Science.gov

Sample records for aerodynamic efficiency allowing

  1. Efficient Global Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  2. Aerodynamics/ACEE: Aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  3. Dynamic stability of an aerodynamically efficient motorcycle

    NASA Astrophysics Data System (ADS)

    Sharma, Amrit; Limebeer, David J. N.

    2012-08-01

    Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.

  4. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.

    PubMed

    Johansson, L Christoffer; Engel, Sophia; Baird, Emily; Dacke, Marie; Muijres, Florian T; Hedenström, Anders

    2012-10-01

    Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle's wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency. PMID:22593097

  5. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles

    PubMed Central

    Johansson, L. Christoffer; Engel, Sophia; Baird, Emily; Dacke, Marie; Muijres, Florian T.; Hedenström, Anders

    2012-01-01

    Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle's wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency. PMID:22593097

  6. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.

  7. Sampling efficiency of the TSI aerodynamic particle sizer

    SciTech Connect

    Chen, Y.; Barber, E.M.; Zhang, Y.

    1998-09-01

    The Aerodynamic Particle Sizer (APS) has been tested and used in a variety of laboratory and field situations for indoor air quality research of both industrial and livestock buildings. The APS is capable of providing rapid, real-time measurement of particle size distribution. However, no literature was found in which the sampling efficiency of the APS was addressed. This paper presents a method to evaluate the sampling efficiency of the APS, considering both the aspiration efficiency and the penetration efficiency. Six tests were conducted and measurements were taken by a cascade impact sampler and the APS simultaneously. The results obtained by the APS were compared with the results of the cascade impact sampler.

  8. Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.

    2013-01-01

    Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.

  9. Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.

  10. Efficient optimization of integrated aerodynamic-structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.; Polen, D. M.

    1989-01-01

    Techniques for reducing the computational complexity of multidisciplinary design optimization (DO) of aerodynamic structures are described and demonstrated. The basic principles of aerodynamic and structural DO are reviewed; the formulation of the combined DO problem is outlined; and particular attention is given to (1) the application of perturbation methods to cross-sensitivity computations and (2) numerical approximation procedures. Trial DOs of a simple sailplane design are presented in tables and graphs and discussed in detail. The IBM 3090 CPU time for the entire integrated DO was reduced from an estimated 10 h to about 6 min.

  11. Efficient computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    NASA Technical Reports Server (NTRS)

    Janetzke, David C.; Murthy, Durbha V.

    1991-01-01

    Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.

  12. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W., Jr.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.

  13. An Efficient Inverse Aerodynamic Design Method For Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II

    2000-01-01

    Computational Fluid Dynamics based design methods are maturing to the point that they are beginning to be used in the aircraft design process. Many design methods however have demonstrated deficiencies in the leading edge region of airfoil sections. The objective of the present research is to develop an efficient inverse design method which is valid in the leading edge region. The new design method is a streamline curvature method, and a new technique is presented for modeling the variation of the streamline curvature normal to the surface. The new design method allows the surface coordinates to move normal to the surface, and has been incorporated into the Constrained Direct Iterative Surface Curvature (CDISC) design method. The accuracy and efficiency of the design method is demonstrated using both two-dimensional and three-dimensional design cases.

  14. Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew A.; Kiely, Aaron B.

    2014-01-01

    family of schemes has been devised for organizing the output of an algorithm for predictive data compression of hyperspectral imagery so as to allow efficient parallelization in both the compressor and decompressor. In these schemes, the compressor performs a number of iterations, during each of which a portion of the data is compressed via parallel threads operating on independent portions of the data. The general idea is that for each iteration it is predetermined how much compressed data will be produced from each thread.

  15. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  16. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  17. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  18. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  19. Aerodynamic design considerations for efficient high-lift supersonic wings

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.

    1985-01-01

    A previously developed technique for selecting a design space for efficient supersonic wings is reviewed; this design-space concept is expanded to include thickness and camber effects and is evaluated for cambered wings at high-lift conditions. The original design-space formulation was based on experimental upper-surface and lower-surface normal-force characteristics for flat, uncambered delta wings; it is shown that these general characteristics hold for various thickness distributions and for various amounts of leading-edge camber. The original design-space formulation was also based on the assumption that the combination of Mach number and leading-edge sweep which would produce an equal division of flat-wing lift between the upper and lower surface would also be the proper combination to give the best cambered-wing performance. Using drag-due-to-lift factor as a measure of performance, for high-lift conditions cambered-wing performance is shown to significantly increase as conditions approach the design space; this correlation is demonstrated for both subcritical and supercritical flows.

  20. Liquid micrurgy chamber and microsyringe designs allow more efficient micromanipulations

    NASA Technical Reports Server (NTRS)

    Daniels, E. W.

    1967-01-01

    More efficient micromanipulations on large amoebae achieved by liquid micrurgy chamber and microsyringe. These innovations move the system closer to the specimen, and flatten the specimen for a clear view of the nuclei, also eliminating spherical abberation and evaporation.

  1. An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi

    1997-01-01

    The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.

  2. Soviet aerospace industry - Aerodynamic Institute aids effort to develop fuel-efficient transports

    SciTech Connect

    Not Available

    1989-06-01

    Two new turbofan-powered transports currently undergoing flight testing, the Il-96-300 and the Tu-204, are believed to substantially owe their excellent fuel efficiencies to the research work conducted by the Central Aero-Hydrodynamic Institute in Moscow. This institute is responsible for the bulk of the USSR's aerodynamic, stability and control, aeroelasticity, and airframe structural characteristics research. As a measure of the quality of aerodynamic design achievable on the basis of these research efforts, it has been claimed that the Il-96-300 has a L/D value of 19 at Mach 0.92. The primary shortcoming of the institute is its poor hardware resources for CFD; these are compensated by the intensive development of sophisticated computer programs.

  3. Modeling an increase in the lift and aerodynamic efficiency of a thick Göttingen airfoil with optimum arrangement

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Sudakov, A. G.; Usachov, A. E.; Kharchenko, V. B.

    2015-06-01

    The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow line have been numerically solved jointly with the energy equation. The obtained solution has been used to calculate subsonic flow (at M = 0.05 and 5° angle of attack) past a thick (24% chord) Göttingen airfoil with variable arrangement of a small-sized (about 10% chord) circular vortex cell with fixed distributed suction Cq = 0.007 from the surface of a central body. It is established that the optimum arrangement of the vortex cell provides a twofold decrease in the bow drag coefficient Cx, a threefold increase in the lift coefficient Cy, and an about fivefold increase in the aerodynamic efficiency at Re = 105 in comparison to the smooth airfoil.

  4. Experimental Study Of SHEFEX II Hypersonic Aerodynamics And Canard Efficiency In H2K

    NASA Astrophysics Data System (ADS)

    Neeb, D.; Gulhan, A.

    2011-05-01

    One main objective of the DLR SHEFEX programme is to prove that sharp edged vehicles are capable of performing a re-entry into earth atmosphere by using a simple thermal protection system consisting of flat ceramic tiles. In comparison to blunt nose configurations like the Space shuttle, which are normally used for re-entry configurations, the SHEFEX TPS design is able to significantly reduce the costs and complexity of TPS structures and simultaneously increase the aerodynamic performance of the flight vehicle [1], [2]. To study its characteristics and perform several defined in-flight experiments during re-entry, the vehicle’s attitude will be controlled actively by canards [3]. In the framework of the SHEFEX II project an experimental investigation has been conducted in the hypersonic wind tunnel H2K to characterize the aerodynamic performance of the vehicle in hypersonic flow regime. The model has a modular design to enable the study of a variety of different influencing parameters. Its 4 circumferential canards have been made independently adjustable to account for the simulation of different manoeuvre conditions. To study the control behaviour of the vehicle and validate CFD data, a variation of canard deflections, angle of attack and angle of sideslip have been applied. Tests have been carried out at Mach 7 and 8.7 with a Reynolds number sensitivity study at the lower Mach number. The model was equipped with a six component internal balance to realize accurate coefficient measurements. The flow topology has been analyzed using Schlieren images. Beside general aerodynamic performance and canard efficiencies, flow phenomena like shock impingement on the canards could be determined by Schlieren images as well as by the derived coefficients.

  5. Investigating the Improved Aerodynamic Efficiency of Cambered Frames on Membrane MAV Wings

    NASA Astrophysics Data System (ADS)

    Wrist, Andrew; Zhang, Zheng; Hubner, Paul

    2014-11-01

    Previous research has demonstrated that membrane wings with cambered frames are more aerodynamically efficient than those with flat frames, despite passive dynamic membrane cambering for both. To help understand this aerodynamic benefit, this study compares the time-averaged membrane shape as well as membrane vibration frequency and amplitude for a group of wings with cambered frames. The frames were 3D printed with a hardened polymer material, and a silicon rubber membrane was attached to the top surface. The frame aspect ratio is two, comprised of two cells each with a cell aspect ratio of one. The rigid leading edge extended 20% of the chord, and the trailing edge was scalloped at 25%. Camber ranged from 2--6%, camber location from 40--60%, and airfoil thickness from 4--6%. Tests were performed in the University of Alabama's MAV wind tunnel at 10 m/s (Re = 50,000). High speed imaging results of the deformation and vibration will be discussed in context to airfoil and wing theory. National Science Foundation Grant Number: 1358991.

  6. Efficient algorithms for future aircraft design: Contributions to aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Hicken, Jason Edward

    Advances in numerical optimization have raised the possibility that efficient and novel aircraft configurations may be "discovered" by an algorithm. To begin exploring this possibility, a fast and robust set of tools for aerodynamic shape optimization is developed. Parameterization and mesh-movement are integrated to accommodate large changes in the geometry. This integrated approach uses a coarse B-spline control grid to represent the geometry and move the computational mesh; consequently, the mesh-movement algorithm is two to three orders faster than a node-based linear elasticity approach, without compromising mesh quality. Aerodynamic analysis is performed using a flow solver for the Euler equations. The governing equations are discretized using summation-by-parts finite-difference operators and simultaneous approximation terms, which permit C0 mesh continuity at block interfaces. The discretization results in a set of nonlinear algebraic equations, which are solved using an efficient parallel Newton-Krylov-Schur strategy. A gradient-based optimization algorithm is adopted. The gradient is evaluated using adjoint variables for the flow and mesh equations in a sequential approach. The flow adjoint equations are solved using a novel variant of the Krylov solver GCROT. This variant of GCROT is flexible to take advantage of non-stationary preconditioners and is shown to outperform restarted flexible GMRES. The aerodynamic optimizer is applied to several studies of induced-drag minimization. An elliptical lift distribution is recovered by varying spanwise twist, thereby validating the algorithm. Planform optimization based on the Euler equations produces a nonelliptical lift distribution, in contrast with the predictions of lifting-line theory. A study of spanwise vertical shape optimization confirms that a winglet-up configuration is more efficient than a winglet-down configuration. A split-tip geometry is used to explore nonlinear wake-wing interactions: the

  7. Development of an efficient procedure for calculating the aerodynamic effects of planform variation

    NASA Technical Reports Server (NTRS)

    Mercer, J. E.; Geller, E. W.

    1981-01-01

    Numerical procedures to compute gradients in aerodynamic loading due to planform shape changes using panel method codes were studied. Two procedures were investigated: one computed the aerodynamic perturbation directly; the other computed the aerodynamic loading on the perturbed planform and on the base planform and then differenced these values to obtain the perturbation in loading. It is indicated that computing the perturbed values directly can not be done satisfactorily without proper aerodynamic representation of the pressure singularity at the leading edge of a thin wing. For the alternative procedure, a technique was developed which saves most of the time-consuming computations from a panel method calculation for the base planform. Using this procedure the perturbed loading can be calculated in about one-tenth the time of that for the base solution.

  8. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect

    Larry Slone; Jeffrey Birkel

    2007-10-31

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional

  9. Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies

    PubMed Central

    Zheng, Lingxiao; Hedrick, Tyson L.; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923

  10. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    PubMed

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923

  11. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    PubMed

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  12. Use of a generalized Stokes number to determine the aerodynamic capture efficiency of non-Stokesian particles from a compressible gas flow

    NASA Technical Reports Server (NTRS)

    Israel, R.; Rosner, D. E.

    1983-01-01

    The aerodynamic capture efficiency of small but nondiffusing particles suspended in a high-speed stream flowing past a target is known to be influenced by parameters governing small particle inertia, departures from the Stokes drag law, and carrier fluid compressibility. By defining an effective Stokes number in terms of the actual (prevailing) particle stopping distance, local fluid viscosity, and inviscid fluid velocity gradient at the target nose, it is shown that these effects are well correlated in terms of a 'standard' (cylindrical collector, Stokes drag, incompressible flow, sq rt Re much greater than 1) capture efficiency curve. Thus, a correlation follows that simplifies aerosol capture calculations in the parameter range already included in previous numerical solutions, allows rational engineering predictions of deposition in situations not previously specifically calculated, and should facilitate the presentation of performance data for gas cleaning equipment and aerosol instruments.

  13. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  14. Progress in reducing aerodynamic drag for higher efficiency of heavy duty trucks (class 7-8)

    SciTech Connect

    Brady, M; Browand, F; Hammache, M; Heineck, J T; Leonard, A; McCallen, R; Ross, J; Rutledge, W; Salari, K; Storms, B

    1999-04-01

    This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.

  15. Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

    SciTech Connect

    Rose McCallen; Richard Couch; Juliana Hsu; Fred Browand; Mustapha Hammache; Anthony Leonard; Mark Brady; Kambiz Salari; Walter Rutledge; James Ross; Bruce Storms; J.T. Heineck; David Driver; James Bell; Gregory Zilliac

    1999-12-31

    This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.

  16. Efficient Creation of Overset Grid Hole Boundaries and Effects of Their Locations on Aerodynamic Loads

    NASA Technical Reports Server (NTRS)

    Chan, William Machado; Pandya, Shishir Ashok; Rogers, Stuart E.

    2013-01-01

    Recent developments on the automation of the X-rays approach to hole-cutting in over- set grids is further improved. A fast method to compute an auxiliary wall-distance function used in providing a rst estimate of the hole boundary location is introduced. Subsequent iterations lead to automatically-created hole boundaries with a spatially-variable o set from the minimum hole. For each hole boundary location, an averaged cell attribute measure over all fringe points is used to quantify the compatibility between the fringe points and their respective donor cells. The sensitivity of aerodynamic loads to di erent hole boundary locations and cell attribute compatibilities is investigated using four test cases: an isolated re-entry capsule, a two-rocket con guration, the AIAA 4th Drag Prediction Workshop Common Research Model (CRM), and the D8 \\Double Bubble" subsonic aircraft. When best practices in hole boundary treatment are followed, only small variations in integrated loads and convergence rates are observed for different hole boundary locations.

  17. The feasibility and application of using gravitational energy to allow efficient travel between earth and Mars

    NASA Astrophysics Data System (ADS)

    King, O. L.; Avvento, Gennaro J.

    This paper discusses the feasibility and application of using gravitational energy attained in a planetary swing-by to control the trajectory of an interplanetary transfer vehicle (IPTV) - establishing nonstop round trip orbits between earth and Mars. Energy supplied by the swing-by process and supplemented by minor correction burns will allow efficient nonstop round trip travel between earth and Mars. The IPTV will have all the necessary support equipment to maintain the cargo (manned/unmanned) during transit. At the planetary 'landfall' points, the IPTV will not decelerate but will perform a swing-by maneuver returning to the planet of origin. Cargo elements will either depart or dock with the IPTV at the planetary approach asymptote. This will be the only component of the system to undergo propulsive maneuvers.

  18. Aerodynamic design optimization of a fuel efficient high-performance, single-engine, business airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1980-01-01

    A design study has been conducted to optimize a single-engine airplane for a high-performance cruise mission. The mission analyzed included a cruise speed of about 300 knots, a cruise range of about 1300 nautical miles, and a six-passenger payload (5340 N (1200 lb)). The purpose of the study is to investigate the combinations of wing design, engine, and operating altitude required for the mission. The results show that these mission performance characteristics can be achieved with fuel efficiencies competitive with present-day high-performance, single- and twin-engine, business airplanes. It is noted that relaxation of the present Federal Aviation Regulation, Part 23, stall-speed requirement for single-engine airplanes facilitates the optimization of the airplane for fuel efficiency.

  19. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. PMID:25740899

  20. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  1. Aerodynamic potpourri

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  2. Aerodynamic potpourri

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.

    1981-05-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  3. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion

    PubMed Central

    Bosse, Jens B.; Hogue, Ian B.; Feric, Marina; Thiberge, Stephan Y.; Sodeik, Beate; Brangwynne, Clifford P.; Enquist, Lynn W.

    2015-01-01

    The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids. PMID:26438852

  4. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion.

    PubMed

    Bosse, Jens B; Hogue, Ian B; Feric, Marina; Thiberge, Stephan Y; Sodeik, Beate; Brangwynne, Clifford P; Enquist, Lynn W

    2015-10-20

    The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids. PMID:26438852

  5. Analysis of Sertoli cell efficiency allows the differentiation between two fundamentally different forms of feline teratospermia.

    PubMed

    Jewgenow, K; Pukazhenthi, B S; Schoen, J

    2013-01-15

    Teratospermia is a common phenomenon within felid species and has been attributed to reduction in genetic diversity. Testes from teratospermic domestic cats show enhanced spermatogenesis accompanied by remarkably reduced germ cell apoptosis. In the present study we investigated whether free-range teratospermic tom cats exhibit a similar testicular phenotype as proven permanently teratospermic males. Randomly collected teratospermic cats were compared with normal (normospermic; >60% morphologically normal sperm per ejaculate) and a well-characterized population of permanently teratospermic domestic cats, with respect to their spermatogenic potential. Histomorphologic assessment of testes from randomly collected teratospermic cats revealed no differences compared with normospermic donors. These two groups, however, were both different from permanently teratospermic cats, which exhibit fewer Sertoli cells and increased numbers of round spermatids per tubule cross-section resulting in a remarkably increased Sertoli cell efficiency (ratio of round spermatids to Sertoli cells). In conclusion, we can distinguish at least two fundamentally different forms of feline teratospermia. One subtype, found in most of the randomly collected tom cats, but not associated with altered quantitative spermatogenic parameters. Another subtype, found in all permanently teratospermic felids, is manifested by an impairment of Sertoli cell efficiency. We suggest that spermatogenic output should be analyzed before using random source domestic cats to study the phenomenon of teratospermia. PMID:23174773

  6. Handheld Lasers Allow Efficient Detection of Fluorescent Marked Organisms in the Field

    PubMed Central

    Fleischer, Shelby J.; De Moraes, Consuelo M.; Mescher, Mark C.; Tooker, John F.

    2015-01-01

    Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health. PMID:26035303

  7. Engineered underdominance allows efficient and economical introgression of traits into pest populations.

    PubMed

    Davis, S; Bax, N; Grewe, P

    2001-09-01

    A novel form of underdominance is suggested as a mechanism that is able to drive desired genes into pest populations through the release of transgenic individuals over one or more generations. Such a mechanism is urgently needed by those working to reduce the impact of malaria by releasing strains of Anopheles, the vector of the disease, that are not susceptible to malaria parasites. We use simple population genetics models to quantify the benefits conferred when heterozygous genotypes, arising from matings between introduced and wild individuals, are not viable. In a randomly mating population, underdominant systems accelerate introgression of desired alleles and allow the release of individuals to be discontinued once the frequency of transgenic alleles attains a threshold. A set of two constructs, which together are selectively neutral but lethal when one is carried without the other, are found to produce dynamics that are characteristic of underdominant systems. When these constructs are carried on non-homologous chromosomes, then the ratio of released to natural born individuals need only be greater than 3:100 for introgression to occur. Furthermore, the threshold for the gene frequencies over which the introduced genes are expected to become fixed upon discontinuing the release of transgenic individuals is surprisingly low. The location of the threshold suggests that the introduced genes are expected to spread in space, at least locally. For the first time, the prospect of a practical drive mechanism for the genetic manipulation of pest populations is raised.

  8. Handheld lasers allow efficient detection of fluorescent marked organisms in the field.

    PubMed

    Rice, Kevin B; Fleischer, Shelby J; De Moraes, Consuelo M; Mescher, Mark C; Tooker, John F; Gish, Moshe

    2015-01-01

    Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health.

  9. Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient Intracellular Vaccine Protein Delivery.

    PubMed

    Li, Hui; Fierens, Kaat; Zhang, Zhiyue; Vanparijs, Nane; Schuijs, Martijn J; Van Steendam, Katleen; Feiner Gracia, Natàlia; De Rycke, Riet; De Beer, Thomas; De Beuckelaer, Ans; De Koker, Stefaan; Deforce, Dieter; Albertazzi, Lorenzo; Grooten, Johan; Lambrecht, Bart N; De Geest, Bruno G

    2016-01-20

    Nanomaterials hold potential of altering the interaction between therapeutic molecules and target cells or tissues. High aspect ratio nanomaterials in particular have been reported to possess unprecedented properties and are intensively investigated for their interaction with biological systems. Graphene oxide (GOx) is a water-soluble graphene derivative that combines high aspect ratio dimension with functional groups that can be exploited for bioconjugation. Here, we demonstrate that GOx nanosheets can spontaneously adsorb proteins by a combination of interactions. This property is then explored for intracellular protein vaccine delivery, in view of the potential of GOx nanosheets to destabilize lipid membranes such as those of intracellular vesicles. Using a series of in vitro experiments, we show that GOx nanosheet adsorbed proteins are efficiently internalized by dendritic cells (DCs: the most potent class of antigen presenting cells of the immune system) and promote antigen cross-presentation to CD8 T cells. The latter is a hallmark in the induction of potent cellular antigen-specific immune responses against intracellular pathogens and cancer. PMID:26694764

  10. Aerodynamic shape optimization using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  11. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  12. Efficient extraction of virus DNA by NucliSens Extractor allows sensitive detection of hepatitis B virus by PCR.

    PubMed

    Gobbers, E; Oosterlaken, T A; van Bussel, M J; Melsert, R; Kroes, A C; Claas, E C

    2001-12-01

    The NucliSens Extractor is an automated nucleic acid isolation system based on guanidinium thiocyanate (GuSCN)-silica extraction technology. The system has been validated for the isolation of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) RNAs from human samples in combination with nucleic acid sequence-based amplification- and reverse transcription-PCR-based methods. We evaluated the extractor for hepatitis B virus (HBV) DNA extraction from human samples using a noncommercial HBV DNA PCR. Several sample pretreatment procedures in combination with the extractor were compared with the Qiagen extraction method, and the impact of the sample volume used in the extraction on the sensitivity was investigated. Heating of the lysed sample prior to extractor isolation and the use of a large sample volume resulted in highly sensitive detection of HBV DNA. Incubation of a 1-ml sample in GuSCN at 80 degrees C (10 min) and at 37 degrees C (30 min) allowed detection of 4 and 40 HBV genome equivalents/ml, respectively, in standard dilution panels. Sample lysis in GuSCN at room temperature and proteinase K treatment prior to use of the extractor were less efficient procedures. All clinical samples that were PCR positive after Qiagen extraction and/or that were HBsAg positive were also PCR positive after extractor isolation. HBV DNA, HCV RNA, and HIV type 1 RNA were efficiently coextracted from a single sample, allowing reliable detection of viral genomes.

  13. NASP aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr.

    1989-01-01

    This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.

  14. [The application of aerodynamic method for the evaluation of the efficiency of the vocal, articulation and respiratory organs during singing and playing wind instruments].

    PubMed

    Pawłowski, Z; Zółtowski, M; Kazanecka, E

    1999-01-01

    This paper discusses the application of the aerodynamic method for the estimation of the efficiency of the vocal articulation and respiratory organ during singing and playing wind instruments. An evaluation of the vocal and respiratory organ was carried out on the basis of an analysis and correlation between the following parameters: PV--phonation volume, MPT--maximum phonation/playing time, SP--subglottal/blowing pressure, MFR--mean flow rate, GR--glottal resistance, EP--expiratory power, W--work. Volume and airflow was measured by a pneumotachometr with an electronic spirometer. The application of a plethysmographic booth made it possible to carry out non-invasive, indirect measurements of the subglottal and blowing pressure. Changes of pressure during singing and playing were recorded in the form of an aerodynamogram curve. This curve was used to determine the maximum duration of sound. Other quantities were derived from a mathematical analysis.

  15. Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms.

    PubMed

    Farrer, David; Counter, Marina; Hillwig, Rebecca; Cude, Curtis

    2015-02-05

    Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon's fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism.

