Science.gov

Sample records for aerodynamic focusing lens

  1. Computerized method and system for designing an aerodynamic focusing lens stack

    DOEpatents

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  2. In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection.

    PubMed

    Barreda, F-A; Nicolas, C; Sirven, J-B; Ouf, F-X; Lacour, J-L; Robert, E; Benkoula, S; Yon, J; Miron, C; Sublemontier, O

    2015-01-01

    The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed. PMID:26498694

  3. In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection

    PubMed Central

    Barreda, F.-A.; Nicolas, C.; Sirven, J.-B.; Ouf, F.-X.; Lacour, J.-L.; Robert, E.; Benkoula, S.; Yon, J.; Miron, C.; Sublemontier, O.

    2015-01-01

    The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed. PMID:26498694

  4. In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection.

    PubMed

    Barreda, F-A; Nicolas, C; Sirven, J-B; Ouf, F-X; Lacour, J-L; Robert, E; Benkoula, S; Yon, J; Miron, C; Sublemontier, O

    2015-10-26

    The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed.

  5. Electrostatic Focusing Lens

    NASA Astrophysics Data System (ADS)

    Thomas, Eric; Hopkins, Demitri

    2011-10-01

    We developed an electrostatic focusing lens capable of generating DD reactions, by focusing deuterium ions generated from a pointed emitter at a frozen heavy water target. Due to difficulty with the pointed emitter, we later switched to a hollow cathode design. To model the lenses, chamber, and calculate the dimensions for the design that would maximize ion energy and density, the program SIMION was used. During stable operation, vacuum was hand adjusted around 10-13 mTorr. To keep stable beam, DC voltage generator was varied between 15-25 kV. Hand adjusting was necessary, because at points in the operation the frozen heavy water would release vapor at an increased rate. This caused the pressure to rise and the beam current to spike, creating instabilities and an arc to the lens. Three methods were used to determine successful DD production. (1) Two differently shielded Geiger counters (unshielded and UHMW-PE insulated tube), (2) Spectrophotometer comparing control peaks with heavy water tests, and (3) a calibrated bubble dosimeter specific to neutrons. Analysis of the results suggest the neutrons flux varied from 532 to 1.4 × 106 neutrons/sec, and require further tests to plot and narrow results.

  6. Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles

    SciTech Connect

    Goodarz Ahmadi

    2008-06-30

    A computational model for supersonic flows of compressible gases in an aerodynamic lens with several lenses and in a supersonic/hypersonic impactor was developed. Airflow conditions in the aerodynamic lens were analyzed and contour plots for variation of Mach number, velocity magnitude and pressure field in the lens were evaluated. The nano and micro-particle trajectories in the lens and their focusing and transmission efficiencies were evaluated. The computational model was then applied to design of a aerodynamic lens that could generate focus particle beams while operating under atmospheric conditions. The computational model was also applied to airflow condition in the supersonic/hypersonic impactor. Variations of airflow condition and particle trajectories in the impactor were evaluated. The simulation results could provide understanding of the performance of the supersonic and hypersonic impactors that would be helpful for the design of such systems.

  7. An experimental study of nanoparticle focusing with aerodynamic lenses

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; McMurry, Peter H.

    2006-12-01

    High sampling efficiencies of analyte ions, molecules or particles are needed to maximize the sensitivity of mass spectrometers. "Ion funnels", which utilize electrodynamic focusing, have been shown to effectively focus ions with mass-to-charge ratio (m/z) ranging from ~100 to 5000. Focusing efficiencies of ion funnels drop for higher m/z values because very high voltages are needed to overcome the particle inertia. Conventional "aerodynamic lenses" utilize inertia to focus down to 25 nm in diameter (~5 MDa); to date, Brownian diffusion has prevented the effective focusing of particles smaller than this. We recently reported a design procedure that should, in principle, extend focusing with aerodynamic lenses to particles as small as 3 nm (~10 kDa), thereby bridging the gap between the ion funnel and the conventional aerodynamic lenses. In this paper, we report for the first time experimental results for the performance of these new "nanolenses". Measurements were done using spherical oil droplets, proteins, and sodium chloride particles ranging in size from 3 to 30 nm diameter. We found that particle transport efficiencies from atmospheric pressure to vacuum through the aerodynamic lens system were greater than 80% for 10-30 nm particles, and greater than 50% for a ~3.8 nm protein (Lysozyme from chicken egg white, molecular weight 14.3 kDa). Particle beam diameters were about a factor of two greater than predicted by our numerical simulations, but provide clear evidence that the nanolenses effectively focus all three particle types.

  8. Variable focus crystal diffraction lens

    SciTech Connect

    Smither, R.K.

    1988-11-01

    A new method has been developed to control the shape of the surface of a diffracting crystal that will allow it to function as a variable focus crystal diffraction lens, for focusing photon beams from a synchrotron source. The new method uses thermal gradients in the crystal to control the shape of the surface of the crystal in two dimensions and allows one to generate both spherical and ellipsoidal surface shapes. In this work the thermal gradient was generated by core drilling two sets of cooling channels in a silicon crystal so that cooling or heating fluids could be circulated through the crystal at two different levels. The first set of channels is close to the surface of the crystal where the photon beam strikes it. The second set of channels is equal distant from the back surface. If a concave surface is desired, the fluid in the channels just below the surface exposed to the beam is cooler than the fluid circulating through the channels near the back surface. If a convex surface is desired, then the cooling fluid in the upper channels near the surface exposed to the incident photon beam, is warmer than the fluid in the lower channels. The focal length of the crystal lens is varied by varying the thermal gradient in the crystal. This approach can also be applied to the first crystal in a high power synchrotron beam line to eliminate the bowing and other thermal distortions of the crystal caused by the high heat load. 6 refs., 8 figs., 3 tabs.

  9. Implementation of an aerodynamic lens for TRIGA-SPEC

    NASA Astrophysics Data System (ADS)

    Grund, J.; Düllmann, Ch. E.; Eberhardt, K.; Nagy, Sz.; van de Laar, J. J. W.; Renisch, D.; Schneider, F.

    2016-06-01

    We report on the optimization of the gas-jet system employed to couple the TRIGA-SPEC experiment to the research reactor TRIGA Mainz. CdI2 aerosol particles suspended in N2 as carrier gas are used for an effective transport of fission products from neutron induced 235 U fission from the target chamber to a surface ion source. Operating conditions of the gas-jet were modified to enable the implementation of an aerodynamic lens, fitting into the limited space available in front of the ion source. The lens boosts the gas-jet efficiency by a factor of 4-10. The characterization of the gas-jet system as well as the design of the aerodynamic lens and efficiency studies are presented and discussed.

  10. Stretchable Binary Fresnel Lens for Focus Tuning

    PubMed Central

    Li, Xueming; Wei, Lei; Poelma, René H.; Vollebregt, Sten; Wei, Jia; Urbach, Hendrik Paul; Sarro, Pasqualina M.; Zhang, Guo Qi

    2016-01-01

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchability of the PDMS. By stretching the elastomeric composite in radial direction, the lens focal length is tuned. Good focusing response is demonstrated and a large focus change (≥24%) was achieved by stretching lenses up to 11.4%. PMID:27139747

  11. Stretchable Binary Fresnel Lens for Focus Tuning

    NASA Astrophysics Data System (ADS)

    Li, Xueming; Wei, Lei; Poelma, René H.; Vollebregt, Sten; Wei, Jia; Urbach, Hendrik Paul; Sarro, Pasqualina M.; Zhang, Guo Qi

    2016-05-01

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchability of the PDMS. By stretching the elastomeric composite in radial direction, the lens focal length is tuned. Good focusing response is demonstrated and a large focus change (≥24%) was achieved by stretching lenses up to 11.4%.

  12. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  13. (Aerodynamic focusing of particles and heavy molecules)

    SciTech Connect

    de la Mora, J.F.

    1990-01-08

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m{sub p} some 3.6 {times} 10{sup 5} times larger than the molecular mass m of the carrier gas (diameters above some 100{angstrom}), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 {mu}m. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5{radical}(m/m{sub p}) times the nozzle diameter d{sub n}. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs.

  14. Focusing light with a flame lens.

    PubMed

    Michaelis, Max M; Mafusire, Cosmas; Grobler, Jan-Hendrik; Forbes, Andrew

    2013-01-01

    The lens is a well-understood optical component used for focusing light, but is almost exclusively made in the solid-state form and, thus, suffers from optical damage at high powers. Attempts to overcome this through the use of non-solid graded-index media for lensing, for example, heated gasses, have found limited application owing to their long focal lengths. Here we describe the first flame lens, which produces a sharp focus with very little stray light and has a fourfold increase in focal power per unit length over previous gas lenses. Such gas devices remain topical due to their inherent ability to deliver high-power laser beams: our flame lens has a 'damage' threshold that is several orders of magnitude higher than that of most conventional lenses and is immediately repaired after damage for reuse, and thus will be of use in focusing high-irradiance laser beams.

  15. Focusing light with a flame lens

    NASA Astrophysics Data System (ADS)

    Michaelis, Max M.; Mafusire, Cosmas; Grobler, Jan-Hendrik; Forbes, Andrew

    2013-05-01

    The lens is a well-understood optical component used for focusing light, but is almost exclusively made in the solid-state form and, thus, suffers from optical damage at high powers. Attempts to overcome this through the use of non-solid graded-index media for lensing, for example, heated gasses, have found limited application owing to their long focal lengths. Here we describe the first flame lens, which produces a sharp focus with very little stray light and has a fourfold increase in focal power per unit length over previous gas lenses. Such gas devices remain topical due to their inherent ability to deliver high-power laser beams: our flame lens has a ‘damage’ threshold that is several orders of magnitude higher than that of most conventional lenses and is immediately repaired after damage for reuse, and thus will be of use in focusing high-irradiance laser beams.

  16. Aspherical lens shapes for focusing synchrotron beams.

    PubMed

    Sanchez del Rio, Manuel; Alianelli, Lucia

    2012-05-01

    Aspherical surfaces required for focusing collimated and divergent synchrotron beams using a single refractive element (lens) are reviewed. The Cartesian oval, a lens shape that produces perfect point-to-point focusing for monochromatic radiation, is studied in the context of X-ray beamlines. Optical surfaces that approximate ideal shapes are compared. Results are supported by ray-tracing simulations. Elliptical lenses, rather than parabolic, are preferred for nanofocusing X-rays because of the higher peak and lower tails in the intensity distribution. Cartesian ovals will improve the gain when using high-demagnification lenses of high numerical aperture. PMID:22514171

  17. Change of optical design thought about focusing of zoom lens

    NASA Astrophysics Data System (ADS)

    Hagimori, Hitoshi

    2015-09-01

    Zoom lens has been developed around lens applications of consumer still camera and TV broadcast cameras from about 1960s. Among, zoom lens as an interchangeable lens of a single-lens camera has made the most significant evolution in technically. In this paper, I describe the change of optical design concept about focusing function in zoom lens including introduction of some topic specific lenses.

  18. Bionic intraocular lens with variable focus and integrated structure

    NASA Astrophysics Data System (ADS)

    Liang, Dan; Wang, Xuan-Yin; Du, Jia-Wei; Xiang, Ke

    2015-10-01

    This paper proposes a bionic accommodating intraocular lens (IOL) for ophthalmic surgery. The designed lens has a solid-liquid mixed integrated structure, which mainly consists of a support ring, elastic membrane, rigid lens, and optical liquid. The lens focus can be adjusted through the deformation of the lens front surface when compressed. The integrated structure of the IOL is presented, as well as a detailed description of the lens materials and fabrication process. Images under different radial pressures are captured, and the lens deformation process, accommodating range, density, and optical property are analyzed. The designed lens achieves a 14.6 D accommodating range under a radial pressure of 51.4 mN and a 0.24 mm alteration of the lens outer radius. The deformation property of the lens matches well with the characteristic of the eye and shows the potential to help patients fully recover their vision accommodation ability after the cataract surgery.

  19. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the

  20. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes a metrology plan that was developed for the characterization of PLZT-based devices, such as the Adjustable Focus Optical Correction Lens (AFOCL) in support of and as part of the deliverables for NASA contract NAS8-00118. The areas to be investigated include intensiometric effects (those that limit or alter the intensity of the light transmitted through the optic); interferometric effects (the phase change induced through the optic); and polarimetric effects (evaluating the differential lag between two polarization states propagating through the optic). These distinct phenomena are often coupled together in real applications consequently, there is a need to develop different standardized testing apparatus to: (1) isolate one effect from another; (2) gather information for understanding the physical effects; (3) anchor wavefront corrector modeling efforts; (4) develop the ability to decouple different effects; (5) demonstrate the suitability of PLZT technology to perform wavefront correction. The Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) is skilled in the characterization of transmission wavefront shaping devices using traditional interferometers available within the CAO Optical Metrology Laboratory and their Advanced Polarization Test Facility. Besides the imaging and interferometers available, the polarimetry facility has at its disposal, a Mueller Matrix Imaging Polarimeter (MMIP) which is well suited to the characterization of SLMs, polarizers, and thin film coatings within the visible and near-IR spectrums. In addition, the phase-shifting interferometry facilities at NASA-MSFC and the unique interferometers they processes are some of the most advanced available and may be of value especially for performing real-time optical performance evaluation of AFOCL test components.

  1. Gabor lens focusing of a negative ion beam

    SciTech Connect

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab.

  2. X-ray focusing scheme with continuously variable lens.

    PubMed

    Adams, Bernhard W; Rose-Petruck, Christoph

    2015-01-01

    A novel hybrid X-ray focusing scheme was developed for operation of the X-ray streak camera at the Advanced Photon Source: an X-ray lens focuses vertically from a long distance of 16 m and produces an extended focus that has a small footprint on an inexpensive sagittal mirror. A patented method is used to continuously adjust the focal length of the lens and compensate for chromatic dispersion in energy scans.

  3. Evaporation of Water from Particles in the Aerodynamic Lens Inlet: An Experimental Study

    SciTech Connect

    Zelenyuk, Alla; Imre, Dan G.; Cuadra-Rodriguez, Luis A.

    2006-10-01

    The extremely high particle transmission efficiency of aerodynamic lens inlets resulted in their wide use in aerosol mass spectrometers. One of the consequences of a transport of particles from high ambient pressure into the vacuum is that it is accompanied by a rapid drop in relative humidity (RH). Since many atmospheric particles exist in the form of hygroscopic water droplets, a drop in RH may result in a significant loss of water and even a change in phase. To predict how much water will be evaporated is not feasible. Because water loss can effect in addition to particle size, its transmission efficiency, ionization probability and mass spectrum it is imperative to provide definitive experimental data that can serve to guide the field to a reasonable and uniform sampling approach. In this study we present the results of a number of carefully conducted measurements that provide the first experimentally determined benchmark of water evaporation from a range of particles, during their transport through an aerodynamic lens inlet. We conclude that the only sure way to avoid ambiguities during measurements of aerodynamic diameter in instruments that utilize low pressure aerodynamic lens inlets is to dry the particles prior to sampling.

  4. Plasma lens experiments at the Final Focus Test Beam

    SciTech Connect

    Barletta, B. |; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  5. Plasma lens experiments at the final focus test beam

    SciTech Connect

    Barletta, W.; Chattopadhyay, S.; Chen, P.

    1995-02-01

    The authors intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. They will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam induced tunneling ionization of a working gas--the latter which has never been observed before. The compactness of the device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  6. Research of the long-focus Maksutov telephoto lens

    NASA Astrophysics Data System (ADS)

    Tarasov, I. P.; Tsyganok, E. A.

    2016-04-01

    The article presents the research result and the optical design of long-focus telephoto lens for photo shooting by the academician Maksutov's scheme. It shows a review of lenses for photo shooting on the market today, and also an analysis of the correctional possibilities which is based on the scheme is presented; studied long-focus telephoto lens is compared with its closest analog, the calculation of a new telephoto lens with higher image quality is made on the basis of that comparison.

  7. Electrostatic plasma lens for focusing negatively charged particle beams.

    PubMed

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  8. Electrostatic lens to focus an ion beam to uniform density

    DOEpatents

    Johnson, Cleland H.

    1977-01-11

    A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.

  9. Flat Lens Focusing Demonstrated With Left-Handed Metamaterial

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Schwartz, Zachary D.; Chevalier, Christine T.; Downey, Alan N.; Vaden, Karl R.

    2004-01-01

    Left-handed metamaterials (LHM's) are a new media engineered to possess an effective negative index of refraction over a selected frequency range. This characteristic enables LHM's to exhibit physical properties never before observed. In particular, a negative index of refraction should cause electromagnetic radiation to refract or bend at a negative angle when entering an LHM, as shown in the figure above on the left. The figure on the right shows that this property could be used to bring radiation to a focus with a flat LHM lens. The advantage of a flat lens in comparison to a conventional curved lens is that the focal length could be varied simply by adjusting the distance between the lens and the electromagnetic wave source. In this in-house work, researchers at the NASA Glenn Research Center developed a computational model for LHM's with the three-dimensional electromagnetic commercial code Microwave Studio, constructed an LHM flat lens, and used it to experimentally demonstrate the reversed refraction and flat lens focusing of microwave radiation.

  10. The performance of magnetic lens for focusing VCN-SANS.

    SciTech Connect

    Yamada, M.; Iwashita, Y.; Kanaya, T.; Ichikawa, M.; Tongu, H.; Kennedy, S. J.; Shimizu, H. M.; Mishima, K.; Yamada, N. L.; Hirota, K.; Carpenter, J..; Lal, J.; Anderson, K.; Geltenbort, P.; Guerard, B.; Manzin, G.; Hino, M.; Kitaguchi, M.; Bleuel, M.; NOP Collaboration

    2011-01-01

    We have developed a prototype rotating-permanent magnet sextupole lens (named rot-PMSx) for more efficient experiments with neutron beams in time of flight (ToF) mode. This lens can modulate the focusing strength over range 1.5 x 10{sup 4} T/m{sup 2} {le} g' {le} 5.9 x 10{sup 4} T/m{sup 2}. Synchronization between the modulation and the beam pulse produces a focused beam without significant chromatic aberration. We anticipate that this lens could be utilized in focusing small angle neutron scattering (SANS) instruments for novel approach to high resolution SANS. We carried out experiments testing the principle of this lens at the very cold neutron (VCN) beamline (PF2) at Institut Laue-Langevin (ILL), France. The focused beam image size at the detector was kept constant at the same beam size as the source ({approx} 3 mm) over a wavelength range of 30 {angstrom} {le} {lambda} {le} 48 {angstrom} in focal length of {approx} 1.14 m. The flux gain was about 12 relative to a beam without focusing, and the depth of focus was quite large. These results show the good performance of this lens and the system. Thereupon we have demonstrated the performance of this test bed for high resolution focusing of VCN-SANS for a well-studied softmatter sample; a deuterium oxide solution of Pluronic F127, an (PEO){sub 100}(PPO){sub 65}(PEO){sub 100} tri-block copolymer in deuterium oxide. The results of the focusing experiment and the focusing VCN-SANS are presented.

  11. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  12. A broadband terahertz ultrathin multi-focus lens

    NASA Astrophysics Data System (ADS)

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-06-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application

  13. A broadband terahertz ultrathin multi-focus lens.

    PubMed

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application. PMID:27346430

  14. Aerosol printing of colloidal nanocrystals by aerodynamic focusing

    NASA Astrophysics Data System (ADS)

    Qi, Lejun

    Colloidal semiconductor nanocrystals, or quantum dots, have shown promise as the active material in electronic and optoelectronic applications, because of their high quantum yield, narrow spectral emission band, size-tunable bandgap, chemical stability, and easy processibility. Meanwhile, it is still challenging to print patterns of nanocrystal films with desired linewidth and thickness, which is a critical step in fabrication of nanocrystal-based devices. In this thesis, a direct-write method of colloidal semiconductor nanocrystals has been developed. Like other direct-write techniques, this aerosol based method simplifies printing process and reduces the manufacturing cost, as it avoids mask screening, lithography, and pre-patterning of the substrate. Moreover, the aerosol printing with aerodynamic lenses needs neither microscale nozzles nor sheath gases, and is able to incorporate into the vacuum systems currently used in microelectronic fabrication. This thesis research presents systematic efforts to develop an aerosol-based method to directly write patterns of semiconductor nanocrystals from colloidal dispersions by aerodynamic focusing. First, the synthesized colloidal nanocrystals in hexane were nebulized into compact and spherical agglomerates suspending in the carrier gas. The details about the impact dynamics of individual aerosolized nanocrystal agglomerates were investigated. As building blocks of printed nanocrystal films, the agglomerate exhibited cohesive and granular behaviors during impact deformation on the substrate. The strength of cohesion between nanocrystals in the agglomerates could be adjusted by tuning the number concentration of colloidal nanocrystal dispersion. Second, ultrathin films of nanocrystals were obtained by printing monodisperse nanocrystal agglomerates. As the result of the granular property of nanocrystal agglomerates, it was found that the thickness of deposited agglomerates strongly depended on the size of agglomerates. A

  15. Multi-depth photoacoustic microscopy with a focus tunable lens

    NASA Astrophysics Data System (ADS)

    Lee, Kiri; Chung, Euiheon; Eom, Tae Joong

    2015-03-01

    Optical-resolution photoacoustic microscopy (OR-PAM) has been studied to improve its imaging resolution and functional imaging modality without labeling on biology sample. However the use of high numerical aperture (NA) objective lens confines the field of view or the axial imaging range of OR-PAM. In order to obtain images at different layers, one needs to change either the sample position or the focusing position by mechanical scanning. This mechanical movement of the sample or the objective lens limits the scanning speed and the positioning precision. In this study, we propose a multi-depth PAM with a focus tunable lens. We electrically adjusted the focal length in the depth direction of the sample, and twice extended the axial imaging range up to 660 μm with the objective lens (20X, NA 0.4). The proposed approach can increase scanning speed and avoid step motor induced distortions during PA signal acquisitions without mechanical scanning in the depth direction. To investigate the performance of the multi-depth PAM system, we scanned a black human hair and the ear of a living nude mouse (BALB/c Nude). The obtained PAM images presented the volumetric rendering of black hair and the vasculature of the nude mouse.

  16. Spin-selected focusing and imaging based on metasurface lens.

    PubMed

    Wang, Sen; Wang, Xinke; Kan, Qiang; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Han, Peng; Qu, Shiliang; Zhang, Yan

    2015-10-01

    Spin of light provides a route to control photons. Spin-based optical devices which can manipulate photons with different spin states are imperative. Here we experimentally demonstrated a spin-selected metasurface lens based on the spin-orbit interaction originated from the Pancharatnam-Berry (PB) phase. The optimized PB phase enables the light with different spin states to be focused on two separated points in the preset plane. Furthermore, the metasurface lens can perform the spin-selected imaging according to the polarization of the illuminating light. Such a spin-based device capacitates a lot of advanced applications for spin-controlled photonics in quantum information processing and communication based on the spin and orbit angular momentum.

  17. Design and development of a laminated Fresnel lens for point-focus PV systems. Phase II

    SciTech Connect

    Hodge, R.C.

    1982-12-01

    A laminated glass-plastic lens parquet using injection molded point focus Fresnel lenses is described. The second phase of a program aimed at investigating the cost effectiveness of a glass-plastic concentrator lens assembly is reported. The first phase dealt with the development of a first generation lens design, the selection of the preferred glass coverplate and glass-to-lens adhesive and initial injection molding lens molding trials. The second phase has dealt with the development of an improved lens design, a full size parquet lamination process, and a second group of injection molding lens molding trials.

  18. Lens-focused transducer modeling using an extended KLM model.

    PubMed

    Maréchal, Pierre; Levassort, Franck; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc

    2007-05-01

    The goal of this work was to develop an extended ultrasound transducer model that would optimize the trade-off between accuracy of the calculation and computational time. The derivations are presented for a generalized transducer model, that is center frequency, pulse duration and physical dimensions are all normalized. The paper presents a computationally efficient model for lens-focused, circular (axisymmetric) single element piezoelectric ultrasound transducer. Specifically, the goal of the model is to determine the lens effect on the electro-acoustic response, both on focusing and on matching acoustic properties. The effective focal distance depends on the lens geometry and refraction index, but also on the near field limit, i.e. wavelength and source radius, and on the spectrum bandwidth of the ultrasound source. The broadband (80%) source generated by the transducer was therefore considered in this work. A new model based on a longitudinal-wave assumption is presented and the error introduced by this assumption is discussed in terms of its maximum value (16%) and mean value (5.9%). The simplified model was based on an extension of the classical KLM model for transducer structures and on the related assumptions. The validity of the implemented extended KLM model was evaluated by comparison with finite element modeling, itself previously validated analytically for the one-dimensional planar geometry considered. The pressure field was then propagated using the adequate formulation of the Rayleigh integral for both the extended KLM and finite element results. The simplified approach based on the KLM model delivered the focused response with good accuracy, and hundred-fold lower calculation time in comparison with a mode comprehensive FEM method. The trade-off between precision and time thus becomes compatible with an iterative procedure, used here for the optimization of the acoustic impedance of the lens for the chosen configuration. An experimental comparison

  19. Millimeter-wave imaging with slab focusing lens made of electromagnetic-induction materials.

    PubMed

    Yang, Kui; Wang, Jinbang; Zhao, Lu; Liu, Zhiguo; Zhang, Tao

    2016-01-11

    A slab focusing lens in this work has been designed, which consists of electromagnetic-induction materials (cage-shaped granules of conductor materials) and polymethyl methacrylate (PMMA) materials. A compound lens with a thickness of 32 mm is composed of two slab focusing lenses, and has a refractive index of 1.41 at 35 GHz. Millimeter-wave (MMW) images of metallic objects have been obtained with the compound lens. The image quality has been compared by means of the compound lens and the polyethylene lens. The experimental results show good feasibility of the compound lens in MMW imaging.

  20. Millimeter-wave imaging with slab focusing lens made of electromagnetic-induction materials.

    PubMed

    Yang, Kui; Wang, Jinbang; Zhao, Lu; Liu, Zhiguo; Zhang, Tao

    2016-01-11

    A slab focusing lens in this work has been designed, which consists of electromagnetic-induction materials (cage-shaped granules of conductor materials) and polymethyl methacrylate (PMMA) materials. A compound lens with a thickness of 32 mm is composed of two slab focusing lenses, and has a refractive index of 1.41 at 35 GHz. Millimeter-wave (MMW) images of metallic objects have been obtained with the compound lens. The image quality has been compared by means of the compound lens and the polyethylene lens. The experimental results show good feasibility of the compound lens in MMW imaging. PMID:26832287

  1. Diamond refractive lens for hard x-ray focusing

    NASA Astrophysics Data System (ADS)

    Snigirev, Anatoly A.; Yunkin, Vecheslav; Snigireva, Irina; Di Michiel, Marco; Drakopoulos, Michael; Kouznetsov, Sergey; Shabel'nikov, Leonid; Grigoriev, Michail; Ralchenko, Victor; Sychov, I.; Hoffmann, Martin; Voges, Edgar I.

    2002-11-01

    We report the manufacture and experimental tests of first diamond refractive lenses for hard X-ray focusing. A transfer molding technique based on diamond growth on a pre-patterned silicon mould was employed to fabricate diamond refractive lenses. Diamond films were produced by microwave plasma enhanced chemical vapor deposition. The lenses were designed for 50 cm focal length at energy 9 keV. Experimental tests were performed at the ESRF ID15 (wiggler) and ID22 (undulator) beamlines using monochromatic, "pink" and white X-ray radiation in the energy range from 6 to 40 keV. Focusing in the order of 1-2 microns was achieved. To evaluate the lens microstructure properties phase contrast imaging and diffraction techniques (SAXS and WAXS) were applied.

  2. Electric current focusing efficiency in a graphene electric lens.

    PubMed

    Mu, Weihua; Zhang, Gang; Tang, Yunqing; Wang, Wei; Ou-Yang, Zhongcan

    2011-12-14

    In the present work, we study theoretically the electron wave's focusing phenomenon in a single-layered graphene pn junction (PNJ) and obtain the electric current density distribution of graphene PNJ, which is in good agreement with the qualitative result in previous numerical calculations (Cheianov et al 2007 Science, 315, 1252). In addition, we find that, for a symmetric PNJ, 1/4 of total electric current radiated from the source electrode can be collected by the drain electrode. Furthermore, this ratio reduces to 3/16 in a symmetric graphene npn junction. Our results obtained by the present analytical method provide a general design rule for an electric lens based on negative refractory index systems.

  3. Broadband Focusing Acoustic Lens Based on Fractal Metamaterials

    PubMed Central

    Song, Gang Yong; Huang, Bei; Dong, Hui Yuan; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    Acoustic metamaterials are artificial structures which can manipulate sound waves through their unconventional effective properties. Different from the locally resonant elements proposed in earlier studies, we propose an alternate route to realize acoustic metamaterials with both low loss and large refractive indices. We describe a new kind of acoustic metamaterial element with the fractal geometry. Due to the self-similar properties of the proposed structure, broadband acoustic responses may arise within a broad frequency range, making it a good candidate for a number of applications, such as super-resolution imaging and acoustic tunneling. A flat acoustic lens is designed and experimentally verified using this approach, showing excellent focusing abilities from 2 kHz and 5 kHz in the measured results. PMID:27782216

  4. Bionic optical imaging system with aspheric solid-liquid mixed variable-focus lens

    NASA Astrophysics Data System (ADS)

    Du, Jia-Wei; Wang, Xuan-Yin; Liang, Dan

    2016-02-01

    A bionic optical imaging system with an aspheric solid-liquid mixed variable-focus lens was designed and fabricated. The entire system mainly consisted of a doublet lens, a solid-liquid mixed variable-focus lens, a connecting part, and a CCD imaging device. To mimic the structure of the crystalline lens, the solid-liquid mixed variable-focus lens consisted of a polydimethylsiloxane (PDMS) lens, a polymethyl methacrylate lens, and the liquid of ethyl silicone oil. By pumping liquid in or out of the cavity using a microinjector, the curvatures of the front and rear surfaces of the PDMS lens were varied, resulting in a change of focal length. The overall structure of the system was presented, as well as a detailed description of the solid-liquid mixed variable-focus lens, material, and fabrication process. Under different injection volumes, the deformation of the PDMS lens was measured and simulated, pictures were captured, and the optical performance was analyzed in simulations and experiments. The focal length of the system ranged from 25.05 to 14.61 mm, and the variation of the diopter was 28.5D, which was larger than that of the human eye.

  5. Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator.

    PubMed

    Son, Hyung-Min; Kim, Min Young; Lee, Yun-Jung

    2009-08-01

    A new tunable-focus liquid lens system is proposed that consists of a liquid-filled PDMS (polydimethylsiloxane) membrane, special liquid injection mechanism based on a cam structure, antagonistic winding-type SMA(shape memory alloys) actuator for changing the surface curvature of the membrane, and liquid injection control system, including a digital signal processing board and actuator driver board. The focal length of the liquid lens is adjusted by changing the radius of the curvature of the liquid lens through redistributing the liquid using an injection mechanism. In the case of liquid lens systems using conventional injection mechanisms, the nonlinear relationship between the focal length change and the actuator displacement makes it difficult to control the focal length of the lens system, as there is only a narrow control range for adjusting the focal length over a wide range. In addition, miniaturization of the lens system is difficult due to the requirement of bulky and heavy actuators, such as an electrical motor and pump[7]. Thus, a relatively light and small SMA actuator is proposed for a compact lens system. This paper then provides a detailed description of the proposed tunable-focus liquid lens system, and an experimental system is also implemented. Finally, the focusing performance of the proposed liquid lens system is analyzed, and its usefulness and effectiveness verified through a series of experiments.

