Science.gov

Sample records for aerodynamic drag experienced

  1. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  2. Aerodynamic Drag and Drag Reduction: Energy and Energy Savings (Invited)

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    2003-01-01

    An assessment of the role of fluid dynamic resistance and/or aerodynamic drag and the relationship to energy use in the United States is presented. Existing data indicates that up to 25% of the total energy consumed in the United States is used to overcome aerodynamic drag, 27% of the total energy used in the United States is consumed by transportation systems, and 60% of the transportation energy or 16% of the total energy consumed in the United States is used to overcome aerodynamic drag in transportation systems. Drag reduction goals of 50% are proposed and discussed which if realized would produce a 7.85% total energy savings. This energy savings correlates to a yearly cost savings in the $30Billion dollar range.

  3. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro

    2015-11-01

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  4. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  5. Method of reducing drag in aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Hrach, Frank J. (Inventor)

    1993-01-01

    In the present method, boundary layer thickening is combined with laminar flow control to reduce drag. An aerodynamic body is accelerated enabling a ram turbine on the body to receive air at velocity V sub 0. The discharge air is directed over an aft portion of the aerodynamic body producing boundary layer thickening. The ram turbine also drives a compressor by applying torque to a shaft connected between the ram turbine and the compressor. The compressor sucks in lower boundary layer air through inlets in the shell of the aircraft producing laminar flow control and reducing drag. The discharge from the compressor is expanded in a nozzle to produce thrust.

  6. DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of

  7. Methods of reducing vehicle aerodynamic drag

    SciTech Connect

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  8. Aerodynamic drag in cycling: methods of assessment.

    PubMed

    Debraux, Pierre; Grappe, Frederic; Manolova, Aneliya V; Bertucci, William

    2011-09-01

    When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance. PMID:21936289

  9. Reference values and improvement of aerodynamic drag in professional cyclists.

    PubMed

    García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo

    2008-02-01

    The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed. PMID:17943597

  10. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    NASA Technical Reports Server (NTRS)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  11. Exploring the Aerodynamic Drag of a Moving Cyclist

    ERIC Educational Resources Information Center

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  12. Drop tower with no aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr.

    1981-01-01

    Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.

  13. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2005-12-13

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  14. Exploring the aerodynamic drag of a moving cyclist

    NASA Astrophysics Data System (ADS)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power consumption of cycling. We use an energy-based approach to model the power input for driving a bike at a constant speed. This approach uses a numerical simulation of the slowing down of a bike moving without pedaling which is implementable with standard spreadsheet software. The simulation can be compared directly to simple measurements with real bikes as well as to an analytic solution of the underlying differential equation. It is possible to derive realistic values for the aerodynamic drag coefficient {{c}\\text{D}} and the total power consumption within a secondary physics course. We also report experiences from teaching such a course to class 8 students.

  15. Aerodynamic drag reduction by vertical splitter plates

    NASA Astrophysics Data System (ADS)

    Gilliéron, Patrick; Kourta, Azeddine

    2010-01-01

    The capacity of vertical splitter plates placed at the front or the rear of a simplified car geometry to reduce drag, with and without skew angle, is investigated for Reynolds numbers between 1.0 × 106 and 1.6 × 106. The geometry used is a simplified geometry to represent estate-type vehicles, for the rear section, and MPV-type vehicle. Drag reductions of nearly 28% were obtained for a zero skew angle with splitter plates placed at the front of models of MPV or utility vehicles. The results demonstrate the advantage of adapting the position and orientation of the splitter plates in the presence of a lateral wind. All these results confirm the advantage of this type of solution, and suggest that this expertise should be used in the automotive field to reduce consumption and improve dynamic stability of road vehicles.

  16. Aerodynamics of Drag Reduction Devices for Semi-Trucks

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2014-11-01

    An increasing number of semi-trucks throughout the United States are being retrofitted with aerodynamic drag reduction devices to improve the vehicle fuel economy. Such devices typically include both trailer skirts and boattails to mitigate trailer underbody drag and base drag, respectively. Since full-scale measurements of the device performance are especially prone to experimental noise due to the effects of the driver, route, payload, or atmospheric conditions, more precise data must be obtained within a wind tunnel. In this experimental study, the wind-averaged drag coefficient is measured for a detailed 1/8th scale semi-truck model. The Reynolds number based upon the vehicle width is 1.7e6. A number of trailer skirt and boattail device configurations are considered, as well as the effects of the boattail deflection angle. The results of this study demonstrate that a combination of a trailer skirt and boattail reduces the aerodynamic drag of a semi-truck by as much as 25%. If such a combination were applied to each of the semi-trucks throughout the United States, several billion dollars in fuel savings could be achieved each year. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-657810.

  17. Reducing Aerodynamic Drag on Empty Open Cargo Vehicles

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Storms, Bruce L.; Dzoan, Dan

    2009-01-01

    Some simple structural modifications have been demonstrated to be effective in reducing aerodynamic drag on vehicles that have empty open cargo bays. The basic idea is to break up the airflow in a large open cargo bay by inserting panels to divide the bay into a series of smaller bays. In the case of a coal car, this involves inserting a small number (typically between two and four) of vertical full-depth or partial-depth panels.

  18. Aerodynamic drag control by pulsed jets on simplified car geometry

    NASA Astrophysics Data System (ADS)

    Gilliéron, Patrick; Kourta, Azeddine

    2013-02-01

    Aerodynamic drag control by pulsed jets is tested in a wind tunnel around a simplified car geometry named Ahmed body with a rear slant angle of 35°. Pulsed jet actuators are located 5 × 10-3 m from the top of the rear window. These actuators are produced by a pressure difference ranging from 1.5 to 6.5 × 105 Pa. Their excitation frequency can vary between 10 and 550 Hz. The analysis of the control effects is based on wall visualizations, aerodynamic drag coefficient measurements, and the velocity fields obtained by 2D PIV measurements. The maximum drag reduction is 20 % and is obtained for the excitation frequency F j = 500 Hz and for the pressure difference ∆ P = 1.5 × 105 Pa. This result is linked with a substantial reduction in the transverse development of the longitudinal vortex structures coming from the left and right lateral sides of the rear window, with a displacement of the vortex centers downstream and with a decrease in the transverse rotational absolute values of these structures.

  19. FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2003-10-24

    Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.

  20. A method for the reduction of aerodynamic drag of road vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Taylor, Larry W.; Leary, Terrance O.

    1990-01-01

    A method is proposed for the reduction of the aerodynamic drag of bluff bodies, particularly for application to road transport vehicles. This technique consists of installation of panels on the forward surface of the vehicle facing the airstream. With the help of road tests, it was demonstrated that the attachment of proposed panels can reduce aerodynamic drag of road vehicles and result in significant fuel cost savings and conservation of energy resources.

  1. DOE's effort to reduce truck aerodynamic drag : joint experiments and computations lead to smart design.

    SciTech Connect

    Yaste, David M; Salari, Kambiz; Hammache, Mustapha; Browand, Fred; Pointer, W. David; Ortega, Jason M.; McCallen, Rose; Walker, Stephen M; Heineck, James T; Hassan, Basil; Roy, Christopher John; Storms, B.; Satran, D.; Ross, James; Englar, Robert; Chatalain, Philippe; Rubel, Mike; Leonard, Anthony; Hsu, Tsu-Ya; DeChant, Lawrence Justin.

    2004-06-01

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the smart design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  2. DOE's Effort to Reduce Truck Aerodynamic Drag-Joint Experiments and Computations Lead to Smart Design

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B

    2004-06-17

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  3. DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J

    2005-11-14

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.

  4. Drag of the complete configuration aerodynamic considerations, 2

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1975-01-01

    A number of drag items are related to the performance of a complete aircraft configuration. First, the effect of fuselage camber, wing and nacelle incidence are discussed from a viewpoint of design decision making. Second, the effect of overall cruise drag on the design gross and empty weight of the airplane is discussed. Examples show that cruise drag can have a very important influence on total airplane weight. Third, the effects of usable cruise lift-to-drag ratio and wing loading are shown to be important. Finally several research needs relating to design of the complete configuration are reviewed.

  5. Characterization of aerodynamic drag force on single particles: Final report

    SciTech Connect

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  6. An Aerodynamic Assessment of Micro-Drag Generators (MDGs)

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S.

    1998-01-01

    Commercial transports as well as fighter aircraft of the future are being designed with very low drag (friction and pressure). Concurrently, commuter airports are being built or envisioned to be built in the centers of metropolitan areas where shorter runways and/or reduced noise footprints on takeoff and landing are required. These requirements and the fact that drag is lower on new vehicles than on older aircraft have resulted in vehicles that require a large amount of braking force (from landing-gear brakes, spoilers, high-lift flaps, thrust reversers, etc.). Micro-drag generators (MDGs) were envisioned to create a uniformly distributed drag force along a vehicle by forcing the flow to separate on the aft-facing surface of a series of deployable devices, thus, generating drag. The devices are intended to work at any speed and for any type of vehicle (aircraft, ground vehicles, sea-faring vehicles). MDGs were applied to a general aviation wing and a representative fuselage shape and tested in two subsonic wind tunnels. The results showed increases in drag of 2 to 6 times that of a "clean" configuration.

  7. DOE's effort to reduce truck aerodynamic drag through joint experiments and computations.

    SciTech Connect

    Salari, Kambiz; Browand, Fred; Sreenivas, Kidambi; Pointer, W. David; Taylor, Lafayette; Pankajakshan, Ramesh; Whitfield, David; Plocher, Dennis; Ortega, Jason M.; Merzel, Tai; McCallen, Rose; Walker, Stephen M; Heineck, James T; Hassan, Basil; Roy, Christopher John; Storms, B.; Ross, James; Englar, Robert; Rubel, Mike; Leonard, Anthony; Radovich, Charles; Eastwood, Craig; Paschkewitz, John; Castellucci, Paul; DeChant, Lawrence Justin.

    2005-08-01

    Class 8 tractor-trailers are responsible for 11-12% of the total US consumption of petroleum. Overcoming aero drag represents 65% of energy expenditure at highway speeds. Most of the drag results from pressure differences and reducing highway speeds is very effective. The goal is to reduce aerodynamic drag by 25% which would translate to 12% improved fuel economy or 4,200 million gal/year. Objectives are: (1) In support of DOE's mission, provide guidance to industry in the reduction of aerodynamic drag; (2) To shorten and improve design process, establish a database of experimental, computational, and conceptual design information; (3) Demonstrate new drag-reduction techniques; and (4) Get devices on the road. Some accomplishments are: (1) Concepts developed/tested that exceeded 25% drag reduction goal; (2) Insight and guidelines for drag reduction provided to industry through computations and experiments; (3) Joined with industry in getting devices on the road and providing design concepts through virtual modeling and testing; and (4) International recognition achieved through open documentation and database.

  8. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit

    PubMed Central

    Stone, William C.; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the “LO2” and “LH2” tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  9. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit.

    PubMed

    Stone, William C; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the "LO2" and "LH2" tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  10. Horizontal Distance Travelled by a Mobile Experiencing a Quadratic Drag Force: Normalized Distance and Parametrization

    ERIC Educational Resources Information Center

    Vial, Alexandre

    2007-01-01

    We investigate the problem of the horizontal distance travelled by a mobile experiencing a quadratic drag force. We show that by introducing a normalized distance, the problem can be greatly simplified. In order to parametrize this distance, we use the Pearson VII function, and we find that the optimal launch angle as a function of the initial…

  11. Aerodynamic drag reduction tests on a box-shaped vehicle

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Sandlin, D. R.

    1981-01-01

    The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.

  12. FY 2004 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Whittaker, K; DeChant, L J; Roy, C J; Payne, J L; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J T; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2004-11-18

    The objective of this report is: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices. The approaches used were: (1) Develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational fluid dynamics (CFD) tools; (2) Through an extensive experimental effort, generate an experimental data base for code validation; (3) Using experimental data base, validate computations; (4) Provide industry with design guidance and insight into flow phenomena from experiments and computations; and (5) Investigate aero devices (e.g., base flaps, tractor-trailer gap stabilizer, underbody skirts and wedges, blowing and acoustic devices), provide industry with conceptual designs of drag reducing devices, and demonstrate the full-scale fuel economy potential of these devices.

  13. Aerodynamic performance of a drag reduction device on a full-scale tractor/trailer

    NASA Astrophysics Data System (ADS)

    Lanser, Wendy R.; Ross, James C.; Kaufman, Andrew E.

    1991-09-01

    The effectiveness of an aerodynamic boattail on a tractor/trailer road vehicle was measured in the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Results are examined for the tractor/trailer with and without the drag reduction device. Pressure measurements and flow visualization show that the aerodynamic boattail traps a vortex or eddy in the corner formed between the device and the rear corner of the trailer. This recirculating flow turns the flow inward as it separates from the edges of the base of the trailer. This modified flow behavior increases the pressure acting over the base area of the truck, thereby reducing the net aerodynamic drag of the vehicle. Drag measurements and pressure distributions in the region of the boattail device are presented for selected configurations. The optimum configuration reduces the overall drag of the tractor/trailer combination by about 10 percent at a zero yaw angle. Unsteady pressure measurements do not indicate strong vortex shedding, although the addition of the boattail plates increases high frequency content of the fluctuating pressure.

  14. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    SciTech Connect

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  15. July 2004 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentation, Summary of Comments, and Conclusions

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; DeChant, L; Hassan, B; Browand, F; Arcas, D; Ross, J; Heineck, J; Storms, B; Walker, S; Leonard, A; Roy, C; Whitfield, D; Pointer, D; Sofu, T; Englar, R; Funk, R

    2004-08-17

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held in Portland, Oregon on July 1, 2004. The purpose of the meeting was to provide a summary of achievements, discuss pressing issues, present a general overview of future plans, and to provide a forum for dialogue with the Department of Energy (DOE) and industry representatives. The meeting was held in Portland, because the DOE Aero Team participated in an exclusive session on Heavy Truck Vehicle Aerodynamic Drag at the 34th AIAA Fluid Dynamics Conference and Exhibit in Portland on the morning of July 1st, just preceding our Working Group meeting. Even though the paper session was on the last day of the Conference, the Team presented to a full room of interested attendees.

  16. The use of velodrome tests to evaluate aerodynamic drag in professional cyclists.

    PubMed

    García-López, J; Ogueta-Alday, A; Larrazabal, J; Rodríguez-Marroyo, J A

    2014-05-01

    The purpose of this study was to analyse the validity, reliability and sensitivity of velodrome tests to detect small changes in aerodynamic drag in cycling. 12 professional cyclists were assessed to obtain the drag area (SCx) during wind tunnel and velodrome tests. Incremental and steady-state protocols were performed in the velodrome with a portable power meter, and 6 bicycle positions were analysed and compared that involved lowering the handlebars and advancing the pads between 2-5 cm. A significant relationship (r=0.88, p<0.001) between the SCx in the wind tunnel and velodrome tests was found (0.240 ± 0.007 and 0.237 ± 0.008 m2, respectively). The velodrome tests underestimated the SCx (0.0035 ± 0.0038 m2 and p<0.01), which decreased (p<0.001) when the bicycle speed increased (0.0013 m2 each 1 km · h(-1)). The SCx values showed high reliability during the steady-state (r=0.99, p<0.001) and incremental protocols (r=0.94, p<0.001). Small changes in the aerodynamic position affected the SCx (p<0.001), which decreased by 0.011 ± 0.007 m2 (4.6 ± 2.9%, 95% CI=2.7-6.4%). In conclusion, the validity, reliability and sensitivity of velodrome tests to detect small changes in aerodynamic drag in cycling were demonstrated. Although SCx values were not interchangeable between different studies, the velodrome tests presented advantages with respect to the wind tunnel tests. PMID:24081618

  17. Progress in reducing aerodynamic drag for higher efficiency of heavy duty trucks (class 7-8)

    SciTech Connect

    Brady, M; Browand, F; Hammache, M; Heineck, J T; Leonard, A; McCallen, R; Ross, J; Rutledge, W; Salari, K; Storms, B

    1999-04-01

    This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.

  18. Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

    SciTech Connect

    Rose McCallen; Richard Couch; Juliana Hsu; Fred Browand; Mustapha Hammache; Anthony Leonard; Mark Brady; Kambiz Salari; Walter Rutledge; James Ross; Bruce Storms; J.T. Heineck; David Driver; James Bell; Gregory Zilliac

    1999-12-31

    This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.

  19. Systematic approach to analyzing and reducing aerodynamic drag of heavy vehicles

    SciTech Connect

    McCallen, R.; Browand, F.; Leonard, A.; Rutledge, W.

    1997-09-16

    This paper presents an approach for reducing aerodynamic drag of heavy vehicles by systematically analyzing trailer components using existing computational tools and moving on to the analyses of integrated tractor-trailers using advanced computational tools. Experimental verification and validation are also an important part of this approach. The project is currently in the development phase while we are in the process of constructing a Multi-Year Program Plan. Projects I and 2 as described in this paper are the anticipated project direction. Also included are results from past and current related activities by the project participants which demonstrate the analysis approach.

  20. Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing

    NASA Astrophysics Data System (ADS)

    Littlewood, R. P.; Passmore, M. A.

    2012-08-01

    A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified ¼ scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward.

  1. Inlet Aerodynamics and Ram Drag of Laser-Propelled Lightcraft Vehicles

    NASA Astrophysics Data System (ADS)

    Langener, Tobias; Myrabo, Leik; Rusak, Zvi

    2010-05-01

    Numerical simulations are used to study the aerodynamic inlet properties of three axisymmetric configurations of laser-propelled Lightcraft vehicles operating at subsonic, transonic and supersonic speeds up to Mach 5. The 60 cm vehicles were sized for launching 0.1-1.0 kg nanosatellites with combined-cycle airbreathing/rocket engines, transitioning between propulsion modes at roughly Mach 5-6. Results provide the pressure, temperature, density, and velocity flowfields around and through the three representative vehicle/engine configurations, as well as giving the resulting ram drag and total drag coefficients—all as a function of flight Mach number. Simulations with rotating boundaries were also carried out, since for stability reasons, Lightcraft are normally spun up before lift-off. Given the three alternatives, it is demonstrated that the optimal geometry for minimum drag is the configuration with a parabola nose; hence, these inlet flow conditions are being applied in subsequent "direct connect" 2D laser propulsion experiments in a small transonic flow facility.

  2. Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    Browand, F; Gutierrez, W; Leonard, A; McBride, D; McCallen, R; Ross, J; Roth, K; Rutledge, W; Salari, K

    1998-09-28

    The first Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Sandia National Laboratories (SNL) in Albuquerque, New Mexico on August 28, 1998. The purpose of the meeting was to review the proposed Multi-Year Program Plan (MYPP) and provide an update on the Group"s progress. In addition, the technical details of each organization"s activities were presented and discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), SNL, University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center. These presenters are part of a DOE appointed Technical Team assigned to developing the MYPP. The goal of the MYPP is to develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational tools (A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles, R. McCallen, D. McBride, W. Rutledge, F. Browand, A. Leonard, .I. Ross, UCRL-PROP- 127753 Dr. Rev 2, May 1998). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions from the Meeting participants, and outlines the future action items.

  3. Aerodynamic drag reduction apparatus for gap-divided bluff bodies such as tractor-trailers

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2006-07-11

    An apparatus for reducing the aerodynamic drag of a bluff-bodied vehicle such as a tractor-trailer in a flowstream, the bluff-bodied vehicle of a type having a leading portion, a trailing portion connected to the leading portion, and a gap between the leading and trailing portions defining a recirculation zone. The apparatus is preferably a baffle assembly, such as a vertical panel, adapted to span a width of the gap between the leading and trailing portions so as to impede cross-flow through the gap, with the span of the baffle assembly automatically adjusting for variations in the gap width when the leading and trailing portions pivot relative to each other.

  4. Study of the triple-mass Tethered Satellite System under aerodynamic drag and J2 perturbations

    NASA Astrophysics Data System (ADS)

    Razzaghi, Pourya; Assadian, Nima

    2015-11-01

    The dynamics of multi-tethered satellite formations consisting of three masses are studied in this paper. The triple-mass triple-tethered satellite system is modeled under the low Earth orbit perturbations of drag and Earth's oblateness and its equilibrium conditions are derived. It is modeled as three equal end-masses connected by a uniform-mass straight tether. The lengths of tethers are supposed to be constant and in this manner the angles of the plane consisting the masses are taken as the state variables of the system. The governing equations of motion are derived using Lagrangian approach. The aerodynamic drag perturbation is expressed as an external non-conservative force and the Earth oblateness (J2 perturbation) is considered as a term of potential energy. The equilibrium conditions of this system are found and their stability is investigated through the linear stability theory. Then, the results are verified by using a nonlinear simulation for three types of equilibrium conditions.

  5. May 2005 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentation, Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R C

    2005-08-17

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory, Livermore, California on May 12th and 13th of 2005. The purpose of the first day's meeting, May 12th, was to provide a summary of achievements, discuss issues, present a general overview of future plans, and to offer a forum for dialogue with the Department of Energy (DOE) and representatives from industry, universities, and research and development organizations performing work related to heavy vehicle aerodynamics. This first meeting day was open to participants from industry and research organizations from both the US and Canada. The second day, May 13th, was attended only by representatives from the 9 organizations that form the DOE Consortium effort and their government sponsors. The purpose of the second day's meeting was to further discuss fiscal year 2005's activities, any further specific pressing issues, identify individual action items, and provide an overview of plans for fiscal year 2006. Based on discussions at the Meeting, the existing project goals remain unchanged and enhancing interactions with fleet owners and operators was emphasized: (1) Perform heavy vehicle computations and experiments, (2) Validate computations using experimental data, (3) Provide design guidance and insight into flow phenomena from experiments and computations, and (4) Investigate aero devices with emphasis on collaborative efforts with fleet owners and operators.

  6. Aerodynamic drag reduction tests on a full-scale tractor-trailer combination with several add-on devices

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Steers, L. L.

    1974-01-01

    Aerodynamic drag tests were performed on a conventional cab-over-engine tractor with a 45-foot trailer and five commercially available or potentially available add-on devices using the coast-down method. The tests ranged in velocity from approximately 30 miles per hour to 65 miles per hour and included some flow visualization. A smooth, level runway at Edwards Air Force Base was used for the tests, and deceleration measurements were taken with both accelerometers and stopwatches. An evaluation of the drag reduction results obtained with each of the five add-on devices is presented.

  7. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on

  8. The effect of plasma actuator on the depreciation of the aerodynamic drag on box model

    NASA Astrophysics Data System (ADS)

    Harinaldi, Budiarso, Julian, James; Rabbani M., N.

    2016-06-01

    Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.

  9. Sunspots and the physics of magnetic flux tubes. I - The general nature of the sunspot. II - Aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    Analysis of the dynamical stability of a large flux tube suggests that the field of a sunspot must divide into many separate tubes within the first 1000 km below the surface. Buoyancy of the Wilson depression at the visible surface and probably also a downdraft beneath the sunspot hold the separate tubes in a loose cluster. Convective generation of Alfven waves, which are emitted preferentially downward, cools the tubes. Aerodynamic drag on a slender flux tube stretched vertically across a convective cell is also studied. Since the drag is approximately proportional to the local kinetic energy density, the density stratification weights the drag in favor of the upper layers. Horizontal motions concentrated in the bottom of the convective cell may reverse this density effect. A downdraft of about two km/sec through the flux tubes beneath the sunspot is hypothesized.

  10. September 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R

    2002-09-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at NASA Ames Research Center on September 23, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Freightliner, and Portland State University participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items. The meeting began with an introduction by the Project Lead Rose McCallen of LLNL, where she emphasized that the world energy consumption is predicted to relatively soon exceed the available resources (i.e., fossil, hydro, non-breeder fission). This short fall is predicted to begin around the year 2050. Minimizing vehicle aerodynamic drag will significantly reduce our Nation's dependence on foreign oil resources and help with our world-wide fuel shortage. Rose also mentioned that educating the populace and researchers as to our world energy issues is important and that our upcoming United Engineering Foundation (UEF) Conference on ''The Aerodynamics of Heavy Vehicles: Trucks, Busses, and Trains'' was one way our DOE Consortium was doing this. Mentioned were the efforts of Fred Browand from USC in organizing and attracting internationally recognized speakers to the Conference. Rose followed with an overview of the DOE project goals, deliverables, and FY03 activities. The viewgraphs are attached at the end of this report. Sid Diamond of DOE

  11. March 2001 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    Greenman, R; Dunn, T; Owens, J; Laskowski, G; Flowers, D; Browand, F; Knight, A; Hammache, M; Leoard, A; Rubel, M; Salari, K; Rutledge, W; Ross, J; Satran, D; Heineck, J T; Walker, S; Driver, D; Storms, B

    2001-05-14

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on March 28 and 29, 2001. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Due to the large participation from industry and other research organizations, a large portion of the meeting (all of the first day and part of the second day) was devoted to the presentation and discussion of industry's perspective and work being done by other organizations on the demonstration of commercial software and the demonstration of a drag reduction device. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  12. May 2003 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Browand, F; Hammache, M; Hsu, T Y; Arcas, D; Leoard, A; Chatelain, P; Rubel, M; Roy, C; DeChant, L; Hassan, B; Ross, J; Satran, D; Walker, S; Heineck, J T; Englar, R; Pointer, D; Sofu, T

    2003-05-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University, and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.

  13. The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1935-01-01

    Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.

  14. Aerodynamic drag and fuel spreading measurements in a simulated scramjet combustion module

    NASA Technical Reports Server (NTRS)

    Povinelli, L. A.

    1974-01-01

    The drag of a simulated scramjet combustion module was measured at Mach 2, 2.5, and 3. The combustor was rectangular in cross section and incorporated six swept fuel injector struts. The effect of strut leading edge radius, position of maximum thickness, thickness ratio, sweep angle, and strut length on the drag was determined. Reduction in thickness ratio had the largest effect on drag reduction. Sweeping the struts upstream yielded the same drag as sweeping the struts downstream and potentially offers the advantages of increased mixing time for the fuel. Helium injection was used to simulate hydrogen fuel. The interstrut spacing required to achieve good distribution of fuel was was found to be about 10 jet diameters. The contribution of helium injection to drag reduction was small.

  15. The Aerodynamic Drag of Five Models of Side Floats N.A.C.A. Models 51-E, 51-F, 51-G, 51-H, 51-J

    NASA Technical Reports Server (NTRS)

    House, R O

    1938-01-01

    The drag of five models of side floats was measured in the N.A.C.A. 7- by 10-foot wind tunnel. The most promising method of reducing the drag of floats indicated by these tests is lowering the angle at which the floats are rigged. The addition of a step to a float does not always increase the drag in the flying range, floats with steps sometimes having lower drag than similar floats without steps. Making the bow chine no higher than necessary might result in a reduction in air drag because of the lower angle of pitch of the chines. Since side floats are used formally to obtain lateral stability when the seaplane is operating on the water at slow speeds or at rest, greater consideration can be given to factors affecting aerodynamic drag than is possible for other types of floats and hulls.

  16. Dimples and drag: Experimental demonstration of the aerodynamics of golf balls

    NASA Astrophysics Data System (ADS)

    Libii, Josué Njock

    2007-08-01

    While it is well known that the presence of dimples reduces the drag force exerted on a golf ball, demonstrations of this phenomenon are not common. A simple pendulum is designed and used in a wind tunnel to measure the drag force exerted by a moving stream of air on a spherical object. This pendulum is then used in experiments to measure drag forces exerted on smooth balls and on golf balls in order to compare the results. Data collected from 12 balls tested at speeds ranging from 54to180km/h demonstrate that the presence of dimples on the surface of golf balls causes them to experience drag forces that are smaller than those on smooth balls of the same diameters and weights.

  17. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  18. The effect of solar forcing induced atmospheric perturbations on LEO satellites' nominal aerodynamic drag

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Weigel, Robert

    2016-07-01

    Atmospheric drag is the strongest force perturbing the motion of satellites in low Earth orbits LEO, and could cause re-entry of satellites, difficulty in identifying and tracking of the satellites and other space objects, manuvering and prediction of lifetime and re-entry. Solar activities influence the temperature, density and composition of the upper atmosphere. These effects thus strongly depend on the phase of a solar cycle. The frequency of intense flares and storms increase during solar maximum. Heating up of the atmosphere causes its expansion eventually leading to accelerated drag of orbiting satellites, especially those in LEO. In this paper, we present the model of the atmospheric drag effect on the trajectory of hypothetical LEO satellites of different ballistic coefficients. We investigate long-term trend of atmospheric drag on LEO satellites due to solar forcing induced atmospheric perturbations and heating at different phases of the solar cycle, and during interval of strong geomagnetic disturbances or storms. We show the dependence of orbital decay on severity of both the solar cycle and phase, and the extent of geomagnetic perturbations. The result of the model compares well with the observed decay profile of existing LEO satellites and provides a better understanding of the issue of the orbital decay. Our result may also be useful for selection of launch window of satellites for an extended lifetime in the orbit.

  19. October 1998 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    SciTech Connect

    Browand, F; Heineck, J T; Leonard, A; McBride, D; McCallen, R; Ross, J; Rutledge, W; Salari, K; Storms, B

    1998-10-01

    A Working Group 1Meeting on Heavy Vehicle Aerodynamic Drag was held at NASA Ames Research Center, Moffett Field, California on October 22, 1998. The purpose of the meeting was to present an overview of the computational and experimental approach for modeling the integrated tractor-trailer benchmark geometry called the Sandia IModel and to review NASA' s test plan for their experiments in the 7 ft x 10 ft wind tunnel. The present and projected funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT). Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and NASA Ames Research Center. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions. and outlines the future action items.