  16. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  17. Rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith

    1992-01-01

    Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.

  18. Computational aerodynamics and supercomputers

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1984-01-01

    Some of the progress in computational aerodynamics over the last decade is reviewed. The Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans are described.

  19. Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells

    PubMed Central

    Lee, Jieun; Taylor, Sarah E. B.; Smeriglio, Piera; Lai, Janice; Maloney, William J.; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Regeneration of human cartilage is inherently inefficient; an abundant autologous source, such as human induced pluripotent stem cells (hiPSCs), is therefore attractive for engineering cartilage. We report a growth factor-based protocol for differentiating hiPSCs into articular-like chondrocytes (hiChondrocytes) within 2 weeks, with an overall efficiency >90%. The hiChondrocytes are stable and comparable to adult articular chondrocytes in global gene expression, extracellular matrix production, and ability to generate cartilage tissue in vitro and in immune-deficient mice. Molecular characterization identified an early SRY (sex-determining region Y) box (Sox)9low cluster of differentiation (CD)44lowCD140low prechondrogenic population during hiPSC differentiation. In addition, 2 distinct Sox9-regulated gene networks were identified in the Sox9low and Sox9high populations providing novel molecular insights into chondrogenic fate commitment and differentiation. Our findings present a favorable method for generating hiPSC-derived articular-like chondrocytes. The hiChondrocytes are an attractive cell source for cartilage engineering because of their abundance, autologous nature, and potential to generate articular-like cartilage rather than fibrocartilage. In addition, hiChondrocytes can be excellent tools for modeling human musculoskeletal diseases in a dish and for rapid drug screening.—Lee, J., Taylor, S. E. B., Smeriglio, P., Lai, J., Maloney, W. J., Yang, F., Bhutani, N. Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. PMID:25911615

  20. Analysis of the aerodynamic interaction between two plunging plates in tandem at low Reynolds number for maximum propulsive efficiency

    NASA Astrophysics Data System (ADS)

    Ortega-Casanova, Joaquin; Fernandez-Feria, Ramon

    2015-11-01

    The thrust generated by two heaving plates in tandem is analysed for two particular sets of configurations of interest in forward flight: a plunging leading plate with the trailing plate at rest, and the two plates heaving with the same frequency and amplitude, but varying the phase difference. The thrust efficiency of the leading plate is augmented in relation to a single plate heaving with the same frequency and amplitude in most cases. In the first configuration, we characterize the range of nondimensional heaving frequencies and amplitudes of the leading plate for which the stationary trailing plate contributes positively to the global thrust. The maximum global thrust efficiency, reached for an advance ratio slightly less than unity and a reduced frequency close to 5, is about the same as the maximum efficiency for an isolated plate. But for low frequencies the tandem configuration with the trailing plate at rest is more thrust efficient than the isolated plate. In the second configuration, we find that the maximum thrust efficiency is reached for a phase lag of 180o (counterstroking), particularly for an advance ratio unity and a reduced frequency 4.4, and it is practically the same as in the other configuration and that for a single plate. Supported by the Ministerio de Economía y Competitividad of Spain Grant no. DPI2013-40479-P.

  1. A new technique for aerodynamic noise calculation

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Pope, D. S.

    1992-01-01

    A novel method for the numerical analysis of aerodynamic noise generation is presented. The method involves first solving for the time-dependent incompressible flow for the given geometry. This fully nonlinear method that is tailored to extract the relevant acoustic fluctuations seems to be an efficient approach to the numerical analysis of aerodynamic noise generation.

  2. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  3. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  4. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  5. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  6. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  7. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  8. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  9. Bifurcations in unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Unal, A.

    1986-01-01

    Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accomodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

  10. A user-defined data type for the storage of time series data allowing efficient similarity screening.

    PubMed

    Sorokin, Anatoly; Selkov, Gene; Goryanin, Igor

    2012-07-16

    The volume of the experimentally measured time series data is rapidly growing, while storage solutions offering better data types than simple arrays of numbers or opaque blobs for keeping series data are sorely lacking. A number of indexing methods have been proposed to provide efficient access to time series data, but none has so far been integrated into a tried-and-proven database system. To explore the possibility of such integration, we have developed a data type for time series storage in PostgreSQL, an object-relational database system, and equipped it with an access method based on SAX (Symbolic Aggregate approXimation). This new data type has been successfully tested in a database supporting a large-scale plant gene expression experiment, and it was additionally tested on a very large set of simulated time series data.

  11. Deep sequencing of mixed total DNA without barcodes allows efficient assembly of highly plastic ascidian mitochondrial genomes.

    PubMed

    Rubinstein, Nimrod D; Feldstein, Tamar; Shenkar, Noa; Botero-Castro, Fidel; Griggio, Francesca; Mastrototaro, Francesco; Delsuc, Frédéric; Douzery, Emmanuel J P; Gissi, Carmela; Huchon, Dorothée

    2013-01-01

    Ascidians or sea squirts form a diverse group within chordates, which includes a few thousand members of marine sessile filter-feeding animals. Their mitochondrial genomes are characterized by particularly high evolutionary rates and rampant gene rearrangements. This extreme variability complicates standard polymerase chain reaction (PCR) based techniques for molecular characterization studies, and consequently only a few complete Ascidian mitochondrial genome sequences are available. Using the standard PCR and Sanger sequencing approach, we produced the mitochondrial genome of Ascidiella aspersa only after a great effort. In contrast, we produced five additional mitogenomes (Botrylloides aff. leachii, Halocynthia spinosa, Polycarpa mytiligera, Pyura gangelion, and Rhodosoma turcicum) with a novel strategy, consisting in sequencing the pooled total DNA samples of these five species using one Illumina HiSeq 2000 flow cell lane. Each mitogenome was efficiently assembled in a single contig using de novo transcriptome assembly, as de novo genome assembly generally performed poorly for this task. Each of the new six mitogenomes presents a different and novel gene order, showing that no syntenic block has been conserved at the ordinal level (in Stolidobranchia and in Phlebobranchia). Phylogenetic analyses support the paraphyly of both Ascidiacea and Phlebobranchia, with Thaliacea nested inside Phlebobranchia, although the deepest nodes of the Phlebobranchia-Thaliacea clade are not well resolved. The strategy described here thus provides a cost-effective approach to obtain complete mitogenomes characterized by a highly plastic gene order and a fast nucleotide/amino acid substitution rate.

  12. Avian thermoregulation in the heat: efficient evaporative cooling allows for extreme heat tolerance in four southern hemisphere columbids.

    PubMed

    McKechnie, Andrew E; Whitfield, Maxine C; Smit, Ben; Gerson, Alexander R; Smith, Eric Krabbe; Talbot, William A; McWhorter, Todd J; Wolf, Blair O

    2016-07-15

    Birds show phylogenetic variation in the relative importance of respiratory versus cutaneous evaporation, but the consequences for heat tolerance and evaporative cooling capacity remain unclear. We measured evaporative water loss (EWL), resting metabolic rate (RMR) and body temperature (Tb) in four arid-zone columbids from southern Africa [Namaqua dove (Oena capensis, ∼37 g), laughing dove (Spilopelia senegalensis, ∼89 g) and Cape turtle dove (Streptopelia capicola, ∼148 g)] and Australia [crested pigeon (Ocyphaps lophotes), ∼186 g] at air temperatures (Ta) of up to 62°C. There was no clear relationship between body mass and maximum Ta tolerated during acute heat exposure. Maximum Tb at very high Ta was 43.1±1.0, 43.7±0.8, 44.7±0.3 and 44.3±0.8°C in Namaqua doves, laughing doves, Cape turtle doves and crested pigeons, respectively. In all four species, RMR increased significantly at Ta above thermoneutrality, but the increases were relatively modest with RMR at Ta=56°C being 32, 60, 99 and 11% higher, respectively, than at Ta=35°C. At the highest Ta values reached, evaporative heat loss was equivalent to 466, 227, 230 and 275% of metabolic heat production. The maximum ratio of evaporative heat loss to metabolic production observed in Namaqua doves, 4.66, exceeds by a substantial margin previous values reported for birds. Our results support the notion that cutaneous evaporation provides a highly efficient mechanism of heat dissipation and an enhanced ability to tolerate extremely high Ta. PMID:27207640

  13. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  14. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies.

    PubMed

    Usherwood, James Richard

    2016-11-01

    Aerodynamically economical flight is steady and level. The high-amplitude flapping and bounding flight style of many small birds departs considerably from any aerodynamic or purely mechanical optimum. Further, many large birds adopt a flap-glide flight style in cruising flight which is not consistent with purely aerodynamic economy. Here, an account is made for such strategies by noting a well-described, general, physiological cost parameter of muscle: the cost of activation. Small birds, with brief downstrokes, experience disproportionately high costs due to muscle activation for power during contraction as opposed to work. Bounding flight may be an adaptation to modulate mean aerodynamic force production in response to (1) physiological pressure to extend the duration of downstroke to reduce power demands during contraction; (2) the prevention of a low-speed downstroke due to the geometric constraints of producing thrust; (3) an aerodynamic cost to flapping with very low lift coefficients. In contrast, flap-gliding birds, which tend to be larger, adopt a strategy that reduces the physiological cost of work due both to activation and contraction efficiency. Flap-gliding allows, despite constraints to modulation of aerodynamic force lever-arm, (1) adoption of moderately large wing-stroke amplitudes to achieve suitable muscle strains, thereby reducing the activation costs for work; (2) reasonably quick downstrokes, enabling muscle contraction at efficient velocities, while being (3) prevented from very slow weight-supporting upstrokes due to the cost of performing 'negative' muscle work.

  15. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies.

    PubMed

    Usherwood, James Richard

    2016-11-01

    Aerodynamically economical flight is steady and level. The high-amplitude flapping and bounding flight style of many small birds departs considerably from any aerodynamic or purely mechanical optimum. Further, many large birds adopt a flap-glide flight style in cruising flight which is not consistent with purely aerodynamic economy. Here, an account is made for such strategies by noting a well-described, general, physiological cost parameter of muscle: the cost of activation. Small birds, with brief downstrokes, experience disproportionately high costs due to muscle activation for power during contraction as opposed to work. Bounding flight may be an adaptation to modulate mean aerodynamic force production in response to (1) physiological pressure to extend the duration of downstroke to reduce power demands during contraction; (2) the prevention of a low-speed downstroke due to the geometric constraints of producing thrust; (3) an aerodynamic cost to flapping with very low lift coefficients. In contrast, flap-gliding birds, which tend to be larger, adopt a strategy that reduces the physiological cost of work due both to activation and contraction efficiency. Flap-gliding allows, despite constraints to modulation of aerodynamic force lever-arm, (1) adoption of moderately large wing-stroke amplitudes to achieve suitable muscle strains, thereby reducing the activation costs for work; (2) reasonably quick downstrokes, enabling muscle contraction at efficient velocities, while being (3) prevented from very slow weight-supporting upstrokes due to the cost of performing 'negative' muscle work. PMID:27418386

  16. Aerodynamics of Laminar Flames

    NASA Astrophysics Data System (ADS)

    Law, Chung K.

    2000-11-01

    The presentation will review recent advances in the understanding of the structure, dynamics, and geometry of stretched, nonequidiffusive, laminar premixed flames, as exemplified by the unsteady propagation of wrinkled flames in nonuniform flow fields. It is first shown that by considering the effects of aerodynamic stretch on the flame structure, and by allowing for mixture nonequidiffusion, the flame responses, especially the flame propagation speed, can be quantitatively as well as qualitatively modified from the idealized planar limit. Subsequently, by treating the flame as a level surface propagating with the stretch-affected flame speed, problems of increasing complexity are presented to illustrate various features of flame propagation. The illustration first treats the flame as a structureless surface propagating into a constant-density combustible with a constant velocity * the laminar flame speed, and demonstrates the phenomena of cusp formation and volumetric burning rate augmentation through flame wrinkling. By using the stretch-affected flame speed, we then describe the phenomena of cusp broadening as well as tip opening of the Bunsen flame. Finally, by allowing for the density jump across the flame surface, a unified dispersion relation is derived for the intrinsic hydrodynamic, body-force, and nonequidiffusive modes of flame

  17. Unsteady transonic aerodynamics

    SciTech Connect

    Nixon, D.

    1989-01-01

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows.

  18. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  19. Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model

    NASA Technical Reports Server (NTRS)

    Woods, J. A.; Gilbert, Michael G.

    1990-01-01

    The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented.

  20. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents

    PubMed Central

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles. PMID:26274324

  1. Fundamental Aspects of the Aerodynamics of Turbojet Engine Combustors

    NASA Technical Reports Server (NTRS)

    Barrere, M.

    1978-01-01

    Aerodynamic considerations in the design of high performance combustors for turbojet engines are discussed. Aerodynamic problems concerning the preparation of the fuel-air mixture, the recirculation zone where primary combustion occurs, the secondary combustion zone, and the dilution zone were examined. An aerodynamic analysis of the entire primary chamber ensemble was carried out to determine the pressure drop between entry and exit. The aerodynamics of afterburn chambers are discussed. A model which can be used to investigate the evolution of temperature, pressure, and rate and efficiency of combustion the length of the chamber was developed.

  2. Aerodynamics model for a generic ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.

    1995-01-01

    This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.

  3. Parallel high-performance grid computing: capabilities and opportunities of a novel demanding service and business class allowing highest resource efficiency.

    PubMed

    Kepper, Nick; Ettig, Ramona; Dickmann, Frank; Stehr, Rene; Grosveld, Frank G; Wedemann, Gero; Knoch, Tobias A

    2010-01-01

    Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we-can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency.

  4. Comparison of aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks

    NASA Astrophysics Data System (ADS)

    Haque, Md. Naimul; Katsuchi, Hiroshi; Yamada, Hitoshi; Nishio, Mayuko

    2016-07-01

    Aerodynamics of the long-span bridge deck should be well understood for an efficient design of the bridge system. For practical bridges various deck shapes are being recommended and adopted, yet not all of their aerodynamic behaviors are well interpreted. In the present study, a numerical investigation was carried out to explore the aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks. A relative comparison of steady state aerodynamic responses was made and the flow field was critically analyzed for better understanding the aerodynamic responses. It was found that the hexagonal shaped bridge deck has better aerodynamic characteristics as compared to the pentagonal shaped bridge deck.

  5. Advanced turboprop installation aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1981-01-01

    The expected aerodynamic effects of a propfan installed on a thick supercritical wing are summarized qualitatively. Nacelle/wing and jet interactions, slipstream incremental velocity, nonuniform inflow, and swirl loss recovery are discussed.

  6. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  7. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  8. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  9. A Traceless Selection: Counter-selection System That Allows Efficient Generation of Transposon and CRISPR-modified T-cell Products

    PubMed Central

    Mezzadra, Riccardo; Hollenstein, Andreas; Gomez-Eerland, Raquel; Schumacher, Ton N

    2016-01-01

    Recent years have seen major breakthroughs in genome-engineering systems, such as transposon-mediated gene delivery systems and CRISPR-Cas9-mediated genome-editing tools. In these systems, transient expression of auxiliary genes is responsible for permanent genomic modification. For both systems, it would be valuable to select for cells that are likely to undergo stable genome modification. Importantly, in particular for clinical applications of genome-engineered cell products, it will also be of importance to remove those cells that, due to random vector integration, display an unwanted stable expression of the auxiliary gene. Here, we develop a traceless selection system that on the one hand allows efficient enrichment of modified cells, and on the other hand can be used to select against cells that retain expression of the auxiliary gene. The value of this system to produce highly enriched-auxiliary gene-free cell products is demonstrated. PMID:27003756

  10. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    , velocity, and acceleration sensors. This research demonstrates the feasibility of obtaining induced drag and lift forces through the use of distributed sensor technology with measured strain data. An active induced drag control system thus can be designed using the two computed aerodynamic forces, induced drag and lift, to improve the fuel efficiency of an aircraft. Interpolation elements between structural finite element grids and the CFD grids and centroids are successfully incorporated with the unsteady aeroelastic computation scheme. The most critical technology for the success of the proposed approach is the robust on-line parameter estimator, since the least-squares curve fitting method depends heavily on aeroelastic system frequencies and damping factors.

  11. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  12. A climatology of formation conditions for aerodynamic contrails

    NASA Astrophysics Data System (ADS)

    Gierens, K.; Dilger, F.

    2013-06-01

    Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data, first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Finally we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally we give an argument for our believe that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

  13. Reference values and improvement of aerodynamic drag in professional cyclists.

    PubMed

    García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo

    2008-02-01

    The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed.

  14. Aerodynamic Parameter Identification of a Venus Lander

    NASA Astrophysics Data System (ADS)

    Sykes, Robert A.

    An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.

  15. Assessment of dysphonia due to benign vocal fold lesions by acoustic and aerodynamic indices: a multivariate analysis.

    PubMed

    Cantarella, Giovanna; Baracca, Giovanna; Pignataro, Lorenzo; Forti, Stella

    2011-04-01

    The goal was to identify acoustic and aerodynamic indices that allow the discrimination of a benign organic dysphonic voice from a normal voice. Fifty-three patients affected by dysphonia caused by vocal folds benign lesions, and a control group were subjected to maximum phonation time (MPT) measurements, GRB perceptual evaluations and acoustic/aerodynamic tests. All analyzed variables except the airflow variation coefficient were significantly different between the two groups. The unique significant factors in the discrimination between healthy and dysphonic subjects were the aerodynamic indices of MPT and Glottal efficiency index, and the acoustic index Shimmer. These results show that a combination of three parameters can discriminate a voice deviance and highlight the importance of a multidimensional assessment for objective voice evaluation.

  16. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  17. Aerodynamic characteristics of an oscillating airfoil

    NASA Astrophysics Data System (ADS)

    Wickens, R. H.

    1986-03-01

    Results are reported from wind tunnel tests to study the effects of dynamic aerodynamics on the efficiency of a NACA 0018 airfoil used on a Darreius vertical axis wind turbine (VAWT). The topic is of interest because of uncontrolled pitching which occurs during operation and which produces stall, turbulence and separation effects that reduce efficiency. Present stream-tube theory and axial momentum models are not applicable in the unstable regimes. The wind tunnel tests were conducted with a 45 m/sec flow with an Re of 1.5 million. The situation mimicked typical wind turbine operational conditions. The airfoil was mounted on a hydraulic actuator to allow it to rotate about its quarter-chord location and to control the extent and frequency of oscillations. Data were also gathered on the performance in a steady flow for comparative purposes. Summary data are provided on the static and total pressures over a complete cycle of oscillation, and related to the angles of attack, time of onset of stall, and the lift and drag coefficients. The limitations of the study with regard to the absence of consideration of the flow acceleration experienced by an advancing blade are noted.

  18. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Hu, C. C.

    1992-01-01

    A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.

  19. Aerodynamic optimization studies on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1995-01-01

    The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

  20. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  1. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  2. An exploration of task based fMRI in neonates using echo-shifting to allow acquisition at longer TE without loss of temporal efficiency.

    PubMed

    Ferrazzi, Giulio; Nunes, Rita G; Arichi, Tomoki; Gaspar, Andreia S; Barone, Giovanni; Allievi, Alessandro; Vasylechko, Serge; Abaei, Maryam; Hughes, Emer; Rueckert, Daniel; Price, Anthony N; Hajnal, Joseph V

    2016-02-15

    Optimal contrast to noise ratio of the BOLD signal in neonatal and foetal fMRI has been hard to achieve because of the much longer T2(⁎) values in developing brain tissue in comparison to those in the mature adult brain. The conventional approach of optimizing fMRI sequences would suggest matching the echo time (TE) and the T2(⁎) of the neonatal and foetal brain. However, the use of a long echo time would typically increase the minimum repetition time (TR) resulting in inefficient sampling. Here we apply the concept of echo shifting to task based neonatal fMRI in order to achieve an improved contrast to noise ratio and efficient data sampling at the same time. Echo shifted EPI (es-EPI) is a modification of a standard 2D-EPI sequence which enables echo times longer than the time between consecutive excitations (TE>TS=TRNS, where NS is the number of acquired slices and TS the inter-slice repetition time). The proposed method was tested on neonatal subjects using a passive sensori-motor task paradigm. Dual echo EPI datasets with an identical readout structure to es-EPI were also acquired and used as control data to assess BOLD activation. From the results of the latter analysis, an average increase of 78±41% in contrast to noise ratio was observable when comparing late to short echoes. Furthermore, es-EPI allowed the acquisition of data with an identical contrast to the late echo, but more efficiently since a higher number of slices could be acquired in the same amount of time. PMID:26708014

  3. Sequences Just Upstream of the Simian Immunodeficiency Virus Core Enhancer Allow Efficient Replication in the Absence of NF-κB and Sp1 Binding Elements

    PubMed Central

    Pöhlmann, Stefan; Flöss, Stefan; Ilyinskii, Petr O.; Stamminger, Thomas; Kirchhoff, Frank

    1998-01-01

    Large deletions of the upstream U3 sequences in the long terminal repeats (LTRs) of human immunodeficiency virus and simian immunodeficiency virus (SIV) accumulate in vivo in the absence of an intact nef gene. In the SIV U3 region, about 65 bp just upstream of the single NF-κB binding site always remained intact, and some evidence for a novel enhancer element in this region exists. We analyzed the transcriptional and replicative capacities of SIVmac239 mutants containing deletions or mutations in these upstream U3 sequences and/or the NF-κB and Sp1 binding sites. Even in the absence of 400 bp of upstream U3 sequences, the NF-κB site and all four Sp1 binding sites, the SIV promoter maintained about 15% of the wild-type LTR activity and was fully responsive to Tat activation in transient reporter assays. The effects of these deletions on virus production after transfection of COS-1 cells with full-length proviral constructs were much greater. Deletion of the upstream U3 sequences had no significant influence on viral replication when either the single NF-κB site or the Sp1 binding sites were intact. In contrast, the 26 bp of sequence located immediately upstream of the NF-κB site was essential for efficient replication when all core enhancer elements were deleted. A purine-rich site in this region binds specifically to the transcription factor Elf-1, a member of the ets proto-oncogene-encoded family. Our results indicate a high degree of functional redundancy in the SIVmac U3 region. Furthermore, we defined a novel regulatory element located immediately upstream of the NF-κB binding site that allows efficient viral replication in the absence of the entire core enhancer region. PMID:9621017

  4. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  5. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  6. Computational aerodynamics and design

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1982-01-01

    The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348

  7. Design, aerodynamics and autonomy of the DelFly.

    PubMed

    de Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; van Oudheusden, B W

    2012-06-01

    One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor. PMID:22617112

  8. Design, aerodynamics and autonomy of the DelFly.

    PubMed

    de Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; van Oudheusden, B W

    2012-06-01

    One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor.

  9. A climatology of formation conditions for aerodynamic contrails

    NASA Astrophysics Data System (ADS)

    Gierens, K.; Dilger, F.

    2013-11-01

    Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

  10. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  11. Aerodynamic seals for rotary machine

    DOEpatents

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  12. Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage

    NASA Technical Reports Server (NTRS)

    Boyd, David D., Jr.

    1999-01-01

    A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

  13. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  14. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  15. Aerodynamic noise sources

    NASA Astrophysics Data System (ADS)

    Munin, A. G.; Kuznetsov, V. M.; Leontev, E. A.

    A general theory is developed for aerodynamic sound generation and its propagation in an inhomogeneous medium. Results of theoretical and experimental studies of the acoustic characteristics of jets are discussed, and a solution is presented to the problem concerning the noise from a section, free rotor, and a rotor located inside a channel. Sound propagation in a channel with flow and selection of soundproofing liners for the channel walls are also discussed.

  16. Integrated structural-aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.

    1988-01-01

    This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.

  17. Nash equilibrium and multi criterion aerodynamic optimization

    NASA Astrophysics Data System (ADS)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  18. Biological and aerodynamic problems with the flight of animals

    NASA Technical Reports Server (NTRS)

    Holst, E. V.; Kuchemann, D.

    1980-01-01

    Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.

  19. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  20. Forward flight of birds revisited. Part 1: aerodynamics and performance

    PubMed Central

    Iosilevskii, G.

    2014-01-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance—at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  1. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small.

