag of flexible cylindrical elements

    NASA Astrophysics Data System (ADS)

    John, Chapman; Wilson, Bruce; Gulliver, John

    2015-11-01

    This presentation compares parameters that characterize reconfiguration effects on flow resistance and drag. The drag forces occurring on flexible bluff bodies are different from the drag occurring on rigid bluff bodies due to reconfiguration. Drag force data, collected using a torque sensor in a flume, for simple cylindrical obstructions of the same shape and size but with different flexibility is used to fit drag parameters. The key parameter evaluated is a reference velocity factor u to account for drag reduction due to reconfiguration, similar to a Vogel exponent. Our equations preserves the traditional exponent of the drag relationship, but places a factor onto the drag coefficient for flexible elements, rather than a Vogel exponent arrangement applied to the flow velocity. Additionally we relate the reference velocity factor u to the modulus of elasticity of the material through the Cauchy Number. The use of a reference velocity factor u in place of a Vogel exponent appears viable to account for how the drag forces are altered by reconfiguration. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study. Unfortunately, the mechanical properties of vegetation are not often readily available for reconfiguration relationships to the elastic modulus of vegetation to be of immediate practical use.

  14. The Direct Measurement of Base Drag for Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Lv, Zhi-guo; Li, Guo-jun; Jiang, Hua; Zhao, Rong-juan; Wang, Gang; Huang, Jun

    A new base drag measurement method has been introduced in this paper. In tradition method, the base drag of the model was measured by the pressure transducer located on the bottom of the model. In this method, the base drag was measured with piezoelectric balance directly. The drag force was measured twice by fixing the model base segment to the model or the balance, the difference between these two measurements is considered as the base drag of the model. The wind tunnel test was carried out in φ0.6m shock tunnel of CARDC with a cone model. The base drag of cone model was measured in the flow field of M(=8.42, Re(l=9.67(106/m with the attack angle of 0(. The results showed that the base drag coefficient of the cone model is 0.0015. It means that the base drag can't be ignored in high precision tests, and it can be measured by piezoelectric balance in shock tunnel. The length of the tail sting affects the axis force test result. In the same attack angle, the base drag of high lift/drag ratio model decreases with the increasing of flow field Mach number.

  15. Induced drag of multiplanes

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1924-01-01

    The most important part of the resistance or drag of a wing system,the induced drag, can be calculated theoretically, when the distribution of lift on the individual wings is known. The calculation is based upon the assumption that the lift on the wings is distributed along the wing in proportion to the ordinates of a semi-ellipse. Formulas and numerical tables are given for calculating the drag. In this connection, the most favorable arrangements of biplanes and triplanes are discussed and the results are further elucidated by means of numerical examples.

  16. Drag measurements in tubular structure elements. Part 3: Effect of diameter and surface structure on the drag of cylindrical tubes

    NASA Technical Reports Server (NTRS)

    Schulz, G.; Hayn, F.

    1982-01-01

    Measurements on five cylinders with different surfaces show that the supercritical drag coefficient tends to 0.5 for smooth cylinders with maximum critical Re number 4.16 times 10 to the -5 power and to 0.6 for point pattern surfaces with Re number reduced to 2.16 times 10 to the -5 power. For the other surfaces, with increasing roughness the critical Re number decrease while both minimum supercritical drag coefficients increase.

  17. Assessment of two fast codes used for preliminary aerodynamic design of guided projectiles

    NASA Astrophysics Data System (ADS)

    Mikhail, Ameer G.

    1986-07-01

    Two missile aerodynamic prediction fast codes, namely NSWCAP and Missile-DATCOM, have been applied to the geometry of the guided, gun-launched Copperhead projectile. Assessment of the two codes was made in comparison with wind tunnel and free-flight range test data. Two configurations were considered for computation: the launch configuration (body-tail) in the Mach range of 0.5 to 1.8 and the maneuvering configuration (body-wing-tail) in the Mach range of 0.3 to 0.95. Results show reasonable agreement for the drag coefficient, C sub D, and show very large disagreements for both C sub N sub alpha and C sub M sub alpha. The incapability of both codes to include body slots and fin gap effects seems to have contributed largely to these differences. The dynamic derivatives C sub l sub p and (C sub M sub q + C sub M sub alpha) are not adequately estimated by the NSWCAP code, and are not calculated in the DATCOM code. For the coefficients actually computed, the DATCOM code results were slightly more accurate than those of the NSWCAP code. Both codes lack the determination of the explicit effects of control surface deflection angles on the aerodynamic coefficients. Development is needed for the determination if both codes are to be used for predictions for guided projectiles. Several areas of improvements in both codes are identified.

  18. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  19. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  20. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  1. Arrangement of Bodies of Revolution in Supersonic Flow to Reduce Wave Drag

    NASA Technical Reports Server (NTRS)

    Friedman, Morris D

    1951-01-01

    The wave drag of a combination of slender bodies of revolution at zero angle of attack is studied with a view to determining the arrangements for which the total drag is a minimum.Linearized theory is used to calculate the pressure distribution in the field surrounding the bodies. The interference drag coefficient is computed for different arrangements. The special cases of two bodies and of a three-body combination with bilateral symmetry are considered. The bodies treated are of the form determined by Sears and Haack as having minimum wave drag for prescribed volume and length. They also have equal fineness ratios. Numerical calculations of the drag coefficient of interference are carried out and curves are drawn which show the relative positions at which minimum drag occurs. A three-body configuration is found for which the total wave drag is about 35 percent less than the sum of the individual wave drags of the three bodies.