  20. April 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    Salari, K; Dunn, T; Ortega, J; Yen-Nakafuji, D; Browand, F; Arcas, D; Jammache, M; Leoard, A; Chatelain, P; Rubel, M; Rutledge, W; McWherter-Payne, M; Roy, Ca; Ross, J; Satran, D; Heineck, J T; Storms, B; Pointer, D; Sofu, T; Weber, D; Chu, E; Hancock, P; Bundy, B; Englar, B

    2002-08-22

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on April 3 and 4, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center, University of Southern California (USC), and California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), and Argonne National Laboratory (ANL), Volvo Trucks, and Freightliner Trucks presented and participated in discussions. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  1. Dividers for reduction of aerodynamic drag of vehicles with open cavities

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L. (Inventor)

    2007-01-01

    A drag-reduction concept for vehicles with open cavities includes dividing a cavity into smaller adjacent cavities through installation of one or more vertical dividers. The dividers may extend the full depth of the cavity or only partial depth. In either application, the top of the dividers are typically flush with the top of the bed or cargo bay of the vehicle. The dividers may be of any material, but are strong enough for both wind loads and forces encountered during cargo loading/unloading. For partial depth dividers, a structural angle may be desired to increase strength.

  2. Aerodynamics overview of the ground transportation systems (GTS) project for heavy vehicle drag reduction

    SciTech Connect

    Gutierrez, W.T.; Hassan, B.; Croll, R.H.; Rutledge, W.H.

    1995-12-31

    The focus of the research was to investigate the fundamental aerodynamics of the base flow of a tractor trailer that would prove useful in fluid flow management. Initially, industry design needs and constraints were defined. This was followed by an evaluation of state-of-the-art Navier-Stokes based computational fluid dynamics tools. Analytical methods were then used in combination with computational tools in a design process. Several geometries were tested at 1:8 scale in a low speed wind tunnel. In addition to the baseline geometry, base add-on devices of the class of ogival boattails and slants were analyzed.

  3. Reduction of aerodynamic drag and fuel consumption for tractor-trailer vehicles

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.; Saltzman, E. J.

    1979-01-01

    Wind-tunnel tests were performed on a scale model of a cab-over-engine tractor-trailer vehicle and several modifications of the model. Results from two of the model configurations were compared with full-scale drag data obtained from similar configurations during coast-down tests. Reductions in fuel consumption derived from these tests are presented in terms of fuel quantity and dollar savings per vehicle year, based on an annual driving distance of 160,900 km (100,000 mi.). The projected savings varied from 13,001 (3435) to 25,848 (6829) liters (gallons) per year which translated to economic savings from $3435 to about $6829 per vehicle year for an operating speed of 88.5 km/h (55 mph) and wind speeds near the national average of 15.3 km/h (9.5 mph). The estimated cumulative fuel savings for the entire U.S. fleet of cab-over-engine tractor, van-type trailer combinations ranged from 4.18 million kl (26.3 million bbl) per year for a low-drag configuration to approximately twice that amount for a more advanced configuration.

  4. The BMW analytic aerodynamic drag method for the Vinti satellite theory

    NASA Technical Reports Server (NTRS)

    Watson, J. S.; Mistretta, G. D.; Bonavito, N. L.

    1972-01-01

    In order to retain separability in the Vinti theory of earth satellite motion when a non conservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which reproduces tabular values of static model atmospheric densities at all altitudes to within ninety-eight percent and simultaneously reduces the variational equations to indefinite integrals with closed form evaluations, whose limits are in terms of the eccentric anomaly. The values of the limits for any arbitrary time interval are obtained from the Vinti program. Results of the BMW (Bonavito, Mistretta, Watson) theory for the case of the intense air drag satellites San Marco-2 and Air Force Cannonball are given. These results indicate that the satellite ephemerides produced by the BMW theory in conjunction with the Vinti program are of very high accuracy. In addition, since the program is entirely analytic, several months of ephemerides can be obtained within a few seconds of computer time.

  5. The Effect of Various Wing-Gun Installations on the Aerodynamic Characteristics of an Airplane Model Equipped with an NACA Low-Drag Wing, Special Report

    NASA Technical Reports Server (NTRS)

    Muse, Thomas C.

    1941-01-01

    An investigation was made in the NACA 19-foot pressure wind tunnel to determine the effect of various win-gun installation on the aerodynamic characteristics of a model with an NACA low-drag wing. Measurements were made of lift and drag over an angle-of-attack range and for several values of dynamic pressure on a four-tenths scale model of a high-speed airplane equipped with the low-drag wing and with various wing-gun installations. Two installations were tested: one in which the blast tube and part of the gun barrel protrude ahead of the wing and another in which the guns is mounted wholly within the wing. Two types of openings for the latter installation were tested. For each installation three simulated guns were mounted in each wing. The results are given in the form of nondimensional coefficients. The installations tested appear to have little effect on the maximum-lift coefficient of the model. However, the drag coefficient shows a definite change. The least adverse effect was obtained with the completely internal mounting and small nose entrance. The results indicate that a properly designed wing-gun installation will have very little adverse effect on the aerodynamic characteristics of the low-drag wing.

  6. On the effect of sea spray on the aerodynamic surface drag under severe winds

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina; Zilitinkevich, Sergej

    2016-05-01

    We investigate the effect of the sea spray on the air-sea momentum exchange during the entire "life cycle" of a droplet, torn off the crest of a steep surface wave, and its fall down to the water, in the framework of a model covering the following aspects of the phenomenon: (1) motion of heavy particle in the driving air flow (equations of motion); (2) structure of the wind field (wind velocity, wave-induced disturbances, turbulent fluctuations); (3) generation of the sea spray; and (4) statistics of droplets (size distribution, wind speed dependence). It is demonstrated that the sea spray in strong winds leads to an increase in the surface drag up to 40 % on the assumption that the velocity profile is neutral.

  7. Aerodynamic drag is not the major determinant of performance during giant slalom skiing at the elite level.

    PubMed

    Supej, M; Saetran, L; Oggiano, L; Ettema, G; Šarabon, N; Nemec, B; Holmberg, H-C

    2013-02-01

    This investigation was designed to (a) develop an individualized mechanical model for measuring aerodynamic drag (F(d) ) while ski racing through multiple gates, (b) estimate energy dissipation (E(d) ) caused by F(d) and compare this to the total energy loss (E(t) ), and (c) investigate the relative contribution of E(d) /E(t) to performance during giant slalom skiing (GS). Nine elite skiers were monitored in different positions and with different wind velocities in a wind tunnel, as well as during GS and straight downhill skiing employing a Global Navigation Satellite System. On the basis of the wind tunnel measurements, a linear regression model of drag coefficient multiplied by cross-sectional area as a function of shoulder height was established for each skier (r > 0.94, all P < 0.001). Skiing velocity, F(d) , E(t) , and E(d) per GS turn were 15-21 m/s, 20-60 N, -11 to -5 kJ, and -2.3 to -0.5 kJ, respectively. E(d) /E(t) ranged from ∼5% to 28% and the relationship between E(t) /v(in) and E(d) was r = -0.12 (all NS). In conclusion, (a) F(d) during alpine skiing was calculated by mechanical modeling, (b) E(d) made a relatively small contribution to E(t) , and (c) higher relative E(d) was correlated to better performance in elite GS skiers, suggesting that reducing ski-snow friction can improve this performance. PMID:23121340

  8. March 2000 Working Group Meeting on Heavy Vehicle Aerodynamic DragL Presentations and Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R.; Flowers, D.; Dunn, T.; Owens, J.; Browand, F.; Hammache, M.; Loenard, A.; Brady, M.; Salari, K.; Rutledge, W.; Scheckler, R.; Ross, J.; Storms, B.; Heineck, J.T.; Arledge, T

    2000-05-15

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on March 16, 2000. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in the analysis of experimental results, model developments, simulations, and an investigation of an aerodynamic device. The focus of the meeting was a review of University of Southern California's (USC) experimental plans and results, NASA Ames experimental plans, the computational results from Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) for the integrated tractor-trailer benchmark geometry called the Ground Transportation System (GTS) Model, and turbulence model development and benchmark simulation for a rounded cube from California Institute of Technology (Caltech). Much of the meeting discussion involved deficiencies in commercial software, needed modeling improvements, and the importance of detailed data for code validation. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), LLNL, SNL, NASA Ames, USC, and Caltech. Representatives from Argonne National Laboratory also participated via telephone. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items. There were 3 major issues raised at the meeting. (1) Our funding is inadequate to satisfy industries request for high Reynolds number experimentation and computation. Plans are to respond to the DOD and DOE requests for proposals, which require a 50-50 cost share with industry, to acquire funding for high Reynolds number experiments at NASA Ames. (2) The deficiencies in commercial software, the need for

  9. March 1999 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    SciTech Connect

    Brady, M; Browand, F; McCallen, R; Ross, J; Salari, K

    1999-03-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory, Livermore, California on March 11, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of the experimental results for the integrated tractor-trailer benchmark geometry called the Sandia Model in the NASA Ames 7 ft x 10 ft wind tunnel. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center.This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  10. Boattail Plates With Non-Rectangular Geometries For Reducing Aerodynamic Base Drag Of A Bluff Body In Ground Effect

    DOEpatents

    Ortega, Jason M.; Sabari, Kambiz

    2006-03-07

    An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.

  11. July 1999 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    SciTech Connect

    Brady, M; Browand, F; Flowers, D; Hammache, M; Landreth, G; Leonard, A; McCallen, R; Ross, J; Rutledge, W; Salari, K

    1999-08-16

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at University of Southern California, Los Angeles, California on July 30, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of University of Southern California's (USC) experimental plans and results and the computational results from Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) for the integrated tractor-trailer benchmark geometry called the Sandia Model. Much of the meeting discussion involved the NASA Ames 7 ft x 10 ft wind tunnel tests and the need for documentation of the results. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), LLNL, SNL, USC, and California Institute of Technology (Caltech). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  12. Missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.

  13. Reduction of aerodynamic friction drag of moving bodies using a Microwave-Dielectric-Barrier-Discharge actuator controlling the boundary layer

    NASA Astrophysics Data System (ADS)

    Pierre, Thiery

    2015-11-01

    A new plasma device named M-DBD (Microwave Dielectric Barrier Discharge) is used for controlling the boundary layer in order to reduce the drag force. A compact resonant UHF structure comprising a resonant element in the form of a quarter-wave antenna creates a mini-plasma insulated from the UHF electrodes by mica sheets. Additional electrodes induce an electric field in the plasma and transiently move the ions of the plasma. The high collision rate with the neutral molecules induce the global transient flow of the neutral gas. The temporal variation of the applied electric field is chosen in order to obtain a modification of the local boundary layer. First tests using an array of M-DBD plasma actuators are underway (see Patent ref. WO 2014111469 A1).

  14. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  15. Spacecraft drag modelling

    NASA Astrophysics Data System (ADS)

    Mostaza Prieto, David; Graziano, Benjamin P.; Roberts, Peter C. E.

    2014-01-01

    This paper reviews currently available methods to calculate drag coefficients of spacecraft traveling in low Earth orbits (LEO). Aerodynamic analysis of satellites is necessary to predict the drag force perturbation to their orbital trajectory, which for LEO orbits is the second in magnitude after the gravitational disturbance due to the Earth's oblateness. Historically, accurate determination of the spacecraft drag coefficient (CD) was rarely required. This fact was justified by the low fidelity of upper atmospheric models together with the lack of experimental validation of the theory. Therefore, the calculation effort was a priori not justified. However, advances on the field, such as new atmospheric models of improved precision, have allowed for a better characterization of the drag force. They have also addressed the importance of using physically consistent drag coefficients when performing aerodynamic calculations to improve analysis and validate theories. We review the most common approaches to predict these coefficients.

  16. Experiments examining drag in linear droplet packets

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. V.; Dunn-Rankin, D.

    1992-01-01

    This paper presents an experimental study of vertically traveling droplet packets, where the droplets in each packet are aligned linearly, one behind another. The paper describes in detail, an experimental apparatus that produces repeatable, linearly aligned, and isolated droplet packets containing 1 6 droplets per packet. The apparatus is suitable for examining aerodynamic interactions between droplets within each packet. This paper demonstrates the performance of the apparatus by examining the drag reduction and collision of droplets traveling in the wake of a lead droplet. Comparison of a calculated single droplet trajectory with the detailed droplet position versus time data for a droplet packet provides the average drag reduction experienced by the trailing droplets due to the aerodynamic wake of the lead droplet. For the conditions of our experiment (4 droplet packet, 145 μm methanol droplets, 10 m/s initial velocity, initial droplet spacing of 5.2 droplet diameters, Reynolds number approx. 80) the average drag on the first trailing droplet was found to be 75% of the drag on the lead droplet.

  17. Aerodynamic simulation

    SciTech Connect

    Not Available

    1993-01-01

    In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.

  18. Device measures fluid drag on test vehicles

    NASA Technical Reports Server (NTRS)

    Freeman, R.; Judd, J. H.; Leiss, A.

    1965-01-01

    Electromechanical drag balance device measures the aerodynamic drag force acting on a vehicle as it moves through the atmosphere and telemeters the data to a remote receiving station. This device is also used for testing the hydrodynamic drag characteristics of underwater vehicles.

  19. Attitude Dependent De-Orbit Lifetime Analysis of an Aerodynamic Drag Sail Demonstration Spacecraft and Detailed Thermal Subsystem Design for a Polar Orbiting Communications Nanosatellite

    NASA Astrophysics Data System (ADS)

    Tarantini, Vincent Claudio Franco

    Contributions to two missions are presented. The first is a demonstration mission called CanX-7 that uses a 4 square metre drag sail to de-orbit a 3.5 kg satellite. In order to estimate the effectiveness of the drag sail, a novel method is developed that takes into account the time-varying nature of the projected drag area. The Space Flight Laboratory designed drag sail is shown lo be sufficient to de-orbit the CanX-7 spacecraft within the 25 year requirement. The Antarctic Broadband demonstrator spacecraft is a 20 cm cubical nanosatellite that will demonstrate the feasibility of a Ka-band link between the research community in Antarctica and stakeholders in Australia. In support of this mission, a passive thermal control subsystem is designed that will keep all the components within their operational temperature limits at all times throughout the mission.

  20. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  1. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  2. Supersonic aerodynamic characteristics of hypersonic low-wave-drag elliptical body-tail combinations as affected by changes in stabilizer configuration

    NASA Technical Reports Server (NTRS)

    Spencer, B., Jr.; Fournier, R. H.

    1973-01-01

    An investigation has been made at Mach numbers from 1.50 to 4.63 to determine systematically the effects of the addition and position of outboard stabilizers and vertical- and vee-tail configurations on the performance and stability characteristics of a low-wave-drag elliptical body. The basic body shape was a zero-lift hypersonic minimum-wave-drag body as determined for the geometric constraints of length and volume. The elliptical cross section had an axis ratio of 2 (major axis horizontal) and an equivalent fineness ratio of 6.14. Base-mounted outboard stabilizers were at various dihedral angles from 90 deg to minus 90 deg with and without a single center-line vertical tail or a vee-tail. The angle of attack was varied from about minus 6 to 27 deg at sideslip angles of 0 and 5 deg and a constant Reynolds number of 4.58 x one million (based on body length).

  3. Space shuttle: Aerodynamic stability, control effectiveness and drag characteristics of a shuttle orbiter configuration at Mach numbers from 0.6 to 4.96

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel from Sept. 27 to Oct. 7, 1972 on a 0.004 scale model of the NR ATP baseline shuttle orbiter configuration. Six component aerodynamic force and moment data were recorded at 0 deg sideslip angle over an angle of attack range from 0 to 20 deg for Mach numbers of 0.6 to 4.96, 20 to 40 deg for Mach numbers of 0.6, 0.9, 2.99, and 4.96, and 40 to 60 deg for Mach numbers of 2.99 and 4.96. Data were obtained over a sideslip range of -10 to 10 deg at 0, 10, and 20 deg angles of attack over the Mach range and 30 and 50 deg at Mach numbers of 2.99 and 4.96. The purpose of the test was to define the buildup, performance, stability, and control characteristics of the orbiter configuration. The model parameters, were: body alone; body-wing; body-wing-tail; elevon deflections of 0, 10, -20, and -40 deg both full and split); aileron deflections of plus or minus 10 deg (full and split); rudder flares of 10 and 40 deg, and a rudder deflection of 15 deg about the 10 and 40 deg flare positions.

  4. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  5. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  6. Transient platoon aerodynamics and bluff body flows

    NASA Astrophysics Data System (ADS)

    Tsuei, Lun

    There are two components of this experimental work: transient vehicle platoon aerodynamics and bluff-body flows. The transient aerodynamic effects in a four-vehicle platoon during passing maneuvers and in-line oscillations are investigated. A vehicle model is moved longitudinally parallel to a four-car platoon to simulate passing maneuvers. The drag and side forces experienced by each platoon member are measured using strain gauge balances. The resulting data are presented as dimensionless coefficients. It is shown that each car in the platoon experiences a repulsive side force when the passing vehicle is in the neighborhood of its rear half. The side force reverses its direction and becomes an attractive force when the passing vehicle moves to the neighborhood of its front half. The drag force experienced by each platoon member is increased when the passing vehicle is in its proximity. The effects of the lateral spacing and relative velocity between the platoon and the passing vehicle, as well as the shape of the passing vehicle, are also investigated. Similar trends are observed in simulations of both a vehicle passing a platoon and a platoon overtaking a vehicle. During the in-line oscillation experiments, one of the four platoon members is forced to undergo longitudinal periodic motions. The drag force experienced by each platoon member is determined simultaneously during the oscillations. The effects of the location of the oscillating vehicle, the shape of the vehicles and the displacement and velocity amplitudes of the oscillation are examined. The results from the transient conditions are compared to those from the steady tests in the same setup. In the case of a four-car platoon, the drag variations experienced by the vehicles adjacent to the oscillating vehicle are discussed using a cavity model. It is found that when the oscillating car moves forward and approaches its upstream neighbor, itself and its downstream neighbor experiences an increased drag

  7. GASP- General Aviation Synthesis Program. Volume 3: Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hague, D.

    1978-01-01

    Aerodynamics calculations are treated in routines which concern moments as they vary with flight conditions and attitude. The subroutines discussed: (1) compute component equivalent flat plate and wetted areas and profile drag; (2) print and plot low and high speed drag polars; (3) determine life coefficient or angle of attack; (4) determine drag coefficient; (5) determine maximum lift coefficient and drag increment for various flap types and flap settings; and (6) determine required lift coefficient and drag coefficient in cruise flight.

  8. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  9. Dynamic soaring: aerodynamics for albatrosses

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.

  10. Aerodynamic characteristics of wheelchairs. [Langley V/STOL wind tunnel tests for human factors engineering

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1979-01-01

    The overall aerodynamic drag characteristics of a conventional wheelchair were defined and the individual drag contributions of its components were determined. The results show that a fiftieth percentile man sitting in the complete wheelchair would experience an aerodynamic drag coefficient on the order of 1.4.

  11. Aerodynamics: The Wright Way

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer Hansen

    2010-01-01

    This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.

  12. Coulomb drag

    NASA Astrophysics Data System (ADS)

    Narozhny, B. N.; Levchenko, A.

    2016-04-01

    Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.

  13. New drag laws for flapping flight

    NASA Astrophysics Data System (ADS)

    Agre, Natalie; Zhang, Jun; Ristroph, Leif

    2014-11-01

    Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.

  14. The Minimum Induced Drag of Aerofoils

    NASA Technical Reports Server (NTRS)

    Munk, M. M.

    1979-01-01

    Equations are derived to demonstrate which distribution of lifting elements result in a minimum amount of aerodynamic drag. The lifting elements were arranged (1) in one line, (2) parallel lying in a transverse plane, and (3) in any direction in a transverse plane. It was shown that the distribution of lift which causes the least drag is reduced to the solution of the problem for systems of airfoils which are situated in a plane perpendicular to the direction of flight.

  15. Drag evaluation of the Bellanca Skyrocket II

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Hoffmann, M. J.; Payne, H. E.; Harris, J. P.

    1977-01-01

    The Bellanca Skyrocket II, possessor of five world speed records, is a single engine aircraft with high performance that has been attributed to a laminar flow airfoil and an all composite structure. Utilization of composite materials in the Skyrocket II is unique since this selection was made to increase the aerodynamic efficiency of the aircraft. Flight tests are in progress to measure the overall aircraft drag and the wing section drag for comparison with the predicted performance of the Skyrocket. Initial results show the zero lift drag is indeed low, equalling 0.016.

  16. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  17. The economic impact of drag in general aviation

    NASA Technical Reports Server (NTRS)

    Neal, R. D.

    1975-01-01

    General aviation aircraft fuel consumption and operating costs are closely linked to drag reduction methods. Improvements in airplane drag are envisioned for new models; their effects will be in the 5 to 10% range. Major improvements in fuel consumption over existing turbofan airplanes will be the combined results of improved aerodynamics plus additional effects from advanced turbofan engine designs.

  18. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  19. Measuring the Drag Force on a Falling Ball

    ERIC Educational Resources Information Center

    Cross, Rod; Lindsey, Crawford

    2014-01-01

    The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is…

  20. A comprehensive plan for helicopter drag reduction

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Montana, P. S.

    1975-01-01

    Current helicopters have parasite drag levels 6 to 10 times as great as fixed wing aircraft. The commensurate poor cruise efficiency results in a substantial degradation of potential mission capability. The paper traces the origins of helicopter drag and shows that the problem (primarily due to bluff body flow separation) can be solved by the adoption of a comprehensive research and development plan. This plan, known as the Fuselage Design Methodology, comprises both nonaerodynamic and aerodynamic aspects. The aerodynamics are discussed in detail and experimental and analytical programs are described which will lead to a solution of the bluff body problem. Some recent results of work conducted at the Naval Ship Research and Development Center (NSRDC) are presented to illustrate these programs. It is concluded that a 75-per cent reduction of helicopter drag is possible by the full implementation of the Fuselage Design Methodology.

  1. Drag calculations of wings using Euler methods

    NASA Technical Reports Server (NTRS)

    Van Dam, C. P.; Chang, I. C.; Vijgen, P. M. H. W.; Nikfetrat, Koorosh

    1991-01-01

    Several techniques for the calculation of drag using Euler-equation formulations are discussed and compared. Surface-pressure integration (a nearfield technique) as well as two different farfield calculation techniques are described and applied to three-dimensional flow-field solutions for an aspect-ratio-7 wing with attached flow. The present calculations are limited to steady, low-Mach-number flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. Although the main focus of the paper is the calculation of aerodynamic drag, the calculation of aerodynamic lift is also briefly discussed. Three Euler methods are used to obtain the flowfield solutions. The farfield technique based on the evaluation of a wake-integral appears to provide the most consistent and accurate drag predictions.

  2. Drag reduction obtained by modifying a standard truck

    NASA Technical Reports Server (NTRS)

    Sheridan, A. E.; Grier, S. J.

    1978-01-01

    A standard two-axle truck with a box-shaped cargo compartment was tested to determine whether significant reductions in aerodynamic drag could be obtained by modifying the front of the cargo compartment. The coastdown method was used to determine the total drag of the baseline vehicle, which had a square-cornered cargo box, and of several modified configurations. Test velocities ranged from 56.3 to 94.6 kilometers per hour (35 to 60 miles per hour). At 88.5 kilometers per hour (55 miles per hour), the aerodynamic drag reductions obtained with the modified configurations ranged from 8 to 30 percent.

  3. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  4. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  5. Fairing Well: Aerodynamic Truck Research at NASA Dryden Flight Research Center. From Shoebox to Bat Truck and Beyond

    NASA Technical Reports Server (NTRS)

    Gelzer, Christian

    2011-01-01

    In 1973 engineers at Dryden began investigating ways to reduce aerodynamic drag on land vehicles. They began with a delivery van whose shape they changed dramatically, finally reducing its aerodynamic drag by more than 5 percent. They then turned their attention to tracator-trailers, modifying a cab-over and reducing its aerodynamic drag by nearly 25 percent. Further research identified additional areas worth attention, but in the intervening decades few of those changes have appeared.

  6. Helicopter hub fairing and pylon interference drag

    NASA Technical Reports Server (NTRS)

    Graham, D. R.; Sung, D. Y.; Young, L. A.; Louie, A. W.; Stroub, R. H.

    1989-01-01

    A wind tunnel test was conducted to study the aerodynamics of helicopter hub and pylon fairings. The test was conducted in the 7-by 10 Foot Subsonic Wind Tunnel (Number 2) at Ames Research Center using a 1/5-scale XH-59A fuselage model. The primary focus of the test was on the rotor hub fairing and pylon mutual interference drag. Parametric studies of pylon and hub fairing geometry were also conducted. This report presents the major findings of the test as well as tabulated force and moment data, flow visualization photographs, and graphical presentations of the drag data. The test results indicate that substantial drag reduction can be attained through the use of a cambered hub fairing with circular arc upper surface and flat lower surface. Furthermore, a considerable portion of the overall drag reduction is attributed to the reduction in the hub-on-pylon interference drag. It is also observed that the lower surface curvature of the fairing has a strong influence on the hub fairing and on pylon interference drag. However, the drag reduction benefit that was obtained by using the cambered hub fairing with a flat lower surface was adversely affected by the clearance between the hub fairing and the pylon.

  7. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  8. Determination of balloon drag

    NASA Technical Reports Server (NTRS)

    Conrad, George R.; Robbins, Edward J.

    1991-01-01

    The evolution of an empirical drag relationship that has stimulated rethinking regarding the physics of balloon drag phenomena is discussed. Combined parasitic drag from all sources in the balloon system are estimated to constitute less than 10 percent of the total system drag. It is shown that the difference between flight-determined drag coefficients and those based on the spherical assumption should be related to the square of the Froude number.

  9. An investigation into using differential drag for controlling a formation of CubeSats

    NASA Astrophysics Data System (ADS)

    Horsley, M.

    2011-09-01

    As the SSA system upgrades its existing capabilities and adds new ones, the potential offered by inexpensive CubeSat-based systems is growing more attractive. The potential benefits of using CubeSats increase if they are operated in groups to form ‘virtual’ satellites, which have the same functionality of a much larger satellite, but at a fraction of the cost. This paper will investigate the feasibility of using differential aerodynamic forces to control a formation of CubeSats in order to form a virtual satellite. Unfortunately, due to third body gravitational forces, solar radiation pressure, and other perturbing forces, the satellites will drift apart if no control mechanism is employed to maintain the formation. However, providing for a control mechanism is difficult. Using a rocket engine is expensive, increases mission risk, and requires fuel to be carried in the rather limited volume available in a typical CubeSat. However, passive techniques that take advantage of the differential aerodynamic forces experienced by two spacecraft can be used to exert a modest amount of control over the formation. Techniques for doing this have been discussed in the literature. These techniques rely on a simple drag plate, and only allow modest control of the formation in the plane defined by the spacecrafts orbit. An alternative is to treat the drag plate as an aerodynamic control surface, much as is done with an aircraft. This technique allows the control surface to be oriented in a fully 3 dimensional fashion, allowing a greater range of control of the satellite formation. A challenge in treating the drag plate as a 3 dimensional control surface is that the equations of motion describing the relative motions of the satellites become fully coupled with their relative orientations. Thus, controlling the satellite formation by adjusting the relative orientations of the different satellites will require solving a fully coupled set of differential equations and devising a

  10. Biomimetic spiroid winglets for lift and drag control

    NASA Astrophysics Data System (ADS)

    Guerrero, Joel E.; Maestro, Dario; Bottaro, Alessandro

    2012-01-01

    In aeronautical engineering, drag reduction constitutes a challenge and there is room for improvement and innovative developments. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80-90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a bird's wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon. The numerical investigation of such a wingtip device is described and preliminary indications of its aerodynamic performance are provided.

  11. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small-and large-scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties related to minimum drag, wave drag, high angle of attack characteristics, and power-induced effects. Engine design configurations from several aircraft manufacturers are reviewed.

  12. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.

  13. Drag reduction in nature

    NASA Astrophysics Data System (ADS)

    Bushnell, D. M.; Moore, K. J.

    Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.

  14. Drag bit construction

    DOEpatents

    Hood, Michael

    1986-01-01

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face.

  15. Drag bit construction

    DOEpatents

    Hood, M.

    1986-02-11

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.

  16. Drag reduction in nature

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Moore, K. J.

    1991-01-01

    Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.

  17. Drag reduction of a heavy vehicle

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2007-11-01

    During the 1970's and 1980's, a number of first-generation drag reduction devices were designed to reduce the aerodynamic losses of heavy vehicles (Cooper, 2003). The result of this effort led to the development of a number of devices that improved the aerodynamics of a heavy vehicle tractor. Additionally, a number of second-generation devices were developed for heavy vehicle trailers. Unfortunately, these trailer devices did not enter into the market on a wide-scale basis and, as a result, the modern heavy vehicle trailer largely remains a ``box on wheels'' with minimal aerodynamic consideration taken into its design. The primary obstacle to implementing trailer devices was not their effectiveness in reducing drag, but rather operational, maintenance, and ultimately, economic concerns. However, with rising fuel costs and potentially unstable fuel supplies, there is a renewed objective to further reduce heavy vehicle fuel usage. To accomplish this purpose, the present study investigates the drag reduction capability of a trailer device, which neither reduces the trailer cargo capacity, nor limits access to the trailer doors. RANS simulations are performed on a full-scale tractor-trailer that is traveling at highway conditions with and without the trailer device. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  18. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  19. Symmetry breaking for drag minimization

    NASA Astrophysics Data System (ADS)

    Roper, Marcus; Squires, Todd M.; Brenner, Michael P.