  2. A nuclear localization signal in the matrix of spleen necrosis virus (SNV) does not allow efficient gene transfer into quiescent cells with SNV-derived vectors

    SciTech Connect

    Caron, Marie-Christine; Caruso, Manuel . E-mail: manuel.caruso@crhdq.ulaval.ca

    2005-08-01

    A major limitation in gene therapy for vectors derived from Moloney murine leukemia virus (MLV) is that they only deliver genes into dividing cells. In this study, a careful comparison of spleen necrosis virus (SNV)-derived vectors with MLV and human immunodeficiency virus (HIV)-1 retroviral vectors indicated that SNV vectors can deliver genes 4-fold more efficiently than MLV vectors into aphidicolin-arrested cells, although at a 25-fold lower efficiency than HIV-1-derived vectors. Furthermore, the addition of a NLS in the SNV matrix (MA) that mimics the one located in HIV-1 MA did not increase the ability of SNV vectors to transfer genes into arrested cells. Also, we found that the RD114 envelope was able to pseudotype SNV viral particles in a very efficient manner.

  3. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  4. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  5. Vortical sources of aerodynamic force and moment

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    It is shown that the aerodynamic force and moment can be expressed in terms of vorticity distribution (and entropy variation for compressible flow) on near wake plane, or in terms of boundary vorticity flux on the body surface. Thus the vortical sources of lift and drag are clearly identified, which is the real physical basis of optimal aerodynamic design. Moreover, these sources are highly compact, hence allowing one to concentrate on key local regions of the configuration, which have dominating effect to the lift and drag. A detail knowledge of the vortical low requires measuring or calculating the vorticity and dilatation field, which is however still a challenging task. Nevertheless, this type of formulation has some unique advantages; and how to set up a well-posed problem, in particular how to establish vorticity-dilatation boundary conditions, is addressed.

  6. Aerodynamic control with passively pitching wings

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  7. Freight Wing Trailer Aerodynamics Final Technical Report

    SciTech Connect

    Sean Graham

    2007-10-31

    intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the “Belly Fairing” increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.

  8. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  9. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  10. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  11. The Aerodynamic Plane Table

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  12. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  13. Aerodynamic coefficients and transformation tables

    NASA Technical Reports Server (NTRS)

    Ames, Joseph S

    1918-01-01

    The problem of the transformation of numerical values expressed in one system of units into another set or system of units frequently arises in connection with aerodynamic problems. Report contains aerodynamic coefficients and conversion tables needed to facilitate such transformation. (author)

  14. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  15. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  16. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD

  17. Unsteady aerodynamics of blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.

    1989-01-01

    The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

  18. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice

    PubMed Central

    Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat

    2015-01-01

    Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970

  19. A highly efficient retroviral vector allows detection of the transforming activity of the human c-fps/fes proto-oncogene.

    PubMed Central

    Feldman, R A; Lowy, D R; Vass, W C; Velu, T J

    1989-01-01

    We have constructed an efficient new retroviral vector containing strong promoting elements derived from the Friend murine leukemia virus (F-MuLV) long terminal repeat (LTR) and have used the vector to demonstrate that overexpression of human c-fps/fes can transform established mouse cells. When a c-fps/fes cDNA was cloned into the vector, this viral DNA and the recovered virus induced very high levels of the c-fps/fes product NCP92 and tumorigenic transformation of NIH 3T3 cells. Compared with an isogenic vector under control of a Moloney MuLV-derived LTR, the vector driven by the F-MuLV LTR induced 3- to 10-times-higher levels of expression of c-fps/fes, a higher level of phosphotyrosine in cellular proteins, and a virus whose transforming activity was 2 orders of magnitude greater. We conclude (i) that normal c-fps/fes can induce morphologic transformation and that its transforming activity is a function of the level of expression of NCP92 and (ii) that the vector based on the F-MuLV LTR is more efficient than the vector driven by a Moloney MuLV LTR in inducing high levels of expression and measurable biological activity. Images PMID:2685357

  20. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    PubMed

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars. PMID:15359604

  1. An Iterative, Low-Cost Strategy to Building Information Systems Allows a Small Jurisdiction Local Health Department to Increase Efficiencies and Expand Services

    PubMed Central

    Shah, Gulzar H.

    2016-01-01

    Objective and Methods: The objective of this case study was to describe the process and outcomes of a small local health department's (LHD's) strategy to build and use information systems. The case study is based on a review of documents and semi-structured interviews with key informants in the Pomperaug District Health Department. Interviews were recorded, transcribed, coded, and analyzed. Results and Conclusions: The case study here suggests that small LHDs can use a low-resource, incremental strategy to build information systems for improving departmental effectiveness and efficiency. Specifically, we suggest that the elements for this department's success were simple information systems, clear vision, consistent leadership, and the involvement, training, and support of staff. PMID:27684628

  2. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).

    PubMed

    KleinHeerenbrink, Marco; Warfvinge, Kajsa; Hedenström, Anders

    2016-05-15

    Gliding flight is a relatively inexpensive mode of flight used by many larger bird species, where potential energy is used to cover the cost of aerodynamic drag. Birds have great flexibility in their flight configuration, allowing them to control their flight speed and glide angle. However, relatively little is known about how this flexibility affects aerodynamic drag. We measured the wake of a jackdaw (Corvus monedula) gliding in a wind tunnel, and computed the components of aerodynamic drag from the wake. We found that induced drag was mainly affected by wingspan, but also that the use of the tail has a negative influence on span efficiency. Contrary to previous work, we found no support for the separated primaries being used in controlling the induced drag. Profile drag was of similar magnitude to that reported in other studies, and our results suggest that profile drag is affected by variation in wing shape. For a folded tail, the body drag coefficient had a value of 0.2, rising to above 0.4 with the tail fully spread, which we conclude is due to tail profile drag. PMID:26994178

  3. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).

    PubMed

    KleinHeerenbrink, Marco; Warfvinge, Kajsa; Hedenström, Anders

    2016-05-15

    Gliding flight is a relatively inexpensive mode of flight used by many larger bird species, where potential energy is used to cover the cost of aerodynamic drag. Birds have great flexibility in their flight configuration, allowing them to control their flight speed and glide angle. However, relatively little is known about how this flexibility affects aerodynamic drag. We measured the wake of a jackdaw (Corvus monedula) gliding in a wind tunnel, and computed the components of aerodynamic drag from the wake. We found that induced drag was mainly affected by wingspan, but also that the use of the tail has a negative influence on span efficiency. Contrary to previous work, we found no support for the separated primaries being used in controlling the induced drag. Profile drag was of similar magnitude to that reported in other studies, and our results suggest that profile drag is affected by variation in wing shape. For a folded tail, the body drag coefficient had a value of 0.2, rising to above 0.4 with the tail fully spread, which we conclude is due to tail profile drag.

  4. Aerodynamics of Small Vehicles

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas J.

    In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

  5. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  6. Vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)

    1992-01-01

    The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

  7. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  8. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  9. Multigrid Methods for Aerodynamic Problems in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1995-01-01

    Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.

  10. Design and construction of a storm window with increased thermal efficiency which opens to allow ventilation as needed. Final technical report, proposal number F375

    SciTech Connect

    Not Available

    1980-01-01

    The project as originally conceived and funded envisioned a conventional full - window - length storm sash mounted in the cement block window opening. Appropriate linkage would open the storm sash. This design proved to be a safety hazard and physically undesirable. The design of the storm window sash was revised. Individual storm frames were to be mounted on each awning sash. Mechanical interferences with the storm sash occurred when a two inch air space was used. This was solved by reducing the air space to the optimum dimension of 3/4 inches. The sizes and configuration of the awning type windows were studied to aid in cost effective and efficient design of the storm frame. It was discovered that in all but the later (aluminum conserving) models, the window pane was recessed 3/4 inches. This serendipidous fact resulted in the design of a triple glazed window utilizing only one storm sash glazed on both sides. The resultant combination window and storm sash is estimated to give approximately R 3.9 to R 5.2 insulation value.

  11. HSCT high lift system aerodynamic requirements

    NASA Technical Reports Server (NTRS)

    Paulson, John A.

    1992-01-01

    The viewgraphs and discussion of high lift system aerodynamic requirements are provided. Low speed aerodynamics has been identified as critical to the successful development of a High Speed Civil Transport (HSCT). The airplane must takeoff and land at a sufficient number of existing or projected airports to be economically viable. At the same time, community noise must be acceptable. Improvements in cruise drag, engine fuel consumption, and structural weight tend to decrease the wing size and thrust required of engines. Decreasing wing size increases the requirements for effective and efficient low speed characteristics. Current design concepts have already been compromised away from better cruise wings for low speed performance. Flap systems have been added to achieve better lift-to-drag ratios for climb and approach and for lower pitch attitudes for liftoff and touchdown. Research to achieve improvements in low speed aerodynamics needs to be focused on areas most likely to have the largest effect on the wing and engine sizing process. It would be desirable to provide enough lift to avoid sizing the airplane for field performance and to still meet the noise requirements. The airworthiness standards developed in 1971 will be the basis for performance requirements for an airplane that will not be critical to the airplane wing and engine size. The lift and drag levels that were required to meet the performance requirements of tentative airworthiness standards established in 1971 and that were important to community noise are identified. Research to improve the low speed aerodynamic characteristics of the HSCT needs to be focused in the areas of performance deficiency and where noise can be reduced. Otherwise, the wing planform, engine cycle, or other parameters for a superior cruising airplane would have to be changed.

  12. An experimental study of an aerodynamically optimum windmill

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Toda, N.; Hoshino, H.; Noguchi, M.

    1982-08-01

    Aerodynamic characteristics of an optimum horizontal axis windmill are described. The windmill, rated at 20 KW at 8 m/s with a two bladed rotor of 14m diameter, is designed so as to vary the geometry of the blade in such a way that the aerodynamic efficiency becomes maximum. The combined blade element momentum theory is used as an analytical tool. To check the design method and get some useful aerodynamic data, a wind tunnel test of a 1/7th scale model (2m diameter) is performed in a low speed tunnel, whose test section is 35.75 sq m. Two models, whose blades have the same optimum chord distribution but have different planforms, are tested. Measurements are made of the efficiency, torque, axial drag force and initial torque for various combinations of the pitch angle and the tip speed ratio. The yaw characteristics of the windmill are also measured.

  13. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  14. Turbine Aerodynamics Design Tool Development

    NASA Technical Reports Server (NTRS)

    Huber, Frank W.; Turner, James E. (Technical Monitor)

    2001-01-01

    This paper presents the Marshal Space Flight Center Fluids Workshop on Turbine Aerodynamic design tool development. The topics include: (1) Meanline Design/Off-design Analysis; and (2) Airfoil Contour Generation and Analysis. This paper is in viewgraph form.

  15. How energy efficient is your car?

    NASA Astrophysics Data System (ADS)

    Roura, Pere; Oliu, Daniel

    2012-07-01

    A detailed energy balance indicating how fuel energy is transferred from the engine to the wheels of a commercial car is obtained using non-specialized experiments that can be readily understood using elementary mechanics. These experiments allow us to determine the engine's thermal efficiency, its mechanical losses, and the rolling (friction) and aerodynamic (drag) coefficients. We find that approximately 28% of the fuel energy is transferred to the wheels.

  16. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  17. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  18. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  19. Introduction. Computational aerodynamics.

    PubMed

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  20. Unsteady aerodynamic models for agile flight at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Brunton, Steven L.

    computational tools are developed throughout this work. Highly unsteady maneuvers are visualized using finite-time Lyapunov exponent fields, which highlight separated flows and wake structures. A new fast method of computing these fields is presented. In addition, we generalize the immersed boundary projection method computations to use a moving base flow, which allows for the simulation of complex geometries undergoing large motions with up to an order of magnitude speed-up. The methods developed in this thesis provide a systematic approach to identify unsteady aerodynamic models from analytical, numerical, or experimental data. The resulting models are shown to be reduced-order models of the linearized Navier-Stokes equations that are expressed in state-space form, and they are, therefore, both efficient and accurate. The specific form of the model, which separates added-mass forces, quasi-steady lift, and transient forces, guarantees that the resulting models are accurate over the entire range of frequencies. Finally, the models are low-dimensional linear systems of ordinary differential equations, so that they are compatible with existing flight dynamic models as well as a wealth of modern control techniques.

  1. Measurement technology for micro-scale aerodynamics

    NASA Astrophysics Data System (ADS)

    Martin, Michael James

    As micro-technology improves, it may become possible to build flying vehicles at length scales of millimeters, or even microns. Successful design of vehicles at such sizes requires understanding of the fluid mechanics of flight at the micron scale. While biological flight has been studied at these scales, many questions remain to be answered for flight at these scales. Previous work has not determined the limiting scales of continuum aerodynamics for low-speed flight. This study begins with the development of a new scaling law based on boundary layer theory. The laminar boundary layer equations were solved non-dimensionally for slip flow conditions. These results show that a measurable decrease in skin friction, as well as changes in heat transfer, and flow stability, may occur as the boundary layer Knudsen number approaches 0.01. These flow conditions correspond to airfoil chords of up to 100 microns, pressures of 0.1 to 1.0 atmospheres, and velocities from 30 to 100 m/s. Based on this scaling law, specialized wind-tunnel test facilities were designed to operate at scales not previously studied. The novel wind-tunnel allows for independent control of Reynolds and Knudsen numbers on static airfoils. A draw-through, low turbulence, low-pressure wind tunnel with a 1 cm cross section was built and tested. The flow through these facilities is characterized, and recommendations are made for future wind-tunnel development. To allow testing at these scales, micro-scale airfoils, with chords of 100 microns, thicknesses of 5 microns, and a span of 1 cm were fabricated using MEMS fabrication technology. Fabrication of free-standing micro-structures with meso-scale spans and micro-scale cross sections required the development of specialized fabrication processes. These airfoils were integrated with piezoresistive force sensors, allowing measurement of aerodynamic forces. The airfoil structures were successfully released within the tunnel. The actual aerodynamic load on the

  2. Global aerial flyways allow efficient travelling.

    PubMed

    Kranstauber, B; Weinzierl, R; Wikelski, M; Safi, K

    2015-12-01

    Birds migrate over vast distances at substantial costs. The highly dynamic nature of the air makes the selection of the best travel route difficult. We investigated to what extent migratory birds may optimise migratory route choice with respect to wind, and if route choice can be subject to natural selection. Following the optimal route, calculated using 21 years of empirical global wind data, reduced median travel time by 26.5% compared to the spatially shortest route. When we used a time-dependent survival model to quantify the adaptive benefit of choosing a fixed wind-optimised route, 84.8% of pairs of locations yielded a route with a higher survival than the shortest route. This suggests that birds, even if incapable of predicting wind individually, could adjust their migratory routes at a population level. As a consequence, this may result in the emergence of low-cost flyways representing a global network of aerial migratory pathways.

  3. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  4. The effects of age and gender on laryngeal aerodynamics.

    PubMed

    Goozée, J V; Murdoch, B E; Theodoros, D G; Thompson, E C

    1998-01-01

    A computerized airflow/air pressure analysis system, the Aerophone II Model 6800 (Kay Elemetrics Corp.), was used to assess the effects of age and gender on laryngeal aerodynamics. A sample of 56 male and 53 female normal speaking subjects was divided into six age groups (20-30; 31-40; 41-50; 51-60; 61-70 and 71-80 years). The laryngeal aerodynamic parameters measured included phonatory (mean) flow rate, estimated subglottal pressure, laryngeal airway resistance, phonatory sound pressure level, phonatory power, and phonatory efficiency. Most comfortable phonation, vocal efficiency, and running speech tasks were used to collect the aerodynamic data. Comfortable pitch and loudness levels were used for each of these tasks. Age and gender effects were found for a number of the phonatory (mean) flow rate and phonatory sound pressure level values. Results failed, however, to indicate age or gender effects for the estimated subglottal pressure, laryngeal airway resistance, phonatory power and phonatory efficiency parameters. High intersubject variability was found for the phonatory flow rate, laryngeal airway resistance, phonatory power and phonatory efficiency values. Estimated subglottal pressure values, however, appeared to vary the least among subjects. The results are discussed with respect to factors that might influence laryngeal aerodynamics, such as underlying laryngeal anatomical and physiological age-related changes and gender-related differences. The clinical implications of the findings for the assessment and treatment of individuals with voice disorders using the Aerophone II are also discussed.

  5. Modeling, Control, and Estimation of Flexible, Aerodynamic Structures

    NASA Astrophysics Data System (ADS)

    Ray, Cody W.

    Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.

  6. Aerodynamic preliminary analysis system 2. Part 1: Theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1991-01-01

    An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  7. Aerodynamic preliminary analysis system 2. Part 2: User's manuals

    NASA Technical Reports Server (NTRS)

    Divan, P.

    1981-01-01

    An aerodynamic analysis system based on potential theory at subsonic/supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional chracteristics may be generated. The analysis has been implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Typical simulation indicates that program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  8. Computational methods for aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Peeters, M. F.

    1983-01-01

    Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.

  9. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  10. Aerodynamic analysis of the Darrieus rotor including secondary effects

    SciTech Connect

    Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.

    1983-09-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).

  11. Aerodynamic analysis of the Darrieus rotor including secondary effects

    SciTech Connect

    Paraschivoiu, I.; Beguler, C.; Delclaux, F.; Fraunie, P.

    1983-09-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the aximuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/ circular-arc shape).

  12. Aerodynamic analysis of the Darrieus rotor including secondary effects

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.

    1983-10-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).

  13. Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications

    SciTech Connect

    Popovic, S.; Vuskovic, L.

    2006-12-01

    Aerodynamic effects in ionized gases, often neglected phenomena, have been subject of a renewed interest in recent years. After a brief historical account, we discuss a selected number of effects and unresolved problems that appear to be relevant in both aeronautic and propulsion applications in subsonic, supersonic, and hypersonic flow. Interaction between acoustic shock waves and weakly ionized gas is manifested either as plasma-induced shock wave dispersion and acceleration or as shock-wave induced double electric layer in the plasma, followed by the localized increase of the average electron energy and density, as well as enhancement of optical emission. We describe the phenomenology of these effects and discuss several experiments that still do not have an adequate interpretation. Critical for application of aerodynamic effects is the energy deposition into the flow. We classify and discuss some proposed wall-free generation schemes with respect to the efficiency of energy deposition and overall generation of the aerodynamic body force.

  14. Grid sensitivity for aerodynamic optimization and flow analysis

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1993-01-01

    After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.

  15. Aerodynamic performance of vertical and horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Maydew, R. C.; Klimas, P. C.

    1981-06-01

    The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.

  16. Resonance versus aerodynamics for energy savings in agile natural flyers

    NASA Astrophysics Data System (ADS)

    Kok, Jia M.; Chahl, Javaan

    2014-03-01

    Insects are the most diverse natural flyers in nature, being able to hover and perform agile manoeuvres. Dragon- flies in particular are aggressive flyers, attaining accelerations of up to 4g. Flight in all insects requires demanding aerodynamic and inertial loads be overcome. It has been proposed that resonance is a primary mechanism for reducing energy costs associated with flapping flight, by storing energy in an elastic thorax and releasing it on the following half-stroke. Certainly in insect flight motors dominated by inertial loads, such a mechanism would be extremely beneficial. However in highly manoeuvrable, aerodynamically dominated flyers, such as the dragonfly, the use of elastic storage members requires further investigation. We show that employing resonant mechanisms in a real world configuration produces minimal energy savings that are further reduced by 50 to 133% across the operational flapping frequency band of the dragonfly. Using a simple harmonic oscillator analysis to represent the dynamics of a dragonfly, we further demonstrate a reduction in manoeuvring limits of ˜1.5 times for a system employing elastic mechanisms. This is in contrast to the potential power reductions of √2/2 from regulating aerodynamics via active wing articulation. Aerodynamic means of energy storage provides flexibility between an energy efficient hover state and a manoeuvrable state capable of large accelerations. We conclude that active wing articulation is preferable to resonance for aerodynamically dominated natural flyers.

  17. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-gi

    2011-01-01

    A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.

  18. Two-Stage Axial Compressor Rig Designed To Develop and Validate Advanced Aerodynamic Technologies

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.

    2003-01-01

    Future aeropropulsion gas turbine engines must be affordable in addition to being energy efficient and environmentally benign. Progress in aerodynamic design capability is required not only to maximize the specific thrust of next-generation engines without sacrificing fuel consumption, but also to reduce parts count by increasing the aerodynamic loading of the compression system. To meet future compressor requirements, the NASA Glenn Research Center is investigating advanced aerodynamic design concepts that will lead to more compact, higher efficiency, and wider operability configurations than are currently in operation.

  19. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  20. Recent advances in computational aerodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh K.; Desse, Jerry E.

    1991-04-01

    The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  1. An experimental study of nanoparticle focusing with aerodynamic lenses

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; McMurry, Peter H.

    2006-12-01

    High sampling efficiencies of analyte ions, molecules or particles are needed to maximize the sensitivity of mass spectrometers. "Ion funnels", which utilize electrodynamic focusing, have been shown to effectively focus ions with mass-to-charge ratio (m/z) ranging from ~100 to 5000. Focusing efficiencies of ion funnels drop for higher m/z values because very high voltages are needed to overcome the particle inertia. Conventional "aerodynamic lenses" utilize inertia to focus down to 25 nm in diameter (~5 MDa); to date, Brownian diffusion has prevented the effective focusing of particles smaller than this. We recently reported a design procedure that should, in principle, extend focusing with aerodynamic lenses to particles as small as 3 nm (~10 kDa), thereby bridging the gap between the ion funnel and the conventional aerodynamic lenses. In this paper, we report for the first time experimental results for the performance of these new "nanolenses". Measurements were done using spherical oil droplets, proteins, and sodium chloride particles ranging in size from 3 to 30 nm diameter. We found that particle transport efficiencies from atmospheric pressure to vacuum through the aerodynamic lens system were greater than 80% for 10-30 nm particles, and greater than 50% for a ~3.8 nm protein (Lysozyme from chicken egg white, molecular weight 14.3 kDa). Particle beam diameters were about a factor of two greater than predicted by our numerical simulations, but provide clear evidence that the nanolenses effectively focus all three particle types.

  2. Effects of ice accretions on aircraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Lynch, Frank T.; Khodadoust, Abdollah

    2001-11-01

    This article is a systematic and comprehensive review, correlation, and assessment of test results available in the public domain which address the aerodynamic performance and control degradations caused by various types of ice accretions on the lifting surfaces of fixed wing aircraft. To help put the various test results in perspective, overviews are provided first of the important factors and limitations involved in computational and experimental icing simulation techniques, as well as key aerodynamic testing simulation variables and governing flow physics issues. Following these are the actual reviews, assessments, and correlations of a large number of experimental measurements of various forms of mostly simulated in-flight and ground ice accretions, augmented where appropriate by similar measurements for other analogous forms of surface contamination and/or disruptions. In-flight icing categories reviewed include the initial and inter-cycle ice accretions inherent in the use of de-icing systems which are of particular concern because of widespread misconceptions about the thickness of such accretions which can be allowed before any serious consequences occur, and the runback/ridge ice accretions typically associated with larger-than-normal water droplet encounters which are of major concern because of the possible potential for catastrophic reductions in aerodynamic effectiveness. The other in-flight ice accretion category considered includes the more familiar large rime and glaze ice accretions, including ice shapes with rather grotesque features, where the concern is that, in spite of all the research conducted to date, the upper limit of penalties possible has probably not been defined. Lastly, the effects of various possible ground frost/ice accretions are considered. The concern with some of these is that for some types of configurations, all of the normally available operating margins to stall at takeoff may be erased if these accretions are not

  3. Rotor/body aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1983-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  4. Rotor/body aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  5. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  6. Unsteady aerodynamics modeling for flight dynamics application

    NASA Astrophysics Data System (ADS)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  7. Sensitivity analysis in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1984-01-01

    Information on sensitivity analysis in computational aerodynamics is given in outline, graphical, and chart form. The prediction accuracy if the MCAERO program, a perturbation analysis method, is discussed. A procedure for calculating perturbation matrix, baseline wing paneling for perturbation analysis test cases and applications of an inviscid sensitivity matrix are among the topics covered.

  8. Aerodynamic laboratory at Cuatro Vientos

    NASA Technical Reports Server (NTRS)

    JUBERA

    1922-01-01

    This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.

  9. Shuttle reentry aerodynamic heating test

    NASA Technical Reports Server (NTRS)

    Pond, J. E.; Mccormick, P. O.; Smith, S. D.

    1971-01-01

    The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

  10. POEMS in Newton's Aerodynamic Frustum

    ERIC Educational Resources Information Center

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  11. Rotary wing aerodynamically generated noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. J.; Morse, H. A.