  2. Hub and pylon fairing integration for helicopter drag reduction

    NASA Technical Reports Server (NTRS)

    Martin, D. M.; Mort, R. W.; Squires, P. K.; Young, L. A.

    1991-01-01

    The results of testing hub and pylon fairings mounted on a one-fifth scale helicopter with the goal of reducing parasite drag are presented. Lift, drag, and pitching moment, as well as side force and yawing moment, were measured. The primary objective of the test was to validate the drag reduction capability of integrated hub and pylon configurations in the aerodynamic environment produced by a rotating hub in forward flight. In addition to the baseline helicopter without fairings, three hub fairings and three pylon fairings were tested in various combinations. The three hub fairings tested reflect two different conceptual design approaches to implementing an integrated fairing configuration on an actual aircraft. The design philosophy is discussed in detail and comparisons are made between the wind tunnel models and potential full-scale prototypes. The data show that model drag can be reduced by as much as 20.8 percent by combining a small hub fairing with circular arc upper and flat lower surfaces and a nontapered 34-percent thick pylon fairing. Aerodynamic effects caused by the fairings, which may have a significant impact on static longitudinal and directional stability, were observed. The results support previous research which showed that the greatest reduction in model drag is achieved if the hub and pylon fairings are integrated with minimum gap between the two.

  3. The aerodynamics of supersonic parachutes

    SciTech Connect

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlations of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.

  4. Drag Crisis of Gyro-Balls

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshiyuki; Miyazaki, Takeshi; Himeno, Ryutaro

    2007-11-01

    Using a high-speed video camera, we measured the trajectory and the rotation of a hard baseball thrown by a pitching machine which can launch Gyro-Balls (rifle spinning balls). We determined the drag- and lift- coefficients by analyzing the video images. The measurements were performed in the range of 0.6x10^5drag coefficient of a 4-seam gyro-ball with SP=0.12,0.23 and 0.35, decreases gradually with Re. However, the drag coefficient of a 2-seam gyro-ball with SP=0.12 decreases in two steps, i.e. in the ranges 0.8x10^5drag coefficients of a 2-seam Gyro-Ball with SP=0.23,0.35 are almost constant below Re=1.6x10^5 and Re=1.3x10^5, respectively. Their minima are attained at Re=1.8x10^5 and Re=1.6x10^5, respectively. These findings confirm the occurrence of the drag crisis for Gyro-Balls. The different Re-dependencies are due to the different seam patterns.

  5. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  6. Wind-Tunnel Investigations of Blunt-Body Drag Reduction Using Forebody Surface Roughness

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Sprague, Stephanie; Naughton, Jonathan W.; Curry, Robert E. (Technical Monitor)

    2001-01-01

    This paper presents results of wind-tunnel tests that demonstrate a novel drag reduction technique for blunt-based vehicles. For these tests, the forebody roughness of a blunt-based model was modified using micomachined surface overlays. As forebody roughness increases, boundary layer at the model aft thickens and reduces the shearing effect of external flow on the separated flow behind the base region, resulting in reduced base drag. For vehicle configurations with large base drag, existing data predict that a small increment in forebody friction drag will result in a relatively large decrease in base drag. If the added increment in forebody skin drag is optimized with respect to base drag, reducing the total drag of the configuration is possible. The wind-tunnel tests results conclusively demonstrate the existence of a forebody dragbase drag optimal point. The data demonstrate that the base drag coefficient corresponding to the drag minimum lies between 0.225 and 0.275, referenced to the base area. Most importantly, the data show a drag reduction of approximately 15% when the drag optimum is reached. When this drag reduction is scaled to the X-33 base area, drag savings approaching 45,000 N (10,000 lbf) can be realized.

  7. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  8. Experimental measurement of the aerodynamic charateristics of two-dimensional airfoils for an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Velazquez, Luis; Nožička, Jiří; Vavřín, Jan

    2012-04-01

    This paper is part of the development of an airfoil for an unmanned aerial vehicle (UAV) with internal propulsion system; the investigation involves the analysis of the aerodynamic performance for the gliding condition of two-dimensional airfoil models which have been tested. This development is based on the modification of a selected airfoil from the NACA four digits family. The modification of this base airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface since the UAV will have an internal propulsion system. This analysis involved obtaining the lift, drag and pitching moment coefficients experimentally for the situation where there is not flow through the blowing outlet, called the no blowing condition by means of wind tunnel tests. The methodology to obtain the forces experimentally was through an aerodynamic wire balance. Obtained results were compared with numerical results by means of computational fluid dynamics (CFD) from references and found in very good agreement. Finally, a selection of the airfoil with the best aerodynamic performance is done and proposed for further analysis including the blowing condition.

  9. An entropy method for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Greene, George C.

    1989-01-01

    A fundamentally new approach to the aircraft minimum induced drag problem is presented. The method, a 'viscous lifting line', is based on the minimum entropy production principle and does not require the planar wake assumption. An approximate, closed form solution is obtained for several wing configurations including a comparison of wing extension, winglets, and in-plane wing sweep, with and without a constraint on wing-root bending moment. Like the classical lifting-line theory, this theory predicts that induced drag is proportional to the square of the lift coefficient and inversely proportioinal to the wing aspect ratio. Unlike the classical theory, it predicts that induced drag is Reynolds number dependent and that the optimum spanwise circulation distribution is non-elliptic.

  10. Effects of Outboard Thickened and Blunted Leading Edges on the Wave Drag of a 45 Degree Swept-Wing and Body Combination

    NASA Technical Reports Server (NTRS)

    Holdaway, George H.; Lazzeroni, Frank A.; Hatfield, Elaine W.