    2005-11-01

    For locomotion at high Reynolds numbers drag minimization favors fore-aft asymmetric slender shapes with blunt noses and sharp trailing edges. On the other hand, in an inertialess fluid the drag experienced by a body is independent of whether it travels forward or backward through the fluid, so there is no advantage to having a single preferred swimming direction. In fact numerically determined minimum drag shapes are known to exhibit almost no fore-aft asymmetry even at moderate Re. We show that asymmetry persists, albeit extremely weakly, down to vanishingly small Re, scaling asymptotically as Re^3. The need to minimize drag to maximize speed for a given propulsive capacity gives one possible mechanism for the increasing asymmetry in the body plans seen in nature, as organisms increase in size and swimming speed from bacteria like E-Coli up to pursuit predator fish such as tuna. If it is the dominant mechanism, then this signature scaling will be observed in the shapes of motile micro-organisms.

  20. Aerodynamics of a Cryogenic Semi-Tanker

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2009-11-01

    The design of a modern cryogenic semi-tanker is based primarily upon functionality with little consideration given to aerodynamic drag. As a result, these tankers have maintained the appearance of a wheeled cylinder for several decades. To reduce the fuel usage of these vehicles, this study investigates their aerodynamics. A detailed understanding of the flow field about the vehicle and its influence on aerodynamic drag is obtained by performing Reynolds-Averaged Navier-Stokes simulations of a full-scale tractor and cryogenic tanker-trailer operating at highway speed within a crosswind. The tanker-trailer has a length to diameter ratio of 6.3. The Reynolds number, based upon the tanker diameter, is 4.0x10^6, while the effective vehicle yaw angle is 6.1 . The flow field about the vehicle is characterized by large flow separation regions at the tanker underbody and base. In addition, the relatively large gap between the tractor and the tanker-trailer allows the free-stream flow to be entrained into the tractor-tanker gap. By mitigating these drag-producing phenomena through the use of simple geometry modifications, it may be possible to reduce the aerodynamic drag of cryogenic semi-tankers and, thereby, improve their fuel economy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    NASA Astrophysics Data System (ADS)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  2. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  3. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  4. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  5. Aerodynamic tests of Darrieus wind turbine blades

    SciTech Connect

    Migliore, P.G.; Walters, R.E.; Wolfe, W.P.

    1983-03-01

    An indoor facility for the aerodynamic testing of Darrieus turbine blades was developed. Lift, drag, and moment coefficients were measured for two blades whose angle of attack and chord-to-radius ratio were varied. The first blade used an NACA 0015 airfoil section; the second used a 15% elliptical cross section with a modified circular arc trailing edge. Blade aerodynamic coefficients were corrected to section coefficients for comparison to published rectilinear flow data. Although the airfoil sections were symmetrical, moment coefficients were not zero and the lift and drag curves were asymmetrical about zero lift coefficient and angle of attack. These features verified the predicted virtual camber and incidence phenomena. Boundary-layer centrifugal effects were manifested by discontinuous lift curves and large differences in the angle of zero lift between th NACA 0015 and elliptical airfoils. It was concluded that rectilinear flow aerodynamic data are not applicable to Darrieus turbine blades, even for small chord-to-radius ratios.

  6. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  7. Comparisons of AEROX computer program predictions of lift and induced drag with flight test data

    NASA Technical Reports Server (NTRS)

    Axelson, J.; Hill, G. C.

    1981-01-01

    The AEROX aerodynamic computer program which provides accurate predictions of induced drag and trim drag for the full angle of attack range and for Mach numbers from 0.4 to 3.0 is described. This capability is demonstrated comparing flight test data and AEROX predictions for 17 different tactical aircraft. Values of minimum (skin friction, pressure, and zero lift wave) drag coefficients and lift coefficient offset due to camber (when required) were input from the flight test data to produce total lift and drag curves. The comparisons of trimmed lift drag polars show excellent agreement between the AEROX predictions and the in flight measurements.

  8. Aerodynamics of Wiffle Balls

    NASA Astrophysics Data System (ADS)

    Utvich, Alexis; Jemmott, Colin; Logan, Sheldon; Rossmann, Jenn

    2003-11-01

    A team of undergraduate students has performed experiments on Wiffle balls in the Harvey Mudd College wind tunnel facility. Wiffle balls are of particular interest because they can attain a curved trajectory with little or no pitcher-imparted spin. The reasons behind this have not previously been quantified formally. A strain gauge device was designed and constructed to measure the lift and drag forces on the Wiffle ball; a second device to measure lift and drag on a spinning ball was also developed. Experiments were conducted over a range of Reynolds numbers corresponding to speeds of roughly 0-40 mph. Lift forces of up to 0.2 N were measured for a Wiffle ball at 40 mph. This is believed to be due to air flowing into the holes on the Wiffle ball in addition to the effect of the holes on external boundary layer separation. A fog-based flow visualization system was developed in order to provide a deeper qualitative understanding of what occurred in the flowfield surrounding the ball. The data and observations obtained in this study support existing assumptions about Wiffle ball aerodynamics and begin to elucidate the mechanisms involved in Wiffle ball flight.

  9. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  10. A fundamental study of drag and an assessment of conventional drag-due-to-lift reduction devices

    NASA Technical Reports Server (NTRS)

    Yates, J. E.; Donald, C. D.

    1986-01-01

    The integral conservation laws of fluid mechanics are used to assess the drag efficiency of lifting wings, both CTOL and various out-of-plane configurations. The drag-due-to-lift is separated into two major components: (1) the induced drag-due-to-lift that depends on aspect ratio but is relatively independent of Reynolds number; (2) the form drag-due-to-lift that is independent of aspect ratio but dependent on the details of the wing section design, planform and Reynolds number. For each lifting configuration there is an optimal load distribution that yields the minimum value of drag-due-to-lift. For well designed high aspect ratio CTOL wings the two drag components are independent. With modern design technology CTOL wings can be (and usually are) designed with a drag-due-to-lift efficiency close to unity. Wing tip-devices (winglets, feathers, sails, etc.) can improve drag-due-to-lift efficiency by 10 to 15% if they are designed as an integral part of the wing. As add-on devices they can be detrimental. It is estimated that 25% improvements of wing drag-due-to-lift efficiency can be obtained with joined tip configurations and vertically separated lifting elements without considering additional benefits that might be realized by improved structural efficiency. It is strongly recommended that an integrated aerodynamic/structural approach be taken in the design of (or research on) future out-of-plane configurations.

  11. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  12. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  13. Statistical Analysis of CFD Solutions from the Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    2002-01-01

    A simple, graphical framework is presented for robust statistical evaluation of results obtained from N-Version testing of a series of RANS CFD codes. The solutions were obtained by a variety of code developers and users for the June 2001 Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration used for the computational tests is the DLR-F4 wing-body combination previously tested in several European wind tunnels and for which a previous N-Version test had been conducted. The statistical framework is used to evaluate code results for (1) a single cruise design point, (2) drag polars and (3) drag rise. The paper concludes with a discussion of the meaning of the results, especially with respect to predictability, Validation, and reporting of solutions.

  14. Rarefaction Effects in Hypersonic Aerodynamics

    NASA Astrophysics Data System (ADS)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  15. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  16. Drag reductions obtained by modifying a box-shaped ground vehicle

    NASA Technical Reports Server (NTRS)

    Saltzman, E. J.; Meyer, R. R., Jr.; Lux, D. P.

    1974-01-01

    A box-shaped ground vehicle was used to simulate the aerodynamic drag of high volume transports, that is, delivery vans, trucks, or motor homes. The coast-down technique was used to define the drag of the original vehicle, having all square corners, and several modifications of the vehicle. Test velocities ranged up to 65 miles per hour, which provided maximum Reynolds numbers of 1 times 10 to the 7th power based on vehicle length. One combination of modifications produced a reduction in aerodynamic drag of 61 percent as compared with the original square-cornered vehicle.

  17. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  18. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  19. Some comments on trim drag

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1975-01-01

    A discussion of data of and methods for predicting trim drag is presented. Specifically the following subjects are discussed: (1) economic impact of trim drag; (2) the trim drag problem in propeller driven airplanes and the effect of propeller and nacelle location; (3) theoretical procedures for predicting trim drag; and (4) research needs in the area of trim drag.

  20. Covariance analysis of differential drag-based satellite cluster flight

    NASA Astrophysics Data System (ADS)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  1. Air flow testing on aerodynamic truck

    NASA Technical Reports Server (NTRS)

    1975-01-01

    After leasing a cab-over tractor-trailer from a Southern California firm, Dryden researchers added sheet metal modifications like those shown here. They rounded the front corners and edges, and placed a smooth fairing on the cab's roofs and sides extending back to the trailer. During the investigation of truck aerodynamics, the techniques honed in flight research proved highly applicable. By closing the gap between the cab and the trailer, for example, researchers discovered a significant reduction in aerodynamic drag, one resulting in 20 to 25 percent less fuel consumption than the standard design. Many truck manufacturers subsequently incorporated similar modifications on their products.

  2. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  3. Some comments on fuselage drag

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1975-01-01

    The following areas relating to fuselage drag are considered: (1) fuselage fineness - ratio and why and how this can be selected during preliminary design; (2) windshield drag; (3) skin roughness; and (4) research needs in the area of fuselage drag.

  4. Space Shuttle Orbital Drag Parachute Design

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert E.

    2001-01-01

    The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.

  5. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  6. Moderate lift-to-drag aeroassist

    NASA Technical Reports Server (NTRS)

    Florence, D. E.; Fischer, G.

    1984-01-01

    Significant performance benefits are realized via aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low Earth orbit. This approach substantially reduces the mission propellant requirements by using the aerodynamic drag, D, to brake the vehicle to near circular velocity and the aerodynamic lift, L, to null out accumulated errors as well as change the orbital inclination to that required for rendezvous with the Space Shuttle Orbiter. Broad concept evaluations were performed and the technology requirements and sensitivities for aeroassisted OTV's over a range of vehicle hypersonic L/D from 0.75 to 1.5 were systematically identified and assessed. The aeroassisted OTV is capable of evolving from an initial delivery only system to one eventually capable of supporting manned roundtrip missions to geosynchronous orbit. Concept screening was conducted on numerous configurations spanning the L/D = 0.75 to 1.5 range, and several with attractive features were identified. Initial payload capability was evaluated for a baseline of delivery to GEO, six hour polar, and Molniya (12 hours x 63.4 deg) orbits with return and recovery of the aeroassist orbit transfer vehicle (AOTV) at LEO. Evolutionary payload requirements that were assessed include a GEO servicing mission (6K up and 2K return) and a manned GEO mission (14K roundtrip).

  7. Optimal propellantless rendez-vous using differential drag

    NASA Astrophysics Data System (ADS)

    Dell`Elce, L.; Kerschen, G.

    2015-04-01

    Optimization of fuel consumption is a key driver in the design of spacecraft maneuvers. For this reason, growing interest in propellant-free maneuvers is observed in the literature. Because it allows us to turn the often-undesired drag perturbation into a control force for relative motion, differential drag is among the most promising propellantless techniques for low-Earth orbiting satellites. An optimal control approach to the problem of orbital rendez-vous using differential drag is proposed in this paper. Thanks to the scheduling of a reference maneuver by means of a direct transcription, the method is flexible in terms of cost function and can easily account for constraints of various nature. Considerations on the practical realization of differential-drag-based maneuvers are also provided. The developments are illustrated by means of high-fidelity simulations including coupled 6-degree-of-freedom simulations and an advanced aerodynamic model.

  8. Dynamics of Drag Free Formations in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ploen, Scott R.; Scharf, Daniel P.; Hadaegh, Fred. Y.; Acikmese, A. Behcet

    2004-01-01

    In this paper the translational equations of motion of a formation of n spacecraft in Earth orbit, n(sub f) of which are drag-free spacecraft, are derived in a coordinate-free manner using the balance of linear momentum and direct tensor notation. A drag-free spacecraft consists of a spacecraft bus and a proof mass shielded from external disturbances in an internal cavity. By controlling the spacecraft so that the proof mass remains centered in the cavity, the spacecraft follows a purely gravitational orbit. The results described in this paper provide a first step toward coupling drag-free control technology with formation flying in order to mitigate the effect of differential aerodynamic drag on formation flying missions (e.g., Earth imaging applications) in low Earth orbit.

  9. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  10. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  11. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  12. Cruise aerodynamics of USB nacelle/wing geometric variations

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.

    1976-01-01

    Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.

  13. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  14. Wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Migliore, P G; Miller, L S; Quandt, G A

    1995-04-01

    Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).

  15. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  16. On a global aerodynamic optimization of a civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Savu, G.; Trifu, O.

    1991-01-01

    An aerodynamic optimization procedure developed to minimize the drag to lift ratio of an aircraft configuration: wing - body - tail, in accordance with engineering restrictions, is described. An algorithm developed to search a hypersurface with 18 dimensions, which define an aircraft configuration, is discussed. The results, when considered from the aerodynamic point of view, indicate the optimal configuration is one that combines a lifting fuselage with a canard.

  17. Induced drag of multiplanes

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1924-01-01

    The most important part of the resistance or drag of a wing system,the induced drag, can be calculated theoretically, when the distribution of lift on the individual wings is known. The calculation is based upon the assumption that the lift on the wings is distributed along the wing in proportion to the ordinates of a semi-ellipse. Formulas and numerical tables are given for calculating the drag. In this connection, the most favorable arrangements of biplanes and triplanes are discussed and the results are further elucidated by means of numerical examples.

  18. AEROX: Computer program for transonic aircraft aerodynamics to high angles of attack. Volume 1: Aerodynamic methods and program users' guide

    NASA Technical Reports Server (NTRS)

    Axelson, J. A.

    1977-01-01

    The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.

  19. Aerodynamic design lowers truck fuel consumption

    NASA Technical Reports Server (NTRS)

    Steers, L.

    1978-01-01

    Energy-saving concepts in truck design are emerging from developing new shapes with improved aerodynamic flow properties that can reduce air-drag coefficient of conventional tractor-trailers without requiring severe design changes or compromising load-carrying capability. Improvements are expected to decrease somewhat with increased wind velocities and would be affected by factors such as terrain, driving techniques, and mechanical condition.

  20. Drag-force regimes in granular impact

    NASA Astrophysics Data System (ADS)

    Tiwari, Mukesh; Mohan, T. R. Krishna; Sen, Surajit

    2014-12-01

    We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences.

  1. Drag-force regimes in granular impact.

    PubMed

    Tiwari, Mukesh; Mohan, T R Krishna; Sen, Surajit

    2014-12-01

    We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences. PMID:25615080

  2. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  3. Hub and pylon fairing integration for helicopter drag reduction

    NASA Technical Reports Server (NTRS)

    Martin, D. M.; Mort, R. W.; Squires, P. K.; Young, L. A.

    1991-01-01

    The results of testing hub and pylon fairings mounted on a one-fifth scale helicopter with the goal of reducing parasite drag are presented. Lift, drag, and pitching moment, as well as side force and yawing moment, were measured. The primary objective of the test was to validate the drag reduction capability of integrated hub and pylon configurations in the aerodynamic environment produced by a rotating hub in forward flight. In addition to the baseline helicopter without fairings, three hub fairings and three pylon fairings were tested in various combinations. The three hub fairings tested reflect two different conceptual design approaches to implementing an integrated fairing configuration on an actual aircraft. The design philosophy is discussed in detail and comparisons are made between the wind tunnel models and potential full-scale prototypes. The data show that model drag can be reduced by as much as 20.8 percent by combining a small hub fairing with circular arc upper and flat lower surfaces and a nontapered 34-percent thick pylon fairing. Aerodynamic effects caused by the fairings, which may have a significant impact on static longitudinal and directional stability, were observed. The results support previous research which showed that the greatest reduction in model drag is achieved if the hub and pylon fairings are integrated with minimum gap between the two.

  4. The aerodynamics of supersonic parachutes

    SciTech Connect

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlations of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.

  5. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Michael Jacob; Ray, Ronald J.

    2004-01-01

    The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust. A standard Navy air refueling store with a retractable refueling hose and paradrogue was mounted to the centerline pylon of the F/A-18A airplane. As the paradrogue assembly was deployed and stowed, changes in the calculated thrust of the airplane occurred and were equated to changes in vehicle drag. These drag changes were attributable to the drag of the paradrogue assembly. The drag of the paradrogue assembly was determined to range from 200 to 450 lbf at airspeeds from 170 to 250 KIAS. Analysis of the drag data resulted in a single drag coefficient of 0.0056 for the paradrogue assembly that adequately matched the calculated drag for all flight conditions. The drag relief provided to the tanker airplane when a receiver airplane engaged the paradrogue is also documented from 35 to 270 lbf at the various flight conditions tested. The results support the development of accurate aerodynamic models to be used in refueling simulations and control laws for fully autonomous refueling.

  6. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  7. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  8. Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.

  9. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).

    PubMed

    KleinHeerenbrink, Marco; Warfvinge, Kajsa; Hedenström, Anders

    2016-05-15

    Gliding flight is a relatively inexpensive mode of flight used by many larger bird species, where potential energy is used to cover the cost of aerodynamic drag. Birds have great flexibility in their flight configuration, allowing them to control their flight speed and glide angle. However, relatively little is known about how this flexibility affects aerodynamic drag. We measured the wake of a jackdaw (Corvus monedula) gliding in a wind tunnel, and computed the components of aerodynamic drag from the wake. We found that induced drag was mainly affected by wingspan, but also that the use of the tail has a negative influence on span efficiency. Contrary to previous work, we found no support for the separated primaries being used in controlling the induced drag. Profile drag was of similar magnitude to that reported in other studies, and our results suggest that profile drag is affected by variation in wing shape. For a folded tail, the body drag coefficient had a value of 0.2, rising to above 0.4 with the tail fully spread, which we conclude is due to tail profile drag. PMID:26994178

  10. Simultaneous drag and flow measurements of Olympic skeleton athletes

    NASA Astrophysics Data System (ADS)

    Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy

    2009-11-01

    The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.

  11. Drag-shield drop tower residual acceleration optimisation

    NASA Astrophysics Data System (ADS)

    Figueroa, A.; Sorribes-Palmer, F.; Fernandez De Pierola, M.; Duran, J.

    2016-07-01

    Among the forces that appear in drop towers for microgravity experiments, aerodynamic drag plays a crucial role in the residual acceleration. Buoyancy can also be critical, especially at the first instances of the drop when the low speed of the experimental platform makes the aerodynamic drag small compared with buoyancy. In this paper the perturbation method is used to formulate an analytical model which has been validated experimentally. The experimental test was conduced by undergraduate students of aerospace engineering at the Institute of Microgravity ‘Ignacio Da Riva’ of the Technical University of Madrid (IDR/UPM) microgravity tower. The test helped students to understand the influence of the buoyancy on the residual acceleration of the experiment platform. The objective of the students was to understand the physical process during the drop, identify the main parameters involved in the residual acceleration and determine the most suitable configuration for the next drop tower proposed to be built at UPM.

  12. Experimental study on the effects of nose geometry on drag over axisymmetric bodies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Brooker, B. Tyler

    A new nose shape that was determined using the penetration mechanics to have the least penetration drag has been tested in the supersonic wind tunnel of the University of Alabama to determine the aerodynamic characteristics of this nose shape. The aerodynamic drag measured on the new nose shape and on four additional nose shapes are compared to each other. The results show that the new nose shape has the least aerodynamic drag. The measurements were made at Mach numbers ranging from 1.85 to 3.1. This study also required the maintenance of several components of the University of Alabama's 6-inch by 6-inch supersonic wind tunnel and modification of the existing data acquisition programs. These repairs and modifications included the repair and recalibration of the supersonic wind tunnel, repair of the four component force balance, and the modification of the tunnel's control program.

  13. Two-dimensional Aerodynamic Characteristics of 34 Miscellaneous Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K , Jr; Smith, Hamilton A

    1949-01-01

    The aerodynamic characteristics of 34 miscellaneous airfoils tested in the Langley two-dimensional low-turbulence tunnels are presented. The data include lift, drag, and in some cases, pitching-moment characteristics, for Reynolds numbers between 3.0 x 10 (exp 6) and 9.0 x 10 (exp 6).

  14. Measuring the Effects of Lift and Drag on Projectile Motion

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  15. Large-eddy simulation of a turbulent flow over a heavy vehicle with drag reduction devices

    NASA Astrophysics Data System (ADS)

    Lee, Sangseung; Kim, Myeongkyun; You, Donghyun

    2015-11-01

    Aerodynamic drag contributes to a considerable amount of energy loss of heavy vehicles. To reduce the energy loss, drag reduction devices such as side skirts and boat tails, are often installed to the side and the rear of a heavy vehicle. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. Flow over a heavy vehicle with and without a boat tail and side skirts as drag reduction devices is simulated. The simulation results are validated against accompanying in-house experimental measurements. Effects of a boat tail and side skirts on drag reduction are discussed in detail. Supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) Grant NTIS 1615007940.

  16. Drag of Several Gunner's Enclosures at High Speeds, Special Report

    NASA Technical Reports Server (NTRS)

    Stack, John; Moberg, Richard J.

    1941-01-01

    The drag of several types of gunner's turrets, windshields, blisters, and other protuberances, including projecting guns, was investigated at speeds from 75 to 440 miles per hour in the NACA 8-foot high-speed wind tunnel. The various gunner's enclosures were represented by 1/10 and 1/7 full-size models on a midwing-fuselage combination representative of bomber types. Most of the usual types of retractable turrets are very poor aerodynamically; they caused wind drag increments, dependent upon the size of the turret relative to the fuselage and upon the speed, up to twice the drag of the fuselage alone. A large streamline blister sufficient to enclose completely one type of rotating cylindrical turret caused a drag increment of approximately one-half that of the turret and at the same time provided space adequate for two gunners rather than for one gunner. A large portion of the drag increments for some types of turret appeared to be due to adverse effects on the fuselage flow caused by the turret rather than by the direct drag of the turret.

  17. Transient induced drag

    NASA Technical Reports Server (NTRS)

    Weihs, D.; Katz, J.

    1986-01-01

    In the present treatment of the calculation of forces on a wing that is suddenly brought into motion at a constant speed, attention is given to the unsteady potential's contribution to the force balance. Total bound vorticity is produced at the initial impulse. The results obtained are independent of wing aspect ratio; as time increases, this effect on the drag force becomes smaller as the vortex emanating from the trailing edge is left behind. The second contributor to induced drag is the spanwise vorticity shedding that results from the spanwise load distribution of three-dimensional wings. This contribution grows with time as the length of the wake grows.

  18. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  19. Overview of external Nacelle drag and interference drag

    NASA Technical Reports Server (NTRS)

    Neal, R. D.

    1975-01-01

    A historical view of multi-jet engine installations is given that emphasizes integration of the powerplant and the airframe in aircraft design for improved reduction in external nacelle drag and interference drag characteristics.

  20. Aerodynamic characteristics of NACA 4412 airfoil sction with flap

    NASA Astrophysics Data System (ADS)

    Ockfen, Alex E.; Matveev, Konstantin I.

    2009-09-01

    Wing-in-Ground vehicles and aerodynamically assisted boats take advantage of increased lift and reduced drag of wing sections in the ground proximity. At relatively low speeds or heavy payloads of these craft, a flap at the wing trailing-ground-effect flow id numerically investigated in this study. The computational method consists of a steady-state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed flow with a flap, as well as ground-effect motion without a flap. Aerodynamic forces are plain flap. Changes in the flow introduced with the flap addition are also discussed. Overall, the use of a flap on wings with small attack angles is found to be beneficial for small flap deflections up to 5% of the chord, where the contribution of lift augmentation exceeds the drag increase, yielding an augmented lift-to-drag ratio

  1. The aerodynamic analysis of the gyroplane rotating-wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1934-01-01

    An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified.

  2. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Jake; Ray, Ronald; Calianno, Carl

    2004-01-01

    This viewgraph document reviews NASA Dryden's work on Aerial refueling, with specific interest in calculating the drag of the refueling system. The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust

  3. Aerodynamic design of electric and hybrid vehicles: A guidebook

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  4. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Miller, L.S.; Migliore, P.G.; Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  5. Acoustic Liner Drag: A Parametric Study of Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2015-01-01

    Interest in the characterization of the aerodynamic drag performance of acoustic liners has increased in the past several years. This paper details experiments in NASA Langley's Grazing Flow Impedance Tube to quantify the relative drag of several conventional perforate-over-honeycomb liner configurations. For a fixed porosity, facesheet hole diameter and cavity depth are varied to study the effect of each. These configurations are selected to span the range of conventional liner geometries used in commercial aircraft engines. Detailed static pressure and acoustic measurements are made for grazing flows up to M=0.5 at 140 dB SPL for tones between 400 and 2800 Hz. These measurements are used to calculate a resistance factor (?) for each configuration. Analysis shows a correlation between perforate hole size and the resistance factor but cavity depth seems to have little influence. Acoustic effects on liner drag are observed to be limited to the lower Mach numbers included in this investigation.

  6. Measuring the Effects of Lift and Drag on Projectile Motion

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-02-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms-1 (89.5 mph), it experiences a drag force of about 1.5 N. The gravitational force on the ball 1.42 N. Nevertheless, the trajectory of a baseball pitched without spin is not strongly affected by the drag force. Because the ball is relatively heavy and the flight distance is relatively small (about 60 ft), the drag force reduces the ball speed by only about 10% by the time it reaches the batter. As a result, the time taken for the ball to reach the batter is only about 5% longer than in a vacuum, and the actual trajectory is also very similar.2

  7. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  8. An investigation of drag reduction for tractor trailer vehicles

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1978-01-01

    Force and moment data were obtained from a one-twenty-fifth scale wind tunnel model of a cab-over-engine tractor trailer combination. The tests define the aerodynamic characteristics of the baseline (unmodified) vehicle and several modified configurations. The primary modifications consist of: (1) greatly increased forebody corner radii, (2) a smooth fairing over the cab-to-trailer gap, (3) a smoothed underbody, and (4) rear streamlining (boattailing)of the trailer. Tests were conducted for yaw angles from 0 deg to 30 deg. The reduction in drag, relative to the baseline, obtained by combining the modifications are compared for the zero yaw condition with full scale coast down drag results for similar configurations. The drag reductions obtained from the model and full scale tests are in good agreement.

  9. Aerodynamic Analysis of a Hale Aircraft Joined-Wing Configuration

    NASA Astrophysics Data System (ADS)

    Sivaji, Rangarajan; Ghia, Urmila; Ghia, Karman; Thornburg, Hugh

    2003-11-01

    Aerodynamic analysis of a high-aspect ratio, joined wing of a High-Altitude Long Endurance (HALE) aircraft is performed. The requirement of high lift over extended flight periods for the HALE aircraft leads to high-aspect ratio wings experiencing significant deflections necessitating consideration of aeroelastic effects. The finite-volume solver COBALT, with Reynolds-averaged Navier-Stokes (RANS) and Detached Eddy Simulation (DES) capabilities, is used for the flow simulations. Calculations are performed at á = 0° and 12° for M = 0.6, at an altitude of 30,000 feet, at a Re per unit length of 5.6x106. The wing cross sections are NACA 4421 airfoils. Because of the high lift-to-drag ratio wings, an inviscid flow analysis is also performed. The inviscid surface pressure coefficient (Cp) is compared with the corresponding viscous Cp to examine the feasibility of the use of the inviscid pressure loads as an estimate of the total fluid loads on the structure. The viscous and inviscid Cp results compare reasonably only at á = 0°. The viscous flow is examined in detail via surface and field velocity vectors, vorticity, density and pressure contours. For á = 12°, the unsteady DES solutions show a weak shock at the aft-wing trailing edge. Also, the flow near the joint exhibits a region of mild separation.

  10. Magnon drag thermopile

    NASA Astrophysics Data System (ADS)

    Valenzuela, Sergio O.

    2013-03-01

    Thermoelectric effects in spintronics are gathering increasing attention as a means of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role, however, the coupling between electrons and magnons in ferromagnetic metals remains poorly understood. We demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. These results demonstrate the feasibility of directly converting magnon dynamics of nanomagnets into an electrical signal and could pave the way to novel thermoelectric devices for energy harvesting. This research was supported by the Spanish Ministerio de Ciencia e Innovación, MICINN (MAT2010-18065) and by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement NANOFUNCTION no 257375.

  11. Frame dragging and superenergy

    SciTech Connect

    Herrera, L.; Di Prisco, A.; Carot, J.

    2007-08-15

    We show that the vorticity appearing in stationary vacuum spacetimes is always related to the existence of a flow of superenergy on the plane orthogonal to the vorticity vector. This result, together with the previously established link between vorticity and superenergy in radiative (Bondi-Sachs) spacetimes, strengthens further the case for this latter quantity as the cause of frame dragging.

  12. Chiral drag force

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna; Sadofyev, Andrey V.

    2015-10-01

    We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and

  13. Grid Quality and Resolution Issues from the Drag Prediction Workshop Series

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Levy, David; Murayama, Mitsuhiro

    2008-01-01

    The drag prediction workshop series (DPW), held over the last six years, and sponsored by the AIAA Applied Aerodynamics Committee, has been extremely useful in providing an assessment of the state-of-the-art in computationally based aerodynamic drag prediction. An emerging consensus from the three workshop series has been the identification of spatial discretization errors as a dominant error source in absolute as well as incremental drag prediction. This paper provides an overview of the collective experience from the workshop series regarding the effect of grid-related issues on overall drag prediction accuracy. Examples based on workshop results are used to illustrate the effect of grid resolution and grid quality on drag prediction, and grid convergence behavior is examined in detail. For fully attached flows, various accurate and successful workshop results are demonstrated, while anomalous behavior is identified for a number of cases involving substantial regions of separated flow. Based on collective workshop experiences, recommendations for improvements in mesh generation technology which have the potential to impact the state-of-the-art of aerodynamic drag prediction are given.