    1982-01-01

    The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

  12. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  13. Aerodynamic Simulation of the MEXICO Rotor

    NASA Astrophysics Data System (ADS)

    Herraez, I.; Medjroubi, W.; Stoevesandt, B.; Peinke, J.

    2014-12-01

    CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed.

  14. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  15. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    PubMed

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

  16. Air flow testing on aerodynamic truck

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph illustrates a standard passenger van modified at the Dryden Flight Research Center to investigate the aerodynamics of trucks. The resulting vehicle--re-fashioned with sheet metal--resembled a motor home, with rounded vertical corners on the vehicle's front and rear sections. For subsequent tests, researchers installed a 'boat tail' structure, shown in the photograph. During a decade spanning the 1970s and 1980s, Dryden researchers conducted tests to determine the extent to which adjustments in the shape of trucks reduced aerodynamic drag and improved efficiency. During the tests, the vehicle's sides were fitted with tufts, or strings, that showed air flow. The investigators concluded that rounding the vertical corners front and rear reduced drag by 40 percent, yet decreased the vehicle's internal volume by only 1.3 percent. Rounding both the vertical and horizontal corners cut drag by 54 percent, resulting in a three percent loss of internal volume. A second group of tests added a faired underbody and a boat tail, the latter feature resulting in drag reduction of about 15 percent.

  17. Rotor/wing aerodynamic interactions in hover

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Light, J. S.

    1986-01-01

    An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.

  18. Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Burgreen, Gregory W.

    1995-01-01

    An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.

  19. The aerodynamic design of the oblique flying wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.; Kroo, Ilan

    1990-01-01

    The aerodynamic design of a supersonic oblique flying wing is strongly influenced by the requirement that passengers must be accommodated inside the wing. It was revealed that thick oblique wings of very high sweep angle can be efficient at supersonic speeds when transonic normal Mach numbers are allowed on the upper surface of the wing. The goals were motivated by the ability to design a maximum thickness, minimum size oblique flying wing. A 2-D Navier-Stokes solver was used to design airfoils up to 16 percent thickness with specified lift, drag and pitching moment. A new method was developed to calculate the required pressure distribution on the wing based on the airfoil loading, normal Mach number distribution and theoretical knowledge of the minimum drag of oblique configurations at supersonic speeds. The wing mean surface for this pressure distribution was calculated using an inverse potential flow solver. The lift to drag ratio of this wing was significantly higher than that of a comparable delta wing for cruise speeds up to Mach 2.

  20. A Basic Study on Countermeasure Against Aerodynamic Force Acting on Train Running Inside Tunnel Using Air Blowing

    NASA Astrophysics Data System (ADS)

    Suzuki, Masahiro; Nakade, Koji

    A basic study of flow controls using air blowing was conducted to reduce unsteady aerodynamic force acting on trains running in tunnels. An air blowing device is installed around a model car in a wind tunnel. Steady and periodic blowings are examined utilizing electromagnetic valves. Pressure fluctuations are measured and the aerodynamic force acting on the car is estimated. The results are as follows: a) The air blowing allows reducing the unsteady aerodynamic force. b) It is effective to blow air horizontally at the lower side of the car facing the tunnel wall. c) The reduction rate of the unsteady aerodynamic force relates to the rate of momentum of the blowing to that of the uniform flow. d) The periodic blowing with the same frequency as the unsteady aerodynamic force reduces the aerodynamic force in a manner similar to the steady blowing.

  1. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  2. Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses

    NASA Astrophysics Data System (ADS)

    Gratton, Patrice

    2011-12-01

    Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method

  3. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat

  4. Methods of reducing vehicle aerodynamic drag

    SciTech Connect

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  5. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  6. Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  7. A computational analysis of the aerodynamic and aeromechanical behavior of the purdue multistage compressor

    NASA Astrophysics Data System (ADS)

    Monk, David James Winchester

    Compressor design programs are becoming more reliant on computational tools to predict and optimize aerodynamic and aeromechanical behavior within a compressor. Recent trends in compressor development continue to push for more efficient, lighter weight, and higher performance machines. To meet these demands, designers must better understand the complex nature of the inherently unsteady flow physics inside of a compressor. As physical testing can be costly and time prohibitive, CFD and other computational tools have become the workhorse during design programs. The objectives of this research were to investigate the aerodynamic and aeromechanical behavior of the Purdue multistage compressor, as well as analyze novel concepts for reducing rotor resonant responses in compressors. Advanced computational tools were utilized to allow an in-depth analysis of the flow physics and structural characteristics of the Purdue compressor, and complement to existing experimental datasets. To analyze the aerodynamic behavior of the compressor a Rolls-Royce CFD code, developed specifically for multistage turbomachinery flows, was utilized. Steady-state computations were performed using the RANS solver on a single-passage mesh. Facility specific boundary conditions were applied to the model, increasing the model fidelity and overall accuracy of the predictions. Detailed investigations into the overall compressor performance, stage performance, and individual blade row performance were completed. Additionally, separation patterns on stator vanes at different loading conditions were investigated by plotting pathlines near the stator suction surfaces. Stator cavity leakage flows were determined to influence the size and extent of stator hub separations. In addition to the aerodynamic analysis, a Rolls-Royce aeroelastic CFD solver was utilized to predict the forced response behavior of Rotor 2, operating at the 1T mode crossing of the Campbell Diagram. This computational tool couples

  8. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1990-01-01

    Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

  9. Multiprocessing on supercomputers for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Mehta, Unmeel B.

    1991-01-01

    Little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPS or more) to improve turnaround time in computational aerodynamics. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, such improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) is applied through multitasking via a strategy that requires relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor.

  10. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  11. Multiprocessing on supercomputers for computational aerodynamics

    SciTech Connect

    Mehta, V.B.; Yarrow, M. )

    1991-01-01

    Little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPS or more) to improve turnaround time in computational aerodynamics. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, such improvement is this speed achieved when multiple processors are used efficiently to execute an algorithm. The authors of this paper apply the concept of multiple instructions and multiple data (MIMD) through multitasking via a strategy that requires relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor.

  12. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Hoist, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem-both single and two-objective variations is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  13. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  14. Computer Simulation of Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Inouye, Mamoru

    1989-01-01

    The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.

  15. Control of helicopter rotorblade aerodynamics

    NASA Technical Reports Server (NTRS)

    Fabunmi, James A.

    1991-01-01

    The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.

  16. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  17. Aerodynamic investigation by infrared imaging

    NASA Technical Reports Server (NTRS)

    Roberts, A. Sidney, Jr.; Mcree, Griffith J.; Gartenberg, Ehud

    1988-01-01

    Infrared imaging systems can be used to measure temperatures of actively heated bodies immersed in an airstream. This monitoring of the convective heat transfer process, provides also information about the interaction between the body and the flow. The concept appeals to Nusselt/Reynolds numbers relations in order to produce data of interest from surface temperatures. Two test cases are presented and reference is made to analytical results: the mapping of a laminar jet and the temperature distribution along a constant power heated flat plate in laminar boundary layer regime. Although this research is currently focused on low speed aerodynamics, the extension to high speed aerodynamics, where the body undergoes frictional heating is of interest in this context, too.

  18. Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics

    NASA Astrophysics Data System (ADS)

    McWilliam, Michael K.; Crawford, Curran

    2014-06-01

    This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane.

  19. Aerodynamic instability: A case history

    NASA Technical Reports Server (NTRS)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  20. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  1. Unsteady aerodynamics of insect flight.

    PubMed

    Ellington, C P

    1995-01-01

    Over the past decade, the importance of unsteady aerodynamic mechanisms for flapping insect flight has become widely recognised. Even at the fastest flight speeds, the old quasi-steady aerodynamic interpretation seems inadequate to explain the extra lift produced by the wings. Recent experiments on rigid model wings have confirmed the effectiveness of several postulated high-lift mechanisms. Delayed stall can produce extra lift for several chords of travel during the translational phases of the wingbeat. Lift can also be enhanced by circulation created during pronation and supination by rotational mechanisms: the fling/peel, the near fling/peel and isolated rotation. These studies have revealed large leading-edge vortices which contribute to the circulation around the wing, augmenting the lift. The mechanisms show distinctive patterns of vortex shedding from leading and trailing edges. The results of flow visualization experiments on tethered insects are reviewed in an attempt to identify the high-lift mechanisms actually employed. The fling/peel mechanism is clearly used by some insects. The near fling/peel is the wing motion most commonly observed, but evidence for the production of high lift remains indirect. For many insects, lift on the upstroke probably results from delayed stall instead of the flex mechanism of isolated rotation. The large leading-edge vortices from experiments on rigid model wings are greatly reduced or missing around the real insect wings, often making the identification of aerodynamic mechanisms inconclusive. A substantial spanwise flow component has been detected over the aerodynamic upper wing surface, which should transport leading-edge vorticity towards the wingtip before it has much time to roll up. This spanwise transport, arising from centrifugal acceleration, is probably a general phenomenon for flapping insect flight. It should reduce and stabilise any leading-edge vortices that are present, which is essential for preventing

  2. Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

    NASA Technical Reports Server (NTRS)

    Li, Wesley Waisang; Pak, Chan-Gi

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle

  3. Application of Approximate Unsteady Aerodynamics for Flutter Analysis

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.

  4. Passive flow control by membrane wings for aerodynamic benefit

    NASA Astrophysics Data System (ADS)

    Timpe, Amory; Zhang, Zheng; Hubner, James; Ukeiley, Lawrence

    2013-03-01

    The coupling of passive structural response of flexible membranes with the flow over them can significantly alter the aerodynamic characteristic of simple flat-plate wings. The use of flexible wings is common throughout biological flying systems inspiring many engineers to incorporate them into small engineering flying systems. In many of these systems, the motion of the membrane serves to passively alter the flow over the wing potentially resulting in an aerodynamic benefit. In this study, the aerodynamic loads and the flow field for a rigid flat-plate wing are compared to free trailing-edge membrane wings with two different pre-tensions at a chord-based Reynolds number of approximately 50,000. The membrane was silicon rubber with a scalloped free trailing edge. The analysis presented includes load measurements from a sting balance along with velocity fields and membrane deflections from synchronized, time-resolved particle image velocimetry and digital image correlation. The load measurements demonstrate increased aerodynamic efficiency and lift, while the synchronized flow and membrane measurements show how the membrane motion serves to force the flow. This passive flow control introduced by the membranes motion alters the flows development over the wing and into the wake region demonstrating how, at least for lower angles of attack, the membranes motion drives the flow as opposed to the flow driving the membrane motion.

  5. Aerodynamic and electrostatic properties of model dry powder aerosols: a comprehensive study of formulation factors.

    PubMed

    Telko, M J; Hickey, A J

    2014-12-01

    The impact of formulation variables on aerodynamic and electrostatic properties of dry powder aerosol particles is of great importance to the development of efficient and reproducible inhaler products. Systematic evaluation requires a well-designed series of experiments using appropriate methods. A factorial experimental design was employed. In broad terms, the conditions considered were two drugs, albuterol and budesonide, in combination with different excipients, drug concentrations, delivered doses, and metering system (capsule composition) and sampled under different flow conditions using standard entrainment tubes. Samples were collected in an electrical low-pressure impactor, to evaluate distribution of electrostatic properties, and an Andersen eight-stage nonviable cascade impactor, to estimate aerodynamic particle size distribution, concurrently. The deposition studies allowed calculation of approximate per particle charge levels for drug. The results showed very high particle charge levels, often in the 1,000-10,000 of elementary charges per particle range, orders of magnitude higher than charge levels predicted by the Boltzmann charge distribution. The charge levels are considerably higher than had previously been estimated (200e per particle).

  6. Applied aerodynamics: Challenges and expectations

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Smith, Charles A.

    1993-01-01

    Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.

  7. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  8. Experimental quiet engine program aerodynamic performance of Fan C

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Parker, D. E.; Dunbar, L. W.

    1972-01-01

    This report presents the aerodynamic component test results of Fan C, a high-bypass-ratio, low-aerodynamic-loading, 1550 feet per second (472.4 m/sec), single-stage fan, which was designed and tested as part of the NASA Experimental Quiet Engine Program. The fan was designed to deliver a bypass pressure ratio of 1.60 with an adiabatic efficiency of 84.2 percent at a total fan flow of 915 lb/sec (415.0 kg/sec). It was tested with and without inlet distortion. A bypass total-pressure ratio of 1.61 and an adiabatic efficiency of 83.9 percent at a total fan flow of 921 lb/sec (417.8 kg/sec) were actually achieved. An operating margin in excess of 14.6 percent was demonstrated at design speed.

  9. Implementation of an aerodynamic lens for TRIGA-SPEC

    NASA Astrophysics Data System (ADS)

    Grund, J.; Düllmann, Ch. E.; Eberhardt, K.; Nagy, Sz.; van de Laar, J. J. W.; Renisch, D.; Schneider, F.

    2016-06-01

    We report on the optimization of the gas-jet system employed to couple the TRIGA-SPEC experiment to the research reactor TRIGA Mainz. CdI2 aerosol particles suspended in N2 as carrier gas are used for an effective transport of fission products from neutron induced 235 U fission from the target chamber to a surface ion source. Operating conditions of the gas-jet were modified to enable the implementation of an aerodynamic lens, fitting into the limited space available in front of the ion source. The lens boosts the gas-jet efficiency by a factor of 4-10. The characterization of the gas-jet system as well as the design of the aerodynamic lens and efficiency studies are presented and discussed.

  10. Summary of NASA aerodynamic and heat transfer studies in turbine vanes and blades

    NASA Technical Reports Server (NTRS)

    Moffitt, T. P.; Stepka, F. S.; Rohlik, H. E.

    1976-01-01

    Aerodynamic effects of trailing edge geometry, hole size, angle, spacing, and shape were studied in two- and three-dimensional cascades and in a warm turbine test series. Heat transfer studies were carried out in various two- and three-dimensional test facilities in order to provide corresponding heat transfer data. Results are shown in terms of cooling effectiveness and aerodynamic efficiency for various coolant fractions, coolant-primary temperature ratios, and cooling configurations.

  11. Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama

    2001-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.

  12. Increase in family allowances.

    PubMed

    1989-01-01

    In July 1989 the family allowance structure in Australia was changed from a 4-rate to a 2-rate structure. The new rates were increased to $A9 a week for the 1st 3 children and $A12 for each additional child. The Family Allowance Supplment rate for children 13-15 years old was raised from $A31 to $A34.10/week. PMID:12344544

  13. Unsteady aerodynamic simulation of multiple bodies in relative motion

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.; Suhs, Norman E.

    1989-01-01

    A prototype method for time-accurate simulation of multiple aerodynamic bodies in relative motion is presented. The method is general and features unsteady chimera domain decomposition techniques and an implicit approximately factored finite-difference procedure to solve the time-dependent thin-layer Navier-Stokes equations. The method is applied to a set of two- and three-dimensional test problems to establish spatial and temporal accuracy, quantify computational efficiency, and begin to test overall code robustness.

  14. Aerodynamic lift effect on satellite orbits

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Cleland, J. G.; Devries, L. L.

    1975-01-01

    Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

  15. HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)

    NASA Video Gallery

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...

  16. Numerical investigation of wind turbine and wind farm aerodynamics

    NASA Astrophysics Data System (ADS)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  17. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  18. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Riley, Jim

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flow-off characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 deg. angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24% on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3% on the PIWT model at 8 deg. angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2%. Therefore, for cases resulting in PIWT model lift loss from 7.3% to 9.2%, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  19. Progress in computational unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1993-01-01

    After vigorous development for over twenty years, Computational Fluid Dynamics (CFD) in the field of aerospace engineering has arrived at a turning point toward maturity. This paper discusses issues related to algorithm development for the Euler/Navier Stokes equations, code validation and recent applications of CFD for unsteady aerodynamics. Algorithm development is a fundamental element for a good CFD program. Code validation tries to bridge the reliability gap between CFD and experiment. Many of the recent applications also take a multidisciplinary approach, which is a future trend for CFD applications. As computers become more affordable, CFD is expected to be a better scientific and engineering tool.

  20. The basic aerodynamics of floatation

    SciTech Connect

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  1. Aerodynamics. [numerical simulation using supercomputers

    NASA Technical Reports Server (NTRS)

    Graves, Randolph A., Jr.

    1988-01-01

    A projection is made of likely improvements in the economics of commercial aircraft operation due to developments in aerodynamics in the next half-century. Notable among these improvements are active laminar flow control techniques' application to third-generation SSTs, in order to achieve an L/D value of about 20; this is comparable to current subsonic transports, and has the further consequence of reducing cabin noise. Wave-cancellation systems may also be used to eliminate sonic boom overpressures, and rapid-combustion systems may be able to eliminate all pollutants from jet exhausts other than CO2.

  2. Aerodynamics. [Numerical simulation using supercomputers

    SciTech Connect

    Graves, R.A. Jr.

    1988-01-01

    A projection is made of likely improvements in the economics of commercial aircraft operation due to developments in aerodynamics in the next half-century. Notable among these improvements are active laminar flow control techniques' application to third-generation SSTs, in order to achieve an L/D value of about 20; this is comparable to current subsonic transports, and has the further consequence of reducing cabin noise. Wave-cancellation systems may also be used to eliminate sonic boom overpressures, and rapid-combustion systems may be able to eliminate all pollutants from jet exhausts other than CO/sub 2/.

  3. Validation of Methodology for Estimating Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2003-01-01

    A basic problem in flight dynamics is the mathematical formulation of the aerodynamic model for aircraft. This study is part of an ongoing effort at NASA Langley to develop a more general formulation of the aerodynamic model for aircraft that includes nonlinear unsteady aerodynamics and to develop appropriate test techniques that facilitate identification of these models. A methodology for modeling and testing using wide-band inputs to estimate the unsteady form of the aircraft aerodynamic model was developed previously but advanced test facilities were not available at that time to allow complete validation of the methodology. The new model formulation retained the conventional static and rotary dynamic terms but replaced conventional acceleration terms with more general indicial functions. In this study advanced testing techniques were utilized to validate the new methodology for modeling. Results of static, conventional forced oscillation, wide-band forced oscillation, oscillatory coning, and ramp tests are presented.

  4. Numerical investigations on the aerodynamics of SHEFEX-III launcher

    NASA Astrophysics Data System (ADS)

    Li, Yi; Reimann, Bodo; Eggers, Thino

    2014-04-01

    The present work is a numerical study of the aerodynamic problems related to the hot stage separation of a multistage rocket. The adapter between the first and the second stage of the rocket uses a lattice structure to vent the plume from the 2nd-stage-motor during the staging. The lattice structure acts as an axisymmetric cavity on the rocket and can affect the flight performance. To quantify the effects, the DLR CFD code, TAU, is applied to study the aerodynamic characteristics of the rocket. The CFD code is also used to simulate the start-up transients of the 2nd-stage-motor. Different plume deflectors are also investigated with the CFD techniques. For the CFD computation in this work, a 2-species-calorically-perfect-gas-model without chemical reactions is selected for modeling the rocket plume, which is a compromise between the demands of accuracy and efficiency.

  5. Formulation for Simultaneous Aerodynamic Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Hou, G. W.; Taylor, A. C., III; Mani, S. V.; Newman, P. A.

    1993-01-01

    An efficient approach for simultaneous aerodynamic analysis and design optimization is presented. This approach does not require the performance of many flow analyses at each design optimization step, which can be an expensive procedure. Thus, this approach brings us one step closer to meeting the challenge of incorporating computational fluid dynamic codes into gradient-based optimization techniques for aerodynamic design. An adjoint-variable method is introduced to nullify the effect of the increased number of design variables in the problem formulation. The method has been successfully tested on one-dimensional nozzle flow problems, including a sample problem with a normal shock. Implementations of the above algorithm are also presented that incorporate Newton iterations to secure a high-quality flow solution at the end of the design process. Implementations with iterative flow solvers are possible and will be required for large, multidimensional flow problems.

  6. Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  7. Dynamic stall and aerodynamic damping

    SciTech Connect

    Rasmussen, F.; Petersen, J.T.; Madsen, H.A.

    1999-08-01

    A dynamic stall model is used to analyze and reproduce open air blade section measurements as well as wind tunnel measurements. The dynamic stall model takes variations in both angle of attack and flow velocity into account. The paper gives a brief description of the dynamic stall model and presents results from analyses of dynamic stall measurements for a variety of experiments with different airfoils in wind tunnel and on operating rotors. The wind tunnel experiments comprises pitching as well as plunging motion of the airfoils. The dynamic stall model is applied for derivation of aerodynamic damping characteristics for cyclic motion of the airfoils in flapwise and edgewise direction combined with pitching. The investigation reveals that the airfoil dynamic stall characteristics depend on the airfoil shape, and the type of motion (pitch, plunge). The aerodynamic damping characteristics, and thus the sensitivity to stall induced vibrations, depend highly on the relative motion of the airfoil in flapwise and edgewise direction, and on a possibly coupled pitch variation, which is determined by the structural characteristics of the blade.

  8. Orion Crew Module Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.

    2011-01-01

    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.

  9. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  10. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  11. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  12. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  13. Aerodynamics of the hovering hummingbird.

    PubMed

    Warrick, Douglas R; Tobalske, Bret W; Powers, Donald R

    2005-06-23

    Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar-avian-body plan.

  14. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  15. Aerodynamic seal assemblies for turbo-machinery

    SciTech Connect

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  16. Aerodynamics of Sounding-Rocket Geometries

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1982-01-01

    Theoretical aerodynamics program TAD predicts aerodynamic characteristics of vehicles with sounding-rocket configurations. These slender, Axisymmetric finned vehicles have a wide range of aeronautical applications from rockets to high-speed armament. TAD calculates characteristics of separate portions of vehicle, calculates interference between portions, and combines results to form total vehicle solution.

  17. Future Computer Requirements for Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  18. The aerodynamics of small Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Schmitz, F. W.

    1980-01-01

    Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.