  6. Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet

    SciTech Connect

    Kalnins, Juris G.; Amini, Jason M.; Gould, Harvey

    2005-10-15

    An electrostatic lens with three focusing elements in an alternating-gradient configuration is used to focus a fountain of cesium atoms in their ground (strong-field-seeking) state. The lens electrodes are shaped to produce only sextupole plus dipole equipotentials which avoids adding the unnecessary nonlinear forces present in cylindrical lenses. Defocusing between lenses is greatly reduced by having all of the main electric fields point in the same direction and be of nearly equal magnitude. The addition of the third lens gave us better control of the focusing strength in the two transverse planes and allowed focusing of the beam to half the image size in both planes. The beam envelope was calculated for lens voltages selected to produced specific focusing properties. The calculations, starting from first principles, were compared with measured beam sizes and found to be in good agreement. Application to fountain experiments, atomic clocks, and focusing polar molecules in strong-field-seeking states is discussed.

  7. Ring lens focusing and push-pull tracking scheme for optical disk systems

    NASA Technical Reports Server (NTRS)

    Gerber, R.; Zambuto, J.; Erwin, J. K.; Mansuripur, M.

    1993-01-01

    An experimental comparison of the ring lens and the astigmatic techniques of generating focus-error-signal (FES) in optical disk systems reveals that the ring lens generates a FES over two times steeper than that produced by the astigmat. Partly due to this large slope and, in part, because of its diffraction-limited behavior, the ring lens scheme exhibits superior performance characteristics. In particular the undesirable signal known as 'feedthrough' (induced on the FES by track-crossings during the seek operation) is lower by a factor of six compared to that observed with the astigmatic method. The ring lens is easy to align and has reasonable tolerance for positioning errors.

  8. Clinical trials of interference-based extended depth of focus intra ocular lens design

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Raveh, Ido; Limon, Ofer; ben Yaish, Shai; Lahav Yacouel, Karen; Doron, Ravid; Zlotnik, Alex

    2015-03-01

    In this paper we present the clinical trials performed with intra ocular lens (IOL) design having interference based extended depth of focus. The purpose of such IOL design is to allow cataract patients avoid using glasses after doing their surgery.

  9. Engineering near-field focusing of a microsphere lens with pupil masks

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Yue, Liyang; Wang, Zengbo

    2016-07-01

    Recent researches have shown small dielectric microspheres can perform as super-resolution lens to break optical diffraction limit for super-resolution applications. In this paper, we show for the first time that by combining a microsphere lens with a pupil mask, it is possible to precisely control the focusing properties of the lens, including the focusing spot size and focal length. Generally, the pupil mask can significantly reduce the spot size which means an improved resolution. The work is important for advancing microsphere-based super-resolution technologies, including fabrication and imaging.

  10. Large-aperture prism-array lens for high-energy X-ray focusing.

    PubMed

    Zhang, Weiwei; Liu, Jing; Chang, Guangcai; Shi, Zhan; Li, Ming; Ren, Yuqi; Zhang, Xiaowei; Yi, Futing; Liu, Peng; Sheng, Weifan

    2016-09-01

    A new prism-array lens for high-energy X-ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin-lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife-edge scan method at the X-ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X-ray energy of 50 keV. PMID:27577761

  11. Wavelength dependence of focusing properties of two-dimensional photonic quasicrystal flat lens.

    PubMed

    Liu, Jianjun; Fan, Zhigang; Hu, Haili; Yang, Maohua; Guan, Chunying; Yuan, Libo; Guo, Hao; Zhang, Xiong

    2012-05-15

    We investigated the wavelength dependence of the focusing properties of a germanium-cylinder-based two-dimensional (2D) decagonal Penrose-type photonic quasicrystal (PQC) flat lens for the first time, to the best of our knowledge. We found that near the second bandgap and in the high-frequency side (between the bandgap boundary and the first light intensity peak) of the pass band, the flat lens can exhibit a focusing effect for a point light source and that the focusing wavelengths can directly be drawn from the photonic band structure. For all the focusing wavelengths, the summation of the object distance and the image distance is less than the thickness of the flat lens when the object distance is half the thickness of the flat lens. As the wavelength increases, the image distance, the image quality, and the effective refractive index of the flat lens increase, whereas the image power of the point light source decreases. The effective refractive index of the flat lens is less than -1.

  12. An improved low-optical-power variable focus lens with a large aperture.

    PubMed

    Wang, Lihui; Oku, Hiromasa; Ishikawa, Masatoshi

    2014-08-11

    We report an improved method of fabricating a variable focus lens in which an in-plane pretension force is applied to a membrane. This method realized a lens with a large optical aperture and high performance in a low-optical-power region. The method was verified by comparing membranes in a simulation using the finite element method. A prototype with a 26 mm-diameter aperture was fabricated, and the wavefront behavior was measured by using a Shack-Hartmann sensor. Thanks to the in-plane pretension force, the lens achieved an infinite focal length with a wavefront error of 105.1 nm root mean square.

  13. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning

    PubMed Central

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-01-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442

  14. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning

    NASA Astrophysics Data System (ADS)

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-04-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks.

  15. A Transmittance-optimized, Point-focus Fresnel Lens Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.

    1984-01-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  16. Flat-Lens Focusing of Electron Beams in Graphene

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Cao, Xiyuan; Guo, Ran; Zhang, Yanyan; Che, Zhiyuan; Yannick, Fouodji T.; Zhang, Weiping; Du, Junjie

    2016-09-01

    Coupling electron beams carrying information into electronic units is fundamental in microelectronics. This requires precision manipulation of electron beams through a coupler with a good focusing ability. In graphene, the focusing of wide electron beams has been successfully demonstrated by a circular p-n junction. However, it is not favorable for information coupling since the focal length is so small that the focal spot locates inside the circular gated region, rather than in the background region. Here, we demonstrate that an array of gate-defined quantum dots, which has gradually changing lattice spacing in the direction transverse to propagation, can focus electrons outside itself, providing a possibility to make a coupler in graphene. The focusing effect can be understood as due to the gradient change of effective refractive indices, which are defined by the local energy band in a periodic potential. The strong focusing can be achieved by suitably choosing the lattice gradient and the layer number in the incident direction, offering an effective solution to precision manipulation of electron beams with wide electron energy range and high angular tolerance.

  17. Flat-Lens Focusing of Electron Beams in Graphene.

    PubMed

    Tang, Yang; Cao, Xiyuan; Guo, Ran; Zhang, Yanyan; Che, Zhiyuan; Yannick, Fouodji T; Zhang, Weiping; Du, Junjie

    2016-01-01

    Coupling electron beams carrying information into electronic units is fundamental in microelectronics. This requires precision manipulation of electron beams through a coupler with a good focusing ability. In graphene, the focusing of wide electron beams has been successfully demonstrated by a circular p-n junction. However, it is not favorable for information coupling since the focal length is so small that the focal spot locates inside the circular gated region, rather than in the background region. Here, we demonstrate that an array of gate-defined quantum dots, which has gradually changing lattice spacing in the direction transverse to propagation, can focus electrons outside itself, providing a possibility to make a coupler in graphene. The focusing effect can be understood as due to the gradient change of effective refractive indices, which are defined by the local energy band in a periodic potential. The strong focusing can be achieved by suitably choosing the lattice gradient and the layer number in the incident direction, offering an effective solution to precision manipulation of electron beams with wide electron energy range and high angular tolerance. PMID:27628099

  18. Flat-Lens Focusing of Electron Beams in Graphene.

    PubMed

    Tang, Yang; Cao, Xiyuan; Guo, Ran; Zhang, Yanyan; Che, Zhiyuan; Yannick, Fouodji T; Zhang, Weiping; Du, Junjie

    2016-09-15

    Coupling electron beams carrying information into electronic units is fundamental in microelectronics. This requires precision manipulation of electron beams through a coupler with a good focusing ability. In graphene, the focusing of wide electron beams has been successfully demonstrated by a circular p-n junction. However, it is not favorable for information coupling since the focal length is so small that the focal spot locates inside the circular gated region, rather than in the background region. Here, we demonstrate that an array of gate-defined quantum dots, which has gradually changing lattice spacing in the direction transverse to propagation, can focus electrons outside itself, providing a possibility to make a coupler in graphene. The focusing effect can be understood as due to the gradient change of effective refractive indices, which are defined by the local energy band in a periodic potential. The strong focusing can be achieved by suitably choosing the lattice gradient and the layer number in the incident direction, offering an effective solution to precision manipulation of electron beams with wide electron energy range and high angular tolerance.

  19. Flat-Lens Focusing of Electron Beams in Graphene

    PubMed Central

    Tang, Yang; Cao, Xiyuan; Guo, Ran; Zhang, Yanyan; Che, Zhiyuan; Yannick, Fouodji T.; Zhang, Weiping; Du, Junjie

    2016-01-01

    Coupling electron beams carrying information into electronic units is fundamental in microelectronics. This requires precision manipulation of electron beams through a coupler with a good focusing ability. In graphene, the focusing of wide electron beams has been successfully demonstrated by a circular p-n junction. However, it is not favorable for information coupling since the focal length is so small that the focal spot locates inside the circular gated region, rather than in the background region. Here, we demonstrate that an array of gate-defined quantum dots, which has gradually changing lattice spacing in the direction transverse to propagation, can focus electrons outside itself, providing a possibility to make a coupler in graphene. The focusing effect can be understood as due to the gradient change of effective refractive indices, which are defined by the local energy band in a periodic potential. The strong focusing can be achieved by suitably choosing the lattice gradient and the layer number in the incident direction, offering an effective solution to precision manipulation of electron beams with wide electron energy range and high angular tolerance. PMID:27628099

  20. Nanometer-thick flat lens with adjustable focus

    SciTech Connect

    Son, T. V.; Haché, A.; Ba, C. O. F.; Vallée, R.

    2014-12-08

    We report laser beam focusing by a flat, homogeneous film with a thickness of less than 100 nm. The effect relies on refractive index changes occurring in vanadium dioxide as it undergoes a phase transition from insulator to metal. Phase front curvature is achieved by means of temperature gradients, and adjustable focal lengths from infinity to 30 cm are attained.

  1. Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Deng, Yongqiang; He, Jiayu; Gao, Ping; Yao, Na; Wang, Changtao; Zhao, Zeyu; Wang, Jiong; Jiang, Bo; Luo, Xiangang

    2014-01-01

    A plasmonic lens composed of a dielectric-filled nanoslits structure on an aluminum film is proposed and experimentally demonstrated. The slits' structure is designed with equal distance, length, and width, but filled with variant thickness SiO2 dielectric for specific phase retardations. A dual focused ion beam instrument is employed to mill the slits and deposit SiO2 into the slits. The phase modulation by SiO2-filled slits is illustrated by a double slits interference experiment. The light focusing behavior of the fabricated plasmonic lens is experimentally characterized by a scanning near-field optical microscope. Experimental results show good agreement with the simulations.

  2. Experimental realization of a nonlinear acoustic lens with a tunable focus

    NASA Astrophysics Data System (ADS)

    Donahue, Carly M.; Anzel, Paul W. J.; Bonanomi, Luca; Keller, Thomas A.; Daraio, Chiara

    2014-01-01

    We realize a nonlinear acoustic lens composed of a two-dimensional array of sphere chains interfaced with water. The chains are able to support solitary waves which, when interfaced with a linear medium, transmit compact pulses with minimal oscillations. When focused, the lens is able to produce compact pressure pulses of high amplitude, the "sound bullets." We demonstrate that the focal point can be controlled via pre-compression of the individual chains, as this changes the wave speed within them. The experimental results agree well both spatially and temporally with analytical predictions over a range of focus locations.

  3. Losing focus: how lens position and viewing angle affect the function of multifocal lenses in fishes.

    PubMed

    Gagnon, Yakir Luc; Wilby, David; Temple, Shelby Eric

    2016-09-01

    Light rays of different wavelengths are focused at different distances when they pass through a lens (longitudinal chromatic aberration [LCA]). For animals with color vision this can pose a serious problem, because in order to perceive a sharp image the rays must be focused at the shallow plane of the photoreceptor's outer segments in the retina. A variety of fish and tetrapods have been found to possess multifocal lenses, which correct for LCA by assigning concentric zones to correctly focus specific wavelengths. Each zone receives light from a specific beam entrance position (BEP) (the lateral distance between incoming light and the center of the lens). Any occlusion of incoming light at specific BEPs changes the composition of the wavelengths that are correctly focused on the retina. Here, we calculated the effect of lens position relative to the plane of the iris and light entering the eye at oblique angles on how much of the lens was involved in focusing the image on the retina (measured as the availability of BEPs). We used rotational photography of fish eyes and mathematical modeling to quantify the degree of lens occlusion. We found that, at most lens positions and viewing angles, there was a decrease of BEP availability and in some cases complete absence of some BEPs. Given the implications of these effects on image quality, we postulate that three morphological features (aphakic spaces, curvature of the iris, and intraretinal variability in spectral sensitivity) may, in part, be adaptations to mitigate the loss of spectral image quality in the periphery of the eyes of fishes. PMID:27607515

  4. The design, testing and fabrication of an extruded, linear focus Fresnel lens

    SciTech Connect

    Kaminar, N.; Curchod, D. )

    1990-08-01

    The objective of this program is to design and fabricate an extruded, curved, linear-focus Fresnel lens for use in a photovoltaic module operating at 10X concentration. The extrusion process is the least expensive lens manufacturing process, producing a lens at approximately 10$/m{sup 2}. A goal to achieve 70% optical transmission was set. When used in a module, the housing sides are planned to be co-molded with the lens. This provides the least expensive module design available today. A 7-inch wide lens has been designed, and tooling has been fabricated. Several trial extrusions have been made, with the best to date giving a 73% transmission. A post forming tool was designed and fabricated that improves the molded tooth profile to within 0.001 inch of the design. The achievement of over 70% transmission has shown that a photovoltaic system with an installed AC buss-bar electricity cost of under $0.06/kWh can be produced. Solar Engineering Applications Corporation (SEA) is working on a second-generation extruded lens with the goal to achieve 80% transmission and incorporation into a module. 2 refs., 15 figs.

  5. Electromechanically driven variable-focus lens based on transparent dielectric elastomer.

    PubMed

    Son, Sang-ik; Pugal, David; Hwang, Taeseon; Choi, Hyouk Ryeol; Koo, Ja Choon; Lee, Youngkwan; Kim, Kwang; Nam, Jae-Do

    2012-05-20

    Dielectric elastomers with low elastic stiffness and high dielectric constant are smart materials that produce large strains (up to 300%) and belong to the group of electroactive polymers. Dielectric elastomer actuators are made from films of dielectric elastomers coated on both sides with compliant electrode material. Poly(3,4-ethylenedioxythiophene) (PEDOT), which is known as a transparent conducting polymer, has been widely used as an interfacial layer or polymer electrode in polymer electronic devices. In this study, we propose the transparent dielectric elastomer as a material of actuator driving variable-focus lens system using PEDOT as a transparent electrode. The variable-focus lens module has light transmittance up to 70% and maximum displacement up to 450. When voltage is applied to the fabricated lens module, optical focal length is changed. We anticipate our research to be a starting point for new model of variable-focus lens system. This system could find applications in portable devices, such as digital cameras, camcorder, and cell phones. PMID:22614602

  6. Focusing of hard x-rays to 16 manometers with a multilayer Laue lens.

    SciTech Connect

    Kang, H. C.; Yan, H.; Maser, J.; Liu, C.; Conley, R.; Macrander , A. T.; Vogt, S.; Winarski, R.; Holt, M.; Stephenson, G. B.

    2008-06-01

    We report improved results for hard x-ray focusing using a multilayer Laue lens (MLL). We have measured a line focus of 16 nm width with an efficiency of 31% at a wavelength {lambda} = 0.064 nm (19.5 keV) using a partial MLL structure with an outermost zone width of 5 nm. The results are in good agreement with the theoretically predicted performance.

  7. Pink-beam focusing with a one-dimensional compound refractive lens.

    PubMed

    Dufresne, Eric M; Dunford, Robert W; Kanter, Elliot P; Gao, Yuan; Moon, Seoksu; Walko, Donald A; Zhang, Xusheng

    2016-09-01

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm(-2) was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. A method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported. PMID:27577759

  8. Compact touchless fingerprint reader based on digital variable-focus liquid lens

    NASA Astrophysics Data System (ADS)

    Tsai, C. W.; Wang, P. J.; Yeh, J. A.

    2014-09-01

    Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.

  9. Focusing performance of a multilayer Laue lens with layer placement error described by dynamical diffraction theory.

    PubMed

    Hu, Lingfei; Chang, Guangcai; Liu, Peng; Zhou, Liang

    2015-07-01

    The multilayer Laue lens (MLL) is essentially a linear zone plate with large aspect ratio, which can theoretically focus hard X-rays to well below 1 nm with high efficiency when ideal structures are used. However, the focusing performance of a MLL depends heavily on the quality of the layers, especially the layer placement error which always exists in real MLLs. Here, a dynamical modeling approach, based on the coupled wave theory, is proposed to study the focusing performance of a MLL with layer placement error. The result of simulation shows that this method can be applied to various forms of layer placement error.

  10. Focusing intense electron beams using a positive space charge cloud plasma lens

    NASA Astrophysics Data System (ADS)

    Goncharov, A.; Dobrovolskiy, A.; Litovko, I.; Gushenets, V.; Oks, E.

    2014-05-01

    An original plasma-optical device for focusing and manipulating negatively charged particle beams by a dynamic cloud of non-magnetized free positive ions and magnetically isolated electrons produced by a toroidal plasma source such as an anode layer thruster has recently been proposed and explored. In such systems, the electrons are separated from the ions by the relatively strong magnetic field in the discharge channel. The accelerated ions are weakly affected by the magnetic field, owing to their mass. Here, we describe the current status of ongoing research and development of a wide-aperture electrostatic plasma lens with a positive space charge cloud for focusing and manipulating large-area, high-current electron beams. The new modified magnetic system was simulated, designed and tested for minimal aberrations. In this work, we present new simulation results of the further lens development.

  11. Auto-measuring system of aero-camera lens focus using linear CCD

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ye; Zhao, Yu-liang; Wang, Shu-juan

    2014-09-01

    The automatic and accurate focal length measurement of aviation camera lens is of great significance and practical value. The traditional measurement method depends on the human eye to read the scribed line on the focal plane of parallel light pipe by means of reading microscope. The method is of low efficiency and the measuring results are influenced by artificial factors easily. Our method used linear array solid-state image sensor instead of reading microscope to transfer the imaging size of specific object to be electrical signal pulse width, and used computer to measure the focal length automatically. In the process of measurement, the lens to be tested placed in front of the object lens of parallel light tube. A couple of scribed line on the surface of the parallel light pipe's focal plane were imaging on the focal plane of the lens to be tested. Placed the linear CCD drive circuit on the image plane, the linear CCD can convert the light intensity distribution of one dimension signal into time series of electrical signals. After converting, a path of electrical signals is directly brought to the video monitor by image acquisition card for optical path adjustment and focusing. The other path of electrical signals is processed to obtain the pulse width corresponding to the scribed line by electrical circuit. The computer processed the pulse width and output focal length measurement result. Practical measurement results showed that the relative error was about 0.10%, which was in good agreement with the theory.

  12. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    SciTech Connect

    Lin, Zhou; Tu, Juan; Cheng, Jianchun; Guo, Xiasheng E-mail: dzhang@nju.edu.cn; Wu, Junru; Huang, Pingtong; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2015-09-14

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  13. Design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems

    SciTech Connect

    Matalon, L. A.

    1982-08-01

    The design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems use is described. The objective of this development was to examine the feasibility of producing lenses with a cost effectiveness superior to that of lenses made by casting of acrylic. The procedure used in executing this development, the method used in cost effectiveness evaluation, results obtained and recommendations for further work are presented.

  14. Evaluate depth of field limits of fixed focus lens arrangements in thermal infrared

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert

    2016-05-01

    More and more modern thermal imaging systems use uncooled detectors. High volume applications work with detectors that have a reduced pixel count (typically between 200x150 and 640x480). This reduces the usefulness of modern image treatment procedures such as wave front coding. On the other hand, uncooled detectors demand lenses with fast fnumbers, near f/1.0, which reduces the expected Depth of Field (DoF). What are the limits on resolution if the target changes distance to the camera system? The desire to implement lens arrangements without a focusing mechanism demands a deeper quantification of the DoF problem. A new approach avoids the classic "accepted image blur circle" and quantifies the expected DoF by the Through Focus MTF of the lens. This function is defined for a certain spatial frequency that provides a straightforward relation to the pixel pitch of imaging device. A certain minimum MTF-level is necessary so that the complete thermal imaging system can realize its basic functions, such as recognition or detection of specified targets. Very often, this technical tradeoff is approved with a certain lens. But what is the impact of changing the lens for one with a different focal length? Narrow field lenses, which give more details of targets in longer distances, tighten the DoF problem. A first orientation is given by the hyperfocal distance. It depends in a square relation on the focal length and in a linear relation on the through focus MTF of the lens. The analysis of these relations shows the contradicting requirements between higher thermal and spatial resolution, faster f-number and desired DoF. Furthermore, the hyperfocal distance defines the DoF-borders. Their relation between is such as the first order imaging formulas. A calculation methodology will be presented to transfer DoF-results from an approved combination lens and camera to another lens in combination with the initial camera. Necessary input for this prediction is the accepted DoF of

  15. Focusing of photomechanical waves with an optical lens for depth-targeted molecular delivery

    NASA Astrophysics Data System (ADS)

    Shimada, Takuichirou; Sato, Shunichi; Kawauchi, Satoko; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2014-02-01

    We have been developing molecular delivery systems based on photomechanical waves (PMWs), which are generated by the irradiation of a laser absorbing material with nanosecond laser pulses. This method enables highly site-specific delivery in the horizontal plane of the tissue. However, targeting in the vertical direction is a remaining challenge. In this study, we developed a novel PMW focusing device for deeper tissue targeting. A commercial optical concave lens and black natural rubber sheet (laser absorber) were attached to the top and bottom end of a cylindrical spacer, respectively, which was filled with water. A laser pulse was transmitted through the lens and water and hit the rubber sheet to induce a plasma, generating a PMW. The PMW was propagated both downward and upward. The downward wave (1st wave) was diffused, while the upward (2nd wave) wave was reflected with the concave surface of the lens and focused at a depth determined by the geometrical parameters. To attenuate the 1st wave, a small-diameter silicon sponge rubber disk was adhered just under the rubber sheet concentrically with the laser axis. With the lens of f = -40 mm, the 2nd wave was focused to a diameter of 5.7 mm at a targeted depth of 20 mm, which was well agreed with the result of calculation by ray tracing. At a laser fluence of 5.1 J/cm2, peak pressure of the PMW reached ~40 MPa at the depth of 20 mm. Under this condition, we examined depth-targeted gene delivery to the rat skin.

  16. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation.

    PubMed

    Wen, Zhongquan; He, Yinghu; Li, Yuyan; Chen, Li; Chen, Gang

    2014-09-01

    In this paper, we numerically demonstrate the advantage of utilizing continuous amplitude and phase modulation in super-oscillation focusing lens design. Numerical results show that compared with simple binary amplitude modulation, continuous amplitude and phase modulation can greatly improve the super-oscillation focusing performance by increasing the central lobe intensity and the ratio of its energy to the total energy, reducing the sidelobe intensity, and substantially extending the field of view. Our study also reveals the role of phase distribution in reducing the spatial frequency bandwidth of the super-oscillation optical field on the focal plane. Based on continuous amplitude and binary phase modulation, a lens was designed with double layer metal slit array for wavelength of 4.6 µm. COMSOL is used to carry out the 2D simulation. The lens focal length is 40.18λ and the focal spot FWHM is 0.308λ. Two largest sidelobes are located right next to the central lobe with intensity about 40% of the central lobe intensity. Except for the two sidelobes, other sidelobes have intensity less than 25% of the central lobe intensity, which leads to a clear field of view on the whole focal plane. PMID:25321591

  17. 3D optical two-mirror scanner with focus-tunable lens.

    PubMed

    Pokorny, Petr; Miks, Antonin

    2015-08-01

    The paper presents formulas for a ray tracing in the optical system of two-mirror optical scanner with a focus-tunable lens. Furthermore, equations for the calculation of focal length which ensure focusing of a beam in the desired point in a detection plane are derived. The uncertainty description of such focal length follows as well. The chosen vector approach is general; therefore, the application of formulas in various configurations of the optical systems is possible. In the example situation, the authors derived formulas for mirrors' rotations and the focal length depending on the position of the point in the detection plane. PMID:26368115

  18. Note: A combined aerodynamic lens/ambient pressure x-ray photoelectron spectroscopy experiment for the on-stream investigation of aerosol surfaces

    SciTech Connect

    Mysak, Erin R.; Starr, David E.; Wilson, Kevin R.; Bluhm, Hendrik

    2010-01-15

    We discuss a new approach for the measurement of the surfaces of free aerosol particles with diameters from 50 to 1000 nm. Particles in this size range have significant influence on the heterogeneous chemistry in the atmosphere and affect human health. Interfacing an aerodynamic lens to an ambient pressure x-ray photoelectron spectrometer permits measurement of the surface chemical composition of unsupported aerosol particles in real time. We discuss the basic considerations for the design of such an instrument, its current limitations and potentials for improvement. Results from a proof-of-principle experiment on silicon oxide particles with average diameters of 270 nm are shown.

  19. Extended depth of focus intra-ocular lens: a solution for presbyopia and astigmatism

    NASA Astrophysics Data System (ADS)

    Zlotnik, Alex; Raveh, Ido; Ben Yaish, Shai; Yehezkel, Oren; Belkin, Michael; Zalevsky, Zeev

    2010-02-01

    Purpose: Subjects after cataract removal and intra-ocular lens (IOL) implantation lose their accommodation capability and are left with a monofocal visual system. The IOL refraction and the precision of the surgery determine the focal distance and amount of astigmatic aberrations. We present a design, simulations and experimental bench testing of a novel, non-diffractive, non-multifocal, extended depth of focus (EDOF) technology incorporated into an IOL that allows the subject to have astigmatic and chromatic aberrations-free continuous focusing ability from 35cm to infinity as well as increased tolerance to IOL decentration. Methods: The EDOF element was engraved on a surface of a monofocal rigid IOL as a series of shallow (less than one micron deep) concentric grooves around the optical axis. These grooves create an interference pattern extending the focus from a point to a length of about one mm providing a depth of focus of 3.00D (D stands for Diopters) with negligible loss of energy at any point of the focus while significantly reducing the astigmatic aberration of the eye and that generated during the IOL implantation. The EDOF IOL was tested on an optical bench simulating the eye model. In the experimental testing we have explored the characteristics of the obtained EDOF capability, the tolerance to astigmatic aberrations and decentration. Results: The performance of the proposed IOL was tested for pupil diameters of 2 to 5mm and for various spectral illuminations. The MTF charts demonstrate uniform performance of the lens for up to 3.00D at various illumination wavelengths and pupil diameters while preserving a continuous contrast of above 25% for spatial frequencies of up to 25 cycles/mm. Capability of correcting astigmatism of up to 1.00D was measured. Conclusions: The proposed EDOF IOL technology was tested by numerical simulations as well as experimentally characterized on an optical bench. The new lens is capable of solving presbyopia and astigmatism

  20. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    PubMed

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization. PMID:25474778

  1. Pulsed neutron-beam focusing by modulating a permanent-magnet sextupole lens

    NASA Astrophysics Data System (ADS)

    Yamada, Masako; Iwashita, Yoshihisa; Ichikawa, Masahiro; Fuwa, Yasuhiro; Tongu, Hiromu; Shimizu, Hirohiko M.; Mishima, Kenji; Yamada, Norifumi L.; Hirota, Katsuya; Otake, Yoshie; Seki, Yoshichika; Yamagata, Yutaka; Hino, Masahiro; Kitaguchi, Masaaki; Garbe, Ulf; Kennedy, Shane J.; Tung Lee, Wai; Andersen, Ken H.; Guerard, Bruno; Manzin, Giuliana; Geltenbort, Peter

    2015-04-01

    We have developed a compact permanent-magnet sextupole lens for neutrons that can focus a pulsed beam with a wide wavelength range-the maximum wavelength being more than double the minimum-while sufficiently suppressing the effect of chromatic aberration. The bore diameter is #x00F8;15 mm. Three units of a double-ring sextupole with a length of 66 mm are cascaded, resulting in a total length of 198 mm. The dynamic modulation range of the unit-averaged field gradient is 1.06 × 104-5.86 × 104Tm^{-2}. Permanent magnets and newly developed torque-canceling elements make the device compact, its production costs low, and its operation simpler than that of other magnetic lenses. The efficacy of this lens was verified using very cold neutrons. The diameter of the focused beam spots over the wavelength range of 27-55 Å was the same as that of the source aperture (2 mm diameter) when the magnification of the optical arrangement was unity. The total beam flux over this wavelength range was enhanced by a factor of 43. The focusing distance from the source to the detector was 1.84 m. In addition, in a demonstration of neutron image magnification, the image of a sample mask magnified by a factor of 4.1 was observed when the magnification of the optical arrangement was 5.0.

  2. Bidimensional Lens Systems : A Rational Approach To Group Displacements During Focusing And/Or Zooming

    NASA Astrophysics Data System (ADS)

    Angénieux, J. P. L.

    1987-06-01

    Modern objective lenses for cinematography, television or photography, and particularly zoom lenses, are composed of several groups of lenses which are axially displaced during zooming and/or focusing. The number of these groups has increased recently as well as the complexity of their relative movements and functions. In this paper, we give a short history of zooming and focusing techniques ; we discuss the inconvenience of traditional solutions. We then introduce the concept of bidimensional law. We propose a systematic classification of possible lens-types according to the 4 possible types of group. We finally present a few types of lenses in the form of truth tables and parametered diagrams explaining which groups move and how during focusing and/or zooming.

  3. Small angle x-ray scattering with a beryllium compound refractive lens as focusing optic

    SciTech Connect

    Timmann, Andreas; Doehrmann, Ralph; Schubert, Tom; Schulte-Schrepping, Horst; Hahn, Ulrich; Kuhlmann, Marion; Gehrke, Rainer; Roth, Stephan Volkher; Schropp, Andreas; Schroer, Christian; Lengeler, Bruno

    2009-04-15

    At BW4 at HASYLAB a beryllium compound refractive lens (Be-CRL) is used for the focusing in small-angle x-ray scattering experiments. Using it provides the advantages of higher long-term stability and a much easier alignment compared to a setup with focusing mirrors. In our investigations presented here, we show the advantages of using a Be-CRL in small-angle and also ultra small-angle x-ray scattering. We investigated the beam characteristics at the sample position with respect to spot size and photon flux. The spot size is comparable to that of a setup with focusing mirrors but with a gain in flux and better long-term stability. It is also shown that plane mirrors are still necessary to suppress higher order energies passing the monochromator.

  4. Photoacoustic endoscopy with hollow structured lens-focused polyvinylidine fluoride transducer.

    PubMed

    Xiao, Jiaying; Li, Yanan; Jin, Wentao; Peng, Kuang; Zhu, Ziqiang; Wang, Bo

    2016-03-20

    Currently, most transducers in photoacoustic endoscopy (PAE) are ceramic based, which are complicated to fabricate and are expensive. In this work, we have for the first time presented a hollow structured epoxy lens-focused transducer that was based on a 52 μm thick polyvinylidine fluoride (PVDF) film for the purpose of PAE imaging. Intensive field characteristic tests were performed on transducers with different lens curvatures, and results show that with the 6 mm fixed aperture, a lateral resolution less than 0.5 mm can be obtained with a focal length around 19 mm, which is close to the theoretical calculations. The PAE application of the built transducer was also demonstrated with phantom experiments. Compared with the commonly used ceramic-based transducers, the proposed method has greatly reduced the design and fabrication cost of the hollow structured focused transducer as required in PAE, and facilitated the development of the PAE system in lab conditions. The built transducer may play an important role in the PAE imaging of some relatively large human structures and organs, such as the gastrointestinal tract and the cervical canal. PMID:27140566

  5. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.

    PubMed

    Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses. PMID:26698059

  6. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.

    PubMed

    Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  7. Measurement of the M² beam propagation factor using a focus-tunable liquid lens.