  14. Aerodynamic characteristics of popcorn ash particles

    SciTech Connect

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S.

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  15. Drag and lift forces in granular media

    NASA Astrophysics Data System (ADS)

    Guillard, F.; Forterre, Y.; Pouliquen, O.

    2013-09-01

    Forces exerted on obstacles moving in granular media are studied. The experiment consists in a horizontal cylinder rotating around the vertical axis in a granular medium. Both drag forces and lift forces experienced by the cylinder are measured. The first striking result is obtained during the first half rotation, before the cylinder crosses its wake. Despite the symmetry of the object, a strong lift force is measured, about 20 times the buoyancy. The scaling of this force is studied experimentally. The second remarkable observation is made after several rotations. The drag force dramatically drops and becomes independent of depth, showing that it no longer scales with the hydrostatic pressure. The rotation of the cylinder induces a structure in the packing, which screens the weight of the grains above

  16. Drag reduction of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ahmed, Anwar; Javed Khan, Mohammad

    1991-01-01

    Wind-tunnel and water-tunnel experiments are conducted to determine which factors contribute to the base-pressure drag experienced by the Space Shuttle Orbiter. Testing is conducted on a 4.05-percent scale model in the TAMU Water Tunnel and Low Speed Wind Tunnel with passive near-wake flow-modification devices attached in some of the tests. The devices are evaluated on the basis of effectiveness in terms of increasing the base pressure. Base pressures increase when a base cavity is introduced; a smooth cavity increases pressure by 13 percent, and when v-grooves are introduced into the cavity the pressure increases by 19 percent. When the v-groove base cavity is combined with a fairing plate, the total base pressure reaches 25 percent. The experimental results suggest that the base drag of the Space Shuttle Orbiter can be effectively reduced by the use of a base-cavity mechanism.

  17. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  18. Wind tunnel experiments to assess the effect of back-mounted radio transmitters on bird body drag

    USGS Publications Warehouse

    Obrecht, H.H., III; Pennycuick, C.J.; Fuller, M.R.

    1988-01-01

    The aerodynamic drag of bird bodies was measured in a wind tunnel, with and without back-mounted dummy radio transmitters. Flight performance estimates indicate that the drag of a large transmitter can cause a substantial reduction of a migrant's range, that is, the distance it can cover in non-stop flight. The drag of the transmitter can be reduced by arranging the components in an elongated shape, so minimizing the frontal area. The addition of a rounded fairing to the front end, and a pointed fairing behind, was found to reduce the drag of the transmitter by about onethird, as compared with an unfaired rectangular box.

  19. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  20. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  1. Theoretical model of aerodynamic forces at high speeds and angle of attack in a stratified flowfield of UF6

    SciTech Connect

    Harloff, G.J.

    1985-09-01

    A theoretical aerodynamic model of lift and drag forces on a flat plate at angle of attack and at hypersonic speeds is presented. Real gas effects and friction drag are accounted for. Theoretical results are presented as a function of the viscous interaction parameter. The performance for two geometries is presented. 3 refs., 8 figs., 4 tabs.

  2. Combined riblet and lebu drag reduction system

    NASA Technical Reports Server (NTRS)

    Walsh, Michael J. (Inventor); Anders, John B. (Inventor); Hefner, Jerry N. (Inventor)

    1987-01-01

    The invention is a system of flow control devices which result in reduced skin friction on aerodynamic and hydrodynamic surfaces. The devices cause a breakup of large-scale disturbances in the boundary layer of the flow field. The riblet device acts to reduce disturbances near the boundary layer wall by the use of longitudinal striations forming V-shaped grooves. These grooves are dimensional on the order of the wall vortices and turbulent burst dimensions. The large eddy breakup device is a small strip or airfoil which is suspended in the upper region of the boundary layer. Various physical mechanisms cause a disruption of the large-scale vortices. The combination of the devices of this invention result in a substantial reduction in skin friction drag.

  3. Dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio

    2007-09-01

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth. PMID:17805287

  4. Drag Coefficient of Hexadecane Particles

    NASA Astrophysics Data System (ADS)

    Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku

    This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.

  5. Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds

    NASA Astrophysics Data System (ADS)

    Roy, Subrata; Zhao, Pengfei; DasGupta, Arnob; Soni, Jignesh

    2016-02-01

    We propose and demonstrate reduction of aerodynamic drag for a realistic geometry at highway speeds using serpentine dielectric barrier discharge actuators. A comparable linear plasma actuator fails to reduce the drag at these speeds. Experimental data collected for linear and serpentine plasma actuators under quiescent operating conditions show that the serpentine design has profound effect on near wall flow structure and resulting drag. For certain actuator arrangement, the measured drag reduced by over 14% at 26.8 m/s (60 mph) and over 10% at 31.3 m/s (70 mph) opening up realistic possibility of reasonable energy savings for full scale ground vehicles. In addition, the power consumption data and drag reduction effectiveness for different input signals are also presented.

  6. Aerodynamic resistance reduction of electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The generation of an EHV aerodynamic data base was initiated by conducting full-scale wind tunnel tests on 16 vehicles. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current 4-passenger prototype automobile which was designed with aerodynamics as an integrated parameter. Characteristic effects of aspect ratio or fineness ratio which might appear if electric vehicle shape proportions were to vary significantly from current automobiles were identified. Some preliminary results indicate a 5 to 10% variation in drag over the range of interest. Effective drag coefficient wind-weighting factors over J227a driving cycles in the presence of annual mean wind fields were identified. Such coefficients, when properly weighted, were found to be from 5 to 65% greater than the zero-yaw drag coefficient in the cases presented. A vehicle aerodynamics bibliography of over 160 entries, in six general categories is included.

  7. Dragging as a Conceptual Tool in Dynamic Geometry Environments

    ERIC Educational Resources Information Center

    Lopez-Real, F.; Leung, A.

    2006-01-01

    Some "drag-to-fit" solutions given by student teachers to three geometric construction problems in a dynamic geometry environment (DGE) are analysed. The responses of a group of experienced mathematics teachers to the question whether or not such solutions can be considered "legitimate" are then discussed. This raises fundamental questions…

  8. Influence of hinge point on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Wu, P.; Li, C.

    2013-12-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon.

  9. Aerodynamics of Satellites on a Super Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa; Noda, Atsushi

    2008-12-01

    The Super Low Altitude Test Satellite is an engineering test satellite currently under development in Japan Aerospace Exploration Agency in an attempt to open a new frontier of space utilization on extremely low earth orbits. In the presence of aerodynamic forces acting on the satellite, the altitude and attitude of the satellite are maintained by ion engines so that the aerodynamic drag can be canceled. Thus, it is of primary importance to accurately assess the aerodynamics characteristics of the satellite prior to flight. In this article, the aerodynamic coefficients of the satellite are calculated for orbital altitudes from 160 to 300 km, taking into account the Maxwell accommodation of particles on the satellite surface and the free stream chemical composition. The activated atomic oxygen fluence rate on the surface, which is expected to cause considerable damages on the surface material, is estimated as well.

  10. Aerodynamic enhancement of space transportation systems

    NASA Technical Reports Server (NTRS)

    Walberg, G. D.

    1981-01-01

    The results of a number of recent investigations are reviewed and used to demonstrate gains in launch, orbital transfer, and planetary vehicle performance and economy that can result from the proper exploitation of aerodynamic phenomena. For launch vehicles, application of control-configured design is shown to allow substantial reduction in wing and vertical fin area (and hence, weight) while maintaining acceptable vehicle performance and control. For orbital transfer and planetary vehicles, the use of aerodynamic lift and drag to reduce retropropulsion requirements is shown to produce payload increases of up to 100 percent and to enable some planetary missions that are not feasible with all-propulsive vehicles. Finally, the application of various advanced technologies to a complete set of launch and orbit transfer vehicles in an early space industrialization mission scenario is considered.

  11. The aerodynamic challenges of SRB recovery

    NASA Technical Reports Server (NTRS)

    Bacchus, D. L.; Kross, D. A.; Moog, R. D.

    1985-01-01

    Recovery and reuse of the Space Shuttle solid rocket boosters was baselined to support the primary goal to develop a low cost space transportation system. The recovery system required for the 170,000-lb boosters was for the largest and heaviest object yet to be retrieved from exoatmospheric conditions. State-of-the-art design procedures were ground-ruled and development testing minimized to produce both a reliable and cost effective system. The ability to utilize the inherent drag of the boosters during the initial phase of reentry was a key factor in minimizing the parachute loads, size and weight. A wind tunnel test program was devised to enable the accurate prediction of booster aerodynamic characteristics. Concurrently, wind tunnel, rocket sled and air drop tests were performed to develop and verify the performance of the parachute decelerator subsystem. Aerodynamic problems encountered during the overall recovery system development and the respective solutions are emphasized.

  12. Aerodynamics of the Mars Microprobe Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; Moss, J. N.; Cheatwood, F. M.; Greene, F. A.; Braun, R. D.

    1997-01-01

    The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic and transonic flow regimes is then presented. This description is based on Direct Simulation Monte Carlo analyses in the rarefied-flow regime, thermochemical nonequilibrium Computational Fluid Dynamics in the hypersonic regime, existing wind tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and finally, ballistic range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric-interface into the desired surface-impact orientation and velocity.

  13. Nash equilibrium and multi criterion aerodynamic optimization

    NASA Astrophysics Data System (ADS)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  14. Aerodynamic design trends for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hilbig, R.; Koerner, H.

    1986-01-01

    Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

  15. Aerodynamics/ACEE: Aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  16. Fitting aerodynamics and propulsion into the puzzle

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  17. Aerodynamics of a golf ball with grooves

    NASA Astrophysics Data System (ADS)

    Kim, Jooha; Son, Kwangmin; Choi, Haecheon

    2009-11-01

    It is well known that the drag on a dimpled ball is much lower than that on smooth ball. Choi et al. (Phys. Fluids, 2006) showed that turbulence is generated through the instability of shear layer separating from the edge of dimples and delays flow separation. Based on this mechanism, we devise a new golf ball with grooves on the surface but without any dimples. To investigate the aerodynamic performance of this new golf ball, an experiment is conducted in a wind tunnel at the Reynolds numbers of 0.5 x10^5 - 2.7 x10^5 and the spin ratios (ratio of surface velocity to the free-stream velocity) of α=0 - 0.5, which are within the ranges of real golf-ball velocity and spin rate. We measure the drag and lift forces on the grooved ball and compare them with those of smooth ball. At zero spin, the drag coefficient on the grooved ball shows a rapid fall-off at a critical Reynolds number and maintains a minimum value which is lower by 50% than that on smooth ball. At non-zero α, the drag coefficient on the grooved ball increases with increasing α, but is still lower by 40% than that on smooth ball. The lift coefficient on the grooved ball increases with increasing α, and is 100% larger than that on smooth ball. The aerodynamic characteristics of grooved ball is in general quite similar to that of dimpled ball. Some more details will be discussed in the presentation.

  18. Sphere Drag and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  19. Sphere Drag and Heat Transfer

    PubMed Central

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-01-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698

  20. Rotating flexible drag mill

    DOEpatents

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  1. The elaborate plumage in peacocks is not such a drag.

    PubMed

    Askew, Graham N

    2014-09-15

    One of the classic examples of an exaggerated sexually selected trait is the elaborate plumage that forms the train in male peafowl Pavo cristatus (peacock). Such ornaments are thought to reduce locomotor performance as a result of their weight and aerodynamic drag, but this cost is unknown. Here, the effect that the train has on take-off flight in peacocks was quantified as the sum of the rates of change of the potential and kinetic energies of the body (P(CoM)) in birds with trains and following the train's removal. There was no significant difference between P(CoM) in birds with and without a train. The train incurs drag during take-off; however, while this produces a twofold increase in parasite drag, parasite power only accounts for 0.1% of the total aerodynamic power. The train represented 6.9% of body weight and is expected to increase induced power. The absence of a detectable effect on take-off performance does not necessarily mean that there is no cost associated with possessing such ornate plumage; rather, it suggests that given the variation in take-off performance per se, the magnitude of any effect of the train has little meaningful functional relevance. PMID:25232196

  2. Preliminary flight-determined subsonic lift and drag characteristics of the X-29A forward-swept-wing airplane

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Huckabine, Thomas

    1989-01-01

    The X-29A subsonic lift and drag characteristics determined, met, or exceeded predictions, particularly with respect to the drag polar shapes. Induced drag levels were as great as 20 percent less than wind tunnel estimates, particularly at coefficients of lift above 0.8. Drag polar shape comparisons with other modern fighter aircraft showed the X-29A to have a better overall aircraft aerodynamic Oswald efficiency factor for the same aspect ratio. Two significant problems arose in the data reduction and analysis process. These included uncertainties in angle of attack upwash calibration and effects of maneuver dynamics on drag levels. The latter problem resulted from significantly improper control surface automatic camber control scheduling. Supersonic drag polar results were not obtained during this phase because of a lack of engine instrumentation to measure afterburner fuel flow.

  3. An experimental study of the lift, drag and static longitudinal stability for a three lifting surface configuration

    NASA Technical Reports Server (NTRS)

    Ostowari, C.; Naik, D.

    1986-01-01

    The experimental procedure and aerodynamic force and moment measurements for wind tunnel testing of the three lifting surface configuration (TLC) are described. The influence of nonelliptical lift distributions on lift, drag, and static longitudinal stability are examined; graphs of the lift coefficient versus angle of attack, the pitching moment coefficient, drag coefficient, and lift to drag ratio versus lift coefficient are provided. The TLC data are compared with the conventional tail-aft configuration and the canard-wing configuration; it is concluded that the TLC has better lift and high-lift drag characteristics, lift to drag ratio, and zero-lift moments than the other two configurations. The effects of variations in forward and tail wind incidence angles, gap, stagger, and forward wind span on the drag, lift, longitudinal stability, and zero-lift moments of the configuration are studied.

  4. Aerodynamics of heat exchangers for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  5. Static Aerodynamic Performance Investigation of a Fluid Shield Nozzle

    NASA Technical Reports Server (NTRS)

    Balan, C.; Askew, J. W.

    2005-01-01

    In pursuit of an acoustically acceptable, high performance exhaust system capable of meeting Federal Aviation Regulation 36 Stage 3 noise goals for the High Speed Civil Transport application, General Electric Aircraft Engines conducted a design study to incorporate a fluid shield into a 36-chute suppressor exhaust-nozzle system. After a full scale preliminary mechanical design of the resulting fluid shield exhaust system, scale model aerodynamic performance tests and acoustic tests were conducted to establish both aerodynamic performance and acoustic characteristics. Data are presented as thrust coefficients, discharge coefficients, chute-base pressure drags, and plug static pressure distributions.

  6. Backreaction of frame dragging

    SciTech Connect

    Herdeiro, Carlos A. R.; Rebelo, Carmen; Warnick, Claude M.

    2009-10-15

    The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a five-dimensional regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, J{sup BH}=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j{sup 2}>1, which is related to the behavior of the ring angular velocity. Using the 'gravitomagnetic clock effect', for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in both phases, when the central black hole mass increases, for fixed ring mass and angular momentum. A close parallelism between the results for the fat phase and those obtained recently for the double Kerr solution is drawn, considering also a regular black Saturn system with J{sup BH}{ne}0.

  7. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  8. Drag Reduction Obtained by the Addition of a Boattail to a Box Shaped Vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.

    1981-01-01

    Coast down tests were performed on a box shaped ground vehicle used to simulate the aerodynamic drag of high volume transports such as delivery vans, motor homes and trucks. The results of these tests define the reduction in aerodynamic drag that can be obtained by the addition of either a boattail or a truncated boattail to an otherwise blunt based vehicle. Test velocities ranged up to 96.6 km/h (60 mph) with Reynolds numbers to 1.3 x 10 the 7th power. The full boattail provided an average 32 percent reduction in drag at highway speeds whereas the truncated boattail provided an average 31 percent reduction in drag as compared to the configuration having the blunt base. These results are compared with one tenth scale wind tunnel model data.

  9. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.

    PubMed

    Tucker, V A

    2000-12-01

    Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously

  10. Tip aerodynamics from wind tunnel test of semi-span wing

    NASA Technical Reports Server (NTRS)

    Vanaken, Johannes M.; Stroub, Robert H.

    1986-01-01

    Presented are the results of a low-speed wind tunnel test on a 5.33-aspect-ratio, semi-span wing with 30- and 35 deg swept tapered tips. The test results include aerodynamic data for the tip itself and for the entire wing including the tip. The metric tip extended inboard 1.58 wing chord lengths. The aerodynamic drag data show the strong influence of tip incidence angle on tip drag for various lift levels. Pitching-moment characteristics show the effect of a moment center at 0.13 c and 0.25 c.

  11. The aerodynamic cost of head morphology in bats: maybe not as bad as it seems.

    PubMed

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Grigorios; Dimitriadis, Greg

    2015-01-01

    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat's morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads. PMID:25739038

  12. The Aerodynamic Cost of Head Morphology in Bats: Maybe Not as Bad as It Seems

    PubMed Central

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Greg

    2015-01-01

    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat’s morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads. PMID:25739038

  13. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  14. Estimation of Unsteady Aerodynamics in the Wake of a Freely Flying European Starling (Sturnus vulgaris)

    PubMed Central

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J.; Bezner-Kerr, Wayne; Guglielmo, Christopher G.; Kopp, Gregory A.; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243

  15. Parachute drag and radial force

    SciTech Connect

    Purvis, J.W.

    1986-01-01

    This paper presents a combination of old and new wind tunnel data in a format which illustrates the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. A new definition of radial force coefficient is presented, as well as a universal drag curve for flat circular and conical parachutes.

  16. Miniature drag force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilevered beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like that of a second order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  17. Drag reduction strategies

    NASA Technical Reports Server (NTRS)

    Hill, D. Christopher

    1994-01-01

    previously a description was given of an active control scheme using wall transpiration that leads to a 15% reduction in surface skin friction beneath a turbulent boundary layer, according to direct numerical simulation. In this research brief further details of that scheme and its variants are given together with some suggestions as to how sensor/actuator arrays could be configured to reduce surface drag. The research which is summarized here was performed during the first half of 1994. This research is motivated by the need to understand better how the dynamics of near-wall turbulent flow can be modified so that skin friction is reduced. The reduction of turbulent skin friction is highly desirable in many engineering applications. Experiments and direct numerical simulations have led to an increased understanding of the cycle of turbulence production and transport in the boundary layer and raised awareness of the possibility of disrupting the process with a subsequent reduction in turbulent skin friction. The implementation of active feedback control in a computational setting is a viable approach for the investigation of the modifications to the flow physics that can be achieved. Bewley et al. and Hill describe how ideas from optimal control theory are employed to give 'sub-optimal' drag reduction schemes. The objectives of the work reported here is to investigate in greater detail the assumptions implicit within such schemes and their limitations. It is also our objective to describe how an array of sensors and actuators could be arranged and interconnected to form a 'smart' surface which has low skin friction.

  18. Aerodynamic shape optimization using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  19. Rationalizing the bumps on whale flippers using basic aerodynamic theory

    NASA Astrophysics Data System (ADS)

    van Nierop, Ernst; Alben, Silas; Brenner, Michael

    2006-11-01

    Recent experiments and numerics demonstrated that bumps on the leading edge of humpback whale flippers can lead to an increase in the lift/drag ratio and an increase in the stall angle, as compared to smooth flippers. Using basic aerodynamic theory (potential flow around a Joukowski profile, combined with lifting-line theory) we attempt to rationalize the experimental and numerical findings. We use this basic theory to find perturbations which could lead to an increase in stall angle.

  20. Nonlinear applications of slender-body theory to missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.

    1985-01-01

    An evaluation is made of six diverse examples of nonlinear treatments of slender body theory for the prediction of missile aerodynamic behavior. The cases in question are the application of area rule to store carriage design in the drag rise region, the estimation of destabilizing pitching moments associated with transonic projectiles, the pressure loadings on elliptical missile airframes, nonlinear control characteristics, roll control effectiveness in canard missile configurations, and novel approaches for vortex flow modeling.

  1. Uncovering changes in spider orb-web topology owing to aerodynamic effects

    PubMed Central

    Zaera, Ramón; Soler, Alejandro; Teus, Jaime

    2014-01-01

    An orb-weaving spider's likelihood of survival is influenced by its ability to retain prey with minimum damage to its web and at the lowest manufacturing cost. This set of requirements has forced the spider silk to evolve towards extreme strength and ductility to a degree that is rare among materials. Previous studies reveal that the performance of the web upon impact may not be based on the mechanical properties of silk alone, aerodynamic drag could play a role in the dissipation of the prey's energy. Here, we present a thorough analysis of the effect of the aerodynamic drag on wind load and prey impact. The hypothesis considered by previous authors for the evaluation of the drag force per unit length of thread has been revisited according to well-established principles of fluid mechanics, highlighting the functional dependence on thread diameter that was formerly ignored. Theoretical analysis and finite-element simulations permitted us to identify air drag as a relevant factor in reducing deterioration of the orb web, and to reveal how the spider can take greater—and not negligible—advantage of drag dissipation. The study shows the beneficial air drag effects of building smaller and less dense webs under wind load, and larger and denser webs under prey impact loads. In essence, it points out why the aerodynamics need to be considered as an additional driving force in the evolution of silk threads and orb webs. PMID:24966235

  2. Interdisciplinary optimization combining electromagnetic and aerodynamic methods

    NASA Astrophysics Data System (ADS)

    Sullivan, Anders James

    The design of missile body shapes often requires a compromise between aero-dynamic and electromagnetic performance goals. In general, the missile shape producing the lowest radar signature will be different from the preferred aero-dynamic shape. Interdisciplinary shape optimization is utilized to combine multiple disciplines to determine the best possible shape for a hybrid aerodynamic-electromagnetic problem. A composite missile body consisting of an axisymmetric body of revolution (BOR) and two thin flat plate attachments is considered. The goal is to minimize the drag and backscatter associated with this composite shape. The body is assumed to be perfectly conducting, and flying at zero degrees angle of attack. The variable nose shape serves as the optimization design parameter. To characterize the system performance, a cost function is defined which is comprised of weighted values of the drag and backscatter. To solve the electromagnetic problem, methods to treat electrically large complex bodies are investigated. Hybrid methods which combine the method of moments (MoM) with physical optics (PO) are developed to calculate the scattering from simple two-dimensional bodies. A surface-wave hybrid approach is shown to effectively approximate the traveling wave currents on the smooth interior portions of a BOR. Asymptotic methods are used to solve the resulting integral equations more efficiently. The hybrid methods are shown to produce MoM-quality results, while requiring less computational resources. To solve the composite body problem, an iterative technique is developed that preserves the simplicity of the original BOR scheme. In this formulation, the current over each part of the composite body is solved independently. The results from one part of the body are used to update the fields incident on the other part of the body. This procedure is repeated until the solution converges. To solve the aerodynamic problem, slender body theory is used to calculate the

  3. Drag Minimization for Wings and Bodies in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Fuller, Franklyn B

    1958-01-01

    The minimization of inviscid fluid drag is studied for aerodynamic shapes satisfying the conditions of linearized theory, and subject to imposed constraints on lift, pitching moment, base area, or volume. The problem is transformed to one of determining two-dimensional potential flows satisfying either Laplace's or Poisson's equations with boundary values fixed by the imposed conditions. A general method for determining integral relations between perturbation velocity components is developed. This analysis is not restricted in application to optimum cases; it may be used for any supersonic wing problem.

  4. Numerical Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

  5. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  6. Computation of dragonfly aerodynamics

    NASA Astrophysics Data System (ADS)

    Gustafson, Karl; Leben, Robert

    1991-04-01

    Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

  7. Experimental aerodynamic study of a car-type bluff body

    NASA Astrophysics Data System (ADS)

    Conan, Boris; Anthoine, Jérôme; Planquart, Philippe

    2011-05-01

    The Ahmed body is used as a reference model for fundamental studies of car-type bluff body aerodynamics, in particular focused on the influence of the rear slant angle on the drag coefficient. The objectives of the present work are to obtain reliable drag coefficient comparable to the literature and to explain, based on the nature of the flow, its variation when changing the rear slant angle from 10° to 40°. The drag coefficients measured in both an open and a closed test sections differ by less than 0.5% which proves the reliability and reproducibility of the results. The sensitivity of the drag coefficient to some parameters such as the model roughness or the oncoming boundary layer and the lack of precise information on these parameters in the literature could explain the difference observed with the Ahmed drag coefficient data. The various types of measurement techniques used in the study underline their complementarity. The combination of particle image velocimetry and oil visualization provides a deeper understanding of the flow behaviour around the Ahmed body and a physical interpretation of the drag coefficient evolution.

  8. AIAA Applied Aerodynamics Conference, 9th, Baltimore, MD, Sept. 23-25, 1991, Technical Papers. Vols. 1 2

    SciTech Connect

    Not Available

    1991-01-01

    The present conference on aplied aerodynamics encompasses computational fluid dynamics, drag prediction/analysis, experimental aerodynamics, high angles of attack, rotor/propeller aerodynamics, super/hypersonic aerodynamics, unsteady aerodynamics, vortex physics, high-speed civil-transport aeroacoustics, and airfoil/wing aerodynamics. Specific issues addressed include high-speed civil-transport air-breathing propulsion, generic hypersonic inlet-module analysis, an investigation on spoiler effects, high-alpha vehicle dynamics, space-station resource node flow-field analysis, a numerical simulation of sabot discard aerodynamics, and vortex control using pneumatic blowing. Also addressed are Navier-Stokes solutions for the F/A-18 Wing-LEX fuselage, tail venting for enhanced yaw damping at spinning conditions, an investigation of rotor wake interactions with a body in low-speed forward flight, and multigrid calculations of 3D viscous cascade flows.

  9. Aerodynamic Optimization of Supersonic Transport at Near-Sonic Regime

    NASA Astrophysics Data System (ADS)

    Yamazaki, Wataru; Matsushima, Kisa; Obayashi, Shigeru; Nakahashi, Kazuhiro

    Recently, an airplane cruising at near-sonic regime is watched with keen interest. The Sonic-Cruiser, of which the Boeing Company has examined and challenged the development, is the most remarkable case. In this paper, motivated by this trend, aerodynamic performance optimization for an airplane cruising at near-sonic regime is discussed based on CFD simulations. NAL’s experimental supersonic airplane, called NEXST-1, was employed as the baseline model for optimization. Aerodynamic performance was evaluated by solving the Euler equations with the unstructured grid method. It was confirmed that the performance Euler simulation predicted was qualitatively correct. By the evaluation to select a baseline model for optimization, NEXST-1 was accepted as a candidate of sonic plane because of the existence of drag bucket at near-sonic regime. In the optimization, Genetic Algorithm was used with Euler simulations. The objective was to reduce drag keeping lift constant, at the flying speed of Mach 0.98. The optimized result showed L/D improvement not only for near-sonic regime but also for transonic regime. The mechanism of design to reduce drag force was found through the analysis and comparison of the geometries and aerodynamic phenomena about the baseline model and the optimized one.

  10. Aerodynamic analysis of a helicopter fuselage with rotating rotor head

    NASA Astrophysics Data System (ADS)

    Reß, R.; Grawunder, M.; Breitsamter, Ch.

    2015-06-01

    The present paper describes results of wind tunnel experiments obtained during a research programme aimed at drag reduction of the fuselage of a twin engine light helicopter configuration. A 1 : 5 scale model of a helicopter fuselage including a rotating rotor head and landing gear was investigated in the low-speed wind tunnel A of Technische Universität a München (TUM). The modelled parts of the helicopter induce approxiu mately 80% of the total parasite drag thus forming a major potential for shape optimizations. The present paper compares results of force and moment measurements of a baseline configuration and modified variants with an emphasis on the aerodynamic drag, lift, and yawing moment coefficients.

  11. DRAG REDUCTION WITH SUPERHYDROPHOBIC RIBLETS

    SciTech Connect

    Barbier, Charlotte N; D'Urso, Brian R; Jenner, Elliot

    2012-01-01

    Samples combining riblets and superhydrophobic surfaces are fabricated at University of Pittsburgh and their drag reduction properties are studied at the Center for Nanophase Materials Sciences (CNMS) in Oak Ridge National Laboratory with a commercial cone-and-plate rheometer. In parallel to the experiments, numerical simulations are performed in order to estimate the slip length at high rotational speed. For each sample, a drag reduction of at least 5% is observed in both laminar and turbulent regime. At low rotational speed, drag reduction up to 30% is observed with a 1 mm deep grooved sample. As the rotational speed increases, a secondary flow develops causing a slight decrease in drag reductions. However, drag reduction above 15% is still observed for the large grooved samples. In the turbulent regime, the 100 microns grooved sample becomes more efficient than the other samples in drag reduction and manages to sustain a drag reduction above 15%. Using the simulations, the slip length of the 100 micron grooved sample is estimated to be slightly above 100 micron in the turbulent regime.

  12. Aerodynamic characteristics, including effect of body shape, of a Mach 6 aircraft concept

    NASA Technical Reports Server (NTRS)

    Riebe, G. D.