  19. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  20. Aerodynamic evaluation of two compact radial-inflow turbine rotors

    NASA Astrophysics Data System (ADS)

    Simonyi, P. Susan; Roelke, Richard J.; Stabe, Roy G.; Nowlin, Brentley C.; Dicicco, Danielle

    1995-07-01

    The aerodynamic evaluation of two highly loaded compact radial turbine rotors was conducted at the NASA Lewis Research Center Small Engine Component Test Facility (SECTF). The experimental results were used for proof-of-concept, for modeling radial inflow turbine rotors, and for providing data for code verification. Two rotors were designed to have a shorter axial length, up to a 10-percent reduced diameter, a lighter weight, and equal or higher efficiencies with those of conventional radial inflow turbine rotors. Three configurations were tested: rotor 1, having a 40-percent shorter axial length, with the design stator (stator 1); rotor 1 with the design stator vanes closed down (stator 2); and rotor 2, slightly shorter axially and having higher loading, with stator 2. The stator had 36 vanes and the rotors each had 14 solid blades. Although presently uncooled, the rotor blades were designed for thicknesses which would allow cooling passages to be added. The overall stage performance measurements and the rotor and stator exit flow field surveys were obtained. Measurements of steady state temperatures, pressures, mass flow rates, flow angles, and output power were made at various operating conditions. Data were obtained at corrected speeds of 80, 90, 100, 110, and 120 percent of design over a range of equivalent inlet-to-exit pressure ratios of 3.5, 4.0, 4.5, and 5.0, the maximum pressure ratio achieved. The test showed that the configuration of rotor 1 with stator 1 running at the design pressure ratio produced a flow rate which was 5.6 percent higher than expected. This result indicated the need to close down the stator flow area to reduce the flow. The flow area reduction was accomplished by restaggering the vanes. Rotor 1 was retested with the closed-down stator vanes and achieved the correct mass flow. Rotor 2 was tested only with the restaggered vanes. The test results of the three turbine configurations were nearly identical. Although the measured

  1. Aerodynamic Evaluation of Two Compact Radial-Inflow Turbine Rotors

    NASA Technical Reports Server (NTRS)

    Simonyi, P. Susan; Roelke, Richard J.; Stabe, Roy G.; Nowlin, Brentley C.; Dicicco, Danielle

    1995-01-01

    The aerodynamic evaluation of two highly loaded compact radial turbine rotors was conducted at the NASA Lewis Research Center Small Engine Component Test Facility (SECTF). The experimental results were used for proof-of-concept, for modeling radial inflow turbine rotors, and for providing data for code verification. Two rotors were designed to have a shorter axial length, up to a 10-percent reduced diameter, a lighter weight, and equal or higher efficiencies with those of conventional radial inflow turbine rotors. Three configurations were tested: rotor 1, having a 40-percent shorter axial length, with the design stator (stator 1); rotor 1 with the design stator vanes closed down (stator 2); and rotor 2, slightly shorter axially and having higher loading, with stator 2. The stator had 36 vanes and the rotors each had 14 solid blades. Although presently uncooled, the rotor blades were designed for thicknesses which would allow cooling passages to be added. The overall stage performance measurements and the rotor and stator exit flow field surveys were obtained. Measurements of steady state temperatures, pressures, mass flow rates, flow angles, and output power were made at various operating conditions. Data were obtained at corrected speeds of 80, 90, 100, 110, and 120 percent of design over a range of equivalent inlet-to-exit pressure ratios of 3.5, 4.0, 4.5, and 5.0, the maximum pressure ratio achieved. The test showed that the configuration of rotor 1 with stator 1 running at the design pressure ratio produced a flow rate which was 5.6 percent higher than expected. This result indicated the need to close down the stator flow area to reduce the flow. The flow area reduction was accomplished by restaggering the vanes. Rotor 1 was retested with the closed-down stator vanes and achieved the correct mass flow. Rotor 2 was tested only with the restaggered vanes. The test results of the three turbine configurations were nearly identical. Although the measured

  2. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  3. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  4. Unsteady aerodynamics and flow control for flapping wing flyers

    NASA Astrophysics Data System (ADS)

    Ho, Steven; Nassef, Hany; Pornsinsirirak, Nick; Tai, Yu-Chong; Ho, Chih-Ming

    2003-11-01

    The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (10 4-10 5) flight conditions as their biological counterparts. In this flow regime, rigid fixed wings drop dramatically in aerodynamic performance while flexible flapping wings gain efficacy and are the preferred propulsion method for small natural fliers. Researchers have long realized that steady-state aerodynamics does not properly capture the physical phenomena or forces present in flapping flight at this scale. Hence, unsteady flow mechanisms must dominate this regime. Furthermore, due to the low flight speeds, any disturbance such as gusts or wind will dramatically change the aerodynamic conditions around the MAV. In response, a suitable feedback control system and actuation technology must be developed so that the wing can maintain its aerodynamic efficiency in this extremely dynamic situation; one where the unsteady separated flow field and wing structure are tightly coupled and interact nonlinearly. For instance, birds and bats control their flexible wings with muscle tissue to successfully deal with rapid changes in the flow environment. Drawing from their example, perhaps MAVs can use lightweight actuators in conjunction with adaptive feedback control to shape the wing and achieve active flow control. This article first reviews the scaling laws and unsteady flow regime constraining both biological and man-made fliers. Then a summary of vortex dominated unsteady aerodynamics follows. Next, aeroelastic coupling and its effect on lift and thrust are discussed. Afterwards, flow control strategies found in nature and devised by man to deal with separated flows are examined. Recent work is also presented in using microelectromechanical systems (MEMS) actuators and angular speed

  5. The basic aerodynamics of floatation

    NASA Astrophysics Data System (ADS)

    Davies, M. J.; Wood, D. H.

    1983-09-01

    It is pointed out that the basic aerodynamics of modern floatation ovens, in which the continuous, freshly painted metal strip is floated, dried, and cured, is the two-dimensional analog of that of hovercraft. The basic theory for the static lift considered in connection with the study of hovercraft has had spectacular success in describing the experimental results. This appears surprising in view of the crudity of the theory. The present investigation represents an attempt to explore the reasons for this success. An outline of the basic theory is presented and an approach is shown for deriving the resulting expressions for the lift from the full Navier-Stokes equations in a manner that clearly indicates the limitations on the validity of the expressions. Attention is given to the generally good agreement between the theory and the axisymmetric (about the centerline) results reported by Jaumotte and Kiedrzynski (1965).

  6. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  7. Aerodynamic research on tipvane windturbines

    NASA Astrophysics Data System (ADS)

    Vanbussel, G. J. W.; Vanholten, T.; Vankuik, G. A. M.

    1982-09-01

    Tipvanes are small auxiliary wings mounted at the tips of windturbine blades in such a way that a diffuser effect is generated, resulting in a mass flow augmentation through the turbine disc. For predicting aerodynamic loads on the tipvane wind turbine, the acceleration potential is used and an expansion method is applied. In its simplest form, this method can essentially be classified as a lifting line approach, however, with a proper choice of the basis load distributions of the lifting line, the numerical integration of the pressurefield becomes one dimensional. the integration of the other variable can be performed analytically. The complete analytical expression for the pressure field consists of two series of basic pressure fields. One series is related to the basic load distributions over the turbineblade, and the other series to the basic load distribution over the tipvane.

  8. System for determining aerodynamic imbalance

    NASA Technical Reports Server (NTRS)

    Churchill, Gary B. (Inventor); Cheung, Benny K. (Inventor)

    1994-01-01

    A system is provided for determining tracking error in a propeller or rotor driven aircraft by determining differences in the aerodynamic loading on the propeller or rotor blades of the aircraft. The system includes a microphone disposed relative to the blades during the rotation thereof so as to receive separate pressure pulses produced by each of the blades during the passage thereof by the microphone. A low pass filter filters the output signal produced by the microphone, the low pass filter having an upper cut-off frequency set below the frequency at which the blades pass by the microphone. A sensor produces an output signal after each complete revolution of the blades, and a recording display device displays the outputs of the low pass filter and sensor so as to enable evaluation of the relative magnitudes of the pressure pulses produced by passage of the blades by the microphone during each complete revolution of the blades.

  9. Rarefaction Effects in Hypersonic Aerodynamics

    NASA Astrophysics Data System (ADS)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  10. Aerodynamic characteristics of aerofoils I

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The object of this report is to bring together the investigations of the various aerodynamic laboratories in this country and Europe upon the subject of aerofoils suitable for use as lifting or control surfaces on aircraft. The data have been so arranged as to be of most use to designing engineers and for the purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use, and yet is one for which a desired transformation can be easily made. For this purpose a set of transformation constants is included in this report.

  11. Unsteady Aerodynamics of Insect Flight

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2000-03-01

    The myth `bumble-bees can not fly according to conventional aerodynamics' simply reflects our poor understanding of unsteady viscous fluid dynamics. In particular, we lack a theory of vorticity shedding due to dynamic boundaries at the intermediate Reynolds numbers relevant to insect flight, typically between 10^2 and 10^4, where both viscous and inertial effects are important. In our study, we compute unsteady viscous flows, governed by the Navier-Stokes equation, about a two dimensional flapping wing which mimics the motion of an insect wing. I will present two main results: the existence of a prefered frequency in forward flight and its physical origin, and 2) the vortex dynamics and forces in hovering dragonfly flight.

  12. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  13. Aerodynamic Noise Generated by Shinkansen Cars

    NASA Astrophysics Data System (ADS)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  14. Estimation of Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2001-01-01

    Improved aerodynamic mathematical models, for use in aircraft simulation or flight control design, are required when representing nonlinear unsteady aerodynamics. A key limitation of conventional aerodynamic models is the inability to map frequency and amplitude dependent data into the equations of motion directly. In an effort to obtain a more general formulation of the aerodynamic model, researchers have been led to a parallel requirement for more general testing methods. Testing for a more comprehensive model can lead to a very time consuming number of tests especially if traditional single frequency harmonic testing is attempted. This paper presents an alternative to traditional single frequency forced-oscillation testing by utilizing Schroeder sweeps to efficiently obtain the frequency response of the unsteady aerodynamic model. Schroeder inputs provide signals with a flat power spectrum over a specified frequency band. For comparison, experimental results using the traditional single-frequency inputs are also considered. A method for data analysis to determine an adequate unsteady aerodynamic model is presented. Discussion of associated issues that arise during this type of analysis and comparison of results using traditional single frequency analysis are provided.

  15. Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus.

    PubMed

    Norberg, U M

    1976-08-01

    The kinematics, aerodynamics, and energetics of Plecotus auritus in slow horizontal flight, 2-35 m s-1, are analysed. At this speed the inclination of the stroke path is ca. 58 degrees to the horizontal, the stroke angle ca. 91 degrees, and the stroke frequency ca. 11-9 Hz. A method, based on steady-state aerodynamic and momenthum theories, is derived to calculate the lift and drag coefficients as averaged over the whole wing the whole wing-stroke for horizontal flapping flight. This is a further development of Pennycuick's (1968) and Weis-Fogh's (1972) expressions for calculating the lift coefficient. The lift coefficient obtained varies between 1-4 and 1-6, the drag coefficient between 0-4 and 1-2, and the lift:drag ratio between 1-2 and 4-0. The corresponding, calculated, total specific mechanical power output of the wing muscles varies between 27-0 and 40-4 W kg-1 body mass. A maximum estimate of mechanical efficiency is 0-26. The aerodynamic efficiency varies between 0-07 and 0-10. The force coefficient, total mechanical power output, and mechanical and aerodynamic efficiencies are all plausible, demonstrating that the slow flapping flight of Plecotus is thus explicable by steady-state aerodynamics. The downstroke is the power stroke for the vertical upward forces and the upstroke for the horizontal forward forces.

  16. Aerodynamic design optimization by using a continuous adjoint method

    NASA Astrophysics Data System (ADS)

    Luo, JiaQi; Xiong, JunTao; Liu, Feng

    2014-07-01

    This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows. General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived. With the adjoint method, the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function, regardless of the number of design parameters. An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method. Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil, wing, and wing-body configuration, and the aerodynamic performance improvement of turbine and compressor blade rows. The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.

  17. Numerical simulation of the tip aerodynamics and acoustics test

    NASA Astrophysics Data System (ADS)

    Tejero E, F.; Doerffer, P.; Szulc, O.; Cross, J. L.

    2016-04-01

    The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators (RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor (without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA (Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test (TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.

  18. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  19. Transpiration Control Of Aerodynamics Via Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Wood, Richard M.; Bauer, Steven X. S.

    1993-01-01

    Quasi-active porous surface used to control pressure loading on aerodynamic surface of aircraft or other vehicle, according to proposal. In transpiration control, one makes small additions of pressure and/or mass to cavity beneath surface of porous skin on aerodynamic surface, thereby affecting rate of transpiration through porous surface. Porous skin located on forebody or any other suitable aerodynamic surface, with cavity just below surface. Device based on concept extremely lightweight, mechanically simple, occupies little volume in vehicle, and extremely adaptable.

  20. Performance aerodynamics of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Arrington, J. P.; Mccandless, R. S.

    1984-01-01

    A method for predicting the performance aerodynamics of aeroassisted orbital transfer vehicles was developed based on techniques that were used in the aerodynamic databook of the Space Shuttle orbiter and theories from the Hypersonic Arbitrary Body Program. The method spans the entire flight profile of the aeroassisted orbital transfer vehicles from the extreme high altitude non-continuum regime to the highly viscous continuum regime. Results from this method are compared with flight data from the Shuttle orbiter, Apollo Capsule, and the Viking Aeroshell. Finally, performance aerodynamics are estimated for three aeroassisted orbital transfer vehicles that range from low to high lift-to-drag ratio configurations.

  1. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting...

  2. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting...

  3. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting...

  4. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting...

  5. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  6. Predicting Accumulations of Ice on Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin; Potapczuk, Mark; Addy, Gene; Wright, William

    2003-01-01

    LEWICE is a computer program that predicts the accumulation of ice on two-dimensional aerodynamic surfaces under conditions representative of the flight of an aircraft through an icing cloud. The software first calculates the airflow surrounding the body of interest, then uses the airflow to compute the trajectories of water droplets that impinge on the surface of the body. The droplet trajectories are also used to compute impingement limits and local collection efficiencies, which are used in subsequent ice-growth calculations and are also useful for designing systems to protect against icing. Next, the software predicts the shape of accumulating ice by modeling transfers of mass and energy in small control volumes. The foregoing computations are repeated over several computational time steps until the total icing exposure time is reached. Results of computations by LEWICE have been compared with an extensive database of measured ice shapes obtained from experiments, and have been shown to closely approximate those shapes under most conditions of interest to the aviation community.

  7. The NASA Aircraft Energy Efficiency program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  8. Using the HARV simulation aerodynamic model to determine forebody strake aerodynamic coefficients from flight data

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.

  9. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0 x 10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  10. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0×10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  11. Developments in steady and unsteady aerodynamics for use in aeroelastic analysis and design. [for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Bland, S. R.

    1976-01-01

    A review is given of seven research projects which are aimed at improving the generality, accuracy, and computational efficiency of steady and unsteady aerodynamic theory for use in aeroelastic analysis and design. These projects indicate three major thrusts of current research efforts: (1) more realistic representation of steady and unsteady subsonic and supersonic loads on aircraft configurations of general shape with emphasis on structural-design applications, (2) unsteady aerodynamics for application in active-controls analyses, and (3) unsteady aerodynamics for the frequently critical transonic speed range. The review of each project includes theoretical background, description of capabilities, results of application, current status, and plans for further development and use.

  12. Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David (Technical Monitor); Rajkumar, T.; Bardina, Jorge

    2003-01-01

    Basic aerodynamic coefficients are modeled as functions of angle of attack, speed brake deflection angle, Mach number, and side slip angle. Most of the aerodynamic parameters can be well-fitted using polynomial functions. We previously demonstrated that a neural network is a fast, reliable way of predicting aerodynamic coefficients. We encountered few under fitted and/or over fitted results during prediction. The training data for the neural network are derived from wind tunnel test measurements and numerical simulations. The basic questions that arise are: how many training data points are required to produce an efficient neural network prediction, and which type of transfer functions should be used between the input-hidden layer and hidden-output layer. In this paper, a comparative study of the efficiency of neural network prediction based on different transfer functions and training dataset sizes is presented. The results of the neural network prediction reflect the sensitivity of the architecture, transfer functions, and training dataset size.

  13. Effect of vane opening on aerodynamic performance of the ram-rotor test system

    NASA Astrophysics Data System (ADS)

    Han, Ji-ang; Guan, Jian; Zhong, Jingjun; Yuan, Chenguang

    2016-06-01

    In order to research the influence of adjustable vane on the aerodynamic performance of the ram-rotor test system, FLUENT software has been adopted to simulate the flow passage of the ram-rotor test system numerically. The vane opening is controlled by changing the stagger angle of the vane blades. Results show that flow uniformity of vane outlet is influenced by the vane openings, which has an impact on the aerodynamic loss to some extent. Total pressure ratio, adiabatic efficiency and mass flow rate can be regulated by different openings of the vane. Compared with -8° vane opening, top efficiency of the ram-rotor increases by about 13.8% at +6° opening. And total pressure ratio drops by 5.87%. The rising opening increases the relative Mach number at inlet of the ram-rotor and weakens the intensity of the tip clearance leakage, which comes to a decreasing aerodynamic loss.

  14. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  15. Aerodynamic Characterization of a Modern Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  16. Aerodynamic Performance of Hand Launch Glider

    NASA Astrophysics Data System (ADS)

    Koike, Masaru; Ishii, Mitsuru

    In recent years Micro Air Vehicles (MAV) for disaster aerial video are developed vigorously. In order to improve aerodynamic performance of MAV wing performance in low Reynolds numbers (Re) need to be improved, but research on the theme are very rare. In category of Hand Launch Glider, a kind of model aircraft, glide performance are competed, as a result high performance airfoils in Re is around 20,000 are developed. Therefore for MAV's aerodynamic performance improvement airfoils of Hand Launch Gliders should be referred and aerodynamic characteristics of the airfoils desired to be studied. So in this research, aerodynamic characteristics of the gliders are measured in wind tunnel. And also consistency between wind tunnel test and glide test in calm air is examined to confirm reliability of wind tunnel test. Comparison of different airfoils and flow visualization are also performed.

  17. Hypervelocity Free-Flight Aerodynamic Facility (HFFAF)

    NASA Video Gallery

    The HFFAF is the only aeroballistic range the nation currently capable of testing in gases other than air and at sub-atmospheric pressures. It is used primarily to study the aerodynamics, Aerotherm...

  18. Aerodynamic Forces on a Vibrating Unstaggered Cascade

    NASA Technical Reports Server (NTRS)

    Soehngen, H.

    1957-01-01

    The unsteady aerodynamic forces, [based on two-dimensional incompressible flow considerations], are determined for an unstaggered cascade, the blades of which are vibrating in phase in an approach flow parallel to the blades.

  19. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  20. Aerodynamic Analyses Requiring Advanced Computers, part 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

  1. Uniaxial aerodynamic attitude control of artificial satellites

    NASA Technical Reports Server (NTRS)

    Sazonov, V. V.

    1983-01-01

    Within the context of a simple mechanical model the paper examines the movement of a satellite with respect to the center of masses under conditions of uniaxial aerodynamic attitude control. The equations of motion of the satellite take account of the gravitational and restorative aerodynamic moments. It is presumed that the aerodynamic moment is much larger than the gravitational, and the motion equations contain a large parameter. A two-parameter integrated surface of these equations is constructed in the form of formal series in terms of negative powers of the large parameter, describing the oscillations and rotations of the satellite about its lengthwise axis, approximately oriented along the orbital tangent. It is proposed to treat such movements as nominal undisturbed motions of the satellite under conditions of aerodynamic attitude control. A numerical investigation is made for the above integrated surface.

  2. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  3. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro

    2015-11-01

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  4. Aerodynamic and Aeroelastic Insights using Eigenanalysis

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Dowell, Earl H.

    1999-01-01

    This paper presents novel analytical results for eigenvalues and eigenvectors produced using discrete time aerodynamic and aeroelastic models. An unsteady, incompressible vortex lattice aerodynamic model is formulated in discrete time; the importance of several modeling parameters is examined. A detailed study is made of the behavior of the aerodynamic eigenvalues both in discrete and continuous time. The aerodynamic model is then incorporated into aeroelastic equations of motion. Eigenanalyses of the coupled equations produce stability results and modal characteristics which are valid for critical and non-critical velocities. Insight into the modeling and physics associated with aeroelastic system behavior is gained by examining both the eigenvalues and the eigenvectors. Potential pitfalls in discrete time model construction and analysis are examined.

  5. HSR Aerodynamic Performance Status and Challenges

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Antani, Tony; Ball, Doug; Calloway, Robert L.; Snyder, Phil

    1999-01-01

    This paper describes HSR (High Speed Research) Aerodynamic Performance Status and Challenges. The topics include: 1) Aero impact on HSR; 2) Goals and Targets; 3) Progress and Status; and 4) Remaining Challenges. This paper is presented in viewgraph form.

  6. Means for controlling aerodynamically induced twist

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1982-01-01

    A control mechanism which provides active compensation for aerodynamically induced twist deformation of high aspect ratio wings consists of a torque tube, internal to each wing and rigidly attached near the tip of each wing, which is moved by an actuator located in the aircraft fuselage. As changes in the aerodynamic loads on the wings occur the torque tube is rotated to compensate for the induced wing twist.

  7. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  8. Exploring bird aerodynamics using radio-controlled models.

    PubMed

    Hoey, Robert G

    2010-12-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.

  9. The production of 'aerodynamically equivalent' drug and excipient inhalable powders using a novel fractionation technique.

    PubMed

    Taki, Mohammed; Marriott, Christopher; Zeng, Xian-Ming; Martin, Gary P

    2011-02-01

    Inhalation particles can be produced by various techniques such as milling, controlled crystallisation and spray-drying, but current methods cannot, to-date, precisely control the aerodynamic size distribution of produced powders. The aim of this study was to develop and validate a novel preparative technique whereby the efficient and reproducible aerodynamic fractionation of drug and excipient powders could be achieved. Salmeterol xinafoate (SX), fluticasone propionate (FP) and fine α-lactose monohydrate (FL) were chosen as model compounds. Powders were aerosolised using a dry powder feeder into a Next Generation Impactor operated at 60 L min(-1). Powders deposited on NGI stages were then collected and analysed. The fractionation process was successful for all powders producing significant linear correlations between the pre-set aerodynamic cut-off limits and geometric size measurements. For each of SX, FP and FL, sufficient powder quantities were recovered from NGI stages 1-6 producing six fractions with sequential aerodynamic and geometric particle size distributions. The fractionation technique was efficient and reproducible for all powders studied. The method can be equally applied to various drugs and excipients regardless of their previous production/processing history. Therefore, the aerodynamic fractionation technique may be used to compare and contrast samples produced by different processes. PMID:21185373

  10. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  11. Aerodynamics of heat exchangers for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  12. The aerodynamics of supersonic parachutes

    SciTech Connect

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlations of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.

  13. Aerodynamics of Unsteady Sailing Kinetics

    NASA Astrophysics Data System (ADS)

    Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk

    2015-11-01

    In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.

  14. Parachute Aerodynamics From Video Data

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Cruz, Juan R.

    2005-01-01

    A new data analysis technique for the identification of static and dynamic aerodynamic stability coefficients from wind tunnel test video data is presented. This new technique was applied to video data obtained during a parachute wind tunnel test program conducted in support of the Mars Exploration Rover Mission. Total angle-of-attack data obtained from video images were used to determine the static pitching moment curve of the parachute. During the original wind tunnel test program the static pitching moment curve had been determined by forcing the parachute to a specific total angle-of -attack and measuring the forces generated. It is shown with the new technique that this parachute, when free to rotate, trims at an angle-of-attack two degrees lower than was measured during the forced-angle tests. An attempt was also made to extract pitch damping information from the video data. Results suggest that the parachute is dynamically unstable at the static trim point and tends to become dynamically stable away from the trim point. These trends are in agreement with limit-cycle-like behavior observed in the video. However, the chaotic motion of the parachute produced results with large uncertainty bands.

  15. Aerodynamic characteristics of French consonants

    NASA Astrophysics Data System (ADS)

    Demolin, Didier; Hassid, Sergio; Soquet, Alain

    2001-05-01

    This paper reports some aerodynamic measurements made on French consonants with a group of ten speakers. Speakers were recorded while saying nonsense words in phrases such as papa, dis papa encore. The nonsense words in the study combined each of the French consonants with three vowels /i, a, u/ to from two syllables words with the first syllable being the same as the second. In addition to the audio signal, recordings were made of the oral airflow, the pressure of the air in the pharynx above the vocal folds and the pressure of the air in the trachea just below the vocal folds. The pharyngeal pressure was recorded via a catheter (i.d. 5 mm) passed through the nose so that its open end could be seen in the pharynx below the uvula. The subglottal pressure was recorded via a tracheal puncture between the first and the second rings of the trachea or between the cricoid cartilage and the first tracheal ring. Results compare subglottal presssure, pharyngeal pressure, and airflow values. Comparisons are made between values obtained with male and female subjects and various types of consonants (voiced versus voiceless at the same place of articulation, stops, fricatives, and nasals).

  16. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  17. Integrated Aerodynamic/Structural/Dynamic Analyses of Aircraft with Large Shape Changes

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Chwalowski, Pawel; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2007-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium-to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a

  18. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  19. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  20. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    NASA Technical Reports Server (NTRS)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of

  1. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  2. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  3. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  4. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  5. An Investigation of the Aerodynamics and Cooling of a Horizontally-Opposed Engine Installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.

    1977-01-01

    A research program to investigate the aerodynamics of reciprocating aircraft engine cooling installations is discussed. Current results from a flight test program are presented concerning installation flow measurement methods. The influence of different inlet designs on installation cooling effectiveness and efficiency are described.

  6. Multi Objective Aerodynamic Optimization Using Parallel Nash Evolutionary/deterministic Hybrid Algorithms

    NASA Astrophysics Data System (ADS)

    Tang, Zhili

    2016-06-01

    This paper solved aerodynamic drag reduction of transport wing fuselage configuration in transonic regime by using a parallel Nash evolutionary/deterministic hybrid optimization algorithm. Two sets of parameters are used, namely globally and locally. It is shown that optimizing separately local and global parameters by using Nash algorithms is far more efficient than considering these variables as a whole.