    PubMed

    Niederriter, Robert D; Gopinath, Juliet T; Siemens, Mark E

    2013-03-10

    We demonstrate motion-free beam quality M² measurements of stigmatic, simple astigmatic, and general astigmatic (twisted) beams using only a focus-tunable liquid lens and a CCD camera. We extend the variable-focus technique to the characterization of general astigmatic beams by measuring the 10 second-order moments of the power density distribution for the twisted beam produced by passage through multimode optical fiber. Our method measures the same M² values as the traditional variable-distance method for a wide range of laser beam sources, including nearly TEM(00) (M²≈1) and general astigmatic multimode beams (M²≈8). The method is simple and compact, with no moving parts or complex apparatus and measurement precision comparable to the standard variable-distance method.

  8. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    SciTech Connect

    Antipov, S.; Baryshev, Sergey; Butler, J. E.; Antipova, O.; Liu, Zunping; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  9. Ray tracing method with Fresnel's transmission to calculate polarized radiation power distribution focused by a terahertz Silicon lens antenna

    NASA Astrophysics Data System (ADS)

    Apriono, Catur; Rahardjo, Eko Tjipto; Hiromoto, Norihisa

    2015-03-01

    We study a method for simulating a power-flow density distribution of terahertz-wave focused by a hemispherical Silicon lens antenna. A regular ray-tracing method is not enough to evaluate a correct radiation power-flow because it does not take into account transmittances dependent on angles of incidence at different positions on the spherical boundary of the Si-lens. In this study, we propose a ray-tracing method including Fresnel's transmission coefficients on the surface of a Si-lens for incoming polarized rays. The power-flow-density distribution calculated by the proposed method has a good agreement except for interference and diffraction with the result obtained by an electromagnetic wave simulator. Our method is so simple and reliable that it is useful for designing and evaluating THz optical systems using dielectric lens antennas.

  10. Fine-tune lens-heating-induced focus drift with different process and illumination settings

    NASA Astrophysics Data System (ADS)

    Cui, Yuanting

    2001-09-01

    This study is to establish the relationship of lens heating (LH) performance with related process variables and develop the methodology for reducing LH induced focus drift for different products based on ASML LH algorithms and experiment data. Focus drift data is collected at certain LH machine constants for different process settings, such as different clear window images (CLW) in stepper jobs, different exposure doses, reticle transmission rates, and substrates. The further study is done at different illumination settings to establish the correlation between NA/sigma settings, focus drift and LH scaling factors ((mu) 1 (mu) 2). The characteristic (mu) 1, (mu) 2 -- NA/Ill relationship for this i-line stepper is generated using production batches. LH machine constants are fine-tuned based on the Poly layer for 0.30 micrometer Logic Mix-mode, 0.30 micrometer SRAM and 0.35 micrometer Embedded SRAM products. This work provides an accurate and practical way to fine-tune LH for all the i-line/DUV steppers based on the critical layer of representative products in a foundry fab.

  11. Broadband, high-efficiency, arbitrary focusing lens by a holographic dielectric meta-reflectarray

    NASA Astrophysics Data System (ADS)

    Li, Rongzhen; Shen, Fei; Sun, Yongxuan; Wang, Wei; Zhu, Lie; Guo, Zhongyi

    2016-04-01

    In this paper, a metalens based on the dielectric meta-reflectarray consisting of silicon nanorods in combination with a gold ground plane is proposed to realize an arbitrary focusing lens. We have demonstrated that the meta-reflectarray is served as a half-waveplate with near-unity reflectance and over 98% polarization conversion efficiency over a wavelength range from 1.5 to 1.6 μm for circularly polarized light incidences. We have also demonstrated that single spot and four-spaced spots focusing with more than 96% diffraction efficiency over 100 nm bandwidth can be realized by this metalens in the near infrared band just by controlling the reflection phases. The spatial phase distributions of the corresponding designed metalens can be determined via a computer-generated hologram method. Meanwhile, the desired phase can be simply obtained by modulating the orientation of the silicon nanorods. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices at telecommunication wavelengths.

  12. A fast autofocus setup using a liquid lens objective for in-focus imaging in the macro range

    NASA Astrophysics Data System (ADS)

    Pasinetti, Simone; Bodini, Ileana; Sansoni, Giovanna; Docchio, Franco; Tinelli, Matteo; Lancini, Matteo

    2016-06-01

    A fast and reliable optical setup is here presented for in-focus imaging of objects in the macro range. The setup uses a camera equipped with an objective embedding a liquid lens, whose focal length is voltage-controlled. The defocus condition of the image is controlled by means of two indexes, both suitable for coarse and for fine adjustments. A purposely designed algorithm makes use of the two indexes, switching from one to the other to position the image in focus by adequately controlling the liquid lens focal length. The setup has been calibrated by means of target planes of known contrasts, and applied to process biomedical images such as fingerprints.

  13. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Mukai, David; Brenner, Matthew

    2006-04-01

    In this manuscript, a GRIN (gradient index) lens rod based probe for endoscopic spectral domain optical coherence tomography (OCT) with dynamic focus tracking is presented. Current endoscopic OCT systems have a fixed focal plane or working distance. In contrast, the focus of this endoscopic OCT probe can dynamically be adjusted at a high speed (500 mm/s) without changing reference arm length to obtain high quality OCT images for contact or non-contact tissue applications, or for areas of difficult access for probes. The dynamic focusing range of the probe can be from 0 to 7.5 mm without moving the probe itself. The imaging depth is 2.8 mm and the lateral scanning range is up to 2.7 mm or 4.5 mm (determined by the diameter of different GRIN lens rods). Three dimensional imaging can be performed using this system over an area of tissue corresponding to the GRIN lens surface. The experimental results demonstrate that this GRIN lens rod based OCT system can perform a high quality non-contact in vivo imaging. This rigid OCT probe is solid and can be adapted to safely access internal organs, to perform front or side view imaging with an imaging speed of 8 frames per second, with all moving parts proximal to the GRIN lens, and has great potential for use in extremely compact OCT endoscopes for in vivo imaging in both biological research and clinical applications.

  14. Research on aspheric focusing lens processing and testing technology in the high-energy laser test system

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Fu, Xiu-hua; Jia, Zong-he; Wang, Zhe; Dong, Huan

    2014-08-01

    In the high-energy laser test system, surface profile and finish of the optical element are put forward higher request. Taking a focusing aspherical zerodur lens with a diameter of 100mm as example, using CNC and classical machining method of combining surface profile and surface quality of the lens were investigated. Taking profilometer and high power microscope measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 0.5μm and the surface finish is □, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  15. Anterior segment and retinal OCT imaging with simplified sample arm using focus tunable lens technology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Grulkowski, Ireneusz; Karnowski, Karol; Ruminski, Daniel; Wojtkowski, Maciej

    2016-03-01

    Availability of the long-depth-range OCT systems enables comprehensive structural imaging of the eye and extraction of biometric parameters characterizing the entire eye. Several approaches have been developed to perform OCT imaging with extended depth ranges. In particular, current SS-OCT technology seems to be suited to visualize both anterior and posterior eye in a single measurement. The aim of this study is to demonstrate integrated anterior segment and retinal SS-OCT imaging using a single instrument, in which the sample arm is equipped with the electrically tunable lens (ETL). ETL is composed of the optical liquid confined in the space by an elastic polymer membrane. The shape of the membrane, electrically controlled by a specific ring, defines the radius of curvature of the lens surface, thus it regulates the power of the lens. ETL can be also equipped with additional offset lens to adjust the tuning range of the optical power. We characterize the operation of the tunable lens using wavefront sensing. We develop the optimized optical set-up with two adaptive operational states of the ETL in order to focus the light either on the retina or on the anterior segment of the eye. We test the performance of the set-up by utilizing whole eye phantom as the object. Finally, we perform human eye in vivo imaging using the SS-OCT instrument with versatile imaging functionality that accounts for the optics of the eye and enables dynamic control of the optical beam focus.

  16. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    SciTech Connect

    Peters, E.M.; Masso, J.D.

    1995-10-01

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  17. Analysis of required shape of flexible sensor for different lens focus

    NASA Astrophysics Data System (ADS)

    Shaw, Dein; Cuo, Shy-Pin; Lin, C. W.

    2009-08-01

    The purpose of this study is to find the shape requirement of image sensors when catching the image to obtain a much clear image than the flat image sensor. The results are applied to an o-ring driven liquid filled lens. It was found that the image distortion of the liquid filled lens is inevitable. Therefore, it is necessary to design an curved image sensor which can compensate the image distortion to solve this problem. The shape of the image sensor can be predicted by computer simulation. The required shape of the image sensor can be obtained by deforming the PDMS (Polydimethylsiloxane) membrane. The deformation of PDMS membrane of lens and the image sensor film can be obtain by using ANSYS® software at variable internal pressure in the liquid filled lens. The experimental module is composed of a barrel, transparent liquid (De-ionized water), PDMS lens membrane, rigid ring of lens curvature control, adjustable accessories of lens curvature orientation, the image sensors which are constructed on PDMS film, rigid ring of sensor film curvature control, and adaptable accessories of sensor film variable curvature adjustment. The ring of sensor film and accessories are utilized for variable sensor film's curvature control. On the basis of lens curvature's modulation, the image sensor film tuning process makes the image sensors on the optimal plane.

  18. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    NASA Astrophysics Data System (ADS)

    Stamate, Eugen; Yamaguchi, Masahito

    2015-08-01

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulations are found to be in very good agreement with experiments.

  19. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    SciTech Connect

    Stamate, Eugen; Yamaguchi, Masahito

    2015-08-31

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulations are found to be in very good agreement with experiments.

  20. Carbon-Nanotube Optoacoustic Lens for Focused Ultrasound Generation and High-Precision Targeted Therapy

    PubMed Central

    Baac, Hyoung Won; Ok, Jong G.; Maxwell, Adam; Lee, Kyu-Tae; Chen, Yu-Chih; Hart, A. John; Xu, Zhen; Yoon, Euisik; Guo, L. Jay

    2012-01-01

    We demonstrate a new optical approach to generate high-frequency (>15 MHz) and high-amplitude focused ultrasound, which can be used for non-invasive ultrasound therapy. A nano-composite film of carbon nanotubes (CNTs) and elastomeric polymer is formed on concave lenses, and used as an efficient optoacoustic source due to the high optical absorption of the CNTs and rapid heat transfer to the polymer upon excitation by pulsed laser irradiation. The CNT-coated lenses can generate unprecedented optoacoustic pressures of >50 MPa in peak positive on a tight focal spot of 75 μm in lateral and 400 μm in axial widths. This pressure amplitude is remarkably high in this frequency regime, producing pronounced shock effects and non-thermal pulsed cavitation at the focal zone. We demonstrate that the optoacoustic lens can be used for micro-scale ultrasonic fragmentation of solid materials and a single-cell surgery in terms of removing the cells from substrates and neighboring cells. PMID:23251775

  1. Statistical treatment of fluctuations in the gravitational focusing of light due to stellar masses within a gravitational lens

    NASA Technical Reports Server (NTRS)

    Deguchi, Shuji; Watson, William D.

    1987-01-01

    When light from small, distant sources in the universe is gravitationally focused by an intervening galaxy, the gravitational lens can be influenced by the granularity of the matter distribution which is caused by the stellar (or other compact) masses in the galaxy. A largely analytic, statistical calculation for a gravitational lens due to a collection of compact masses - valid for sources of finite size and for large (as well as small) 'optical depths' for the lens - is developed to treat fluctuations in the light caused by such 'microfocusing' effects. Previous treatments have been either numerical simulations of the Monte Carlo type or limited to single-star (i.e., low-optical-depth) effects.

  2. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light.

    PubMed

    Chen, Gang; Zhang, Kun; Yu, Anping; Wang, Xianyou; Zhang, Zhihai; Li, Yuyan; Wen, Zhongquan; Li, Chen; Dai, Luru; Jiang, Senling; Lin, Feng

    2016-05-16

    Planar lenses are attractive photonic devices due to its minimized size and easy to integrate. However, planar lenses designed in traditional ways are restricted by the diffraction limit. They have difficulties in further reducing the focal spot size beyond the diffraction limit. Super-oscillation provides a possible way to solve the problem. However, lenses based on super-oscillation have always been affected by huge sidelobes, which resulted in limited field of view and difficulties in real applications. To address the problem, in the paper, a far-field sub-diffraction lens based on binary amplitude-phase mask was demonstrated under illumination of linearly polarized plane wave at wavelength 632.8 nm. The lens realized a long focal length of 148λ (94 µm), and the full width at half maximum of the focal line was 0.406λ, which was super-oscillatory. More important is that such a flat lens has small sidelobes and wide field of view. Within the measured range of [-132λ, + 120λ], the maximum sidelobe observed on the focal plane was less than 22% of the central peak. Such binary amplitude-phase planar lens can also be extended to long focal length far-field sub-diffraction focusing lens for other spectrum ranges.

  3. Using a Microcapillary Refractive X-Ray Lens for Focusing And Imaging

    SciTech Connect

    Dudchik, Y.I.; Komarov, F.F.; Piestrup, M.A.; Gary, C.K.; Park, H.; Cremer, J.T.

    2009-06-03

    The microcapillary lens, formed by air bubbles in a hollow core glass capillary filled with epoxy, is a novel design of a compound refractive lens for X-rays. The epoxy enclosed between two air bubbles has the form of a biconcave lens and acts as a positive lens for X-rays. Each individual lens is spherical with radius of curvature equal to the inner radius of the capillary. Up to 500 individual biconcave lenses can be formed in a single capillary with diameters from 50 to 500 {mu}m. Due to the small radius of curvatures that can be achieved, microcapillary lenses typically have shorter focal lengths than those made by compression or injection molding. For example, microcapillary lenses with a focal length about 5 cm for 8 keV X-rays and 50-micron aperture are readily available. We have produced a set of lenses in a 200-micron inner-diameter glass capillary with 100--350 individual microlenses and measured their parameters at the Stanford Synchrotron Radiation Laboratory and at the Advanced Photon Source. Our investigations have also shown that the lenses are suitable for imaging applications with an X-ray tube as a source of X-rays. A simple X-ray microscope is discussed. The microscope consists of a copper anode X-ray tube, X-ray lens and CCD-camera. The object, lens and CCD-camera were placed in-line at distances to satisfy the lens formula. It is shown that the field of view of the microscope is about 1 mm and resolution is equal to 3--5 {mu}m.

  4. Focus modulation of cylindrical vector beams by using 1D photonic crystal lens with negative refraction effect.

    PubMed

    Xu, Ji; Zhong, Yi; Wang, Shengming; Lu, Yunqing; Wan, Hongdan; Jiang, Jian; Wang, Jin

    2015-10-19

    Sub-wavelength focusing of cylindrical vector beams (CVBs) has attracted great attention due to the specific physical effects and the applications in many areas. More powerful, flexible and effective ways to modulate the focus transversally and also longitudinally are always being pursued. In this paper, cylindrically symmetric lens composed of negative-index one-dimensional photonic crystal is proposed to make a breakthrough. By revealing the relationship between focal length and the exit surface shape of the lens, a quite simple and effective principle of designing the lens structure is presented to realize specific focus modulation. Plano-concave lenses are parameterized to modulate the focal length and the number of focuses. An axicon constructed by one-dimensional photonic crystal is proposed for the first time to obtain a large depth of focus and an optical needle focal field with almost a theoretical minimum FWHM of 0.362λ is achieved under radially polarized incident light. Because of the almost identical negative refractive index for TE and TM polarization states, all the modulation methods can be applied for any arbitrary polarized CVBs. This work offers a promising methodology for designing negative-index lenses in related application areas. PMID:26480359

  5. Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits

    SciTech Connect

    Tang, Kun; Qiu, Chunyin Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2015-01-14

    Based on the Huygens-Fresnel principle, we design a planar lens to efficiently realize the interconversion between the point-like sound source and Gaussian beam in ambient air. The lens is constructed by a planar plate perforated elaborately with a nonuniform array of zigzag slits, where the slit exits act as subwavelength-sized secondary sources carrying desired sound responses. The experiments operated at audible regime agree well with the theoretical predictions. This compact device could be useful in daily life applications, such as for medical and detection purposes.

  6. The Family Impact Lens: A Family-Focused, Evidence-Informed Approach to Policy and Practice

    ERIC Educational Resources Information Center

    Bogenschneider, Karen; Little, Olivia M.; Ooms, Theodora; Benning, Sara; Cadigan, Karen; Corbett, Thomas

    2012-01-01

    Families have long been recognized for the contributions they make to their members and to society. Yet families are seldom substantively incorporated into the normal course of policy and program development, implementation, and evaluation. We propose the family impact lens as one way to shift the rhetoric from appreciating families to…

  7. A New Focus Lens for Improved Energy Resolution in the Wind and Temperature Spectrometer

    NASA Astrophysics Data System (ADS)

    Fenn, D.; Herrero, F.; Syrstad, E. A.

    2010-12-01

    The Wind and Temperature Spectrometer (WATS) is a novel neutral particle sensor capable of simultaneously measuring neutral winds, temperature, composition, and density in the upper atmosphere. This compact, low-power instrument is ideally suited for in situ thermospheric measurements on small-satellite platforms. Building on work previously performed, we detail here endeavors to more fully characterize the effects of proposed instrument modifications, leading to a greater understanding of their impact on overall sensor performance. Additionally, laboratory testing of the WATS seeks to confirm theoretical data previously gathered. WATS utilizes electron impact ionization, a crossed Small Deflection Energy Analyzer (SDEA) pair, and a microchannel plate (MCP) detector with linear spatial readout to measure the full 3-D velocity distribution of an incoming neutral stream. A minor weakness in the original WATS design was that a large ion beam divergence at the SDEA entrance led to degraded energy resolution. To address this problem, a simple focusing lens system with a large acceptance angle range, dubbed the Tapered Quad Deflector (TQD), was designed and previously presented. Here, the results of ion trajectory calculations (Simion 3D) and Monte Carlo simulations (Matlab) are used to explore various aspects of the TQD’s functionality. With no modifications to the instrument aside from the addition of the TQD, simulations show an increase in the energy resolution by a factor of two. Further simulations reveal that reducing the width of the instrument’s collimator slit decreases the beam divergence (with a corresponding increase in instrument energy resolution) for both the original and modified WATS. However, this effect is markedly more pronounced in the latter, meaning that the TQD could enable a significant reduction in beam divergence while minimizing the loss of signal that would result from narrowing the collimator slit. Also presented are the results of

  8. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens

    SciTech Connect

    Saifee, T.; Konnerth, A. III )

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  9. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens

    NASA Astrophysics Data System (ADS)

    Saifee, T.; Konnerth, A., III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals.

  10. Demonstration of relativistic electron beam focusing by a laser-plasma lens

    PubMed Central

    Thaury, C.; Guillaume, E.; Döpp, A.; Lehe, R.; Lifschitz, A.; Ta Phuoc, K.; Gautier, J.; Goddet, J-P; Tafzi, A.; Flacco, A.; Tissandier, F.; Sebban, S.; Rousse, A.; Malka, V.

    2015-01-01

    Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791

  11. Demonstration of relativistic electron beam focusing by a laser-plasma lens.

    PubMed

    Thaury, C; Guillaume, E; Döpp, A; Lehe, R; Lifschitz, A; Ta Phuoc, K; Gautier, J; Goddet, J-P; Tafzi, A; Flacco, A; Tissandier, F; Sebban, S; Rousse, A; Malka, V

    2015-04-16

    Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.

  12. Demonstration of relativistic electron beam focusing by a laser-plasma lens.

    PubMed

    Thaury, C; Guillaume, E; Döpp, A; Lehe, R; Lifschitz, A; Ta Phuoc, K; Gautier, J; Goddet, J-P; Tafzi, A; Flacco, A; Tissandier, F; Sebban, S; Rousse, A; Malka, V

    2015-01-01

    Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791

  13. Characterization of a one dimensional focusing compound refractive lens using the rotating shearing interferometer technique

    SciTech Connect

    Wang Hongchang; Berujon, Sebastien; Sawhney, Kawal

    2012-07-31

    A one dimensional (1D) compound refractive lens (CRL) has been characterized using the grating based rotating shearing interferometer technique. The method is based on the calculation of moire fringes orientation to sense wavefront information. The phase shift and the optical aberration introduced by the 1D CRL on an X-ray beam were retrieved from a single moire fringe image. The radius of curvature of the lens at the apex was derived. This physical radius of the CRL, which is also closely related to the focal length of the 1D CRL, was shown to vary with the incident angle of the incoming X-ray beam onto the CRL. The experimental measurement agreed very well with the theoretical expectations.

  14. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  15. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    PubMed

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  16. Quantitative measurement of acoustic pressure in the focal zone of acoustic lens-line focusing using the Schlieren method.

    PubMed

    Jiang, Xueping; Cheng, Qian; Xu, Zheng; Qian, Menglu; Han, Qingbang

    2016-04-01

    This paper proposes a theory and method for quantitative measurement of the acoustic lens-line focusing ultrasonic (ALLFU) field in its focal spot size and acoustic pressure using the Schlieren imaging technique. Using Fourier transformation, the relationship between the brightness of the Schlieren image and the acoustic pressure was introduced. The ALLFU field was simulated using finite element method and compared with the Schlieren acoustic field image. The measurement of the focal spot size was performed using the Schlieren method. The acoustic pressure in the focal zone of the ALLFU field and the transducer-transmitting voltage response were quantitatively determined by measuring the diffraction light fringe intensity. The results show that the brightness of the Schlieren image is a linear function of the acoustic intensity when the acousto-optic interaction length remains constant and the acoustic field is weak. PMID:27139646

  17. Metamaterial-based gradient index lens with strong focusing in the THz frequency range.

    PubMed

    Neu, J; Krolla, B; Paul, O; Reinhard, B; Beigang, R; Rahm, M

    2010-12-20

    The development of innovative terahertz (THz) imaging systems has recently moved in the focus of scientific efforts due to the ability to screen substances through textiles or plastics. The invention of THz imaging systems with high spatial resolution is of increasing interest for applications in the realms of quality control, spectroscopy in dusty environment and security inspections. To realize compact THz imaging systems with high spatial resolution it is necessary to develop lenses of minimized thickness that still allow one to focus THz radiation to small spot diameters with low optical aberrations. In addition, it would be desirable if the lenses offered adaptive control of their optical properties to optimize the performance of the imaging systems in the context of different applications. Here we present the design, fabrication and the measurement of the optical properties of spectrally broadband metamaterial-based gradient index (GRIN) lenses that allow one to focus THz radiation to a spot diameter of approximately one wavelength. Due to the subwavelength thickness and the high focusing strength the presented GRIN lenses are an important step towards compact THz imaging systems with high spatial resolution. Furthermore, the results open the path to a new class of adaptive THz optics by extension of the concept to tunable metamaterials. PMID:21197049

  18. Electron beam deflection, focusing, and collimation by a femtosecond laser lens

    SciTech Connect

    Minogin, V G

    2009-11-30

    This work examines spatial separation of femtosecond electron bunches using the ponderomotive potential created by femtosecond laser pulses. It is shown that ponderomotive optical potentials are capable of effectively deflecting, focusing, and collimating narrow femtosecond electron bunches. (laser applications and other topics in quantum electronics)

  19. A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing

    SciTech Connect

    Ruhlandt, A.; Krueger, S. P.; Osterhoff, M.; Giewekemeyer, K.; Salditt, T.; Liese, T.; Radisch, V.; Krebs, H. U.

    2012-03-15

    We have used a combined optical system of a high gain elliptic Kirkpatrick-Baez mirror system (KB) and a multilayer Laue lens (MLL) positioned in the focal plane of the KB for hard x-rays nano-focusing. The two-step focusing scheme is based on a high acceptance and high gain elliptical mirror with moderate focal length and a MLL with ultra-short focal length. Importantly, fabrication constraints, i.e. in mirror polishing and bending, as well as MLL deposition can be significantly relaxed, since (a) the mirror focus in the range of 200-500 nm is sufficient, and (b) the number of layers of the MLL can be correspondingly small. First demonstrations of this setup at the coherence beamline of the PETRA III storage ring yield a highly divergent far-field diffraction pattern, from which the autocorrelation function of the near-field intensity distribution was obtained. The results show that the approach is well suited to reach smallest spot sizes in the sub-10nm range at high flux.

  20. Pentachlorophenol and Cancer Risk: Focusing the Lens on Specific Chlorophenols and Contaminants

    PubMed Central

    Cooper, Glinda S.; Jones, Samantha

    2008-01-01

    Objective Pentachlorophenol, a fungicide widely used as a wood preservative, was classified in 1999 by the International Agency for Research on Cancer as a possible human carcinogen. We reviewed currently available data to determine the extent to which recent studies assist in distinguishing the effect of pentachlorophenol from that of its contaminants (e.g., dioxins and other chlorophenols). Data sources and extraction We performed a systematic review of published studies pertaining to cancer risk in relation to pentachlorophenol exposure, focusing on results pertaining specifically to all cancer sites and specific hematopoietic cancers, and data pertaining to risks associated with other types of chlorophenols, dioxins, or furans. Synthesis The pentachlorophenol studies presented considerable evidence pertaining to hematopoietic cancers, with strong associations seen in multiple studies, in different locations, and using different designs. There is little evidence of an association between these cancers and chlorophenols that contain fewer than four chlorines. The extension of a large cohort study of sawmill workers, with follow-up to 1995, provided information about risks of relatively rare cancers (e.g., non-Hodgkin lymphoma, multiple myeloma), using a validated exposure assessment procedure that distinguishes between exposures to pentachlorophenol and tetrachlorophenol. In contrast with dioxin, pentachlorophenol exposure has not been associated with total cancer incidence or mortality. Conclusions The updated cohort study focusing on pentachlorophenol provides increased statistical power and precision, and demonstrates associations between hematopoietic cancer and pentachlorophenol exposure not observed in earlier evaluations of this cohort. Contaminant confounding is an unlikely explanation for the risks seen with pentachlorophenol exposure. PMID:18709150

  1. Doses to operators during interventional radiology procedures: focus on eye lens and extremity dosimetry.

    PubMed

    Koukorava, C; Carinou, E; Simantirakis, G; Vrachliotis, T G; Archontakis, E; Tierris, C; Dimitriou, P

    2011-03-01

    The present study is focused on the personnel doses during several types of interventional radiology procedures. Apart from the use of the official whole body dosemeters (thermoluminescence dosemeter type), measurements were performed to the extremities and the eyes using thermoluminescent loose pellets. The mean doses per kerma area product were calculated for the monitored anatomic regions and for the most frequent types of procedures. Higher dose values were measured during therapeutic procedures, especially embolisations. The maximum recorded doses during a single procedure were 1.8 mSv to the finger (nephrostomy), 2.1 mSv to the wrist (liver chemoembolisation), 0.6 mSv to the leg (brain embolisation) and 2.4 mSv to the eye (brain embolisation). The annual doses estimated for the operator with the highest workload according to the measurements and the system's log book were 90.4 mSv to the finger, 107.9 mSv to the wrist, 21.6 mSv to the leg and 49.3 mSv to the eye. Finally, the effect of the beam angulation (i.e. projection) and shielding equipment on the personnel doses was evaluated. The measurements were performed within the framework of the ORAMED (Optimization of RAdiation Protection for MEDical staff) project.

  2. Dynamic axial control over optically levitating particles in air with an electrically-tunable variable-focus lens.

    PubMed

    Zhu, Wenguo; Eckerskorn, Niko; Upadhya, Avinash; Li, Li; Rode, Andrei V; Lee, Woei Ming

    2016-07-01

    Efficient delivery of viruses, proteins and biological macromelecules into a micrometer-sized focal spot of an XFEL beam for coherent diffraction imaging inspired new development in touch-free particle injection methods in gaseous and vacuum environments. This paper lays out our ongoing effort in constructing an all-optical particle delivery approach that uses piconewton photophoretic and femtonewton light-pressure forces to control particle delivery into the XFEL beam. We combine a spatial light modulator (SLM) and an electrically tunable lens (ETL) to construct a variable-divergence vortex beam providing dynamic and stable positioning of levitated micrometer-size particles, under normal atmospheric pressure. A sensorless wavefront correction approach is used to reduce optical aberrations to generate a high quality vortex beam for particle manipulation. As a proof of concept, stable manipulation of optically-controlled axial motion of trapped particles is demonstrated with a response time of 100ms. In addition, modulation of trapping intensity provides a measure of the mass of a single, isolated particle. The driving signal of this oscillatory motion can potentially be phase-locked to an external timing signal enabling synchronization of particle delivery into the x-ray focus with XFEL pulse train. PMID:27446715

  3. Dynamic axial control over optically levitating particles in air with an electrically-tunable variable-focus lens

    PubMed Central

    Zhu, Wenguo; Eckerskorn, Niko; Upadhya, Avinash; Li, Li; Rode, Andrei V.; Lee, Woei Ming

    2016-01-01

    Efficient delivery of viruses, proteins and biological macromelecules into a micrometer-sized focal spot of an XFEL beam for coherent diffraction imaging inspired new development in touch-free particle injection methods in gaseous and vacuum environments. This paper lays out our ongoing effort in constructing an all-optical particle delivery approach that uses piconewton photophoretic and femtonewton light-pressure forces to control particle delivery into the XFEL beam. We combine a spatial light modulator (SLM) and an electrically tunable lens (ETL) to construct a variable-divergence vortex beam providing dynamic and stable positioning of levitated micrometer-size particles, under normal atmospheric pressure. A sensorless wavefront correction approach is used to reduce optical aberrations to generate a high quality vortex beam for particle manipulation. As a proof of concept, stable manipulation of optically-controlled axial motion of trapped particles is demonstrated with a response time of 100ms. In addition, modulation of trapping intensity provides a measure of the mass of a single, isolated particle. The driving signal of this oscillatory motion can potentially be phase-locked to an external timing signal enabling synchronization of particle delivery into the x-ray focus with XFEL pulse train. PMID:27446715

  4. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts.

    PubMed

    Ozbay, Baris N; Losacco, Justin T; Cormack, Robert; Weir, Richard; Bright, Victor M; Gopinath, Juliet T; Restrepo, Diego; Gibson, Emily A

    2015-06-01

    We report a miniature, lightweight fiber-coupled confocal fluorescence microscope that incorporates an electrowetting variable focus lens to provide axial scanning for full three-dimensional (3D) imaging. Lateral scanning is accomplished by coupling our device to a laser-scanning confocal microscope through a coherent imaging fiber-bundle. The optical components of the device are combined in a custom 3D-printed adapter with an assembled weight of <2  g that can be mounted onto the head of a mouse. Confocal sectioning provides an axial resolution of ∼12  μm and an axial scan range of ∼80  μm. The lateral field-of-view is 300 μm, and the lateral resolution is 1.8 μm. We determined these parameters by imaging fixed sections of mouse neuronal tissue labeled with green fluorescent protein (GFP) and fluorescent bead samples in agarose gel. To demonstrate viability for imaging intact tissue, we resolved multiple optical sections of ex vivo mouse olfactory nerve fibers expressing yellow fluorescent protein (YFP). PMID:26030555

  5. Focusing by shape change in the lens of the eye: a commentary on Young (1801) ‘On the mechanism of the eye’

    PubMed Central

    Land, Michael

    2015-01-01

    In his Bakerian Lecture paper of 1801, Thomas Young provided the best account up to that time of the eye's optical system, including refraction by the cornea and the surfaces of the lens. He built a device, an optometer, for determining the eye's state of focus, making it possible to prescribe appropriate correction lenses. His main contribution, however, was to show that accommodation, the eye's focusing mechanism, was not the result of changes to the curvature of the cornea, nor to the length of the eye, but was due entirely to changes in the shape of the lens, which he described with impressive accuracy. He was wrong, however, in believing that the reason the lens bulges when focusing on near objects was because it behaved as a contracting muscle. Half a century later, Helmholtz showed that the lens bulges not by its own contraction, but when it is relaxed as a result of contraction of newly discovered circular muscles in the ciliary body. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750232

  6. Generation of surface waves and low-frequency radiation under exposure of a conductor to a laser pulse focused by a cylindrical lens

    SciTech Connect

    Uryupin, S A; Frolov, A A

    2014-09-30

    We have developed a theory of generation of low-frequency radiation and surface waves under the pondermotive action of a femtosecond laser pulse irradiating a conductor along the normal and focused by a cylindrical lens. It is shown that for the chosen focusing method and specified values of laser pulse duration and flux density it is possible to significantly increase the total energy of both surface waves and low-frequency radiation. (terahertz radiation)

  7. Focused Assessment of State-of-the-Art CFD Capabilities for Prediction of Subsonic Fixed Wing Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Wahls, Richard A.