    1959-01-01

    An investigation to evaluate the effects of thickened and blunted leading-edge modifications on the wave drag of a swept wing has been made at Mach numbers from 0.65 to 2.20 and at a Reynolds number of 2,580,000 based on the mean aerodynamic chord of the basic wing. Two leading-edge designs were investigated and they are referred to as the thickened and the blunted modifications although both sections had equally large leading-edge radii. The thickened leading edge was formed by increasing the thickness over the forward 40 percent of the basic wing section. The blunted modification was formed by reducing the wing chords about 1 percent and by increasing the section thickness slightly over the forward 6 percent of the basic section in a manner to keep the wing sweep and volume essentially equal to the respective values for the basic wing. The basic wing had an aspect ratio of 3, a leading-edge sweep of 45 deg., a taper ratio of 0.4, and NACA 64AO06 sections perpendicular to a line swept back 39.45 deg., the quarter-chord line of these sections. Test results indicated that the thickened modification resulted in an increase in zero-lift drag coefficient of from 0.0040 to 0.0060 over values for the basic model at Mach numbers at which the wing leading edge was sonic or supersonic. Although drag coefficients of both the basic and thickened models were reduced at all test Mach numbers by body indentations designed for the range of Mach numbers from 1.00 to 2.00, the greater drag of the thickened model relative to that of the basic model was not reduced. The blunted model, however, had less than one quarter of the drag penalty of the thickened model relative to the basic model at supersonic leading-edge conditions (M greater or equal to root-2).

  11. Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, S.

    1985-01-01

    An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

  12. Low-speed aerodynamic characteristics of a twin-engine general aviation configuration with aft-fuselage-mounted pusher propellers

    NASA Technical Reports Server (NTRS)

    Dunham, Dana Morris; Gentry, Garl L., Jr.; Manuel, Gregory S.; Applin, Zachary T.; Quinto, P. Frank

    1987-01-01

    An investigation was conducted to determine the aerodynamic characteristics of an advanced turboprop aircraft model with aft-pylon-mounted pusher propellers. Tests were conducted through an angle-of-attack range of -8 to 28 degrees, and an angle-of-sideslip range of -20 to 20 degrees at free-stream conditions corresponding to Reynolds numbers of 0.55 to 2.14 x 10 to the 6th power based on mean aerodynamic chord. Test results show that for the unpowered configurations the maximum lift coefficients for the cruise, takeoff, and landing configurations are 1.45, 1.90, and 2.10, respectively. Nacelle installation results in a drag coefficient increase of 0.01. Increasing propeller thrust results in a significant increase in lift for angles of attack above stall and improves the longitudinal stability. The cruise configuration remains longitudinally stable to an angle of attack 5 degrees beyond the stall angle, the takeoff configuration is stable 4 degrees beyond stall angle, and the landing configuration is stable 3 degrees beyond stall angle. The predominant effect of symmetric thrust on the lateral-directional aerodynamic characteristics is in the post-stall region, where additional rudder control is available with power on.

  13. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  14. Applications of low lift to drag ratio aerobrakes using angle of attack variation for control

    NASA Technical Reports Server (NTRS)

    Mulqueen, J. A.

    1991-01-01

    Several applications of low lift to drag ratio aerobrakes are investigated which use angle of attack variation for control. The applications are: return from geosynchronous or lunar orbit to low Earth orbit; and planetary aerocapture at Earth and Mars. A number of aerobrake design considerations are reviewed. It was found that the flow impingement behind the aerobrake and the aerodynamic heating loads are the primary factors that control the sizing of an aerobrake. The heating loads and other loads, such as maximum acceleration, are determined by the vehicle ballistic coefficient, the atmosphere entry conditions, and the trajectory design. Several formulations for defining an optimum trajectory are reviewed, and the various performance indices that can be used are evaluated. The 'nearly grazing' optimal trajectory was found to provide the best compromise between the often conflicting goals of minimizing the vehicle propulsive requirements and minimizing vehicle loads. The relationship between vehicle and trajectory design is investigated further using the results of numerical simulations of trajectories for each aerobrake application. The data show the sensitivity of the trajectories to several vehicle parameters and atmospheric density variations. The results of the trajectory analysis show that low lift to drag ratio aerobrakes, which use angle of attack variation for control, can potentially be used for a wide range of aerobrake applications.

  15. Theoretical and experimental investigation of additive drag

    NASA Technical Reports Server (NTRS)

    Sibulkin, Merwin

    1954-01-01

    The significance of additive drag is discussed and equations for determining its approximate value are derived for annular and open-nose inlets. Charts are presented giving values of additive drag coefficient over a range of free-stream Mach numbers for open and for annular-nose inlets with conical flow at the inlet. The effects on additive drag of variable inlet-total-pressure recovery and static pressures on the centerbody are investigated and an analytical method of predicting the variation of pressure on the centerbody with mass-flow ratio is given. Experimental additive-drag values are presented for a series of 20 degree and 25 degree cone half-angle inlets and one open-nose inlet operating at free-stream Mach numbers of 1.8 and 1.6. A comparison with the theoretical values of additive drag shows excellent agreement for the open-nose inlet and moderately good agreement for the annular inlets. (author)

  16. Simultaneous drag and flow measurements of Olympic skeleton athletes

    NASA Astrophysics Data System (ADS)

    Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy

    2009-11-01

    The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.

  17. Drag-shield drop tower residual acceleration optimisation

    NASA Astrophysics Data System (ADS)

    Figueroa, A.; Sorribes-Palmer, F.; Fernandez De Pierola, M.; Duran, J.