  7. Aerodynamic characteristics and design guidelines of push-pull ventilation systems.

    PubMed

    Huang, R F; Lin, S Y; Jan, S-Y; Hsieh, R H; Chen, Y-K; Chen, C-W; Yeh, W-Y; Chang, C-P; Shih, T-S; Chen, C-C

    2005-01-01

    Aerodynamic characteristics such as the flow patterns, velocity field, streamline evolutions, characteristic flow modes and characteristic flow regimes of the push-pull ventilation system are cross-examined by using the laser-light sheet smoked-flow visualization method and laser Doppler velocimetry. Four characteristic flow modes, which are denoted as dispersion, transition, encapsulation and strong suction, are identified in the domain of the push-jet and pull-flow velocities at various open-surface tank widths and rising gas velocities. It is argued phenomenologically, from the aerodynamic point of view, that operating the system in the strong suction regime would be a better strategy than operating it in other characteristic regimes for the consideration of capture efficiency. Design guidelines are developed and summarized based on the results obtained from this study. The regression formulas for calculating the critical values of the push-jet and the pull-flow velocities are provided for easy access. The sulfur hexafluoride tracer gas validation technique is performed to measure the capture efficiency. The results of tracer gas validations are consistent with those obtained from the aerodynamic visualization and measurements. The operation points obtained by employing the American Conference of Governmental Industrial Hygienists design criteria are compared with the results obtained in this study for both the aerodynamics and the capture efficiency. Methods for improving the capture efficiency and energy consumptions are suggested.

  8. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  9. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  10. Aerodynamic heating in hypersonic flows

    NASA Technical Reports Server (NTRS)

    Reddy, C. Subba

    1993-01-01

    Aerodynamic heating in hypersonic space vehicles is an important factor to be considered in their design. Therefore the designers of such vehicles need reliable heat transfer data in this respect for a successful design. Such data is usually produced by testing the models of hypersonic surfaces in wind tunnels. Most of the hypersonic test facilities at present are conventional blow-down tunnels whose run times are of the order of several seconds. The surface temperatures on such models are obtained using standard techniques such as thin-film resistance gages, thin-skin transient calorimeter gages and coaxial thermocouple or video acquisition systems such as phosphor thermography and infrared thermography. The data are usually reduced assuming that the model behaves like a semi-infinite solid (SIS) with constant properties and that heat transfer is by one-dimensional conduction only. This simplifying assumption may be valid in cases where models are thick, run-times short, and thermal diffusivities small. In many instances, however, when these conditions are not met, the assumption may lead to significant errors in the heat transfer results. The purpose of the present paper is to investigate this aspect. Specifically, the objectives are as follows: (1) to determine the limiting conditions under which a model can be considered a semi-infinite body; (2) to estimate the extent of errors involved in the reduction of the data if the models violate the assumption; and (3) to come up with correlation factors which when multiplied by the results obtained under the SIS assumption will provide the results under the actual conditions.

  11. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  12. 40 CFR 35.2025 - Allowance and advance of allowance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... advance of allowance. (a) Allowance. Step 2+3 and Step 3 grant agreements will include an allowance for facilities planning and design of the project and Step 7 agreements will include an allowance for facility... would receive under paragraph (a) of this section. (5) In the event a Step 2+3, Step 3 or Step 7...

  13. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  14. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  15. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance.

    PubMed

    Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin

    2011-04-12

    Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior--in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics. PMID:21444774

  16. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance.

    PubMed

    Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin

    2011-04-12

    Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior--in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics.

  17. Missile Aerodynamics for Ascent and Re-entry

    NASA Technical Reports Server (NTRS)

    Watts, Gaines L.; McCarter, James W.

    2012-01-01

    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

  18. Multiprocessing on supercomputers for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Mehta, Unmeel B.

    1990-01-01

    Very little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPs or more) in computational aerodynamics to significantly improve turnaround time. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, the improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) through multi-tasking is applied via a strategy which requires relatively minor modifications to an existing code for a single processor. Essentially, this approach maps the available memory to multiple processors, exploiting the C-FORTRAN-Unix interface. The existing single processor code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor. As a demonstration of this approach, a Multiple Processor Multiple Grid (MPMG) code is developed. It is capable of using nine processors, and can be easily extended to a larger number of processors. This code solves the three-dimensional, Reynolds averaged, thin-layer and slender-layer Navier-Stokes equations with an implicit, approximately factored and diagonalized method. The solver is applied to generic oblique-wing aircraft problem on a four processor Cray-2 computer. A tricubic interpolation scheme is developed to increase the accuracy of coupling of overlapped grids. For the oblique-wing aircraft problem, a speedup of two in elapsed (turnaround) time is observed in a saturated time-sharing environment.

  19. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  20. Aerodynamics of high-speed railway train

    NASA Astrophysics Data System (ADS)

    Raghunathan, Raghu S.; Kim, H.-D.; Setoguchi, T.

    2002-10-01

    Railway train aerodynamic problems are closely associated with the flows occurring around train. Much effort to speed up the train system has to date been paid on the improvement of electric motor power rather than understanding the flow around the train. This has led to larger energy losses and performance deterioration of the train system, since the flows around train are more disturbed due to turbulence of the increased speed of the train, and consequently the flow energies are converted to aerodynamic drag, noise and vibrations. With the speed-up of train, many engineering problems which have been neglected at low train speeds, are being raised with regard to aerodynamic noise and vibrations, impulse forces occurring as two trains intersect each other, impulse wave at the exit of tunnel, ear discomfort of passengers inside train, etc. These are of major limitation factors to the speed-up of train system. The present review addresses the state of the art on the aerodynamic and aeroacoustic problems of high-speed railway train and highlights proper control strategies to alleviate undesirable aerodynamic problems of high-speed railway train system.

  1. Aerodynamic and aerothermodynamic trade-off analysis of a small hypersonic flying test bed

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe

    2011-08-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis aiming to design a small hypersonic flying test bed with a relatively simple vehicle architecture. Such vehicle will have to be launched with a sounding rocket and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry technologies such as boundary-layer transition and shock-shock interaction phenomena. The flight shall be conducted at hypersonic Mach number, in the range 6-8 at moderate angles of attack. In the paper some design analyses are shown as, for example, the longitudinal and lateral-directional stability analysis. A preliminary optimization of the configuration has been also done to improve the aerodynamic performance and stability of the vehicle. Several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper. The aerodynamic model of vehicle is also provided.

  2. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  3. Development of multi-element active aerodynamics for the formula sae car

    NASA Astrophysics Data System (ADS)

    Merkel, James Patrick

    This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.

  4. Increased ephemeris accuracy using attitude-dependent aerodynamic force coefficients for inertially stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Baker, David F.

    1991-01-01

    The FREEMAC program used to generate the aerodynamic coefficients, as well as associated routines that allow the results to be used in other software is described. These capabilities are applied in two numerical examples to the short-term orbit prediction of the Gamma Ray Observatory (GRO) and Hubble Space Telescope (HST) spacecraft. Predictions using attitude-dependent aerodynamic coefficients were made on a modified version of the PC-based Ephemeris Generation Program (EPHGEN) and were compared to definitive orbit solutions obtained from actual tracking data. The numerical results show improvement in the predicted semi-major axis and along-track positions that would seem to be worth the added computational effort. Finally, other orbit and attitude analysis applications are noted that could profit from using FREEMAC-calculated aerodynamic coefficients, including orbital lifetime studies, orbit determination methods, attitude dynamics simulators, and spacecraft control system component sizing.

  5. Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Van Norman, John W.; Dyakonov, Artem A.; Karlgaard, Christopher D.; Way, David W.; Kutty, Prasad

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory entry vehicle successfully entered Mars atmosphere, flying a guided entry until parachute deploy. The Curiosity rover landed safely in Gale crater upon completion of the Entry Descent and Landing sequence. This paper compares the aerodynamics of the entry capsule extracted from onboard flight data, including Inertial Measurement Unit (IMU) accelerometer and rate gyro information, and heatshield surface pressure measurements. From the onboard data, static force and moment data has been extracted. This data is compared to preflight predictions. The information collected by MSL represents the most complete set of information collected during Mars entry to date. It allows the separation of aerodynamic performance from atmospheric conditions. The comparisons show the MSL aerodynamic characteristics have been identified and resolved to an accuracy better than the aerodynamic database uncertainties used in preflight simulations. A number of small anomalies have been identified and are discussed. This data will help revise aerodynamic databases for future missions and will guide computational fluid dynamics (CFD) development to improved prediction codes.

  6. Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements

    NASA Technical Reports Server (NTRS)

    Larosiliere, L. M.; Skoch, G. J.; Prahst, P. S.

    1997-01-01

    The performance and flow structure in an unshrouded impeller of approximately 4:1 pressure ratio is synthesized on the basis of a detailed analysis of 3D viscous CFD results and aerodynamic measurements. A good data match was obtained between CFD and measurements using laser anemometry and pneumatic probes. This solidified the role of the CFD model as a reliable representation of the impeller internal flow structure and integrated performance. Results are presented showing the loss production and secondary flow structure in the impeller. The results indicate that while the overall impeller efficiency is high, the impeller shroud static pressure recovery potential is underdeveloped leading to a performance degradation in the downstream diffusing element. Thus, a case is made for a follow-on impeller parametric design study to improve the flow quality. A strategy for aerodynamic performance enhancement is outlined and an estimate of the gain in overall impeller efficiency that might be realized through improvements to the relative diffusion process is provided.

  7. Aerodynamic penalties of heavy rain on a landing aircraft

    NASA Technical Reports Server (NTRS)

    Haines, P. A.; Luers, J. K.

    1982-01-01

    The aerodynamic penalties of very heavy rain on landing aircraft were investigated. Based on severity and frequency of occurrence, the rainfall rates of 100 mm/hr, 500 mm/hr, and 2000 mm/hr were designated, respectively, as heavy, severe, and incredible. The overall and local collection efficiencies of an aircraft encountering these rains were calculated. The analysis was based on raindrop trajectories in potential flow about an aircraft. All raindrops impinging on the aircraft are assumed to take on its speed. The momentum loss from the rain impact was later used in a landing simulation program. The local collection efficiency was used in estimating the aerodynamic roughness of an aircraft in heavy rain. The drag increase from this roughness was calculated. A number of landing simulations under a fixed stick assumption were done. Serious landing shortfalls were found for either momentum or drag penalties and especially large shortfalls for the combination of both. The latter shortfalls are comparable to those found for severe wind shear conditions.

  8. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  9. Aerodynamics of biplane and tandem wings at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Jones, R.; Cleaver, D. J.; Gursul, I.

    2015-06-01

    Experiments were performed to investigate the aerodynamic characteristics of two-wing configurations at a low Reynolds number of 100,000. The wing models were rectangular flat plates with a semi-aspect ratio of two. The stagger between the wings was varied from ∆ X/c = 0 to 1.5; the gap was varied from ∆ Y/c = 0 to 2 and ∆ Y/c = -1.5 to 1.5 for biplane and tandem configurations, respectively, with the decalage angle fixed at 0°. Lift, drag, aerodynamic efficiency and power efficiency ratios show that for small incidence angles, performance compared with the single wing is degraded. However, for single-wing post-stall angles of attack, lift performance improves and stall is delayed significantly for many configurations with nonzero gap, i.e., ∆ Y/c ≥ 0. For a fixed angle of attack, there are optimal gaps between the wings for which total lift becomes maximum. Particle image velocimetry measurements show that performance improvement relies heavily on the strength of the inter-wing flow and the interaction of the separated shear layers from the leading edge and trailing edge of the leading wing with the trailing wing. Unsteady forces are found to intensify for certain two-wing configurations. A switching between the stalled and unstalled states for the trailing wing as well as a switching between the merged and distinct wakes is shown to have high flow unsteadiness and large lift fluctuations.

  10. An aerodynamic tradeoff study of the scissor wing configuration

    NASA Technical Reports Server (NTRS)

    Selberg, Bruce P.; Rokhsaz, Kamran; Housh, Clinton S.

    1990-01-01

    A scissor wing configuration, consisting of two independently sweeping wings was numerically studied. This configuration was also compared with an equivalent fixed wing baseline. Aerodynamic and stability and control characteristics of these geometries were investigated over a wide range of flight Mach numbers. It is demonstrated that in the purely subsonic flight regime, the scissor wing can achieve higher aerodynamic efficiency as the result of slightly higher aspect ratio. In the transonic regime, the lift to drag ratio of the scissor wing is shown to be higher than that of the baseline, for higer values of the lift coefficient. This tends to make the scissor wing more efficient during transonic cruise at high altitudes as well as during air combat at all altitudes. In supersonic flight, where the wings are maintained at maximum sweep angle, the scissor wing is shown to have a decided advantage in terms of reduced wave drag. From the view point of stability and control, the scissor wing is shown to have distinct advantages. It is shown that this geometry can maintain a constant static margin in supersonic as well as subsonic flight, by proper sweep scheduling. Furthermore, it is demonstrated that addition of wing mounted elevons can greatly enhance control authority in pitch and roll.

  11. Flight in slow motion: aerodynamics of the pterosaur wing

    PubMed Central

    Palmer, Colin

    2011-01-01

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders. PMID:21106584

  12. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2001-01-01

    An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number

  13. Flight in slow motion: aerodynamics of the pterosaur wing.

    PubMed

    Palmer, Colin

    2011-06-22

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders. PMID:21106584

  14. Flight in slow motion: aerodynamics of the pterosaur wing.

    PubMed

    Palmer, Colin

    2011-06-22

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders.

  15. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.

    PubMed

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J

    2015-07-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  16. Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles

    SciTech Connect

    Goodarz Ahmadi

    2008-06-30

    A computational model for supersonic flows of compressible gases in an aerodynamic lens with several lenses and in a supersonic/hypersonic impactor was developed. Airflow conditions in the aerodynamic lens were analyzed and contour plots for variation of Mach number, velocity magnitude and pressure field in the lens were evaluated. The nano and micro-particle trajectories in the lens and their focusing and transmission efficiencies were evaluated. The computational model was then applied to design of a aerodynamic lens that could generate focus particle beams while operating under atmospheric conditions. The computational model was also applied to airflow condition in the supersonic/hypersonic impactor. Variations of airflow condition and particle trajectories in the impactor were evaluated. The simulation results could provide understanding of the performance of the supersonic and hypersonic impactors that would be helpful for the design of such systems.

  17. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.

    PubMed

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J

    2015-07-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings.

  18. Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight.

    PubMed

    Dyke, Gareth; de Kat, Roeland; Palmer, Colin; van der Kindere, Jacques; Naish, Darren; Ganapathisubramani, Bharathram

    2013-01-01

    Understanding the aerodynamic performance of feathered, non-avialan dinosaurs is critical to reconstructing the evolution of bird flight. Here we show that the Early Cretaceous five-winged paravian Microraptor is most stable when gliding at high-lift coefficients (low lift/drag ratios). Wind tunnel experiments and flight simulations show that sustaining a high-lift coefficient at the expense of high drag would have been the most efficient strategy for Microraptor when gliding from, and between, low elevations. Analyses also demonstrate that anatomically plausible changes in wing configuration and leg position would have made little difference to aerodynamic performance. Significant to the evolution of flight, we show that Microraptor did not require a sophisticated, 'modern' wing morphology to undertake effective glides. This is congruent with the fossil record and also with the hypothesis that symmetric 'flight' feathers first evolved in dinosaurs for non-aerodynamic functions, later being adapted to form lifting surfaces. PMID:24048346

  19. Parallel computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    NASA Technical Reports Server (NTRS)

    Janetzke, D. C.; Murthy, D. V.

    1991-01-01

    Aeroelastic analysis is mult-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic analysis capability on a distributed-memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a three-dimensional unsteady aerodynamic model and a panel discretization. Efficiencies up to 85 percent are demonstrated using 32 processors. The effects of subtask ordering, problem size and network topology are presented. A comparison to results on a shared-memory computer indicates that higher speedup is achieved on the distributed-memory system.

  20. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  1. Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2014-01-01

    Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.

  2. The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models

    NASA Technical Reports Server (NTRS)

    Hill, Melissa A.; Jackson, E. Bruce

    2007-01-01

    It can take weeks or months to incorporate a new aerodynamic model into a vehicle simulation and validate the performance of the model. The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) has been proposed as a means to reduce the time required to accomplish this task by defining a standard format for typical components of a flight dynamic model. The purpose of this paper is to describe an object-oriented C++ implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML and a vehicle simulation. Using the DaveMLTranslator class, aerodynamic or other subsystem models can be automatically imported and verified at run-time, significantly reducing the elapsed time between receipt of a DAVE-ML model and its integration into a simulation environment. The translator performs variable initializations, data table lookups, and mathematical calculations for the aerodynamic build-up, and executes any embedded static check-cases for verification. The implementation is efficient, enabling real-time execution. Simple interface code for the model inputs and outputs is the only requirement to integrate the DaveMLTranslator as a vehicle aerodynamic model. The translator makes use of existing table-lookup utilities from the Langley Standard Real-Time Simulation in C++ (LaSRS++). The design and operation of the translator class is described and comparisons with existing, conventional, C++ aerodynamic models of the same vehicle are given.

  3. Estimation of Unsteady Aerodynamics in the Wake of a Freely Flying European Starling (Sturnus vulgaris)

    PubMed Central

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J.; Bezner-Kerr, Wayne; Guglielmo, Christopher G.; Kopp, Gregory A.; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243

  4. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).

    PubMed

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.

  5. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).

    PubMed

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243

  6. Aerodynamics of magnetic levitation (MAGLEV) trains

    NASA Technical Reports Server (NTRS)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  7. History of the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Ballhaus, William F., Jr.

    1987-01-01

    The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.

  8. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  9. Nonlinear aerodynamic modeling using multivariate orthogonal functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1993-01-01

    A technique was developed for global modeling of nonlinear aerodynamic coefficients using multivariate orthogonal functions based on the data. Each orthogonal function retained in the model was decomposed into an expansion of ordinary polynomials in the independent variables, so that the final model could be interpreted as selectively retained terms from a multivariable power series expansion. A predicted squared-error metric was used to determine the orthogonal functions to be retained in the model; analytical derivatives were easily computed. The approach was demonstrated on the Z-body axis aerodynamic force coefficient (Cz) wind tunnel data for an F-18 research vehicle which came from a tabular wind tunnel and covered the entire subsonic flight envelope. For a realistic case, the analytical model predicted experimental values of Cz very well. The modeling technique is shown to be capable of generating a compact, global analytical representation of nonlinear aerodynamics. The polynomial model has good predictive capability, global validity, and analytical differentiability.

  10. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  11. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  12. Aerodynamic tests of Darrieus wind turbine blades

    SciTech Connect

    Migliore, P.G.; Walters, R.E.; Wolfe, W.P.

    1983-03-01

    An indoor facility for the aerodynamic testing of Darrieus turbine blades was developed. Lift, drag, and moment coefficients were measured for two blades whose angle of attack and chord-to-radius ratio were varied. The first blade used an NACA 0015 airfoil section; the second used a 15% elliptical cross section with a modified circular arc trailing edge. Blade aerodynamic coefficients were corrected to section coefficients for comparison to published rectilinear flow data. Although the airfoil sections were symmetrical, moment coefficients were not zero and the lift and drag curves were asymmetrical about zero lift coefficient and angle of attack. These features verified the predicted virtual camber and incidence phenomena. Boundary-layer centrifugal effects were manifested by discontinuous lift curves and large differences in the angle of zero lift between th NACA 0015 and elliptical airfoils. It was concluded that rectilinear flow aerodynamic data are not applicable to Darrieus turbine blades, even for small chord-to-radius ratios.

  13. High-lift aerodynamics: Prospects and plans

    NASA Technical Reports Server (NTRS)

    Olson, Lawrence E.

    1992-01-01

    The emergence of high-lift aerodynamics is reviewed as one of the key technologies to the development of future subsonic transport aircraft. Airport congestion, community noise, economic competitiveness, and safety - the drivers that make high-lift an important technology - are discussed. Attention is given to the potentially synergistic integration of high-lift aerodynamics with two other advanced technologies: ultra-high bypass ratio turbofan engines and hybrid laminar flow control. A brief review of the ongoing high-lift research program at Ames Research Center is presented. Suggestions for future research directions are made with particular emphasis on the development and validation of computational codes and design methods. It is concluded that the technology of high-lift aerodynamics analysis and design should move boldly into the realm of high Reynolds number, three-dimensional flows.

  14. Aerodynamic analysis of a tumbling American football

    NASA Astrophysics Data System (ADS)

    Hare, Daniel Edmundson

    In this study, the aerodynamic effects on an American football are characterized, especially in a tumbling, or end-over-end, motion as seen in a typical kickoff or field goal attempt. The objective of this study is to establish aerodynamic coefficients for the dynamic motion of a tumbling American football. A subsonic wind tunnel was used to recreate a range of air velocities that, when coupled with rotation rates and differing laces orientations, would provide a test bed for aerodynamic drag, side, and lift coefficient analysis. Test results quantify effect of back-spin and top-spin on lift force. Results show that the presence of laces imposes a side force in the opposite direction of the laces orientation. A secondary system was installed to visualize air flow around the tumbling ball and record high-speed video of wake patterns, as a qualitative check of measured force directions.

  15. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  16. Wind turbine aerodynamics research needs assessment

    NASA Astrophysics Data System (ADS)

    Stoddard, F. S.; Porter, B. K.

    1986-01-01

    A prioritized list is developed for wind turbine aerodynamic research needs and opportunities which could be used by the Department of Energy program management team in detailing the DOE Five-Year Wind Turbine Research Plan. The focus of the Assessment was the basic science of aerodynamics as applied to wind turbines, including all relevant phenomena, such as turbulence, dynamic stall, three-dimensional effects, viscosity, wake geometry, and others which influence aerodynamic understanding and design. The study was restricted to wind turbines that provide electrical energy compatible with the utility grid, and included both horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). Also, no economic constraints were imposed on the design concepts or recommendations since the focus of the investigation was purely scientific.

  17. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  18. Geometry Control System for Exploratory Shape Optimization Applied to High-Fidelity Aerodynamic Design of Unconventional Aircraft

    NASA Astrophysics Data System (ADS)

    Gagnon, Hugo

    This thesis represents a step forward to bring geometry parameterization and control on par with the disciplinary analyses involved in shape optimization, particularly high-fidelity aerodynamic shape optimization. Central to the proposed methodology is the non-uniform rational B-spline, used here to develop a new geometry generator and geometry control system applicable to the aerodynamic design of both conventional and unconventional aircraft. The geometry generator adopts a component-based approach, where any number of predefined but modifiable (parametric) wing, fuselage, junction, etc., components can be arbitrarily assembled to generate the outer mold line of aircraft geometry. A unique Python-based user interface incorporating an interactive OpenGL windowing system is proposed. Together, these tools allow for the generation of high-quality, C2 continuous (or higher), and customized aircraft geometry with fast turnaround. The geometry control system tightly integrates shape parameterization with volume mesh movement using a two-level free-form deformation approach. The framework is augmented with axial curves, which are shown to be flexible and efficient at parameterizing wing systems of arbitrary topology. A key aspect of this methodology is that very large shape deformations can be achieved with only a few, intuitive control parameters. Shape deformation consumes a few tenths of a second on a single processor and surface sensitivities are machine accurate. The geometry control system is implemented within an existing aerodynamic optimizer comprising a flow solver for the Euler equations and a sequential quadratic programming optimizer. Gradients are evaluated exactly with discrete-adjoint variables. The algorithm is first validated by recovering an elliptical lift distribution on a rectangular wing, and then demonstrated through the exploratory shape optimization of a three-pronged feathered winglet leading to a span efficiency of 1.22 under a height

  19. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  20. Air flow testing on aerodynamic truck

    NASA Technical Reports Server (NTRS)

    1975-01-01

    After leasing a cab-over tractor-trailer from a Southern California firm, Dryden researchers added sheet metal modifications like those shown here. They rounded the front corners and edges, and placed a smooth fairing on the cab's roofs and sides extending back to the trailer. During the investigation of truck aerodynamics, the techniques honed in flight research proved highly applicable. By closing the gap between the cab and the trailer, for example, researchers discovered a significant reduction in aerodynamic drag, one resulting in 20 to 25 percent less fuel consumption than the standard design. Many truck manufacturers subsequently incorporated similar modifications on their products.

  1. Method of reducing drag in aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Hrach, Frank J. (Inventor)

    1993-01-01

    In the present method, boundary layer thickening is combined with laminar flow control to reduce drag. An aerodynamic body is accelerated enabling a ram turbine on the body to receive air at velocity V sub 0. The discharge air is directed over an aft portion of the aerodynamic body producing boundary layer thickening. The ram turbine also drives a compressor by applying torque to a shaft connected between the ram turbine and the compressor. The compressor sucks in lower boundary layer air through inlets in the shell of the aircraft producing laminar flow control and reducing drag. The discharge from the compressor is expanded in a nozzle to produce thrust.

  2. Aerodynamics of Shuttle Orbiter at high altitudes

    NASA Technical Reports Server (NTRS)

    Rault, Didier F. G.