    1983-01-01

    Longitudinal aerodynamic characteristics for a hydrogen-fueled hypersonic transport concept at Mach 6 are presented. The model components consist of four bodies with identical longitudinal area distributions but different cross-sectional shapes and widths, a wing, horizontal and vertical tails, and a set of wing-mounted nacelles simulated by slid bodies on the wing upper surface. Lift-drag ratios were found to be only sightly affected by fuselage planform width or cross sectional shape. Relative distribution of fuselage volume above and below the wing was found to have an effect on the lift-drag ratio, with a higher lift drag ratio produced by the higher wing position.

  13. Aerodynamic Performances of Corrugated Dragonfly Wings at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Tamai, Masatoshi; He, Guowei; Hu, Hui

    2006-11-01

    The cross-sections of dragonfly wings have well-defined corrugated configurations, which seem to be not very suitable for flight according to traditional airfoil design principles. However, previous studies have led to surprising conclusions of that corrugated dragonfly wings would have better aerodynamic performances compared with traditional technical airfoils in the low Reynolds number regime where dragonflies usually fly. Unlike most of the previous studies of either measuring total aerodynamics forces (lift and drag) or conducting qualitative flow visualization, a series of wind tunnel experiments will be conducted in the present study to investigate the aerodynamic performances of corrugated dragonfly wings at low Reynolds numbers quantitatively. In addition to aerodynamics force measurements, detailed Particle Image Velocimetry (PIV) measurements will be conducted to quantify of the flow field around a two-dimensional corrugated dragonfly wing model to elucidate the fundamental physics associated with the flight features and aerodynamic performances of corrugated dragonfly wings. The aerodynamic performances of the dragonfly wing model will be compared with those of a simple flat plate and a NASA low-speed airfoil at low Reynolds numbers.

  14. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  15. When superfluids are a drag

    SciTech Connect

    Roberts, David C

    2008-01-01

    The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.

  16. The Effect of Volumetric Porosity on Roughness Element Drag

    NASA Astrophysics Data System (ADS)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  17. Aerodynamics of a hybrid airship

    NASA Astrophysics Data System (ADS)

    Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.

    2012-06-01

    The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.

  18. Aerodynamic Characteristics of Telescopic Aerospikes with Multiple-Row-Disk

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Maru, Yusuke; Sato, Tetsuya

    This paper reports experimental studies on telescopic aerospikes with multiple disks. The telescopic aerospike is useful as an aerodynamic control device; however, changing its length causes a buzz phenomenon, which many researchers have reported. The occurrence of buzzing might be critical to the vehicle because it brings about severe pressure oscillations on the surface. Disks on the shaft produce stable recirculation regions by dividing the single separation flow into several conical cavity flows. The telescopic aerospikes with stabilizer disks are useful without any length constraints. Aerodynamic characteristics of the telescopic aerospikes were investigated through a series of wind tunnel tests. Transition of recirculation/reattachment flow modes of a plain spike causes a large change in the drag coefficient. Because of this hysteresis phenomenon and the buzzing, the plain spike is unsuitable for fine aerodynamic control devices. Adding stabilizer disks is effective for the improved control of aerospikes.

  19. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Horizontal attitude concept

    NASA Technical Reports Server (NTRS)

    Brown, S. H.

    1978-01-01

    A horizontal attitude VSTOL (HAVSTOL) supersonic fighter attack aircraft powered by RALS turbofan propulsion system is analyzed. Reaction control for subaerodynamic flight is obtained in pitch and yaw from the RALS and roll from wingtip jets powered by bleed air from the RALS duct. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel program is shown to resolve some of the uncertainties. Aerodynamic data developed are static characteristics about all axes, control effectiveness, drag, propulsion induced effects and reaction control characteristics.

  20. Aerodynamic characteristics of flying fish in gliding flight.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  1. Reducing drag of a commuter train, using engine exhaust momentum

    NASA Astrophysics Data System (ADS)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  2. Drag reduction by controlled base flow separation for missile shaped bodies flying at hypersonic Mach number

    NASA Astrophysics Data System (ADS)

    Menezes, V.; Sun, M.; Jagadeesh, G.; Reddy, K. P. J.; Takayama, K.

    The problem of wake flow at high speeds and the drag associated with it are a significant source of observation in the design of missiles, projectiles and other typical high speed vehicles. A large separated wake at the base of the body in flight would cause an increase in the overall drag due to reduced base pressure force, which otherwise would oppose the axial force on the body. The wake studies of high speed bodies also gain importance due to the severe aerodynamic heating problem and a high rise in the temperature of the base flow.

  3. Base drag reduction by control of the three-dimensional unsteady vortical structures

    NASA Astrophysics Data System (ADS)

    Rodriguez, O.

    1991-07-01

    The present paper deals with the wake of a 2D body equipped with a drag reduction device. The device is a 3D trailing edge consisting of alternate segments of blunt base and spanwise cavity. The aerodynamic mechanisms acting on the near wake are studied in a water tunnel from schlieren observations by thermally marking large scale structures. The results show that the efficiency of the device is directly related to the presence of longitudinal vortices. An optimization of the shapes in subsonic compressible flow had led to a decrease of more than 40 percent of the total drag of the profile.

  4. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  5. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  6. Drag suppression in anomalous chiral media

    NASA Astrophysics Data System (ADS)

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a nondissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon—the motion of the heavy impurity is frictionless, in analogy to the case of a superfluid. We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.

  7. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  8. Aerodynamics of a Cycling Team in a Time Trial: Does the Cyclist at the Front Benefit?

    ERIC Educational Resources Information Center

    Iniguez-de-la Torre, A.; Iniguez, J.

    2009-01-01

    When seasonal journeys take place in nature, birds and fishes migrate in groups. This provides them not only with security but also a considerable saving of energy. The power they need to travel requires overcoming aerodynamic or hydrodynamic drag forces, which can be substantially reduced when the group travels in an optimal arrangement. Also in…

  9. Aerodynamic Improvements to Cargo Carrying Rail Cars due to Roof Modifications

    NASA Astrophysics Data System (ADS)

    Condie, Robert; Maynes, Daniel

    2012-11-01

    The aerodynamic drag associated with the transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. We provide an assessment of the influence of the roof structure on aerodynamic performance of two dissimilar rail cars, namely automobile carrying cars and coal carrying cars. Currently, the roof material for automobile carrying rail cars is corrugated steel, with the corrugation aligned perpendicular to the direction of travel. Coal cars are currently left uncovered for loading convenience and on the return leg from the power plant are empty. Aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the tops of both these car types. For the automobile-carrying cars, testing is performed for the corrugated and smooth roof configurations. This modification alone has the potential of reducing the car drag coefficient by nominally 25%. A broader study is performed for the coal cars, with data being acquired for coal filled models, empty models, and several cover prototype configurations. The results reveal that implementation of a cover may yield reductions in the aerodynamic drag for both coal filled (nominally 7%) and empty coal cars (nominally 30%).

  10. Multi Objective Aerodynamic Optimization Using Parallel Nash Evolutionary/deterministic Hybrid Algorithms

    NASA Astrophysics Data System (ADS)

    Tang, Zhili

    2016-06-01

    This paper solved aerodynamic drag reduction of transport wing fuselage configuration in transonic regime by using a parallel Nash evolutionary/deterministic hybrid optimization algorithm. Two sets of parameters are used, namely globally and locally. It is shown that optimizing separately local and global parameters by using Nash algorithms is far more efficient than considering these variables as a whole.

  11. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  12. Aerodynamic Performance Predictions of Single and Twin Jet Afterbodies

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Jones, William T.

    1995-01-01

    The multiblock three-dimensional Navier-Stokes method PAB3D was utilized by the Component Integration Branch (formerly Propulsion Aerodynamics Branch) at the NASA-Langley Research Center in an international study sponsored by AGARD Working Group #17 for the assessment of the state-of-the-art of propulsion-airframe integration testing techniques and CFD prediction technologies. Three test geometries from ONERA involving fundamental flow physics and four geometries from NASA-LaRC involving realistic flow interactions of wing, body, tail, and jet plumes were chosen by the Working Group. An overview of results on four (1 ONERA and 3 LaRC) of the seven test cases is presented. External static pressures, integrated pressure drag and total drag were calculated for the Langley test cases and jet plume velocity profiles and turbulent viscous stresses were calculated for the ONERA test case. Only selected data from these calculations are presented in this paper. The complete data sets calculated by the participants will be presented in an AGARD summary report. Predicted surface static pressures compared favorably with experimental data for the Langley geometries. Predicted afterbody drag compared well with experiment. Predicted nozzle drag was typically low due to over-compression of the flow near the trailing edge. Total drag was typically high. Predicted jet plume quantities on the ONERA case compared generally well with data.

  13. Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus.

    PubMed

    Norberg, U M

    1976-08-01

    The kinematics, aerodynamics, and energetics of Plecotus auritus in slow horizontal flight, 2-35 m s-1, are analysed. At this speed the inclination of the stroke path is ca. 58 degrees to the horizontal, the stroke angle ca. 91 degrees, and the stroke frequency ca. 11-9 Hz. A method, based on steady-state aerodynamic and momenthum theories, is derived to calculate the lift and drag coefficients as averaged over the whole wing the whole wing-stroke for horizontal flapping flight. This is a further development of Pennycuick's (1968) and Weis-Fogh's (1972) expressions for calculating the lift coefficient. The lift coefficient obtained varies between 1-4 and 1-6, the drag coefficient between 0-4 and 1-2, and the lift:drag ratio between 1-2 and 4-0. The corresponding, calculated, total specific mechanical power output of the wing muscles varies between 27-0 and 40-4 W kg-1 body mass. A maximum estimate of mechanical efficiency is 0-26. The aerodynamic efficiency varies between 0-07 and 0-10. The force coefficient, total mechanical power output, and mechanical and aerodynamic efficiencies are all plausible, demonstrating that the slow flapping flight of Plecotus is thus explicable by steady-state aerodynamics. The downstroke is the power stroke for the vertical upward forces and the upstroke for the horizontal forward forces. PMID:993701

  14. X-31 Landing with Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1995-01-01

    One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft, flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, deploys its drag chute upon landing after a research flight. The aircraft obtained data that may apply to the design and development of highly-maneuverable flights of the future. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled

  15. Estimating unsteady aerodynamic forces on a cascade in a three-dimensional turbulence field

    NASA Technical Reports Server (NTRS)

    Norman, T.; Johnson, W.

    1985-01-01

    An analytical method has been developed to estimate the unsteady aerodynamic forces caused by flow field turbulence on a wind tunnel turning vane cascade system (vane set). This method approximates dynamic lift and drag by linearly perturbing the appropriate steady state force equations, assuming that the dynamic loads are due only to free stream turbulence and that this turbulence is homogeneous, isotropic, and Gaussian. Correlation and unsteady aerodynamic effects are also incorporated into the analytical model. Using these assumptions, equations relating dynamic lift and drag to flow turbulence, mean velocity, and vane set geometry are derived. From these equations, estimates for the power spectra and rms (root mean squared value, delta) loading of both lift and drag can be determined.

  16. Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2004-01-01

    This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.

  17. Space Shuttle entry aerodynamic comparisons of flight 1 with preflight predictions

    NASA Technical Reports Server (NTRS)

    Young, J. C.; Perez, L. F.; Romere, P. O.; Kanipe, D. B.

    1981-01-01

    Results of comparisons of predictions of aerodynamic performance, longitudinal trim, and reaction control jet interaction with data from the initial Shuttle flight are presented. The Shuttle's control surfaces are described, and it is noted that the flight plan contained no provisions for maneuvering capability tests. Wind tunnel testing totaling 35,000 hr were used to replace graduated flight testing, and calculations were made to allow for nonsimulated structural deformation, flowfield parameters, and profile drag. The goal was to desensitize the flight control system with respect to the aerodynamics by adding variations to the predictions. Lift/drag agreed well above Mach 1, while lower drag was encountered below Mach 1. Trim characteristics were predicted accurately between Mach 2-10, and less than satisfactorily outside that range. Discrepancies were also observed for jet interaction effects for the aft yaw jets at Mach numbers greater than 10.

  18. Ontogeny of lift and drag production in ground birds

    PubMed Central

    Heers, Ashley M.; Tobalske, Bret W.; Dial, Kenneth P.

    2011-01-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight. PMID:21307057

  19. Erosion in radial inflow turbines. Volume 2: Balance of centrifugal and radial drag forces on erosive particles

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1974-01-01

    The particle motion in two-dimensional free and forced inward flowing vortices is considered. A particle in such a flow field experiences a balance between the aerodynamic drag forces that tend to drive erosive particles toward the axis, and centrifugal forces that prevent these particles from traveling toward the axis. Results predict that certain sizes of particles will achieve a stable orbit about the turbine axis in the inward flowing free vortex. In this condition, the radial drag force is equal to the centrifugal force. The sizes of particles that will achieve a stable orbit is shown to be related to the gas flow velocity diagram at a particular radius. A second analysis yields a description of particle sizes that will experience a centrifugal force that is greater than the radial component of the aerodynamic drag force for a more general type of particle motion.

  20. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  1. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  2. Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2010-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.

  3. Development of multi-element active aerodynamics for the formula sae car

    NASA Astrophysics Data System (ADS)

    Merkel, James Patrick

    This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.

  4. Hamiltonian approach to frame dragging

    NASA Astrophysics Data System (ADS)

    Epstein, Kenneth J.

    2008-07-01

    A Hamiltonian approach makes the phenomenon of frame dragging apparent “up front” from the appearance of the drag velocity in the Hamiltonian of a test particle in an arbitrary metric. Hamiltonian (1) uses the inhomogeneous force equation (4), which applies to non-geodesic motion as well as to geodesics. The Hamiltonian is not in manifestly covariant form, but is covariant because it is derived from Hamilton’s manifestly covariant scalar action principle. A distinction is made between manifest frame dragging such as that in the Kerr metric, and hidden frame dragging that can be made manifest by a coordinate transformation such as that applied to the Robertson-Walker metric in Sect. 2. In Sect. 3 a zone of repulsive gravity is found in the extreme Kerr metric. Section 4 treats frame dragging in special relativity as a manifestation of the equivalence principle in accelerated frames. It answers a question posed by Bell about how the Lorentz contraction can break a thread connecting two uniformly accelerated rocket ships. In Sect. 5 the form of the Hamiltonian facilitates the definition of gravitomagnetic and gravitoelectric potentials.

  5. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  6. Low Dimensional Modeling And Computational Analysis of Dragonfly Wing Aerodynamics

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Wan, Hui; Dong, Haibo; Flow Simulation Research Group Team

    2011-11-01

    High-fidelity numerical simulations are being used to examine the key aerodynamic features and lift production of insect wings. However, the kinematics of the insect's wing and the resulting aerodynamics is highly complex, and does not lend itself easily to analysis based on simple notions of pitching/heaving kinematics or lift/drag based propulsive mechanisms. A more inventive approach is therefore needed to dissect the wing gait and gain insight into the remarkable aerodynamic performance of the insect's wing. The focus of the current investigation is on the aerodynamics of the wing of a dragonfly (Erythemis Simplicicollis) in hovering motion. The three-dimensional, time-dependent wing kinematics is obtained via a high-speed photogrammetry system. Singular Value Decomposition (SVD) is then applied to extract the essential features of the wing gait. The SVD spectrum shows that the first four modes capture more than 80% of the motion. Aerodynamics of wings flapping with kinematics synthesized from SVD modes will be discussed in detail. This work is supported by NSF CBET-1055949.

  7. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  8. Aerodynamic investigations into various low speed L/D improvement devices on the 140A/B space shuttle orbiter configuration in the Rockwell International low speed wind tunnel (OA86)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1974-01-01

    Tests were conducted to investigate various base drag reduction techniques in an attempt to improve Orbiter lift-to-drag ratios and to calculate sting interference effects on the Orbiter aerodynamic characteristics. Test conditions and facilites, and model dimensional data are presented along with the data reduction guidelines and data set/run number collation used for the studies. Aerodynamic force and moment data and the results of stability and control tests are also given.

  9. Beyond robins: aerodynamic analyses of animal flight

    PubMed Central

    Hedenström, Anders; Spedding, Geoffrey

    2008-01-01

    Recent progress in studies of animal flight mechanics is reviewed. A range of birds, and now bats, has been studied in wind tunnel facilities, revealing an array of wake patterns caused by the beating wings and also by the drag on the body. Nevertheless, the quantitative analysis of these complex wake structures shows a degree of similarity among all the different wake patterns and a close agreement with standard quasi-steady aerodynamic models and predictions. At the same time, new data on the flow over a bat wing in mid-downstroke show that, at least in this case, such simplifications cannot be useful in describing in detail either the wing properties or control prospects. The reasons for these apparently divergent results are discussed and prospects for future advances are considered. PMID:18397865

  10. Upper surface blowing aerodynamic and acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Ryle, D. M., Jr.; Braden, J. A.; Gibson, J. S.

    1977-01-01

    Aerodynamic performance at cruise, and noise effects due to variations in nacelle and wing geometry and mode of operation are studied using small aircraft models that simulate upper surface blowing (USB). At cruise speeds ranging from Mach .50 to Mach .82, the key determinants of drag/thrust penalties are found to be nozzle aspect ratio, boattailing angle, and chordwise position; number of nacelles; and streamlined versus symmetric configuration. Recommendations are made for obtaining favorable cruise configurations. The acoustic studies, which concentrate on the noise created by the jet exhaust flow and its interaction with wing and flap surfaces, isolate several important sources of USB noise, including nozzle shape, exit velocity, and impingement angle; flow pathlength; and flap angle and radius of curvature. Suggestions for lessening noise due to trailing edge flow velocity, flow pathlength, and flow spreading are given, though compromises between some design options may be necessary.

  11. Vertical variations of coral reef drag forces

    NASA Astrophysics Data System (ADS)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri

    2016-05-01

    Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.

  12. Drag of buoyant vortex rings

    NASA Astrophysics Data System (ADS)

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.

  13. Drag of buoyant vortex rings.

    PubMed

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers. PMID:26565349

  14. Drag reduction of a heavy vehicle by means of a trailer underbody fairing

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2008-11-01

    On a modern heavy vehicle, one of the sources of aerodynamic drag is trailer underbody drag, which arises due to flow impingement upon the trailer wheels and flow separation downstream of the pseudo-backward facing step formed by the tractor drive wheels, chassis, and trailer underbody. In an effort to mitigate this source of drag, trailer side skirts, which are flat panels suspended on either side of the trailer underbody, have been previously evaluated in a number of wind tunnel, track, and on-the-road studies. Although the skirts have been shown to reduce the vehicle drag coefficient by as much as 0.04, they have not been widely accepted by the heavy vehicle industry due to a number of operational deficiencies in the skirt design. To overcome these deficiencies, we are investigating the performance characteristics of an alternate drag reduction device, which is comprised of a tapered fairing located on the trailer underside. RANS simulations have demonstrated that the fairing surface promotes re-attachment of the separated flow downstream of the tractor drive wheels and chassis, thereby reducing the drag coefficient by an amount as much as that of side skirts. These computational results will be validated by conducting a wind tunnel study of a full-scale heavy vehicle that employs fairings of varying length and design. This work performed under the auspices of the US DOE by LLNL under contract DE-AC52-07NA27344.

  15. Negative Coulomb Drag in Double Bilayer Graphene.

    PubMed

    Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R

    2016-07-22

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491

  16. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    1999-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25% of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust-drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  17. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  18. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  19. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  20. Status report on the Aeronautical Research Institute of Sweden version of the missile aerodynamics program LARV, for calculation of static aerodynamic properties and longitudinal aerodynamic damping derivatives. Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Weibust, E.

    Improvements to a missile aerodynamics program which enable it to (a) calculate aerodynamic coefficients as input for a flight mechanics model, (b) check manufacturers' data or estimate performance from photographs, (c) reduce wind tunnel testing, and (d) aid optimization studies, are discussed. Slender body theory is used for longitudinal damping derivatives prediction. Program predictions were compared to known values. Greater accuracy is required in the estimation of drag due to excrescences on actual missile configurations, the influence of a burning motor, and nonlinear effects in the stall region. Prediction of pressure centers on wings and on bodies in presence of wings must be improved.

  1. Aerodynamic Limitations of the UH-60A Rotor

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.; Bousman, William G.

    1996-01-01

    High quality airloads data have been obtained on an instrumented UH-60A in flight and these data provide insight into the aerodynamic limiting behavior of the rotor. At moderate weight coefficients and high advance ratio limiting performance is largely caused by high drag near the blade tip on the advancing side of the rotor as supercritical flow develops on the rotor with moderate to strong, shocks on both surfaces of the blade. Drag divergence data from two-dimensional airfoil tests show good agreement with the development of the supercritical flow regions. Large aerodynamic pitching moments are observed at high advance ratio, as well, and these pitching moments are the source of high torsional moments on the blade and control system loads. These loads occur on the advancing side of the disk and are not related to blade stall which does not occur for these weight coefficients. At high weight coefficients aerodynamic and structural limits are related to dynamic stall cycles that begin on the retreating side of the blade and, for the most severe conditions, carry around to the advancing side of the blade at the presumed first frequency of the blade/control system.

  2. Atmospheric tests of trailing-edge aerodynamic devices

    SciTech Connect

    Miller, L S; Huang, S; Quandt, G A

    1998-01-01

    An experiment was conducted at the National Renewable Energy Laboratory`s (NREL`s) National Wind Technology Center (NWTC) using an instrumented horizontal-axis wind turbine that incorporated variable-span, trailing-edge aerodynamic brakes. The goal of the investigation was to directly compare results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were used to define effective changes in the aerodynamic and hinge-moment coefficients, as a function of angle of attack and control deflection, for three device spans (7.5%, 15%, and 22.5%) and configurations (Spoiler-Flap, vented sileron, and unvented aileron). Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (about a 30% reduction from infinite-span) for 15% or larger span devices. Interestingly, aerodynamic controls with vents or openings appear most affected by span reductions and three-dimensional flow.

  3. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  4. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  5. Determination of the Profile Drag of an Airplane Wing in Flight at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Bicknell, Joseph

    1939-01-01

    Flight tests were made to determine the profile-drag coefficients of a portion of the original wing surface of an all-metal airplane and of a portion of the wing made aerodynamically smooth and more nearly fair than the original section. The wing section was approximately the NACA 2414.5. The tests were carried out over a range of airplane speeds giving a maximum Reynolds number of 15,000,000. Tests were also carried out to locate the point of transition from laminar to turbulent boundary layer and to determine the velocity distribution along the upper surface of the wing. The profile-drag coefficients of the original and of the smooth wing portions at a Reynolds number of 15,000,000 were 0.0102 and 0.0068, respectively; i.e., the surface irregularities on the original wing increased the profile-drag coefficient 50 percent above that of the smooth wing.

  6. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  7. Feedback Control of a Square-Back Ahmed Body Flow for Form-Drag Reduction

    NASA Astrophysics Data System (ADS)

    Evstafyeva, Olga; Morgans, Aimee

    2015-11-01

    Road transport accounts for roughly 22% of CO2 emissions worldwide, and at highway speeds two thirds of usable energy is consumed overcoming aerodynamic drag. For square-back vehicles, aerodynamic drag is dominated by form- drag, originating from pressure difference between the front and the back face (base) of the vehicle. This study explores using feedback control to increase mean base pressure and thus reduce the form-drag of 3D Ahmed body flows at low (laminar) and medium (transitioning to turbulence) Reynolds numbers. Using Large Eddy Simulations as a test-bed, a linear control strategy to attenuate base-pressure force fluctuations is investigated. Body-mounted sensing and actuation is used: sensing of the base pressure force fluctuations, and actuation of a zero-mean slot jet just ahead of the base. The dynamic linearity of the response to actuation is tested and a feedback controller then designed using frequency domain harmonic forcing system identification data. Recent advances in understanding of the Ahmed body wake dynamics such as top-to-bottom and left-to-right bi-stable behaviour, are considered in the feedback control implementation.

  8. Aerodynamics of Stardust Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; Wilmoth, R. G.; Cheatwood, F. M.; Brauckmann, G. J.; Greene, F. A.

    1997-01-01

    Successful return of interstellar dust and cometary material by the Stardust Sample Return Capsule requires an accurate description of the Earth entry vehicle's aerodynamics. This description must span the hypersonic-rarefied, hypersonic-continuum, supersonic, transonic, and subsonic flow regimes. Data from numerous sources are compiled to accomplish this objective. These include Direct Simulation Monte Carlo analyses, thermochemical nonequilibrium computational fluid dynamics, transonic computational fluid dynamics, existing wind tunnel data, and new wind tunnel data. Four observations are highlighted: 1) a static instability is revealed in the free-molecular and early transitional-flow regime due to aft location of the vehicle s center-of-gravity, 2) the aerodynamics across the hypersonic regime are compared with the Newtonian flow approximation and a correlation between the accuracy of the Newtonian flow assumption and the sonic line position is noted, 3) the primary effect of shape change due to ablation is shown to be a reduction in drag, and 4) a subsonic dynamic instability is revealed which will necessitate either a change in the vehicle s center-of-gravity location or the use of a stabilizing drogue parachute.

  9. Drag-free satellite control

    NASA Technical Reports Server (NTRS)

    Debra, Daniel B.

    1989-01-01

    A drag-free satellite cancels the effect of external disturbances. Although the forces may be small, a satellite is disturbed by residual air drag, radiation pressure, micrometeorite impact, and other small forces that act on its surface disturbing its orbit, which is principally determined by the gravity field. In some missions, these small perturbations that make the satellite deviate from its purely gravitational orbit are limiting. An internal unsupported proof mass is shielded by the satellite from the external disturbances. The position of the shield (or the main part of the satellite) is measured with respect to the internal proof mass, and this information is used to actuate a propulsion system which moves the satellite to follow the proof mass. A drag-free control system is illustrated. Since the proof mass is shielded it follows a purely gravitational orbit - as does the satellite following it - hence the name drag-free satellite. The idea was conceived by Lange (1964) and has been applied to many mission studies since. In some cases, it is not necessary to cancel the disturbances, only to measure them so they may be taken into account. In such cases, an accelerometer may be a more suitable solution (for example, using the ONERA Cactus or the Bell Aerosystems MESA).

  10. The maximum drag reduction asymptote

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  11. OBSTACLE DRAG IN STRATIFIED FLOW

    EPA Science Inventory

    This paper describes an experimental study of the drag of two- and three-dimensional bluff obstacles of various cross-stream shapes when towed through a fluid having a stable, linear density gradient with Brunt-Vaisala frequency, N. rag measurements were made directly using a for...

  12. Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations With Truncated Bases

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    1999-01-01

    This paper examines flight-measured subsonic lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle prototype. Lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats unify the data and allow a greater understanding than studying the vehicles individually allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio planforms. The proper definition of reference area was critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to-drag ratio, and, where available, base pressure coefficients. The effects of fineness ratio on forebody drag were also considered. The influence of forebody drag on afterbody (base) drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  13. Computer graphics in aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1984-01-01

    The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.

  14. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.

  15. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  16. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  17. Aerodynamics Improve Wind Wheel

    NASA Technical Reports Server (NTRS)

    Ramsey, V. W.

    1982-01-01

    Modifications based on aerodynamic concepts would raise efficiency of wind-wheel electric-power generator. Changes smooth airflow, to increase power output, without increasing size of wheel. Significant improvements in efficiency anticipated without any increase in size or number of moving parts and without departing from simplicity of original design.

  18. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    NASA Astrophysics Data System (ADS)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda<2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were

  19. 14 CFR 31.53 - Drag rope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...

  20. 14 CFR 31.53 - Drag rope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...

  1. 14 CFR 31.53 - Drag rope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...

  2. 14 CFR 31.53 - Drag rope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...

  3. 14 CFR 31.53 - Drag rope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...

  4. Aerodynamic heated steam generating apparatus

    SciTech Connect

    Kim, K.

    1986-08-12

    An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

  5. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.

    PubMed

    Vargas, Abel; Mittal, Rajat; Dong, Haibo

    2008-06-01

    A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design. PMID:18503106

  6. The impact of lift and drag on 6DOF motion of LEO objects : formation control and debris behaviour

    NASA Astrophysics Data System (ADS)

    Smith, Brenton; Boyce, Russell; Brown, Melrose

    2016-07-01

    Perturbing forces on spacecraft are a challenge for the establishment and maintenance of satellite formations. For large satellites, the use of thrusters is a practical means of countering perturbing forces. However, long-term thrusting is not currently feasible for miniaturised satellites due to volume and mass constraints. Astrodynamics effects - in particular, passive aerodynamic lift and drag forces - are possible means for miniaturised satellites to maintain a formation in Low Earth Orbit (LEO). Currently, lift and drag for rendezvous have been considered in the presence of simplified orbital models, namely two body motion with the J2 effect. Given the small magnitude of lift and drag in LEO, it is unclear as to the control effectiveness of these aerodynamic forces under all orbital perturbations including solar radiation pressure, third body gravitation, and the non-spherical gravity. The work presented here will explore the extent to which aerodynamic lift and drag can be utilised for formation establishment and maintenance under changing operating conditions, including altitude, orbital inclination, space weather, sensor errors, and all-encompassing orbital perturbations. This work applies an in-house developed orbital propagation code to simulate the motion of formation flying spacecraft under differing conditions. The results will help miniaturised satellite formation flight planners better plan and operate future formation missions, and will also feed into improved understanding of the 6DOF motion of near-Earth orbit objects, including that of uncontrolled objects such as space debris.

  7. Studies of friction drag and pressure drag of airfoils using the Eppler program

    NASA Technical Reports Server (NTRS)

    Phillips, William H.