    2008-01-01

    Several recent workshops and studies are used to make an assessment of the current status of CFD for subsonic fixed wing aerodynamics. Uncertainty quantification plays a significant role in the assessment, so terms associated with verification and validation are given and some methodology and research areas are highlighted. For high-subsonic-speed cruise through buffet onset, the series of drag prediction workshops and NASA/Boeing buffet onset studies are described. For low-speed flow control for high lift, a circulation control workshop and a synthetic jet flow control workshop are described. Along with a few specific recommendations, gaps and needs identified through the workshops and studies are used to develop a list of broad recommendations to improve CFD capabilities and processes for this discipline in the future.

  8. Approach for simultaneous measurement of two-dimensional angular distribution of charged particles. III. Fine focusing of wide-angle beams in multiple lens systems

    NASA Astrophysics Data System (ADS)

    Matsuda, Hiroyuki; Daimon, Hiroshi; Tóth, László; Matsui, Fumihiko

    2007-04-01

    This paper provides a way of focusing wide-angle charged-particle beams in multiple lens systems. In previous papers [H. Matsuda , Phys. Rev. E 71, 066503 (2005); 74, 036501 (2006)], it was shown that an ellipsoidal mesh, combined with electrostatic lenses, enables correction of spherical aberration over wide acceptance angles up to ±60° . In this paper, practical situations where ordinary electron lenses are arranged behind the wide-angle electrostatic lenses are taken into account using ray tracing calculation. For practical realization of the wide-angle lens systems, the acceptance angle is set to ±50° . We note that the output beams of the wide-angle electrostatic lenses have somewhat large divergence angles which cause unacceptable or non-negligible spherical aberration in additional lenses. A solution to this problem is presented showing that lens combinations to cancel spherical aberration are available, whereby wide-angle charged-particle beams can be finely focused with considerably reduced divergence angles less than ±5° .

  9. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    SciTech Connect

    Saifee, T.; Konnerth, A. III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  10. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation.

    PubMed

    Chen, Gang; Li, Yuyan; Yu, Anping; Wen, Zhongquan; Dai, Luru; Chen, Li; Zhang, Zhihai; Jiang, Senlin; Zhang, Kun; Wang, Xianyou; Lin, Feng

    2016-01-01

    In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78, and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What's more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication. PMID:27353239

  11. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation

    PubMed Central

    Chen, Gang; Li, Yuyan; Yu, Anping; Wen, Zhongquan; Dai, Luru; Chen, Li; Zhang, Zhihai; Jiang, Senlin; Zhang, Kun; Wang, Xianyou; Lin, Feng

    2016-01-01

    In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78, and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What’s more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication. PMID:27353239

  12. Aerodynamic potpourri

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  13. Aerodynamic potpourri

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.

    1981-05-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  14. Laser beam induced nanoscale spot through nonlinear “thick” samples: A multi-layer thin lens self-focusing model

    SciTech Connect

    Wei, Jingsong; Yan, Hui

    2014-08-14

    Self-focusing is a well-researched phenomenon. Nanoscale spots can be achieved through self-focusing, which is an alternative method for achieving high-density data storage, high-resolution light imaging, and maskless nanolithography. Several research groups have observed that self-focusing spots can be reduced to nanoscale levels via incident laser power manipulation. Self-focusing spots can be analyzed by solving the nonlinear Schrödinger equation and the finite difference time domain method. However, both procedures are complex and time-consuming. In the present work, a multi-layer thin-lens self-focusing model that considers diffraction effects and changes of refractive index along the radial and film thickness directions is proposed to analyze the self-focusing behavior and traveling process of light beams intuitively. The self-focusing behaviors of As{sub 2}S{sub 3} are simulated, and results show that a nanoscale self-focusing spot with a radius of about 0.12 μm can be formed at the bottom of nonlinear sample when the incident laser power exceeds 4.25 mW. Our findings are basically consistent with experimental reports and provide a good method for analyzing and understanding the self-focusing process. An appropriate application schematic design is also provided.

  15. Use of Zinc Sulfide as a Self-Focusing Element in a Self-Starting Kerr Lens Modelocked TITANIUM:SAPPHIRE Laser

    NASA Astrophysics Data System (ADS)

    Pearson, Gary Whiton

    Scope and method of study. A numerical model of Kerr Lens Modelocking (KLM) in a Ti:sapphire laser with an additional highly nonlinear self-focusing element was developed using the Hankel transform beam propagation method. The influence on nonlinear self-focusing element position and the nonlinear index of refraction, n_2, were tested. The numerical model was used to optimize the design of an experimental linear cavity Ti:sapphire laser with an additional highly nonlinear self-focusing element in the cavity. Various materials were tested with a wide range of nonlinear index of refractions, including: quartz, SF11 glass, cubic zirconia, ZnS, ZnSe, and CdS. Tests for self-modelocking pump power threshold, self-starting, and long term stability were done on the laser with the different nonlinear materials used as self-focusing elements. Findings and conclusions. The numerical portion of the study showed for the first time that Kerr Lens Modelocking does not act like a saturable absorber in that self-focusing does not 'bleach'. Instead, there is a minimum loss intracavity power, beyond which intracavity loss increases with increase in intracavity power. This limits the pulse peak power and may be an explanation for multi-pulsing seen in over pumped KLM lasers. Additionally, a much steeper initial slope in the power vs. loss relation suggested that increasing the n_2 in the KLM laser cavity could make the system self-starting and reduce the need for high power argon ion pump lasers. The experimental portion of the study produced the first known truly self -starting linear cavity KLM Ti:sapphire laser. Further, the self-modelocking pump power threshold was significantly lowered as well and stability considerably enhanced. The best results were obtained with monocrystalline ZnS.

  16. Systematic investigation of the principal and first secondary maxima of ultrashort optical pulses focused by a high numerical aperture aplanatic lens

    NASA Astrophysics Data System (ADS)

    Lindlein, Norbert; Loosen, Florian; Fries, Sebastian

    2015-09-01

    The electromagnetic field in the focus of an ideal aplanatic lens with high numerical aperture, which is illuminated by an ultrashort optical pulse and plane wave front, is simulated by taking the vectorial Debye integral and the coherent superposition of a frequency spectrum of monochromatic waves. The behavior of the principal maxima and the first secondary maxima as function of the numerical aperture (NA) and the pulse duration T is investigated systematically for light incident with linear polarization. First, one would not expect remarkable deviations from the stationary case. But also this simple system of an ideal aplanatic lens without any chromatic or monochromatic aberrations (of course only simple from the point of theory, but not at all from the point of practical realization) shows some remarkable results. If the NA (in vacuum) tends to the limiting case of 1.0 the maximum value of |E|2 increases faster than expected from the scalar theory (Airy disc) with a maximum deviation of about 13%. The second effect really comes from very short pulses, i.e. very small values T. Then, the value of |E|2 compared to the expected linear increase with 1/T decreases slightly (only less than 2%), but systematically for all NAs. Even more interesting is the dependence of the height of the first secondary maxima along the x-axis and y-axis on the NA and 1/T. It can be seen that along both axes the first secondary maxima nearly vanish for very short pulses, i.e. large values 1/T.

  17. Unsteady aerodynamics of blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.

    1989-01-01

    The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

  18. Narrative change in emotion-focused therapy: how is change constructed through the lens of the innovative moments coding system?

    PubMed

    Mendes, Inês; Ribeiro, António P; Angus, Lynne; Greenberg, Leslie S; Sousa, Inês; Gonçalves, Miguel M

    2010-11-01

    The aim of this study was to advance understanding of how clients construct their own process of change in effective therapy sessions. Toward this end, the authors applied a narrative methodological tool for the study of the change process in emotion-focused therapy (EFT), replicating a previous study done with narrative therapy (NT). The Innovative Moments Coding System (IMCS) was applied to three good-outcome and three poor-outcome cases in EFT for depression to track the innovative moments (IMs), or exceptions to the problematic self-narrative, in the therapeutic conversation. IMCS allows tracking of five types of IMs events: action, reflection, protest, reconceptualization, and performing change. The analysis revealed significant differences between the good-outcome and poor-outcome groups regarding reconceptualization and performing change IMs, replicating the findings from a previous study. Reconceptualization and performing change IMs seem to be vital in the change process. PMID:21154027

  19. Re-focusing the Gender Lens: Caregiving Women, Family Roles and HIV/AIDS Vulnerability in Lesotho

    PubMed Central

    Harrison, Abigail; Short, Susan E.; Tuoane-Nkhasi, Maletela

    2013-01-01

    Gender and HIV risk have been widely examined in southern Africa, generally with a focus on dynamics within sexual relationships. Yet the social construction of women’s lives reflects their broader engagement with a gendered social system, which influences both individual-level risks and social and economic vulnerabilities to HIV/AIDS. Using qualitative data from Lesotho, we examine women’s lived experiences of gender, family and HIV/AIDS through three domains: 1) marriage; 2) kinship and social motherhood, and 3) multigenerational dynamics. These data illustrate how women caregivers negotiate their roles as wives, mothers, and household heads, serving as the linchpins of a gendered family system that both affects, and is affected by, the HIV/AIDS epidemic. HIV/AIDS interventions are unlikely to succeed without attention to the larger context of women’s lives, namely their kinship, caregiving, and family responsibilities, as it is the family and kinship system in which gender, economic vulnerability and HIV risk are embedded. PMID:23686152

  20. NASP aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr.

    1989-01-01

    This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.

  1. Focusing on Contact Lens Safety

    MedlinePlus

    ... Federal Trade Commission (FTC) regulates device advertising and marketing practices that cause or are likely to cause ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  2. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  3. Computational aerodynamics and supercomputers

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1984-01-01

    Some of the progress in computational aerodynamics over the last decade is reviewed. The Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans are described.

  4. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  5. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  6. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  7. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  8. Luneburg and flat lens based on graded photonic crystal

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Sun, Xiaohong; Gao, Minglei; Wang, Shuai

    2016-04-01

    Square-lattice graded photonic crystals employed for designing Luneburg and Flat Lens is presented. Comparable simulation of the Luneburg lens with TE and TM polarizations predicts that TM lens possesses of enlarged transmission bandwidth and strengthened focusing ability, in comparison with TE lens. As a typical simplified counterpart, the evolution of focusing intensity and numerical aperture of the flat lens is achieved. What is more, those Luneburg and Flat Lens can withstand imperfect gradients in structure design. This will provide a guidance to produce a high quality focusing lens with small size, short focal length and large numerical aperture applied in the integrated photonic devices.

  9. The lens equator: a platform for molecular machinery that regulates the switch from cell proliferation to differentiation in the vertebrate lens.

    PubMed

    Mochizuki, Toshiaki; Masai, Ichiro

    2014-06-01

    The vertebrate lens is a transparent, spheroidal tissue, located in the anterior region of the eye that focuses visual images on the retina. During development, surface ectoderm associated with the neural retina invaginates to form the lens vesicle. Cells in the posterior half of the lens vesicle differentiate into primary lens fiber cells, which form the lens fiber core, while cells in the anterior half maintain a proliferative state as a monolayer lens epithelium. After formation of the primary fiber core, lens epithelial cells start to differentiate into lens fiber cells at the interface between the lens epithelium and the primary lens fiber core, which is called the equator. Differentiating lens fiber cells elongate and cover the old lens fiber core, resulting in growth of the lens during development. Thus, lens fiber differentiation is spatially regulated and the equator functions as a platform that regulates the switch from cell proliferation to cell differentiation. Since the 1970s, the mechanism underlying lens fiber cell differentiation has been intensively studied, and several regulatory factors that regulate lens fiber cell differentiation have been identified. In this review, we focus on the lens equator, where these regulatory factors crosstalk and cooperate to regulate lens fiber differentiation. Normally, lens epithelial cells must pass through the equator to start lens fiber differentiation. However, there are reports that when the lens epithelium structure is collapsed, lens fiber cell differentiation occurs without passing the equator. We also discuss a possible mechanism that represses lens fiber cell differentiation in lens epithelium.

  10. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  11. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  12. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  13. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  14. Bifurcations in unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Unal, A.

    1986-01-01

    Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accomodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

  15. A liquid crystal adaptive lens

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Cleverly, D.

    1981-01-01

    Creation of an electronically controlled liquid crystal lens for use as a focusing mechanism in a multi-element lens system or as an adaptive optical element is analyzed. Varying the index of refraction is shown to be equivalent to the shaping of a solid refracting material. Basic characteristics of liquid crystals, essential for the creation of a lens, are reviewed. The required variation of index of refraction is provided by choosing appropriate electrode voltages. The configuration required for any incoming polarization is given and its theoretical performance in terms of modulation transfer function derived.

  16. Thermal Lens Microscope

    NASA Astrophysics Data System (ADS)

    Uchiyama, Kenji; Hibara, Akihide; Kimura, Hiroko; Sawada, Tsuguo; Kitamori, Takehiko

    2000-09-01

    We developed a novel laser microscope based on the thermal lens effect induced by a coaxial beam comprised of excitation and probe beams. The signal generation mechanism was confirmed to be an authentic thermal lens effect from the measurement of signal and phase dependences on optical configurations between the sample and the probe beam focus, and therefore, the thermal lens effect theory could be applied. Two-point spatial resolution was determined by the spot size of the excitation beam, not by the thermal diffusion length. Sensitivity was quite high, and the detection ability, evaluated using a submicron microparticle containing dye molecules, was 0.8 zmol/μm2, hence a distribution image of trace chemical species could be obtained quantitatively. In addition, analytes are not restricted to fluorescent species, therefore, the thermal lens microscope is a promising analytical microscope. A two-dimensional image of a histamine molecule distribution, which was produced in mast cells at the femtomole level in a human nasal mucous polyp, was obtained.

  17. A stochastic model of eye lens growth.

    PubMed

    Šikić, Hrvoje; Shi, Yanrong; Lubura, Snježana; Bassnett, Steven

    2015-07-01

    The size and shape of the ocular lens must be controlled with precision if light is to be focused sharply on the retina. The lifelong growth of the lens depends on the production of cells in the anterior epithelium. At the lens equator, epithelial cells differentiate into fiber cells, which are added to the surface of the existing fiber cell mass, increasing its volume and area. We developed a stochastic model relating the rates of cell proliferation and death in various regions of the lens epithelium to deposition of fiber cells and radial lens growth. Epithelial population dynamics were modeled as a branching process with emigration and immigration between proliferative zones. Numerical simulations were in agreement with empirical measurements and demonstrated that, operating within the strict confines of lens geometry, a stochastic growth engine can produce the smooth and precise growth necessary for lens function. PMID:25816743

  18. Adjustable hybrid diffractive/refractive achromatic lens.

    PubMed

    Valley, Pouria; Savidis, Nickolaos; Schwiegerling, Jim; Dodge, Mohammad Reza; Peyman, Gholam; Peyghambarian, N

    2011-04-11

    We demonstrate a variable focal length achromatic lens that consists of a flat liquid crystal diffractive lens and a pressure-controlled fluidic refractive lens. The diffractive lens is composed of a flat binary Fresnel zone structure and a thin liquid crystal layer, producing high efficiency and millisecond switching times while applying a low ac voltage input. The focusing power of the diffractive lens is adjusted by electrically modifying the sub-zones and re-establishing phase wrapping points. The refractive lens includes a fluid chamber with a flat glass surface and an opposing elastic polydimethylsiloxane (PDMS) membrane surface. Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens' focal position. Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths. Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats.

  19. Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Pena, Ana; Wang, Zengbo; Whitehead, David; Li, Lin

    2010-11-01

    A practical approach to a well-known technique of laser micro/nano-patterning by optical near fields is presented. It is based on surface patterning by scanning a Gaussian laser beam through a self-assembled monolayer of silica micro-spheres on a single-crystalline silicon (Si) substrate. So far, the outcome of this kind of near-field patterning has been related to the simultaneous, parallel surface-structuring of large areas either by top hat or Gaussian laser intensity distributions. We attempt to explore the possibility of using the same technique in order to produce single, direct writing of features. This could be of advantage for applications in which only some areas need to be patterned (i.e. local area selective patterning) or single lines are required (e.g. a particular micro/nano-fluidic channel). A diode pumped Nd:YVO4 laser system (wavelength of 532 nm, pulse duration of 8 ns, repetition rate of 30 kHz) with a computer-controlled 3 axis galvanometer beam scanner was employed to write user-defined patterns through the particle lens array on the Si substrate. After laser irradiation, the obtained patterns which are in the micro-scale were composed of sub-micro/micro-holes or bumps. The micro-pattern resolution depends on the dimension of both the micro-sphere’s diameter and the beam’s spot size. The developed technique could potentially be employed to fabricate photonic crystal structures mimicking nature’s butterfly wings and anti-reflective “moth eye” arrays for photovoltaic cells.

  20. Algorithm design of liquid lens inspection system

    NASA Astrophysics Data System (ADS)

    Hsieh, Lu-Lin; Wang, Chun-Chieh

    2008-08-01

    In mobile lens domain, the glass lens is often to be applied in high-resolution requirement situation; but the glass zoom lens needs to be collocated with movable machinery and voice-coil motor, which usually arises some space limits in minimum design. In high level molding component technology development, the appearance of liquid lens has become the focus of mobile phone and digital camera companies. The liquid lens sets with solid optical lens and driving circuit has replaced the original components. As a result, the volume requirement is decreased to merely 50% of the original design. Besides, with the high focus adjusting speed, low energy requirement, high durability, and low-cost manufacturing process, the liquid lens shows advantages in the competitive market. In the past, authors only need to inspect the scrape defect made by external force for the glass lens. As to the liquid lens, authors need to inspect the state of four different structural layers due to the different design and structure. In this paper, authors apply machine vision and digital image processing technology to administer inspections in the particular layer according to the needs of users. According to our experiment results, the algorithm proposed can automatically delete non-focus background, extract the region of interest, find out and analyze the defects efficiently in the particular layer. In the future, authors will combine the algorithm of the system with automatic-focus technology to implement the inside inspection based on the product inspective demands.

  1. Imaging characteristics of ball lens

    NASA Astrophysics Data System (ADS)

    Li, Qinghui; Shao, Xiaopeng

    2014-05-01

    In most digital imaging applications, high-resolution imaging or videos are usually desired for later processing and analysis. The desire for high-resolution stems from two principal application areas: improvement of pictorial information for human interpretation, and helping representation for automatic machine preception. While the image sensors limit the spatial resolution of the image, the image details are also limited by the optical system, due to diffraction, and aberration1. Monocentric lens are an attractive option for gigapixel camera because the symmetrical design focuses light identically coming from any direction. Marks and Brady proposed a monocentric lens design imaging 40 gigapixels with an f-number of 2.5 and resolving 2 arcsec over a 120 degrees field of view2. Recently, Cossairt, Miau, and Nayer proposed a proof-of-concept gigapixel computational camera consisting of a large ball lens shared by several small planar sensors coupled with a deblurring step3. The design consists of a ball element resulting in a lens that is both inexpensive to produce and easy to align. Because the resolution of spherical lens is fundamentally limited by geometric aberrations, the imaging characteristics of the ball lens is expressed by the geometrical aberrations, in which the general equations for the primary aberration of the ball lens are given. The effect of shifting the stop position on the aberrations of a ball lens is discussed. The variation of the axial chromatic aberration with the Abbe V-number when the refraction index takes different values is analyzed. The variation of the third-order spherical aberration ,the fifth-order spherical aberration and the spherical aberration obtained directly from ray tracing with the f-number is discussed. The other imaging evaluation merits, such as the spot diagram, the modulation transfer function(MTF) and the encircled energy are also described. Most of the analysis of the ball lens is carried out using OSLO optics

  2. Lateral shear interferometry with holo shear lens

    NASA Astrophysics Data System (ADS)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  3. Collection Mode Lens System

    DOEpatents

    Fletcher, Daniel A.; Kino, Gordon S.

    2002-11-05

    A lens system including a collection lens and a microlens spaced from the collection lens adjacent the region to be observed. The diameter of the observablel region depends substantially on the radius of the microlens.

  4. Dual focus diffractive optical element with extended depth of focus

    NASA Astrophysics Data System (ADS)

    Uno, Katsuhiro; Shimizu, Isao

    2014-09-01

    A dual focus property and an extended depth of focus were verified by a new type of diffractive lens displaying on liquid crystal on silicon (LCoS) devices. This type of lens is useful to read information on multilayer optical discs and tilted discs. The radial undulation of the phase groove on the diffractive lens gave the dual focus nature. The focal extension was performed by combining the dual focus lens with the axilens that was invented for expanding the depth of focus. The number of undulations did not affect the intensity along the optical axis but the central spot of the diffraction pattern.

  5. Aerodynamic investigation by infrared imaging

    NASA Technical Reports Server (NTRS)

    Roberts, A. Sidney, Jr.; Mcree, Griffith J.; Gartenberg, Ehud

    1988-01-01

    Infrared imaging systems can be used to measure temperatures of actively heated bodies immersed in an airstream. This monitoring of the convective heat transfer process, provides also information about the interaction between the body and the flow. The concept appeals to Nusselt/Reynolds numbers relations in order to produce data of interest from surface temperatures. Two test cases are presented and reference is made to analytical results: the mapping of a laminar jet and the temperature distribution along a constant power heated flat plate in laminar boundary layer regime. Although this research is currently focused on low speed aerodynamics, the extension to high speed aerodynamics, where the body undergoes frictional heating is of interest in this context, too.

  6. Pressure-flow reducer for aerosol focusing devices

    DOEpatents

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2008-04-22

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  7. Unsteady transonic aerodynamics

    SciTech Connect

    Nixon, D.

    1989-01-01

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows.

  8. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  9. Segmented refraction of the crystalline lens as a prerequisite for the occurrence of monocular polyplopia, increased depth of focus, and contrast sensitivity function notches

    SciTech Connect

    Bour, L.; Apkarian, P.

    1994-11-01

    Theoretical computations of modulation transfer functions (MTF`s) of the optical system of the human eye have shown that irregular aberration consisting of a small circular segment with refractive power slightly different from the surround introduces at higher spatial frequencies ({gt}20 cpd) an enhancement of the retinal image contrast on flanks of the optimum-focus plane. When the pupil size is larger than 3 mm, enhancement is substantial; as a result, multiple foci appear at the affected, higher spatial frequencies and generate a greater depth of focus. The contrast enhancement also produces troughs on either flank of the optimum-focus plane. With slight coincident defocus ({plus_minus}0.5 diopter) of the retinal image of a sine-wave grating, notches in the MTF curves, with a contrast reduction in the intermediate frequency range of a factor of 2 to 3 and a low cutoff spatial frequency of {similar_to} 3 cycles/deg, are produced. In our theoretical study, multiple foci, monocular polyplopia, and increased depth of focus are implicated in the generation of contrast sensitivity function (CSF) notches. It is demonstrated that CSF notches of optical origin can extend to lower spatial frequencies ({lt}10 cycles/deg). As a result, before the presence of a CSF notch can be attributed to neurological abnormality, optical factors, including irregular aberrations, must be eliminated.

  10. Graphene plasmonic lens for manipulating energy flow

    NASA Astrophysics Data System (ADS)

    Wang, Guoxi; Liu, Xueming; Lu, Hua; Zeng, Chao

    2014-02-01

    Manipulating the energy flow of light is at the heart of modern information and communication technologies. Because photons are uncharged, it is still difficult to effectively control them by electrical means. Here, we propose a graphene plasmonic (GP) lens to efficiently manipulate energy flow by elaborately designing the thickness of the dielectric spacer beneath the graphene sheet. Different from traditional metal-based lenses, the proposed graphene plasmonic lens possesses the advantages of tunability and excellent confinement of surface plasmons. It is found that the proposed lens can be utilized to focus and collimate the GP waves propagating along the graphene sheet. Particularly, the lens is dispersionless over a wide frequency range and the performance of lens can be flexibly tuned by adjusting the bias voltage. As an application of such a lens, the image transfer of two point sources with a separation of λ0/30 is demonstrated.

  11. Graphene plasmonic lens for manipulating energy flow

    PubMed Central

    Wang, Guoxi; Liu, Xueming; Lu, Hua; Zeng, Chao

    2014-01-01

    Manipulating the energy flow of light is at the heart of modern information and communication technologies. Because photons are uncharged, it is still difficult to effectively control them by electrical means. Here, we propose a graphene plasmonic (GP) lens to efficiently manipulate energy flow by elaborately designing the thickness of the dielectric spacer beneath the graphene sheet. Different from traditional metal-based lenses, the proposed graphene plasmonic lens possesses the advantages of tunability and excellent confinement of surface plasmons. It is found that the proposed lens can be utilized to focus and collimate the GP waves propagating along the graphene sheet. Particularly, the lens is dispersionless over a wide frequency range and the performance of lens can be flexibly tuned by adjusting the bias voltage. As an application of such a lens, the image transfer of two point sources with a separation of λ0/30 is demonstrated. PMID:24517981

  12. Optmization design of zoom lens systems

    NASA Astrophysics Data System (ADS)

    Li, Xiaotong; Cen, Zhaofeng

    2002-09-01

    A zoom lens system is usually composed of several components. Some of the components can be moved to change the focal length or magnification. Zoom lens system design is more complicated than fixed-focus lens design due to the moving of some components. In this paper, an optimization method that is used to design zoom lens systems is presented. Using this method, the Gaussian parameters of zoom lens systems are optimized at first, and then the initial structure parameters in each component are generated and optimized. At last the aberration balance is made using multi-configuration. In this paper the flowchart of optimization design for such complex optical systems is showed and the algorithms are described. As a conclusion, the relationship between power distribution, initial structure and the aberrations is considered at the beginning, the evaluation criteria are reliable and efficiency for designing zoom lens systems.

  13. Applied aerodynamics: Challenges and expectations

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Smith, Charles A.

    1993-01-01

    Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.

  14. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  15. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    NASA Technical Reports Server (NTRS)

    James, H. G.; Benson, R. F.; Fainberg, J.; Stone, R. G.

    1990-01-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz).

  16. Contact lens in keratoconus

    PubMed Central

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  17. The Lens Capsule

    PubMed Central

    Danysh, Brian P.; Duncan, Melinda K.

    2009-01-01

    The lens capsule is a modified basement membrane that completely surrounds the ocular lens. It is known that this extracellular matrix is important for both the structure and biomechanics of the lens in addition to providing informational cues to maintain lens cell phenotype. This review covers the development and structure of the lens capsule, lens diseases associated with mutations in extracellular matrix genes and the role of the capsule in lens function including those proposed for visual accommodation, selective permeability to infectious agents, and cell signaling. PMID:18773892

  18. Wind turbine aerodynamics research needs assessment

    NASA Astrophysics Data System (ADS)

    Stoddard, F. S.; Porter, B. K.

    1986-01-01

    A prioritized list is developed for wind turbine aerodynamic research needs and opportunities which could be used by the Department of Energy program management team in detailing the DOE Five-Year Wind Turbine Research Plan. The focus of the Assessment was the basic science of aerodynamics as applied to wind turbines, including all relevant phenomena, such as turbulence, dynamic stall, three-dimensional effects, viscosity, wake geometry, and others which influence aerodynamic understanding and design. The study was restricted to wind turbines that provide electrical energy compatible with the utility grid, and included both horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). Also, no economic constraints were imposed on the design concepts or recommendations since the focus of the investigation was purely scientific.

  19. Advanced turboprop installation aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1981-01-01

    The expected aerodynamic effects of a propfan installed on a thick supercritical wing are summarized qualitatively. Nacelle/wing and jet interactions, slipstream incremental velocity, nonuniform inflow, and swirl loss recovery are discussed.

  20. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  1. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  2. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  3. Electrowetting based infrared lens using ionic liquids

    NASA Astrophysics Data System (ADS)

    Hu, Xiaodong; Zhang, Shiguo; Liu, Yu; Qu, Chao; Lu, Liujin; Ma, Xiangyuan; Zhang, Xiaoping; Deng, Youquan

    2011-11-01

    We demonstrated an infrared variable focus ionic liquids lens using electrowetting, which could overcome the problems caused by use of water, e.g., evaporation and poor thermostability, while keeping good optical transparency in visible light and near-infrared region. Besides, the type of lens (convex or concave) could be tuned by applied voltage or refractive index of ILs used, and the transmittance was measured to exceed 90% over the spectrum of visible light and near-infrared. We believe this infrared variable focus ionic liquids lens has a great application prospect in both visible light and infrared image systems.

  4. Aerodynamic beam generator for large particles

    DOEpatents

    Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  5. Beatrice A. Wright: Broad Lens, Sharp Focus.

    ERIC Educational Resources Information Center

    Hollingsworth, David Keith; And Others

    1989-01-01

    Presents interview conducted with Beatrice A. Wright, a prominent rehabilitation psychologist. Discusses various aspects of Wright's personal life, her scholarly contributions, professional development, and the field of rehabilitation psychology and counseling in general. (Author)

  6. Contact Lens Care

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More ... 1088, www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative ...

  7. Contact Lens Solution Toxicity

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Contact Lens Solution Toxicity Information for adults A A A This image shows a reaction to contact lens solution. The prominent blood vessels and redness ...

  8. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  9. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  10. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  11. Computational aerodynamics and design

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1982-01-01

    The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348

  12. Aerodynamic Performance of Electro-Active Membrane Wings

    NASA Astrophysics Data System (ADS)

    Barbu, Ioan-Alexandru; de Kat, Roeland; Ganapathisubramani, Bharathram

    2014-11-01

    Electro-active polymers offer due to their multivariate compliant nature a great potential for integrating the lift producing system and the control system into one. This work presents the first step in describing both the mechanical and aerodynamic performance of such materials and focuses on both understanding their behaviour in aerodynamic applications and on analysing their aerodynamic performance. Photogrammetry and load measurements are conducted in a wind tunnel for both silicone-based and acrylic-based membranes at zero prestrain supported in a perimeter reinforced frame in electrically passive, active and pulsing conditions. A wide range of fixed voltages and pulsing frequencies are considered. Due to their hyper-viscoelastic nature, both short and long term hysteresis analysis are conducted in terms of aerodynamic performance. Along with these tests, analyses of the effects of the percentage electrode area and silicone content on aerodynamic performance are conducted.

  13. UCLA/FNPL Underdense Plasma Lens Experiment: Results and Analysis

    SciTech Connect

    Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Fliller, R; Kazakevich, G M; Piot, P; Santucci, J; Li, J; Tikhoplav, R

    2006-08-04

    Focusing of a 15 MeV, 16 nC electron bunch by a gaussian underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated. The strong 1.9 cm focal length plasma lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Time resolved measurements of the focused electron bunch are also reported and compared to simulations.

  14. Aberration design of zoom lens systems using thick lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  15. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  16. Negative refraction makes a perfect lens

    PubMed

    Pendry

    2000-10-30

    With a conventional lens sharpness of the image is always limited by the wavelength of light. An unconventional alternative to a lens, a slab of negative refractive index material, has the power to focus all Fourier components of a 2D image, even those that do not propagate in a radiative manner. Such "superlenses" can be realized in the microwave band with current technology. Our simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver. This optical version resolves objects only a few nanometers across.

  17. Negative Refraction Makes a Perfect Lens

    NASA Astrophysics Data System (ADS)

    Pendry, J. B.

    2000-10-01

    With a conventional lens sharpness of the image is always limited by the wavelength of light. An unconventional alternative to a lens, a slab of negative refractive index material, has the power to focus all Fourier components of a 2D image, even those that do not propagate in a radiative manner. Such ``superlenses'' can be realized in the microwave band with current technology. Our simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver. This optical version resolves objects only a few nanometers across.

  18. Hestian Hermeneutics: A Lens of Analysis for Home Economics.

    ERIC Educational Resources Information Center

    Thompson, Patricia J.