    2016-07-01

    Among the forces that appear in drop towers for microgravity experiments, aerodynamic drag plays a crucial role in the residual acceleration. Buoyancy can also be critical, especially at the first instances of the drop when the low speed of the experimental platform makes the aerodynamic drag small compared with buoyancy. In this paper the perturbation method is used to formulate an analytical model which has been validated experimentally. The experimental test was conduced by undergraduate students of aerospace engineering at the Institute of Microgravity ‘Ignacio Da Riva’ of the Technical University of Madrid (IDR/UPM) microgravity tower. The test helped students to understand the influence of the buoyancy on the residual acceleration of the experiment platform. The objective of the students was to understand the physical process during the drop, identify the main parameters involved in the residual acceleration and determine the most suitable configuration for the next drop tower proposed to be built at UPM.

  18. Experimental study on the effects of nose geometry on drag over axisymmetric bodies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Brooker, B. Tyler

    A new nose shape that was determined using the penetration mechanics to have the least penetration drag has been tested in the supersonic wind tunnel of the University of Alabama to determine the aerodynamic characteristics of this nose shape. The aerodynamic drag measured on the new nose shape and on four additional nose shapes are compared to each other. The results show that the new nose shape has the least aerodynamic drag. The measurements were made at Mach numbers ranging from 1.85 to 3.1. This study also required the maintenance of several components of the University of Alabama's 6-inch by 6-inch supersonic wind tunnel and modification of the existing data acquisition programs. These repairs and modifications included the repair and recalibration of the supersonic wind tunnel, repair of the four component force balance, and the modification of the tunnel's control program.

  19. Lift and Drag Measurements of Superhydrophobic Hydrofoils

    NASA Astrophysics Data System (ADS)

    Sur, Samrat; Kim, Jeong-Hyun; Rothstein, Jonathan

    2015-11-01

    For several years, superhydrophobic surfaces which are chemically hydrophobic with micron or nanometer scale surface features have been considered for their ability to reduce drag and produce slip in microfluidic devices. More recently it has been demonstrated that superhydrophobic surfaces reduce friction coefficient in turbulent flows as well. In this talk, we will consider that modifying a hydrofoil's surface to make it superhydrophobic has on the resulting lift and drag measurements over a wide range of angles of attack. Experiments are conducted over the range of Reynolds numbers between 10,000drag and lift coefficients along with changes to separation point at high angles of attack are observed when the hydrofoil is made superhydrophobic. The hydrofoils are coated Teflon that has been hot embossed with a 325grit stainless steel woven mesh to produce a regular pattern of microposts. In addition to fully superhydrophobic hydrofoils, selectively coated symmetrical hydrofoils will also be examined to study the effect that asymmetries in the surface properties can have on lift and drag. Partially funded by NSF CBET-1334962.

  20. Modeling an increase in the lift and aerodynamic efficiency of a thick Göttingen airfoil with optimum arrangement

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Sudakov, A. G.; Usachov, A. E.; Kharchenko, V. B.

    2015-06-01

    The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow line have been numerically solved jointly with the energy equation. The obtained solution has been used to calculate subsonic flow (at M = 0.05 and 5° angle of attack) past a thick (24% chord) Göttingen airfoil with variable arrangement of a small-sized (about 10% chord) circular vortex cell with fixed distributed suction Cq = 0.007 from the surface of a central body. It is established that the optimum arrangement of the vortex cell provides a twofold decrease in the bow drag coefficient Cx, a threefold increase in the lift coefficient Cy, and an about fivefold increase in the aerodynamic efficiency at Re = 105 in comparison to the smooth airfoil.

  1. Two-dimensional Aerodynamic Characteristics of 34 Miscellaneous Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K , Jr; Smith, Hamilton A

    1949-01-01

    The aerodynamic characteristics of 34 miscellaneous airfoils tested in the Langley two-dimensional low-turbulence tunnels are presented. The data include lift, drag, and in some cases, pitching-moment characteristics, for Reynolds numbers between 3.0 x 10 (exp 6) and 9.0 x 10 (exp 6).

  2. Effect of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft model at supersonic speeds. [in the langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1980-01-01

    The effects of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft configuration at Mach numbers of 1.6, 1.8, and 2.0 was investigated. Five conventional store configurations and six arrangements of a square store configuration were studied. All configurations of the stores produced small, positive increments in the pitching moment throughout the angle-of-attack range, but the configuration with area ruled wing tanks also had a slight decrease on stability at the higher angles of attack. There were some small changes in lift coefficient because of the addition of the stores, causing the drag increment to vary with the lift coefficient. As a result, there were corresponding changes in the increments of the maximum lift drag ratios. The store drag coefficient based on the cross sectional area of the stores ranged from a maximum of 1.1 for the configuration with three Maverick missiles to a minimum of about .040 for the two MK-84 bombs and the arrangements with four square stores touching or two square stores in tandem. Square stores located side by side yielded about 0.50 in the aft position compared to 0.74 in the forward position.

  3. Measuring the Effects of Lift and Drag on Projectile Motion

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  4. Large-eddy simulation of a turbulent flow over a heavy vehicle with drag reduction devices

    NASA Astrophysics Data System (ADS)

    Lee, Sangseung; Kim, Myeongkyun; You, Donghyun

    2015-11-01

    Aerodynamic drag contributes to a considerable amount of energy loss of heavy vehicles. To reduce the energy loss, drag reduction devices such as side skirts and boat tails, are often installed to the side and the rear of a heavy vehicle. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. Flow over a heavy vehicle with and without a boat tail and side skirts as drag reduction devices is simulated. The simulation results are validated against accompanying in-house experimental measurements. Effects of a boat tail and side skirts on drag reduction are discussed in detail. Supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) Grant NTIS 1615007940.