    1988-01-01

    Most previous studies of the drag and two-dimensional airfoils consider only the total drag. The present report gives results of a study of three airfoils, using the Eppler program, to determine the distribution of friction drag along the chord and to obtain relative values of friction drag and pressure drag over a wide range of angle of attack and Reynolds number. The effects of boundary-layer suction in the turbulent region of the boundary layer of two of the airfoils are also investigated. The pressure drag is found to be an important component of the total drag, reaching values of 60 to 80 percent of the total drag near the stall. The use of suction producing a uniform inflow in the turbulent region of the boundary layer results in large increases in maximum lift, and increases the skin-friction drag but reduces or even changes the sign of the pressure drag.

  8. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  9. AERODYNAMIC CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  10. Multi-objective aerodynamic shape optimization of small livestock trailers

    NASA Astrophysics Data System (ADS)

    Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.

    2013-11-01

    This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.

  11. Aerodynamic fairing/brake for high-speed trains

    SciTech Connect

    Ende, R.E.

    1993-06-29

    A dual aerodynamic function assembly for high speed MAGLEV trains having adjacent in-line cars is described comprising: a series of flaps pivotally mounted by means of a hinge to a circumferential segment of a car end, each flap displaceable to a first position covering a gap existing between the car end and a confronting end of an adjacent car thereby serving as a fairing; a second position at an oblique angle to the path of travel thereby creating drag on the train resulting in braking; and means for actuating the flaps to one or the other position; wherein the flaps have rectangular shapes along those lengths of the circumferential segment which are linear; and further wherein the flaps have contoured edges along those lengths of the circumferential segment which are curved so as to create a close edgewise fit to create a more continuous drag braking surface.

  12. Aerodynamic shape optimization of space vehicle in very-low-earth-orbit

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyun; Myong, Rho Shin; Kim, Dong Hyun; Baek, Seung Wook

    2014-12-01

    Space vehicles orbiting in Very-Low-Earth-Orbit (VLEO, h = 200˜300 km) experience considerably large aerodynamic drag due to high air-density in comparison with Low-Earth-Orbit (LEO, h = 600 ˜ 700 km). Therefore, the optimization of vehicle shape via minimization of aerodynamic drag is essential for accurate estimation of satellite lifetime and fuel budget at the design stage. In this study, the aerodynamic drag is computed with direct simulation Monte Carlo (DSMC) because even in VLEO, whose free stream Knudsen number is sufficiently large, some errors are still found in the prediction using free molecular approach. In order to find the optimized configuration, we vary the shape of frontal surface normal to the flight direction. Interestingly, the effects of such geometrical change appear distinctively depending on the gas-surface interaction (GSI, diffuse or specular) which can be represented by the thermal accommodation coefficient. The satellite aerodynamic characteristics including force, torque, and thermal loading are also identified by changing the pitch and the side angle.

  13. Aerodynamic force by Lamb vector integrals in compressible flow

    NASA Astrophysics Data System (ADS)

    Mele, Benedetto; Tognaccini, Renato

    2014-05-01

    A new exact expression of the aerodynamic force acting on a body in steady high Reynolds number (laminar and turbulent) compressible flow is proposed. The aerodynamic force is obtained by integration of the Lamb vector field given by the cross product of vorticity times velocity. The result is obtained extending a theory developed for the incompressible case. A decomposition in lift and drag contribution is obtained in the two-dimensional case. The theory links the force generation to local flow properties, in particular to the Lamb vector field and to the kinetic energy. The theoretical results are confirmed analyzing numerical solutions obtained by a standard Reynolds Averaged Navier-Stokes solver. Results are discussed for the case of a two-dimensional airfoil in subsonic, transonic, and supersonic free stream conditions.

  14. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  15. Inclusion of nonlinear aerodynamics in the FLAP code

    SciTech Connect

    Weber, T. )

    1989-11-01

    Horizontal axis wind turbines usually operate with significant portions of the blade in deep stall. This contradicts the assumption in the FLAP code that a linear relation exists between the angle of attack and the lift coefficient. The objective of this paper is to determine the importance of nonlinear aerodynamics in the prediction of loads. The FLAP code has been modified to include the nonlinear relationships between the lift and drag coefficients with the angle of attack. The modification affects the calculation of the induced velocities and the aerodynamic loads. This requires an iterative procedure to determine the induced velocities instead of a closed form solution. A more advanced tower interference model has also been added that accounts for both upwind and downwind tower effects. 7 refs., 14 figs.

  16. Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.

    1995-01-01

    An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B- Splines) for defining the airfoil geometry. An interactive algebraic grid generation technique is employed to generate C-type grids around airfoils. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the airfoil surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the airfoil.

  17. Experimental wing and canard jet-flap aerodynamics

    NASA Technical Reports Server (NTRS)

    Smeltzer, D. B.; Durston, D. A.; Stewart, V. R.

    1983-01-01

    The effects of upper surface blowing on the aerodynamics of a 1/2-span wing/body/canard configuration are shown. The results expand a data base that is limited at high subsonic Mach numbers (M = 0.6-0.9), data that are needed if computational techniques are to be developed for the complex flowfields generated by jet blowing. At lift coefficients greater than about 1.0, the thrust removed drag coefficient was lower with jet blowing than without jet blowing. This favorable effect increased with increasing jet blowing coefficient, and, for a fixed coefficient, simultaneous wing/canard jet blowing was slightly more effective than blowing either surface alone.

  18. Computational analysis of methods for reduction of induced drag

    NASA Technical Reports Server (NTRS)

    Janus, J. M.; Chatterjee, Animesh; Cave, Chris

    1993-01-01

    The purpose of this effort was to perform a computational flow analysis of a design concept centered around induced drag reduction and tip-vortex energy recovery. The flow model solves the unsteady three-dimensional Euler equations, discretized as a finite-volume method, utilizing a high-resolution approximate Riemann solver for cell interface flux definitions. The numerical scheme is an approximately-factored block LU implicit Newton iterative-refinement method. Multiblock domain decomposition is used to partition the field into an ordered arrangement of blocks. Three configurations are analyzed: a baseline fuselage-wing, a fuselage-wing-nacelle, and a fuselage-wing-nacelle-propfan. Aerodynamic force coefficients, propfan performance coefficients, and flowfield maps are used to qualitatively access design efficacy. Where appropriate, comparisons are made with available experimental data.

  19. F-16XL ship #1 landing with drag chute

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's single-seat F-16XL makes a drag chute landing on the runway at Edwards Air Force Base in California's Mojave Desert. The aircraft was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity.

  20. Helicopter fuselage drag - combined computational fluid dynamics and experimental studies

    NASA Astrophysics Data System (ADS)

    Batrakov, A.; Kusyumov, A.; Mikhailov, S.; Pakhov, V.; Sungatullin, A.; Valeev, M.; Zherekhov, V.; Barakos, G.

    2015-06-01

    In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage configurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some flow separation at the rear of the fuselages. Once confidence on the CFD method was established, further modifications were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes.

  1. Aerodynamic control of fluctuating loads on teetered HAWT rotors

    SciTech Connect

    Eggers, A.J. Jr.; Ashley, H.; Rock, S.M.; Chaney, K.

    1995-09-01

    This paper addresses the possibility of using an aerodynamic control to simultaneously reduce fluctuations in blade root flatwise bending moments, thrust and torque generated by a teetered HAWT rotor operating in turbulent winds. This possibility is suggested by both theory and field test data which indicate that the timing and direction of these fluctuations correlate, although they are of different magnitudes. Thus if an aerodynamic control system is designed to reduce one type of fluctuation, it may also serve to reduce the others. The end result would be a reduction in fatigue damage accumulation and power fluctuations experienced by HAWTs operating in turbulent winds.

  2. High-speed aerodynamics of several blunt-cone configurations

    NASA Technical Reports Server (NTRS)

    Intrieri, P. F.; Kirk, D. B.

    1986-01-01

    The experimental techniques and results from NASA Ames research into the aerodynamics of blunt shapes are described. Two facilities are used: the Hypersonic Free Flight Aerodynamic Facility (HFFAF) and the Pressurized Ballistic Range (PBR). The HFFAF features a 23 m test section through which projectiles can be fired by light-gas guns to achieve velocities up to 9 km/sec in pressures from 1 atm down to 20 microns Mg. Aerodynamic flight data are recorded with shadowgraphs. The 62 m long PBR, with 24 orthogonal spark shadowgraph stations, allows testing in up to 6 atm pressures but with only half the velocity of the HFFAF. Tests have been performed on the Galileo probe to be dropped into the Jovian atmosphere. The Galileo data for a 45 deg cone probe have been similar to Pioneer Venus probe data. Ballistic data are presently being obtained for the probe at Re below 1000, when the drag coefficients are expected to increase dramatically as the probe enters the Jovian atmosphere and begins braking from 4700 m/s speed. Sample test data from an OTV which can change orbits through aerodynamic maneuvers and for several asymmetric configurations ae also provided.

  3. Evaluation and modeling of aerodynamic properties of mung bean seeds

    NASA Astrophysics Data System (ADS)

    Shahbazi, Feizollah

    2015-01-01

    Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post harvest operations. The objective of this study was the evaluation of the aerodynamic properties of mung bean seeds as a function of moisture content and two grades referred to above and below a cut point of 4.8 mm in length. The results showed that as the moisture content increased from 7.8 to 25% (w.b.), the terminal velocity of seeds increased following a polynomial relationship, from 7.28 to 8.79 and 6.02 to 7.12 m s-1, for grades A and B, respectively. Seeds at grade A had terminal velocities with a mean value of 8.05 m s-1, while at grade B had a mean value of 6.46 m s-1. The Reynolds number of both grades increased linearly with the increase of seeds moisture content, while the drag coefficient decreased with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the obtained values of aerodynamic properties. The analysis of variance showed that moisture content had a significant effect, at 1% probability level, on all the aerodynamics properties of mung beans.

  4. Theoretical aerodynamics of upper-surface-blowing jet-wing interaction

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1975-01-01

    A linear, inviscid subsonic compressible flow theory is formulated to treat the aerodynamic interaction between the wing and an inviscid upper-surface-blowing (USB) thick jet with Mach number nonuniformity. The predicted results show reasonably good agreement with some available lift and induced-drag data. It was also shown that the thin-jet-flap theory is inadequate for the USB configurations with thick jet. Additional theoretical results show that the lift and induced drag were reduced by increasing jet temperature and increased by increasing jet Mach number. Reducing jet aspect ratio, while holding jet area constant, caused reductions in lift, induced drag, and pitching moment at a given angle of attack but with a minimal change in the curve of lift coefficient against induced-drag coefficient. The jet-deflection effect was shown to be beneficial to cruise performance. The aerodynamic center was shifted forward by adding power or jet-deflection angle. Moving the jet away from the wing surface resulted in rapid changes in lift and induced drag. Reducing the wing span of a rectangular wing by half decreased the jet-circulation lift by only 24 percent at a thrust coefficient of 2.

  5. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  6. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  7. Drag Prediction for the DLR-F4 Wing/Body using OVERFLOW and CFL3D on an Overset Mesh

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Buning, Pieter G.; Rumsey, Christopher L.

    2002-01-01

    This paper reviews the importance of numerical drag prediction in an aircraft design environment. A chronicle of collaborations between the authors and colleagues is discussed. This retrospective provides a road-map which illustrates some of the actions taken in the past seven years in pursuit of accurate drag prediction. The advances made possible through these collaborations have changed the manner in which business is conducted during the design of all-new aircraft. The subject of this study is the DLR-F4 wing/body transonic model. Specifically, the work conducted herein was in support of the 1st CFD Drag Prediction Workshop, which was held in conjunction with the 19th Applied Aerodynamics Conference in Anaheim, CA during June, 2001. Comprehensive sets of OVERFLOW simulations were independently performed by several users on a variety of computational platforms. CFL3D was used on a limited basis for additional comparison on the same overset mesh. Drag polars based on this database were constructed with a CFD-to-Test correction applied and compared with test data from three facilities. These comparisons show that the predicted drag polars fall inside the scatter band of the test data, at least for pre-buffet conditions. This places the corrected drag levels within 1% of the averaged experimental values. At the design point, the OVERFLOW and CFL3D drag predictions are within 1-2% of each other. In addition, drag-rise characteristics and a boundary of drag-divergence Mach number are presented.

  8. Imaginatively Experiencing Paintings and Persons

    ERIC Educational Resources Information Center

    Freeman, Damien

    2013-01-01

    This essay investigates the special way in which a spectator might engage imaginatively with one work of art when the work is experienced in light of other works by the same artist. In particular, it addresses the idea that we might imaginatively identify with an unrepresented spectator in the picture after we have experienced others in which the…

  9. Stressors experienced by injured athletes.

    PubMed

    Evans, Lynne; Wadey, Ross; Hanton, Sheldon; Mitchell, Ian

    2012-05-01

    The purpose of this study was twofold: (a) to examine the stressors experienced by injured athletes during three phases of their recovery from sport injury, and (b) to explore the differences in the stressors experienced by team as compared to individual-sport athletes. Participants comprised previously injured high-level rugby union players (n = 5) and golfers (n = 5). Semi-structured interviews were used to explore the stressors participants experienced during three phases of injury (onset, rehabilitation and return to competitive sport). Within- and cross-case analyses showed that athletes experienced sport, medical/physical, social and financial stressors. There were a number of differences in the stressors experienced across the three phases and between team and individual-sport athletes. Findings have important implications for the design and implementation of interventions aimed at managing the potentially stressful sport injury experience and facilitating injured athletes' return to competitive sport. PMID:22551525

  10. A Transonic Wind-Tunnel Investigation of the Longitudinal Aerodynamic Characteristics of a Model of the Lockheed XF-104 Airplane

    NASA Technical Reports Server (NTRS)

    Hieser, Gerald; Reid, Charles F.

    1954-01-01

    The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.

  11. Bluff-body drag reduction using a deflector

    NASA Astrophysics Data System (ADS)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi; Gilliéron, Patrick

    2011-02-01

    A passive flow control on a generic car model was experimentally studied. This control consists of a deflector placed on the upper edge of the model rear window. The study was carried out in a wind tunnel at Reynolds numbers based on the model height of 3.1 × 105 and 7.7 × 105. The flow was investigated via standard and stereoscopic particle image velocimetry, Kiel pressure probes and surface flow visualization. The aerodynamic drag was measured using an external balance and calculated using a wake survey method. Drag reductions up to 9% were obtained depending on the deflector angle. The deflector increases the separated region on the rear window. The results show that when this separated region is wide enough, it disrupts the development of the counter-rotating longitudinal vortices appearing on the lateral edges of the rear window. The current study suggests that flow control on such geometries should consider all the flow structures that contribute to the model wake flow.

  12. Baseball Aerodynamics: What do we know and how do we know it?

    NASA Astrophysics Data System (ADS)

    Nathan, Alan

    2009-11-01

    Baseball aerodynamics is governed by three phenomenological quantities: the coefficients of drag, lift, and moment, the latter determining the spin decay time constant. In past years, these quantities were studied mainly in wind tunnel experiments, whereby the forces on the baseball are measured directly. More recently, new tools are being used that focus on measuring accurate baseball trajectories, from which the forces can be inferred. These tools include high-speed motion analysis, video tracking of pitched baseballs (the PITCHf/x system), and Doppler radar tracking. In this contribution, I will discuss what these new tools are teaching us about baseball aerodynamics.

  13. Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Lu, Xi-Yun

    2009-07-01

    Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight has been studied using a multiblock lattice Boltzmann method. We find that the interactions between forewing and hindwing effectively enhance the total lift force and reduce the drag force on the wings compared to two independent wings. The interaction mechanism may be associated with the triangular camber effect by modulating the relative arrangement of the forewing and hindwing. The results obtained in this Brief Report provide physical insight into the understanding of aerodynamic behaviors for gliding dragonfly flight.

  14. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Mark, L.

    1982-01-01

    Conceptual designs and analyses were conducted on two V/STOL supersonic fighter/attack aircraft. These aircraft feature low footprint temperature and pressure thrust augmenting ejectors in the wings for vertical lift, combined with a low wing loading, low wave drag airframe for outstanding cruise and supersonic performance. Aerodynamic, propulsion, performance, and mass properties were determined and are presented for each aircraft. Aerodynamic and Aero/Propulsion characteristics having the most significant effect on the success of the up and away flight mode were identified, and the certainty with which they could be predicted was defined. A wind tunnel model and test program are recommended to resolve the identified uncertainties.

  15. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Alcorn, C. W.

    1988-01-01

    This paper reports on an experimental investigation of aerodynamic characteristics of slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. In this investigation, magnetically suspending the wind tunnel models eliminates flow disturbances associated with mechanical supports. This paper reports on the drastic changes in lift, pitching moment, and drag for a slight change in base slant angle. Flow visualization with liquid crystals and oil is used to observe base flow patterns responsible for the sudden changes in aerodynamic characteristics. This paper also reports on hysteretic effects that are present and discusses computational results using VSAERO and SANDRAG.

  16. Foam input into the drag coefficient in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Golbraikh, Ephim; Shtemler, Yuri M.

    2016-03-01

    A semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd, with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the basis of available optical and radiometric measurements of the fractional foam coverage and partitioning of the ocean surface into foam-covered and foam-free areas, the present model yields the resulting dependence of Cd vs. U10 within the range from low to hurricane wind speeds. This dependence is in fair agreement with those obtained from both open-ocean and laboratory measurements of the vertical variation of the mean wind speed. The velocity value, at which the fractional foam coverage is saturated, is found to be responsible for the difference of Cd behavior in the laboratory and open-ocean conditions.

  17. Supersonic aircraft optimization for minimizing drag and sonic boom

    NASA Astrophysics Data System (ADS)

    Chan, Martin Kia-Yin

    A design tool incorporating classical sonic boom theory, computational fluid dynamics and a multi-objective genetic algorithm was developed for low-boom supersonic aircraft optimization. Both sonic boom and drag were optimized simultaneously and a Pareto optimal set of designs ranging from minimum boom to minimum drag was obtained for each optimization. Since sonic boom was optimized directly, the method had broader applicability than the traditional inverse method. A high-order three-dimensional panel method was used for sonic boom prediction. The traditional linear source model was fast but did not account for wing-body aerodynamic interaction. Euler solutions were expensive for computing sonic booms because a large number of grid points were needed to accurately predict the pressure signature away from the aircraft. For the Mach number and configurations of interest, the panel code showed good agreement with Euler but at a fraction of the cost. A loudness metric was shown to have advantages over initial overpressure and peak overpressure for measuring shaped sonic booms. However, optimization results obtained using calculated loudness raised concerns about the robustness of the solution to atmospheric disturbance. Peak overpressure minimization also produced reasonable sonic boom signatures and appeared more robust to atmospheric uncertainties, but the resulting loudness was not as good. Better convergence was also observed with peak overpressure. Two supersonic business jets were optimized. One was a conventional configuration; the other was a natural laminar flow configuration. Optimization results obtained using loudness and peak overpressure were compared. A non-axisymmetric fuselage was optimized and found to reduce the inviscid drag by 9 to 30 percent at the same sonic boom loudness.

  18. Whose drag is it anyway? Drag kings and monarchy in the UK.

    PubMed

    Willox, Annabelle

    2002-01-01

    This chapter will show that the term "drag" in drag queen has a different meaning, history and value to the term "drag" in drag king. By exposing this basic, yet fundamental, difference this paper will expose the problems inherent in the assumption of parity between the two forms of drag. An exposition of how camp has been used to comprehend and theorise drag queens will facilitating an understanding of the parasitic interrelationship between camp and drag queen performances, while a critique of "Towards a Butch-Femme Aesthetic," by Sue Ellen Case, will point out the problematic assumptions made about camp when attributed to a cultural location different to the drag queen. By interrogating the historical, cultural and theoretical similarities and differences between drag kings, butches, drag queens and femmes this paper will expose the flawed assumption that camp can be attributed to all of the above without proviso, and hence expose why drag has a fundamentally different contextual meaning for kings and queens. This chapter will conclude by examining the work of both Judith Halberstam and Biddy Martin and the practical examples of drag king and queen performances provided at the UK drag contest held at The Fridge in Brixton, London on 23 June 1999. PMID:12769284

  19. Drag-type drill bit

    SciTech Connect

    Short, L.W. Jr.; Barr, J.D.

    1987-04-28

    A drag-type drill bit is described comprising: a bit body having an operating end face; and a multiplicity of superhard cutting elements interlocked to the body. The cutting elements define a multiplicity of cutting areas dispersed over the operating end face of the bit body in a pattern adapted to cause the cutting areas to cut an earth formation to a desired three-dimensional profile as the bit body is rotated, the cutting areas having back rake angles which become more negative with distance from the profile.

  20. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1981-01-01

    A miniature drag force anemometer is described which is capable of measuring unsteady as well as steady state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of lightly damped second order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer is used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.

  1. Drag and drop display & builder

    SciTech Connect

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  2. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1981-01-01

    A miniature drag-force anemometer is described which is capable of measuring unsteady as well as steady-state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of a lightly damped second-order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer can be used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.

  3. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  4. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics

  5. Tactical missile aerodynamics - Prediction methodology. Progress in Astronautics and Aeronautics. Vol. 142

    SciTech Connect

    Mendenhall, M.R. )

    1992-01-01

    The present volume discusses tactical missile aerodynamic drag, drag-prediction methods for axisymmetric missile bodies, an aerodynamic heating analysis for supersonic missiles, a component buildup method for engineering analysis of missiles at low-to-high angles of attack, experimental and analytical methods for missiles with noncircular fuselages, and a vortex-cloud model for body vortex shedding and tracking. Also discussed are panel methods with vorticity effects and corrections for nonlinear compressibility, supersonic full-potential methods for missile body analysis, space-marching Euler solvers, the time-asymptotic Euler/Navier-Stokes methods for subsonic and transonic flows, 3D boundary layers on missiles, Navier-Stokes analyses of flows over slender airframes, and the interaction of exhaust plumes with missile airframes.

  6. Performance and Design Investigation of Heavy Lift Tiltrotor with Aerodynamic Interference Effects

    NASA Technical Reports Server (NTRS)

    Yeo, Yyeonsoo; Johnson, Wayne

    2007-01-01

    The aerodynamic interference effects on tiltrotor performance in cruise are investigated using comprehensive calculations, to better understand the physics and to quantify the effects on the aircraft design. Performance calculations were conducted for 146,600-lb conventional and quad tiltrotors, which are to cruise at 300 knots at 4000 ft/95 deg F condition. A parametric study was conducted to understand the effects of design parameters on the performance of the aircraft. Aerodynamic interference improves the aircraft lift-to-drag ratio of the baseline conventional tiltrotor. However, interference degrades the aircraft performance of the baseline quad tiltrotor, due mostly to the unfavorable effects from the front wing to the rear wing. A reduction of rotor tip speed increased the aircraft lift-to-drag ratio the most among the design parameters investigated.

  7. Supersonic aerodynamic characteristics of canard, tailless, and aft-tail configurations for 2 wing planforms

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1985-01-01

    Aerodynamic characteristics of canard, tailless, and aft tail configurations were compared in tests on a general research model (generic fuselage without canopy, inlets, or vertical tails) at Mach 1.60 and 2.00 in the Langley Unitary Plan Wind Tunnel. Two uncambered wing planforms (trapezoidal with 44 deg leading edge sweep and delta with 60 deg leading edge sweep) were tested for each configuration. The relative merits of the configurations were also determined theoretically, to evaluate the capabilities of a linear theory code for such analyses. The canard and aft tail configurations have similar measured values for lift curve slope, maximum lift drag ratio, and zero lift drag. The stability decrease as Mach number increases is greatest for the tailless configuration and least for the canard configuration. Because of very limited accuracy in predicting the aerodynamic parameter increments between configurations, the linear theory code is not adequate for determining the relative merits of canard, tailless, and aft tail configurations.

  8. Trim drag reduction concepts for horizontal takeoff single-stage-to-Orbit vehicles

    NASA Technical Reports Server (NTRS)

    Shaughnessy, John D.; Gregory, Irene M.

    1991-01-01

    The results of a study to investigate concepts for minimizing trim drag of horizontal takeoff single-stage-to-orbit (SSTO) vehicles are presented. A generic hypersonic airbreathing conical configuration was used as the subject aircraft. The investigation indicates that extreme forward migration of the aerodynamic center as the vehicle accelerates to orbital velocities causes severe aerodynamic instability and trim moments that must be counteracted. Adequate stability can be provided by active control of elevons and rudder, but use of elevons to produce trim moments results in excessive trim drag and fuel consumption. To alleviate this problem, two solution concepts are examined. Active control of the center of gravity (COG) location to track the aerodynamic center decreases trim moment requirements, reduces elevon deflections, and leads to significant fuel savings. Active control of the direction of the thrust vector produces required trim moments, reduces elevon deflections, and also results in significant fuel savings. It is concluded that the combination of active flight control to provide stabilization, (COG) position control to minimize trim moment requirements, and thrust vectoring to generate required trim moments has the potential to significantly reduce fuel consumption during ascent to orbit of horizontal takeoff SSTO vehicles.

  9. Fresnel drag effect in fiber optic gyroscope

    NASA Technical Reports Server (NTRS)

    Vali, V.; Berg, M. F.; Shorthill, R. W.

    1978-01-01

    Consideration is given to the development of a low-noise fiber-optic ring interferometer gyroscope. A technique for measuring the Fresnel drag coefficient of optical fibers is described, and the accuracy of the technique is considered. An experiment is performed which allows verification of the Einstein velocity addition theorem to the first nonlinear term. An experimental setup for measuring Fresnel drag is described: it consists of a Sagnac interferometer and a Fresnel drag measurement configuration.

  10. Numerical Aerodynamic Simulation (NAS)

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.

    1983-01-01

    The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.

  11. Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz

    2005-08-09

    An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

  12. Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs

    DOEpatents

    Ortega, Jason M.; Sabari, Kambiz

    2005-12-27

    An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

  13. Influence of inflow angle on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Li, Z. M.; Li, C.

    2013-12-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance.

  14. On least-order flow decompositions for aerodynamics and aeroacoustics

    NASA Astrophysics Data System (ADS)

    Schlegel, Michael; Noack, Bernd R.; Jordan, Peter

    2012-11-01

    A generalisation of proper orthogonal decomposition (POD) for optimal flow resolution of linearly related observables is presented, as proposed in the identically named publication of Schlegel, Noack, Jordan, Dillmann, Groeschel, Schroeder, Wei, Freund, Lehmann and Tadmor (Journal of Fluid Mechanics 2012, vol. 697, pp. 367-398). This Galerkin expansion, termed ``observable inferred decomposition'' (OID), addresses a need in aerodynamic and aeroacoustic applications by identifying the modes contributing most to these observables. Thus, OID constitutes a building block for physical understanding, least-biased conditional sampling, state estimation and control design. From a continuum of OID versions, two variants are tailored for purposes of observer and control design, respectively. Three aerodynamic and aeroacoustic observables are studied: (1) lift and drag fluctuation of a two-dimensional cylinder wake flow, (2) aeroacoustic density fluctuations measured by a sensor array and emitted from a two-dimensional compressible mixing layer, and (3) aeroacoustic pressure monitored by a sensor array and emitted from a three-dimensional compressible jet. The most ``drag-related,'' ``lift-related'' and ``loud'' structures are distilled and interpreted in terms of known physical processes. This work was partially funded by the DFG under grants SCHL 586/2-1 and ANR, Chair of Excellence, TUCOROM.

  15. Aerodynamic penalties of heavy rain on a landing aircraft

    NASA Technical Reports Server (NTRS)

    Haines, P. A.; Luers, J. K.

    1982-01-01

    The aerodynamic penalties of very heavy rain on landing aircraft were investigated. Based on severity and frequency of occurrence, the rainfall rates of 100 mm/hr, 500 mm/hr, and 2000 mm/hr were designated, respectively, as heavy, severe, and incredible. The overall and local collection efficiencies of an aircraft encountering these rains were calculated. The analysis was based on raindrop trajectories in potential flow about an aircraft. All raindrops impinging on the aircraft are assumed to take on its speed. The momentum loss from the rain impact was later used in a landing simulation program. The local collection efficiency was used in estimating the aerodynamic roughness of an aircraft in heavy rain. The drag increase from this roughness was calculated. A number of landing simulations under a fixed stick assumption were done. Serious landing shortfalls were found for either momentum or drag penalties and especially large shortfalls for the combination of both. The latter shortfalls are comparable to those found for severe wind shear conditions.

  16. Planform effects on the supersonic aerodynamics of multibody configurations

    NASA Technical Reports Server (NTRS)

    Mcmillin, Naomi; Wood, Richard M.

    1987-01-01

    An experimental and theoretical investigation of the effect of planform on the supersonic aerodynamics of low-fineness-ratio multibody configurations was conducted. Longitudinal and lateral-directional aerodynamic and flow visualization data were obtained on three multibody configurations. The data indicated that planform has a small effect on the zero lift drag of a multibody configuration. The longitudinal data obtained at lifting conditions showed a sensitivity to planform shape. Lateral-directional data obtained for all configurations did not uncover any unusual stability traits for this class of configuration. A comparison study was also made between the planform effects observed on single-body and multibody configurations. Results from this study indicate that the multibody concept appears to offer a mechanism for employing a low-sweep wing with no significant increase in zero-lift drag but still retaining high-performance characteristics at high-lift conditions. Evaluation of the linear-theory prediction methods revealed a general inability of the methods to predict the characteristics of low-fineness-ratio geometries.

  17. An aerodynamic tradeoff study of the scissor wing configuration

    NASA Technical Reports Server (NTRS)

    Selberg, Bruce P.; Rokhsaz, Kamran; Housh, Clinton S.