    Feminist and women scholars in all disciplines have challenged the traditional masculist "lens of analysis" and have sought to bring into focus the "missing text" of female experience. This paper proposes an alternative to gender-bound lens of analysis because either or both masculist and feminist lenses are too limited to focus adequately on the…

  19. Photon nanojet lens: design, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhang, Sichao; Shao, Jinhai; Lu, Bing-Rui; Mehfuz, Reyad; Drakeley, Stacey; Huang, Fumin; Chen, Yifang

    2016-04-01

    In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.

  20. Method and apparatus for sputtering with a plasma lens

    DOEpatents

    Anders, Andre

    2016-09-27

    A plasma lens for enhancing the quality and rate of sputter deposition onto a substrate is described herein. The plasma lens serves to focus positively charged ions onto the substrate while deflecting negatively charged ions, while at the same time due to the line of sight positioning of the lens, allowing for free passage of neutrals from the target to the substrate. The lens itself is formed of a wound coil of multiple turns, inside of which are deposed spaced lens electrodes which are electrically paired to impress an E field overtop the B field generated by the coil, the potential applied to the electrodes increasing from end to end towards the center of the lens, where the applied voltage is set to a high potential at the center electrodes as to produce a potential minimum on the axis of the lens.

  1. Validation and comparison of aerodynamic modelling approaches for wind turbines

    NASA Astrophysics Data System (ADS)

    Blondel, F.; Boisard, R.; Milekovic, M.; Ferrer, G.; Lienard, C.; Teixeira, D.

    2016-09-01

    The development of large capacity Floating Offshore Wind Turbines (FOWT) is an interdisciplinary challenge for the design solvers, requiring accurate modelling of both hydrodynamics, elasticity, servodynamics and aerodynamics all together. Floating platforms will induce low-frequency unsteadiness, and for large capacity turbines, the blade induced vibrations will lead to high-frequency unsteadiness. While yawed inflow conditions are still a challenge for commonly used aerodynamic methods such as the Blade Element Momentum method (BEM), the new sources of unsteadiness involved by large turbine scales and floater motions have to be tackled accurately, keeping the computational cost small enough to be compatible with design and certification purposes. In the light of this, this paper will focus on the comparison of three aerodynamic solvers based on BEM and vortex methods, on standard, yawed and unsteady inflow conditions. We will focus here on up-to-date wind tunnel experiments, such as the Unsteady Aerodynamics Experiment (UAE) database and the MexNext international project.

  2. Full-scale wind turbine rotor aerodynamics research

    SciTech Connect

    Simms, D A; Butterfield, C P

    1994-11-01

    The United States Department of Energy and the National Renewable Energy Laboratory (NREL) are conducting research to improve wind turbine technology at the NREL National Wind Technology Center (NWTC). One program, the Combined Experiment, has focused on making measurements needed to understand aerodynamic and structural responses of horizontal-axis wind turbines (HAWT). A new phase of this program, the Unsteady Aerodynamics Experiment, will focus on quantifying unsteady aerodynamic phenomena prevalent in stall-controlled HAWTs. Optimally twisted blades and innovative instrumentation and data acquisition systems will be used in these tests. Data can now be acquired and viewed interactively during turbine operations. This paper describes the NREL Unsteady Aerodynamics Experiment and highlights planned future research activities.

  3. Microindentation of the young porcine ocular lens.

    PubMed

    Reilly, Matthew; Ravi, Nathan

    2009-04-01

    Debate regarding the mechanisms of how the eye changes focus (accommodation) and why this ability is lost with age (presbyopia) has recently been rejoined due to the advent of surgical procedures for the correction of presbyopia. Due to inherent confounding factors in both in vivo and in vitro measurement techniques, mechanical modeling of the behavior of the ocular lens in accommodation has been attempted to settle the debate. However, a paucity of reliable mechanical property measurements has proven problematic in the development of a successful mechanical model of accommodation. Instrumented microindentation was utilized to directly measure the local elastic modulus and dynamic response at various locations in the lens. The young porcine lens exhibits a large modulus gradient with the highest modulus appearing at the center of the nucleus and exponentially decreasing with distance. The loss tangent was significantly higher in the decapsulated lens and the force waveform amplitude decreased significantly upon removal of the lens capsule. The findings indicate that localized measurements of the lens' mechanical properties are necessary to achieve accurate quantitative parameters suitable for mechanical modeling efforts. The results also indicate that the lens behaves as a crosslinked gel rather than as a collection of individual arched fiber cells.

  4. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  5. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  6. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  7. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  8. Rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith

    1992-01-01

    Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.

  9. Aerodynamic noise sources

    NASA Astrophysics Data System (ADS)

    Munin, A. G.; Kuznetsov, V. M.; Leontev, E. A.

    A general theory is developed for aerodynamic sound generation and its propagation in an inhomogeneous medium. Results of theoretical and experimental studies of the acoustic characteristics of jets are discussed, and a solution is presented to the problem concerning the noise from a section, free rotor, and a rotor located inside a channel. Sound propagation in a channel with flow and selection of soundproofing liners for the channel walls are also discussed.

  10. Plasmonic lens for ultraviolet wavelength

    NASA Astrophysics Data System (ADS)

    Takeda, Minoru; Tanimoto, Takuya; Inoue, Tsutomu; Aizawa, Kento

    2016-09-01

    A plasmonic lens (PL) is one of the promising photonic devices utilizing the surface plasmon wave. In this study, we have newly developed a PL with a 3.5 µm diameter for a wavelength of 375 nm (ultraviolet region). It is composed of multiple circular slit apertures milled in aluminum (Al) thin film. We have simulated the electric field distribution of the PL, and confirmed that a tightly focused beam spot of subwavelength size in the far-field region was attained. We have also measured the focusing characteristics of the PL using a near-field scanning optical microscope (NSOM) and compared them with the calculated results.

  11. Perfect lens makes a perfect trap.

    PubMed

    Lu, Zhaolin; Murakowski, Janusz; Schuetz, Christopher A; Shi, Shouyuan; Schneider, Garrett J; Samluk, Jesse P; Prather, Dennis W

    2006-03-20

    In this work, we present for the first time a new and realistic application of the "perfect lens", namely, electromagnetic traps (or tweezers). We combined two recently developed techniques, 3D negative refraction flat lenses (3DNRFLs) and optical tweezers, and experimentally demonstrated the very unique advantages of using 3DNRFLs for electromagnetic traps. Super-resolution and short focal distance of the flat lens result in a highly focused and strongly convergent beam, which is a key requirement for a stable and accurate electromagnetic trap. The translation symmetry of 3DNRFL provides translation-invariance for imaging, which allows an electromagnetic trap to be translated without moving the lens, and permits a trap array by using multiple sources with a single lens. Electromagnetic trapping was demonstrated using polystyrene particles in suspension, and subsequent to being trapped to a single point, they were then accurately manipulated over a large distance by simple movement of a 3DNRFL-imaged microwave monopole source.

  12. NREL Unsteady Aerodynamics Experiment phase 3 test objectives and preliminary results

    SciTech Connect

    Simms, D.A.; Fingersh, L.J.; Butterfield, C.P.

    1995-09-01

    The United States Department of Energy and the National Renewable Energy Laboratory (NREL) are conducting research to improve a wind turbine technology. One program, the Combined Experiment, has focused on making measurements needed to understand aerodynamic and structural responses of horizontal-axis wind turbines (HAWT). A new phase of this program, the Unsteady Aerodynamics Experiment, will focus on quantifying unsteady aerodynamic phenomena prevalent install controlled HAWTs. Optimally twisted blades and innovative data acquisition systems will be used in these tests. data can now be acquired and viewed interactively during turbine operations. This paper describes the Unsteady Aerodynamics Experiment and highlights planned future research activities.

  13. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  14. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  15. Role of Aquaporin 0 in lens biomechanics

    SciTech Connect

    Sindhu Kumari, S.; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G.; Menon, Anil G.; Mathias, Richard T.; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  16. Integrated structural-aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.

    1988-01-01

    This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.

  17. Rarefaction effects on Galileo probe aerodynamics

    NASA Technical Reports Server (NTRS)

    Moss, James N.; LeBeau, Gerald J.; Blanchard, Robert C.; Price, Joseph M.

    1996-01-01

    Solutions of aerodynamic characteristics are presented for the Galileo Probe entering Jupiter's hydrogen-helium atmosphere at a nominal relative velocity of 47.4 km/s. Focus is on predicting the aerodynamic drag coefficient during the transitional flow regime using the direct simulation Monte Carlo (DSMC) method. Accuracy of the probe's drag coefficient directly impacts the inferred atmospheric properties that are being extracted from the deceleration measurements made by onboard accelerometers as part of the Atmospheric Structure Experiment. The range of rarefaction considered in the present study extends from the free molecular limit to continuum conditions. Comparisons made with previous calculations and experimental measurements show the present results for drag to merge well with Navier-Stokes and experimental results for the least rarefied conditions considered.

  18. Optically controlled spherical liquid-crystal lens: theory and experiment

    SciTech Connect

    Gural'nik, I R; Samagin, S A

    2003-05-31

    A liquid-crystal lens with the focal distance depending on the transmitted light intensity is proposed and studied. A theoretical model is developed which adequately describes the wave-front formation by the lens. The results of visualisation of the wave-front control in a setup with crossed Polaroids and the intensity distributions, which characterise the focusing properties of the lens, are presented. To illustrate the application of the lens, an adaptive-optics system is built for stabilisation of radiation power on a 1-mm diaphragm, which reduces the power fluctuations by a factor of 30. (control of laser radiation parameters)

  19. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  20. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  1. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  2. The Aerodynamic Plane Table

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  3. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  4. Aerodynamic coefficients and transformation tables

    NASA Technical Reports Server (NTRS)

    Ames, Joseph S

    1918-01-01

    The problem of the transformation of numerical values expressed in one system of units into another set or system of units frequently arises in connection with aerodynamic problems. Report contains aerodynamic coefficients and conversion tables needed to facilitate such transformation. (author)

  5. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  6. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  7. The "Youth Lens": Analyzing Adolescence/ts in Literary Texts

    ERIC Educational Resources Information Center

    Petrone, Robert; Sarigianides, Sophia Tatiana; Lewis, Mark A.

    2014-01-01

    Drawing from interdisciplinary scholarship that re-conceptualizes adolescence as a cultural construct, this article introduces a "Youth Lens." A "Youth Lens" comprises an approach to textual analysis that examines how ideas about adolescence and youth get formed, circulated, critiqued, and revised. Focused specifically on its…

  8. The Zoom Lens: A Case Study in Geometrical Optics.

    ERIC Educational Resources Information Center

    Cheville, Alan; Scepanovic, Misa

    2002-01-01

    Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)

  9. HSCT high lift system aerodynamic requirements

    NASA Technical Reports Server (NTRS)

    Paulson, John A.

    1992-01-01

    The viewgraphs and discussion of high lift system aerodynamic requirements are provided. Low speed aerodynamics has been identified as critical to the successful development of a High Speed Civil Transport (HSCT). The airplane must takeoff and land at a sufficient number of existing or projected airports to be economically viable. At the same time, community noise must be acceptable. Improvements in cruise drag, engine fuel consumption, and structural weight tend to decrease the wing size and thrust required of engines. Decreasing wing size increases the requirements for effective and efficient low speed characteristics. Current design concepts have already been compromised away from better cruise wings for low speed performance. Flap systems have been added to achieve better lift-to-drag ratios for climb and approach and for lower pitch attitudes for liftoff and touchdown. Research to achieve improvements in low speed aerodynamics needs to be focused on areas most likely to have the largest effect on the wing and engine sizing process. It would be desirable to provide enough lift to avoid sizing the airplane for field performance and to still meet the noise requirements. The airworthiness standards developed in 1971 will be the basis for performance requirements for an airplane that will not be critical to the airplane wing and engine size. The lift and drag levels that were required to meet the performance requirements of tentative airworthiness standards established in 1971 and that were important to community noise are identified. Research to improve the low speed aerodynamic characteristics of the HSCT needs to be focused in the areas of performance deficiency and where noise can be reduced. Otherwise, the wing planform, engine cycle, or other parameters for a superior cruising airplane would have to be changed.

  10. Contact lens hygiene compliance and lens case contamination: A review.

    PubMed

    Wu, Yvonne Tzu-Ying; Willcox, Mark; Zhu, Hua; Stapleton, Fiona

    2015-10-01

    A contaminated contact lens case can act as a reservoir for microorganisms that could potentially compromise contact lens wear and lead to sight threatening adverse events. The rate, level and profile of microbial contamination in lens cases, compliance and other risk factors associated with lens case contamination, and the challenges currently faced in this field are discussed. The rate of lens case contamination is commonly over 50%. Coagulase-negative Staphylococcus, Bacillus spp., Pseudomonas aeruginosa and Serratia marcescens are frequently recovered from lens cases. In addition, we provide suggestions regarding how to clean contact lens cases and improve lens wearers' compliance as well as future lens case design for reducing lens case contamination. This review highlights the challenges in reducing the level of microbial contamination which require an industry wide approach.

  11. Invited review article: the electrostatic plasma lens.

    PubMed

    Goncharov, Alexey

    2013-02-01

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  12. Invited Review Article: The electrostatic plasma lens

    SciTech Connect

    Goncharov, Alexey

    2013-02-15

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  13. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  14. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  15. Intraocular lens fabrication

    DOEpatents

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  16. Intraocular lens fabrication

    DOEpatents

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  17. Ultraviolet spectrograph lens

    SciTech Connect

    Brixner, B.; Winkler, M.A.

    1981-01-01

    A 700-mm f/4.7 spectrograph camera lens was designed for imaging spectral lines in the 200 to 400-nm region on a 120-mm flat image field. Lens elements of fused silica and crystalline calcium fluoride have so little secondary spectrum that raytracing calculations predict a monochromatic resolution limit of 30 lines/mm without refocusing in the 238- to 365-nm region. Light scattering at the polished calcium-fluoride surfaces is avoided by sandwiching the fluoride elements between fused silica and cementing with silicone fluid. The constructed lens makes good spectrograms.

  18. Ultraviolet-spectrograph lens

    SciTech Connect

    Brixner, B.; Winkler, M.A.

    1981-01-01

    A 700-mm f/4.7 spectrograph camera lens was designed for imaging spectral lines in the 200- to 400-nm region on a 120-mm flat image field. Lens elements of fused silica and crystal calcium fluoride give such good achromatization that raytracing calculations predict a resolution limit of 30 lines/mm without refocusing in the 238- to 365-nm region. Light scattering at the polished calcium-fluoride surfaces is avoided by sandwiching the fluoride elements between fused silica and cementing with silicone fluid. The constructed lens makes good spectrograms.

  19. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  20. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  1. Multilayer Laue Lens Sequence Compiler

    2005-10-01

    For the growth of a new kind of x-ray focusing optic called a multilayer Laue lens, a device is constructed in which each layer of alernating high-z and low-z is placed in the appropriate place according to the Fresnel zone plate law. This requires that each layer have a different layer thickness. Because each layer is grown using DC magnetron sputter deposition, these layer thicknesses are not only dictated by the zone plate law, butmore » are adjusted to account for various drifting in the growth chamber due to target erosion, etc.« less

  2. Multilayer Laue Lens Sequence Compiler

    SciTech Connect

    Conley, Roy; Liu, Chian

    2005-10-01

    For the growth of a new kind of x-ray focusing optic called a multilayer Laue lens, a device is constructed in which each layer of alernating high-z and low-z is placed in the appropriate place according to the Fresnel zone plate law. This requires that each layer have a different layer thickness. Because each layer is grown using DC magnetron sputter deposition, these layer thicknesses are not only dictated by the zone plate law, but are adjusted to account for various drifting in the growth chamber due to target erosion, etc.

  3. Contact Lens Risks

    MedlinePlus

    ... Health and Consumer Devices Consumer Products Contact Lenses Contact Lens Risks Share Tweet Linkedin Pin it More ... redness blurred vision swelling pain Serious Hazards of Contact Lenses Symptoms of eye irritation can indicate a ...

  4. Aerodynamics of Small Vehicles

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas J.

    In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

  5. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  6. Vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)

    1992-01-01

    The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

  7. Lens auto-centering

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Doucet, Michel; Côté, Patrice; Gauvin, Jonny; Anctil, Geneviève; Tremblay, Mathieu

    2015-09-01

    In a typical optical system, optical elements usually need to be precisely positioned and aligned to perform the correct optical function. This positioning and alignment involves securing the optical element in a holder or mount. Proper centering of an optical element with respect to the holder is a delicate operation that generally requires tight manufacturing tolerances or active alignment, resulting in costly optical assemblies. To optimize optical performance and minimize manufacturing cost, there is a need for a lens mounting method that could relax manufacturing tolerance, reduce assembly time and provide high centering accuracy. This paper presents a patent pending lens mounting method developed at INO that can be compared to the drop-in technique for its simplicity while providing the level of accuracy close to that achievable with techniques using a centering machine (usually < 5 μm). This innovative auto-centering method is based on the use of geometrical relationship between the lens diameter, the lens radius of curvature and the thread angle of the retaining ring. The autocentering principle and centering test results performed on real optical assemblies are presented. In addition to the low assembly time, high centering accuracy, and environmental robustness, the INO auto-centering method has the advantage of relaxing lens and barrel bore diameter tolerances as well as lens wedge tolerances. The use of this novel lens mounting method significantly reduces manufacturing and assembly costs for high performance optical systems. Large volume productions would especially benefit from this advancement in precision lens mounting, potentially providing a drastic cost reduction.

  8. Future Challenges and Opportunities in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Hefner, Jerry N.

    2000-01-01

    Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.

  9. Miniature lens design and optimization with liquid lens element via genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Tsai, Chen-Mu

    2008-07-01

    This paper proposes a design and optimization method via (GA) genetic algorithm applied to a newly developed optical element: the liquid lens as a fast focus group. This design takes advantage of quick focus which works simultaneously with modern CMOS sensors in order to significantly improve image quality. Such improvement is important, especially for medical imaging technology such as laparoscopy. However, this optical design with a liquid lens element has not achieved success yet; one of the major reasons is the lack of anomalous dispersion glass and their Abbe number, which complicates the correction of aberrations, limits its availability. From the point of view of aberration theory, most aberrations, particularly in the axial chromatic and lateral color aberration of an optical lens, play the same role as the selection of optical glass. Therefore, in the present research, some optical layouts with a liquid lens are first discussed; next, genetic algorithms are used to replace traditional LDS (least damping square) to search for the best solution using a liquid lens and find the best glass sets for the combination of anomalous dispersion glass and materials inside a liquid lens. During optimization work, the 'geometric optics' theory and 'multiple dynamic crossover and random gene mutation' technique are employed. Through implementation of the algorithms proposed in this paper, satisfactory elimination of axial and lateral color aberration can be achieved.

  10. An electrostatically and a magnetically confined electron gun lens system

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Man, Kin F.; Chutjian, Ara

    1988-01-01

    Focal properties, electron trajectory calculations, and geometries are given for two electron 'gun' lens systems that have a variety of applications in, for example, electron-neutral and electron-ion scattering experiments. One nine-lens system utilizes only electrostatic confinement and is capable of focusing electrons onto a fixed target with extremely small divergence angles, over a range of final energies 1-790 eV. The second gun lens system is a simpler three-lens system suitable for use in a uniform, solenoidal magnetic field. While the focusing properties of such a magnetically confined lens systenm are simpler to deal with, the system does illustrate features of electron extraction and Brillouin flow that have not been suitably emphasized in the literature.

  11. The aerodynamics of supersonic parachutes

    SciTech Connect

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlations of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.

  12. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    DOEpatents

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  13. Coherent diffraction imaging by moving a lens.

    PubMed

    Shen, Cheng; Tan, Jiubin; Wei, Ce; Liu, Zhengjun

    2016-07-25

    A moveable lens is used for determining amplitude and phase on the object plane. The extended fractional Fourier transform is introduced to address the single lens imaging. We put forward a fast algorithm for the transform by convolution. Combined with parallel iterative phase retrieval algorithm, it is applied to reconstruct the complex amplitude of the object. Compared with inline holography, the implementation of our method is simple and easy. Without the oversampling operation, the computational load is less. Also the proposed method has a superiority of accuracy over the direct focusing measurement for the imaging of small size objects. PMID:27464107

  14. Novel approach to a perfect lens

    NASA Astrophysics Data System (ADS)

    Klimov, V. V.

    2009-05-01

    Within the framework of an exact analytical solution of Maxwell equations in a space domain, it is shown that optical scheme based on a slab with negative refractive index ( n = -1) (Veselago lens or Pendry lens) does not possess focusing properties in the usual sense. In fact, the energy in such systems does not go from object to its “image,” but from object and its “image” to an intersection point inside a metamaterial layer, or vice versa. A possibility of applying this phenomenon to a creation of entangled states of two atoms is discussed.

  15. Tunable dielectric liquid lens on flexible substrate

    PubMed Central

    Lu, Yen-Sheng; Tu, Hongen; Xu, Yong; Jiang, Hongrui

    2013-01-01

    We demonstrate the fabrication of a tunable-focus dielectric liquid lens (DLL) on a flexible substrate made of polydimethylsiloxane, which was wrapped onto a goggle surface to show its functionality. As a positive meniscus converging lens, the DLL has the focal length variable from 14.2 to 6.3 mm in 1.3 s when the driving voltage increases to 125 Vrms. The resolving power of the DLL is 17.95 line pairs per mm. The DLL on a flexible, curvilinear surface is promising for expanded field of view covered as well as in reconfigurable optical systems. PMID:24493877

  16. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  17. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  18. Turbine Aerodynamics Design Tool Development

    NASA Technical Reports Server (NTRS)

    Huber, Frank W.; Turner, James E. (Technical Monitor)

    2001-01-01

    This paper presents the Marshal Space Flight Center Fluids Workshop on Turbine Aerodynamic design tool development. The topics include: (1) Meanline Design/Off-design Analysis; and (2) Airfoil Contour Generation and Analysis. This paper is in viewgraph form.

  19. Passive focus sensor

    NASA Astrophysics Data System (ADS)

    Engelhardt, Kai; Knop, Karl

    1995-05-01

    A focus-sensor module that could take the place of the visual-image control for professional large-format cameras was fabricated. In addition, a passive focus-sensing method was shown to work at arbitrary locations and orientations in the recording plane of large-format professional cameras. A focus resolution of better than 0.1 mm and a range of measurement of +/- 5 mm at the image side were obtained at a minimum level of illuminance and with an aperture f/5.6 of the imaging lens. In the current method, three out of four images that arose from various sections of the camera's objective lens were applied for triangulation. The demonstrated approach was based on a linear photodiode array and employed one-dimensional image information for focus sensing.

  20. Aerodynamic design trends for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hilbig, R.; Koerner, H.

    1986-01-01

    Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

  1. Tunable optofluidic birefringent lens.

    PubMed

    Wee, D; Hwang, S H; Song, Y S; Youn, J R

    2016-05-01

    An optofluidic birefringent lens is demonstrated using hydrodynamic liquid-liquid (L(2)) interfaces in a microchannel. The L(2) lens comprises a nematic liquid crystal (NLC) phase and an optically isotropic phase for the main stream and the surrounding sub-stream, respectively. When the optofluidic device is subjected to a sufficiently strong electric field perpendicular to the flow direction, NLCs are allowed to orient along the external field rather than the flow direction overcoming fluidic viscous stress. The characteristics of the optofluidic birefringence lens are investigated by experimental and numerical analyses. The difference between the refractive indices of the main stream and the sub-stream changes according to the polarization direction of incident light, which determines the optical behaviour of the lens. The incidence of s-polarized light leads to a short focal point, while p-polarized light has a relatively long focal distance from the same L(2) interface. The curvatures and focal lengths of the lens are successfully evaluated by a hydrodynamic theory of NLCs and a simple ray-tracing model. PMID:27035877

  2. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  3. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  4. Aerodynamics of Laminar Flames

    NASA Astrophysics Data System (ADS)

    Law, Chung K.

    2000-11-01

    The presentation will review recent advances in the understanding of the structure, dynamics, and geometry of stretched, nonequidiffusive, laminar premixed flames, as exemplified by the unsteady propagation of wrinkled flames in nonuniform flow fields. It is first shown that by considering the effects of aerodynamic stretch on the flame structure, and by allowing for mixture nonequidiffusion, the flame responses, especially the flame propagation speed, can be quantitatively as well as qualitatively modified from the idealized planar limit. Subsequently, by treating the flame as a level surface propagating with the stretch-affected flame speed, problems of increasing complexity are presented to illustrate various features of flame propagation. The illustration first treats the flame as a structureless surface propagating into a constant-density combustible with a constant velocity * the laminar flame speed, and demonstrates the phenomena of cusp formation and volumetric burning rate augmentation through flame wrinkling. By using the stretch-affected flame speed, we then describe the phenomena of cusp broadening as well as tip opening of the Bunsen flame. Finally, by allowing for the density jump across the flame surface, a unified dispersion relation is derived for the intrinsic hydrodynamic, body-force, and nonequidiffusive modes of flame

  5. Introduction. Computational aerodynamics.

    PubMed

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  6. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  7. Metamaterial lens design

    NASA Astrophysics Data System (ADS)

    Shepard, Ralph Hamilton, III

    Developments in nanotechnology and material science have produced optical materials with astonishing properties. Theory and experimentation have demonstrated that, among other properties, the law of refraction is reversed at an interface between a naturally occurring material and these so-called metamaterials. As the technology advances metamaterials have the potential to vastly impact the field of optical science. In this study we provide a foundation for future work in the area of geometric optics and lens design with metamaterials. The concept of negative refraction is extended to derive a comprehensive set of first-order imaging principles as well as an exhaustive aberration theory to 4th order. Results demonstrate congruence with the classical theory; however, negative refraction introduces a host of novel properties. In terms of aberration theory, metamaterials present the lens designer with increased flexibility. A singlet can be bent to produce either positive or negative spherical aberration (regardless of its focal length), its contribution to coma can become independent of its conjugate factor, and its field curvature takes on the opposite sign of its focal power. This is shown to be advantageous in some designs such as a finite conjugate relay lens; however, in a wider field of view landscape lens we demonstrate a metamaterial's aberration properties may be detrimental. This study presents the first comprehensive investigation of metamaterial lenses using industry standard lens design software. A formal design study evaluates the performance of doublet and triplet lenses operating at F/5 with a 100 mm focal length, a 20° half field of view, and specific geometric constraints. Computer aided optimization and performance evaluation provide experimental controls to remove designer-induced bias from the results. Positive-index lenses provide benchmarks for comparison to metamaterial systems subjected to identical design constraints. We find that

  8. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  9. Cellulose based soft gel like actuator for reconfigurable lens array

    NASA Astrophysics Data System (ADS)

    Sadasivuni, Kishor Kumar; Yadav, Mithilesh; Gao, Xiaoyuan; Mun, Seongcheol; Kim, Jaehwan

    2014-04-01

    Reconfigurable lens is biomimetic as it mimics human eye and is a transparent actuating material that can change its curvature in the presence of external stimuli. Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present lens system which makes use of an inline, transparent electro active polymer actuator. This paper reports the preliminary development we have achieved in reconfigurable lens systems made with cellulose nanocrystals (CNC) using the principle of Kerr effect. Preparation of the hydrophobic CNC solution as well as the optical properties of the lens has been discussed. This soft gel actuator was analyzed by measuring the electric birefringence in the pulse field of constant and sinusoidal voltage based on the use of modulation of elliptic light polarization.

  10. Thermal deformation impacts on SOG Fresnel lens performance

    NASA Astrophysics Data System (ADS)

    Büyükcoşkun, Murat; Annen, Hans Philipp; González Muñoz, Luis Felipe

    2012-10-01

    Silicone-on-Glass (SOG) Fresnel lenses are flat optical elements used in concentrator photovoltaics (CPV). SOG lens production process broadly involves forming optical silicone prisms attached to glass. Silicone is first compressed onto glass while heat is applied in order to shorten its curing time. During the cooling process, however, difference between thermal expansion coefficient for silicon and glass causes thermal deformation of prisms which results in compromised optical efficiency. In this study, thermal-induced deformation of SOG Fresnel lens prisms is analyzed by Surface Profile Measurement (SPM) and Finite Element Analysis (FEA) methods. In order to better observe patterns of thermal deformation and overall lens performance, lens samples were subjected to an optical efficiency test. Focus quality (FQ) images were also taken and observed in order to further analyze thermally affected lens performance. The study is expected to contribute to knowledge on temperature induced performance determinants of SOG Fresnel lenses.

  11. Multigrid Methods for Aerodynamic Problems in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1995-01-01

    Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.

  12. Copper crystal lens for medical imaging: first results

    NASA Astrophysics Data System (ADS)

    Roa, Dante E.; Smither, Robert K.

    2001-06-01

    A copper crystal lens designed to focus gamma ray energies of 100 to 200 keV has been assembled at Argonne National Laboratory. In particular, the lens has been optimized to focus the 140.6 keV gamma rays from technetium-99 m typically used in radioactive tracers. This new approach to medical imaging relies on crystal diffraction to focus incoming gamma rays in a manner similar to a simple convex lens focusing visible light. The lens is envisioned to be part of an array of lenses that can be used as a complementary technique to gamma cameras for localized scans of suspected tumor regions in the body. In addition, a 2- lens array can be used to scan a woman's breast in search of tumors with no discomfort to the patient. The incoming gamma rays are diffracted by a set of 828 copper crystal cubes arranged in 13 concentric rings, which focus the gamma rays into a very small area on a well-shielded NaI detector. Experiments performance with technetium-99 m and cobalt 57 radioactive sources indicate that a 6-lens array should be capable of detecting sources with (mu) Ci strength.

  13. Potential of a beryllium x-ray lens

    SciTech Connect

    Smither, R.K.; Khounsary, A.M.; Xu, S.

    1997-09-01

    The use of refractive lenses for focusing x-ray beams has been the subject of publications since the early 1980s. Detailed calculations have been made for different shapes for the refractive lens: cylindrical, spherical, parabolic, and for a Fresnel-type refractive lens. The main drawback to the use of a single refractive lens to focus x-rays is that the index of refraction (n = 1 {minus} {delta}) is very close to 1, which results in a lens with a very long focal length. Recently Snigerov and others have suggested and experimentally demonstrated, using cylindrical-shaped lenses, that this problem of long focal lengths can be overcome by using many lenses in series. Each lens refracts the photon through a small angle, but the sum of these sequential changes in direction can be moderately larger. This increase in effective refraction angle reduces the focal length of the lens to a few meters or less and makes the multi-element lens a much more useful instrument for focusing x-rays. This paper, annualizes the expected performance of a lens consisting of a series of aligned hollow spheres in a beryllium substrate. The use of hollow spheres rather than hollow cylinders produces focusing of the x rays into a small focal spot in contrast to the single-directional focusing of the hollow cylinders, which produces a line focus. Two multi-element lenses have been constructed: one with 20 1-mm-diameter hollow spheres in an aluminum substrate, and one with 50 hollow spheres, 1 mm in diameter, in a beryllium substrate. Some construction details and calculations of the expected performance, are given for these two multi-element lenses.

  14. Mechanically tunable photonic crystal lens

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Tamma, V. A.; Lee, J.-B.; Park, W.

    2010-08-01

    We designed, fabricated and characterized MEMS-enabled mechanically-tunable photonic crystal lens comprised of 2D photonic crystal and symmetrical electro-thermal actuators. The 2D photonic crystal was made of a honeycomb-lattice of 340 nm thick, 260 nm diameter high-index silicon rods embedded in low-index 10 μm thick SU-8 cladding. Silicon input waveguide and deflection block were also fabricated for light in-coupling and monitoring of focused spot size, respectively. When actuated, the electro-thermal actuators induced mechanical strain which changed the lattice constant of the photonic crystal and consequently modified the photonic band structure. This in turn modified the focal-length of the photonic crystal lens. The fabricated device was characterized using a tunable laser (1400~1602 nm) and an infrared camera during actuation. At the wavelength of 1450 nm, the lateral light spot size observed at the deflection block gradually decreased 40%, as applied current increased from 0 to 0.7 A, indicating changes in focal length in response to the mechanical stretching.