    1993-01-01

    The high-altitude/high-Knudsen number aerodynamics of the Shuttle Orbiter are computed from Low-Earth Orbit down to 100 km using three-dimensional direct simulation Monte Carlo and free molecule codes. Results are compared with Blanchard's latest Shuttle aerodynamic model, which is based on in-flight accelerometer measurements, and bridging formula models. Good comparison is observed, except for the normal force and pitching moment coefficients. The present results were obtained for a generic Shuttle geometry configuration corresponding to a zero deflection for all control surfaces.

  3. Rarefied Transitional Bridging of Blunt Body Aerodynamics

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Blanchard, R. C.; Moss, J. N.

    1998-01-01

    The bridging procedures discussed provide an accurate engineering method for predicting rarefied transitional aerodynamics of spherically-blunted cone entry vehicles. The single-point procedure offers a way to improve the bridging procedures while minimizing the computational effort. However, the accuracy of these procedures ultimately depends on accurate knowledge of the aerodynamics in the free-molecular and continuum limits. The excellent agreement shown for DSMC predictions and bridging relations with the Viking flight data in transitional regime enhance the coincidence in these procedures.

  4. Unsteady Aerodynamics - Subsonic Compressible Inviscid Case

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1999-01-01

    This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

  5. Facile removal of high mannose structures prior to extracting complex type N-glycans from de-N-glycosylated peptides retained by C18 solid phase to allow more efficient glycomic mapping

    PubMed Central

    Lin, Chi-Hung; Kuo, Chu-Wei; Jarvis, Donald L; Khoo, Kay-Hooi

    2014-01-01

    The relative amount of high mannose structures within an N-glycomic pool differs from one source to another but quite often it predominates over the larger size complex type structures carrying biologically important glyco-epitopes. An efficient method to separate these two classes of N-glycans would significantly aid in detecting the lower abundant components by mass spectrometry. Capitalizing on an initial observation that only high mannose type structures were recovered in the flow through fraction when PNGase F digested peptides were passed through a C18 cartridge in 0.1% formic acid, we demonstrated here that native complex type N-glycans can be retained by C18 cartridge and to be efficiently separated from both the smaller high mannose type structures, as well as de-N-glycosylated peptides by stepwise elution with increasing acetonitrile concentration. The weak retention of the largely hydrophilic N-glycans on C18 resin is dependent not only on size but also increased by the presence of α6-fucosylation. This was shown by comparing the resulting N-glycomic profiles of the washed and low acetonitrile eluted fractions derived from both a human cancer cell line and an insect cell line. PMID:24174266

  6. Aerodynamic Heat-Power Engine Operating on a Closed Cycle

    NASA Technical Reports Server (NTRS)

    Ackeret, J.; Keller, D. C.

    1942-01-01

    Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.

  7. Nonlinear problems in flight dynamics involving aerodynamic bifurcations

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.

    1985-01-01

    Aerodynamic bifurcation is defined as the replacement of an unstable equilibrium flow by a new stable equilibrium flow at a critical value of a parameter. A mathematical model of the aerodynamic contribution to the aircraft's equations of motion is amended to accommodate aerodynamic bifurcations. Important bifurcations such as, the onset of large-scale vortex-shedding are defined. The amended mathematical model is capable of incorporating various forms of aerodynamic responses, including those associated with dynamic stall of airfoils.

  8. Index for aerodynamic data from the Bumblebee program

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Barnes, G. A.

    1978-01-01

    The Bumblebee program, was designed to provide a supersonic guided missile. The aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles. An index of aerodynamic missile data developed in this program is presented.

  9. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary aerodynamic surfaces. 25.445... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence...

  10. The Tangle of Student Allowances.

    ERIC Educational Resources Information Center

    Thomson, Norman J.

    1980-01-01

    A discussion of the distribution of student financial aid in Australia focuses on these issues: direct vs. indirect payment to students; inequality in living allowances given to secondary and postsecondary students; and distribution of expense allowances by state government and living allowances by the Commonwealth. (MSE)

  11. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  12. An aerodynamic load criterion for airships

    NASA Technical Reports Server (NTRS)

    Woodward, D. E.

    1975-01-01

    A simple aerodynamic bending moment envelope is derived for conventionally shaped airships. This criterion is intended to be used, much like the Naval Architect's standard wave, for preliminary estimates of longitudinal strength requirements. It should be useful in tradeoff studies between speed, fineness ratio, block coefficient, structure weight, and other such general parameters of airship design.

  13. Aerodynamic Design of Axial Flow Compressors

    NASA Technical Reports Server (NTRS)

    Bullock, R. O. (Editor); Johnsen, I. A.

    1965-01-01

    An overview of 'Aerodynamic systems design of axial flow compressors' is presented. Numerous chapters cover topics such as compressor design, ptotential and viscous flow in two dimensional cascades, compressor stall and blade vibration, and compressor flow theory. Theoretical aspects of flow are also covered.

  14. Aerodynamic drag in cycling: methods of assessment.

    PubMed

    Debraux, Pierre; Grappe, Frederic; Manolova, Aneliya V; Bertucci, William

    2011-09-01

    When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance.

  15. Recent Experiments at the Gottingen Aerodynamic Institute

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1925-01-01

    This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).

  16. A Generic Nonlinear Aerodynamic Model for Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2014-01-01

    A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.

  17. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Chin, Suei; Lan, C. Edward

    1990-01-01

    Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.

  18. User's guide to program FLEXSTAB. [aerodynamics

    NASA Technical Reports Server (NTRS)

    Cavin, R. K., III; Colunga, D.

    1975-01-01

    A manual is presented for correctly submitting program runs in aerodynamics on the UNIVAC 1108 computer system. All major program modules are included. Control cards are documented for the user's convenience, and card parameters are included in order to provide some idea as to reasonable time estimates for the program modules.

  19. Nozzle Aerodynamic Stability During a Throat Shift

    NASA Technical Reports Server (NTRS)

    Kawecki, Edwin J.; Ribeiro, Gregg L.

    2005-01-01

    An experimental investigation was conducted on the internal aerodynamic stability of a family of two-dimensional (2-D) High Speed Civil Transport (HSCT) nozzle concepts. These nozzles function during takeoff as mixer-ejectors to meet acoustic requirements, and then convert to conventional high-performance convergent-divergent (CD) nozzles at cruise. The transition between takeoff mode and cruise mode results in the aerodynamic throat and the minimum cross-sectional area that controls the engine backpressure shifting location within the nozzle. The stability and steadiness of the nozzle aerodynamics during this so called throat shift process can directly affect the engine aerodynamic stability, and the mechanical design of the nozzle. The objective of the study was to determine if pressure spikes or other perturbations occurred during the throat shift process and, if so, identify the caused mechanisms for the perturbations. The two nozzle concepts modeled in the test program were the fixed chute (FC) and downstream mixer (DSM). These 2-D nozzles differ principally in that the FC has a large over-area between the forward throat and aft throat locations, while the DSM has an over-area of only about 10 percent. The conclusions were that engine mass flow and backpressure can be held constant simultaneously during nozzle throat shifts on this class of nozzles, and mode shifts can be accomplished at a constant mass flow and engine backpressure without upstream pressure perturbations.

  20. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  1. Rarefield-Flow Shuttle Aerodynamics Flight Model

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.

    1994-01-01

    A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.

  2. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  3. Aerodynamic beam generator for large particles

    DOEpatents

    Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  4. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  5. Improvements to the missile aerodynamic prediction code DEMON3

    NASA Technical Reports Server (NTRS)

    Dillenius, Marnix F. E.; Johnson, David L.; Lesieutre, Daniel J.

    1992-01-01

    The computer program DEMON3 was developed for the aerodynamic analysis of nonconventional supersonic configurations comprising a body with noncircular cross section and up to two wing or fin sections. Within a wing or fin section, the lifting surfaces may be cruciform, triform, planar, or low profile layouts; the planforms of the lifting surfaces allow for breaks in sweep. The body and fin sections are modeled by triplet and constant u-velocity panels, respectively, accounting for mutual body-fin interference. Fin thickness effects are included for the use of supersonic planar source panels. One of the unique features of DEMON3 is the modeling of high angle of attack vortical effects associated with the lifting surfaces and the body. In addition, shock expansion and Newtonian pressure calculation methods can be optionally engaged. These two dimensional nonlinear methods are augmented by aerodynamic interference determined from the linear panel methods. Depending on the geometric details of the body, the DEMON3 program can be used to analyze nonconventional configurations at angles of attack up to 25 degrees for Mach numbers from 1.1 to 6. Calculative results and comparisons with experimental data demonstrate the capabilities of DEMON3. Limitations and deficiencies are listed.

  6. The challenges of integrating instrumentation with inflatable aerodynamic decelerators

    NASA Astrophysics Data System (ADS)

    Swanson, Gregory T.; Cassell, Alan M.; Hughes, Stephen J.; Johnson, R. Keith; Calomino, Anthony M.

    New Entry, Decent, and Landing (EDL) technologies are being explored to facilitate the landing of high mass vehicles. Current EDL technologies are limited due to mass and volume constraints dictated by launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs). To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing of the flexible materials and structures used in their design. From this survey many sensing technologies and systems were explored specific to the stacked torus IAD, resulting in a down-selection to the most viable prospects. The majority of these systems, including wireless data acquisition, were then rapid prototyped and evaluated during component level testing to determine the best integration techniques specific to a 3m and 6m diameter stacked toroid IAD. Each sensing system was then integrated in support of the Hypersonic Inflatable Aerodynamic Decelerator ground test campaign. In this paper these IAD instrumentation systems are described along with their challenges in comparison to traditional rigid aeroshell systems. Requirements resulting from the survey are listed and instrumentation integration techniques and data acquisition are discussed.

  7. Influence of inflow angle on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Li, Z. M.; Li, C.

    2013-12-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance.

  8. The aerodynamic cost of head morphology in bats: maybe not as bad as it seems.

    PubMed

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Grigorios; Dimitriadis, Greg

    2015-01-01

    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat's morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads. PMID:25739038

  9. Evaporation of Water from Particles in the Aerodynamic Lens Inlet: An Experimental Study

    SciTech Connect

    Zelenyuk, Alla; Imre, Dan G.; Cuadra-Rodriguez, Luis A.

    2006-10-01

    The extremely high particle transmission efficiency of aerodynamic lens inlets resulted in their wide use in aerosol mass spectrometers. One of the consequences of a transport of particles from high ambient pressure into the vacuum is that it is accompanied by a rapid drop in relative humidity (RH). Since many atmospheric particles exist in the form of hygroscopic water droplets, a drop in RH may result in a significant loss of water and even a change in phase. To predict how much water will be evaporated is not feasible. Because water loss can effect in addition to particle size, its transmission efficiency, ionization probability and mass spectrum it is imperative to provide definitive experimental data that can serve to guide the field to a reasonable and uniform sampling approach. In this study we present the results of a number of carefully conducted measurements that provide the first experimentally determined benchmark of water evaporation from a range of particles, during their transport through an aerodynamic lens inlet. We conclude that the only sure way to avoid ambiguities during measurements of aerodynamic diameter in instruments that utilize low pressure aerodynamic lens inlets is to dry the particles prior to sampling.

  10. The aerodynamic cost of head morphology in bats: maybe not as bad as it seems.

    PubMed

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Grigorios; Dimitriadis, Greg

    2015-01-01

    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat's morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads.

  11. The Aerodynamic Cost of Head Morphology in Bats: Maybe Not as Bad as It Seems

    PubMed Central

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Greg

    2015-01-01

    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat’s morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads. PMID:25739038

  12. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    PubMed

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  13. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds

    PubMed Central

    Lentink, David; Haselsteiner, Andreas F.; Ingersoll, Rivers

    2015-01-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier–Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565

  14. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    PubMed

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565

  15. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?

    PubMed

    Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-01-01

    This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle. PMID:27387833

  16. Estimation of morphing airfoil shapes and aerodynamic loads using artificial hair sensors

    NASA Astrophysics Data System (ADS)

    Butler, Nathan Scott

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape, as well as the aerodynamic loads, in real time. One approach is to utilize a new type of artificial hair sensors (AHS) developed at the Air Force Research Laboratory (AFRL) to determine the flow conditions surrounding deformable airfoils. In this study, AHS measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the AHS measurements. Such measurements will then be used in an artificial neural network (ANN) based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Additionally, an aerodynamic formulation based on the finite-state inflow theory has been developed to calculate the aerodynamic loads on thin airfoils with arbitrary camber deformations. Various aerodynamic properties approximated from the AHS/ANN system will be compared with the results of the finite-state inflow aerodynamic formulation in order to validate the approximation approach.

  17. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?

    PubMed

    Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-07-08

    This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.

  18. Aerodynamic flight control to increase payload capability of future launch vehicles

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.; Cheng, Y.-M.; Leleux, Todd; Bigelow, Scott; Hasbrook, William

    1993-01-01

    In this report, we provide some examples of French, Russian, Chinese, and Japanese launch vehicles that have utilized fins in their designs. Next, the aerodynamic design of the fins is considered in Section 3. Some comments on basic static stability and control theory are followed by a brief description of an aerodynamic characteristics prediction code that was used to estimate the characteristics of a modified NLS 1.5 Stage vehicle. Alternative fin designs are proposed and some estimated aerodynamic characteristics presented and discussed. Also included in Section 3 is a discussion of possible methods of enhancement of the aerodynamic efficiency of fins, such as vortex generators and jet flaps. We consider the construction of fins for launch vehicles in Section 4 and offer an assessment of the state-of-the-art in the use of composites for aerodynamic control surfaces on high speed vehicles. We also comment on the use of smart materials for launch vehicle fins. The dynamic stability and control of a launch vehicle that utilizes both thrust vector control (engine nozzle gimballing) and movable fins is the subject addressed in Section 5. We give a short derivation of equations of motion for a launch vehicle moving in a vertical plane above a spherical earth, discuss the use of a gravity-turn nominal trajectory, and give the form of the period equations linearized about such a nominal. We then consider feedback control of vehicle attitude using both engine gimballing and fin deflection. Conclusions are stated and recommendations made in Section 6. An appendix contains aerodynamic data in tabular and graphical formats.

  19. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor. PMID:26343789

  20. The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1991-01-01

    A Reduced Navier-Stokes (RNS) solution technique was successfully combined with the concept of partitioned geometry and mesh generation to form a very efficient 3D RNS code aimed at the analysis-design engineering environment. Partitioned geometry and mesh generation is a pre-processor to augment existing geometry and grid generation programs which allows the solver to (1) recluster an existing gridlife mesh lattice, and (2) perturb an existing gridfile definition to alter the cross-sectional shape and inlet duct centerline distribution without returning to the external geometry and grid generator. The present results provide a quantitative validation of the initial value space marching 3D RNS procedure and demonstrates accurate predictions of the engine face flow field, with a separation present in the inlet duct as well as when vortex generators are installed to supress flow separation. The present results also demonstrate the ability of the 3D RNS procedure to analyze the flow physics associated with vortex ingestion in general geometry ducts such as the F/A-18 inlet. At the conditions investigated, these interactions are basically inviscid like, i.e., the dominant aerodynamic characteristics have their origin in inviscid flow theory.

  1. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor.

  2. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    NASA Astrophysics Data System (ADS)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  3. External aerodynamics of heavy ground vehicles: Computations and wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Bayraktar, Ilhan

    Aerodynamic characteristics of a ground vehicle affect vehicle operation in many ways. Aerodynamic drag, lift and side forces have influence on fuel efficiency, vehicle top speed and acceleration performance. In addition, engine cooling, air conditioning, wind noise, visibility, stability and crosswind sensitivity are some other tasks for vehicle aerodynamics. All of these areas benefit from drag reduction and changing the lift force in favor of the operating conditions. This can be achieved by optimization of external body geometry and flow modification devices. Considering the latter, a thorough understanding of the airflow is a prerequisite. The present study aims to simulate the external flow field around a ground vehicle using a computational method. The model and the method are selected to be three dimensional and time-dependent. The Reynolds-averaged Navier Stokes equations are solved using a finite volume method. The Renormalization Group (RNG) k-epsilon model was elected for closure of the turbulent quantities. Initially, the aerodynamics of a generic bluff body is studied computationally and experimentally to demonstrate a number of relevant issues including the validation of the computational method. Experimental study was conducted at the Langley Full Scale Wind Tunnel using pressure probes and force measurement equipment. Experiments and computations are conducted on several geometric configurations. Results are compared in an attempt to validate the computational model for ground vehicle aerodynamics. Then, the external aerodynamics of a heavy truck is simulated using the validated computational fluid dynamics method, and the external flow is presented using computer visualization. Finally, to help the estimation of the error due to two commonly practiced engineering simplifications, a parametric study on the tires and the moving ground effect are conducted on full-scale tractor-trailer configuration. Force and pressure coefficients and velocity

  4. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  5. 40 CFR 35.2025 - Allowance and advance of allowance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facilities planning and design of the project and Step 7 agreements will include an allowance for facility... grant applicants for facilities planning and project design. (2) The State may request that the right...

  6. 40 CFR 35.2025 - Allowance and advance of allowance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facilities planning and design of the project and Step 7 agreements will include an allowance for facility... grant applicants for facilities planning and project design. (2) The State may request that the right...

  7. 40 CFR 35.2025 - Allowance and advance of allowance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facilities planning and design of the project and Step 7 agreements will include an allowance for facility... grant applicants for facilities planning and project design. (2) The State may request that the right...

  8. 40 CFR 35.2025 - Allowance and advance of allowance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facilities planning and design of the project and Step 7 agreements will include an allowance for facility... grant applicants for facilities planning and project design. (2) The State may request that the right...

  9. 76 FR 70883 - Clothing Allowance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... published in the Federal Register on February 2, 2011 (76 FR 5733-5734), VA proposed to amend its... appliances affecting different articles of clothing. 76 FR 5733; Sursely, 551 F.3d at 1356. VA will make the... allowances. The amendment provides for an annual clothing allowance for each qualifying prosthetic...

  10. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  11. Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Ta'asan, Shlomo

    1996-01-01

    In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.

  12. Aerodynamic method for obtaining the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Maksimov, I. I.

    2013-07-01

    A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.

  13. An anechoic chamber facility for investigating aerodynamic noise

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Parthasarathy, S. P.

    1972-01-01

    The aerodynamic noise facility was designed to be used primarily for investigating the noise-generating mechanisms of high-temperature supersonic and subsonic jets. The facility consists of an anechoic chamber, an exhaust jet silencer, instrumentation equipment, and an air heater with associated fuel and cooling systems. Compressed air, when needed for jet noise studies, is provided by the wind tunnel compressor facility on a continuous basis. The chamber is 8.1 m long, 5.0 m wide, and 3.0 m high. Provisions have been made for allowing outside air to be drawn into the anechoic chamber in order to replenish the air that is entrained by the jet as it flows through the chamber. Also, openings are provided in the walls and in the ceiling for the purpose of acquiring optical measurements. Calibration of the chamber for noise reflections from the wall was accomplished in octave bands between 31.2 Hz and 32 kHz.

  14. Exploring bird aerodynamics using radio-controlled models.

    PubMed

    Hoey, Robert G

    2010-12-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight. PMID:21098962

  15. Investigation of Aerodynamic and Aerodynamic and Radiometric Land Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Crago, Richard D.; Friedl, Mark; Kustas, William; Wang, Ye-Qiao

    2003-01-01

    The overall goal of the project was to reconcile the difference between T(sub s,r) and T(sub aero), while maintaining consistency within models and with theory and data. The project involved collaboration between researchers at Bucknell University, Boston University, University of mode Island, and the USDNARS Hydrology Laboratory. This report focuses on the work done at Bucknell, which used an analytical continuous-source flux model developed by Crago (1998), based on work by Brutsaert and Sugita (1996) to generate fluxes at all levels of the canopy. Named ALARM [Analytical Land- Atmosphere-Radiometer Model] by Suleiman and Crago (2002), the model assumes the foliage has an exponential vertical temperature profile. The same profile is felt by the within-canopy turbulence and 'seen" by a radiometer viewing the surface from any zenith view angle. ALARM converts radiometric surface temperatures taken from any view angle into a clearly-defined version of Taero called the equivalent isothermal surface temperature T(sub s,j), and then calculates the sensible heat flux H using Monin-Obukhov similarity theory. This allows remotely sensed Ts,r measurements to be used to produce high quality sensible and latent heat flux estimates, or to validate or update the surface temperature produced by SVATs in climate or mesoscale models.

  16. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    SciTech Connect

    Miller, M.S.; Shipley, D.E.

    1994-08-01

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  17. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Miller, M. S.; Shipley, D. E.

    1994-08-01

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation's energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  18. Team Software Development for Aerothermodynamic and Aerodynamic Analysis and Design

    NASA Technical Reports Server (NTRS)

    Alexandrov, N.; Atkins, H. L.; Bibb, K. L.; Biedron, R. T.; Carpenter, M. H.; Gnoffo, P. A.; Hammond, D. P.; Jones, W. T.; Kleb, W. L.; Lee-Rausch, E. M.

    2003-01-01

    A collaborative approach to software development is described. The approach employs the agile development techniques: project retrospectives, Scrum status meetings, and elements of Extreme Programming to efficiently develop a cohesive and extensible software suite. The software product under development is a fluid dynamics simulator for performing aerodynamic and aerothermodynamic analysis and design. The functionality of the software product is achieved both through the merging, with substantial rewrite, of separate legacy codes and the authorship of new routines. Examples of rapid implementation of new functionality demonstrate the benefits obtained with this agile software development process. The appendix contains a discussion of coding issues encountered while porting legacy Fortran 77 code to Fortran 95, software design principles, and a Fortran 95 coding standard.

  19. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  20. Influence of Wake Models on Calculated Tiltrotor Aerodynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    The tiltrotor aircraft configuration has the potential to revolutionize air transportation by providing an economical combination of vertical take-off and landing capability with efficient, high-speed cruise flight. To achieve this potential it is necessary to have validated analytical tools that will support future tiltrotor aircraft development. These analytical tools must calculate tiltrotor aeromechanical behavior, including performance, structural loads, vibration, and aeroelastic stability, with an accuracy established by correlation with measured tiltrotor data. The recent test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single,l/4-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. This paper will examine the influence of wake models on calculated tiltrotor aerodynamics, comparing calculations of performance and airloads with TRAM DNW measurements. The calculations will be performed using the comprehensive analysis CAMRAD II.

  1. Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    An automated Computational Fluid Dynamics process for determining the aerodynamic Characteristics of debris shedding from the Space Shuttle Launch Vehicle during ascent is presented. This process uses Cartesian fully-coupled, six-degree-of-freedom simulations of isolated debris pieces in a Monte Carlo fashion to produce models for the drag and crossrange behavior over a range of debris shapes and shedding scenarios. A validation of the Cartesian methods against ballistic range data for insulating foam debris shapes at flight conditions, as well as validation of the resulting models, are both contained. These models are integrated with the existing shuttle debris transport analysis software to provide an accurate and efficient engineering tool for analyzing debris sources and their potential for damage.

  2. Aerodynamic canard/wing parametric analysis for general aviation applications

    NASA Technical Reports Server (NTRS)

    Keith, M. W.; Selberg, B. P.

    1984-01-01

    Vortex panel and vortex lattice methods have been utilized in an analytic study to determine the two- and three-dimensional aerodynamic behavior of canard and wing configurations. The purpose was to generate data useful for the design of general aviation canard aircraft. Essentially no two-dimensional coupling was encountered and the vertical distance between the lifting surfaces was found to be the main contributor to interference effects of the three-dimensional analysis. All canard configurations were less efficient than a forward wing with an aft horizontal tail, but were less sensitive to off-optimum division of total lift between the two surfaces, such that trim drag could be less for canard configurations. For designing a general aviation canard aircraft, results point toward large horizontal and vertical distance between the canard and wing, a large wing-to-canard area ratio, and with the canard at a low incidence angle relative to the wing.

  3. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  4. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  5. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-12-31

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.

  6. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  7. Transonic and supersonic ground effect aerodynamics

    NASA Astrophysics Data System (ADS)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  8. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  9. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  10. Aerodynamic interference between two Darrieus wind turbines

    SciTech Connect

    Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

    1981-04-01

    The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

  11. Wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Migliore, P G; Miller, L S; Quandt, G A

    1995-04-01

    Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).

  12. Unsteady aerodynamic modeling for arbitrary motions

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Ashley, H.; Breakwell, J. V.