    1990-01-01

    A scissor wing configuration, consisting of two independently sweeping wings was numerically studied. This configuration was also compared with an equivalent fixed wing baseline. Aerodynamic and stability and control characteristics of these geometries were investigated over a wide range of flight Mach numbers. It is demonstrated that in the purely subsonic flight regime, the scissor wing can achieve higher aerodynamic efficiency as the result of slightly higher aspect ratio. In the transonic regime, the lift to drag ratio of the scissor wing is shown to be higher than that of the baseline, for higer values of the lift coefficient. This tends to make the scissor wing more efficient during transonic cruise at high altitudes as well as during air combat at all altitudes. In supersonic flight, where the wings are maintained at maximum sweep angle, the scissor wing is shown to have a decided advantage in terms of reduced wave drag. From the view point of stability and control, the scissor wing is shown to have distinct advantages. It is shown that this geometry can maintain a constant static margin in supersonic as well as subsonic flight, by proper sweep scheduling. Furthermore, it is demonstrated that addition of wing mounted elevons can greatly enhance control authority in pitch and roll.

  18. Drag reduction of a hairy disk

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Hu, David L.

    2011-10-01

    We investigate experimentally the hydrodynamics of a hairy disk immersed in a two-dimensional flowing soap film. Drag force is measured as a function of hair length, density, and coating area. An optimum combination of these parameters yields a drag reduction of 17%, which confirms previous numerical predictions (15%). Flow visualization indicates the primary mechanism for drag reduction is the bending, adhesion, and reinforcement of hairs trailing the disk, which reduces wake width and traps "dead water." Thus, the use of hairy coatings can substantially reduce an object's drag while negligibly increasing its weight.

  19. Transformance: reading the gospel in drag.

    PubMed

    McCune, Jeffrey Q

    2004-01-01

    Despite the large body of scholarship on drag and its performance of misogyny, mimicry, and masculinity, little attention has been paid to the role of musical genres in Black drag performance and its reception. This essay explores drag performances of gospel music and its relationship with the spectator at the Biology Bar, a Black gay drag site in Chicago. By examining the shift from the club "space" to the church "place," this research locates several possibilities for queer gospel performances. Through the introduction of a theory of transformance, this essay highlights the contradictions, complications, and complexities of the relationship between the Black church and the Black gay community. PMID:15132488

  20. Nonequilibrium forces between dragged ultrasoft colloids.

    PubMed

    Singh, Sunil P; Winkler, Roland G; Gompper, Gerhard

    2011-10-01

    The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The deformation, in the close encounter of colloids, and the energy dissipation are examined as a function of the drag velocity and their separation. PMID:22107322

  1. Investigation of the transient aerodynamic phenomena associated with passing manoeuvres

    NASA Astrophysics Data System (ADS)

    Noger, C.; Regardin, C.; Széchényi, E.

    2005-11-01

    Passing manoeuvres and crosswind can have significant effects on the stability of road vehicles. The transient aerodynamics, which interacts with suspension, steering geometry and driver reaction is not well understood. When two vehicles overtake or cross, they mutually influence the flow field around each other, and under certain conditions, can generate severe gust loads that act as additional forces on both vehicles. The transient forces acting on them are a function of the longitudinal and transverse spacings and of the relative velocity between the two vehicles. Wind tunnel experiments have been conducted in one of the automotive wind tunnels of the Institut Aérotechnique of Saint-Cyr l’École to simulate the transient overtaking process between two models of a simple generic automobile shape. The tests were designed to study the effects of various parameters such as the longitudinal and transverse spacing, the relative velocity and the crosswind on the aerodynamic forces and moments generated on the overtaken and overtaking vehicles. Test results characterize the transient aerodynamic side force as well as the yawing moment coefficients in terms of these parameters. Measurements of the drag force coefficient as well as the static pressure distribution around the overtaken vehicle complete the understanding. The main results indicate the aerodynamic coefficients of the overtaken vehicle to be velocity independent within the limit of the test parameters, while unsteady aerodynamic effects appear in the case of an overtaking vehicle. The mutual interference effects between the vehicles vary as a linear function of the transverse spacing and the crosswind does not really generate any new unsteady behaviour.

  2. Aerodynamics modeling of towed-cable dynamics

    SciTech Connect

    Kang, S.W.; Latorre, V.R.

    1991-01-17

    The dynamics of a cable/drogue system being towed by an orbiting aircraft has been investigated as a part of an LTWA project for the Naval Air Systems Command. We present here a status report on the tasks performed under Phase 1. We have accomplished the following tasks under Phase 1: A literature survey on the towed-cable motion problem has been conducted. While both static (steady-state) and dynamic (transient) analyses exist in the literature, no single, comprehensive analysis exists that directly addresses the present problem. However, the survey also reveals that, when judiciously applied, these past analyses can serve as useful building blocks for approaching the present problem. A numerical model that addresses several aspects of the towed-cable dynamic problem has been adapted from a Canadian underwater code for the present aerodynamic situation. This modified code, called TOWDYN, analyzes the effects of gravity, tension, aerodynamic drag, and wind. Preliminary results from this code demonstrate that the wind effects alone CAN generate the drogue oscillation behavior, i.e., the yo-yo'' phenomenon. This code also will serve as a benchmark code for checking the accuracy of a more general and complete R D'' model code. We have initiated efforts to develop a general R D model supercomputer code that also takes into account other physical factors, such as induced oscillations and bending stiffness. This general code will be able to evaluate the relative impacts of the various physical parameters, which may become important under certain conditions. This R D code will also enable development of a simpler operational code that can be used by the Naval Air personnel in the field.

  3. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  4. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  5. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  6. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC

  7. Aerodynamic performance of osculating-cones waveriders at high altitudes

    NASA Astrophysics Data System (ADS)

    Graves, Rick Evan

    The steady-state aerodynamic characteristics of three-dimensional waverider configurations immersed in hypersonic rarefied flows are investigated. Representative geometries are generated using an inverse design procedure, the method of osculating cones, which defines an exit plane shock shape and approximates the flow properties of the compression surface by assuming that each spanwise station along the shock profile lies within a region of locally conical flow. Vehicle surface and flow field properties are predicted using the direct simulation Monte Carlo method, a probabilistic numerical scheme in which simulated molecules are followed through representative collisions with each other and solid surfaces, and subsequent deterministic displacement. The aerodynamic properties of high- and low-Reynolds number waverider geometries, optimized for maximum lift-to-drag ratio and subject to mission-oriented constraints, are contrasted with results from reference caret and delta wings with similar internal volumes to quantify the relevance and advantage of the waverider concept at high altitudes. The high-Reynolds number waverider, optimized for the continuum regime at Minfinity = 4 and Reinfinity = 250 million, was the focus of recent wind tunnel testing for near on-design and off-design conditions, including low subsonic speeds. The present work extends the previous analyses into the high-altitude regime. The low-Reynolds number waverider, optimized at Minfinity = 20 and Reinfinity = 2.5 million, is studied to determine if optimization potential exists for a high-Mach number waverider at high altitudes. A characteristic length of 5 m is assumed for both waverider configurations, representative of a hypersonic missile concept. The geometries are aerodynamically evaluated over a parametric space consisting of an altitude variation of 95 km to 150 km and an angle of attack range of --5° to 10°. The effect of off-design Mach number on the performance of the high

  8. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  9. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  10. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  11. Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Alter, Stephen J.; Mcdaniel, Ryan D.

    2008-01-01

    The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and

  12. An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi

    1997-01-01

    The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.

  13. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    SciTech Connect

    Salari, K; Ortega, J

    2010-12-13

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

  14. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC, and began its mission after it was was ejected from the FASTSAT into Earth orbit, where it remained for several weeks before deorbiting as planned. NASA recently selected two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use solar sails to enable their scientific objectives. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic

  15. Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000

    NASA Astrophysics Data System (ADS)

    Levy, David-Elie; Seifert, Avraham

    2009-07-01

    Effective aerodynamics at Reynolds numbers lower than 10 000 is of great technological interest and a fundamental scientific challenge. The current study covers a Reynolds number range of 2000-8000. At these Reynolds numbers, natural insect flight could provide inspiration for technology development. Insect wings are commonly characterized by corrugated airfoils. In particular, the airfoil of the dragonfly, which is able to glide, can be used for two-dimensional aerodynamic study of fixed rigid wings. In this study, a simplified dragonfly airfoil is numerically analyzed in a steady free-stream flow. The aerodynamic performance (such as mean and fluctuating lift and drag), are first compared to a "traditional" low Reynolds number airfoil: the Eppler-E61. The numerical results demonstrate superior performances of the corrugated airfoil. A series of low-speed wind and water tunnel experiments were performed on the corrugated airfoil, to validate the numerical results. The findings indicate quantitative agreement with the mean wake velocity profiles and shedding frequencies while validating the two dimensionality of the flow. A flow physics numerical study was performed in order to understand the underlying mechanism of corrugated airfoils at these Reynolds numbers. Airfoil shapes based on the flow field characteristics of the corrugated airfoil were built and analyzed. Their performances were compared to those of the corrugated airfoil, stressing the advantages of the latter. It was found that the flow which separates from the corrugations and forms spanwise vortices intermittently reattaches to the aft-upper arc region of the airfoil. This mechanism is responsible for the relatively low intensity of the vortices in the airfoil wake, reducing the drag and increasing the flight performances of this kind of corrugated airfoil as compared to traditional low Reynolds number airfoils such as the Eppler E-61.

  16. A New Aerodynamic Parametrization for Real Urban Surfaces

    NASA Astrophysics Data System (ADS)

    Kanda, Manabu; Inagaki, Atsushi; Miyamoto, Takashi; Gryschka, Micha; Raasch, Siegfried

    2013-08-01

    This study conducted large-eddy simulations (LES) of fully developed turbulent flow within and above explicitly resolved buildings in Tokyo and Nagoya, Japan. The more than 100 LES results, each covering a 1,000 × 1,000 m2 area with 2-m resolution, provide a database of the horizontally-averaged turbulent statistics and surface drag corresponding to various urban morphologies. The vertical profiles of horizontally-averaged wind velocity mostly follow a logarithmic law even for districts with high-rise buildings, allowing estimates of aerodynamic parameters such as displacement height and roughness length using the von Karman constant = 0.4. As an alternative derivation of the aerodynamic parameters, a regression of roughness length and variable Karman constant was also attempted, using a displacement height physically determined as the central height of drag action. Although both the regression methods worked, the former gives larger (smaller) values of displacement height (roughness length) by 20-25 % than the latter. The LES database clearly illustrates the essential difference in bulk flow properties between real urban surfaces and simplified arrays. The vertical profiles of horizontally-averaged momentum flux were influenced by the maximum building height and the standard deviation of building height, as well as conventional geometric parameters such as the average building height, frontal area index, and plane area index. On the basis of these investigations, a new aerodynamic parametrization of roughness length and displacement height in terms of the five geometric parameters described above was empirically proposed. The new parametrizations work well for both real urban morphologies and simplified model geometries.

  17. Aerodynamic analysis of Audi A4 Sedan using CFD

    NASA Astrophysics Data System (ADS)

    Birwa, S. K.; Rathi, N.; Gupta, R.

    2013-04-01

    This paper presents the aerodynamic influence of velocity and ground clearance for Audi A4 Sedan. The topology of the test vehicle was modeled using CATIA P3 V5 R17. ANSYS FLUENT 12 was the CFD solver employed in this study. The distribution of pressure and velocity was obtained. The velocities were 30, 40, 50 and 60 m/s and ground clearances were 76.2 mm,101.6 mm,127 mm and 152.4 mm. The simulation results were compared with the available resources. It was found that the drag coefficient decreases with the velocity increasing from 30 to 60 m/s and increases with the ground clearance from 101.6 mm to 152.4 mm. Further decrease in ground clearance showed no effect on the value of coefficient of drag. The lift coefficient was found to decrease firstly with ground clearance from 152.4 mm to 101.6 mm, and then increase from 101.6 mm to 76.2 mm. Both the lift coefficient and drag coefficient was found to be minimum for the ground clearance of 101.6 mm as designed by the company.

  18. High speed aerodynamics of upper surface blowing aircraft configurations

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Larry D.

    1992-01-01

    An experimental investigation of the high speed aerodynamics of Upper Surface Blowing (USB) aircraft configurations has been conducted to accurately define the magnitude and causes of the powered configuration cruise drag. A highly instrumented wind tunnel model of a realistic USB configuration was used which permitted parametric variations in the number and spanwise location of the nacelles and was powered with two turbofan engine simulators. The tests conducted in the Ames 14 Foot Transonic Wind Tunnel examined 10 different configurations at Mach numbers from 0.5 to 0.775, fan nozzle pressure ratios from 1.1 to 2.1 and angles of attack from -4 to 6 degrees. Measured force data is presented which indicates the cruise drag penalty associated with each configuration and surface pressure contour plots are used to illustrate the underlying flowfield physics. It was found that all of the tested configurations suffered from a severe drag penalty which increased with freestream Mach number, power setting and angle of attack and was associated with the presence of strong shocks and regions of separated flow in the wing/nacelle junction regions.

  19. The aerodynamic design of the oblique flying wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.; Kroo, Ilan

    1990-01-01

    The aerodynamic design of a supersonic oblique flying wing is strongly influenced by the requirement that passengers must be accommodated inside the wing. It was revealed that thick oblique wings of very high sweep angle can be efficient at supersonic speeds when transonic normal Mach numbers are allowed on the upper surface of the wing. The goals were motivated by the ability to design a maximum thickness, minimum size oblique flying wing. A 2-D Navier-Stokes solver was used to design airfoils up to 16 percent thickness with specified lift, drag and pitching moment. A new method was developed to calculate the required pressure distribution on the wing based on the airfoil loading, normal Mach number distribution and theoretical knowledge of the minimum drag of oblique configurations at supersonic speeds. The wing mean surface for this pressure distribution was calculated using an inverse potential flow solver. The lift to drag ratio of this wing was significantly higher than that of a comparable delta wing for cruise speeds up to Mach 2.

  20. AIAA Applied Aerodynamics Conference, 10th, Palo Alto, CA, June 22-24, 1992, Technical Papers. Pts. 1 AND 2

    SciTech Connect

    Not Available

    1992-01-01

    Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows.

  1. Fundamental investigation of road vehicle aerodynamics

    NASA Astrophysics Data System (ADS)

    Al-Garni, Abdullah Mohammed

    The present investigation focuses on the aerodynamics of pickup trucks and SUVs. The flow about generic pickup truck and SUV models and a much simpler bluff body model known as the Square Back (SB) model has been documented experimentally. The main objective of the present research is to gain a better understanding of the pickup truck and SUV aerodynamics through mean and unsteady pressure measurements as well as detailed flow field measurements using PIV. The mean pressure results of the pickup truck show that the pressure outside the tailgate is higher than inside the tailgate suggesting that the tailgate reduces aerodynamic drag. Pressure fluctuation spectra indicate a spectral peak at a Strouhal number of ˜0.094 for the SB model and ˜0.07 for the SUV and pickup truck models. Velocity field measurements in horizontal planes behind the SUV and SB models show a similar flow pattern characterized by a recirculation region at the base of the model with length about 1.15 times the width of the model. The flow in the symmetry plane varies considerably between models. For the SUV there is strong upwash while for the pickup truck, there is a recirculation region inside the bed and a strong downwash behind the tailgate. For the present pickup truck model the bed recirculation region is bounded by a shear layer which does not interact directly with the tailgate. Proper Orthogonal Decomposition (POD) analysis was applied to the PIV data at selected planes in order to identify the most energetic structures in the wake of these models. It is shown that the first two modes contain almost 20% of the total fluctuation energy while 70% of energy is captured by the first twenty modes. When the most energetic modes were used in reconstruction of the flow field in the wake of SB and SUV, flapping and breathing like motions resulted. For the pickup truck it is shown that some modes capture the energy in the underbody shear layer while other modes seem to contribute more to the cab

  2. Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane

    NASA Technical Reports Server (NTRS)

    Defrance, S J

    1934-01-01

    In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

  3. CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades

    NASA Astrophysics Data System (ADS)

    Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.

    2014-12-01

    The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.

  4. Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry

    NASA Astrophysics Data System (ADS)

    Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.

    2013-12-01

    This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.

  5. The Aerodynamic Optimization of Wings at Subsonic Speeds and the Influence of Wingtip Design. Thesis

    NASA Technical Reports Server (NTRS)

    Zimmer, H.

    1987-01-01

    Some of the objectives of modern aircraft development are related to the achievement of reduced fuel consumption and aircraft noise. This investigation is mainly concerned with the aerodynamic aspects of aircraft development, i.e., reduction of induced drag. New studies of wing design, and in particular wing tips, are considered. Induced drag is important since, in cruising flight, it accounts for approximately one-third of the entire drag for the aircraft, and one-half while climbing. A survey is presented for the wing geometries and wing tip designs studied, and theoretical investigations of different planar wings with systematically varied wing tip forms are conducted. Attention is also paid to a theoretical study of some planar and nonplanar wings and their comparison with experimental data.

  6. The effects of unsteady aerodynamics on single and clustered parachute systems

    SciTech Connect

    Waye, D.E.; Johnson, D.W.

    1989-01-01

    A study was performed to evaluate the performance of equivalent drag area single parachute systems and cluster parachute systems during the early inflation and initial deceleration phase. Analytical work showed that the cluster system could exhibit better performance during this unsteady aerodynamic phase due to a significant decrease in the apparent mass of air influenced by the parachutes. Two test programs have been performed in support of these assumptions. The first compared systems with parachute drag areas of approximately 750 ft/sup 2/ and a payload of 2400 lbs. The cluster system exhibited increased performance and less susceptibility to parachute collapse due to wake recontact. The second series compared systems with parachute drag areas of approximately 260 ft/sup 2/ with a payload of 800 lbs. The advantages of the cluster system were less apparent but performance was moderately improved. 4 refs., 7 figs.

  7. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  8. A closed-form trim solution yielding minimum trim drag for airplanes with multiple longitudinal-control effectors

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Sliwa, Steven M.; Lallman, Frederick J.

    1989-01-01

    Airplane designs are currently being proposed with a multitude of lifting and control devices. Because of the redundancy in ways to generate moments and forces, there are a variety of strategies for trimming each airplane. A linear optimum trim solution (LOTS) is derived using a Lagrange formulation. LOTS enables the rapid calculation of the longitudinal load distribution resulting in the minimum trim drag in level, steady-state flight for airplanes with a mixture of three or more aerodynamic surfaces and propulsive control effectors. Comparisons of the trim drags obtained using LOTS, a direct constrained optimization method, and several ad hoc methods are presented for vortex-lattice representations of a three-surface airplane and two-surface airplane with thrust vectoring. These comparisons show that LOTS accurately predicts the results obtained from the nonlinear optimization and that the optimum methods result in trim drag reductions of up to 80 percent compared to the ad hoc methods.

  9. Aerodynamic Improvements of an Empty Timber Truck can Have the Potential of Significantly Reducing Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts

    2012-11-01

    In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.

  10. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Han, Menghu; Li, Jun; Liang, Hua; Niu, Zhongguo; Zhao, Guangyin

    2015-06-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. supported by National Natural Science Foundation of China (Nos. 51276197, 51207169 and 51336011)

  11. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

  12. An investigation of drag reduction on box-shaped ground vehicles

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1976-01-01

    A wind tunnel investigation was conducted to determine the reduction in drag which could be obtained by making various configuration changes to a box-shaped ground vehicle. Tests were conducted at yaw (relative wind) angles of 0, 5, 10, 20, and 30 degrees and Reynolds numbers of 300,000 to 850,000. The power required to overcome the aerodynamic drag was reduced by a maximum of 73% for a head wind for the best configuration relative to the smooth bottom box-shape, or 75% relative to the rough bottom box-shape. The reduction for a 20 MPH wind at 30 deg to the vehicle path was, respectively, 77% and 79%.

  13. Drag and Propulsive Characteristics of Air-Cooled Engine-Nacelle Installations for Large Airplane

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Wilson, Herbert A , Jr

    1942-01-01

    An investigation was conducted in the NACA full-scale wind tunnel to determine the drag and the propulsive efficiency of nacelle-propeller arrangements for a large range of nacelle sizes. In contrast with usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a four-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplanes weighing from about 20 to 100 tons. The results show the drag, the propulsive efficiency, and the over-all efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model is shown for both propeller-removed and propeller-operating conditions.

  14. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag-force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilever beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain-gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like those of a second-order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  15. Aerodynamic implications of gull's drooped wing-tips.

    PubMed

    Andrews, S A; Perez, R E; Allan, W D E

    2013-12-01

    When in gliding flight, gulls are observed to adopt a drooped wing-tip configuration. This paper investigates whether this configuration might represent an aerodynamic optimum or if it is the result of constraints imposed by the gull's anatomy. A computational model was developed for the aerodynamic performance of a gull in gliding flight. This model was used in conjunction with both global and local optimizers to determine the most aerodynamically optimal configuration for cases where the gull was constrained to move its wing within its natural flapping cycle as well as when the wing had full freedom of motion. The results of this analysis determined the best wing configuration for a gull in gliding flight and demonstrated that such a configuration not only had the highest lift-to-drag ratio but also could be achieved within the constraints of the kinematics of the gull wing. These results are of interest outside studies of gulls, since the drooped wing-tip configuration could be relevant for new designs of small air vehicles. PMID:24106263

  16. Light Vehicle-Trailer Systems' Aerodynamics Testing and Simulation

    NASA Astrophysics Data System (ADS)

    Boyer, Henry; Sigurdson, Lorenz; Lange, Carlos

    2014-11-01

    A wide range of trailers with very poor aerodynamics are hauled long distances across a vast North American highway system. Our goal was to use preliminary smoke-wire flow visualizations to learn: the characteristic flow patterns over models representing modern Vehicle-Trailer Systems (VTS); what improvements need to be made in the experimental set-up; and if there is an opportunity for reduction in aerodynamic drag. Visualization tests were done in an open circuit wind tunnel, with a cross-sectional area of 0.3 m2. Detailed models of light duty trucks and trailers were used at a Reynolds number of 13,700. Images of the streaklines indicated two characteristic features. One was the presence of a stagnation point on the leading face of the trailer followed by a separation bubble on its top. The other feature was an unexpected separation bubble on the hood of the towing vehicle. We determined that it did not have a significant effect on the downstream flow pattern. By adding a small wedge deflector on the cab of the vehicle it was concluded that there is an opportunity for significant improvement of the VTS aerodynamics. Computational simulation of the flow is underway. Support from the Natural Sciences and Engineering Research Council of Canada Discovery Grant Number 41747 is gratefully acknowledged.

  17. Aerodynamic design optimization by using a continuous adjoint method

    NASA Astrophysics Data System (ADS)

    Luo, JiaQi; Xiong, JunTao; Liu, Feng

    2014-07-01

    This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows. General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived. With the adjoint method, the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function, regardless of the number of design parameters. An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method. Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil, wing, and wing-body configuration, and the aerodynamic performance improvement of turbine and compressor blade rows. The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.

  18. The aerodynamic effect of heavy rain on airplane performance

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1990-01-01

    The National Aeronautics and Space Administration has been conducting a series of tests to determine the effect of heavy rain on airfoil aerodynamics. The results of these tests have shown that heavy rain can significantly increase drag as well as decrease lift and stall angle of attack. This paper describes a recent effort to use the heavy rain airfoil data to determine the aerodynamic effect on a conventional twin-jet transport. The paper reports on the method used to model the heavy rain aerodynamic effect and the resulting performance degradation. The heavy rain performance effect is presented in terms of the diminished climb performance associated with increasing rain rates. The effect of heavy rain on the airplane's ability to escape a performance-limiting wind shear is illustrated through a numerical simulation of a wet microburst encounter. The results of this paper accentuate the need for further testing to determine scaling relationships and flow mechanics, and the full configuration three-dimensional effects of heavy rain.

  19. Analog VLSI system for active drag reduction

    SciTech Connect

    Gupta, B.; Goodman, R.; Jiang, F.; Tai, Y.C.; Tung, S.; Ho, C.M.

    1996-10-01

    In today`s cost-conscious air transportation industry, fuel costs are a substantial economic concern. Drag reduction is an important way to reduce costs. Even a 5% reduction in drag translates into estimated savings of millions of dollars in fuel costs. Drawing inspiration from the structure of shark skin, the authors are building a system to reduce drag along a surface. Our analog VLSI system interfaces with microfabricated, constant-temperature shear stress sensors. It detects regions of high shear stress and outputs a control signal to activate a microactuator. We are in the process of verifying the actual drag reduction by controlling microactuators in wind tunnel experiments. We are encouraged that an approach similar to one that biology employs provides a very useful contribution to the problem of drag reduction. 9 refs., 21 figs.

  20. MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS

    SciTech Connect

    Perna, Rosalba; Menou, Kristen; Rauscher, Emily

    2010-08-20

    Hot Jupiters, with atmospheric temperatures T {approx}> 1000 K, have residual thermal ionization levels sufficient for the interaction of ions with the planetary magnetic field to result in a sizable magnetic drag on the (neutral) atmospheric winds. We evaluate the magnitude of magnetic drag in a representative three-dimensional atmospheric model of the hot Jupiter HD 209458b and find that it is a plausible mechanism to limit wind speeds in this class of atmospheres. Magnetic drag has a strong geometrical dependence, both meridionally and from the dayside to the nightside (in the upper atmosphere), which could have interesting consequences for the atmospheric flow pattern. By extension, close-in eccentric planets with transiently heated atmospheres will experience time-variable levels of magnetic drag. A robust treatment of magnetic drag in circulation models for hot atmospheres may require iterated solutions to the magnetic induction and Saha equations as the hydrodynamic flow is evolved.

  1. Numerical investigation of wind turbine and wind farm aerodynamics

    NASA Astrophysics Data System (ADS)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  2. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  3. System technology analysis of aeroassisted orbital transfer vehicles - Moderate lift/drag

    NASA Technical Reports Server (NTRS)

    Florence, D. E.; Fischer, G.

    1983-01-01

    The utilization of procedures involving aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low-earth orbit makes it possible to realize significant performance benefits. The present study is concerned with a number of mission scenarios for Aeroassisted Orbital Transfer Vehicles (AOTV) and the impact of potential technology advances in the performance enhancement of the class of AOTV's having a hypersonic lift to drag ratio (L/D) of 0.75 to 1.5. It is found that the synergistic combination of a hypersonic L/D of 1.2, an advanced cryopropelled engine, and an LH2 drop tank (1-1/2 stage) leads to a single 65,000 pound shuttle, two-man geosynchronous mission with 2100 pounds of useful paylod. Additional payload enhancement is possible with AOTV dry weight reductions due to technology advances in the areas of vehicle structures and thermal protection systems and other subsystems.

  4. Lift, Drag, and Elevator Hinge Moments of Handley Page Control Surfaces

    NASA Technical Reports Server (NTRS)

    Smith, R H

    1928-01-01

    This report combines the wind tunnel results of tests on four control surface models made in the two wind tunnels of the Navy Aerodynamic Laboratory, Washington Navy Yard, during the years of 1922 and 1924, and submitted for publication to the National Advisory Committee for Aeronautics May 7, 1927. The purpose of the tests was to compare, first, the lifts and the aerodynamic efficiencies of the control surfaces from which their relative effectiveness as tail planes could be determined; then the elevator hinge moments upon which their relative ease of operation depended. The lift and drag forces on the control surface models were obtained for various stabilizer angles and elevator settings in the 8 by 8 foot tunnel by the writer in 1922; the corresponding hinge moments were found in the 4 by 4 foot tunnel by Mr. R. M. Bear in 1924. (author)

  5. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  6. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  7. A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1954-01-01

    The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)

  8. Impact of fuselage incidence on the supersonic aerodynamics of two fighter configurations

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    The results of experimental and theoretical investigations into the effect of fuselage upwash on fighter aircraft wing performance are reported. Wind tunnel trials were performed on 4 percent scale models of two supersonic fighters. The trials were run at Mach 1.6-2.0, an Re of 2,000,000 and at angles of attack (AOA) of -4 to 20 deg. Measurements were made of lift, drag and pitching moments. Two linearized theory supersonic aerodynamic prediction codes, PAN AIR and the SDAS lift analysis, were used to predict the same aerodynamic coefficients. The fuselage AOA augmented the lift and pitching moment at 0, 2 and 5 deg. The contribution mainly arose from the fuselage-induced upwash. The PAN AIR code gave superior data for the fuselage aerodynamics and effects, although both codes accurately predicted the overall lift and moment increments due to the fuselage AOA.

  9. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  10. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

    NASA Technical Reports Server (NTRS)

    Gerhardt, H. A.; Chen, W. S.

    1978-01-01

    The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.

  11. Asteroid orbit evolution due to thermal drag

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    1995-01-01

    Thermal drag, a variant of the Yarkovsky effect, may act on small asteroids with sizes from a few meters to a few tens of meters. Yarkovsky thermal drag comes from an asteroid's absorbing sunlight in the visible and reradiating it in the infrared. Since the infrared photons have momentum, by action-reaction, they kick the asteroid when they leave its surface. The reradiation, which is asymmetric in latitude over the asteroid, gives a net force along the asteroid's pole. Due to the asteroid's thermal inertia, averaging this force over one orbital period produces a net drag if the spin axis has a component in the orbital plane. Thermal drag tends to circularize orbits. It can increase or decrease orbital inclinations. An object whose spin axis points in random directions over its lifetime displays little change in orbital inclination. Thermal drag appears to have little to do with the delivery of chondrites from the asteroid belt; the thermal drag timescale (10(exp 8) years for meter-sizzed objects) is long compared with their cosmic ray exposure ages, and aphelia in the asteroid belt are not expected for mature thermal drag orbits. However, Yarkovsky thermal drag may act on the recently discovered near-Earth asteroids, which have radii of 10-30 m. Asteroid 1992 DA, for instance, might have its orbit shrunk by 0.1 AU in 3 x 10(exp 7) years, removing it from an Earth-crossing orbit. The near-Earth asteroids also tend to have small to moderate orbital eccentricities, as expected for highly evolved thermal drag objects. However, the time needed to bring them in from the asteroid belt (about 10(exp 9) years) is long compared with the collisonal and dynamical lifetimes (both about 10(exp 8) years) for Earth-crossing objects, arguing against their emplacement by thermal drag.