  15. An electro-active polymer based lens module for dynamically varying focal system

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Park, Suntak; Nam, Saekwang; Park, Bongje; Park, Seung Koo; Mun, Seongcheol; Lim, Jeong Mook; Kyung, Ki-Uk

    2016-10-01

    We demonstrate a polymer-based active-lens module allowing a dynamic focus controllable optical system with a wide tunable range. The active-lens module is composed of parallelized two active-lenses with a convex and a concave shaped hemispherical lens structure, respectively. Under operation with dynamic input voltage signals, each active-lens produces translational movement bi-directionally responding to a hybrid driving force that is a combination of an electro-active response of a thin dielectric elastomer membrane and an electro-static attraction force. Since the proposed active lens module widely modulates a gap-distance between lens-elements, an optical system based on the active-lens module provides widely-variable focusing for selective imaging of objects in arbitrary position.

  16. A Tribute to Len Barton

    ERIC Educational Resources Information Center

    Tomlinson, Sally

    2010-01-01

    This article constitutes a short personal tribute to Len Barton in honour of his work and our collegial relationship going back over 30 years. It covers how Len saw his intellectual project of providing critical sociological and political perspectives on special education, disability and inclusion, and his own radical political perspectives. Len's…

  17. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  18. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  19. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  20. The Lens of Chemistry

    ERIC Educational Resources Information Center

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  1. Coupled Aerodynamic-Thermal-Structural (CATS) Analysis

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric

  2. Dynamic opto-VLSI lens and lenslet generation with programmable focal length

    NASA Astrophysics Data System (ADS)

    Wang, Zhenglin; Alameh, Kamal E.; Zheng, Rong; Ahderom, Selam

    2004-12-01

    In this paper we present and demonstrate a dynamic lens and lens array generation method with programmable focal length based on an Opto-VLSI processor. The Opto-VLSI is driven by computer generated algorithm to generate a discrete Fresnel lens phase hologram. By optimizing the phase hologram, lenses and lens arrays of different focal lengths ranging from 300mm to infinity can be realized. The optical axis of each lens element can be independently addressed to simultaneously focus and steer an optical beam within an angular range of +/-0.5°.

  3. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  4. Recent advances in computational aerodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh K.; Desse, Jerry E.

    1991-04-01

    The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  5. Challenges of using dielectric elastomer actuators to tune liquid lens

    NASA Astrophysics Data System (ADS)

    Keong, Gih-Keong; La, Thanh-Giang; Shiau, Li-Lynn; Tan, Adrian W. Y.

    2014-03-01

    Recently, dielectric elastomer actuators (DEAs) have been adopted to tune liquid membrane lens, just like ciliary muscles do to the lens in human eye. However, it faces some challenges, such as high stress, membrane puncture, high driving voltage requirement, and limited focus distance (not more than 707cm), that limit its practical use. The design problem gets more complex as the liquid lens shares the same elastomeric membrane as the DEA. To address these challenges, we separate DEA from the lens membrane. Instead, a liquid-immersed DEA, which is safe from terminal failure, is used as a diaphragm pump to inflate or deflate the liquid lens by hydraulic pressure. This opens up the possibility that the DEA can be thinned down and stacked up to reduce the driving voltage, independent of the lens membrane thickness. Preliminary study showed that our 8-mm-diameter tunable lens can focus objects in the range of 15cm to 50cm with a small driving voltage of 1.8kV. Further miniaturization of DEA could achieve a driving voltage less than 1kV.

  6. Algorithmic Enhancements for Unsteady Aerodynamics and Combustion Applications

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Sankaran; Olsen, Michael (Technical Monitor)

    2001-01-01

    Research in the FY01 focused on the analysis and development of enhanced algorithms for unsteady aerodynamics and chemically reacting flowfields. The research was performed in support of NASA Ames' efforts to improve the capabilities of the in-house computational fluid dynamics code, OVERFLOW. Specifically, the research was focused on the four areas: (1) investigation of stagnation region effects; (2) unsteady preconditioning dual-time procedures; (3) dissipation formulation for combustion; and (4) time-stepping methods for combustion.

  7. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  8. Rotor/body aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1983-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  9. Rotor/body aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  10. Development of a Fresnel lens concentrator for space application

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Piszczor, Michael F.

    1987-01-01

    The selected conceptual design of the dome lens photovoltaic concentrator for space applications uses a 3.7 cm square aperture dome lens to focus onto a 0.4 cm active diameter gallium arsenide cell. The selected configuration will provide 91.5 percent lens optical efficiency and 21.4 percent cell efficiency at 100 suns irradiance and 100 C cell temperature, for an overall cell efficiency of 19.6 percent. The selected configuration will tolerate 1 degree tracking errors with negligible loss of performance. The selected panel weight is 2.5 kg/sq.m.

  11. A spiral plasmonic lens with directional excitation of surface plasmons

    NASA Astrophysics Data System (ADS)

    Guo, Qingrui; Zhang, Chi; Hu, Xinhua

    2016-08-01

    Conventional plasmonic lenses are composed of curved slits carved through metallic films. Here, we propose a new plasmonic lens based on a metallic slit with an auxiliary groove. When the lens is illumined normally, only inward surface plasmon polaritons (SPPs) can be generated and then focused into a hot spot at the center of the lens. The focusing effect is theoretically investigated by varying the groove parameters and incident polarizations. It is found that this phenomenon exists for both the circular and linear polarizations of incidence. Under optimal groove parameters, the intensity of the focal spot in our lens can be 2.5 times of that in one without grooves for both linearly and circularly polarized illuminations.

  12. Broadband microwave Luneburg lens made of gradient index metamaterials.

    PubMed

    Loo, Yoke Leng; Yang, Yarong; Wang, Ning; Ma, Yun Gui; Ong, Chong Kim

    2012-04-01

    Luneburg lenses are able to form perfect focus that is free of aberration. Because of the varying refractive index throughout the lens, incoming electromagnetic waves can travel in a curved path and be guided to focus at the back of the lens. The implementation of Luneburg lenses is often difficult due to the challenges in creating a medium with varying refractive index using normal materials. This problem can be overcome with the use of gradient index metamaterials. We report a two dimensional Luneburg lens made of gradient index metamaterials. It consists of 17 concentric shells with etched patterns on a printed circuit board working in microwave X band frequency. The broad properties of the Luneburg lens are then discussed.

  13. A spiral plasmonic lens with directional excitation of surface plasmons

    PubMed Central

    Guo, Qingrui; Zhang, Chi; Hu, Xinhua

    2016-01-01

    Conventional plasmonic lenses are composed of curved slits carved through metallic films. Here, we propose a new plasmonic lens based on a metallic slit with an auxiliary groove. When the lens is illumined normally, only inward surface plasmon polaritons (SPPs) can be generated and then focused into a hot spot at the center of the lens. The focusing effect is theoretically investigated by varying the groove parameters and incident polarizations. It is found that this phenomenon exists for both the circular and linear polarizations of incidence. Under optimal groove parameters, the intensity of the focal spot in our lens can be 2.5 times of that in one without grooves for both linearly and circularly polarized illuminations. PMID:27562227

  14. Broadband microwave Luneburg lens made of gradient index metamaterials.

    PubMed

    Loo, Yoke Leng; Yang, Yarong; Wang, Ning; Ma, Yun Gui; Ong, Chong Kim

    2012-04-01

    Luneburg lenses are able to form perfect focus that is free of aberration. Because of the varying refractive index throughout the lens, incoming electromagnetic waves can travel in a curved path and be guided to focus at the back of the lens. The implementation of Luneburg lenses is often difficult due to the challenges in creating a medium with varying refractive index using normal materials. This problem can be overcome with the use of gradient index metamaterials. We report a two dimensional Luneburg lens made of gradient index metamaterials. It consists of 17 concentric shells with etched patterns on a printed circuit board working in microwave X band frequency. The broad properties of the Luneburg lens are then discussed. PMID:22472817

  15. A spiral plasmonic lens with directional excitation of surface plasmons.

    PubMed

    Guo, Qingrui; Zhang, Chi; Hu, Xinhua

    2016-01-01

    Conventional plasmonic lenses are composed of curved slits carved through metallic films. Here, we propose a new plasmonic lens based on a metallic slit with an auxiliary groove. When the lens is illumined normally, only inward surface plasmon polaritons (SPPs) can be generated and then focused into a hot spot at the center of the lens. The focusing effect is theoretically investigated by varying the groove parameters and incident polarizations. It is found that this phenomenon exists for both the circular and linear polarizations of incidence. Under optimal groove parameters, the intensity of the focal spot in our lens can be 2.5 times of that in one without grooves for both linearly and circularly polarized illuminations. PMID:27562227

  16. A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.

    2015-01-01

    A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.

  17. Pulser for the Tevatron electron lens gun

    SciTech Connect

    Iouri Terechkine et al.

    2004-05-18

    To compensate for beam-beam interaction in Tevatron, an ''electron lens'' is considered to be an effective instrument. When a bunch of electrons with energy in the range (10-16) kV is overlapping with a bunch of antiprotons, the resulting focusing force for antiprotons can be adjusted by changing the electron beam current and by profiling its radial distribution. There exist several scenarios of how the system must function. According to one of them, an electron gun that supplies electrons must be fed by voltage pulses that follow with the frequency of antiproton bunches circulating in the Tevatron, which is about 2.5 MHz. To provide focusing tailored for each individual antiproton bunch, a modulator of the gun (pulser) must allow pulse-to-pulse voltage change. This report will cover main approaches to a design of a pulser for use with the gun of the Tevatron Electron Lens.

  18. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    PubMed

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens. PMID:23787690

  19. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  20. In vivo, Ex Vivo, and In Vitro Approaches to Study Intermediate Filaments in the Eye Lens.

    PubMed

    Jarrin, Miguel; Young, Laura; Wu, Weiju; Girkin, John M; Quinlan, Roy A

    2016-01-01

    The role of the eye lens is to focus light into the retina. To perform this unique function, the ocular lens must be transparent. Previous studies have demonstrated the expression of vimentin, BFSP1, and BFSP2 in the eye lens. These intermediate filament (IF) proteins are essential to the optical properties of the lens. They are also important to its biomechanical properties, to the shape of the lens fiber cells, and to the organization and function of the plasma membrane. The eye lens is an iconic model in developmental studies, as a result different vertebrate models, including zebrafish, have been developed to study lens formation. In the present chapter, we have summarized the new approaches and the more breakthrough models (e.g., iPSc) that can be used to study the function of IFs in the ocular lens. We have presented three different groups of models. The first group includes in vitro models, where IFs can be studied and manipulated in lens cell cultures. The second includes ex vivo models. These replicate better the complex lens cell differentiation processes and the role(s) played by IFs. The third class is the in vivo models, and here, we have focused on Zebrafish and new imaging approaches using selective plane illumination microscopy. Finally, we present protocols on how to use these lens models to study IFs.

  1. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  2. Unsteady aerodynamics modeling for flight dynamics application

    NASA Astrophysics Data System (ADS)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  3. Design and construction of a spin-wave lens.

    PubMed

    Toedt, Jan-Niklas; Mundkowski, Mark; Heitmann, Detlef; Mendach, Stefan; Hansen, Wolfgang

    2016-01-01

    In this work, we present the focusing of a Damon-Eshbach wave in a Ni80Fe20 film by a shaped, discrete transition of the film thickness. We devised an algorithm to determine the required shape of a spin-wave lens. Due to the anisotropy three geometries qualify as plano-convex lenses. One lens geometry has been realized experimentally and the emitted spin-wave pattern is investigated by time-resolved scanning Kerr microscopy. PMID:27650652

  4. Design and construction of a spin-wave lens

    PubMed Central

    Toedt, Jan-Niklas; Mundkowski, Mark; Heitmann, Detlef; Mendach, Stefan; Hansen, Wolfgang

    2016-01-01

    In this work, we present the focusing of a Damon-Eshbach wave in a Ni80Fe20 film by a shaped, discrete transition of the film thickness. We devised an algorithm to determine the required shape of a spin-wave lens. Due to the anisotropy three geometries qualify as plano-convex lenses. One lens geometry has been realized experimentally and the emitted spin-wave pattern is investigated by time-resolved scanning Kerr microscopy. PMID:27650652

  5. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    SciTech Connect

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  6. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  7. Sensitivity analysis in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1984-01-01

    Information on sensitivity analysis in computational aerodynamics is given in outline, graphical, and chart form. The prediction accuracy if the MCAERO program, a perturbation analysis method, is discussed. A procedure for calculating perturbation matrix, baseline wing paneling for perturbation analysis test cases and applications of an inviscid sensitivity matrix are among the topics covered.

  8. Aerodynamic laboratory at Cuatro Vientos

    NASA Technical Reports Server (NTRS)

    JUBERA

    1922-01-01

    This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.

  9. Shuttle reentry aerodynamic heating test

    NASA Technical Reports Server (NTRS)

    Pond, J. E.; Mccormick, P. O.; Smith, S. D.

    1971-01-01

    The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

  10. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  11. POEMS in Newton's Aerodynamic Frustum

    ERIC Educational Resources Information Center

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  12. Rotary wing aerodynamically generated noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. J.; Morse, H. A.

    1982-01-01

    The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

  13. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  14. Functional modular contact lens

    NASA Astrophysics Data System (ADS)

    Shum, Angela J.; Cowan, Melissa; Lähdesmäki, Ilkka; Lingley, Andrew; Otis, Brian; Parviz, Babak A.

    2009-08-01

    Tear fluid offers a potential route for non-invasive sensing of physiological parameters. Utilization of this potential depends on the ability to manufacture sensors that can be placed on the surface of the eye. A contact lens makes a natural platform for such sensors, but contact lens polymers present a challenge for sensor fabrication. This paper describes a microfabrication process for constructing sensors that can be integrated into the structure of a functional contact lens in the future. To demonstrate the capabilities of the process, an amperometric glucose sensor was fabricated on a polymer substrate. The sensor consists of platinum working and counter electrodes, as well as a region of indium-tin oxide (ITO) for glucose oxidase immobilization. An external silver-silver chloride electrode was used as the reference electrode during the characterization experiments. Sensor operation was validated by hydrogen peroxide measurements in the 10- 20 μM range and glucose measurements in the 0.125-20 mM range.

  15. Ultrasound field measurement using a binary lens

    PubMed Central

    Clement, G.T.; Nomura, H.; Kamakura, T.

    2014-01-01

    Field characterization methods using a scattering target in the absence of a point-like receiver have been well described in which scattering is recorded by a relatively large receiver located outside the field of measurement. Unfortunately, such methods are prone to artifacts due to averaging across the receiver surface. To avoid this problem while simultaneously increasing the gain of a received signal, the present study introduces a binary plate lens designed to focus spherically-spreading waves onto a planar region having a nearly-uniform phase proportional to that of the target location. The lens is similar to a zone plate, but modified to produce a biconvex-like behavior, such that it focuses both planar and spherically spreading waves. A measurement device suitable for characterizing narrowband ultrasound signals in air is designed around this lens by coupling it to a target and planar receiver. A prototype device is constructed and used to characterize the field of a highly-focused 400 kHz air transducer along 2 radial lines. Comparison of the measurements with numeric predictions formed from nonlinear acoustic simulation showed good relative pressure correlation, with mean differences of 10% and 12% over center 3dB FWHM drop and 12% and 17% over 6dB. PMID:25643084

  16. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  17. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  18. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  19. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  20. Successive smoothing algorithm for constructing the semiempirical model developed at ONERA to predict unsteady aerodynamic forces. [aeroelasticity in helicopters

    NASA Technical Reports Server (NTRS)

    Petot, D.; Loiseau, H.

    1982-01-01

    Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.

  1. The influence of the elastic vibration of the carrier to the aerodynamics of the external store in air-launch-to-orbit process

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Ye, Zheng-Yin; Wu, Jie

    2016-11-01

    The separation between the carrier and store is one of the most important and difficult phases in Air-launch-to-orbit technology. Based on the previous researches, the interference aerodynamic forces of the store caused by the carrier are obvious in the earlier time during the separation. And the interference aerodynamics will be more complex when considering the elastic deformation of the carrier. Focusing on the conditions that in the earlier time during the separation, the steady and unsteady interference aerodynamic forces of the store are calculated at different angle of attacks and relative distances between the carrier and store. During the calculation, the elastic vibrations of the carrier are considered. According to the cause of formations of the interference aerodynamics, the interference aerodynamic forces of the store are divided into several components. The relative magnitude, change rule, sphere of influence and mechanism of interference aerodynamic forces components of the store are analyzed quantitatively. When the relative distance between the carrier and store is small, the interference aerodynamic forces caused by the elastic vibration of the carrier is about half of the total aerodynamic forces of the store. And as the relative distance increases, the value of interference aerodynamic forces decrease. When the relative distance is larger than twice the mean aerodynamic chord of the carrier, the values of interference aerodynamic forces of the store can be ignored. Besides, under the influence of the steady interference aerodynamic forces, the lift characteristics of the store are worse and the static stability margin is poorer.

  2. Flexural waves focusing through shunted piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Yi, K.; Collet, M.; Ichchou, M.; Li, L.

    2016-07-01

    In this paper, we designed and analyzed a piezo-lens to focus flexural waves in thin plates. The piezo-lens is comprised of a host plate and piezoelectric arrays bonded on the surfaces of the plate. The piezoelectric patches are shunted with negative capacitance circuits. The effective refractive indexes inside the piezo-lens are designed to fit a hyperbolic secant distribution by tuning the negative capacitance values. A homogenized model of a piezo-mechanical system is adopted in the designing process of the piezo-lens. The wave focusing effect is studied by the finite element method. Numerical results show that the piezo-lens can focus flexural waves by bending their trajectories, and is effective in a large frequency band. The piezo-lens has the ability to focus flexural waves at different locations by tuning the shunting negative capacitance values. The piezo-lens is shown to be effective for flexural waves generated by different types of sources.

  3. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  4. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  5. Lens of Eye Dosimetry

    SciTech Connect

    Mallett, Michael Wesley

    2015-03-23

    An analysis of LANL occupational dose measurements was made with respect to lens of eye dose (LOE), in particular, for plutonium workers. Table 1 shows the reported LOE as a ratio of the “deep” (photon only) and “deep+neutron” dose for routine monitored workers at LANL for the past ten years. The data compares the mean and range of these values for plutonium workers* and non-routine plutonium workers. All doses were reported based on measurements with the LANL Model 8823 TLD.

  6. Physics of electrostatic lens

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The purpose of this program was to study the physics of the ion-energy boosting electrostatic lens for collective ion acceleration in the Luce diode. Extensive work was done in preparation for experiments on the PI Pulserad 1150. Analytic work was done on the orbit of protons in a mass spectrometer and a copper stack for nuclear activation analysis of proton energy spectrum has been designed. Unfortunately, a parallel program which would provide the Luce diode for the collective ion acceleration experiment never materialized. As a result no experiments were actually performed on the Pulserad 1150.

  7. Computer Simulation of Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Inouye, Mamoru

    1989-01-01

    The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.

  8. Control of helicopter rotorblade aerodynamics

    NASA Technical Reports Server (NTRS)

    Fabunmi, James A.

    1991-01-01

    The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.

  9. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  10. The 2014 IODC lens design problem: the Cinderella lens

    NASA Astrophysics Data System (ADS)

    Juergens, Richard C.

    2014-12-01

    The lens design problem for the 2014 IODC is to design a 100 mm focal length lens in which all the components of the lens can be manufactured from ten Schott N-BK7 lens blanks 100 mm in diameter x 30 mm thick. The lens is used monochromatically at 587.56 nm. The goal of the problem is to maximize the product of the entrance pupil diameter and the semi-field of view while holding the RMS wavefront error to <= 0.070 wave within the field of view. There were 45 entries from 13 different countries. Four different commercial lens design programs were used, along with six custom, in-house programs. The number of lens elements in the entries ranged from 10 to 52. The winning entry from Jon Ehrmann had 25 lens elements, and had an entrance pupil diameter of 33.9 mm and a semi-field of view of 62.5° for a merit function product of 2,119.

  11. Orion Aerodynamics for Hypersonic Free Molecular to Continuum Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Greene, Francis A.; Boyles, Katie A.

    2006-01-01

    Numerical simulations are performed for the Orion Crew Module, previously known as the Crew Exploration Vehicle (CEV) Command Module, to characterize its aerodynamics during the high altitude portion of its reentry into the Earth's atmosphere, that is, from free molecular to continuum hypersonic conditions. The focus is on flow conditions similar to those that the Orion Crew Module would experience during a return from the International Space Station. The bulk of the calculations are performed with two direct simulation Monte Carlo (DSMC) codes, and these data are anchored with results from both free molecular and Navier-Stokes calculations. Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction, that is, for free molecular to continuum conditions (Knudsen numbers of 111 to 0.0003). Also included are aerodynamic data as a function of angle of attack for different levels of rarefaction and results that demonstrate the aerodynamic sensitivity of the Orion CM to a range of reentry velocities (7.6 to 15 km/s).

  12. Aerodynamic instability: A case history

    NASA Technical Reports Server (NTRS)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  13. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  14. Unsteady aerodynamics of insect flight.

    PubMed

    Ellington, C P

    1995-01-01

    Over the past decade, the importance of unsteady aerodynamic mechanisms for flapping insect flight has become widely recognised. Even at the fastest flight speeds, the old quasi-steady aerodynamic interpretation seems inadequate to explain the extra lift produced by the wings. Recent experiments on rigid model wings have confirmed the effectiveness of several postulated high-lift mechanisms. Delayed stall can produce extra lift for several chords of travel during the translational phases of the wingbeat. Lift can also be enhanced by circulation created during pronation and supination by rotational mechanisms: the fling/peel, the near fling/peel and isolated rotation. These studies have revealed large leading-edge vortices which contribute to the circulation around the wing, augmenting the lift. The mechanisms show distinctive patterns of vortex shedding from leading and trailing edges. The results of flow visualization experiments on tethered insects are reviewed in an attempt to identify the high-lift mechanisms actually employed. The fling/peel mechanism is clearly used by some insects. The near fling/peel is the wing motion most commonly observed, but evidence for the production of high lift remains indirect. For many insects, lift on the upstroke probably results from delayed stall instead of the flex mechanism of isolated rotation. The large leading-edge vortices from experiments on rigid model wings are greatly reduced or missing around the real insect wings, often making the identification of aerodynamic mechanisms inconclusive. A substantial spanwise flow component has been detected over the aerodynamic upper wing surface, which should transport leading-edge vorticity towards the wingtip before it has much time to roll up. This spanwise transport, arising from centrifugal acceleration, is probably a general phenomenon for flapping insect flight. It should reduce and stabilise any leading-edge vortices that are present, which is essential for preventing

  15. Retroreflection Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Heineck, James T. (Inventor)

    1996-01-01

    A retroreflective type focusing schlieren system which permits the light source to be positioned on the optic side of the system is introduced. The system includes an extended light source, as opposed to a point source, located adjacent to a beam splitter which projects light through the flow field onto a reflecting grating in the form of a grid which generates sheets of light that are directed back through the flow field and the beam splitter onto a primary lens behind which is located a cut-off grid having a grid pattern which corresponds to the grid pattern of the reflecting grating. The cut-off grid is adjustably positioned behind the primary lens and an image plane for imaging the turbulence is adjustably located behind the cut-off grid.

  16. Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting

    NASA Technical Reports Server (NTRS)

    Olzcak, Gene

    2009-01-01

    An interferometer objective lens (or diverger) may be used to transform a collimated beam into a diverging or converging beam. This innovation provides an objective lens that has diffraction-limited optical performance that is optimized at two sets of conjugates: imaging to the objective focus and imaging to the pupil. The lens thus provides for simultaneous delivery of a high-quality beam and excellent pupil resolution properties.

  17. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  18. Assured Crew Return Vehicle flowfield and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. James; Smith, Robert E.; Greene, Francis A.

    1990-01-01

    A lifting body has been proposed as a candidate for the Assured Crew Return Vehicle which will serve as crew rescue vehicle for the Space Station. The focus of this work is on body surface definition, surface and volume grid definition, and the computation of inviscid flowfields about the vehicle at wind-tunnel conditions. Very good agreement is shown between the computed aerodynamic characteristics of the vehicle at a freestream Mach number of 10 and those measured in wind-tunnel tests.

  19. Design of lens-hood in the space fisheye optical system

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Zhang, Zhao-hui; Zhang, Zhi; Yan, Aqi; Cao, Jian-zhong; Zhang, Kai-sheng

    2013-09-01

    Due to the extra wide field of view, fisheye optical systems are appropriately applied in space camera for scouting large-scale objects with near-distance. At the same time, because of the violent sunlight linger within the field of view more than other optical system and more stray light occur during the period, to design proper lens-hood can effectively reduce the sunshine time. Another distinct characteristic of fisheye optical system is the first protrude lens, which is contrived with negative focus to trace the ray with angle about even above 90 degree of incidence. Consequently, the first lens is in danger of damaging by scratching when operating the camera during the ground experiments without lens-hood. Whereas on account of the huge distortion which is the third mainly characteristic of fisheye optical system, to design appropriate lens-hood is a tough work comparing with other low-distortion optical system, especially for those whose half diagonal field is more than 90°. In this paper, an research carried out on the design lens-hood for fisheye is proposed. In the way of reverse ray-tracing, the location on the first lens and point-vector for each incident ray can be accurately calculated. Thus the incident ray intersecting the first lens corresponds to the boundary of the image sensor form the effective object space. According to the figure of the lens and the incident rays, the lens-hood can be confirmed. In the proposed method, a space fisheye lens is presented as a typical lens, whose horizontal field and vertical field are 134°, diagonal field is up to 192°, respectively. The results of design for the lens-hood show that the lingering time of sunshine is shorten because of obstructing some redundant sunlight, and the first outstanding lens are protected in the most degree.

  20. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    PubMed Central

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver. PMID:27781155

  1. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; Carsten, J. L.; Collins, C. L.; Cooper, B.; Deen, R. G.; Gupta, S.

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  2. Recent progress in flapping wing aerodynamics and aeroelasticity

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Aono, H.; Chimakurthi, S. K.; Trizila, P.; Kang, C.-K.; Cesnik, C. E. S.; Liu, H.

    2010-10-01

    Micro air vehicles (MAVs) have the potential to revolutionize our sensing and information gathering capabilities in areas such as environmental monitoring and homeland security. Flapping wings with suitable wing kinematics, wing shapes, and flexible structures can enhance lift as well as thrust by exploiting large-scale vortical flow structures under various conditions. However, the scaling invariance of both fluid dynamics and structural dynamics as the size changes is fundamentally difficult. The focus of this review is to assess the recent progress in flapping wing aerodynamics and aeroelasticity. It is realized that a variation of the Reynolds number (wing sizing, flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which impacts the aerodynamic force generation. While in classical stationary wing theory, the tip vortices (TiVs) are seen as wasted energy, in flapping flight, they can interact with the LEV to enhance lift without increasing the power requirements. Surrogate modeling techniques can assess the aerodynamic outcomes between two- and three-dimensional wing. The combined effect of the TiVs, the LEV, and jet can improve the aerodynamics of a flapping wing. Regarding aeroelasticity, chordwise flexibility in the forward flight can substantially adjust the projected area normal to the flight trajectory via shape deformation, hence redistributing thrust and lift. Spanwise flexibility in the forward flight creates shape deformation from the wing root to the wing tip resulting in varied phase shift and effective angle of attack distribution along the wing span. Numerous open issues in flapping wing aerodynamics are highlighted.

  3. Aerodynamic lift effect on satellite orbits

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Cleland, J. G.; Devries, L. L.

    1975-01-01

    Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

  4. HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)

    NASA Video Gallery

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...

  5. Increase in velocimeter depth of focus through astigmatism. Revision 1

    SciTech Connect

    Erskine, D.J.

    1995-09-26

    Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector (VISAR). This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. The authors find that they can prevent loss of signal and greatly increase the useful depth of focus by attaching a cylindrical lens to the target lens.

  6. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    USGS Publications Warehouse

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Wilson, Reg G.; Goetz, Walter

    2012-01-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ?5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ?2.1 cm to infinity. At the minimum working distance, image pixel scale is ?14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI?s resolution is comparable at ?30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  7. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Willson, Reg G.; Goetz, Walter

    2012-09-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ˜5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ˜2.1 cm to infinity. At the minimum working distance, image pixel scale is ˜14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI's resolution is comparable at ˜30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  8. Perfect lens makes a perfect trap

    NASA Astrophysics Data System (ADS)

    Lu, Zhaolin; Murakowski, Janusz; Schuetz, Christopher A.; Shi, Shouyuan; Schneider, Garrett J.; Samluk, Jesse P.; Prather, Dennis W.

    2006-03-01

    In this work, we present for the first time a new and realistic application of the “perfect lens”, namely, electromagnetic traps (or tweezers). We combined two recently developed techniques, 3D negative refraction flat lenses (3DNRFLs) and optical tweezers, and experimentally demonstrated the very unique advantages of using 3DNRFLs for electromagnetic traps. Super-resolution and short focal distance of the flat lens result in a highly focused and strongly convergent beam, which is a key requirement for a stable and accurate electromagnetic trap. The translation symmetry of 3DNRFL provides translation-invariance for imaging, which allows an electromagnetic trap to be translated without moving the lens, and permits a trap array by using multiple sources with a single lens. Electromagnetic trapping was demonstrated using polystyrene particles in suspension, and subsequent to being trapped to a single point, they were then accurately manipulated over a large distance by simple movement of a 3DNRFL-imaged microwave monopole source.

  9. CYLINDER LENS ALIGNMENT IN THE LTP

    SciTech Connect

    TAKACS, P.Z.

    2005-07-26

    The Long Trace Profiler (LTP), is well-suited for the measurement of the axial figure of cylindrical mirrors that usually have a long radius of curvature in the axial direction but have a short radius of curvature in the sagittal direction. The sagittal curvature causes the probe beam to diverge in the transverse direction without coming to a focus on the detector, resulting in a very weak signal. It is useful to place a cylinder lens into the optical system above the mirror under test to refocus the sagittal divergence and increase the signal level. A positive cylinder lens can be placed at two positions above the surface: the Cat's Eye reflection position and the Wavefront-Matching position. The Cat's Eye position, is very tolerant to mirror misalignment, which is not good if absolute axial radius of curvature is to be measured. Lateral positioning and rotational misalignments of lens and the mirror combine to produce unusual profile results. This paper looks at various alignment issues with measurements and by raytrace simulations to determine the best strategy to minimize radius of curvature errors in the measurement of cylindrical aspheres.

  10. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  11. Conservation Through the Economics Lens

    NASA Astrophysics Data System (ADS)

    Farley, Joshua

    2010-01-01

    Although conservation is an inherently transdisciplinary issue, there is much to be gained from examining the problem through an economics lens. Three benefits of such an approach are laid out in this paper. First, many of the drivers of environmental degradation are economic in origin, and the better we understand them, the better we can conserve ecosystems by reducing degradation. Second, economics offers us a when-to-stop rule, which is equivalent to a when-to-conserve rule. All economic production is based on the transformation of raw materials provided by nature. As the economic system grows in physical size, it necessarily displaces and degrades ecosystems. The marginal benefits of economic growth are diminishing, and the marginal costs of ecological degradation are increasing. Conceptually, we should stop economic growth and focus on conservation when the two are equal. Third, economics can help us understand how to efficiently and justly allocate resources toward conservation, and this paper lays out some basic principles for doing so. Unfortunately, the field of economics is dominated by neoclassical economics, which builds an analytical framework based on questionable assumptions and takes an excessively disciplinary and formalistic approach. Conservation is a complex problem, and analysis from individual disciplinary lenses can make important contributions to conservation only when the resulting insights are synthesized into a coherent vision of the whole. Fortunately, there are a number of emerging transdisciplines, such as ecological economics and environmental management, that are dedicated to this task.