  5. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag-force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilever beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain-gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like those of a second-order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  6. Drag of Several Gunner's Enclosures at High Speeds, Special Report

    NASA Technical Reports Server (NTRS)

    Stack, John; Moberg, Richard J.

    1941-01-01

    The drag of several types of gunner's turrets, windshields, blisters, and other protuberances, including projecting guns, was investigated at speeds from 75 to 440 miles per hour in the NACA 8-foot high-speed wind tunnel. The various gunner's enclosures were represented by 1/10 and 1/7 full-size models on a midwing-fuselage combination representative of bomber types. Most of the usual types of retractable turrets are very poor aerodynamically; they caused wind drag increments, dependent upon the size of the turret relative to the fuselage and upon the speed, up to twice the drag of the fuselage alone. A large streamline blister sufficient to enclose completely one type of rotating cylindrical turret caused a drag increment of approximately one-half that of the turret and at the same time provided space adequate for two gunners rather than for one gunner. A large portion of the drag increments for some types of turret appeared to be due to adverse effects on the fuselage flow caused by the turret rather than by the direct drag of the turret.

  7. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cox, Jordan A.

    geometry to correlate the performance to these two features. The results of this study revealed that the performance of the bird wing was directly affected by feather motion. It was also found that the motion of covert and secondary covert feathers had the greatest influence on the performance. Increased coefficients of lift and drag were found when higher frequencies of these feathers were observed. Noticeable reductions in the coefficient of drag were found to be associated with micron level variations in the depth of surface features on the wing.

  8. Transient induced drag

    NASA Technical Reports Server (NTRS)

    Weihs, D.; Katz, J.

    1986-01-01

    In the present treatment of the calculation of forces on a wing that is suddenly brought into motion at a constant speed, attention is given to the unsteady potential's contribution to the force balance. Total bound vorticity is produced at the initial impulse. The results obtained are independent of wing aspect ratio; as time increases, this effect on the drag force becomes smaller as the vortex emanating from the trailing edge is left behind. The second contributor to induced drag is the spanwise vorticity shedding that results from the spanwise load distribution of three-dimensional wings. This contribution grows with time as the length of the wake grows.

  9. Computational flow predictions for hypersonic drag devices

    NASA Technical Reports Server (NTRS)

    Tokarcik, Susan A.; Venkatapathy, Ethiraj

    1993-01-01

    The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable flares and inflatable ballutes. Computational fluid dynamics (CFD) is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas solver are compared to computational results from a thermochemical nonequilibrium solver. The surface pressure coefficient, the drag, and the extend of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.

  10. Theoretical pressure distribution and wave drags for conical boattails

    NASA Technical Reports Server (NTRS)

    Jack, John R

    1953-01-01

    Afterbody pressure distributions and wave drag were calculated using a second-order theory for a variety of conical boattails at zero angle of attack. Results are presented for Mach numbers from 1.5 to 4.5, area ratios from 0.200 to 0.800, and boattail angle from 3 degrees to 11 degrees. The results indicate that for a given boattail angle, the wave drag decreases with increasing Mach number and area ratio. The wave drag, for a constant area ratio, increases with increasing boattail angle. For a specific Mach number, area ratio, and fineness ratio, a comparison of the wave-drag coefficients for conical, tangent-parabolic, and secant-parabolic boattails showed the conical boattail to have the smallest wave drag.

  11. Analysis of aerodynamic load on straight-bladed vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Kawabata, Toshiaki; Furukawa, Kazuma

    2014-08-01

    This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine (VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil (NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.

  12. Experimental and theoretical aerodynamic characteristics of a high-lift semispan wing model

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.

    1990-01-01

    Experimental and theoretical aerodynamic characteristics were compared for a high-lift, semispan wing configuration that incorporated a slightly modified version of the NASA Advanced Laminar Flow Control airfoil section. The experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel at chord Reynolds numbers of 2.36 and 3.33 million. A two-dimensional airfoil code and a three-dimensional panel code were used to obtain aerodynamic predictions. Two-dimensional data were corrected for three-dimensional effects. Comparisons between predicted and measured values were made for the cruise configuration and for various high-lift configurations. Both codes predicted lift and pitching moment coefficients that agreed well with experiment for the cruise configuration. These parameters were overpredicted for all high-lift configurations. Drag coefficient was underpredicted for all cases. Corrected two-dimensional pressure distributions typically agreed well with experiment, while the panel code overpredicted the leading-edge suction peak on the wing. One important feature missing from both of these codes was a capability for separated flow analysis. The major cause of disparity between the measured data and predictions presented herein was attributed to separated flow conditions.

  13. Overview of external Nacelle drag and interference drag

    NASA Technical Reports Server (NTRS)

    Neal, R. D.

    1975-01-01

    A historical view of multi-jet engine installations is given that emphasizes integration of the powerplant and the airframe in aircraft design for improved reduction in external nacelle drag and interference drag characteristics.

  14. Aerodynamic characteristics of NACA 4412 airfoil sction with flap

    NASA Astrophysics Data System (ADS)

    Ockfen, Alex E.; Matveev, Konstantin I.