  12. High speed transport cruise drag. [scaling laws using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1992-01-01

    This report provides scaling laws for the cruise aerodynamics of high speed transport wings based on the results of Navier-Stokes computations. Expressions for the various drag components are found, together with the corresponding values (L/D)(sub m) for various values of the geometric parameter s/l which allow for simple optimization of the wing configurations with respect to the span. It is found that linear theory expressions can be used for this purpose provided the coefficients of these experiments for C(sub D) and (L/D)(sub m) are available using Navier-Stokes results.

  13. Drag-based composite super-twisting sliding mode control law design for Mars entry guidance

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei

    2016-06-01

    In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.

  14. Kevlar/PMR-15 polyimide matrix composite for a complex shaped DC-9 drag reduction fairing

    NASA Technical Reports Server (NTRS)

    Kawai, R. T.; Mccarthy, R. F.; Willer, M. S.; Hrach, F. J.

    1982-01-01

    The Aircraft Energy Efficiency (ACEE) Program was established by NASA to improve the fuel efficiency of commercial transport aircraft and thereby to reduce the amount of fuel consumed by the air transportation industry. One of the final items developed by the program is an improved fairing which is the aft closure for the thrust reverser actuators on the JT8D nacelles on DC-9 aircraft. The reduced-drag fairing uses, in the interest of weight savings, an advanced composite construction. The composite material contains Kevlar 49 fibers in a PMR-15 matrix. Attention is given to the aerodynamic configuration, the material system, and aspects of fabrication development.

  15. Core Conversations with Educative Dragging

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.; Edwards, Michael Todd; Phelps, Steve

    2012-01-01

    The Sliding along a Side task was presented at a National Council of Teachers of Mathematics (NCTM) conference session for high school teachers. According to the authors, while exploring this task with this group of experienced mathematics educators and classroom teachers, they shared a "gasp!" moment. With the aid of the dynamic mathematics…

  16. Improvement of Aerodynamic Performance of the Aero-Train by Controlling Wing-Wing Interaction Using Single-Slotted Flap

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Hee; Kohama, Yasuaki; Kikuchi, Satoshi; Kato, Takuma

    Aero-train is a new driving concept using aerodynamic technology under development by the Kohama Laboratory, Institute of Fluid Science, Tohoku University. It employs the wing-in-ground effect to enable travel at high speeds over land. Aero-train makes use of the ground effects of lift and side force between the wings and a U-shaped guideway for stability. The main wings have vertical wings at the tips, which are arranged in tandem to regulate the roll and yaw stability in the U-shaped guideway. However, the vertical wings deteriorate the lift-to-drag ratio of the Aero-train by aerodynamic interaction with the main wings. The present study was performed to improve the aerodynamic performance of the Aero-train by controlling wing-wing interaction. Installation of a single-slotted flap on the wings considerably improved the aerodynamic performance of the wings.

  17. Review of drag cleanup tests in Langley full-scale tunnel (from 1935 to 1945) applicable to current general aviation airplanes

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1976-01-01

    Results of drag cleanup tests conducted in the Langley full-scale tunnel during the period from 1935 to 1945 are summarized for potential application to current propeller-driven general aviation airplanes. Data from tests on 23 airplanes indicate that the drag increments produced by many individual configuration features - such as, power plant installation, air leakage, cockpit canopies, control surface gaps, and antenna installations - are not large; however, when the increments are summed, the resulting total drag increase is significant. On the basis of results of the investigation, it appears that considerable reduction in drag can be obtained by proper attention to details in aerodynamic design and by adherence to the guidelines discussed.

  18. Giant Frictional Drag in Double Bilayer Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel

    2016-07-01

    We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.

  19. Giant Frictional Drag in Double Bilayer Graphene Heterostructures.

    PubMed

    Lee, Kayoung; Xue, Jiamin; Dillen, David C; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel

    2016-07-22

    We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T) lower than ∼10  K, we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T, and becomes comparable to the layer resistivity at the lowest T=1.5  K. At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag. PMID:27494492

  20. Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.

    2006-01-01

    Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required.

  1. Boltzmann-Langevin theory of Coulomb drag

    NASA Astrophysics Data System (ADS)

    Chen, W.; Andreev, A. V.; Levchenko, A.

    2015-06-01

    We develop a Boltzmann-Langevin description of the Coulomb drag effect in clean double-layer systems with large interlayer separation d as compared to the average interelectron distance λF. Coulomb drag arises from density fluctuations with spatial scales of order d . At low temperatures, their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid, and Coulomb drag may be treated in the collisionless approximation. As temperature is raised, the electron mean free path becomes short due to electron-electron scattering. This leads to local equilibration of electron liquid, and consequently drag is determined by hydrodynamic density modes. Our theory applies to both the collisionless and the hydrodynamic regimes, and it enables us to describe the crossover between them. We find that drag resistivity exhibits a nonmonotonic temperature dependence with multiple crossovers at distinct energy scales. At the lowest temperatures, Coulomb drag is dominated by the particle-hole continuum, whereas at higher temperatures of the collision-dominated regime it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by electron-electron collisions ultimately renders a stronger drag effect.

  2. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2010-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb

  3. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  4. Turbulent drag reduction in nonionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Tamano, Shinji; Itoh, Motoyuki; Kato, Katsuo; Yokota, Kazuhiko

    2010-05-01

    There are only a few studies on the drag-reducing effect of nonionic surfactant solutions which are nontoxic and biodegradable, while many investigations of cationic surfactant solutions have been performed so far. First, the drag-reducing effects of a nonionic surfactant (AROMOX), which mainly consisted of oleyldimethylamineoxide, was investigated by measuring the pressure drop in the pipe flow at solvent Reynolds numbers Re between 1000 and 60 000. Second, we investigated the drag-reducing effect of a nonionic surfactant on the turbulent boundary layer at momentum-thickness Reynolds numbers Reθ from 443 to 814 using two-component laser-Doppler velocimetry and particle image velocimetry systems. At the temperature of nonionic surfactant solutions, T =25 °C, the maximum drag reduction ratio for AROMOX 500 ppm was about 50%, in the boundary layer flow, although the drag reduction ratio was larger than 60% in pipe flow. Turbulence statistics and structures for AROMOX 500 ppm showed the behavior of typical drag-reducing flow such as suppression of turbulence and modification of near-wall vortices, but they were different from those of drag-reducing cationic surfactant solutions, in which bilayered structures of the fluctuating velocity vectors were observed in high activity.

  5. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  6. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  7. An Aerodynamic Force Estimation Method for Winged Models at the JAXA 60cm Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    澤田, 秀夫

    The aerodynamic performance of an AGARD-B model, as an example of a winged model, was measured in a low-speed wind tunnel equipped with the JAXA 60cm Magnetic Suspension and Balance System (MSBS). The flow speed was in the range between 25m/s and 35m/s, and the angle of attack and the yaw angle were in the range of [- 8, 4] and [- 3, 3] degrees, respectively. Six components of the aerodynamic force were evaluated by using the control coil currents of the MSBS. In evaluating the drag, the effect of the lift on the drag must be evaluated at MSBS when the lift is much larger than drag. A new evaluation method for drag and lift was proposed and was examined successfully by subjecting the model to the same loads as in the wind tunnel test. The drag coefficient at zero lift and the derivatives of the lift and pitching moment coefficient with respect to the angle of attack were evaluated and compared with other source data sets. The obtained data agreed well with the corresponding values of the other sources. The side force, yawing moment and rolling moment coefficients were also evaluated on the basis of corresponding calibration test results, and reasonable results were obtained, although they could not be compared due to the lack of reliable data sets.

  8. Study of potential aerodynamic benefits from spanwise blowing at wingtip. Ph.D. Thesis - George Washington Univ., 1992

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1995-01-01

    Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.

  9. Drag reduction method for gas pipelines

    SciTech Connect

    Lowther, F.E.

    1990-09-25

    This patent describes a method of reducing drag for a gas flowing in a pipeline between a first point and a second point. It comprises: inputting gas at a constant pressure into the pipeline at the first point to establish gas flow in the pipeline between the first and second points; injecting a drag reducer into the gas flow at the first point; monitoring the flowrate of the gas at the second point; and adjusting the injection rate of the drag reducer at the first point until a maximum flowrate of the gas is reached at the second point.

  10. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  11. Derivation of aerodynamic kernel functions

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Ventres, C. S.

    1973-01-01

    The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.

  12. The aerodynamics of propellers

    NASA Astrophysics Data System (ADS)

    Wald, Quentin R.

    2006-02-01

    The theory and the design of propellers of minimum induced loss is treated. The pioneer analysis of this problem was presented more than half a century ago by Theodorsen, but obscurities in his treatment and inaccuracies and limited coverage in his tables of the Goldstein circulation function for helicoidal vortex sheets have not been remedied until the present work which clarifies and extends his work. The inverse problem, the prediction of the performance of a given propeller of arbitrary form, is also treated. The theory of propellers of minimum energy loss is dependent on considerations of a regular helicoidal trailing vortex sheet; consequently, a more detailed discussion of the dynamics of vortex sheets and the consequences of their instability and roll up is presented than is usually found in treatments of propeller aerodynamics. Complete and accurate tables of the circulation function are presented. Interference effects between a fuselage or a nacelle and the propeller are considered. The regimes of propeller, vortex ring, and windmill operation are characterized.

  13. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  14. AIAA Applied Aerodynamics Conference, 8th, Portland, OR, Aug. 20-22, 1990, Technical Papers. Parts 1 2

    SciTech Connect

    Not Available

    1990-01-01

    The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations.

  15. On the Minimum Induced Drag of Wings

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2007-01-01

    This viewgraph presentation reviews the minimum induced drag of wings. The topics include: 1) The History of Spanload Development of the optimum spanload Winglets and their implications; 2) Horten Sailplanes; and 3) Flight Mechanics & Adverse yaw.

  16. Penetration drag in loosely packed granular materials

    NASA Astrophysics Data System (ADS)

    Bless, Stephan; Omidvar, Mehdi; Iskander, Magued; New York University Collaboration

    2015-03-01

    The drag coefficient for penetration of granular materials by conical-nosed penetrators was computed by assuming the particles are non-interacting and rebound elastically off of the advancing penetrator. The solution was C =4 [sin(theta)]**2, where theta is the half angle of the cone. Experiments were conducted in which the drag coefficient was measured over the range 30 to 80 m/s for four types of sand: Ottawa silica sand, crushed quartz glass, coral sand, and aragonite sand. The sands were tested at relative densities of 40 and 80%. The drag coefficients for the low density materials were in excellent agreement with this simple model. The high density material had a drag considerably larger than predicted, presumably because of particle-to-particle interactions.

  17. Drag Reduction Tests on Supersonic Transport Design

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Langley researchers recently completed supersonic tests in the Unitary Plan Wind Tunnel on a nonlinear design for a supersonic transport. Although the drag reduction measured during the tests was not as great as that predicted using computational methods, significant drag reductions were achieved. Future tests will be conducted at a higher Reynolds number, which will be more representative of flight conditions. These tests will be used to identify a supersonic transport configuration that provides maximum drag reduction. Reducing drag decreases operating cost by improving fuel consumption and lowering aircraft weight. As a result, this research has the potential to help make a future high-speed civil transport (HSCT) an affordable means of travel for the flying public.

  18. Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Biedron, Robert T.

    2001-01-01

    A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.

  19. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  20. Thermal Casimir drag in fluctuating classical fields

    NASA Astrophysics Data System (ADS)

    Démery, Vincent; Dean, David S.

    2011-07-01

    A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field is shown to experience a drag force that depends on the dynamics of the field. It is shown that in a number of cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form. Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible ones such as polymers and membranes.

  1. Photon drag effect in carbon nanotube yarns

    NASA Astrophysics Data System (ADS)

    Obraztsov, Alexander N.; Lyashenko, Dmitry A.; Fang, Shaoli; Baughman, Ray H.; Obraztsov, Petr A.; Garnov, Sergei V.; Svirko, Yuri P.

    2009-06-01

    We demonstrate that in graphitic nanocarbon materials, combination of ballistic conductivity and strong electron photon coupling opens a unique opportunity to observe transfer of momentum of the electromagnetic radiation to free carriers. The resulting drag of quasiballistically propagating electrons can be employed, in particular, to visualize the temporal profile, polarization, and propagation direction of the laser pulse. In this letter, we report the giant photon drag effect in yarns made of multiwall carbon nanotubes.

  2. Atomistically informed solute drag in Al Mg

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Curtin, W. A.

    2008-07-01

    Solute drag in solute-strengthened alloys, caused by diffusion of solute atoms around moving dislocations, controls the stress at deformation rates and temperatures useful for plastic forming processes. In the technologically important Al-Mg alloys, the solute drag stresses predicted by classical theories are much larger than experiments, which is resolved in general by eliminating the singularity of the dislocation core via Peierls-Nabarro-type models. Here, the drag stress versus dislocation velocity is computed numerically using a realistic dislocation core structure obtained from an atomistic model to investigate the role of the core and obtain quantitative stresses for comparison with experiment. The model solves a discrete diffusion equation in a reference frame moving with the dislocation, with input solute enthalpies and diffusion activation barriers in the core computed by or estimated from atomistic studies. At low dislocation velocities, the solute drag stress is controlled by bulk solute diffusion because the core diffusion occurs too quickly. In this regime, the drag stress can be obtained using a Peierls-Nabarro model with a core spreading parameter tuned to best match the atomistic models. At intermediate velocities, both bulk and core diffusion can contribute to the drag, leading to a complex stress-velocity relationship showing two peaks in stress. At high velocities, the drag stress is controlled solely by diffusion within and across the core. Like the continuum models, the drag stress is nearly linear in solute concentration. The Orowan relationship is used to connect dislocation velocity to deformation strain rate. Accounting for the dependence of mobile dislocation density on stress, the simulations are in good agreement with experiments on Al-Mg alloys over a range of concentrations and temperatures.

  3. Assessment of dual-point drag reduction for an executive-jet modified airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1996-01-01

    This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.

  4. Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua

    2016-05-01

    A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.

  5. Measurement of drag and its cancellation

    NASA Astrophysics Data System (ADS)

    DeBra, D. B.; Conklin, J. W.

    2011-05-01

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)—still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  6. Bioinspired surfaces for turbulent drag reduction.

    PubMed

    Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish

    2016-08-01

    In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354731

  7. Experimental drag histories of shocked spherical particles

    NASA Astrophysics Data System (ADS)

    Prestridge, Katherine; Orlicz, Greg; Martinez, Adam

    2015-11-01

    The horizontal shock tube (HST) facility at Los Alamos is used to investigate the drag forces on micrometer-sized particles dispersed in air when they are accelerated by a shock. Eight-frame, high-speed particle tracking velocimetry/accelerometry (PTVA) diagnostics are implemented to measure the trajectory of individual particles with high spatial and temporal resolution, and a shadowgraphy system is used to measure the shock position on each image. We present experiments over a range of Reynolds numbers, Mach numbers, particle sizes, and particle densities that explore the drag forces on solid, spherical, non-deforming particles. Experimental drag coefficients are calculated from eight dynamic measurements of particle position versus time, for Mach 1.3 and Mach 1.2 experiments. Experimental results show drag coefficients significantly larger than those predicted by the standard drag model for solid, spherical particles. These results are consistent with measurements made by Rudinger (1970) and Sommerfeld (1985). We will present experimental results and analysis of unsteady drag as a function of particle Reynolds number, Mach number and Stokes number.

  8. Aerodynamic tests and analysis of a turbojet-boosted launch vehicle concept (spacejet) over a Mach number range of 1.50 to 2.86. [Langley Unitary Plan Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Riebe, G. D.; Small, W. J.; Morris, O. A.

    1981-01-01

    Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle concept through a Mach number range of 1.50 to 2.86 are presented. The vehicle consists of a winged orbiter utilizing an area-ruled axisymmetric body and two winged turbojet boosters mounted underneath the orbiter wing. Drag characteristics near zero lift were of prime interest. Force measurements and flow visualization techniques were employed. Estimates from wave drag theory, supersonic lifting surface theory, and impact theory are compared with data and indicate the ability of these theories to adequately predict the aerodynamic characteristics of the vehicle. Despite the existence of multiple wings and bodies in close proximity to each other, no large scale effects of boundary layer separation on drag or lift could be discerned. Total drag levels were, however, sensitive to booster locations.

  9. A Method of Decreasing the Drag of a Heavy-Duty Truck with the Use of Front and Stern Board Generators of Large-Scale Vortices

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Gortyshov, Yu. F.; Gureev, V. M.; Opara, Yu. S.; Popov, I. A.

    2015-01-01

    A method of improvement of the aerodynamic and working characteristics of automobiles with the use of generators of large-scale vortices is proposed. The drag of a model container truck, on which board vortex generators were positioned in front of the cab of the truck and at the rear of its container, was experimentally investigated. By varying the geometric parameters of the model truck, its rational arrangement providing a decrease in the drag of the truck and an economy of the fuel consumed by it was determined.

  10. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...

  11. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...

  12. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...

  13. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...

  14. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...

  15. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...

  16. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...

  17. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...

  18. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...

  19. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...

  20. Heat loss and drag of spherical drop tube samples

    NASA Technical Reports Server (NTRS)

    Wallace, D. B.

    1982-01-01

    Analysis techniques for three aspects of the performance of the NASA/MSFC 32 meter drop tube are considered. Heat loss through the support wire in a pendant drop sample, temperature history of a drop falling through the drop tube when the tube is filled with helium gas at various pressures, and drag and resulting g-levels experienced by a drop falling through the tube when the tube is filled with helium gas at various pressures are addressed. The developed methods apply to systems with sufficiently small Knudsen numbers for which continuum theory may be applied. Sample results are presented, using niobium drops, to indicate the magnitudes of the effects. Helium gas at one atmosphere pressure can approximately double the amount of possible undercooling but it results in an apparent gravity levels of up to 0.1 g.

  1. Aerodynamics of intermittent bounds in flying birds

    NASA Astrophysics Data System (ADS)

    Tobalske, Bret W.; Hearn, Jason W. D.; Warrick, Douglas R.

    2009-05-01

    Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch ( Taeniopygia guttata, N = 5), flying at 6-10 m s-1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens ( N = 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s-1 and body angle from -15° to 50°. The wake of bounding birds and mounted specimens consisted of a pair of counter-rotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag ( L: D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10° to 30°. Peak ( L: D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15° or 20°, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in C L and C D from maximum values of 1.19 and 0.95 during flight at 6 m s-1 to minimum values of 0.70 and 0.54 during flight at 10 m s-1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L: D ratios and extending tail length to 150% of normal increased L: D ratio. As downward induced velocity is present in the

  2. Aerodynamics of intermittent bounds in flying birds

    NASA Astrophysics Data System (ADS)

    Tobalske, Bret W.; Hearn, Jason W. D.; Warrick, Douglas R.

    Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch (Taeniopygia guttata, N = 5), flying at 6-10 m s- 1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens (N = 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s- 1 and body angle from -15∘ to 50∘. The wake of bounding birds and mounted specimens consisted of a pair of counterrotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag (L:D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10∘ to 30∘. Peak (L:D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15∘ or 20∘, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in CL and CD from maximum values of 1.19 and 0.95 during flight at 6 m s- 1 to minimum values of 0.70 and 0.54 during flight at 10 m s- 1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L:D ratios and extending tail length to 150% of normal increased L:D ratio. As downward induced velocity is present in the

  3. The roles of aerodynamic and inertial forces on maneuverability in flapping flight

    NASA Astrophysics Data System (ADS)

    Vejdani, Hamid; Boerma, David; Swartz, Sharon; Breuer, Kenneth

    2015-11-01

    We investigate the relative contributions of aerodynamic and the whole-body dynamics in generating extreme maneuvers. We developed a 3D dynamical model of a body (trunk) and two rectangular wings using a Lagrangian formulation. The trunk has 6 degrees of freedom and each wing has 4 degrees of actuation (flapping, sweeping, wing pronation/supination and wing extension/flexion) and can be massless (like insect wings) or relatively massive (like bats). To estimate aerodynamic forces, we use a blade element method; drag and lift are calculated using a quasi-steady model. We validated our model using several benchmark tests, including gliding and hovering motion. To understand the roles of aerodynamic and inertial forces, we start the investigation by constraining the wing motion to flapping and wing length extension/flexion motion. This decouples the trunk degrees of freedom and affects only roll motion. For bats' dynamics (massive wings), the model is much more maneuverable than the insect dynamics case, and the effect of inertial forces dominates the behavior of the system. The role of the aerodynamic forces increases when the wings have sweeping and flapping motion, which affects the pitching motion of the body. We also analyzed the effect of all wing motions together on the behavior of the model in the presence and in the absence of aerodynamic forces.

  4. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    NASA Technical Reports Server (NTRS)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of

  5. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  6. Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004

    SciTech Connect

    Leonard, A; Chatelain, P; Heineck, J; Browand, F; Mehta, R; Ortega, J; Salari, K; Storms, B; Brown, J; DeChant, L; Rubel, M; Ross, J; Hammache, M; Pointer, D; Roy, C; Hassan, B; Arcas, D; Hsu, T; Payne, J; Walker, S; Castellucci, P; McCallen, R

    2004-04-13

    Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive need to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.

  7. Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  8. Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  9. Effect of Ground Proximity on Aerodynamic Characteristics of Two Horizontal-Attitude Jet Vertical-Take-Off-and-Landing Airplane Models

    NASA Technical Reports Server (NTRS)

    Newsom, William A., Jr.

    1960-01-01

    An investigation has been made to study the effect of ground proximity on the aerodynamic characteristics of two jet vertical-take-off-and-landing airplane models in which the fuselage remains in a horizontal attitude for the take-off and landing. The first model (called the tilt-wing model) had a tilting wing-engine assembly which was set at 90 deg incidence for the take-off and landing. The second model, called the deflected-jet model) had a cascade of retractable turning vanes to deflect the exhaust of the horizontally mounted jet engines downward for vertical take-off and landing while the entire model remained in a horizontal attitude. With the models at various heights above the ground in the take-off and landing configuration, the lift, drag, and pitching moment were measured and tuft surveys were made to determine the flow field caused by the jet exhaust. The tilt-wing model experienced a loss of lift of less than 3 percent near the ground. The deflected-jet model, however, suffered losses in lift as high as 45 percent near the ground because of a low pressure region under the model caused by the entrainment of air by the jet exhaust as it spread out along the ground. This loss in lift for the deflected-jet configuration could probably be reduced to less than 5 percent by the use of a longer landing gear and a high wing location.

  10. Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.

    1999-01-01

    The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.

  11. Effects of vortex generator on cylindrical protrusion aerodynamics

    NASA Astrophysics Data System (ADS)

    Vignesh Ram, P. S.; Setoguchi, Toshiaki; Kim, Heuy Dong

    2016-02-01

    Experimental and numerical studies were carried out to evaluate the effect of vortex generator on a small cylindrical protrusion at Mach number 2.0. The experiments were performed using the supersonic blow down wind tunnel on different heights of cylindrical protrusion with vortex generator placed ahead of them. The upstream and downstream flow around the cylindrical protrusion is influenced by vortex generator as is observed using both visualization and pressure measurement techniques. Numerical studies using three dimensional steady implicit formulations with standard k-ω turbulence model was performed. Results obtained through the present computation are compared with the experimental results at Mach 2.0. Good agreements between computation and experimental results have been achieved. The results indicate that the aerodynamic drag acting on cylindrical protrusion can be reduced by adopting vortex generator.

  12. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    SciTech Connect

    Paraschivoiu, I.

    1981-01-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  13. Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    An automated Computational Fluid Dynamics process for determining the aerodynamic Characteristics of debris shedding from the Space Shuttle Launch Vehicle during ascent is presented. This process uses Cartesian fully-coupled, six-degree-of-freedom simulations of isolated debris pieces in a Monte Carlo fashion to produce models for the drag and crossrange behavior over a range of debris shapes and shedding scenarios. A validation of the Cartesian methods against ballistic range data for insulating foam debris shapes at flight conditions, as well as validation of the resulting models, are both contained. These models are integrated with the existing shuttle debris transport analysis software to provide an accurate and efficient engineering tool for analyzing debris sources and their potential for damage.

  14. Experimental Investigation of the Aerodynamic Forces on a Curveball

    NASA Astrophysics Data System (ADS)

    Jemmott, Colin; Utvich, Alexis; Logan, Sheldon; Rossmann, Jenn

    2003-11-01

    The physics of baseball has fascinated researchers nearly as long as the game has existed, yet research into aerodynamic forces on curveballs has often been conflicting and incomplete. A team of undergraduates used the newly completed Harvey Mudd College wind tunnel with a specially designed apparatus to quantify these forces. The coefficient of lift was found to be a non-linear function of both the dimensionless spin number and the Reynolds number, suggesting a stronger Reynolds number dependence than previously reported. The coefficient of drag was found to be primarily a function of spin number over the range of Reynolds numbers investigated and is significantly higher than that for a static baseball over the same Reynolds number range. While these findings help to quantify and interpret what pitchers know intuitively, they also motivate further investigations of both forces and the resulting flow field over a wider parameter range.

  15. Aerodynamic canard/wing parametric analysis for general aviation applications

    NASA Technical Reports Server (NTRS)

    Keith, M. W.; Selberg, B. P.

    1984-01-01

    Vortex panel and vortex lattice methods have been utilized in an analytic study to determine the two- and three-dimensional aerodynamic behavior of canard and wing configurations. The purpose was to generate data useful for the design of general aviation canard aircraft. Essentially no two-dimensional coupling was encountered and the vertical distance between the lifting surfaces was found to be the main contributor to interference effects of the three-dimensional analysis. All canard configurations were less efficient than a forward wing with an aft horizontal tail, but were less sensitive to off-optimum division of total lift between the two surfaces, such that trim drag could be less for canard configurations. For designing a general aviation canard aircraft, results point toward large horizontal and vertical distance between the canard and wing, a large wing-to-canard area ratio, and with the canard at a low incidence angle relative to the wing.

  16. SR-71 Landing with Drag Chute

    NASA Technical Reports Server (NTRS)

    1990-01-01

    One of two initial U.S. Air Force SR-71A reconnaissance aircraft that was retired from operational service and loaned to NASA for high-speed research programs arrives at NASA's Dryden Flight Research Center, Edwards, California, deploys its drag chute even before its nose gear touches the runway at the end of a 1990 research flight. Dryden flew three YF-12 aircraft, prototypes of the triple-sonic SR-71s, in an earlier supersonic research program between 1969 and 1979. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending

  17. DSMC Simulations of Apollo Capsule Aerodynamics for Hypersonic Rarefied Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Glass, Christopher E.; Greene, Francis A.

    2006-01-01

    Direct simulation Monte Carlo DSMC simulations are performed for the Apollo capsule in the hypersonic low density transitional flow regime. The focus is on ow conditions similar to that experienced by the Apollo Command Module during the high altitude portion of its reentry Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction that is for free molecular to continuum conditions. Also aerodynamic data are presented that shows their sensitivity to a range of reentry velocity encompasing conditions that include reentry from low Earth orbit lunar return and Mars return velocities to km/s. The rarefied results are anchored in the continuum regime with data from Navier Stokes simulations

  18. Correlation Between Geometric Similarity of Ice Shapes and the Resulting Aerodynamic Performance Degradation: A Preliminary Investigation Using WIND

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Chung, James

    1999-01-01

    Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.

  19. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  20. Aerodynamics study of the flowfield at the shelterbelt

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Jung

    1997-08-01

    Shelterbelts are used world-wide for such purposes as reduction of soil errosion, control of snow drift, and provision of an effective agrometeorological method of field microclimate management and yield enhancement. Whether performing a wind tunnel test, conducting a field observation, or implementing a numerical simulation to investigate shelterbelt effects, researchers are more interested in an optimum reduction in a thin air lasier near the ground on the leeside of the shelterbelt rather than total wind-speed reduction in the whole flowfield. The purpose of this study is to formulate a Navier-Stokes based scheme to simulate the turbulent aerodynamic characteristics of a shelterbelt. Qualitative results from field observation of a living-tree shelterbelt under real atmospheric flow conditions and a wind-tunnel flow visualization of scale-model fences were used to explore the fundamental phenomena of the shelterbelt flow to help in the numerical modeling. A modified higher-order numerical scheme using the Lagrange interpolation to represent the interface convection terms is developed and applied to better simulate the turbulent shelterbelt flowfield. It is shown that this new scheme not only can enhance accuracy during computation but also is capable of retaining the numerical stability and good convergence characteristics which are lost in most higher-order numerical schemes. The flow retardation and porosity of shelterbelts are modelled via momentum sources with the help of the aerodynamic parameters, normal pressure drag and skin friction drag. The results obtained from this newly developed numerical scheme show satisfactory agreement with both field experiments and other numerical simulations. In addition, this procedure offers a generalized technique for simulating more complicated shelterbelt configurations.