  12. Progress in computational unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1993-01-01

    After vigorous development for over twenty years, Computational Fluid Dynamics (CFD) in the field of aerospace engineering has arrived at a turning point toward maturity. This paper discusses issues related to algorithm development for the Euler/Navier Stokes equations, code validation and recent applications of CFD for unsteady aerodynamics. Algorithm development is a fundamental element for a good CFD program. Code validation tries to bridge the reliability gap between CFD and experiment. Many of the recent applications also take a multidisciplinary approach, which is a future trend for CFD applications. As computers become more affordable, CFD is expected to be a better scientific and engineering tool.

  13. The basic aerodynamics of floatation

    SciTech Connect

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  14. Aerodynamics. [numerical simulation using supercomputers

    NASA Technical Reports Server (NTRS)

    Graves, Randolph A., Jr.

    1988-01-01

    A projection is made of likely improvements in the economics of commercial aircraft operation due to developments in aerodynamics in the next half-century. Notable among these improvements are active laminar flow control techniques' application to third-generation SSTs, in order to achieve an L/D value of about 20; this is comparable to current subsonic transports, and has the further consequence of reducing cabin noise. Wave-cancellation systems may also be used to eliminate sonic boom overpressures, and rapid-combustion systems may be able to eliminate all pollutants from jet exhausts other than CO2.

  15. Aerodynamics. [Numerical simulation using supercomputers

    SciTech Connect

    Graves, R.A. Jr.

    1988-01-01

    A projection is made of likely improvements in the economics of commercial aircraft operation due to developments in aerodynamics in the next half-century. Notable among these improvements are active laminar flow control techniques' application to third-generation SSTs, in order to achieve an L/D value of about 20; this is comparable to current subsonic transports, and has the further consequence of reducing cabin noise. Wave-cancellation systems may also be used to eliminate sonic boom overpressures, and rapid-combustion systems may be able to eliminate all pollutants from jet exhausts other than CO/sub 2/.

  16. Broadband wide angle lens implemented with dielectric metamaterials.

    PubMed

    Hunt, John; Kundtz, Nathan; Landy, Nathan; Nguyen, Vinh; Perram, Tim; Starr, Anthony; Smith, David R

    2011-01-01

    The Luneburg lens is a powerful imaging device, exhibiting aberration free focusing for parallel rays incident from any direction. However, its advantages are offset by a focal surface that is spherical and thus difficult to integrate with standard planar detector and emitter arrays. Using the recently developed technique of transformation optics, it is possible to transform the curved focal surface to a flat plane while maintaining the perfect focusing behavior of the Luneburg over a wide field of view. Here we apply these techniques to a lesser-known refractive Luneburg lens and implement the design with a metamaterial composed of a semi-crystalline distribution of holes drilled in a dielectric. In addition, we investigate the aberrations introduced by various approximations made in the implementation of the lens. The resulting design approach has improved mechanical strength with small aberrations and is ideally suited to implementation at infrared and visible wavelengths. PMID:22164056

  17. Blunt Body Aerodynamics for Hypersonic Low Density Flows

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Glass, Christopher E.; Greene, Francis A.

    2006-01-01

    Numerical simulations are performed for the Apollo capsule from the hypersonic rarefied to the continuum regimes. The focus is on flow conditions similar to those experienced by the Apollo 6 Command Module during the high altitude portion of its reentry. The present focus is to highlight some of the current activities that serve as a precursor for computational tool assessments that will be used to support the development of aerodynamic data bases for future capsule flight environments, particularly those for the Crew Exploration Vehicle (CEV). Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction; that is, free molecular to continuum conditions. Also, aerodynamic data are presented that shows their sensitivity to a range of reentry velocities, encompassing conditions that include reentry from low Earth orbit, lunar return, and Mars return velocities (7.7 to 15 km/s). The rarefied results obtained with direct simulation Monte Carlo (DSMC) codes are anchored in the continuum regime with data from Navier-Stokes simulations.

  18. Pediatric genetic disorders of lens.

    PubMed

    Nihalani, Bharti R

    2014-12-01

    Pediatric genetic disorders of lens include various cataractous and non-cataractous anomalies. The purpose of this review is to help determine the genetic cause based on the lens appearance, ocular and systemic associations. Children with bilateral cataracts require a comprehensive history, ophthalmic and systemic examination to guide further genetic evaluation. With advancements in genetics, it is possible to determine the genetic mutations and assess phenotype genotype correlation in different lens disorders. The genetic diagnosis helps the families to better understand the disorder and develop realistic expectations as to the course of their child's disorder. PMID:27625879

  19. Pediatric genetic disorders of lens

    PubMed Central

    Nihalani, Bharti R.

    2014-01-01

    Pediatric genetic disorders of lens include various cataractous and non-cataractous anomalies. The purpose of this review is to help determine the genetic cause based on the lens appearance, ocular and systemic associations. Children with bilateral cataracts require a comprehensive history, ophthalmic and systemic examination to guide further genetic evaluation. With advancements in genetics, it is possible to determine the genetic mutations and assess phenotype genotype correlation in different lens disorders. The genetic diagnosis helps the families to better understand the disorder and develop realistic expectations as to the course of their child's disorder.

  20. DSMC Simulations of Apollo Capsule Aerodynamics for Hypersonic Rarefied Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Glass, Christopher E.; Greene, Francis A.

    2006-01-01

    Direct simulation Monte Carlo DSMC simulations are performed for the Apollo capsule in the hypersonic low density transitional flow regime. The focus is on ow conditions similar to that experienced by the Apollo Command Module during the high altitude portion of its reentry Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction that is for free molecular to continuum conditions. Also aerodynamic data are presented that shows their sensitivity to a range of reentry velocity encompasing conditions that include reentry from low Earth orbit lunar return and Mars return velocities to km/s. The rarefied results are anchored in the continuum regime with data from Navier Stokes simulations

  1. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  2. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  3. Results from the SLAC High Energy Density Plasma Lens Experiment

    NASA Astrophysics Data System (ADS)

    Ng, Johnny S. T.

    2000-04-01

    The plasma lens was proposed(P. Chen, Part. Acc. 20), 171 (1987). as a final focusing mechanism to achieve high luminosity for future high energy linear colliders. Previous experiments(See, for example, R. Govil et al.), Phys. Rev. Lett, 86, No. 16, 3202 (1999), and references therein. to test this concept were carried out at low energy densities. In this talk, results from the SLAC E-150 experiment(P. Chen et al.), Proposal for a Plasma Lens Experiment at the Final Focus Test Beam, SLAC Expt. Prop. E-150, April 1997. on plasma lens focusing of a high energy density beam with parameters relevant to linear colliders are presented and compared with theoretical expectations. The experiment was carried out at the SLAC Final Focus Test Beam, with nominal parameters of 30 GeV beam energy, 1.5× 10^10 electrons per bunch, bunch length σz = 0.7 mm and beam cross-section σ_x^* × σ_y^* = 7 μm × 3 μm. The plasma lens was produced by a fast pulsing gas-jet providing a neutral Nitrogen gas column with density up to 5× 10^18 / cm^3. The gas was then ionized by the leading portion of the incident high energy density electron beam, while the rest of the electrons in the same bunch were focused by the strong plasma pinching force and a reduction in the beam size of up to 40% was measured. The beam waist was also measured and compared with detailed numerical calculations with a particles-in-cell code. The reduction in focal length indicated a focusing strength approximately 100 times that of the FFTB final focus magnets. The synchrotron radiation with critical energy in the 1-10 MeV range due to the strong bending of beam particles inside the plasma lens was observed for the first time.

  4. Lens design based on lens form parameters using Gaussian brackets

    NASA Astrophysics Data System (ADS)

    Yuan, Xiangyu; Cheng, Xuemin

    2014-11-01

    The optical power distribution and the symmetry of the lens components are two important attributes that decide the ultimate lens performance and characteristics. Lens form parameters W and S are the key criteria describing the two attributes mentioned above. Lens components with smaller W and S will have a good nature of aberration balance and perform well in providing good image quality. Applying the Gaussian brackets, the two lens form parameters and the Seidel Aberration Coefficients are reconstructed. An initial lens structure can be analytically described by simultaneous equations of Seidel Aberration Coefficients and third-order aberration theory. Adding the constraints of parameters W and S in the solving process, a solution with a proper image quality and aberration distribution is achieved. The optical properties and image quality of the system based on the parameters W and S are also analyzed in this article. In the method, the aberration distribution can be controlled to some extent in the beginning of design, so that we can reduce some workload of optimization later.

  5. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  6. Dynamic stall and aerodynamic damping

    SciTech Connect

    Rasmussen, F.; Petersen, J.T.; Madsen, H.A.

    1999-08-01

    A dynamic stall model is used to analyze and reproduce open air blade section measurements as well as wind tunnel measurements. The dynamic stall model takes variations in both angle of attack and flow velocity into account. The paper gives a brief description of the dynamic stall model and presents results from analyses of dynamic stall measurements for a variety of experiments with different airfoils in wind tunnel and on operating rotors. The wind tunnel experiments comprises pitching as well as plunging motion of the airfoils. The dynamic stall model is applied for derivation of aerodynamic damping characteristics for cyclic motion of the airfoils in flapwise and edgewise direction combined with pitching. The investigation reveals that the airfoil dynamic stall characteristics depend on the airfoil shape, and the type of motion (pitch, plunge). The aerodynamic damping characteristics, and thus the sensitivity to stall induced vibrations, depend highly on the relative motion of the airfoil in flapwise and edgewise direction, and on a possibly coupled pitch variation, which is determined by the structural characteristics of the blade.

  7. Orion Crew Module Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.

    2011-01-01

    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.

  8. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  9. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  10. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  11. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  12. Aerodynamics of the hovering hummingbird.

    PubMed

    Warrick, Douglas R; Tobalske, Bret W; Powers, Donald R

    2005-06-23

    Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar-avian-body plan.

  13. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  14. A new technique for aerodynamic noise calculation

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Pope, D. S.

    1992-01-01

    A novel method for the numerical analysis of aerodynamic noise generation is presented. The method involves first solving for the time-dependent incompressible flow for the given geometry. This fully nonlinear method that is tailored to extract the relevant acoustic fluctuations seems to be an efficient approach to the numerical analysis of aerodynamic noise generation.

  15. Aerodynamic seal assemblies for turbo-machinery

    SciTech Connect

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  16. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  17. Aerodynamics of Sounding-Rocket Geometries

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1982-01-01

    Theoretical aerodynamics program TAD predicts aerodynamic characteristics of vehicles with sounding-rocket configurations. These slender, Axisymmetric finned vehicles have a wide range of aeronautical applications from rockets to high-speed armament. TAD calculates characteristics of separate portions of vehicle, calculates interference between portions, and combines results to form total vehicle solution.

  18. Future Computer Requirements for Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  19. The aerodynamics of small Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Schmitz, F. W.

    1980-01-01

    Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.

  20. Survey of intraocular lens material and design.

    PubMed

    Doan, Kim T; Olson, Randall J; Mamalis, Nick

    2002-02-01

    Modern cataract surgery is constantly evolving and improving in terms of lens material and design. Researchers and physicians strive to obtain better refractive correction with smaller wound size and minimizing host cell response to limit the proliferation of lens epithelial cells leading to opacification of the lens capsule. Intraocular lens material varies in water content, refractive index, and tensile strength. Intraocular lens design has undergone revisions to prohibit lens epithelial cell migration and reflection of internal and external light. The evolution of intraocular lens and extracapsular cataract surgery has lead to faster postoperative recovery and better visual outcomes.

  1. Contact lens management of keratoconus.

    PubMed

    Downie, Laura E; Lindsay, Richard G

    2015-07-01

    Contact lenses are the primary form of visual correction for patients with keratoconus. Contemporary advances in contact lens designs and materials have significantly expanded the available fitting options for patients with corneal ectasia. Furthermore, imaging technology, such as corneal topography and anterior segment optical coherence tomography, can be applied to both gain insight into corneal microstructural changes and to guide contact lens fitting. This paper provides a comprehensive review of the range of contact lens modalities, including soft lenses, hybrid designs, rigid lenses, piggyback configurations, corneo-scleral, mini-scleral and scleral lenses that are currently available for the optical management of keratoconus. The review also discusses the importance of monitoring for disease progression in patients with keratoconus, in particular children, who tend to undergo more rapid progressive changes, so as to facilitate appropriate modification to contact lens fitting and/or potential referral for corneal collagen cross-linking treatment, as appropriate. PMID:26104589

  2. Intraocular lens fixation with dacron.

    PubMed

    Peyman, G A; Koziol, J E

    1978-10-01

    To overcome the problem of postoperative lens dislocation, we evaluated a new means of lens fixation. Our experimental studies in rabbits and primates demonstrated that Dacron polyethylene terephtalate induced a cellular reaction from either the anterior or posterior iris surface when placed in contact with the iris, thereby establishing a bond between the Dacron fibers and the iris. Dacron mesh can be attached to the distal portion of either the anterior or posterior loops of a Binkhorst iris clip (4-loop) lens. In the rabbit eye, lens fixation occurred within five days; in the primate eye, 30 days. When combined with silk, Dacron produced tissue ingrowth in the primate eye within 14 days. No unwanted reaction occurred in any animal with the Dacron and silk combination. Being biodegradable, the silk induced faster cellular ingrowth than the Dacron. However, Dacron, which is not biodegradable, provided a permanent means of fixation. PMID:155053

  3. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  4. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  5. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  6. Re-Reading Dewey through a Feminist Lens

    ERIC Educational Resources Information Center

    Vorsino, Mary

    2015-01-01

    In this review, Mary Vorsino writes that she is interested in keeping the potential influences of women pragmatists of Dewey's day in mind while presenting modern feminist re readings of Dewey. She wishes to construct a narrowly-focused and succinct literature review of thinkers who have donned a feminist lens to analyze Dewey's approaches to…

  7. Portraying Monsters: Framing School Bullying through a Macro Lens

    ERIC Educational Resources Information Center

    Horton, Paul

    2016-01-01

    This article critically considers the discourse on school bullying through the conceptual framework of lenses and argues that a macro lens has been utilised by school bullying researchers to bring into focus the characteristics of the individuals involved and the types of actions used. By considering earlier understandings of bullying, the article…

  8. An electrokinetically tunable optofluidic bi-concave lens.

    PubMed

    Li, Haiwang; Song, Chaolong; Luong, Trung Dung; Nguyen, Nam-Trung; Wong, Teck Neng

    2012-10-01

    This paper numerically and experimentally investigates and demonstrates the design of an optofluidic in-plane bi-concave lens to perform both light focusing and diverging using the combined effect of pressure driven flow and electro-osmosis. The concave lens is formed in a rectangular chamber with a liquid core-liquid cladding (L(2)) configuration. Under constant flow rates, the performance of the lens can be controlled by an external electric field. The lens consists of a core stream (conducting fluid), cladding streams (non-conducing fluids), and auxiliary cladding streams (conducting fluids). In the focusing mode, the auxiliary cladding stream is introduced to sandwich the biconcave lens to prevent light rays from scattering at the rough chamber wall. In the diverging mode, the auxiliary cladding liquid has a new role as the low refractive-index cladding of the lens. In the experiments, the test devices were fabricated in polydimethylsiloxane (PDMS) using the standard soft lithography technique. Ethanol, cinnamaldehyde, and a mixture of 73.5% ethylene glycol and 26.5% ethanol work as the core stream, cladding streams and auxiliary cladding streams. In the numerical simulation, the electric force acts as a body force. The governing equations are solved by a finite volume method on a Cartesian fixed staggered grid. The evolution of the interface was captured by the level set method. The results show that the focal length in the focusing mode and the divergent angle of the light beam in the diverging mode can be tuned by adjusting the external electric field at fixed flow rates. The numerical results have a reasonable agreement with the experimental results. PMID:22777136

  9. The basic aerodynamics of floatation

    NASA Astrophysics Data System (ADS)

    Davies, M. J.; Wood, D. H.

    1983-09-01

    It is pointed out that the basic aerodynamics of modern floatation ovens, in which the continuous, freshly painted metal strip is floated, dried, and cured, is the two-dimensional analog of that of hovercraft. The basic theory for the static lift considered in connection with the study of hovercraft has had spectacular success in describing the experimental results. This appears surprising in view of the crudity of the theory. The present investigation represents an attempt to explore the reasons for this success. An outline of the basic theory is presented and an approach is shown for deriving the resulting expressions for the lift from the full Navier-Stokes equations in a manner that clearly indicates the limitations on the validity of the expressions. Attention is given to the generally good agreement between the theory and the axisymmetric (about the centerline) results reported by Jaumotte and Kiedrzynski (1965).

  10. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  11. Aerodynamic research on tipvane windturbines

    NASA Astrophysics Data System (ADS)

    Vanbussel, G. J. W.; Vanholten, T.; Vankuik, G. A. M.

    1982-09-01

    Tipvanes are small auxiliary wings mounted at the tips of windturbine blades in such a way that a diffuser effect is generated, resulting in a mass flow augmentation through the turbine disc. For predicting aerodynamic loads on the tipvane wind turbine, the acceleration potential is used and an expansion method is applied. In its simplest form, this method can essentially be classified as a lifting line approach, however, with a proper choice of the basis load distributions of the lifting line, the numerical integration of the pressurefield becomes one dimensional. the integration of the other variable can be performed analytically. The complete analytical expression for the pressure field consists of two series of basic pressure fields. One series is related to the basic load distributions over the turbineblade, and the other series to the basic load distribution over the tipvane.

  12. System for determining aerodynamic imbalance

    NASA Technical Reports Server (NTRS)

    Churchill, Gary B. (Inventor); Cheung, Benny K. (Inventor)

    1994-01-01

    A system is provided for determining tracking error in a propeller or rotor driven aircraft by determining differences in the aerodynamic loading on the propeller or rotor blades of the aircraft. The system includes a microphone disposed relative to the blades during the rotation thereof so as to receive separate pressure pulses produced by each of the blades during the passage thereof by the microphone. A low pass filter filters the output signal produced by the microphone, the low pass filter having an upper cut-off frequency set below the frequency at which the blades pass by the microphone. A sensor produces an output signal after each complete revolution of the blades, and a recording display device displays the outputs of the low pass filter and sensor so as to enable evaluation of the relative magnitudes of the pressure pulses produced by passage of the blades by the microphone during each complete revolution of the blades.

  13. Rarefaction Effects in Hypersonic Aerodynamics

    NASA Astrophysics Data System (ADS)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  14. Aerodynamic characteristics of aerofoils I

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The object of this report is to bring together the investigations of the various aerodynamic laboratories in this country and Europe upon the subject of aerofoils suitable for use as lifting or control surfaces on aircraft. The data have been so arranged as to be of most use to designing engineers and for the purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use, and yet is one for which a desired transformation can be easily made. For this purpose a set of transformation constants is included in this report.

  15. Unsteady Aerodynamics of Insect Flight

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2000-03-01

    The myth `bumble-bees can not fly according to conventional aerodynamics' simply reflects our poor understanding of unsteady viscous fluid dynamics. In particular, we lack a theory of vorticity shedding due to dynamic boundaries at the intermediate Reynolds numbers relevant to insect flight, typically between 10^2 and 10^4, where both viscous and inertial effects are important. In our study, we compute unsteady viscous flows, governed by the Navier-Stokes equation, about a two dimensional flapping wing which mimics the motion of an insect wing. I will present two main results: the existence of a prefered frequency in forward flight and its physical origin, and 2) the vortex dynamics and forces in hovering dragonfly flight.

  16. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  17. Aerodynamic seals for rotary machine

    DOEpatents

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  18. A superconducting solenoid as probe forming lens for microprobe applications

    NASA Astrophysics Data System (ADS)

    Stephan, A.; Meijer, J.; Höfert, M.; Bukow, H. H.; Rolfs, C.

    1994-05-01

    An improved nuclear microprobe system for applications in material science has been designed at the Dynamitron Tandem Laboratory of the University of Bochum. A superconducting solenoid as probe forming lens allows a wide range of projectile masses and energies. We describe the expected performance of the new system calculated by ray tracing and first experiments with the new lens system. The effects of chromatic, spherical and mechanical aberrations, including misalignment and beam scanning, were determined. The calculations show that a very high degree of axial symmetry of the focusing coil is of main importance to avoid parasitic aberrations. This demands extreme accuracy in the fabrication approaching the technical limits.

  19. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, D.R.; Michie, R.B.

    1996-02-20

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.

  20. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, Daniel R.; Michie, Robert B.

    1996-01-01

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.

  1. Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves

    SciTech Connect

    Pacheco-Peña, V. Orazbayev, B. Beaskoetxea, U. Beruete, M.; Navarro-Cía, M.

    2014-03-28

    A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presented and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.

  2. Aerodynamic Noise Generated by Shinkansen Cars

    NASA Astrophysics Data System (ADS)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  3. LC-lens array with light field algorithm for 3D biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  4. Electrically tunable graded index planar lens based on graphene

    SciTech Connect

    Nasari, H. Abrishamian, M. S.

    2014-08-28

    The realization of electrically tunable beam focusing using a properly designed conductivity pattern along a strip on a background single graphene flake with operation in the terahertz regime is proposed and numerically investigated. The strip is illuminated with a guided surface plasmon polaritons (SPP) plane wave and the physical origin of the design procedure is evaluated from the phase of effective mode index of propagating SPP wave on graphene. Upon tuning a gate voltage between the graphene sheet and the substrate, the focus tuning is achieved. Finite- difference time-domain numerical technique is employed to explore the propagation characteristic of SPP wave and the performance parameters of the lens include the focal length, full-width half-maximum, and focusing efficiency. Such a one atom thick planar lens with the capability of electrical focus tuning besides the compatibility with current planar optoelectronic systems can find valuable potential applications in the field of transformational plasmon optics.

  5. Transpiration Control Of Aerodynamics Via Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Wood, Richard M.; Bauer, Steven X. S.

    1993-01-01

    Quasi-active porous surface used to control pressure loading on aerodynamic surface of aircraft or other vehicle, according to proposal. In transpiration control, one makes small additions of pressure and/or mass to cavity beneath surface of porous skin on aerodynamic surface, thereby affecting rate of transpiration through porous surface. Porous skin located on forebody or any other suitable aerodynamic surface, with cavity just below surface. Device based on concept extremely lightweight, mechanically simple, occupies little volume in vehicle, and extremely adaptable.

  6. Performance aerodynamics of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Arrington, J. P.; Mccandless, R. S.

    1984-01-01

    A method for predicting the performance aerodynamics of aeroassisted orbital transfer vehicles was developed based on techniques that were used in the aerodynamic databook of the Space Shuttle orbiter and theories from the Hypersonic Arbitrary Body Program. The method spans the entire flight profile of the aeroassisted orbital transfer vehicles from the extreme high altitude non-continuum regime to the highly viscous continuum regime. Results from this method are compared with flight data from the Shuttle orbiter, Apollo Capsule, and the Viking Aeroshell. Finally, performance aerodynamics are estimated for three aeroassisted orbital transfer vehicles that range from low to high lift-to-drag ratio configurations.

  7. A passive autofocus system by using standard deviation of the image on a liquid lens

    NASA Astrophysics Data System (ADS)

    Rasti, Pejman; Kesküla, Arko; Haus, Henry; Schlaak, Helmut F.; Anbarjafari, Gholamreza; Aabloo, Alvo; Kiefer, Rudolf

    2015-04-01

    Today most of applications have a small camera such as cell phones, tablets and medical devices. A micro lens is required in order to reduce the size of the devices. In this paper an auto focus system is used in order to find the best position of a liquid lens without any active components such as ultrasonic or infrared. In fact a passive auto focus system by using standard deviation of the images on a liquid lens which consist of a Dielectric Elastomer Actuator (DEA) membrane between oil and water is proposed.

  8. A simple method for creating a robust optical vortex beam with a single cylinder lens

    NASA Astrophysics Data System (ADS)

    Nam, Hannarae Annie; Cohen, Martin G.; Noé, John W.

    2011-06-01

    We describe a simple method for creating Laguerre-Gauss (LG) optical vortex beams from Hermite-Gauss (HG) modes with a single cylinder lens. The diverging vortex created by the cylinder lens has the correct intensity distribution in the far-field but its residual longitudinal astigmatism causes the vortex to revert to the original HG mode when it is brought to a focus. We show that an appropriate small tilt of the focusing lens can prevent this effect by introducing a compensating astigmatism. The corrected vortex is a good approximation to an exact LG mode and should be useful for a variety of demonstrations and experiments.

  9. Solar energy system with pivoting lens and collector and conduit system therefor

    SciTech Connect

    Stark, V.

    1981-09-15

    A system in which solar energy is concentrated by an elongated lens in an elongated focus and collected in an elongated collector is disclosed. The lens is supported above the collector for pivotal movement with respect to the conduit about a first axis thereof to track the sun with the conduit remaining stationary. The collector further includes a container having an elongated solar energy transmitting aperture facing the lens along and adjacent to which the conduit extends, the container and lens being interconnected for pivotal movement with respect to the conduit about the first axis to maintain the aperture facing the lens with the conduit remaining stationary while the interconnected lens and container are pivoted. In one embodiment, the interconnected lens, container and conduit are also pivoted about a second axis transverse to the first axis. One embodiment of a conduit system includes an inner metal conduit having darkened outer surfaces to absorb solar energy and transmit heat to a fluid in the metal conduit. The metal conduit is enclosed by an enclosure and a dead space is provided around the inner metal conduit. In one embodiment, photovoltaic cells are installed in an inner transparent conduit in which the elongated focus of a fresnel lens is located. The inner conduit is enclosed by an outer transparent conduit of at least about 3 times larger diameter and a fluid is circulated in the outer conduit which will substantially transmit therethrough the luminous solar energy while absorbing substantial amounts of the infrared solar energy.

  10. Beam Mode Expansion of Corrugated Conical Horns with Phase Correcting Lens: Application to Radioastronomy Receivers

    NASA Astrophysics Data System (ADS)

    García, E.; de Haro, L.; O'Sullivan, C.; Cahill, G.; López Fernández, J. A.; Tercero, F.; Galocha, B.; Besada, J. L.

    2003-06-01

    A classical radioastronomy receiver is fed with a corrugated horn and an independent lens, both placed in a cryostat to lower the noise temperature. The beam is focused and directed using a combination of elliptical and plane mirrors. This paper proposes modifying the initial feeding system by placing the lens onto the horn aperture, thereby allowing a size reduction of the horn and lens, and a simplification of their mechanical design. The profiled lens is shaped to correct the phase error on the horn aperture. A quasi-optical model of the horn-plus-lens system has been developed using a Beam Mode Expansion (BME). Results using both a hyperbolic-planar lens and a spherical-elliptical lens, as well as results obtained by using Geometrical Optics (GO) with a Kirchoff Huygens integration to get the far-field pattern, have been compared with measurements. As a direct application, a full focusing system for the new 40-m radiotelescope at the “Centro Astronómico de Yebes” is presented for the 22, 30 and 45 GHz bands. This paper has developed a QO model for a corrugated conical horn with a phase-correcting lens.

  11. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated. PMID:27192252

  12. Three-terminal adaptive nematic liquid-crystal lens device.

    PubMed

    Riza, N A; Dejule, M C

    1994-07-15

    A 1 mm x 1 mm nematic liquid-crystal three-terminal device for optical beam forming (focusing/spoiling) is fabricated. A thin-film-resistor network on the device substrate layer is used to control the voltages on the 98 internal lens electrodes by use of only one variable external driver. By using a high-resistance thin-film layer of amorphous silicon under the 98-element parallel electrode structure layer, we generate a near-continuous index perturbation to form a cylindrical lens. The focal length of this lens is continuously variable from inifinity to 12 cm by use of a variable 1-4-V-peak 1-kHz square-wave external terminal control signal. PMID:19844517

  13. An electrostatic deceleration lens for highly charged ions.

    PubMed

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  14. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  15. Modeling Aerodynamically Generated Sound of Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    2002-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound of rotors over the past decade. Although the modeling effort has focused on helicopter main rotors, the theory is generally valid for a wide range of rotor configurations. The Ffowcs Williams Hawkings (FW-H) equation has been the foundation for much of the development. The monopole and dipole source terms of the FW-H equation account for the thickness and loading noise, respectively. Bladevortex-interaction noise and broadband noise are important types of loading noise, hence much research has been directed toward the accurate modeling of these noise mechanisms. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H equation has also been utilized on permeable surfaces surrounding all physical noise sources. Comparisons of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems. Finally, significant progress has been made incorporating the rotor noise models into full vehicle noise prediction tools.

  16. Flowfield characteristics of an aerodynamic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.

    1997-11-01

    A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.

  17. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting...

  18. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting...

  19. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting...

  20. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting...

  1. Ultrasonic inspection apparatus and method using a focused wave device

    DOEpatents

    Gieske, John H.; Roach, Dennis P.; Walkington, Phillip D.

    2001-01-01

    An ultrasonic pulse echo inspection apparatus and method for detecting structural failures. A focus lens is coupled to the transducer to focus the ultrasonic signal on an area to be inspected and a stop is placed in the focus lens to block selected ultrasonic waves. Other waves are not blocked and are transmitted through the structure to arrive at interfaces therein concurrently to produce an echo response with significantly less distortion.

  2. Construction of a 300-keV compact ion microbeam system with a three-stage acceleration lens

    NASA Astrophysics Data System (ADS)

    Ishii, Yasuyuki; Ohkubo, Takeru; Kojima, Takuji; Kamiya, Tomihiro

    2014-08-01

    Hydrogen ion microbeams were experimentally formed at beam energies below 150 keV using a 300-keV compact microbeam system that was constructed at the Japan Atomic Energy Agency. This paper is a preliminary report on the performance of the three-stage acceleration lens used in the compact microbeam system. This system consists of a three-stage acceleration lens and a plasma-type ion source. Since the three-stage acceleration lens was designed to simultaneously accelerate and focus the ion beam, the compact microbeam system is only about 1-m high and can be placed in a small experimental room. To evaluate the effectiveness of the three-stage acceleration lens, experimentally measured beam sizes are compared with theoretically calculated ones. The calculated and measured beam sizes were consistent within 10%. This shows that the three-stage acceleration lens is effective as a focusing lens for forming microbeams.

  3. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  4. Performance limits of planar phased array with dome lens

    NASA Astrophysics Data System (ADS)

    Geren, W. P.; Taylor, Michael

    1998-10-01

    Communication systems based on low-earth-orbit (LEO) satellites have generated a requirement for high-performance phased array antennas with exceptional gain, sidelobe levels, and axial ratio over broad scan angles and 360 degree azimuth coverage. One approach to mitigating the effects of scan dependence is to cover the planar array with a hemispherical lens, or dome, which implements passive or active phase correction of the scanned beam. The phase correction over the dome surface may be represented as the function (Delta) (Phi) ((theta) , (phi) ), with (theta) and (phi) the polar and azimuth angles in a coordinate system having z-axis normal to the array. The purpose of this study was to determine the performance improvement achievable with such an ideal lens. Three cases were considered: a conventional lens with fixed optimum phase correction, an active lens with scan-dependent phase correction a function of polar angle only, and an active lens with phase correction a function of polar and azimuthal angles. In all cases, the planar array distribution had a fixed radial Taylor amplitude distribution and a phase taper consisting of a linear beam-pointing term and a non-linear focusing term.

  5. Using the HARV simulation aerodynamic model to determine forebody strake aerodynamic coefficients from flight data

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.

  6. Delayed accumulation of lens material behind the foldable intraocular lens.

    PubMed

    Bhattacharjee, Harsha; Bhattacharjee, Kasturi; Bhattacharjee, Pankaj

    2007-01-01

    Foldable acrylic intraocular lenses (IOLs) are known to reduce posterior capsule opacification by preventing migration of lens epithelial cells with its square edge design and its property of tackiness. Studies have reported a mean adhesiveness to posterior capsule more than three times higher for certain acrylic foldable IOLs than polymethyl methacrylate IOLs. The authors would like to report two cases where the force of tackiness was compensated, thereby presenting with delayed accumulation of lens material in the capsular bags behind the IOL with temporary loss of vision. PMID:17951912

  7. Delayed accumulation of lens material behind the foldable intraocular lens.

    PubMed

    Bhattacharjee, Harsha; Bhattacharjee, Kasturi; Bhattacharjee, Pankaj

    2007-01-01

    Foldable acrylic intraocular lenses (IOLs) are known to reduce posterior capsule opacification by preventing migration of lens epithelial cells with its square edge design and its property of tackiness. Studies have reported a mean adhesiveness to posterior capsule more than three times higher for certain acrylic foldable IOLs than polymethyl methacrylate IOLs. The authors would like to report two cases where the force of tackiness was compensated, thereby presenting with delayed accumulation of lens material in the capsular bags behind the IOL with temporary loss of vision.