    2009-09-01

    Wing-in-Ground vehicles and aerodynamically assisted boats take advantage of increased lift and reduced drag of wing sections in the ground proximity. At relatively low speeds or heavy payloads of these craft, a flap at the wing trailing-ground-effect flow id numerically investigated in this study. The computational method consists of a steady-state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed flow with a flap, as well as ground-effect motion without a flap. Aerodynamic forces are plain flap. Changes in the flow introduced with the flap addition are also discussed. Overall, the use of a flap on wings with small attack angles is found to be beneficial for small flap deflections up to 5% of the chord, where the contribution of lift augmentation exceeds the drag increase, yielding an augmented lift-to-drag ratio

  15. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Jake; Ray, Ronald; Calianno, Carl

    2004-01-01

    This viewgraph document reviews NASA Dryden's work on Aerial refueling, with specific interest in calculating the drag of the refueling system. The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust

  16. Aerodynamic design of electric and hybrid vehicles: A guidebook

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  17. Development of the Orion Crew Module Static Aerodynamic Database. Part 1; Hypersonic

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Walker, Eric L.; Robinson, Philip E.

    2011-01-01

    The Orion aerodynamic database provides force and moment coefficients given the velocity, attitude, configuration, etc. of the Crew Exploration Vehicle (CEV). The database is developed and maintained by the NASA CEV Aerosciences Project team from computational and experimental aerodynamic simulations. The database is used primarily by the Guidance, Navigation, and Control (GNC) team to design vehicle trajectories and assess flight performance. The initial hypersonic re-entry portion of the Crew Module (CM) database was developed in 2006. Updates incorporating additional data and improvements to the database formulation and uncertainty methodologies have been made since then. This paper details the process used to develop the CM database, including nominal values and uncertainties, for Mach numbers greater than 8 and angles of attack between 140deg and 180deg. The primary available data are more than 1000 viscous, reacting gas chemistry computational simulations using both the Laura and Dplr codes, over a range of Mach numbers from 2 to 37 and a range of angles of attack from 147deg to 172deg. Uncertainties were based on grid convergence, laminar-turbulent solution variations, combined altitude and code-to-code variations, and expected heatshield asymmetry. A radial basis function response surface tool, NEAR-RS, was used to fit the coefficient data smoothly in a velocity-angle-of-attack space. The resulting database is presented and includes some data comparisons and a discussion of the predicted variation of trim angle of attack and lift-to-drag ratio. The database provides a variation in trim angle of attack on the order of +/-2deg, and a range in lift-to-drag ratio of +/-0.035 for typical vehicle flight conditions.

  18. Acoustic Liner Drag: A Parametric Study of Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2015-01-01

    Interest in the characterization of the aerodynamic drag performance of acoustic liners has increased in the past several years. This paper details experiments in NASA Langley's Grazing Flow Impedance Tube to quantify the relative drag of several conventional perforate-over-honeycomb liner configurations. For a fixed porosity, facesheet hole diameter and cavity depth are varied to study the effect of each. These configurations are selected to span the range of conventional liner geometries used in commercial aircraft engines. Detailed static pressure and acoustic measurements are made for grazing flows up to M=0.5 at 140 dB SPL for tones between 400 and 2800 Hz. These measurements are used to calculate a resistance factor (?) for each configuration. Analysis shows a correlation between perforate hole size and the resistance factor but cavity depth seems to have little influence. Acoustic effects on liner drag are observed to be limited to the lower Mach numbers included in this investigation.

  19. Measuring the Effects of Lift and Drag on Projectile Motion

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-02-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms-1 (89.5 mph), it experiences a drag force of about 1.5 N. The gravitational force on the ball 1.42 N. Nevertheless, the trajectory of a baseball pitched without spin is not strongly affected by the drag force. Because the ball is relatively heavy and the flight distance is relatively small (about 60 ft), the drag force reduces the ball speed by only about 10% by the time it reaches the batter. As a result, the time taken for the ball to reach the batter is only about 5% longer than in a vacuum, and the actual trajectory is also very similar.2

  20. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  1. An investigation of drag reduction for tractor trailer vehicles

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1978-01-01

    Force and moment data were obtained from a one-twenty-fifth scale wind tunnel model of a cab-over-engine tractor trailer combination. The tests define the aerodynamic characteristics of the baseline (unmodified) vehicle and several modified configurations. The primary modifications consist of: (1) greatly increased forebody corner radii, (2) a smooth fairing over the cab-to-trailer gap, (3) a smoothed underbody, and (4) rear streamlining (boattailing)of the trailer. Tests were conducted for yaw angles from 0 deg to 30 deg. The reduction in drag, relative to the baseline, obtained by combining the modifications are compared for the zero yaw condition with full scale coast down drag results for similar configurations. The drag reductions obtained from the model and full scale tests are in good agreement.

  2. Effect of Groundboard Height on the Aerodynamic Characteristics of a Lifting Circular Cylinder Using Tangential Blowing from Surface Slots for Lift Generation

    NASA Technical Reports Server (NTRS)

    Lockwood, Vernard E.

    1961-01-01

    A wind-tunnel investigation has been made to determine the ground effect on the aerodynamic characteristics of a lifting circular cylinder using tangential blowing from surface slots to generate high lift coefficients. The tests were made on a semispan model having a length 4 times the cylinder diameter and an end plate of 2.5 diameters. The tests were made at low speeds at a Reynolds number of approximately 290,000, over a range of momentum coefficients from 0.14 to 4.60, and over a range of groundboard heights from 1.5 to 10 cylinder diameters. The investigation showed an earlier stall angle and a large loss of lift coefficient as the groundboard was brought close to the cylinder when large lift coefficients were being generated. For example, at a momentum coefficient of 4.60 the maximum lift coefficient was reduced from a value of 20.3 at a groundboard height of 10 cylinder diameters to a value of 8.7 at a groundboard height of 1.5 cylinder diameters. In contrast to this there was little effect on the lift characteristics of changes in groundboard height when lift coefficients of about 4.5 were being generated. At a height of 1.5 cylinder diameters the drag coefficients generally increased rapidly when the slot position angle for maximum lift was exceeded. Slightly below the slot position angle for maximum lift, the groundboard had a beneficial effect, that is, the drag for a given lift was less near the groundboard than away from the groundboard. The variation of maximum circulation lift coefficient (maximum lift coefficient minus momentum coefficient) obtained in this investigation is in general agreement with a theory developed for a jet-flap wing which assumes that the loss in circulation is the result of blockage of the main stream beneath the wing.