    1977-01-01

    A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.

  13. Atmospheric determination for Shuttle aerodynamic studies

    NASA Technical Reports Server (NTRS)

    Price, J. M.

    1983-01-01

    Evaluation of the aerodynamic performance of the Shuttle during atmospheric reentry requires a determination of the free-stream atmospheric properties along the entry path. This determination must be of the best possible accuracy in order to fully utilize the Shuttle as an aerodynamic flight research vehicle. To accomplish this, two Shuttle Orbiter experiments, the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) and the Shuttle Entry Air Data System (SEADS), are being developed to provide onboard measurements. SUMS will measure freestream parameters in the high altitude (above 90 km), high Mach number (M above 20) regions where conventional static pressure measurements are not available. SEADS will provide research quality data below about 90 km. Since these two experiments were not installed for the Shuttle developmental flights, an alternate method was needed to determine the freestream atmospheric properties along the entry trajectory. The method which was developed is described with a discussion of the results from the first five Shuttle flights.

  14. Rarefaction effects on Galileo probe aerodynamics

    NASA Technical Reports Server (NTRS)

    Moss, James N.; LeBeau, Gerald J.; Blanchard, Robert C.; Price, Joseph M.

    1996-01-01

    Solutions of aerodynamic characteristics are presented for the Galileo Probe entering Jupiter's hydrogen-helium atmosphere at a nominal relative velocity of 47.4 km/s. Focus is on predicting the aerodynamic drag coefficient during the transitional flow regime using the direct simulation Monte Carlo (DSMC) method. Accuracy of the probe's drag coefficient directly impacts the inferred atmospheric properties that are being extracted from the deceleration measurements made by onboard accelerometers as part of the Atmospheric Structure Experiment. The range of rarefaction considered in the present study extends from the free molecular limit to continuum conditions. Comparisons made with previous calculations and experimental measurements show the present results for drag to merge well with Navier-Stokes and experimental results for the least rarefied conditions considered.

  15. Device for reducing vehicle aerodynamic resistance

    DOEpatents

    Graham, Sean C.

    2006-08-22

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.

  16. Device for reducing vehicle aerodynamic resistance

    DOEpatents

    Graham, Sean C.

    2006-03-07

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.

  17. Mimicking the humpback whale: An aerodynamic perspective

    NASA Astrophysics Data System (ADS)

    Aftab, S. M. A.; Razak, N. A.; Mohd Rafie, A. S.; Ahmad, K. A.

    2016-07-01

    This comprehensive review aims to provide a critical overview of the work on tubercles in the past decade. The humpback whale is of interest to aerodynamic/hydrodynamic researchers, as it performs manoeuvres that baffle the imagination. Researchers have attributed these capabilities to the presence of lumps, known as tubercles, on the leading edge of the flipper. Tubercles generate a unique flow control mechanism, offering the humpback exceptional manoeuverability. Experimental and numerical studies have shown that the flow pattern over the tubercle wing is quite different from conventional wings. Research on the Tubercle Leading Edge (TLE) concept has helped to clarify aerodynamic issues such as flow separation, tonal noise and dynamic stall. TLE shows increased lift by delaying and restricting spanwise separation. A summary of studies on different airfoils and reported improvement in performance is outlined. The major contributions and limitations of previous work are also reported.

  18. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  19. An Interactive Educational Tool for Compressible Aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive educational tool was developed to aid in the teaching of undergraduate compressible aerodynamics. The tool solves for the supersonic flow past a wedge using the equations found in NACA 1135. The student varies the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the variation of flow results to the student. One such format leads the student to the generation of some of the graphs found in NACA-1135. The tool includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use. This paper will detail the numerical methods used in the tool and describe how it can be used and modified.

  20. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  1. New aspects of subsonic aerodynamic noise theory

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Howes, W. L.

    1973-01-01

    A theory of aerodynamic noise is presented which differs from Lighthill's theory primarily in the way in which convection of the noise sources is treated. The sound directivity pattern obtained from the present theory agrees better with jet-noise directivity data than does that obtained from Lighthill's theory. The results imply that the shear-noise contribution to jet noise is smaller than previously expected.

  2. Aerodynamic design lowers truck fuel consumption

    NASA Technical Reports Server (NTRS)

    Steers, L.

    1978-01-01

    Energy-saving concepts in truck design are emerging from developing new shapes with improved aerodynamic flow properties that can reduce air-drag coefficient of conventional tractor-trailers without requiring severe design changes or compromising load-carrying capability. Improvements are expected to decrease somewhat with increased wind velocities and would be affected by factors such as terrain, driving techniques, and mechanical condition.

  3. Aerodynamic considerations in open shelters. Final report

    SciTech Connect

    Hickman, R.G.

    1984-11-01

    Aerodynamic factors are addressed bearing on the suitability of open structures as blast shelters. Blast closures and attenuator designs are discussed. The research on shelter filling is reviewed; this includes both experimental and theoretical work on scale models and full-scale structures of large dimensions. Shock-dominated and pressure-gradient-dominated shelter-filling mechanisms are described and their potential effects on people are discussed.

  4. Device for reducing vehicle aerodynamic resistance

    DOEpatents

    Graham, Sean C.

    2005-02-15

    A device for a vehicle with a pair of swinging rear doors, which converts flat sheets of pliable material hinged to the sides of the vehicle adjacent the rear thereof into effective curved airfoils that reduce the aerodynamic resistance of the vehicle, when the doors are closed by hand, utilizing a plurality of stiffeners disposed generally parallel to the doors and affixed to the sheets and a plurality of collapsible tension bearings struts attached to each stiffener and the adjacent door.

  5. The aerodynamics of hovering flight in Drosophila.

    PubMed

    Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

    2005-06-01

    Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces during a downward plunge at the start of each stroke create peak vertical forces. Quasi-steady mechanisms could account for nearly all of the mean measured force required to hover, although temporal discrepancies between instantaneous measured forces and model predictions indicate that unsteady mechanisms also play a significant role. We analyzed the requirements for hovering from an analysis of the time history of forces and moments in all six degrees of freedom. The wing kinematics necessary to generate sufficient lift are highly constrained by the requirement to balance thrust and pitch torque over the stroke cycle. We also compare the wing motion and aerodynamic forces of free and tethered flies. Tethering causes a strong distortion of the stroke pattern that results in a reduction of translational forces and a prominent nose-down pitch moment. The stereotyped distortion under tethered conditions is most likely due to a disruption of sensory feedback. Finally, we calculated flight power based directly on the measurements of wing motion and aerodynamic forces, which yielded a higher estimate of muscle power during free hovering flight than prior estimates based on time-averaged parameters. This discrepancy is mostly due to a two- to threefold underestimate of the mean profile drag coefficient in prior studies. We also compared our values with the predictions of the same time-averaged models using more accurate kinematic and aerodynamic input parameters based on our high-speed videography measurements. In this case, the time-averaged models tended to overestimate flight

  6. Future Challenges and Opportunities in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Hefner, Jerry N.

    2000-01-01

    Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.

  7. The Aerodynamics of a Flying Sports Disc

    NASA Astrophysics Data System (ADS)

    Potts, Jonathan R.; Crowther, William J.

    2001-11-01

    The flying sports disc is a spin-stabilised axi-symmetric wing of quite remarkable design. A typical disc has an approximate elliptical cross-section and hollowed out under-side cavity, such as the Frisbee(TM) disc. An experimental study of flying disc aerodynamics, including both spinning and non-spinning tests, has been carried out in the wind tunnel. Load measurements, pressure data and flow visualisation techniques have enabled an explanation of the flow physics and provided data for free-flight simulations. A computer simulation that predicts free-flight trajectories from a given set of initial conditions was used to investigate the dynamics of a flying disc. This includes a six-degree of freedom mathematical model of disc flight mechanics, with aerodynamic coefficients derived from experimental data. A flying sports disc generates lift through forward velocity just like a conventional wing. The lift contributed by spin is insignificant and does not provide nearly enough down force to support hover. Without spin, the disc tumbles ground-ward under the influence of an unstable aerodynamic pitching moment. From a backhand throw however, spin is naturally given to the disc. The unchanged pitching moment now results in roll, due to gyroscopic precession, stabilising the disc in free-flight.

  8. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. PMID:27030773

  9. Improving the aerodynamics of top fuel dragsters

    SciTech Connect

    Winn, R.C.; Kohlman, D.L.; Kenner, M.T.

    1998-07-01

    The standard drag race is a straight ahead quarter mile race from a standing stop. As engine technology has improved, the speeds attained at the end of the quarter mile have increased. As the speed has increased, the importance of aerodynamic effects on the dragster has also increased. Lift and drag are the two primary aerodynamic effects. Lift is produced vertically downward to increase the normal force on the rear wheels, thereby increasing the ability to transmit energy from the engine through the wheels to the racetrack. Drag is an unwanted aerodynamic effect. Drag is produced by viscous interaction between the dragster and the air, by separation causing profile drag, and as a result of the lift being produced. This paper addresses the mechanisms of lift and drag production by a high speed dragster and proposes some design changes that can decrease the drag while maintaining the necessary negative lift. Preliminary wind tunnel tests on dragster models confirm that reductions in drag can be achieved. The effects of these changes on the elapsed time and final speed are estimated using a computer simulation of a quarter mile drag race. The simulation predicts a decrease in elapsed time of almost 0.1 seconds and an increase in top speed of approximately 10 miles per hour.

  10. Aerodynamics for the Mars Phoenix Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark

    2008-01-01

    Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.

  11. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  12. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight.

  13. Survey of lift-fan aerodynamic technology

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Kirk, Jerry V.

    1993-01-01

    Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

  14. Gap and stagger effects on the aerodynamic performance and the wake behind a biplane with endplates

    NASA Astrophysics Data System (ADS)

    Kang, Hantae

    Modern flow diagnostics applied to a very old aerodynamic problem has produced a number of intriguing new results and new insight into previous results. The aerodynamic performance and associated flow physics of the biplane with endplates as a function of variation in gap and stagger were analytically and experimentally investigated. A combination of vortex lattice method, integrated force measurement, streamwise PIV, and Trefftz plane Stereo PIV were used to better understand the flowfield around the biplane with endplates. This study was performed to determine the configuration with the optimal aerodynamic performance and to understand the fluid mechanics behind optimal and suboptimal performance of the configuration. The Vortex Lattice code (AVL) shows that the gap and stagger have the most dramatic effects out of the six parameters studied: gap, stagger, dihedral, decalage, sweep and overhang. The force balance measurements with fourteen biplane configurations of different gaps and staggers show that as gap and stagger increase, the lift efficiency also increases at all angles of attack tested at both Re 60,000 and 120,000. Using the force balance data, a generalized empirical method for the prediction of lift coefficient as a function of gap, stagger and angle of attack has been determined and validated when combined with existing relations for CL--α adjustments for AR and taper effects. The resulting empirical approach allows for a rapid determination of CL for a biplane having different gap, stagger, AR and taper without the need for a complete flowfield analysis. Two Dimensional PIV results show a distinctive pattern in the downwash angle for the different gap and stagger configurations tested. The downwash angle increases with increasing gap and stagger. It is also evident that the change in downwash angle is directly proportional to the change in lift coefficient as would be expected. Increasing gap spacing increases the downwash angle as well. Based on

  15. Integrated aerodynamic-structural design of a forward-swept transport wing

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  16. Human DNA polymerase beta mutations allowing efficient abasic site bypass.

    PubMed

    Gieseking, Sonja; Bergen, Konrad; Di Pasquale, Francesca; Diederichs, Kay; Welte, Wolfram; Marx, Andreas

    2011-02-01

    The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase β when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase β was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase β and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase β variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights.

  17. Human DNA Polymerase β Mutations Allowing Efficient Abasic Site Bypass*

    PubMed Central

    Gieseking, Sonja; Bergen, Konrad; Di Pasquale, Francesca; Diederichs, Kay; Welte, Wolfram; Marx, Andreas

    2011-01-01

    The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase β when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase β was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase β and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase β variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights. PMID:21107011

  18. Unified approach to aerodynamic sound generation in the presence of solid boundaries

    NASA Technical Reports Server (NTRS)

    Goldstein, M.

    1974-01-01

    A general equation governing aerodynamic sound generation in the presence of solid boundaries is derived. It is shown that all the theories in the literature appear as special cases of this general equation. Derived special equations for propeller and fan noise are likewise shown to be more general than the conventional equations in that they make allowance for variation in retarded time over the blade surfaces.

  19. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  20. Cooling tower irrigator layout with allowances for non-uniformity of the airflow velocity field

    NASA Astrophysics Data System (ADS)

    Pushnov, A. S.; Ryabushenko, A. S.

    2016-07-01

    This article covers the results of analysis of aerodynamic processes in the cooling tower irrigator and provides the approaches to optimal layout of preformed packing blocks (of the irrigator) developed based on these results. The analysis of the airflow velocity field in the cooling towers shows that the irrigation space can be broken down into the following zones: the peripheral zone of the cooling tower near the airblast windows, the zone near the cooling tower center, and the intermediate zone. Furthermore, the highest level of nonuniformity of the airflow velocity field in cooling towers is in the zone adjoining the tower's airblast windows. The proposed concept of the cooling tower irrigator's layout is made with allowances for the airflow velocity field characteristics in the cross-section of the irrigation space of the cooling tower. Based on this concept, we suggest that higher irrigator blocks should be placed in the zone of increased airflow consumption, which provides the possibility to enhance the hydraulic resistance and, respectively, decrease the gas flow velocity as well as to boost the efficiency of chilling the circulating water in the cooling tower. For this purpose, additional irrigator blocks can be of the same design as the main irrigator. As an option, it is possible to use blocks of the geometry and design other than the main irrigator block in the cooling tower.

  1. Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1991-01-01

    Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.

  2. Unsteady aerodynamic simulation of multiple bodies in relative motion: A prototype method

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    1989-01-01

    A prototype method for time-accurate simulation of multiple aerodynamic bodies in relative motion is presented. The method is general and features unsteady chimera domain decomposition techniques and an implicit approximately factored finite-difference procedure to solve the time-dependent thin-layer Navier-Stokes equations. The method is applied to a set of two- and three- dimensional test problems to establish spatial and temporal accuracy, quantify computational efficiency, and begin to test overall code robustness.

  3. Aerodynamic performance of a 1.20-pressure ratio fan stage designed for low noise

    NASA Technical Reports Server (NTRS)

    Lewis, G. W., Jr.; Moore, R. D.

    1976-01-01

    The aerodynamic design and the overall blade element performance of a 51 centimeter diameter fan stage is presented. The stage was designed to minimize the noise generated by rotor stator interactions. The design pressure ratio was 1.20 at a flow of 30.6 kilograms per second and a rotor blade tip speed of 228.6 meters per second. At design speed the rotor peak efficiency was 0.935. The peak efficiency of the stage, however, was 0.824. The radial distribution of rotor performance parameters at peak efficiency and design speed indicated excellent agreement with design values.

  4. Parallel computing of overset grids for aerodynamic problems with moving objects

    NASA Astrophysics Data System (ADS)

    Prewitt, Nathan Coleman

    When a store is dropped from a military aircraft at high subsonic, transonic, or supersonic speeds, the aerodynamic forces and moments acting on the store can be sufficient to send the store back into contact with the aircraft. Therefore, store separation analysis is used to certify the safety of any proposed drop. Time accurate computational fluid dynamics (CFD) offers the option of calculating store separation trajectories from first principles. In the Chimera grid scheme, a set of independent, overlapping, structured grids are used to decompose the domain of interest. This allows the use of efficient structured grid flow solvers and associated boundary conditions, and allows for grid motion without stretching or regridding. However, these advantages are gained in exchange for the requirement to establish communication links between the overlapping grids via a process referred to as "grid assembly." Relatively little work has been done to use parallel computing for time accurate, moving body problems. Thus, new techniques are presented for the parallel implementation of the assembly of overset, Chimera grids. This work is based on the grid assembly function defined in the Beggar code, currently under development at Eglin Air Force Base, FL. The parallel performance of each implementation is analyzed and equations are presented for estimating the parallel speedup. Each successive implementation attacks the weaknesses of the previous implementation in an effort to improve the parallel performance. The first implementation achieves the solution of moving body problems on multiple processors with minimum code changes. The second implementation improves the parallel performance by hiding the execution time of the grid assembly function behind the execution time of the flow solver. The third implementation uses coarse grain data decomposition to reduce the execution time of the grid assembly function. The final implementation demonstrates the fine grain decomposition

  5. Toward a second generation fuel efficient supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Neumann, F. D.

    1976-01-01

    Design changes that lead to improved aerodynamic and structural efficiency are presented. Practical design constraints and approaches for a blended wing-fuselage are discussed, as well as the integration of the configuration that leads to aerodynamic and structural efficiency. Highlighted are new approaches used to provide for structural efficiency, airline/passenger acceptance, passenger evacuation, and subsystem integration. Results of full-scale passenger cabin mock-up evaluations are presented showing the feasibility of the concept.

  6. System Identification of a Vortex Lattice Aerodynamic Model

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.

    2001-01-01

    The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.

  7. The Aerodynamics of Deforming Wings at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Medina, Albert

    responsive to flexibility satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be defined in a flexible wing that accounts for deflection which shifts results toward trend lines of rigid wings. Three-dimensional simulations examining the effects of two distinct deformation modes undergoing prescribed deformation associated with root and tip deflection demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number with efficiency in both modes increasing with increased Reynolds number. Additionally, while the leading-edge vortex axis proved insensitive to deformation, the shape and orientation of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit fly wings with passive deformation operating in the bursting limit Reynolds number regime revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal formation time of the leading-edge vortex independent of Reynolds number, acceleration profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of behavior exhibited in translating wings that also maintains magnitude peak to peak.

  8. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    SciTech Connect

    Salari, K; Ortega, J

    2010-12-13

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

  9. Implementation of a multiblock sensitivity analysis method in numerical aerodynamic shape optimization

    NASA Technical Reports Server (NTRS)

    Lacasse, James M.

    1995-01-01

    A multiblock sensitivity analysis method is applied in a numerical aerodynamic shape optimization technique. The Sensitivity Analysis Domain Decomposition (SADD) scheme which is implemented in this study was developed to reduce the computer memory requirements resulting from the aerodynamic sensitivity analysis equations. Discrete sensitivity analysis offers the ability to compute quasi-analytical derivatives in a more efficient manner than traditional finite-difference methods, which tend to be computationally expensive and prone to inaccuracies. The direct optimization procedure couples CFD analysis based on the two-dimensional thin-layer Navier-Stokes equations with a gradient-based numerical optimization technique. The linking mechanism is the sensitivity equation derived from the CFD discretized flow equations, recast in adjoint form, and solved using direct matrix inversion techniques. This investigation is performed to demonstrate an aerodynamic shape optimization technique on a multiblock domain and its applicability to complex geometries. The objectives are accomplished by shape optimizing two aerodynamic configurations. First, the shape optimization of a transonic airfoil is performed to investigate the behavior of the method in highly nonlinear flows and the effect of different grid blocking strategies on the procedure. Secondly, shape optimization of a two-element configuration in subsonic flow is completed. Cases are presented for this configuration to demonstrate the effect of simultaneously reshaping interfering elements. The aerodynamic shape optimization is shown to produce supercritical type airfoils in the transonic flow from an initially symmetric airfoil. Multiblocking effects the path of optimization while providing similar results at the conclusion. Simultaneous reshaping of elements is shown to be more effective than individual element reshaping due to the inclusion of mutual interference effects.

  10. Integrated aerodynamic/structural design of a sailplane wing

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Haftka, R. T.; Strauch, G. J.; Eppard, W. M.

    1986-01-01

    Using lifting-line theory and beam analysis, the geometry (planiform and twist) and composite material structural sizes (skin thickness, spar cap, and web thickness) were designed for a sailplane wing, subject to both structural and aerodynamic constraints. For all elements, the integrated design (simultaneously designing the aerodynamics and the structure) was superior in terms of performance and weight to the sequential design (where the aerodynamic geometry is designed to maximize the performance, following which a structural/aeroelastic design minimizes the weight). Integrated designs produced less rigid, higher aspect ratio wings with favorable aerodynamic/structural interactions.

  11. Workshop on Aircraft Surface Representation for Aerodynamic Computation

    NASA Technical Reports Server (NTRS)

    Gregory, T. J. (Editor); Ashbaugh, J. (Editor)

    1980-01-01

    Papers and discussions on surface representation and its integration with aerodynamics, computers, graphics, wind tunnel model fabrication, and flow field grid generation are presented. Surface definition is emphasized.

  12. Advanced Unstructured Grid Generation for Complex Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    2010-01-01

    A new approach for distribution of grid points on the surface and in the volume has been developed. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.

  13. Advanced Unstructured Grid Generation for Complex Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2008-01-01

    A new approach for distribution of grid points on the surface and in the volume has been developed and implemented in the NASA unstructured grid generation code VGRID. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.

  14. Rocket Sled Propelled Testing of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Meacham, Michael B.; Kennett, Andrew; Townsend, Derik J.; Marti, Benjamin

    2013-01-01

    Decelerators (IADs) have traditionally been tested in wind tunnels. As the limitations of these test facilities are reached, other avenues must be pursued. The IAD being tested is a Supersonic IAD (SIAD), which attaches just aft of the heatshield around the perimeter of an entry body. This 'attached torus' SIAD is meant to improve the accuracy of landing for robotic class missions to Mars and allow for potentially increased payloads. The SIAD Design Verification (SDV) test aims to qualify the SIAD by applying a targeted aerodynamic load to the vehicle. While many test architectures were researched, a rocket sled track was ultimately chosen to be the most cost effective way to achieve the desired dynamic pressures. The Supersonic Naval Ordnance Research Track (SNORT) at the Naval Air Warfare Center Weapons Division (NAWCWD) China Lake is a four mile test track, traditionally used for warhead and ejection seat testing. Prior to SDV, inflatable drag bodies have been tested on this particular track. Teams at Jet Propulsion Laboratory (JPL) and NAWCWD collaborate together to design and fabricate one of the largest sleds ever built. The SDV sled is comprised of three individual sleds: a Pusher Sled which holds the solid booster rockets, an Item Sled which supports the test vehicle, and a Camera Sled that is pushed in front for in-situ footage and measurements. The JPL-designed Test Vehicle has a full-scale heatshield shape and contains all instrumentation and inflation systems necessary to inflate and test a SIAD. The first campaign that is run at SNORT tested all hardware and instrumentation before the SIAD was ready to be tested. For each of the three tests in this campaign, the number of rockets and top speed was increased and the data analyzed to ensure the hardware is safe at the necessary accelerations and aerodynamic loads.

  15. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed

  16. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    NASA Astrophysics Data System (ADS)

    Yu, Meilin

    the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive

  17. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    NASA Technical Reports Server (NTRS)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  18. Aerodynamic drag of modern soccer balls.

    PubMed

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  19. Calculation of subsonic and supersonic steady and unsteady aerodynamic forces using velocity potential aerodynamic elements

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Yoo, Y. S.

    1976-01-01

    Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.

  20. The aerodynamic cost of flight in the short-tailed fruit bat (Carollia perspicillata): comparing theory with measurement.

    PubMed

    von Busse, Rhea; Waldman, Rye M; Swartz, Sharon M; Voigt, Christian C; Breuer, Kenneth S

    2014-06-01

    Aerodynamic theory has long been used to predict the power required for animal flight, but widely used models contain many simplifications. It has been difficult to ascertain how closely biological reality matches model predictions, largely because of the technical challenges of accurately measuring the power expended when an animal flies. We designed a study to measure flight speed-dependent aerodynamic power directly from the kinetic energy contained in the wake of bats flying in a wind tunnel. We compared these measurements with two theoretical predictions that have been used for several decades in diverse fields of vertebrate biology and to metabolic measurements from a previous study using the same individuals. A high-accuracy displaced laser sheet stereo particle image velocimetry experimental design measured the wake velocities in the Trefftz plane behind four bats flying over a range of speeds (3-7 m s(-1)). We computed the aerodynamic power contained in the wake using a novel interpolation method and compared these results with the power predicted by Pennycuick's and Rayner's models. The measured aerodynamic power falls between the two theoretical predictions, demonstrating that the models effectively predict the appropriate range of flight power, but the models do not accurately predict minimum power or maximum range speeds. Mechanical efficiency--the ratio of aerodynamic power output to metabolic power input--varied from 5.9% to 9.8% for the same individuals, changing with flight speed.