  8. Delayed accumulation of lens material behind the foldable intraocular lens

    PubMed Central

    Bhattacharjee, Kasturi; Bhattacharjee, Pankaj

    2007-01-01

    Foldable acrylic intraocular lenses (IOLs) are known to reduce posterior capsule opacification by preventing migration of lens epithelial cells with its square edge design and its property of tackiness. Studies have reported a mean adhesiveness to posterior capsule more than three times higher for certain acrylic foldable IOLs than polymethyl methacrylate IOLs. The authors would like to report two cases where the force of tackiness was compensated, thereby presenting with delayed accumulation of lens material in the capsular bags behind the IOL with temporary loss of vision. PMID:17951912

  9. An overview of the fundamental aerodynamics branch's research activities in wing leading-edge vortex flows at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.; Covell, P. F.

    1986-01-01

    For the past 3 years, a research program pertaining to the study of wing leading edge vortices at supersonic speeds has been conducted in the Fundamental Aerodynamics Branch of the High-Speed Aerodynamics Division at the Langley Research Center. The purpose of the research is to provide an understanding of the factors governing the formation and the control of wing leading-edge vortices and to evaluate the use of these vortices for improving supersonic aerodynamic performance. The studies include both experimental and theoretical investigations and focus primarily on planform, thickness and camber effects for delta wings. An overview of this research activity is presented.

  10. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  11. Aerodynamic Characterization of a Modern Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  12. Aerodynamic Performance of Hand Launch Glider

    NASA Astrophysics Data System (ADS)

    Koike, Masaru; Ishii, Mitsuru

    In recent years Micro Air Vehicles (MAV) for disaster aerial video are developed vigorously. In order to improve aerodynamic performance of MAV wing performance in low Reynolds numbers (Re) need to be improved, but research on the theme are very rare. In category of Hand Launch Glider, a kind of model aircraft, glide performance are competed, as a result high performance airfoils in Re is around 20,000 are developed. Therefore for MAV's aerodynamic performance improvement airfoils of Hand Launch Gliders should be referred and aerodynamic characteristics of the airfoils desired to be studied. So in this research, aerodynamic characteristics of the gliders are measured in wind tunnel. And also consistency between wind tunnel test and glide test in calm air is examined to confirm reliability of wind tunnel test. Comparison of different airfoils and flow visualization are also performed.

  13. Hypervelocity Free-Flight Aerodynamic Facility (HFFAF)

    NASA Video Gallery

    The HFFAF is the only aeroballistic range the nation currently capable of testing in gases other than air and at sub-atmospheric pressures. It is used primarily to study the aerodynamics, Aerotherm...

  14. Aerodynamic Forces on a Vibrating Unstaggered Cascade

    NASA Technical Reports Server (NTRS)

    Soehngen, H.

    1957-01-01

    The unsteady aerodynamic forces, [based on two-dimensional incompressible flow considerations], are determined for an unstaggered cascade, the blades of which are vibrating in phase in an approach flow parallel to the blades.

  15. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  16. Aerodynamic Analyses Requiring Advanced Computers, part 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

  17. Uniaxial aerodynamic attitude control of artificial satellites

    NASA Technical Reports Server (NTRS)

    Sazonov, V. V.

    1983-01-01

    Within the context of a simple mechanical model the paper examines the movement of a satellite with respect to the center of masses under conditions of uniaxial aerodynamic attitude control. The equations of motion of the satellite take account of the gravitational and restorative aerodynamic moments. It is presumed that the aerodynamic moment is much larger than the gravitational, and the motion equations contain a large parameter. A two-parameter integrated surface of these equations is constructed in the form of formal series in terms of negative powers of the large parameter, describing the oscillations and rotations of the satellite about its lengthwise axis, approximately oriented along the orbital tangent. It is proposed to treat such movements as nominal undisturbed motions of the satellite under conditions of aerodynamic attitude control. A numerical investigation is made for the above integrated surface.

  18. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  19. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro

    2015-11-01

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  20. Aerodynamic and Aeroelastic Insights using Eigenanalysis

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Dowell, Earl H.

    1999-01-01

    This paper presents novel analytical results for eigenvalues and eigenvectors produced using discrete time aerodynamic and aeroelastic models. An unsteady, incompressible vortex lattice aerodynamic model is formulated in discrete time; the importance of several modeling parameters is examined. A detailed study is made of the behavior of the aerodynamic eigenvalues both in discrete and continuous time. The aerodynamic model is then incorporated into aeroelastic equations of motion. Eigenanalyses of the coupled equations produce stability results and modal characteristics which are valid for critical and non-critical velocities. Insight into the modeling and physics associated with aeroelastic system behavior is gained by examining both the eigenvalues and the eigenvectors. Potential pitfalls in discrete time model construction and analysis are examined.

  1. HSR Aerodynamic Performance Status and Challenges

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Antani, Tony; Ball, Doug; Calloway, Robert L.; Snyder, Phil

    1999-01-01

    This paper describes HSR (High Speed Research) Aerodynamic Performance Status and Challenges. The topics include: 1) Aero impact on HSR; 2) Goals and Targets; 3) Progress and Status; and 4) Remaining Challenges. This paper is presented in viewgraph form.

  2. The SNAP Strong Lens Survey

    SciTech Connect

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  3. [Contact lens-related keratitis].

    PubMed

    Steiber, Zita; Berta, András; Módis, László

    2013-11-10

    Nowadays, keratitis, corneal infection due to wearing contact lens means an increasingly serious problem. Neglected cases may lead to corneal damage that can cause blindness in cases of otherwise healthy eyes. Early diagnosis based on the clinical picture and the typical patient history is an important way of prevention. Prophylaxis is substantial to avoid bacterial and viral infection that is highly essential in this group of diseases. Teaching contact lens wearers the proper contact lens care, storage, sterility, and hygiene regulations is of great importance. In case of corneal inflammation early accurate diagnosis supported by microbiological culture from contact lenses, storage boxes or cornea is very useful. Thereafter, targeted drug therapy or in therapy-resistant cases surgical treatment may even be necessary in order to sustain suitable visual acuity.

  4. A Prototype Antifungal Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hudson, Sarah P.; Mobbs, Ashley N.; Hoare, Todd R.; Iwata, Naomi G.; Fink, Gerald R.

    2011-01-01

    Purpose. To design a contact lens to treat and prevent fungal ocular infections. Methods. Curved contact lenses were created by encapsulating econazole-impregnated poly(lactic-co-glycolic) acid (PLGA) films in poly(hydroxyethyl methacrylate) (pHEMA) by ultraviolet photopolymerization. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. The contact lenses and their release media were tested in an antifungal assay against Candida albicans. Cross sections of the pre- and postrelease contact lenses were characterized by scanning electron microscopy and by Raman spectroscopy. Results. Econazole-eluting contact lenses provided extended antifungal activity against Candida albicans fungi. Fungicidal activity varied in duration and effectiveness depending on the mass of the econazole-PLGA film encapsulated in the contact lens. Conclusions. An econazole-eluting contact lens could be used as a treatment for fungal ocular infections. PMID:21527380

  5. Automated Fresnel lens tester system

    SciTech Connect

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  6. Remote Adjustable focus Raman Spectroscopy Probe

    SciTech Connect

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1998-07-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external to the probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes along working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translate the probe body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  7. Remote adjustable focus Raman spectroscopy probe

    SciTech Connect

    Schmucker, J.E.; Blasi, R.J.; Archer, W.B.

    1999-12-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  8. Remote adjustable focus Raman spectroscopy probe

    DOEpatents

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  9. Means for controlling aerodynamically induced twist

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1982-01-01

    A control mechanism which provides active compensation for aerodynamically induced twist deformation of high aspect ratio wings consists of a torque tube, internal to each wing and rigidly attached near the tip of each wing, which is moved by an actuator located in the aircraft fuselage. As changes in the aerodynamic loads on the wings occur the torque tube is rotated to compensate for the induced wing twist.

  10. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  11. Feasibility study for a numerical aerodynamic simulation facility: Summary

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1979-01-01

    The Ames Research Center of NASA is engaged in the development and investigation of numerical methods and computer technologies to be employed in conjunction with physical experiments, particularly utilizing wind tunnels in the furtherance of the field of aircraft and aerodynamic body design. Several studies, aimed primarily at the areas of development and production of extremely high-speed computing facilities, were conducted. The studies focused on evaluating the aspects of feasibility, reliability, costs, and practicability of designing, constructing, and bringing into effect production of a special-purpose system. An executive summary of the activities for this project is presented in this volume.

  12. The aerodynamics and control of free flight manoeuvres in Drosophila.

    PubMed

    Dickinson, Michael H; Muijres, Florian T

    2016-09-26

    A firm understanding of how fruit flies hover has emerged over the past two decades, and recent work has focused on the aerodynamic, biomechanical and neurobiological mechanisms that enable them to manoeuvre and resist perturbations. In this review, we describe how flies manipulate wing movement to control their body motion during active manoeuvres, and how these actions are regulated by sensory feedback. We also discuss how the application of control theory is providing new insight into the logic and structure of the circuitry that underlies flight stability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528778

  13. Status Report for the Hypervelocity Free-Flight Aerodynamic Facility

    NASA Technical Reports Server (NTRS)

    Cornelison, Charles J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.

  14. The aerodynamics and control of free flight manoeuvres in Drosophila.

    PubMed

    Dickinson, Michael H; Muijres, Florian T

    2016-09-26

    A firm understanding of how fruit flies hover has emerged over the past two decades, and recent work has focused on the aerodynamic, biomechanical and neurobiological mechanisms that enable them to manoeuvre and resist perturbations. In this review, we describe how flies manipulate wing movement to control their body motion during active manoeuvres, and how these actions are regulated by sensory feedback. We also discuss how the application of control theory is providing new insight into the logic and structure of the circuitry that underlies flight stability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  15. Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

    DOEpatents

    Crewe, Albert V.

    2000-01-01

    Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.

  16. Computer-aided lens assembly.

    PubMed

    Tomlinson, Richard; Alcock, Rob; Petzing, Jon; Coupland, Jeremy

    2004-01-20

    We propose a computer-aided method of lens manufacture that allows assembly, adjustment, and test phases to be run concurrently until an acceptable level of optical performance is reached. Misalignment of elements within a compound lens is determined by a comparison of the results of physical ray tracing by use of an array of Gaussian laser beams with numerically obtained geometric ray traces. An estimate of misalignment errors is made, and individual elements are adjusted in an iterative manner until performance criteria are achieved. The method is illustrated for the alignment of an air-spaced doublet. PMID:14765916

  17. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  18. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  19. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  20. Novel thermal lens for remote heating/cooling designed with transformation optics.

    PubMed

    Liu, Yichao; Sun, Fei; He, Sailing

    2016-03-21

    Remote thermal focusing/refrigeration by suppressing thermal diffusion can be achieved with the help of the novel thermal lens proposed in this paper. Our thermal lens is designed using transformation optics, and has several advantages. Firstly, it is a remote controlling device, i.e. the temperature is increased or decreased only in the heat/cold source and the target points, and the temperature in the area between the source and target points is not influenced. Secondly, the heat/cold sources can move freely inside the lens, and hence the focused points outside the lens can be adjusted dynamically. Numerical simulations are given to verify the novel properties (such as thermal focusing effect, remote refrigeration and remote thermal diffusion suppressing) of the proposed device, which cannot be achieved by any other traditional method. PMID:27136765

  1. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  2. High transmission Ni compound refractive lens for high energy X-rays.

    PubMed

    Brancewicz, M; Itou, M; Sakurai, Y; Andrejczuk, A; Chiba, S; Kayahara, Y; Inoue, T; Nagamine, M

    2016-08-01

    We present a new planar Ni compound refractive lens for high energy X-rays (116 keV). The lens is composed of identical plano-concave elements with longitudinal parabolic grooves manufactured by a punch technique. In order to increase the lens transmission, the thickness of the single lens at the parabolic groove vertex was reduced to less than 5 μm and the radius of curvature was reduced to about 20 μm. The small radius of curvature allowed us to reduce the number of single elements needed to get the focal length of 3 m to 54 single lenses. The gain parameter has been significantly improved compared to the previous lenses due to higher transmission, but the focused beam size and its gain are not as good as expected, mostly due to the aberrations caused by the lens shape imperfections. PMID:27587159

  3. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  4. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes. PMID:27472584

  5. High transmission Ni compound refractive lens for high energy X-rays

    NASA Astrophysics Data System (ADS)

    Brancewicz, M.; Itou, M.; Sakurai, Y.; Andrejczuk, A.; Chiba, S.; Kayahara, Y.; Inoue, T.; Nagamine, M.

    2016-08-01

    We present a new planar Ni compound refractive lens for high energy X-rays (116 keV). The lens is composed of identical plano-concave elements with longitudinal parabolic grooves manufactured by a punch technique. In order to increase the lens transmission, the thickness of the single lens at the parabolic groove vertex was reduced to less than 5 μm and the radius of curvature was reduced to about 20 μm. The small radius of curvature allowed us to reduce the number of single elements needed to get the focal length of 3 m to 54 single lenses. The gain parameter has been significantly improved compared to the previous lenses due to higher transmission, but the focused beam size and its gain are not as good as expected, mostly due to the aberrations caused by the lens shape imperfections.

  6. RF Lens-Embedded Massive MIMO Systems: Fabrication Issues and Codebook Design

    NASA Astrophysics Data System (ADS)

    Kwon, Taehoon; Lim, Yeon-Geun; Min, Byung-Wook; Chae, Chan-Byoung

    2016-07-01

    In this paper, we investigate a radio frequency (RF) lens-embedded massive multiple-input multiple-output (MIMO) system and evaluate the system performance of limited feedback by utilizing a technique for generating a suitable codebook for the system. We fabricate an RF lens that operates on a 77 GHz (mmWave) band. Experimental results show a proper value of amplitude gain and an appropriate focusing property. In addition, using a simple numerical technique--beam propagation method (BPM)--we estimate the power profile of the RF lens and verify its accordance with experimental results. We also design a codebook--multi-variance codebook quantization (MVCQ)--for limited feedback by considering the characteristics of the RF lens antenna for massive MIMO systems. Numerical results confirm that the proposed system shows significant performance enhancement over a conventional massive MIMO system without an RF lens.

  7. Contact lens wear at altitude: subcontact lens bubble formation.

    PubMed

    Flynn, W J; Miller, R E; Tredici, T J; Block, M G; Kirby, E E; Provines, W F

    1987-11-01

    A concern in the past regarding contact lens wear in aviation has been the fear of subcontact lens bubble formation. Previous reports have documented the occurrence of bubbles with hard (PMMA) lenses. Reported here are the results of contact lens bubble studies with soft hydrophilic and rigid gas-permeable lenses. Testing was accomplished in hypobaric chambers and onboard USAF transport aircraft. Hypobaric chamber flights were of three types: high-altitude flights up to 7,620 m (25,000 ft); explosive rapid decompressions from 2,438.4 m (8,000 ft) to 7,620 m (25,000 ft); and 4-h flights at 3,048 m (10,000 ft). Flights aboard transport aircraft typically had cabin pressures equivalent to 1,524-2,438.4 m (5,000-8,000 ft), and ranged in duration from 3 to 10 h. For subjects wearing rigid gas-permeable lenses, central bubbles were detected in 2 of 10 eyes and occurred at altitudes greater than 6,096 m (20,000 ft). With soft contact lenses, bubble formation was detected in approximately 24% (22 of 92 eyes) of the eyes tested, sometimes occurring at altitudes as low as 1,828.8 m (6,000 ft). Soft lens bubbles were always located at the limbus and were without sequela to vision or corneal epithelial integrity. Bubbles under the rigid lenses were primarily central, with potential adverse effects on vision and the corneal epithelium.

  8. Ensuring Safe Use of Contact Lens Solution

    MedlinePlus

    ... For Consumers Consumer Updates Ensuring Safe Use of Contact Lens Solution Share Tweet Linkedin Pin it More ... back to top Dos and Don'ts for Contact Lens Wearers DO: Always wash your hands before ...

  9. Ultrathin Alvarez lens system actuated by artificial muscles.

    PubMed

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems. PMID:27139677

  10. Plasmonic quadrant lens for beam-position sensing.

    PubMed

    Wang, Jiayuan; Yang, Jing; Bai, Zhenjian; Zhang, Jiasen

    2016-09-19

    We present the design of a plasmonic quadrant lens (QL) which is capable of coupling the light from free space into surface plasmon polaritons (SPPs) and focusing them into four directions, depending on the polarization content of the incident light. The lens is composed of a set of uniform nanogrooves etched on a gold film. Two types of QLs with four and eight foci are realized. We further propose QLs as a plasmonic version of well-known quadrant detectors for beam-position sensing through a center location algorithm. The sensitivity of the device is also investigated for both linear and circular polarized incidences. Calculation results show that the four-focus QL offers a large effective detecting area and the eight-focus QL enables beam-position sensing to be operated with two different sensitivities simultaneously. PMID:27661895

  11. Aerodynamics of Unsteady Sailing Kinetics

    NASA Astrophysics Data System (ADS)

    Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk

    2015-11-01

    In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.

  12. Parachute Aerodynamics From Video Data

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Cruz, Juan R.

    2005-01-01

    A new data analysis technique for the identification of static and dynamic aerodynamic stability coefficients from wind tunnel test video data is presented. This new technique was applied to video data obtained during a parachute wind tunnel test program conducted in support of the Mars Exploration Rover Mission. Total angle-of-attack data obtained from video images were used to determine the static pitching moment curve of the parachute. During the original wind tunnel test program the static pitching moment curve had been determined by forcing the parachute to a specific total angle-of -attack and measuring the forces generated. It is shown with the new technique that this parachute, when free to rotate, trims at an angle-of-attack two degrees lower than was measured during the forced-angle tests. An attempt was also made to extract pitch damping information from the video data. Results suggest that the parachute is dynamically unstable at the static trim point and tends to become dynamically stable away from the trim point. These trends are in agreement with limit-cycle-like behavior observed in the video. However, the chaotic motion of the parachute produced results with large uncertainty bands.

  13. Aerodynamic characteristics of French consonants

    NASA Astrophysics Data System (ADS)

    Demolin, Didier; Hassid, Sergio; Soquet, Alain

    2001-05-01

    This paper reports some aerodynamic measurements made on French consonants with a group of ten speakers. Speakers were recorded while saying nonsense words in phrases such as papa, dis papa encore. The nonsense words in the study combined each of the French consonants with three vowels /i, a, u/ to from two syllables words with the first syllable being the same as the second. In addition to the audio signal, recordings were made of the oral airflow, the pressure of the air in the pharynx above the vocal folds and the pressure of the air in the trachea just below the vocal folds. The pharyngeal pressure was recorded via a catheter (i.d. 5 mm) passed through the nose so that its open end could be seen in the pharynx below the uvula. The subglottal pressure was recorded via a tracheal puncture between the first and the second rings of the trachea or between the cricoid cartilage and the first tracheal ring. Results compare subglottal presssure, pharyngeal pressure, and airflow values. Comparisons are made between values obtained with male and female subjects and various types of consonants (voiced versus voiceless at the same place of articulation, stops, fricatives, and nasals).

  14. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  15. SimpLens: Interactive gravitational lensing simulator

    NASA Astrophysics Data System (ADS)

    Saha, Prasenjit; Williams, Liliya L. R.

    2016-06-01

    SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

  16. A refracting radio telescope. [using ionosphere as lens

    NASA Technical Reports Server (NTRS)

    Bernhardt, P.; Da Rosa, A. V.

    1977-01-01

    Observations of extraterrestrial radio sources at the lower end of the radio frequency spectrum are limited by reflection of waves from the topside ionosphere and by the large size of antenna apertures necessary for the realization of narrow beamwidths. The use of the ionosphere as a lens is considered. The lens is formed by the release of chemicals such as H2 and H2O at the F2-layer peak. These chemicals promote dissociative recombination of O(+) in the ionosphere resulting in a local reduction in plasma density. Gradients in electron density in the vicinity of the gas release tend to focus rays propagating through the depleted region. Preliminary calculations indicate that a lens capable of focusing cosmic radio waves in the 1 to 10 MHz frequency range may be produced by the release of 100 kg of H2 at the peak of the nighttime F layer. The beamwidth of a refracting radio telescope using this lens may be less than 1/5 degree.

  17. Smart lens made of dielectric elastomer: simulation study

    NASA Astrophysics Data System (ADS)

    Tang, Hong

    2011-03-01

    Electroactive Polymers (EAPs) are polymers that exhibit a change in size or shape when stimulated by an electric field. The common applications of this type of material are in actuators and sensors. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large forces. It has been demonstrated that EAPs can exhibit a strain from 10% to 300%. A dielectric elastomer (DEA) is a compliant capacitor, where a passive elastomer film is sandwiched between two compliant electrodes. When a voltage is applied, the electrostatic pressure arising from the Coulomb forces acting between the electrodes, therefore the electrodes squeeze the elastomer film. Based on the finite element analysis, we simulated the deformation of a polymer lens made of transparent dielectric elastomer materials under an application of electric field, which is provided by the transparent thin metal layers coated on the upper and lower surfaces of the lens. The focus of the lens can be adjusted by the applied electric field strength. By designing the electrode configuration on the lens surfaces, one can achieve both the positive and negative adjustment for the focus length.

  18. Elastic constants of the human lens capsule.

    PubMed

    Fisher, R F

    1969-03-01

    1. A technique is described whereby the elasticity of the human lens capsule has been determined at birth and throughout life. This technique requires three separate determinations: (a) thickness; (b) stress and strain; (c) Poisson's ratio; (a) the capsule was clamped between accurately perforated ground glass plates and its thickness determined by noting the change in depth of focus between Latex spherules adhering to its upper and lower surfaces; (b) the undisturbed capsule was then placed in a specially designed glass distension apparatus and the relationship between volume and pressure recorded when it was distended with isotonic saline. The permeability of the capsule was also measured; (c) in some cases Poisson's ratio was determined by measuring the change of thickness of the capsule and the height to which it rose when distended with isotonic saline at different pressures. An apparatus was designed for this purpose.2. The average thickness of the anterior capsule increases from birth until about the 60th year but thereafter it decreases slightly.3. Poisson's ratio was about 0.47 for both cat and human capsule, and no significant variations with age in human capsule could be detected.4. Corrected volume pressure curves obeyed Hook's law almost to the point of capsule rupture.5. In childhood Young's Modulus of elasticity is about 6 x 10(7) dyn/cm(2) and decreases to 3 x 10(7) dyn/cm(2) at 60 and 1.5 x 10(7) dyn/cm(2) in extreme old age.6. The ultimate tensile stress was 2.3 x 10(7) dyn/cm(2) in young capsules and 0.7 x 10(7) dyn/cm(2) in old ones. The maximum percentage elongation was 29 per cent and independent of age.7. The implications of these findings are discussed in relation to(a) the mechanical properties of the lens capsule;(b) the ageing of the lens capsule and basement membranes; and(c) the decrease in elasticity of the lens capsule as a cause of presbyopia.

  19. Crystal diffraction lens for medical imaging

    SciTech Connect

    Smither, R. K.; Roa, D. E.

    2000-02-25

    A crystal diffraction lens for focusing energetic gamma rays has been developed at Argonne National Laboratory for use in medical imaging of radioactivity in the human body. A common method for locating possible cancerous growths in the body is to inject radioactivity into the blood stream of the patient and then look for any concentration of radioactivity that could be associated with the fast growing cancer cells. Often there are borderline indications of possible cancers that could be due to statistical functions in the measured counting rates. In order to determine if these indications are false or real, one must resort to surgical means and take tissue samples in the suspect area. They are developing a system of crystal diffraction lenses that will be incorporated into a 3-D imaging system with better sensitivity (factors of 10 to 100) and better spatial resolution (a few mm in both vertical and horizontal directions) than most systems presently in use. The use of this new imaging system will allow one to eliminate 90% of the false indications and both locate and determine the size of the cancer with mm precision. The lens consists of 900 single crystals of copper, 4 mm x 4 mm on a side and 2--4 mm thick, mounted in 13 concentric rings.

  20. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  1. A broadband transformation-optics metasurface lens

    SciTech Connect

    Wan, Xiang; Xiang Jiang, Wei; Feng Ma, Hui; Jun Cui, Tie

    2014-04-14

    We present a transformational metasurface Luneburg lens based on the quasi-conformal mapping method, which has weakly anisotropic constitutive parameters. We design the metasurface lens using inhomogeneous artificial structures to realize the required surface refractive indexes. The transformational metasurface Luneburg lens is fabricated and the measurement results demonstrate very good performance in controlling the radiated surface waves.

  2. 21 CFR 886.3600 - Intraocular lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials...

  3. Contact Lens-Related Eye Infections

    MedlinePlus

    ... Stories Español Eye Health / Eye Health A-Z Contact Lens-Related Eye Infections Sections Contact Lens-Related ... About Contact Lenses Proper Care of Contact Lenses Contact Lens-Related Eye Infections Written by: Kierstan Boyd ...

  4. New merit values for lens performance.

    NASA Astrophysics Data System (ADS)

    Nakagawa, J.

    1995-08-01

    New merit values for lens performance m=Σ(Qh)2 and m¯=Σ(Qh¯)2 were introduced, where Q is Abbe's invariant, h is paraxial ray height and the bar indicates principal ray. The studies showed that m and m¯ are useful for the evaluation of potentialities of lens systems and for the optimization of lens designs.

  5. In vivo human crystalline lens topography

    PubMed Central

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-01-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from −0.04 to −1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism (Z22 ranging from −11 to −1 µm) and the posterior lens showing vertical astigmatism (Z22 ranging from 6 to 10 µm). PMID:23082289

  6. Tevatron electron lens magnetic system

    SciTech Connect

    Vladimir Shiltsev et al.

    2001-07-12

    In the framework of collaboration between IHEP and FNAL, a magnetic system of the Tevatron Electron Lens (TEL) has been designed and built. The TEL is currently installed in the superconducting ring of the Tevatron proton-antiproton collider and used for experimental studies of beam-beam compensation [1].

  7. The Fyodorov Sputnik intraocular lens.

    PubMed

    Kwitko, M L

    1979-04-01

    The author has implanted 197 Fyodorov intraocular lenses. With careful selection of patients, good surgical judgment, and meticulous surgery, a degree of success can be obtained with this lens, which will equal that of conventional cataract surgery. The surgical technique of implantation will be described. PMID:537770

  8. A Lens to the Enterprise.

    ERIC Educational Resources Information Center

    Zemsky, Robert, Ed.

    1999-01-01

    This essay is based on a series of roundtables convened through the Knight Collaborative National Medical Education Roundtable. It reports that the challenges and transformations experienced in recent years by community-based medical schools and clinical campuses offer a lens to the whole higher education enterprise, and asks the fundamental…

  9. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  10. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  11. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  12. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  13. Aerodynamic Parameter Identification of a Venus Lander

    NASA Astrophysics Data System (ADS)

    Sykes, Robert A.

    An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.

  14. Comparison of Some Aspherical Curved Surfaces of A Single Biconcave Acoustic Lens System for Ambient Noise Imaging

    NASA Astrophysics Data System (ADS)

    Mori, K.; Ogasawara, H.; Nakamura, T.

    Ambient Noise Imaging (ANI) is a revolutionary method for detecting silent objects using the ocean's background noise. In this study, a sound field focused by an acoustic lens system constructed with a single biconcave lens was analyzed using the 2-D Finite Difference Time Domain (FDTD) method in order to design an ANI system. The -3dB areas and relative pressure level at image points were surveyed using lenses with some aspherical curved surfaces, such as popular aspherical lenses (elliptical, parabolic, and hyperbolic) and an aplanatic lens. The analysis results indicate that the effects of both spherical and coma aberrations were corrected by the aplanatic lens.

  15. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  16. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Mcdanal, A. J.; Spears, Don H.

    1989-01-01

    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.

  17. Baseball Aerodynamics: What do we know and how do we know it?

    NASA Astrophysics Data System (ADS)

    Nathan, Alan

    2009-11-01

    Baseball aerodynamics is governed by three phenomenological quantities: the coefficients of drag, lift, and moment, the latter determining the spin decay time constant. In past years, these quantities were studied mainly in wind tunnel experiments, whereby the forces on the baseball are measured directly. More recently, new tools are being used that focus on measuring accurate baseball trajectories, from which the forces can be inferred. These tools include high-speed motion analysis, video tracking of pitched baseballs (the PITCHf/x system), and Doppler radar tracking. In this contribution, I will discuss what these new tools are teaching us about baseball aerodynamics.

  18. Real-time estimation of aerodynamic features for ambulatory voice biofeedback.

    PubMed

    Llico, Andrés F; Zañartu, Matías; González, Agustín J; Wodicka, George R; Mehta, Daryush D; Van Stan, Jarrad H; Hillman, Robert E

    2015-07-01

    The development of ambulatory voice monitoring devices has the potential to improve the diagnosis and treatment of voice disorders. In this proof-of-concept study, real-time biofeedback is incorporated into a smartphone-based platform that records and processes neck surface acceleration. The focus is on utilizing aerodynamic measures of vocal function as a basis for biofeedback. This is done using regressed Z-scores to compare recorded values to normative estimates based on sound pressure level and fundamental frequency. Initial results from the analysis of different voice qualities suggest that accelerometer-based estimates of aerodynamic parameters can be used for real-time ambulatory biofeedback.

  19. Real-time estimation of aerodynamic features for ambulatory voice biofeedback

    PubMed Central

    Llico, Andrés F.; Zañartu, Matías; González, Agustín J.; Wodicka, George R.; Mehta, Daryush D.; Van Stan, Jarrad H.; Hillman, Robert E.

    2015-01-01

    The development of ambulatory voice monitoring devices has the potential to improve the diagnosis and treatment of voice disorders. In this proof-of-concept study, real-time biofeedback is incorporated into a smartphone-based platform that records and processes neck surface acceleration. The focus is on utilizing aerodynamic measures of vocal function as a basis for biofeedback. This is done using regressed Z-scores to compare recorded values to normative estimates based on sound pressure level and fundamental frequency. Initial results from the analysis of different voice qualities suggest that accelerometer-based estimates of aerodynamic parameters can be used for real-time ambulatory biofeedback. PMID:26233054

  20. Aerodynamic heating in hypersonic flows

    NASA Technical Reports Server (NTRS)

    Reddy, C. Subba

    1993-01-01

    Aerodynamic heating in hypersonic space vehicles is an important factor to be considered in their design. Therefore the designers of such vehicles need reliable heat transfer data in this respect for a successful design. Such data is usually produced by testing the models of hypersonic surfaces in wind tunnels. Most of the hypersonic test facilities at present are conventional blow-down tunnels whose run times are of the order of several seconds. The surface temperatures on such models are obtained using standard techniques such as thin-film resistance gages, thin-skin transient calorimeter gages and coaxial thermocouple or video acquisition systems such as phosphor thermography and infrared thermography. The data are usually reduced assuming that the model behaves like a semi-infinite solid (SIS) with constant properties and that heat transfer is by one-dimensional conduction only. This simplifying assumption may be valid in cases where models are thick, run-times short, and thermal diffusivities small. In many instances, however, when these conditions are not met, the assumption may lead to significant errors in the heat transfer results. The purpose of the present paper is to investigate this aspect. Specifically, the objectives are as follows: (1) to determine the limiting conditions under which a model can be considered a semi-infinite body; (2) to estimate the extent of errors involved in the reduction of the data if the models violate the assumption; and (3) to come up with correlation factors which when multiplied by the results obtained under the SIS assumption will provide the results under the actual conditions.