  3. A numerical and experimental study on the drag of a cavitating underwater vehicle in cavitation tunnel

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Kyu; Ahn, Byoung-Kwon; Kim, Hyoung-Tae

    2015-09-01

    For Super-Cavitating Underwater Vehicles (SCUV), the numerical analyses and experiments in a large cavitation tunnel are carried out at relatively large Reynolds numbers. The numerical results agree well with experiments and the drag coefficient of SCUV is rarely changed by the Reynolds number. As the cavitation number is decreased, the cavity occurs and grows, the cavitator drag decreases and the body drag is affected by the degree of covering the body with the cavity. The tunnel effects, i.e. the blockage and the friction pressure drop of the tunnel, on the drag and the cavitation of SCUV are examined from the numerical results in between the tunnel and unbounded flows. In the tunnel, a minimum cavitation number exists and the drag of SCUV appears larger than that in unbounded flow. When the super-cavity covers the entire body, the friction drag almost disappears and the total drag of SCUV can be regarded as the pressure drag of cavitator.

  4. Possibilities for drag reduction by boundary layer control

    NASA Technical Reports Server (NTRS)

    Naiman, I.

    1946-01-01

    The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.

  5. Magnon drag thermopile

    NASA Astrophysics Data System (ADS)

    Valenzuela, Sergio O.

    2013-03-01

    Thermoelectric effects in spintronics are gathering increasing attention as a means of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role, however, the coupling between electrons and magnons in ferromagnetic metals remains poorly understood. We demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. These results demonstrate the feasibility of directly converting magnon dynamics of nanomagnets into an electrical signal and could pave the way to novel thermoelectric devices for energy harvesting. This research was supported by the Spanish Ministerio de Ciencia e Innovación, MICINN (MAT2010-18065) and by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement NANOFUNCTION no 257375.

  6. Frame dragging and superenergy

    SciTech Connect

    Herrera, L.; Di Prisco, A.; Carot, J.

    2007-08-15

    We show that the vorticity appearing in stationary vacuum spacetimes is always related to the existence of a flow of superenergy on the plane orthogonal to the vorticity vector. This result, together with the previously established link between vorticity and superenergy in radiative (Bondi-Sachs) spacetimes, strengthens further the case for this latter quantity as the cause of frame dragging.

  7. Grid Quality and Resolution Issues from the Drag Prediction Workshop Series

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Levy, David; Murayama, Mitsuhiro

    2008-01-01

    The drag prediction workshop series (DPW), held over the last six years, and sponsored by the AIAA Applied Aerodynamics Committee, has been extremely useful in providing an assessment of the state-of-the-art in computationally based aerodynamic drag prediction. An emerging consensus from the three workshop series has been the identification of spatial discretization errors as a dominant error source in absolute as well as incremental drag prediction. This paper provides an overview of the collective experience from the workshop series regarding the effect of grid-related issues on overall drag prediction accuracy. Examples based on workshop results are used to illustrate the effect of grid resolution and grid quality on drag prediction, and grid convergence behavior is examined in detail. For fully attached flows, various accurate and successful workshop results are demonstrated, while anomalous behavior is identified for a number of cases involving substantial regions of separated flow. Based on collective workshop experiences, recommendations for improvements in mesh generation technology which have the potential to impact the state-of-the-art of aerodynamic drag prediction are given.

  8. Hydrodynamic Coulomb drag of strongly correlated electron liquids

    NASA Astrophysics Data System (ADS)

    Apostolov, S. S.; Levchenko, A.; Andreev, A. V.

    2014-03-01

    We develop a theory of Coulomb drag in ultraclean double layers with strongly correlated carriers. In the regime where the equilibration length of the electron liquid is shorter than the interlayer spacing the main contribution to the Coulomb drag arises from hydrodynamic density fluctuations. The latter consist of plasmons driven by fluctuating longitudinal stresses, and diffusive modes caused by temperature fluctuations and thermal expansion of the electron liquid. We express the drag resistivity in terms of the kinetic coefficients of the electron fluid. Our results are nonperturbative in interaction strength and do not assume Fermi-liquid behavior of the electron liquid.

  9. Acoustic effects on profile drag of a laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Shearin, John G.; Jones, Michael G.; Baals, Robert A.

    1987-09-01

    A two-dimensional laminar flow airfoil (NLF-0414) was subjected to high-intensity sound (pure tones and white noise) over a frequency range of 2 to 5 kHz, while immersed in a flow of 240 ft/sec (Rn of 3 million) in a quiet flow facility. Using a wake-rake, wake dynamic pressures were determined and the deficit in momentum was used to calculate a two dimensional drag coefficient. Significant increases in drag were observed when the airfoil was subjected to the high intensity sound at critical sound frequencies. However, the increased drag was not accompanied by movement of the transition location.

  10. Effects at Mach Numbers of 1.61 and 2.01 of Camber and Twist on the Aerodynamic Characteristics of Three Swept Wings Having the Same Planform

    NASA Technical Reports Server (NTRS)

    Landrum, Emma Jean; Czarnecki, K. R.

    1961-01-01

    An investigation has been made at Mach numbers of 1.61 and 2.01 to determine the aerodynamic characteristics of three wings having a sweepback of 50 deg at the quarter-chord line, a taper ratio of 0.20, an NACA 65A005 thickness distribution, and an aspect ratio of 3.5. One wing was flat, one had at each spanwise station an a = 0 mean line modified to have a maximum height of 4-percent chord, and one had a linear variation of twist with 6 deg of washout at the tip. Tests were made with natural and fixed transition at Reynolds numbers ranging from 1.2 x 10(exp 6) to 3.6 x 10(exp 6) through an angle-of-attack range of -20 deg to 20 deg. When compared with the flat wing, the effect of the linear variation of twist with 6 deg of washout at the tip was to increase the lift-drag ratio when the leading edge was subsonic; but little increase in lift-drag ratio was obtained when the leading edge was supersonic. Pitching moment was increased and gave a positive trim point without greatly affecting the rate of change of pitching moment with lift coefficient. For the cambered wing the high minimum drag resulted in comparatively low lift-drag ratios. In addition, the pitching moments were decreased so that a negative trim point was obtained.

  11. On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2014-05-01

    This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping. PMID:24554578

  12. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  13. Wind tunnel experiments to assess the effect of back-mounted radio transmitters on bird body drag

    USGS Publications Warehouse

    Obrecht, H.H., III; Pennycuick, C.J.; Fuller, M.R.

    1988-01-01

    The aerodynamic drag of bird bodies was measured in a wind tunnel, with and without back-mounted dummy radio transmitters. Flight performance estimates indicate that the drag of a large transmitter can cause a substantial reduction of a migrant's range, that is, the distance it can cover in non-stop flight. The drag of the transmitter can be reduced by arranging the components in an elongated shape, so minimizing the frontal area. The addition of a rounded fairing to the front end, and a pointed fairing behind, was found to reduce the drag of the transmitter by about onethird, as compared with an unfaired rectangular box.

  14. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  15. Validation of a computer code for analysis of subsonic aerodynamic performance of wings with flaps in combination with a canard or horizontal tail and an application to optimization

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.; Mann, Michael J.

    1990-01-01

    Extensive correlations of computer code results with experimental data are employed to illustrate the use of a linearized theory, attached flow method for the estimation and optimization of the longitudinal aerodynamic performance of wing-canard and wing-horizontal tail configurations which may employ simple hinged flap systems. Use of an attached flow method is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. The results indicate that linearized theory, attached flow, computer code methods (modified to include estimated attainable leading-edge thrust and an approximate representation of vortex forces) provide a rational basis for the estimation and optimization of aerodynamic performance at subsonic speeds below the drag rise Mach number. Generally, good prediction of aerodynamic performance, as measured by the suction parameter, can be expected for near optimum combinations of canard or horizontal tail incidence and leading- and trailing-edge flap deflections at a given lift coefficient (conditions which tend to produce a predominantly attached flow).

  16. Aerodynamic characteristics of wing-body configuration with two advanced general aviation airfoil sections and simple flap systems

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Paulson, J. W., Jr.

    1977-01-01

    Aerodynamic characteristics of a general aviation wing equipped with NACA 65 sub 2-415, NASA GA(W)-1, and NASA GA(PC)-1 airfoil sections were examined. The NASA GA(W)-1 wing was equipped with plain, split, and slotted partial- and full-span flaps and ailerons. The NASA GA(PC)-1 wing was equipped with plain, partial- and full-span flaps. Experimental chordwise static-pressure distribution and wake drag measurements were obtained for the NASA GA(PC)-1 wing at the 22.5-percent spanwise station. Comparisons were made between the three wing configurations to evaluate the wing performance, stall, and maximum lift capabilities. The results of this investigation indicated that the NASA GA(W)-1 wing had a higher maximum lift capability and almost equivalent drag values compared with both the NACA 65 sub 2-415 and NASA GA(PC)-1 wings. The NASA GA(W)-1 had a maximum lift coefficient of 1.32 with 0 deg flap deflection, and 1.78 with 41.6 deg deflection of the partial-span slotted flap. The effectiveness of the NASA GA(W)-1 plain and slotted ailerons with differential deflections were equivalent. The NASA GA(PC)-1 wing with full-span flaps deflected 0 deg for the design climb configuration showed improved lift and drag performance over the cruise flap setting of -10 deg.

  17. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.

    PubMed

    Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P

    2014-02-01

    A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack

  18. Theoretical model of aerodynamic forces at high speeds and angle of attack in a stratified flowfield of UF6

    SciTech Connect

    Harloff, G.J.

    1985-09-01

    A theoretical aerodynamic model of lift and drag forces on a flat plate at angle of attack and at hypersonic speeds is presented. Real gas effects and friction drag are accounted for. Theoretical results are presented as a function of the viscous interaction parameter. The performance for two geometries is presented. 3 refs., 8 figs., 4 tabs.

  19. Combined riblet and lebu drag reduction system

    NASA Technical Reports Server (NTRS)

    Walsh, Michael J. (Inventor); Anders, John B. (Inventor); Hefner, Jerry N. (Inventor)

    1987-01-01

    The invention is a system of flow control devices which result in reduced skin friction on aerodynamic and hydrodynamic surfaces. The devices cause a breakup of large-scale disturbances in the boundary layer of the flow field. The riblet device acts to reduce disturbances near the boundary layer wall by the use of longitudinal striations forming V-shaped grooves. These grooves are dimensional on the order of the wall vortices and turbulent burst dimensions. The large eddy breakup device is a small strip or airfoil which is suspended in the upper region of the boundary layer. Various physical mechanisms cause a disruption of the large-scale vortices. The combination of the devices of this invention result in a substantial reduction in skin friction drag.

  20. Dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio

    2007-09-01

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth. PMID:17805287